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Abstract
The advent of phases of matter which are inherently and explicitly quantum mechan-
ical has made it possible to create devices with exciting capabilities that would other-
wise be completely impossible. Recently, experimental advancements are beginning to
make it feasible to not just create such quantum materials, but actually manipulate mi-
croscopic details in these systems to engineer their properties on demand. Furthermore,
by externally interacting with quantum systems, it is possible to induce phases of mat-
ter (such as time crystals and materials exhibiting anomalous topological properties)
that are forbidden for isolated systems in equilibrium. In this dissertation, we intro-
duce a variety of new classes of physically realizable, non-equilibrium models with a
focus on systems which are periodically driven or subjected to a periodic protocol of
quantum measurements. We leverage this driving and these quantum measurements
to induce non-trivial steady states and phases of matter with surprising and appealing
novel properties.

We first examine free fermionic lattice systems subject to quantum measurements
(as well as other quantum operations such as particle injection). For example, we con-
sider the effect of a measurement device (along with a variety of other kinds of dis-
turbances) which is dragged through a Fermi sea. The device induces a wake pattern
(in analogy with a boat moving through water) which is characterized by the speed
at which the probe is moved through the system and its direction with respect to the
lattice. Furthermore, stark contrasts emerge between the wake geometry of a quantum
disturbance (such as a measurement) and classical disturbances (such as a potential).
These effects are especially prominent at half-filling where the the density wake due to
measurements disappears and the wake from a moving particle extractor is tempera-
ture invariant.

We also introduce a model where lattice fermions are subjected to a periodic se-
quence of measurements which break the time reversal symmetry of the original free
hopping evolution. We show that this protocol induces chiral edge transport in the sys-
tem that is protected against perturbations and deformations of the boundary at high
measurement rates. This model shows that it is possible to induce chiral edge modes
in an analogous way to those in anomalous Floquet topological insulators via measure-
ments alone. On the other hand, the measurement-induced model also exhibits novel,
distinct features due to the non-unitary nature of the evolution.
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Finally, we turn to consider exotic non-equilibrium dynamics which may be in-
duced via a combination of periodic driving and interactions, instead of through a
protocol of measurements. Namely, we introduce a broad class of interacting Floquet
models which exhibit special points in parameter space where the dynamics becomes
exactly solvable. Additionally, at other interaction strengths and driving frequencies,
we show that the system exhibits Hilbert space fragmentation with some subspaces
corresponding to a (complex) permutation of number states while others may be non-
integrable and thermalize. When disorder is added to the system, it is shown that this
dynamics is stabilized within finite regions of parameters space (thereby correspond-
ing to true dynamical phases of matter) instead of just at finely tuned parameter val-
ues. Importantly, the phases realizable in this fashion include many of the uniquely
non-equilibrium materials which are currently the focus of active interest including,
for example, time crystals and anomalous Floquet topological insulators. In this way,
we show how our introduction and analysis of this broad class of interacting Floquet
models allows for new insights into these non-equilibrium phases as well as provides
a framework upon which to systematically search for and examine other completely
novel non-equilibrium steady states.
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Chapter 1

Introduction

1.1 Quantum Engineering

Over the past half-century, there has been an explosion of new discoveries regarding
materials or phases of matter with exciting properties that are manifestly quantum me-
chanical. These systems, such as high-temperature superconductors [5], Bose-Einstein
condensates [6], and topological quantum phases [7, 8], promise to (or already have)
bring about technological revolutions across a wide variety of fields. Furthermore, in-
vestigations into their properties have led to new theoretical intuition and powerful
mathematical and experimental tools ([9] for example) which may be leveraged to help
understand emergent phenomena in other systems and beyond. With these new tools,
it is beginning to be possible to not just manufacture quantum phases of matter, but
actually externally control their microscopic properties. This suggests the possibility to
engineer desired quantum behavior and then adapt it on command.

Understanding (and taking advantage of) the effects of this external manipulation
of the microscopic details of quantum systems, however, poses theoretical challenges.
Many of the conventional tools used to describe collective behavior in quantum materi-
als are restricted to isolated, time independent systems that are at (or near) equilibrium
[10]. New methods must be developed in order to gain insights into these now man-
ifestly open and time-dependent contexts far from equilibrium. Extensive theoretical
effort has been focused on developing such methods over the past 15 years especially
following discoveries that non-equilibrium systems are not only useful for imitating ex-
otic equilibrium dynamics in a tunable fashion, but may also support phases of matter
which are forbidden in equilibrium [11]. Two prominent examples are Time Crystals
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[12, 13] and anomalous Floquet topological insulators [14, 15] (also, see section 1.3). Ex-
citement surrounding the development of better analytical tools for out of equilibrium
systems is further fueled by the desire to better understand the dynamics of quantum
circuits and to improve upon existing quantum computing platforms [16].

In this dissertation, we focus on several examples of novel, exotic dynamics in the
non-equilibrium setting. In this chapter, we provide a pedagogical introduction to the
theoretical tools which will be necessary to investigate such non-equilibrium dynamics,
making reference to more standard, familiar tools from equilibrium or open systems
whenever useful. We will also present simple toy models which illustrate how behavior
in non-equilibrium systems can arise which is impossible in equilibrium. These toy
models additionally provide a convenient point of reference for the rest of the models
introduced in this work.

In chapter 2, we consider the effects of local disturbances (such as a potential,
particle density measurement device, or extractor which pulls particles out of the sys-
tem) as it is dragged through a sea of lattice fermions which are initially at equilib-
rium. In analogy to the wake pattern left behind a boat moving through water, the
local disturbance will create a characteristic wake pattern in the fermion density. The
shape and properties of this wake pattern may be analyzed, with stark contrasts ap-
pearing between the wake patterns of different kinds of local disturbances. For weak
disturbances and for lattice sites far from the location of the disturbance, the change
in particle density from its equilibrium value is small and, therefore, the system may
be accurately described by linear response. This means that, on top of the interest of
the wake dynamics in its own right, the system also provides a convenient platform
to gain intuition and develop tools which will be useful in the analysis of systems far
from equilibrium while still working in a near-equilibrium setting. We also provide a
description of how to realize this dynamics in cold-atom systems.

We leave the near-equilibrium setting in chapter 3 and consider the effects of a
protocol of measurements which when applied to lattice fermions induces protected
chiral transport along the edge of the system while the bulk exhibits no transport. This
measurement induced chirality is reminiscent of similar behavior in anomalous Floquet
topological insulators (see section 1.3), where the protected chiral edge transport is re-
alized by periodic driving instead of by a periodic sequence of measurements. Despite
these similarities, however, the two systems also exhibit many distinct features due to
the contrast between the unitary evolution in the periodically driven case versus the
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manifestly non-unitary dynamics of the measurements.

Chapter 4 introduces a class of interacting, periodically driven models whose
properties may be studied in a general fashion. Specifically, it is shown that at spe-
cial driving frequencies and interaction strengths the dynamics is exactly solvable. At
other special points in parameter space, the Hilbert space fragments into an exponen-
tial number of subspaces. The dynamics in some of these subspaces is integrable and
described exactly in our framework, while other subspaces may thermalize. Chapter 5
considers the same class of models except with added disorder. In this case, many of
the finely tuned properties found in chapter 4 are shown to be stabilized within finite
regions of parameter space to create true non-equilibrium phases of matter. This sta-
bilization is achieved through mechanisms referred to as many-body localization and
prethermalization (background on these phenomena is given in Sec. 1.4).

For ease of presentation, each chapter contains the main results and ideas in its
body with many of the technical details included in a corresponding appendix.

The rest of this introduction will be focused on providing theoretical background
and further context on non-equilibrium dynamics. We begin with a brief introduction
of the theoretical tools necessary to describe periodically driven (also called Floquet)
systems.

1.2 Floquet Theory

One possible route towards driving a system out of equilibrium is to introduce time-
dependence into the system parameters. Through the careful control of this time-
dependence, one may hope to engineer interesting dynamics and phases of matter in a
tunable fashion. In general, the dynamics of a quantum wave function is described by
the time-dependent schrödinger equation

ih̄
d
dt

Ψ(t) = H(t)Ψ(t). (1.1)

with the general solution
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Ψ(t) = U(t)Ψ(t = 0) (1.2)

U(t) = Te−
i
h̄
∫ t

0 H(s)ds. (1.3)

In the rest of this work, we set h̄ = 1 for brevity unless otherwise noted.

It is not possible, in general, to write the evolution operator U(t) in closed form.
Therefore, it is prudent to focus on regimes where U(t) becomes more tractable. One
possibility is to consider only systems where the Hamiltonian is periodic in time, with
some period T, i.e.

H(t + T) = H(t). (1.4)

According to Floquet’s theorem [17], solutions to the time-dependent schrödinger
equation, when the Hamiltonian is of the form (1.4), may be written

Ψ(t) = e−iϵtΦ(t) s.t. Φ(t + T) = Φ(t). (1.5)

In other words, the eigenstates of the evolution are given by a wavefunction with the
same periodicity as the Hamiltonian times a time-dependent phase which is charac-
terized by the “quasi-energy” ϵ1. The time-dependence of a Floquet (i.e. periodically
driven) system implies that energy is not conserved. However, as we will see shortly,
the quasi-energy plays a somewhat analogous role which allows for the continued use
of typical tools from static systems, such as band theory, up to slight adjustments.

In order to see how this is the case, it is convenient to consider the stroboscopic
evolution, i.e. only consider the evolution after time intervals given by integer multi-
ples of the period T. The relevant operator of interest is the evolution of a single period
given by

1This result is directly analogous to Bloch’s theorem for systems with spatially periodic lattice poten-
tials. See (1.10)
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U(T) = Te−i
∫ T

0 H(s)ds ≡ e−iHFT (1.6)

where we have defined the Floquet Hamiltonian, HF, above. The unitarity of U(T)
guarantees that HF is hermitian. In practice, we note that it is often helpful to write
HF explicitly in terms of a series expansion in H(t). A common choice is the Floquet-
Magnus expansion [18] where the first few terms are given by

HF =
∫ T

0
H(t)dt − i

2

∫ T

0
dt1

∫ t1

0
dt2 [H(t1),H(t2)] + ... (1.7)

Intuitively, this expansion may be interpreted as a continuous generalization of the
Baker–Campbell–Hausdorff formula [19].

Now, note that the stroboscopic evolution of the Floquet states (1.5) is given by

e−iHFTΨ(0) = U(T)Ψ(0) = Ψ(T) = e−iϵTΨ(0) (1.8)

where we have used the periodicity of Φ(t) in the final equality. Eq. (1.8) is the char-
acteristic eigenvalue equation for the stroboscopic evolution and we compare and con-
trast it with the eigenvalue equation for a static Hamiltonian HΨ = EΨ =⇒ e−iHTΨ =

e−iETΨ. It is due to this analogy that we refer to ϵ as the “quasi-energy” and we may
use it in a way that is much analogous to eigenenergies in time-independent systems.
However, there are two key differences:

1. Eq (1.8) is only an eigenvalue equation at stroboscopic times (since we had to use
the time periodicity of Φ(t) in the final equality).

2. The quasi-energy is periodic in intervals of 2π
T (since Eq. (1.8) is invariant under

the transformation ϵ → ϵ + 2πm
T for any integer m).

Much of the original excitement of Floquet theory was on carefully choosing H(t)
such that the corresponding HF was an important, static Hamiltonian of interest [11].
This would then allow for the realization and study of these time-independent Hamil-
tonians in a highly controllable fashion. However, the past decade has seen an explo-
sion in interest of leveraging the above two differences with static systems to realize
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novel states of matter not possible in equilibrium [13, 14]. In the next section, we de-
scribe a Floquet model (first introduced by Rudner et. al. [20]) which achieves just
this.

1.3 Topology in Physical Systems

Topology is the study of geometrical properties of an object which are invariant under
continuous deformations. Physical systems which exhibit properties that correspond
to such a topological invariant may often present interesting and surprising dynamics
which find applications in a broad range of contexts [7]. This is because the invariant
continuous deformations could correspond to typical noise, errors, or perturbations in
the system, allowing topological properties to be much more robust than phenomena
in topologically trivial systems. Famous examples include, for instance, quantized con-
ductance in quantum hall systems [21] and systems with long-range topological order
such as the Toric code [22].

In this section, we first give a brief review of the relevant features of topology
and how it enters into band theory of time-independent systems. For a more thorough
introduction, see [23]. We then discuss how the periodicity of the quasi-energy allows
for the emergence of new topological invariants and phases which are impossible for
the time-independent systems.

1.3.1 Topology of Tight-Binding Models in Equilibrium

We focus on tight-binding lattice systems. Lattice systems are spatially periodic by
displacements of a set of lattice vectors R = {Rm} with Rm = ∑i miai where m = {mi}
are a set of integers and ai is a set of basis vectors. In other words, for some Hamiltonian
H(r), we have

H(r) = H(r + R). (1.9)

By Bloch’s theorem, we have that eigenstates of such a Hamiltonian have the form
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Ψ(r) = eik·ru(r) (1.10)

This is directly analogous to Floquet’s theorem (1.5) where here u(r + R) = u(r)
and k is the quasi-momentum. A lattice system is tight-binding if there are a finite
number M of internal degrees of freedom (such as lattice sites, spin, etc.) within each
unit cell2 of the lattice. In this case, the Schrödinger equation will have a solution (of
the form (1.10)) pertaining to each of the M internal degrees of freedom of the unit cell
which are labeled by the “band index”3 α ∈ {1, ..., M}.

An example of a topological invariant in two dimensions (which will be relevant
for discussions related to an example non-equilibrium system later in this chapter) is
the Chern number, given by

Cα =
1

2π

∫
BZ

d2kΩα(k) (1.11)

where

Ωα(k) = [∇k × Aα(k)]z (1.12)

Aα(k) = i⟨uα|∇k|uα⟩. (1.13)

In the above, Ωα(k) is known as the Berry curvature and Aα(k) the Berry connec-
tion. As can be seen from the definition (1.11), the Chern number is related to the flux
of the Berry curvature through the Brillouin zone and may only take integer values.

A Chern number may be defined for any non-degenerate band α in the system
and will remain invariant under perturbations which do not make energy bands touch
(thereby making the band degenerate at some quasi-momentum). Furthermore, the

2for example, the Wigner-Seitz unit cell defined as the locus of points which are closer to a given
lattice vector R than to any other R′

3We will assume familiarity with the basics of band theory throughout the rest of this dissertation.
We direct the unfamiliar reader to one of the many introductory textbooks on the subject. For example,
[24]
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FIGURE 1.1: A two-band model exhibiting topological band structure and
chiral edge modes in an equilibrium context. A) Since the fermi energy εF
is in a band gap, it takes a large amount of energy to induce higher energy
excitations in the system making it a band insulator. However, the filled
band has non-zero chern number, so an edge band corresponding to a chi-
ral mode on the boundary of the system (shown in green) will connect the
bulk bands. If the Hamiltonian of the system H is continuously deformed
into a new Hamiltonian H′ in such a way that the band gap does not close,
the chern number (and therefore the edge mode) is preserved. B) The chi-
ral transport in the system which is protected under the transformation

H → H′.

Chern number is intimately linked to the dynamics at the boundary of a lattice sys-
tem. A non-zero Chern number corresponds to the emergence of chiral modes that
propogate along the edge of the system. In fact, the number of edge modes is given by
summing the Chern numbers of the filled bands. These chiral edge modes will, there-
fore, be robust to any perturbations which leave the Chern number invariant. The band
structure of such a system is schematically represented in Fig. 1.1.

1.3.2 Anomalous Floquet Topology

We saw in Sec. 1.2 that, since evolution in periodically driven systems may be linked
to evolution of an effective static Hamiltonian, it is still possible to use band theory
in Floquet systems. This comes with the important caveats, however, that the Floquet
Hamiltonian only describes the dynamics at stroboscopic times and that energy is re-
placed by quasi-energy.

A Chern number may be defined for bands in Floquet systems in a directly analagous
way to time-independent systems. Specifically, we use Bloch’s theorem to write the
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FIGURE 1.2: Two-band Floquet models exhibiting anomalous topology
and trivial topology respectively. In both systems, the chern number of
both bands is 0, but nonetheless there are still edge modes for U1. This is
only possible due to the periodicity of the quasi-energy ϵ which allows for
edge bands to wind around from the top of each bulk band to the bottom
of the other bulk band. Therefore, the chern number alone cannot distin-

guish between the topology of U1 versus U2.

Floquet eigenstate at stroboscopic times Ψ(0) in the form (1.10) and then calculate the
Chern number using (1.11). Naively, one might guess that the Floquet-Chern number
completely characterizes the topology of the system as it does for Chern insulators.
However, this is not the case. Consider the band structure shown in Fig. 1.2. Here, the
Chern number for every band in the system evolving under U1 is 0, but nonetheless the
system still exhibits chiral edge modes. Such behavior is only possible due to the peri-
odicity of the quasi-energy and cannot be realized in time-independent systems. Edge
modes of this type are referred to as “anomalous” since they appear despite having 0
Chern number.

In order to see how such anomalous band structure can emerge, we consider an
example model from Rudner, Lindner, Berg, and Levin (RLBL) [20]. The drive consists
of a 4-step procedure for spinless Fermions on a square lattice. During step m, the
system is evolved by the Hamiltonian

Hm = −thop ∑
(i,j)∈Am

(a†
i aj + h.c.) (1.14)



10 Chapter 1. Introduction

for a time τ = T
4 , i.e. particles are only allowed to hop between sites connected by Am

as shown in Fig. 1.3A.

FIGURE 1.3: The Rudner-Lindner-Berg-Levin (RLBL) model exhibiting
anomalous topology. A) The model consists of 4 steps with fermions hop-
ping freely between sites connected by Am during step m, with each step
lasting for a time τ. B) When τ = π

2thop
, the evolution exactly swaps particle

densities between sites connected by Am. In this case, a particle in the bulk
of the system traces out a closed trajectory shown in blue. Particles on the
edge of the system, however, exhibit chiral transport after each period T.
C) Energy bands for the RLBL model. Evolution of bulk particles is the
identity after each period T, so quasi-energy bands are 0. The chiral edge
modes correspond to edge bands with constant slope that wind around the

quasi-energy.

The simplest case to consider is when τ = π
2thop

. Here, each step of the drive acts
as a tensor product of swap gates between each edge Am in the system, i.e.

e−iHmτ =
⊗

(i,j)∈Am

X(i,j) (1.15)

with X(i,j) the pauli X operator between sites i and j. Under this evolution, any particle
injected into the bulk of the system will exhibit a closed loop trajectory after every
period T (see Fig. 1.3B). Stroboscopically, this evolution corresponds to the identity
and, therefore, a flat band of ϵ = 0. On the other hand, a particle injected onto the edge
of the system exhibits a chiral trajectory along the boundary. This leads to the Floquet
band structure shown in Fig. 1.3C. Note that these edge modes are anomalous as they
wrap all the way around the quasi-energy spectrum and correspond to a Chern number
0.

Since the Chern number does not accurately represent the topology of this system,
it is important to come up with a new topological invariant that does [14]. A first



1.3. Topology in Physical Systems 11

possibility is to simply count the number of times the edge modes wind around the
quasi-energy spectrum. In a 2D system with translational invariance in the direction
perpendicular to the boundary, for example, this may be done by averaging the slope
of the quasi-energies for each band α around the closed loop of the quasi-momentum
k⊥ for the translationally invariant direction. Namely, the quasi-energy winding ν is
given by

ν =
T

2π ∑
α

∫ π

−π
dk⊥∂k⊥ϵk⊥,α (1.16)

It is also possible to write ν directly in terms of the stroboscopic evolution operator (1.6)
in Fourier space Uk⊥(T),

ν =
i

2π

∫ π

−π
dk⊥ Tr

[
U−1

k⊥
(T)∂k⊥Uk⊥(T)

]
. (1.17)

Since the group velocity of a given mode is ∂k⊥ϵk⊥,α, ν directly corresponds to the
total particle transport along the boundary. Furthermore, ν is quantized and protected
against continuous deformations of ϵk⊥,α.

However, ν is still not completely satisfactory as a topological invariant. This is
because it depends explicitly on the geometry of the boundary. However, in analogy
with time-independent systems, it is expected that the quantization of the transport on
the edge of the system should not depend on this edge geometry and may be described
completely in terms of the bulk properties of the system, i.e. there is a bulk-boundary
correspondence. This is exemplified by the Chern number which is determined com-
pletely in terms of the translationally invariant bulk, but still describes the quantized
boundary transport if an edge is added.

From the RLBL model when τ = π
2thop

, it is clear that considering only the strobo-
scopic evolution will not be sufficient to calculate such an invariant. This is because, in
the bulk of the system, Ubulk(T) = I and is thus indistinguishable from a topologically
trivial system with identity evolution. We must, therefore, not just consider the Floquet
Hamiltonian and quasi-energies (which are defined at stroboscopic times), but instead
consider the “micromotion” of the periodic drive, i.e. consider properties of the sys-
tem during times within the driving period. In [20], the authors construct a winding
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number W[U]4 from the bulk properties of the system

W[U] =
1

8π2

∫
dtd2k Tr

{
U−1∂tU

[
U−1∂kxU, U−1∂kyU

]}
(1.18)

Here, the winding number is integrated over all 3 of the parameters over which
U is periodic5 and, in fact, corresponds precisely to the number nedge of chiral edge
modes

nedge = W[U]. (1.19)

The winding number (1.18) therefore shows the bulk-boundary correspondence
for periodically driven systems and generalizes the topological classification achieved
by the Chern number in time-independent systems.

1.4 Floquet Thermalization

Up to this point, we have been ignoring a significant problem that has been lurking in
the shadows for realizing anomalous, non-equilibrium phases of matter. Any system
which is being driven (resonantly) may absorb energy from the drive. This seems to
imply that, in the long time limit, the absorbed energy may completely scramble any of
the carefully-induced, exotic, non-equilibrium dynamics6. In this case, the sole steady
state of the driven system would be a featureless, spatially uniform, “infinite tempera-
ture” state, thereby making the discussions from the previous sections obsolete.

Thankfully, there exist mechanisms to prevent this runaway heating, allowing
non-equilibrium steady states (such as those with anomalous winding as discussed in

4This form of W[U] is technically just for the case where Ubulk(T) = I. For more general Ubulk(T), the
winding Wϵ[U] depends explicitly on the quasi-energy ϵ. In this more general case, there exists a nice
relationship between the winding number and the Floquet-Chern number, Cϵϵ′ = Wϵ′ [U]−Wϵ[U] where
Cϵϵ′ is the sum of chern numbers for bands between ϵ and ϵ′. See [20] for details

5In fact, the winding number comes from a general topological classification of maps from S1 × S1 ×
S1 → U(N) [25]

6This problem was really hiding within our discussion all along. For example, we made no effort to
show that the Floquet-Magnus expansion (1.7) converges, and in fact its divergence is intimately linked
to the infinite heating of Floquet systems [26].
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the previous section) to be created in real, physical systems. Specifically, the heating
may be prevented by adding disorder to the system which may prevent thermaliza-
tion through a mechanism referred to as many-body localization [27], by considering
“prethermal” systems in which the heating is slow compared to the non-equilibrium
dynamics of interest [28], or by coupling the system to the environment (which acts in
a somewhat analogous way to a heat sink to prevent runaway heating in the system
itself) [29].

When disorder is added to a Floquet system (such as a disordered on-site poten-
tial), in certain cases the disorder may slow the absorption of energy from the drive and
prevent its spread throughout the system. This mechanism prevents thermalization
and is, in general, known as Many-body localization (MBL) [27]. The phenomena of
localization by disorder was first investigated by Anderson [30] in a time-independent,
non-interacting context to study metal-insulator transitions. There, it was shown that
wavepackets (with wavelengths larger than the lattice spacing) within a disordered
media may exhibit an interference effect which keeps the wavefunction localized in-
stead of spreading diffusively as classical particles within a similar system would (this
localization prevents conduction in the system leading to a transition from metal to
insulator in dirty, i.e. disordered, materials). Since Anderson’s seminal paper, many
works have argued whether Anderson localization could be generalized to interacting
(many-body) systems (e.g. [31–34]), culminating in a rigorous proof of its existence in
1D systems (with a physically reasonable assumption of limited level attraction) by Im-
brie [35] in 2016. However, this work is not easily generalized to higher dimensions and
there is reason to believe that MBL is, in fact, ruined for dimensions 2 and larger [36,
37]. Subsequent work has showed that MBL could, however, be extended to Floquet
systems for weak, high-frequency drives [38].

We refrain from providing a full mathematically rigorous description of MBL in
this introduction, but will instead focus on motivating (via perturbation theory) the
basic physical intuition behind MBL and, additionally, through what mechanisms it
might fail. Consider a lattice system with an added random on-site potential. The
Hamiltonian of such a system is given by

H = ∑
i

vini + H (1.20)
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where i is a combined index for all lattice sites and internal degrees of freedom, vi is
uniformly distributed between [−W, W] for some disorder strength W ∈ R, and H is
the Hamiltonian for the clean lattice system. If W is large, we might hope to describe
the system via perturbation theory. To do this, we first split H into a term H0 which
commutes with the disorder term [H0, ni] = 0 and a term V which does not. Then, we
rewrite the full Hamiltonian as

H = ∑
i

vini + H0 + V (1.21)

≡ D + V (1.22)

where we have defined D in the second line. Denote the eigenstates and eigenvalues
of D as D|n⟩ = En|n⟩, a perturbative expansion for the eigenstates of H is then given
by

|n⟩+ ∑
m

⟨m|V|n⟩
En − Em

|m⟩+ Higher Orders . (1.23)

Note that since [D, ni] = 0, its eigenstates are number states (product states with
a well-defined number of particles at each i) and in this sense evolution under D is
localized. Intuitively, if the eigensystem of H is well described as a local, weak pertur-
bation of that of D, then one might hope to argue that evolution under H is similarly
localized. More concretely, we focus on the case where V is a sum of local terms where
the norm of each local term is small compared with the disorder strength, i.e.

V = ∑
i

Vi ; ||Vi||HS ∼ g ≪ W (1.24)

where Vi is given only by terms which act within a finite region of lattice site i and || ·
||HS is the Hilbert-Schmidt norm. The locality of V guarantees that the matrix elements
⟨m|V|n⟩ are only non-zero between number states which are local transformations of
each other. Furthermore, since the spectrum En is a random distribution set in part by
the disorder strength W and since g ≪ W, the factor ⟨m|V|n⟩

En−Em
will be small for almost all

m. However, there will be rare cases where the random statistics of the on-site disorder
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happens to create a degeneracy (resonance) En − Em ≈ 0.

If the rare resonant factors ⟨m|V|n⟩
En−Em

were not present, then we would have that
evolution under H is localized. In particular, the eigenstates of H (1.23) would be given
by number states with small corrections that decay rapidly as they become less local (i.e.
for higher and higher orders of perturbation theory). The crux of showing MBL occurs
is therefore to focus on the effects of the rare resonances and show that they do not ruin
localization. It is these resonances that are argued to ruin localization in dimensions
d > 1, but they may be rigorously handled in 1D [37].

An exciting application of MBL to Floquet systems is in cases where it is possible
to continuously deform a clean Floquet unitary evolution operator into a disordered
Floquet unitary exhibiting MBL in such a way that preserves the topology of the sys-
tem. This allows for the possibility to truly realize phases of matter with the anomalous
topological features discussed in Section 1.3 by preventing the runaway heating in the
system. However, the attentive reader may note a difficulty on this front. Many mod-
els which realize anomalous topology, including the example RLBL model discussed in
Section 1.3, are in 2 or higher dimensions where MBL has been argued to fail. There are
a few ways around this problem. First, one may consider systems where the rare reso-
nances do not appear. This may be done, for example, by trying to switch the random
on-site potential to a quasi-periodic (pseudo-random) potential in such a way that the
energy degeneracy is removed [39]. Another possibility is to consider systems with a
finite number of particles. In the thermodynamic limit, the probability of resonances
appearing in such a system goes to zero leading to so called K-body localization [40].
On the other hand, even when resonances do ruin localization, this may take an ex-
ponentially long time [36, 41] (in some large parameter for the system such as W

g from
(1.24)). In this case, for any relevant experimental or numerical time scales, the dy-
namics will be indistinguishable from a system which is MBL. Any system such as this
which takes an exponentially long time to thermalize is referred to as prethermal. An
active area of research is focused on creating prethermal non-equilibrium phases which
do eventually thermalize, but may exhibit exotic quasi-conserved properties (such as
anomalous topology) on all experimentally relevant time scales (e.g. [42, 43]).

Another mechanism to prevent heating is to connect the Floquet system to a reser-
voir. When an open system is driven, dissipation from the environment may prevent
runaway heating in the system and allow for non-trivial non-equilibrium steady states
to still be realized. Determining in what physical scenarios this prevention of infinite
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heating occurs and, when it does, finding ways to control the environmental coupling
and drive to achieve interesting steady states is an active area of research [29, 44–49].

Additionally, some degree of coupling to the environment is inevitable for many
physical platforms, and so understanding the effects of dissipation on Floquet dynam-
ics is important on a practical front. Considering open systems is further interesting
as it allows for the possibility of non-unitary evolution; it is an interesting question to
consider if novel dynamics may be realized with periodic, non-unitary evolution. For
example, in chapter 3, we introduce a lattice system which undergoes free-hopping
evolution interspersed with a periodic series of measurements. This system is some-
what analagous to a non-unitary version of the RLBL model discussed in Section 1.3
(including, for example, exhibiting protected chiral edge transport), but also exhibits
interesting differences due to the dissapative nature of the system. We now turn to
review some of the theoretical tools needed to describe open systems.

1.5 Open Quantum Systems

The general state of an open quantum system is described by its density matrix ρ. Gen-
eral evolution of density matrices may be written using the Kraus operator formalism
given by

ρ −→ L(ρ) = ∑
ν

AνρA†
ν ; ∑

ν

A†
ν Aν = 1. (1.25)

This form ensures that ρ remains non-negative and the normalization condition on the
Kraus operators Aν preserves Tr{ρ} = 1.7

While explicitly working in the general Kraus operator formalism is useful in
some contexts, it is often fruitful to focus on certain restricted or approximation regimes
where L is especially tractable. For example, one popular choice is to use the Lindblad
formalism. Here, it is assumed that the system of interest is weakly coupled to a bath
and that the time scales for dynamics in the bath and the bath-system coupling are
both much faster than typical time scales for evolution in the system itself. Under these

7For more in depth discussions of Kraus operators (and open systems in general) that are beyond the
scope of this introduction, the interested reader may consult [50] or other similar introductory texts with
chapters on the subject.
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conditions, it is possible to make a few approximations (namely the Markovian and
Secular approximations) which simplify the Kraus map on ρ into the Lindblad form (for
details, see for example Preskill’s lecture notes [51]). The main mathematical benefit of
this set of approximations is that it implies the density matrix at a given time ρ(t + dt)
can be written completely in terms of the density matrix at the previous time step ρ(t),
i.e. the system is Markovian and has no memory of the state of the system from further
in the past. This allows for the evolution of the density matrix to be written as a first
order differential equation (known as the Lindblad master equation) with respect to t.

In this dissertation, however, we will take a different approach. Instead of con-
sidering a set of (physically resonable) approximations, we restrict to a class of Kraus
operators where dynamics is more tractable but still exact. In order to motivate what
class of dynamics we wish to investigate, consider the evolution of a general correlation
function 〈

a†
i1 ...a†

iℓ1
ai(ℓ1+1)

...ai(ℓ1+ℓ2)

〉
= Tr

{
ρa†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

}
(1.26)

given by 〈
a†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

〉
−→

〈
a†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

〉
+∑

ν

Tr
{

ρA†
ν

[
a†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

, Aν

]}
(1.27)

where we have used the normalization condition of Aν. Note, the ℓ1 + ℓ2 correlation
function is, in general, taken to a higher order correlation function leading to a hierar-
chy of equations which quickly becomes intractable. However, a subset of this general
evolution can be found by taking just the two-point function Gij ≡

〈
a†

i aj
〉
, and asking

under what set of Krauss operators does the hierarchy close, i.e. what set of Kraus
operators map two-point functions to two-point (and not higher) correlation functions
G → G′ = K(G).

In [52], it is shown that, for fermions on a lattice, the following Krauss operators
form a set of possible operations that close the hierarchy on the two point function
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level:

Non-interacting Evolution: Lu(ρ) = UρU† (1.28a)

Particle Detection: LD,i(ρ) = niρni + (1 − ni)ρ(1 − ni) (1.28b)

Soft Particle Injection: Lin,i,ϵ(ρ) = ϵ(2 − ϵ)a†
i ρai (1.28c)

+(1 − ϵ(1 − ni))ρ(1 − ϵ(1 − ni))

Soft Particle Extraction: Lout,i,ϵ(ρ) = ϵ(2 − ϵ)aiρa†
i (1.28d)

+(1 − ϵni)ρ(1 − ϵni)

Here, ϵ is a real number between 0 and 1 and U is assumed to describe non-interacting
evolution under which fermion operators transform as U†a†

i U = Uija†
j , where U is

called a single-particle evolution. It is then a straight-forward task of applying the anti-
commutation relations of a†, a to find the corresponding transformations on the two
point function:

Non-interacting Evolution: KU(G)ij = (UGU†)ij (1.29a)

Particle Detection: KD,i(G) = PiGPi + (1 − Pi)G(1 − Pi) (1.29b)

Soft Particle Injection: Kin,i,ϵ(G) = (1 − Pi)G(1 − Pi) (1.29c)

+(1 − ϵ)PiG(1 − Pi) + (1 − ϵ)(1 − Pi)GPi

+(1 − ϵ)2PiGPi + ϵ(2 − ϵ)Pi

Soft Particle Extraction: Kout,i,ϵ(G) = Kin,i,ϵ(G)− ϵ(2 − ϵ)Pi (1.29d)

Here, Pi = |i⟩⟨i| is the (single particle) projector onto site i.

We emphasize that no approximations are used in the derivation of Eq. (1.29).
The resulting simplicity arises completely from the restricted set of allowed Kraus op-
erations. If we are only interested in transport or particle density properties of a sys-
tem which may be written completely in terms of the two-point function, the closed-
hierarchy formalism thus allows for the exact solution of the dynamics via a function
which scales polynomially (the two-point function) instead of a function which scales
exponentially (the density matrix) in system size. We will first use the closed hierarchy
formalism in the next chapter in the context of linear response where the system will be
near-equilibrium and so many of the tools from time-independent systems may still be
applied. In chapter 3, however, we will push far away from equilibrium and consider
a periodic application of closed-hierarchy Kraus operators where it will be somewhat
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fruitful to make analogies with Floquet systems.
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Chapter 2

Quantum Wakes in Lattice Fermions

2.1 Introduction

Many signature effects of classical hydrodynamics have counterparts in quantum sys-
tems and serve to provide intuition as well as a spectacular source for interesting new
physical situations. Due to the absence of internal scale in hydrodynamics, it can be
applied for physical scenarios of vastly different scales. For example, relativistic hy-
drodynamics has been successfully used to explain collective effects in heavy-ion colli-
sions at RHIC and LHC [53]. On the other hand, studies of hydrodynamic-like effects in
strongly interacting electron systems show unexpected effects due to their similarity to
viscous fluids. For example, ref. [54] shows that in certain situations, conductance may
exceed Landauer’s ballistic limit due to viscous effects, while ref. [55] demonstrates
that slow "swimming" in a Fermi gas is of a topological nature, and can be fine-tuned
to be done without dissipation.

Another interesting example of a hydrodynamics inspired study is the investi-
gation of wake waves produced as a response to a moving potential interacting with
a two-dimensional electron gas, recently described by Kolomeisky and Straley in [56].
There, it was pointed out that the pattern formed is determined by a Mach number
and has similarities to Kelvin wakes in water and to Mach shock waves following a
supersonic projectile. This behavior can be traced to the coherent interference between
plasma excitations in the medium, with a dispersion which is water-like (ω(q)2 ∝ q)
at long wavelengths. A related effect, Cerenkov radiation due to a moving charge in
a dielectric has also been studied extensively, most recently in photonic crystals where
a host of new variations on the effect have been uncovered where, for example, the
direction of radiated energy can be flipped see e.g. [57, 58].
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Here, we consider an altogether different system and, with it, a new set of non-
equilibrium problems. We examine the discrete-time steady-state generated by the in-
teraction of different types of disturbances, as described below, with fermions on a lat-
tice, as the disturbances move from site to site. Thus, the discrete time, the lattice and
the many-body nature of the system play essential roles in the definition of our model.
We find that non-classical disturbances may yield a drastically different response. The
case in point is that of a moving quantum particle detector, which in this context has no
classical counterpart. In addition, we study a moving particle extraction site, in which
particles can be ejected out of the system. These two types of disturbances are com-
pared with results we obtain for a moving potential. We note that in recent years, there
have been many investigations of measurement-induced dynamics in many-body sys-
tems [59–64]. Measurement induced dynamics has been also observed in experiments
[65–67]. Moving detectors have been considered before as well, most notably in de-
scribing the Unruh effect [68], where a uniformly accelerated detector observes a ther-
mal radiation in vacuum. However, the question we consider here is, to the best of our
knowledge, completely new: what type of a steady state density pattern will a moving
detector leave behind when measuring particle densities in a Fermi sea.

The recent progress of quantum simulation with ultracold atoms [69] makes them
an ideal platform for studying these effects. Here, we focus on cold Fermi gases which
became a valuable tool in recent years to study non-equilibrium dynamics in analogy
to electronic systems. Indeed, recently, increasingly sophisticated techniques became
accessible leading to the measurement of spin dynamics [70–72] and charge transport
[73–75]. In particular, it also became possible to observe spin charge separation in one-
dimensional lattice systems [76] and to study spin- and charge transport in the two-
dimensional Fermi-Hubbard model in the regime of low temperatures and strong cor-
relations that challenge current theory calculations [77, 78]. These experiments demon-
strate that ultracold fermionic atoms are an effective platform for quantum simulation
of non-equilibrium phenomena even beyond the capabilities of exact calculations.

Classically, the universality of wakes following moving ships has been character-
ized by Kelvin’s seminal result, that a (gravity) wake behind a moving ship in water
is delimited within a constant angle 39◦, irrespective of the ship’s velocity [79]. Recent
results emphasize finite-size effects [80] through the dependence on the Froude num-
ber v/

√
gL of a moving pressure source traveling at velocity v of length L, where g

is the gravitational acceleration constant [81]. Here, we study wakes created by point
disturbances moving through a Fermi lattice gas including the quantum effects (Fig.



22 Chapter 2. Quantum Wakes in Lattice Fermions

2.1). Our results depend on both the velocity and the angle with respect to the Bravais
lattice directions, as well as on the type of disturbance. Concretely, we consider a tip
traveling through a lattice of cold fermionic atoms, interacting with an atom on a lattice
site, and then during a time τ moving on to the next site.

We find several unexpected results. For example, we observe a dramatic differ-
ence between the wakes of a moving particle detector and a traveling potential dis-
turbance. In particular, on the square lattice at half filling the detector wake vanishes
identically due to particle hole symmetry at any temperature. Another surprising re-
sult is that, at half-filling, the wake formed by a "particle" extractor is independent of
temperature. To find an analytic form for the wake left behind a moving potential we
use a co-moving steady-state equation and employ a strategy of identifying nodal lines
where the (co-moving) disturbance is exactly zero, in contrast to most treatments of
water wakes, which seek for extrema, i.e. troughs and crests. Due to the scale inherent
in the lattice structure, our wakes depend explicitly on the time τ characterizing the
effective speed of the moving tip, compared to the hopping energy thop of the fermions
in a tight-binding lattice.

FIGURE 2.1: A lattice of cold atoms interacting with a moving disturbance.
The disturbance can be an applied potential, a detector or an extractor. The
blue dots represent the fermionic atoms and the red focussed laser beam

illustrates the disturbance moving into the direction of the green arrow.

To describe these effects of dynamics in many-particle quantum systems we use
the non-equilibrium framework derived in [52]. This framework allows for the study of
a variety of non-equilibrium problems including particle detection and injection/extraction.
It was shown in [52] that in certain statistical mechanics problems, which we detail in
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FIGURE 2.2: Snapshots of the wake developing following a moving par-
ticle detector at quarter filling. Plotted are the local particle densities of
each lattice site as given by the color bar on the right. The location of the
disturbance is marked by a red dot. The simulations are done by iteration
of free evolution (Eq. (2.4)) interspersed with interactions with a particle
detector (Eq. (2.6)) beginning from the ground state of free fermions on a
30 × 30 lattice. The detector was initialized at position (8, 15) and moves
horizontally to the next site during time 1/(3.4 thop), where thop is the hop-

ping parameter of the free evolution.

the Formalism section, it is possible to make a systematic connection between the evo-
lution of n body density functions with n + 1 density functions, similar in spirit to
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBKGY) hierarchy, which is the essential
structure leading to the Boltzmann equation for single particle densities from higher or-
der correlation functions (see, e.g. [82]). This approach allows the buildup of tractable
non-equilibrium problems utilizing combinations of four elementary operations: de-
tection, particle injection, particle extraction and free evolution. While some of these
ideas have been applied to problems in 1D (e.g. driven and dissipative XX spin chains
[83] and steady states of a driven hopping model [52]), here we study an essential 2D
problem: the emergence of wakes behind moving objects interacting with a Fermi sea.
In particular, we discuss the difference between the motion of a detector, particle ex-
tractor, and a potential in detail. The approach of [52] allows for an efficient numerical
calculation of the dynamics in such problems. An example of the development of a
wake a moving detector is described in Fig. 2.2, while a comparison between a moving
detector and potential is provided in Fig. 2.3 at different filling fractions of a Fermi sea
in a 2d hopping model.

The structure of the paper is as follows. We start by briefly introducing the for-
malism of [52]. Next we study the effect of a potential hopping from site to site, solving
for the characteristic angles of the traveling pattern. We then continue to study the mo-
tion of a detector and the motion of a particle extractor and compare these with our
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FIGURE 2.3: Comparison of density plots for wakes of a moving point
potential (left) with a moving detector (right). The detector/point potential
was initialized at position (8, 15) and moves horizontally to the next site
during time 1/(3.4 thop), where thop is the hopping parameter of the free
evolution. Snapshots are taken after 18 time steps, when the full wake
pattern has been sufficiently developed. At half filling the difference is

most dramatic (top) but differences remain at quarter filling (bottom).
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results for the moving potential. Finally, we suggest an experimental setup to directly
observe the wake patterns.

2.2 Formalism

First, we provide a formal description of the system depicted in figure 2.1. We will
denote by ar the annihilation operator for a fermion at lattice site r. To describe the
density distribution we will focus on the two point function, defined as:

Grr′(t) = Trρ(t)a†
r ar′ (2.1)

where ρ(t) is the density matrix at time t. The evolution of Grr′ depends on the problem
at hand. Due to the discrete nature of the lattice, we find it natural to consider the time
evolution in discrete time steps τ, pertaining to the time disturbance moves from site
to site. After a step in the evolution process, G(t) → K(G) ≡ G(t + τ), where K(G) is
specified for various processes below.

In general, if the system undergoes Hamiltonian evolution during a time τ, we
have

ρ(t + τ) = Uρ(t)U† (2.2)

where U = Te−
i
h̄
∫ t+τ

t H(s)ds is the many-body evolution. For a general interacting
Hamiltonian, Grr′(t + τ) is not determined by G(t) alone and would depend on all
higher order correlation functions.

For a non-interacting Hamiltonian, however, the evolution of G does not depend
on high order correlations. Let us take the Hamiltonian to be H(t) = ∑rr′ Hrr′(t)a†

r ar′ ,
where H is an N × N matrix if there are N fermion sites. The evolution of G from time
t to time t + τ is simplified by the fact that for such a Hamiltonian,

U†a†
qU = Uqq′a†

q′ . (2.3)
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where Uqq′ = [Te
i
h̄
∫ t+τ

t HT(s)ds]qq′ is an N × N single particle evolution operator 1. We
therefore find for G:

Grr′(t + τ) = TrUρ(t)U†a†
r ar′ = Trρ(t)U†a†

r ar′U (2.4)

= [UG(t)U†]rr′ ≡ [KU(G)]rr′ .

In other words, the matrix G undergoes the evolution G(t) → UG(t)U†, independent
of higher correlation functions. A few other operations that yield a closed equation for
G are possible and described in detail in [52].

We will use two of the aforementioned operations. We start with the elementary
particle detection measurement at a site r. It is described by the following Krauss map
of the many body density matrix:

ρ → n̂rρn̂r + (1 − n̂r)ρ(1 − n̂r) (2.5)

where n̂r = a†
r ar is the number operator associated with site r. Note that for fermions,

n̂r is a projection operator, and the Krauss map (2.5) describes complete decoherence
between the number on the site r and other sites. Substituting (2.5) in Eq. (2.1), fermion
detection induces the following map on G:

G → Kdetect. r(G) = P⊥
r GP⊥

r + PrGPr . (2.6)

where Pr = |r⟩⟨r| is the (single-particle) projector on site r and P⊥
r = I − Pr. An addi-

tional operation is an extraction event of a particle at site r. Such an operation can be
described by the Krauss map

ρ → ϵ(2 − ϵ)arρa†
r + (1 − ϵn̂r)ρ(1 − ϵn̂r). (2.7)

where 0 ≤ ϵ ≤ 1 describes the efficiency of the extraction procedure. Again, substitut-
ing this map in the definition (2.1) we obtain

G → Kextr. r(G) = P⊥
r GP⊥

r + (2.8)

(1 − ϵ)PrGP⊥
r + (1 − ϵ)P⊥

r GPr + (1 − ϵ)2PrGPr.

1Throughout the rest of the paper we will use units where h̄ = 1.
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In this paper, we combine the three types of maps above to represent the dynam-
ics of a disturbance interacting with a lattice as it moves from site to site. We prepare
the system at an initial state, with a two point function G(t = 0) = G0. The disturbance
will interact with the system at position r = 0, and moves to act on an adjacent point
aw, where it acts again after which it moves to 2aw and so on, with the disturbance at
the nth step acting at position r = naw. We only consider motion at angles where the
tip hits the actual lattice sites, i.e. the direction of motion w needs to be a lattice vector.

The evolution of the correlation matrix G between successive time steps is de-
scribed by the maps given in Eqs (2.4), (2.6), or (2.8)—as elaborated in detail in each
section. Let the evolution from time τn to τ(n + 1) be given by Kn (for example, de-
tection at point r = naw using (2.6), followed by non-interacting evolution for a time τ

using (2.4)). The evolved system at time nτ will therefore have the correlation matrix:

G(nτ) = Kn(Kn−1(....K1(G0)....)), (2.9)

and in particular, the local density change compared to the initial density is

δGrr ≡ Tr(ρ(nτ)a†
r ar)− Tr(ρ(0)a†

r ar) = (2.10)

Grr(nτ)− Grr(0)

we follow these dynamics numerically, explicitly affecting the iteration procedure for
each of the cases, as explained below, and compare the results to the co-moving steady
state which we now define.

For a moving disturbance, a steady state can only be formed in the co-moving
frame. Consider an elementary operation G → K(G) (for example detection, followed
by non-interacting evolution for a time τ), which is then repeated, but shifted in space
by the vector aw. Let S be the translation operator along the direction of motion w, via
S† r = r+ aw. We then define a steady state for the correlation matrix in the co-moving
frame via the requirement that

Gsteady = S†K(Gsteady)S, (2.11)

namely Gsteady is invariant under the combination of the operation K and moving to
the next site. To identify relevant steady states, we will seek solutions to (2.11) in the
vicinity of states associated with an unperturbed system. Indeed, as we shall see, the
nature of the steady states depends both on the form of the dynamics K as well as on
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the initial background state (for example, a Fermi gas at different filling fractions).

We note that, for simplicity, we focus here on initial states suitable for non-interacting
systems. We emphasize that the formalism is valid also for systems prepared in an
interacting state as long as the subsequent dynamics is well approximated by non-
interacting evolution.

2.3 A Moving Potential

Consider a tip traveling along the lattice, in a direction w taking a time τ to move
between two sites. We approximate this process as a discrete process, where a potential
V hops from site to site, remaining a time unit τ at each site. For the purposes of
this paper, we will focus on the simplest case of a square lattice with nearest neighbor
hopping as the free evolution, i.e. H0 = −thop ∑⟨r,r′⟩ a†

r ar′ with single particle energies
ε(k) = −2thop

[
cos (kxa) + cos (kya)

]
where a is the lattice spacing. We will take the tip

potential at a fixed reference point r0 to be V = Va†
r0

ar0 . We will mostly concentrate on
half filling in this section.

We describe below the wake formed behind a point potential moving at a general
speed and angle with respect to the lattice. We begin by summarizing the main results
of this section before providing full derivations. Fig. 2.4 shows the simulation of the
wake pattern formed by evolving the system in real time following a successive appli-
cation of the tip along a horizontal line moving at various speeds. Fig. 2.5 represents
the simulation of the wake formed by similarly evolving the system in real time except
with the tip moving at several different angles with respect to the lattice. Denoting

α =
1

2τthop
(2.12)

we use Eq. (2.11) to find that the angles of lines of zero disturbance are described
by

ry

rx
=

1 + wyα

±1 + wxα
;

ry

rx
=

−1 + wyα

±1 + wxα
(2.13)

These "zero disturbance" lines are represented as red lines in the figures, and delineate
the shape of the wake openings. As expected, since we are not in a Kelvin regime,
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FIGURE 2.4: Density plots for varying velocities of a moving potential.
From left to right, velocities α = 1.7, 1.0, and 0.7. Red lines represent the
angles given by Eq. (2.35). Each line corresponds to the solution for a given
quadrant in Fig. 2.6. Note the forward pointing cone is a result of a forward

d-wave radiation when the source is moving slowly.

the angle depends on the speed of the disturbance and is discussed below. Note, in
contrast to the classic Kelvin wakes and potential wakes in a two-dimensional electron
gas [56], here the lattice breaks rotational symmetry and the wake pattern changes as
the potential path rotates with respect to the lattice.

Before moving on to the derivation, let us comment briefly on the limiting behav-
ior of Eq. (2.13). Note, that as α → 0, we find ry

rx
→ ±1, i.e. the two main diagonal

directions. This result is consistent with the expectation that as the velocity vanishes,
the moving potential is almost static and will radiate via the underlying D-wave sym-
metry of the lattice.

As α → ∞, i.e. the limit of an extremely fast moving tip, we find that ry
rx

→
wy
wx

, in other words, the wake converges onto a line following the disturbance, as any
disturbance would not have time to disperse. Hence, Eq. (2.13) implies that the wake
will essentially vanish for a potential moving at α → ∞.

The co-moving steady state to be found for our system is described by, Eq. (2.11),
where K(G) = eiτ(H0+V)Ge−iτ(H0+V) where H0 = −thop ∑⟨r,r′⟩ |r⟩ ⟨r′| is the unperturbed
single particle Hamiltonian and V = V |r0⟩ ⟨r0| is the tip potential at some initial refer-
ence point r0. Namely:

S†eiτ(H0+V)Ge−iτ(H0+V)S = G (2.14)
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FIGURE 2.5: Density plots for varying the angle of a moving potential com-
pared to the lattice vectors. A potential moving at 0, 23, and 45 degrees
with respect to the lattice. Here, α = 1.7. A smeared potential (Gaussian
with half a lattice spacing width) is used instead of a point potential to in-
clude effects when the tip is not precisely on a lattice site. It is argued in the
appendix that the wake geometry is unaffected by this change away from
a point potential. Red lines represent the angles given by Eq. (2.35). Note
that for motion at 45 degrees the angles for quadrants 1 and 4 in Eq. (2.35)

coincide reducing the number of lines to 3.

In general, equation (2.14) admits infinitely many solutions for G. In particular,
any correlation matrix G that satisfies:

[G, S†eiτ(H0+V)] = 0 (2.15)

will automatically be a co-moving non-equilibrium steady state. In the physical sce-
nario we are interested in, however, we have an initial reference state, the correlation
matrix G0 of the unperturbed Fermi system, and in the following we consider the wake
as a weak perturbation on this state, allowing us to analytically establish the dominant
behavior of the wake pattern.

Since we are only perturbing the free evolution by a small potential, we can as-
sume the steady state G will be close to the steady state of free evolution, G0, where
G0rr′ = ⟨a†

r ar′⟩equilibrium. Thus, we write G = G0 + δG where δG is assumed a small per-
turbation. Since H0 is translation-invariant, we write the co-moving non-equilibrium
steady state equation in momentum space as:

eiaw·(k−k′) ⟨k|eiτ(H0+V)(G0 + δG)e−iτ(H0+V)|k′⟩ =
⟨k|G0 + δG|k′⟩
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Substituting lowest order perturbation theory, keeping terms up to linear order in V
and δG, we find that the real space density disturbance, at zero temperature is given
by:

⟨r|δG|r⟩ = Vτa4

(2π)4

∫∫ π
a
−π

a
dkdk′A(k, k′)R(k, k′, w) (2.16)

ei(r0−r)·(k−k′)
[
Θ(ε f − ε(k))− Θ(ε f − ε(k′))

]
where:

A(k, k′) = eiτ[ε(k)−ε(k′)]−1
τ(ε(k)−ε(k′)) , (2.17)

R(k, k′, w) = 1
1−e−iaw·(k−k′)e−iτ[ε(k)−ε(k′)] , (2.18)

and ε f is the Fermi energy. Derivation details can be found in the appendix.

Our main objective now is to compute the large-scale features of the resulting
pattern, namely the typical angle that appears in the wake pattern. As in the case of
the original Kelvin wake, which is typically derived by a stationary phase method, the
present treatment requires careful consideration of the dominant contribution to the
density variation [Eq. (2.16)]. The terms A and R in Eq. (2.16) will provide us with
regions that are particularly important for the integral over k and k′. Due to the Fermi
functions, we can write Eq. (2.16) as:

⟨r|δG|r⟩ = 2Vτa4

(2π)4

∫
ε(k)>ε f

∫
ε(k′)<ε f

dkdk′ (2.19)

Re
{

A(k, k′)R(k, k′, w)ei(r0−r)·(k−k′)
}

Note that |A(k, k′)| < 1 (this follows from the inequality |eiθ − 1| ≤ |θ| ) and is dom-
inated by k,k′ near ε(k) − ε(k′) = 0. We thus see that in contrast to the measure-
ment and extraction wakes considered next, the integral is dominated by momenta
near the Fermi surface since we can take such momenta to satisfy both conditions
τ(ε(k)− ε(k′)) ≪ 1 and ε(k) > ε f and ε(k′) < ε f .

We will henceforth consider the situation at half filling. Looking at the Fermi
surface for our system, we break up the expansion around the Fermi surface into four
quadrants given in Fig. 2.6. Close to the Fermi lines, we will use the variables δy and
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δy′ instead of ky, k′y as the small shifts away from the Fermi surface. Explicitly,

Quadrant

1 ky = π
a − kx + δy k′y = π

a − k′x + δy′

2 ky = −π
a + kx + δy k′y = −π

a + k′x + δy′

3 ky = π
a + kx + δy k′y = π

a + k′x + δy′

4 ky = −π
a − kx + δy k′y = −π

a − k′x + δy′

(2.20)

Let us now concentrate on R in Eq. (2.16). This term diverges when

τ[ε(k)− ε(k′)] + aw · (k − k′) = 2πn (2.21)

for n integer. Here we concentrate on the n = 0 contribution which already recovers
some basic features of the wake pattern, and leave the analysis of n ̸= 0 contributions
for a future work. The equation can also be interpreted as a Mach-Cherenkov-Landau
condition [84] for the momenta emitted by the wake due to creating a particle-hole ex-
citation of momentum K = k − k′. Perhaps a more familiar way to write the condition
is:

Ω(K) + K · V = 0 (2.22)

where V = τ−1αaw, and Ω(K) = ∇kϵ(k)|kF · K.

For the square lattice, we have

αaw · (k − k′) = (2.23)

cos (kxa) + cos (kya)− cos (k′xa)− cos (k′ya)

where α is defined by Eq. (2.12). Now, combining the restriction τ(ε(k)− ε(k′)) ≪ 1
with Eq. (2.23), we find that

k′x = kx + w(ky − k′y) + δx (2.24)

where δx is given by δx ≡ τ(ε(k)−ε(k′))
awx

and where w ≡ wy
wx

. Comparing to Eq. (2.20) we
arrive at:

kx = k′x + δx′ (2.25)
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where δx′ ≡
w(δy−δy′ )+δx

1+(−1)bw . Here, b = 1 for quadrant 1 and 4 (Fig. 2.6). Otherwise, b = 0.
Note that our treatment of δx′ as small breaks down when w is close to 1. Indeed, when
wx = wy, the constraints on energy together with Eq. (2.23) are insufficient to force k
and k′ to be close, since (k − k′) can be large, with both k, k′ close to the Fermi surface,
and (k − k′) perpendicular to the w vector. While more refined analysis is needed to
describe the special point wx = wy exactly, here we simply observe numerically that
our treatment works well for wx < wy and wy > wx, and that the wake pattern change
is continuous at wx = wy and is well described by our Eq. (2.13).

FIGURE 2.6: Fermi surface at half-filling. At half filling all states with mo-
menta kx and ky within the diamond shape are occupied. For the calcula-

tion we consider the four quadrants separately.

We now combine Eqs. (2.25), (2.20), and (2.23), and expand in small δx′ , δy, δy′ to
second order. Solving those, we can relate δx′ and δy′ to δy and solve for kx − k′x and
ky − k′y as

kx − k′x = (2.26)
2(wxα+sin (akx))(wyα+(−1)b+1 sin akx)

(wx+(−1)bwy)α[(wx+(−1)b+1wy)α+2 sin (akx)]
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and

ky − k′y = (2.27)

2(wxα+sin (akx))
2

(wx+(−1)bwy)α[(wx+(−1)b+1wy)α+2 sin (akx)]

If we assume our potential is at site r0 = (0, 0), the term ei(r0−r)·(k−k′) in Eq. (2.19)
becomes

ei(r0−r)·(k−k′) → e−ir·(k−k′) = e−iδyB (2.28)

where

B = 2[wxα+sin (akx)]

(wx+(−1)bwy)α[(wx+(−1)b+1wy)α+2 sin (akx)]
(2.29)

×
[
rx(wyα + (−1)b+1 sin akx) + ry(wxα + sin akx)

]
greatly reducing our momentum space integral to two coordinates, kx and δy. Note
that when the denominators in A, R in Eq. (2.19) vanish, the leading behavior of the
combination AR is real, we arrive at:

⟨r|δG|r⟩ ∝ −2Vτa4

(2π)4 ∑
Q

Re
{∫∫

Q
dkxdδyeiδyB

}
, (2.30)

where Q is the set of four quadrants in Fig. 2.6. We have checked numerically that the
integral (2.30) indeed captures the main wake pattern of the moving potential well. Our
next task is to use Eq. (2.30) to find the main wake angles.

We now estimate analytically the main angles involved in the wake pattern left
behind the moving potential. In the case of water wakes, we are interested in the wave-
fronts, which are lines of maximal disturbance. Here, we find that a more direct ap-
proach is to look instead for lines of zero disturbance, i.e. ⟨r|δG|r⟩ = 0. We will begin
by looking at the effects of individual quadrants in Eq. (2.30). Integrating over δy and
looking first at quadrant 1, we find

⟨r|δG|r⟩ ∝ −2Vτa2

(2π)4 Re
{∫ π/a

0

∫ kx
0 dkxdδyeiδyB

}
(2.31)

= 2Vτa2

(2π)4 Im
{∫ π/a

0 dkx
eikx B−1

B

}
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To find the characteristic wake lines, we now look for directions r such that Eq. (2.31)
vanishes. Assuming that we could treat the equation by a stationary phase method,
a condition for Eq. (2.31) vanishing would be that there exists a k0 such that kxB ≈
(kx − k0)

2. In this case, using the stationary phase approximation around k0 makes the
dominant contribution to the integral in Eq. (2.31) real, and ⟨r|δG|r⟩ vanishes. Specif-
ically, for this to happen, we need B = 0 and d

dkx
B = 0 when evaluated at k0. Looking

at rx, ry ≫ 1, i.e. far away from the potential, the dominating behavior of B (Eq. (2.29))
comes from rx(wyα + (−1)b+1 sin akx) + ry(wxα + sin akx). Hence, we find the equa-
tions:

rx(wyα + (−1)b+1 sin akx) + ry(wxα + sin akx) = 0, (2.32)

and

(−1)b+1rx cos akx + ry cos akx = 0. (2.33)

Therefore, cos akx = 0 implying k0 = π
2a . Plugging this into Eq. (2.32) yields

ry

rx
=

1 + wyα

1 + wxα
. (2.34)

Repeating this calculation for the other three quadrants, we find

Quadrant Line of ⟨r|δG|r⟩ = 0

1 ry
rx

=
1+wyα
1+wxα

2 ry
rx

=
−1+wyα
1+wxα

3 ry
rx

=
1+wyα
−1+wxα

4 ry
rx

=
−1+wyα
−1+wxα

(2.35)

and hence our main result Eq. (2.13). Figures 2.4 and 2.5 show agreement between the
simulations of the potential wakes and our Eq. (2.35). While the above treatment was
perturbative in V, our analytical treatment for the angles should hold asymptotically at
large distances from the source. This is because, in that regime, the response to the dis-
turbance is weak regardless of the strength of the perturbation. Close to the source, the
density profile will, in general, not be linear in the strength of the perturbing potential.
In particular, at half filling, the requirement δG ≪ G0 implies that ⟨r|δG|r⟩ ≪ 1

2 . To
see the range of validity of the description close to the source, let us consider ⟨r|δG|r⟩
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as expressed in the integral (2.31). We note that B grows linearly in |r|, and therefore,
asymptotically ⟨r|δG|r⟩ oscillates and decays at least as fast as |r|−1 (consistent with
the numerical observations). The expression (2.31) shows that the density profile will
be perturbative when Vτa

|r| ≪ 1, or, in other words at distances |r|
a ≫ Vτ.

2.4 Moving particle extractor and moving detectors

We proceed to consider a moving detector or particle extraction from the system. Note,
that these processes are non-unitary. In this section we establish the co-moving steady-
state for this problem. In particular, we show that in marked contrast with a moving
potential, a moving detector at half filling does not generate a wake because of particle-
hole symmetry.

We assume that the detection or extraction process is dominant when the tip is at
a given site, but quickly weakens as the tip moves away from that site. It is therefore
natural to discretize the process in such a way that we have a disturbance at a given site,
followed by a free evolution of the system during a time τ that the tip is traveling to the
next site on it’s trajectory. The appropriate transformation rules K(G) for detection and
extraction are given in Eq. (2.6) and (2.8) respectively. If we allow for pure detection to
happen with probability p (associated with the efficiency of the detector) and similarly
extraction protocol with probability q, we can combine them, together with the free
evolution U = e−iτH0 into the general form

G → K(G) = (2.36)

KU((1 − p − q)G + pKdetect(G) + qKextract(G)))

which can be written as:

G → K(G) = U† [G − γ{G, P}+ ξPGP]U (2.37)

where ξ = 2p+ ϵ2q, γ = p+ ϵq, {G, P} ≡ GP+ PG indicates the anti-commutator, and
P is the projection onto a site r0 where the tip acts. In particular, pure detection will be
described by q = 0, hence γ = p and ξ = 2p.
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In the next sections we work under the assumption that p, q ≪ 1 and hence γ ≪
1. The co-moving steady state equation (2.11) now reads:

〈
k
∣∣S†U† [G − γ{G, P}+ ξPGP]US

∣∣k′〉= 〈k∣∣G∣∣k′〉 (2.38)

Written explicitly in momentum space we have:

eiaw·(k−k′)eiτ[ε(k)−ε(k′)]{ ⟨k|G|k′⟩ − γ ⟨k|{G, P}|k′⟩+
ξ ⟨k|PGP|k′⟩} = ⟨k|G|k′⟩

Assuming that γ ≪ 1, G ≈ G0 + δG, with δG being a small correction, and zero tem-
perature, we find that the local density variation is given by:

⟨r|δG|r⟩ = γa4

(2π)4

∫∫ π/a
−π/a dkdk′R(k, k′, w)ei(r0−r)·(k−k′)[

ξρ f
γ − Θ(ε f − ε(k))− Θ(ε f − ε(k′))

]
(2.39)

where ρ f is the density of fermions in G0 (i.e. the diagonal of the G0 matrix). Note, that
like in the potential case, the term R in Eq. (2.39) implies that Eq. (2.23) still character-
izes a dominant region for the integral. However, Eq. (2.39) has two added difficulties
when compared with the moving potential case Eq. (2.16). First, we no longer have the
helpful constraint that τ [ε(k)− ε(k′)] ≈ 0. Secondly, ε(k) and ε(k′) can now be on the
same side of ε f as well as on the opposite side. Nonetheless, in numerical experiments
we have observed that the geometry for a moving potential, Eq. (2.35), does appear to
also match with the wake patterns of a moving detector and extractor, as can be ob-
served, e.g., by comparing the wake pattern Fig. 2.4 to the extractor pattern Fig. 2.8
.

By iterating the evolution equation for the two point function G, the wake pattern
can be generated numerically. For the case of a particle removal site moving through
a half-filled Fermi sea we obtain the images shown in Fig. 2.7 and 2.8. The geometry
of the wake patterns is similar to the ones described for the moving potential Fig. 2.4,
however the density variation is always negative due to the depleted particles.
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FIGURE 2.7: Density plot of a wake developing following a fermion ex-
traction site moving at α = 1.7. The pictures show a steady-state in the

comoving frame.

FIGURE 2.8: Density plot for varying speeds of a moving particle extractor
at half-filling. From left to right, speed α = 1.7, 1.0, and 0.7 respectively.

2.4.1 Moving detector at half filling

Particle detection at half filling shows marked contrast with the density wake due to a
moving potential. Indeed, due to particle hole symmetry it leaves the average density
profile, namely the diagonal of G unchanged. On the other hand, a potential perturba-
tion breaks particle-hole symmetry and generates the density wake described above.

In fact, we can establish a stronger property, namely:

⟨r|δG|r⟩µ + ⟨r|δG|r⟩−µ = 0 (2.40)

where ⟨r|δG|r⟩µ is obtained by successive applications of K from Eq. (2.36) on an initial
state G0 = 1

1+eβ(H−µ) , with q = 0, using an arbitrary choice of measuring site at each
step, and in the end subtracting G0. In other words, changing the sign of the chemical
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potential changes the sign of the wake.

An immediate consequence of Eq. (2.40) is that at the point, where our many-body
Hamiltonian has particle-hole symmetry, namely µ = 0 i.e. at half filling:

⟨r|δG|r⟩µ=0 = 0, (2.41)

i.e. there should be no wake pattern created by a moving detector. This is shown in
Fig. 2.9 by comparing a detector moving through a half-filled versus a quarter-filled
Fermi sea. The image also shows how the quarter filled wake is opposite in sign to the
wake generated in the Fermi system at three quarter filling.

A full non-perturbative proof of the remarkable relation Eq. (2.40) is presented
in the appendix. Here for simplicity we establish Eq. (2.40) starting from the (zero
temperature) perturbative result Eq. (2.39) with ϵF = µ and ξ = 2γ. Note that the sum
⟨r|δG|r⟩µ + ⟨r|δG|r⟩−µ is given by Eq. (2.39) with the term in brackets replaced with

2 − Θ(µ − ε(k))− Θ(µ − ε(k′))− Θ(−µ − ε(k))− Θ(−µ − ε(k′)) (2.42)

where we used that ρ f (ϵF) + ρ f (−ϵF) = 1.

Now consider the following map reflecting points about the Fermi surface:

k → M(k) ≡ (−1b,−11+Q)
π

a
− k (2.43)

where Q is the quadrant number and b = 0 if in quadrants 1 or 2 and b = 1 in
quadrants 3,4. Note that ϵ(M(k)) = −ϵ(k), and that, exp[ir · (M(k)−M(k′))] =

exp[−ir · (k − k′)] thus, the real part of R(k, k′, w)ei(r0−r)·(k−k′) in Eq. (2.39) is symmet-
ric under such a transformation. On the other hand, the bracket term Eq. (2.42) is
anti-symmetric under the map M. The result of k, k′ integrations will therefore vanish,
establishing Eq. (2.40).

2.4.2 A "fluctuation" wake

The above results suggest at first glance that there is no effect of the detector at half
filling. In fact, this is not the case! While the moving detector does not affect the av-
erage density at half filling, it does perturb correlations, and thus may be observed
through fluctuations. For example, such correlations may be observed by looking at
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FIGURE 2.9: Density plots of a detector moving through a Fermi sea at
several filling fractions. From left to right, the detector is moving at α = 1.7
for quarter-filling, half-filling, and three-quarter-filling, respectively. The
color bar has the same scale but different offset (centered around the initial

filling fraction).

the number of particles in a mode a†
A(r) ≡

1√
A ∑r′−r∈A a†

r′ , representing an equal weight
superposition in a region lattice neighborhood A of a point r. We have:

nA(r) ≡ ⟨a†
A(r)aA(r)⟩ = 1

|A| ∑r′r′′∈(A+r) Gr′r′′ = (2.44)
1
|A| ∑r′′r′∈(A+r) G0r′r′′ +

1
|A| ∑r′r′′∈(A+r) δGr′r′′

We will focus on A being the set of nearest neighbors: an example of the wake in
the density of the nA(r) is then shown in Fig. 2.10. That this wake may be non-zero
can be observed by generalizing Eq. (2.39) for off-diagonal elements. In this case, the
only change to (2.39) is that e−ir·(k−k′) → e−i(r·k−r′·k′). Now, combining Eqs. (2.39) and
Eq. (2.44), we find

e−i(r·k−r′·k′) → e−ir·(k−k′) ∑q,q′∈κ e−iqa+iq′a (2.45)

= e−ir·(k−k′)(1 − ε(k)
thop

)(1 − ε(k′)
thop

)

where κ = {0, kx, ky,−kx,−ky}.

Note, Eq. (2.45) is not symmetric under a reflection of ε(k),ε(k′) about the Fermi
energy. This implies that, unlike the diagonal of Grr, the wake generated for the modes
like A for a detector are non-zero.

A couple of remarks are in order.
(1) While we focused here on the density of the a†

A modes as an indicator of corre-
lations, a more natural quantity for an experimental consideration is density-density
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FIGURE 2.10: Density of particles in a spatially spread mode centered
around each lattice site (given by nA(r) as defined in Eq. (2.44)) follow-

ing a moving detector at half-filling. Here, α = 1.7.

correlations, and number fluctuations in the region A. A preliminary check shows that
such number fluctuations will also exhibit a wake, which can be studied by consider-
ing the four-fermi correlation generalization of Eq. (2.4) and (2.6), which give a closed
hierarchy of 4 point functions. This calculation will be presented in a future work.
(2) A moving detector at half filling is an interesting example of a "hierarchy" of steady
states. In this hierarchy, the local average density or "diagonal" of G at half filling is
steady for any path a detector makes, and is thus in a steady state. However, the cor-
relations depend on the trajectory of the detector and would, in general, not be in a
steady state, moreover the many-body density matrix would not be in a steady state.
It is not hard to construct examples where G is in a steady state, while the many body
density matrix is time-dependent.

2.5 Finite temperature states

In this section we analyze the effect of a non-zero temperature of the system on our
moving disturbances. We assume that the system is prepared initially at finite temper-
ature, and we neglect thermal dissipation on the time scale of the motion of our dis-
turbances. We find that at a generic filling the amplitude of the wakes are decreased,
as may be expected on general grounds, i.e. with increased density fluctuations of the
background. These results are shown in Figs. 2.11 and 2.12. Furthermore, we find
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that, at ρ f = 1
2 , a moving detector continues to produce no wake at finite tempera-

ture. Perhaps the most surprising effect we find is that the extractor wake at half filling
is temperature independent. This behavior is striking when compared to the moving
potential source, see Fig. 2.11.

At finite temperature, ⟨k|G0|k′⟩ = δkk′F(ε(k)) instead of δkk′Θ(ε f − ε(k), where
F(ε(k)) is the Fermi-Dirac distribution. We find that the finite temperature steady
states, are simply obtained by replacing the step functions in equations (2.16) and (2.39)
by Fermi-Dirac functions F(ε(k)).

Thus, the steady state of δG for a moving potential source, Eq. (2.16), becomes

⟨r|δG|r⟩ = Vτa4

(2π)4

∫∫ π/a
−π/a dkdk′A(k, k′)R(k, k′, w)

ei(r0−r)·(k−k′) [F(ε(k))− F(ε(k′))] (2.46)

while for detection/extraction at finite temperature, Eq. (2.39) becomes

⟨r|δG|r⟩ = γa4

(2π)4

∫∫ π/a
−π/a dkdk′R(k, k′, w)ei(r0−r)·(k−k′)[

ξρ f
γ − F(ε(k))− F(ε(k′))

]
. (2.47)

We can understand the temperature independence of the moving extractor at half filling
as follows. Consider the difference between the moving extractor and moving detector
steady state equations (Eq. (2.47) with ξ = 2γ and ξ = γ respectively), we find:

⟨r|δGdet|r⟩ − ⟨r|δGextr|r⟩ = (2.48)
γa4

(2π)4

∫∫ π/a
−π/a dkdk′R(k, k′, w)ei(r0−r)·(k−k′)ρ f

Note, Eq. (2.48) depends only on the density ρ f . Therefore the difference Eq. (2.48) is
independent of temperature if temperature is varied at a fixed density. Since detection
creates no wake when ρ f = 1

2 at any temperature, this implies that a moving particle
extractor is temperature independent at ρ f = 1

2 . The result above, Eq. (2.48), that
the difference between the detector and extractor wakes is temperature independent
has been done perturbatively in δG for illustration purposes. In fact it is possible to
establish that

d
dT

( ⟨r|Gdet|r⟩ − ⟨r|Gextr|r⟩) = 0 (2.49)
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FIGURE 2.11: Density plots of potential (top) and extraction (bottom)
wakes at half-filling over varying temperature. From left to right, T

thop
= 0,

1, and 10.

where Gdet,Gextr are the non-perturbative steady states for a moving detector and ex-
tractor respectively, as derived in the appendix. This result matches simulations of the
moving particle extractor as shown in Fig. 2.11. We note, in passing, that numerical
checks show that the fluctuation wake is temperature dependent at half filling, even
though there is no detector wake.

2.6 Discussion of experimental realizations

Here we consider a setup where the wakes may be explored in experiments with ul-
tracold 6Li fermions in optical lattices. Quantum gas microscopes with single-particle
and single-site resolution can directly observe the wake structure, as follows. The dis-
turbance can be created by a focused laser beam with a waist on the order of the lattice
spacing by employing a high-resolution objective [85]. Experimental system sizes of
more than 30x30 lattice sites have been realized for fermions [78]. We have checked
by numerical simulations that using a Gaussian smeared potential instead of a point
potential does not significantly alter wake geometry. Moreover, the wake pattern is not
significantly changed if the initial Gaussian is not centered on a lattice site.
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FIGURE 2.12: Density plots of detection wakes at quarter-filling and vary-
ing initial temperature. From left to right, T

thop
= 0, 1, and 10.

Because of the light mass of 6Li the timescales for Hubbard physics are still conve-
nient for lattice spacing of approximately 1 µm [76] leading to moderate requirements
of the objective (NA > 0.5). A dynamically movable disturbance can be implemented,
for example, by piezo-actuated mirror mount or an acousto-optical deflector. An exper-
imental run will then start with the preparation of a two-dimensional Fermi-Hubbard
system and the movement of the focused laser beam through this system up to a certain
position. Finally, the system is frozen by increasing the lattice depth and then imaged
via fluorescence imaging. A single realization does not contain enough information
to extract the details of the wake pattern. Reaching a density resolution of about 2%
requires averaging about 2500 experimental realizations (1/

√
n) while keeping track

of the final position of the disturbance. The required precision and amount of data is
comparable to recent experiments at existing quantum gas microscopes [76, 85]. The
parameter τ is proportional to the duration of beam motion, which should be com-
pared to the hopping energy thop. It is possible to swipe the beam at different rates to
obtain values of α spanning the full range from the slow-moving D-wave like wakes to
the disappearance of the disturbance at high speeds. We remark that in a finite optical
lattice setting, the large scale wake pattern may not have enough time to develop if the
speed is such that the co-moving steady state cannot be effectively reached.

We note that all three types of disturbances can be implemented in experiments.
A moving potential can be created by a far-detuned laser beam. A moving detector can
be realized by a near-resonant laser beam. Scattering of photons at low intensity leads
in good approximation to a measurement of the on-site particle density. Last, a particle
extractor can be implemented via a defocussed red-detuned optical dipole trap. Caused
by the out-of-plane minimum in the potential, atoms will be sucked out-of-plane and
will be lost in the experiment.
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Beyond cold atoms, we expect the effects we predict to also hold in other sys-
tems which can be well described by non-interacting fermions. We note that, for spin-
polarized fermions contact-interactions are suppressed at low temperatures and dy-
namics is dominated by the effects of Pauli exclusion, making our approach particularly
effective in this case. Moreover, we emphasize that our treatment is essentially exact,
and thus can provide a benchmark for studies of the perturbative effect of interactions.

It is also important to note that while the present discussion is focused on non-
interacting systems, the formalism presented in [52] is valid also for systems prepared
in an interacting state, as long as the subsequent step of unitary evolution while the
tip is traveling between sites is well approximated by non-interacting evolution. Thus,
a system prepared in a strongly correlated state, such as a Mott insulator, for exam-
ple, that undergoes a quantum quench where interactions are turned off will still be
described by the current method.

Much (though not all) of the work in this chapter leveraged the fact that the local
disturbances only made small corrections away from the equilibrium two-point func-
tion. In the next chapter, we will consider a system where this is not the case and see
how interesting dynamics may emerge in this far-from-equilibrium setting.
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Appendix

2.A The steady state Equations

(1) Moving potential. Here, we explain the iterative equations for the two point corre-
lation functions and the density in the case of non-interacting evolution. We start with
the case of a system interacting with an external potential, no measurements or change
in particle number is involved and so the evolution is unitary. In this case, the evolution
of the system’s many body density matrix is driven by the Schrodinger equation:

∂tρ(t) = − i
h̄
[H(t), ρ(t)]. (2.50)

where H(t) is the many body Hamiltonian. For the two point correlation function,
defined as:

Grr′(t) = ⟨a†
r ar′⟩ = Tr(ρ(t)a†

r ar′) (2.51)

it follows that

∂tGrr′(t) = − i
h̄

Tr([H(t), ρ(t)]a†
r ar′) = − i

h̄
Trρ(t)[a†

r ar′ ,H(t)]). (2.52)

For a general interacting Hamiltonian, the equation above is very complicated, and
∂tGrr′(t) involves high order correlations through the right hand side of the equation,
and we do not have a closed equation for the matrix G.

In the case where particles are non-interacting Fermions (for example neutral
fermionic atoms, or when electron-electron interactions are screened), a closed equation
for G is available. In such a situation, the Hamiltonian is quadratic in creation/annihilation
operators, i.e. of the form H(t) = ∑xy Hxy(t)a†

xay. Using the cannonical anti-commutation
relations {a†

x, ay} = δxy and {ax, ay} = 0, the commutator in the equation of motion for
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G is of the form

[H(t), a†
r ar′ ] = ∑

xy
Hxy(t)[a†

xay, a†
r ar′ ] = ∑

xy
Hxy(t)(δyra†

xar′ − δxr′a†
r ay) (2.53)

leading to:

∂tGrr′(t) = i
h̄ Trρ(t)[H(t), a†

r ar′ ])

= i
h̄ ∑x Hxr(t)Trρ(t)(a†

xar′)− i
h̄ ∑y Hr′y(t)Trρ(t)(a†

r ay))

= i
h̄ ∑x Hxr(t)Gxr′(t)− i

h̄ ∑y Hr′y(t)Gry(t)

= i
h̄ ([H

T(t), G(t)])rr′ (2.54)

yielding a closed equation for G. In particular, the local density at point r which is
Grr(t) evolves as:

∂tGrr(t) = i
h̄ ([H

T(t), G(t)])rr. (2.55)

It is important to note, that this equation is not a closed equation for the density, since
it involves off diagonal terms in G, thus to find the evolution of the density, the full Eq
(2.54) must be solved. For a real Hamiltonian, as discussed in this paper, this equation
is solved, for any time τ by

G(t + τ) = Te
i
h̄
∫ t+τ

t H(s)dsG(Te
i
h̄
∫ t+τ

t H(s)ds)† = KU(G) (2.56)

as described in Eq. (2.4).

The discrete-time co-moving steady state equation on the lattice G = S†K(G)S,
Eq. (2.11), states that as the potential (or another type of disturbance) moves to the
next lattice site, G remains invariant, up to a shift of the coordinates co-moving with
the disturbance. Written explicitly in coordinate representation, Eq. (2.11) reads Grr′ =

[S†K(G)S]rr′ , or, equivalently, using that for momentum states, S |k⟩ = e−iaw·k |k⟩, we
have

Gkk′ = [S†K(G)S]kk′ = eiaw·(k−k′)[K(G)]kk′ (2.57)

Let us write G = G0 + δG, where G0 is the initial steady state before turning on
the traveling perturbation. Using the form (2.56), taking the Hamiltonian H between
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steps to be of the form H0 + V, the steady state equation (2.57) is explicitly given by:

eiaw·(k−k′) 〈k∣∣eiτ(H0+V)(G0 + δG)e−iτ(H0+V)
∣∣k′〉 = 〈

k
∣∣G0 + δG

∣∣k′〉 (2.58)

Note that at this no approximation has been made up to this point. Since we are only
perturbing the free evolution by a local potential, we can assume the steady state G
will be close to the steady state of free evolution, G0, and thus δG is assumed a small
perturbation. To proceed, we now use perturbation theory in Eq. (2.58), by expanding
to lowest order in V. Namely, we use the expansion :

e−iτ(H0+V) ≈ e−iτH0 + ie−iτH0

∫ τ

0
dseisH0Ve−isH0 (2.59)

and keep terms up to linear order in V and in δG. The resulting equation is:

eiaw·(k−k′)
{ 〈

k
∣∣G0
∣∣k′〉+ 〈

k
∣∣eiτH0δGe−iτH0

∣∣k′〉
+
〈
k
∣∣eiτH0

(
i
∫ τ

0
dseisH0 [G0, V]e−isH0

)
e−iτH0

∣∣k′〉} (2.60)

=
〈
k
∣∣G0
∣∣k′〉+ 〈

k
∣∣δG

∣∣k′〉 .

Next we note that without the perturbation, G0 is assumed to be a steady state of free
evolution. Since H is transnational invariant, G0 can be taken to be diagonal in momen-
tum space, therefore we can set

(
eiaw·(k−k′) − 1

)
⟨k|G0|k′⟩ = 0. Doing the s integral,

i
∫ τ

0
dseis[ε(k)−ε(k′)] =

eiτ[ε(k)−ε(k′)] − 1
ε(k)− ε(k′)

we find (
eiaw·(k−k′)eiτ[ε(k)−ε(k′)] − 1

) 〈
k
∣∣δG

∣∣k′〉
=

(
eiτ[ε(k)−ε(k′)] − 1

)
eiaw·(k−k′)eiτ[ε(k)−ε(k′)]

ε(k)− ε(k′)

〈
k
∣∣[G0, V]

∣∣k′〉 (2.61)

At zero temperature

⟨k|G0V|k′⟩ = G0(k) ⟨k|V|k′⟩ = Θ(ε f − ε(k))∑r ⟨k⟩ rV(r) ⟨r⟩k′ (2.62)

= V
vol Θ(ε f − ε(k))eir0·(k−k′), (2.63)
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where vol is the system volume. Thus,

〈
k
∣∣δG

∣∣k′〉 = V
(

eiτ[ε(k)−ε(k′)] − 1
)

eiaw·(k−k′)eiτ[ε(k)−ε(k′)]

vol[ε(k)− ε(k′)]
(
eiaw·(k−k′)eiτ[ε(k)−ε(k′)] − 1

)
×eir0·(k−k′) [Θ(ε f − ε(k))− Θ(ε f − ε(k′))

]
(2.64)

Finally, density variation in the co-moving non-equilibrium steady state is given by
Fourier transforming (2.A) back to real space and taking the diagonal element,

⟨r|δG|r⟩ =

Vτa4

(2π)4

∫∫ π/a

−π/a
dkdk′

[
eiτ[ε(k)−ε(k′)] − 1
τ(ε(k)− ε(k′))

] [
1

1 − e−iaw·(k−k′)e−iτ[ε(k)−ε(k′)]

]
×ei(r0−r)·(k−k′) [Θ(ε f − ε(k))− Θ(ε f − ε(k′))

]
(2.65)

In experiments the point potential may be realized by a broader beam. As we are
looking for far field wake patterns, we do not expect local structure of the disturbance
to have a significant effect. For example, if the point potential was instead Gaussian,

the term ei(r0−r)·(k−k′) in Eq. (2.65) would be replaced by e−
σ2
2 |k−k′|2+i(r0−r)·(k−k′) where

σ2 is the variance of the Gaussian potential. Note, however, that when calculating the
wake geometry we look far away from the potential source (|r0 − r| large) and also
need only to consider terms where |k − k′| is small since these k,k′ dominate the in-

tegral. Hence, we can safely neglect the e−
σ2
2 |k−k′|2 term so long as |r0 − r| >> σ and

thus find that the wake geometry of the Gaussian potential is equivalent to that of the
point potential. In Figs. 2.B.1 and 2.B.2 we simulate potential wakes for a selection of
Gaussian potentials and find that the wake geometry is indeed equivalent to that of the
point potential.
(2) Moving detection/extraction. The co-moving steady state equation reads G =

S†K(G). Written explicitly in momentum space, using (2.36), we have:

eiaw·(k−k′)eiτ[ε(k)−ε(k′)]{
〈
k
∣∣G∣∣k′〉− γ

〈
k
∣∣{G, P}

∣∣k′〉+ ξ
〈
k
∣∣PGP

∣∣k′〉} =
〈
k
∣∣G∣∣k′〉

(2.66)

Assuming that γ ≪ 1, G ≈ G0 + δG, and zero temperature,

γ
〈
k
∣∣GP

∣∣k′〉 ≈ γ
〈
k
∣∣G0P

∣∣k′〉 = γ

vol
Θ(ε f − ε(k))eir0·(k−k′) (2.67)
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Hence,

γ
〈
k
∣∣{G, P}

∣∣k′〉 ≈ γ

vol
eir0·(k−k′) [Θ(ε f − ε(k)) + Θ(ε f − ε(k′))

]
. (2.68)

Now turning to the PGP term,

〈
k
∣∣PG0P

∣∣k′〉 = a2vol
(2π)2

∫
dqΘ(ε f − ε(q)) ⟨k|P|q⟩

〈
q
∣∣P∣∣k′〉

=
a2vol
(2π)2 eir0·(k−k′)

∫
dqΘ(ε f − ε(q)) =

ρ f

vol
eir0·(k−k′) . (2.69)

where ρ f is the density of fermions for G0.

Plugging Eqs. (2.68) and (2.A) into Eq. (2.66), we get

〈
k
∣∣δG

∣∣k′〉 = γ

vol

(
eiaw·(k−k′)eiτ[ε(k)−ε(k′)]

eiaw·(k−k′)eiτ[ε(k)−ε(k′)] − 1

)

×
[

ξρ f

γ
− Θ(ε f − ε(k))− Θ(ε f − ε(k′))

]
eir0·(k−k′) . (2.70)

Finally, the local density variation is given by:

⟨r|δG|r⟩ = γa4

(2π)4

∫∫ π/a

−π/a
dkdk′

(
1

1 − e−iaw·(k−k′)e−iτ[ε(k)−ε(k′)]

)
×ei(r0−r)·(k−k′)

[
ξρ f

γ
− Θ(ε f − ε(k))− Θ(ε f − ε(k′))

]
(2.71)

which is Eq. (2.39) in the main text.

2.B Non-perturbative Results

In this section, we show that no detection wake is created at ρ f = 1
2 and that the

difference between detection and extraction is temperature independent even non-
perturbatively.

We start by looking at a series of non-perturbative detections on G0. A single
detection at site r and evolution for time τ is
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G = UPrG0PrU† + UP⊥
r G0P⊥

r U† (2.72)

≡ ∑a={0,1} Pa
r (τ)G0Pa

r (τ)

since [U, G0] = 0 and where P0 ≡ P, P1 ≡ P⊥, and UPU† ≡ P(τ).

Hence, after doing a series of m measurements, we have

G = ∑
a1,a2,...,am

{[
∏

n=m,m−1,...,1
Pan

rn ((m − n + 1)τ)

]
G0

[
∏

n=1,2,...,m
Pan

rn ((m − n + 1)τ)

]}
(2.73)

Looking at the diagonal of G in real space and inserting a resolution of identity,∫
dqn |qn⟩⟨qn|, to the right of every Pan

rn sitting in the first term in brackets in Eq. (2.73)
and inserting

∫
dq′

n |q′
n⟩⟨q′

n| to the left of every Pan
rn sitting in the second bracketed term

in Eq. (2.73) we find

⟨r|G|r⟩ ≡ ζm(µ) =
∫

dkdk′e−ir·(k−k′)
∫

dQdQ′ ∑
a1,a2,...,am

×
{
⟨k|Pam

rm (τ)|qm⟩ ⟨qm|Pam−1
rm−1 (2τ)|qm−1⟩ ... (2.74)

× ⟨q2|Pa1
r1 (mτ)|q1⟩

〈
q1
∣∣G0
∣∣q′

1
〉 〈

q′
1
∣∣Pa1

r1 (mτ)
∣∣q′

2
〉

...
〈
q′

m
∣∣Pam

rm (τ)
∣∣k′〉}

where µ is the chemical potential. Now, focusing on only terms directly depen-
dent on q1,q′

1 and denoting all other terms by B, we find

ζm(µ) = B
∫

dq1dq′
1 ∑a1

⟨q2|Pa1
r1 (mτ)|q1⟩ ⟨q1|G0|q′

1⟩ ⟨q′
1|P

a1
r1 (mτ)|q′

2⟩ (2.75)

= B
∫

dq1 ∑a1
⟨q2|Pa1

r1 (mτ)|q1⟩ Fµ(ε(q1)) ⟨q1|Pa1
r1 (mτ)|q′

2⟩

= B
∫

dq1eimτ[ε(q2)−ε(q′
2)]Fµ(ε(q1))

[
δq1q2δq1q′

2
+ eir1·(q2−q′

2)
(

2 − δq1q2 − δq1q′
2

)]
= ζm−1(µ) + B

∫
dq1eimτ[ε(q2)−ε(q′

2)]Fµ(ε(q1))eir1·(q2−q′
2)
(

2 − δq1q2 − δq1q′
2

)
= ζm−1(µ) + Beimτ[ε(q2)−ε(q′

2)]eir1·(q2−q′
2)
(
2ρ f − Fµ(ε(q2))− Fµ(ε(q′

2))
)
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Now, we look at ζm(µ) + ζm(−µ) in a way analogous to Eq. (2.42) in the main
text. Here, we find

ζm(µ) + ζm(−µ) = ζm−1(µ) + ζm−1(−µ) (2.76)

+B
{

eimτ[ε(q2)−ε(q′
2)]eir1·(q2−q′

2)
(
2 − Fµ(ε(q2))− Fµ(ε(q′

2))− F−µ(ε(q2))− F−µ(ε(q′
2))
)}

Note, the real part of the term in braces in Eq. (2.76) is anti-symmetric under the
transformation q → M(q), where q here represents all qn, q′

n, k, and k′. Let us now
look at the term B. Note, explicitly,

B =
∫

dQ1dQ′
1e−ir·(qm+1−q′

m+1) ∑
a2,...,am

∏
n=m+1,m,...,2

× ⟨qn|Pan−1
rn−1 ((m − n + 2)τ)|qn−1⟩

〈
q′

n−1
∣∣Pan

rn−1
((m − n + 2)τ)

∣∣q′
n
〉

(2.77)

where dQ1 and dQ′
1 are defined by ∏n=2,...,m+1 dqn and ∏n=2,...,m+1 dq′

n respec-
tively. Also, here we define qm+1 ≡ k and q′

m+1 ≡ k′.

Simplifying B, we find

B =
∫

dQ1dQ′
1e−ir·(qm+1−q′

m+1) ∏
n=m+1,m,...,2

ei(m−n+2)τ[ε(qn)−ε(qn−1)+ε(q′
n−1)−ε(q′

n)] (2.78)

×
[
δqnqn−1δq′

nq′
n−1

− eirn−1·(qn−qn−1)δq′
nq′

n−1

−eirn−1·(q′
n−1−q′

n)δqnqn−1 + 2eirn−1·(qn−qn−1)eirn−1·(q′
n−1−q′

n)
]

It can now be seen from Eq. (2.78) that B is symmetric under the transformation
q → M(q). Since B is symmetric and the term in braces in Eq. (2.76) is anti-symmetric,
we find

ζm(µ) + ζm(−µ) = ζm−1(µ) + ζm−1(−µ) (2.79)

Thus, ζm(µ) + ζm(−µ) = ζ0(µ) + ζ0(−µ) = 1 and
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FIGURE 2.B.1: A Gaussian potential at half-filling and α = 1.7. From left
to right, the standard deviation of the Gaussian in terms of lattice spacing,

a, is point potential, 0.5a, and a.

⟨r|G|r⟩µ = 1 − ⟨r|G|r⟩−µ (2.80)

i.e. the detection wake for a chemical potential of µ is one minus the detection
wake for a chemical potential of −µ. Hence, when µ = 0 there is no detection wake.
We emphasize that this result assumed no particular path for the moving detector.

Turning to a moving extractor, note that for the difference between the extractor
and detector wake, we get Eq. (2.73) where we set a1, a2, ..., am = 0. Thus, Eq. (2.76)
becomes

ζm = B
∫

dq1eimτ[ε(q2)−ε(q′
2)]δq1q′

1
F(ε(q1))eir1·(q2−q′

2)

= Beimτ[ε(q2)−ε(q′
2)]eir1·(q2−q′

2)ρ f (2.81)

Hence, the difference between a moving detector and moving extractor is tem-
perature independent non-perturbatively. Similar to the perturbative case, this implies
that a moving particle extractor at ρ f =

1
2 is temperature independent. Again, note that

we have assumed no particular path for our moving particle extractor.
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FIGURE 2.B.2: A Gaussian potential at half-filling, α = 1.7, and 0.5a stan-
dard of deviation where a is the lattice spacing. Left is a Gaussian starting
directly on lattice site (8,15). Right is a Gaussian starting in-between lattice

sites at (8.3,15.6).

FIGURE 2.B.3: Comparison of potential wake at half-filling for α = 1.7 for
simulation (left) and numerical integration of Eq. (2.30) (right).
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Chapter 3

Stirring By Staring: Measurement
Induced Chirality

3.1 Introduction

One of the most exciting goals of the field of quantum dynamics is to be able to control
the microscopic motion of particles in a reliable and universal way. Floquet engineer-
ing, coupled with our knowledge of topological quantum phases, presented one such
route and brought about new paradigms for the quantum control of atomic and elec-
tronic motion. A periodic modulation of the Hamiltonian was shown to induce Chern
bands in non-topological semiconductors as well as graphene, and this remarkable feat
was observed in a variety of solid state and atomic systems [86–88].

The range of drive-induced topological phases kept growing over the past decade
to include states with no static analogs. A prominent example is the anomalous Floquet
Anderson insulator [42, 89–91]. In this 2D phase, a chiral edge state emerges along-
side completely trivial bulk bands in stark contrast to standard topological edge states
which are spectrally connected to bulk bands. Thus, such an insulator avoids issues as-
sociated with Fermion anomalies. The trick behind this phase is a Floquet Hamiltonian
modulation which alters the hopping along a square lattice in a sequence that stirs the
particles [20] in such a way that bulk motion is cancelled and edge states emerge.

An additional tool for control, however, is measurement (e.g. [92, 93]). ’Dark
state’ engineering was explored as a means to stabilize a variety of phases through mea-
surement or decay processes that eliminate unwanted elements in the wave function in
order to stabilize a desired steady state [94–98]. The challenge in this approach is to
engineer the necessary projectors. The combination of periodic driving and dissipation
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has also been discussed [99, 100]. More recently, it was discovered that a combina-
tion of unitary evolution and measurement could actually induce a transition between
highly entangled quantum states into low entanglement classical-looking states at high
measurement frequency [101–108]. The study of the competing effects of projective
measurement and unitary evolution has also been intensely researched in the context
of quantum circuit models [95, 106, 109–121]. The physics of measurement-induced
phase transitions has been studied in the context of measurement protected quantum
orders [95], symmetry-protected topological (SPT) phases [113], geometric phase [122],
many-body localization [123], and various aspects of entanglement measures [104, 109,
112, 114, 115, 117]. There are also recent works which study the entanglement transi-
tions with measurement and unitary evolution for free fermions hopping on a 1D chain
[102, 124, 125]. In [52] the competing effects of unitary evolution and measurements
were studied using a closed hierarchy approach. This method was used to describe
non-equilibrium steady states of current [52] as well as density fluctuations (quantum
wakes) following a moving particle detector and other disturbances in Ch. 2 (see also
[1]).

In this manuscript we combine these developments to show that measurements
can stabilize protected edge transport. All that is needed is a sequence of local occu-
pation measurements which serve to herd particles into circular orbits. These circular
orbits then play a somewhat similar role to the semi-classical orbits used to illustrate the
quantum hall effect [126, 127] where particles take closed trajectories in the bulk while
the presence of an edge induces chiral motion via ’skipping orbits’ 1. The result, so
called stirring by staring, combines the pioneering ideas of dark-state engineering with
Floquet engineering to generate exotic protected edge dynamics. As a simple example,
we show how this can be accomplished on a Lieb lattice where chirality is achieved via
an 8-step measurement pattern.

We show that our measurement scheme, illustrated in Fig. 1 and explained in
detail below, yields no net transport of particles in the bulk of the lattice. However,
when the system has an edge, it will induce movement of particles along the edge, Fig.
2. We explore the evolution of particle density in the system using the closed hierarchy
method [52] both by direct numerical simulation as well as by analytically studying the

1The analogy is incomplete, however, in the Zeno limit of rapid measurements where the measure-
ment induced chirality is a completely classical effect (as opposed to the quantum hall effect where co-
herence plays a key role). The effect, however, does persist in the regime of less frequent measurements
where the consequences of quantum coherence become important
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Zeno limit of rapid measurements, where the transport can be conveniently described
as a stochastic process, and corrections to this process in the near-Zeno limit. In this
regime, we prove that the boundary transport is protected from a wide range of edge
perturbations including random potentials, hopping energies, edge deformations, and
site removal. It is critical to note that such protection cannot be achieved in a 1D system
(with a strictly local Hamiltonian), where a removal of a small set of sites can simply
disconnect the system into disjoint parts with no possibility of transport.

3.2 The protocol

The measurement cycle consists of 8 steps taking an overall time T. At each step, we
take repeated snapshots of the presence of particles throughout a subset of the lattice,
while the system is allowed to evolve freely between the measurements. We will denote
the set of sites not being measured at step i by Ai as marked in figure 1, and enforce
periodicity by setting Ai+8 = Ai. Within each step, the following procedure is followed:

1. Particle densities at all sites in (Ai ∩ Ai−1)
c are measured.

2. Free evolution under a free hopping Hamiltonian H = −thop ∑⟨rr′⟩ a†
r ar′ for a time

τ = T
8n . Here n is an integer describing the measurement frequency.

3. Particle densities at all sites in Ac
i are measured.

4. Steps 2 and 3 are repeated n times.

For convenience, throughout the paper we will set thop = 1 and h̄ = 1. For clarity, we
note here that in the rest of the manuscript we will refer to one complete iteration of the
full 8 step procedure as a “full measurement cycle” or sometimes just “measurement
cycle.” On the other hand, each of the individual steps within the 8 step procedure will
be referred to as a “measurement step.”

The steps detailed above correspond to a sequence of maps on the density matrix
ρ of the system. Two distinct elements are involved in the dynamics. First, the mea-
surement of the presence of a particle at a lattice site ri can be represented by the Krauss
map ρ → niρni + (1 − ni)ρ(1 − ni), with ni = a†

i ai the number operator for the site. In
between such measurement steps we have unitary evolution, which is described, as
usual, via ρ → UρU†, where U is a many body evolution operator.
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FIGURE 1: Measurement protocol. Red vertices indicate the set of repeat-
edly measured sites, while black sites are unmeasured (the free evolving
sets, Ai). The adjacent pairs of black vertices trace out an inherently chiral
(in this case clockwise) path along a decorated square inside the Lieb lat-
tice. The path can be made counter-clockwise if the order of the 8 steps is

reversed.

To describe the densities and correlations in the system, we concentrate on the
iterative evaluation of two point correlation operators

Grr′(t) = Tr
(

ρ(t)a†
r ar′
)

. (3.1)

The two point correlation has a closed evolution equation under particle density mea-
surements and free evolution operations, as long as the free evolution is non-interacting
[52]. The change in G due to the Krauss map associated with single site particle density
measurement can be shown to imply eliminating correlations between the measured
site and other sites [52]. Explicitly, one can check that the measurement of particle
presence at a lattice site r is described by the map

G → (1 − Pr)G(1 − Pr) + PrGPr (3.2)

where Pr = |r⟩⟨r| is the (single-particle) projector onto site r. For non-interacting evo-
lution, fermion operators transform as U†a†

qU = Uqq′a†
q′ , where U is called a single-

particle evolution. In this case G transforms as

G → UGU†. (3.3)
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FIGURE 2: Particle trajectories on the Lieb lattice under the measurement
protocol in the infinite measurement (Zeno) limit with the perfect switch-
ing cycle ( T

8 = π
2 ). In this regime, evolution becomes deterministic and

particle trajectories can be seen explicitly. Particles localized in the bulk
(Red) at the start of the protocol and particles initialized at sites of type 3
or 4 (orange) on the edge trace out a closed loop after no more than 5 mea-
surement cycles. On the other hand, particles initialized at sites of type 1
(green) or 6 on the boundary at the beginning of the protocol propagate
along the edge, shifting by 1 dynamical unit cell every 2 measurement cy-

cles (see appendix 3.G for details).

In the case of interest for us here, we will take U = e−iτH, where H = ∑⟨r,r′⟩ |r⟩⟨r′|,
describing free hopping of the fermions on the lattice.

To study the repeated application of these maps to G, it is convenient to view G
as a vector in Hdouble = CN2

where N is the total number of fermion sites. We write
G = ∑rr′ Grr′ |r⟩⟨r′| → G = ∑rr′ Grr′ |r⟩ ⊗ |r′⟩ and the evolution of G under the maps
above can be notated as

G(t + T) = ΛG(t). (3.4)

where Λ is the (super) operator acting on G corresponding to the 8 step measurement
protocol given in the previous section. To construct Λ, we write the transformation
associated with free evolution and with particle measurement, respectively, as

G → (U ⊗ Ū) G (3.5)

G → πrG (3.6)
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where πr ≡ (1 − Pr) ⊗ (1 − Pr) + Pr ⊗ Pr. If all the sites in a set Ac are measured
simultaneously, we find (See appendix 3.C) that the combined operation on G becomes

∏
r∈Ac

πr ≡ ΠA = ∑
r∈Ac

Pr ⊗ Pr + PA ⊗ PA (3.7)

where

PA ≡ ∑
r∈A

Pr. (3.8)

Note that (ΠAG)rr′ = Grr′ if both sites rr′ are in the unmeasured set A, on the other
hand if r or r′ are in Ac we have (ΠAG)rr′δrr′ . In other words, the correlations between
the measured sites Ac and all other sites are destroyed while acting as an identity on
the subspace A of unmeasured sites. It is important to note that ΠA is itself a projection
operator on Hdouble. To see this, note that the operators πr form a set of commuting
orthogonal projectors, and consequently their product is an orthogonal projector. An-
other useful property that follows is that

ΠBΠA = ΠA∩B. (3.9)

We are now in position to write the evolution operator Λ describing a cycle of
measurements and evolution as described by the measurement protocol above. Explic-
itly, after each cycle, which involves 8 steps each repeated n times, G → ΛG with

Λ =
[
ΠA8(U ⊗ Ū)ΠA8

]n (3.10)

× [ΠA7(U ⊗ Ū)ΠA7 ]
n ...
[
ΠA1(U ⊗ Ū)ΠA1

]n

We now turn to analyze the dynamics described by this operator.

3.3 The Zeno limit

We first study the operator Λ, of Eq. (3.10), in the limit of many measurements per
cycle (i.e. n → ∞). The dynamics under high frequency repeated measurements is
known as the quantum Zeno limit. The signature characteristic of this regime is the
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freezing of evolution in the subspace of measured sites. The Zeno effect (and the closely
related anti-Zeno effect) has a long history [128] with broad applications including,
for example, counterfactual quantum computing and communication [129, 130] and
loss suppression in ultracold molecule experiments with strong, long-range dipolar
interactions [131, 132]. Over the past 30 years, the Zeno and related effects have been
observed experimentally across a variety of physical systems [133–139].

Let us first consider one of the eight steps in (3.10). Formally expanding in τ =
T
8n ,we find that:

(ΠA(U ⊗ Ū)ΠA)
n
= ΠA (Un

A ⊗ Ūn
A)ΠA + O(τ2n). (3.11)

Here U = e−iτH and UA = e−iτHA where HA ≡ PAHPA. To get Eq. (3.11), we first
expand each measurement/evolution step in τ:

ΠA(U ⊗ Ū)ΠA = ΠA(I − iτ [H ⊗ I − I ⊗ H])ΠA + O(τ2)

= ΠAe−iτΠA[H⊗I−I⊗H]ΠA ΠA + O(τ2). (3.12)

A short calculation (see appendix 3.C) shows that

ΠA [H ⊗ I − I ⊗ H]ΠA = HA ⊗ PA − PA ⊗ HA (3.13)

hence

ΠA(U ⊗ Ū)ΠA = ΠA(UA ⊗ ŪA)ΠA + O(τ2) (3.14)

which, using [UA ⊗ ŪA, ΠA] = 0, gives (3.11). The expression (3.11) shows that, in the
Zeno limit, the average evolution is dominated by local evolution in the region A and
suppresses hopping into the measured sites Ac. Finally, plugging Eq. (3.11) into Eq.
(3.10), we find

Λ = ΠA8

(
Un

A8
⊗ Ūn

A8

)
ΠA8∩A7 (3.15)

×
(

Un
A7

⊗ Ūn
A7

)
...ΠA2∩A1

(
Un

A1
⊗ Ūn

A1

)
ΠA1 + O(τ2n).

Next, we use this result to formally describe evolution for N cycles, when Nnτ2 ≪ 1,
and nτ is kept constant.
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FIGURE 3: The unit cell for the measurement driven Lieb lattice dynamics
consists of two Lieb lattice unit cells. A choice for such a dynamical unit

cell is depicted.

3.4 Stochastic description of the Zeno limit

The local nature of the evolution in the Zeno limit (3.15) leads to a striking simplifi-
cation that we now describe. We observe that, if one only follows the local particle
density given by the diagonal elements Grr, the evolution is given by a periodic classi-
cal stochastic process. To see this, note that the evolution of G in the Zeno limit consists
of steps of the form

G → Un
Ai

GUn†
Ai

(3.16)

Each set Ai consists of the union of pairs of neighbouring sites, the black sites in Fig.
1. Since the pairs forming Ai are disjoint, the evolution UAi , can only develop non-
trivial correlations between the sites of the same pair. Consider a pair of such sites.
After the evolution, all sites are measured except for sites in Ai ∩ Ai+1, which is a set
of isolated points on the lattice, in particular, any correlations (non diagonal terms in
G) developed between the pair of sites in Ai would be set to zero once the site in Ai

but not in Ai+1 is measured (long range correlations between sites in Ai ∩ Ai+1 are not
annihilated, but will be annihilated in the next step, and cannot be generated by any
of the UAi). Thus, if we start with a diagonal G it will remain diagonal throughout the
evolution. Moreover, even if we start with some non-zero off-diagonal terms, these will



3.4. Stochastic description of the Zeno limit 63

be quickly annihilated by the measurements. Thus we should be able to describe the
evolution, in the Zeno limit, just in terms of the dynamics of the diagonal of G. Indeed,
note that Grr are real non-negative numbers and the total number of particles ∑r Grr is
a constant of motion, and thus Grr can be treated (up to normalization) as probabilities,
and the process describing the evolution is a classic stochastic process.

Explicitly, if we represent the density at time t as a vector, |g(t)⟩, defined via

[g(t)]r ≡ Grr(t), (3.17)

then in the Zeno limit the density evolves via Markovian dynamics as

|g⟩ −→ Rcyc |g⟩ (3.18)

where the transition matrix Rcyc consists of the 8 steps of our process, namely

Rcyc = R8R7R6R5R4R3R2R1. (3.19)

The transition matrices Ri are defined as follows. Each unmeasured set Ai is associated
with two site types α, β that are not being measured, as described in Fig. 3 (e.g. A1

is the union of all sites of types 1, 3; A2 is the union of sites 3, 4; etc). The unitary
evolution associated with a given unmeasured set Ai, breaks into a sum of pairs of
nearest neighbours:

UAi = IAc
i

⊕
⟨α,β⟩∈Ai

eiτnσx . (3.20)

Next, we apply the evolution (3.16) and then measure all sites except those in Ai ∩ Ai+1,
which has the effect of eliminating off-diagonal elements in G. Consider one of the
pairs of sites ⟨α, β⟩ ∈ Ai and an initially diagonal G = diag(g1, g2). Applying the
evolution (3.20) to get eiτnσx Ge−iτnσx and then setting the off diagonal elements to zero,
we get a new diagonal matrix G with G = diag(cos2(nτ)g1 + sin2(nτ)g2, cos2(nτ)g2 +

sin2(nτ)g1). In other words, a particle located in one of the sites jumps to the other site
with probability

p = sin2(nτ) = sin2(
T
8
), (3.21)
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or stays with probability 1 − p. A particle in any other position will not move. There-
fore:

Ri = ⊕⟨α,β⟩∈Ai

(
1 − p p

p 1 − p

)
⊕other sites I (3.22)

This defines a periodically driven random walk. We note that the transition matrices
Ri are bi-stochastic matrices, and thus so is Rcyc.

A remark is in order here about Eq. (3.22). In a system with a boundary, a set
Ai may include isolated sites that do not have an adjacent neighbour also in Ai. For
example consider the boundary of the lattice in Fig. 3. The set A3 as defined includes
sites of type 4 and 2, however looking at the lower boundary, we see that sites of type 4
on the boundary do not have an adjacent site of type 2. Similarly to the measured sites,
the dynamics for these isolated elements of Ai are frozen in the Zeno limit. In (3.22),
the isolated elements of Ai are included in “other sites” since they are not part of an
adjacent pair in Ai.

The particular choice T = 4π, leads to p = 1. We refer to this choice as "perfect
switching". In this case, Rcyc is a permutation matrix, and the motion of particles is
deterministic. Of course, on the other hand, when T = 8π, p = 0 and there is no
evolution at all.

We now consider the counting statistics of transport to the right per cycle. To
do so, we attach a counting field eiθ to each horizontal link, by modifying the above
transition matrices of R1, R2, R5, R6 to

Ri = ⊕⟨α,β⟩∈Ai

(
1 − p eiθ p
e−iθ p 1 − p

)
⊕other sites I (3.23)

whenever α, β are nearest neighbours on a horizontal line, such that α is to the left of β.

With the counting field present, we can introduce the moment generating func-
tion,

χN(θ) ≡ ∑ij ∑w:i→j eiθl(w)ProbN(w)Gii(0)

= ∑ij[Rcyc(θ)N]ijGii(0) = ⟨I|RN
cyc(θ) |g0⟩ (3.24)

where w : i → j is a sequence of hops from site i to site j, ProbN(w) is the probability
for the path w after N measurement cycles using the transition matrix Rcyc, and l(w)
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is the net number of hops in the x direction. In the next line, |g0⟩ is the initial density
distribution at t = 0 and |I⟩ is a vector whose elements are all 1 (corresponding to
G = I).

We can use χN to compute quantities of interest, most important of which is the
flow, defined as the total displacement per cycle, per unit length. The flow in the x
direction is given by

F = lim
N→∞

FN (3.25)

where FN is the average flow in the first N cycles,

FN =
1
Lx

1
N

i∂θχN(θ)|θ=0 (3.26)

with Lx the length in the x direction.

3.4.1 Absence of bulk transport.

In a translation invariant situation, it is convenient to work in momentum space. Here,
we must use the “dynamical unit cel” where the periodic evolution happens, which is
double the Lieb lattice’s original unit cell (see Fig. 3).

The Bravais lattice for the dynamical unit cell is a rotated square lattice whose
primitive Bravais vectors are marked as a, b in Fig. 3. Below, we use nnn, mmm to denote the
position of the unit cell and µ, ν ∈ {1, .., 6} to denote the individual atom inside the cell.
We can then write:

Ri(nnn, µ; mmm, ν) =
∫ d2k

2π
Ri(kkk, µ, ν)eikkk·(nnn−mmm). (3.27)

for example, R5, is associated with A5, which includes sites 1, 6 in neighbouring dy-
namic unit cells, hence

R5(k, θ) =



1 − p 0 0 0 0 pe−i(θ+k·(a−b))

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

pei(θ+k·(a−b)) 0 0 0 0 1 − p


.
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In the deterministic case, p = 1, we find for the full cycle

Rcyc(k, θ) =



1 0 0 0 0 0

0 0 eiθ 0 0 0

0 0 0 eiθ 0 0

0 0 0 0 1 0

0 0 0 0 0 eik·be−iθ

0 e−ik·be−iθ 0 0 0 0


. (3.28)

It is possible to check that in this case, with p = 1, Rcyc(k, θ)5 = I. Therefore, the system
returns to itself after 5 cycles without generating any transport at all. For p ̸= 1, we find
that ReTrRcyc(k, θ)n is a symmetric function of θ, and here too, there is no transport after
an arbitrary number of cycles. To do so we computed the characteristic polynomial of
the matrix Rcyc(k, θ) and found that it is equal to that of Rcyc(−k,−θ), implying equality
of eigenvalues of the matrices.

It is also possible to check that for any kx, ky ̸= 0 (mod 2π), ||Rcyc|| < 1, which
implies the long time behavior will be dominated only by the k = 0 component of
the initial distribution. For kx = ky = 0 and θ = 0 there is a single left and right
eigenvector with eigenvalue 1, which is the uniform density state |I⟩, implying that up
to exponentially small corrections, the current density (3.26) vanishes.

3.4.2 Edge transport

We have concluded that there is no bulk transport associated with the stochastic process
defined by Rcyc, for any p. In this section, we contrast the situation to when an edge is
present. We implement the dynamics by removing all sites beyond the physical edges
(e.g. sites with y < 1) and removing any transitions involving sites beyond the edges
from the dynamics. We start with the deterministic case, namely p = 1. In Fig. 2, we
exhibit a half plane with an edge. For p = 1, we can track the motion of each particle
and conclude that bulk particles perform a closed loop. On the other hand, particles
starting at the edge divide into two sets: some of the edge particles (6, 1) perform a
motion along the edge, while some (3, 4) perform a closed loop. Thus, if we start from
an initial state where particles are placed along the edge we will have particle transport
along the edge (particles 6, 1 will move to the right). This behavior is clearly analogous
to the familiar skipping orbits in the semi-classical description of the integer quantum
Hall effect.
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What will happen away from p = 1? Consider first the case of a strip with peri-
odic boundary conditions in the long direction (say x) and open boundary conditions
in the y direction with Ly dynamical unit cells in the y direction. Let us consider states
that are translationally invariant in the x direction, allowing us to analyze the behavior
in (3.26) in momentum space. For any momentum kx, the transition operator R can
then be written as a 6Ly × 6Ly matrix and analyzed. For 0 < p < 1, any initially posi-
tioned particle has a finite probability to get to any other site within a finite time and
the only steady state distribution of R with eigenvalue 1 is that of uniform density (in
contrast to the p = 1, where additional steady states are possible. This distribution
will be approached exponentially fast, governed by λ2

N where λ2 is the second largest
eigenvalue of R. In the uniform density distribution, there is no net charge transfer. In-
deed in that case, the charge transfer of the upper and lower edge is carried in opposite
directions and cancels.

To get net transfer, we initially place particles only close to one of the edges. In a
finite width system, away from the perfect switching cycle, we expect the charge trans-
port to be transient: once the measuring protocol starts, it will transport a finite amount
of particles while also spreading particles towards the second edge, rapidly approach-
ing the uniform density state. Thus, to study the net particle flow associated with a
given edge we must work in the thermodynamic limit (Ly → ∞), or, more precisely,
Ly ≫ Tw where Tw is the typical time it may take a particle to diffuse from the middle
of the sample to one of the edges.

We now numerically compute the number of particles, F, that flow across a slice
through the Lieb lattice during evolution (see figure 4). In other words, we compare
the number of particles to the left of the slice before and after the application of Λ,
computing:

Fsim ≡ ∑
r to the left of slice

(
(ΛG)rr − Grr

)
. (3.29)

This is done by initiating the system at G(t = 0) = G0 where G0 is a diagonal ma-
trix corresponding to particles placed on the bottom half of a square lattice, with open
boundary conditions. We then iterate the map (3.10), computing ΛNG0, increasing N
but being careful to limit the number of cycles to remain within the regime that no
significant density has had time to build up close to the upper edge.

The combination of the Zeno limit with the perfect switching point p = 1 leads
to a clearly quantized flow, as is clearly exhibited in Fig 5, and can be understood by
tracking the trajectories of the particles (see Fig. 2 and appendix 3.G for details of the
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FIGURE 4: Lieb lattice with lower-half plane filled with particles (in blue).
Trace is taken of the half plane to the right of the green dashed line. The
flow across the barrier is then given by the difference between the right-

half trace before and after evolution.

motion). Next we will consider both the cases of p ̸= 1 as well as the non-Zeno limit.

FIGURE 5: Charge transfer of the left-half filled plane in the Zeno limit
with T

8 = π
2 , namely p = 1. In this section, the Lieb lattice size for all

simulations is 33 × 33 unless otherwise stated. Here, precisely one particle
is transported across the flow cut during the 8 step measurement cycle.

3.5 Charge Transport: Bulk-Edge Decomposition

We now turn to calculating the charge transport per measurement cycle in the Zeno
limit with arbitrary p. The result is described in Fig. 6. Since the bulk transport van-
ishes for any p, the flow will be still completely localized near the edge. Below, we
exhibit an analytical formula for the flow, Eq. (3.30), achieved using a bulk-boundary
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FIGURE 6: Charge transport per measurement cycle in the Zeno limit. The
analytic formula given in Eq. (3.30) is compared with the transport found

from direct simulation for a selection of hopping probabilities.

decomposition in the limit Ly → ∞ (and verify it by direct numerical simulations of
the dynamics on finite systems). The resulting dependence on p is shown in Fig. (6),
exhibiting a crossover behavior ranging from the integer transport at p = 1 to no trans-
port when p = 0 (where the dynamics is trivial, since all hopping is blocked).

We show how the edge flow can be written in terms of bulk operators. This cor-
respondence between the bulk properties of the system and the charge transport on the
edge provides both a direct, efficient method to calculate the flow as well as implies the
robustness of the flow to any perturbations near the boundary of the system.

To observe the flow we imagine an infinite strip in the x direction. We partition
the strip into 3 regions as shown in Fig. 7. The bottom region of the system (below
height ℓ1) is completely filled with particles, while the top (above ℓ2) is empty. In-
between ℓ1 and ℓ2, the particle density is left arbitrary and will have no effect on the
particle transport. This choice isolates the flow along just the bottom edge of the system,
removing the equal and opposite contribution from the flow along the top edge. Charge
distributions of this type are analogously used as a tool to calculate charge flow along
an edge in the context of Floquet topological insulators. See, for instance, [15]. In
appendix 3.D we prove that

F = Fbulk + Fedge (3.30)
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where

Fbulk = i ∑
αβ

[JB(k)
1

I − RB(k)
∂ky RB(k)]αβ|k=0 (3.31)

and

Fedge =
1
Lx

⟨I|Py≤3 JPy≤2|I⟩. (3.32)

Here, RB is a bulk transition operator, equal to Rcyc except with periodic instead of
open boundary conditions to make it translational invariant. The transition operators
RB, Rcyc are used to define appropriate currents J = −i∂θRcyc(θ)|θ=0 and similarly JB =

−i∂θRB(θ)|θ=0. Above, for an operator A, translational invariant in x and y with respect
to the unit cell of the dynamics and with matrix elements Aαβ(r, r′), we define A(k)αβ

as in (3.27). In the edge contribution, Py≤2 is a projection operator on sites with y ≤ 2.
The above expressions are proven starting from the expression Eq. (3.26) for the flow
FN after a finite number of cycles and then taking the limit of large N while maintaining
N ≪ ℓ1 and keeping ℓ2 − ℓ1 constant.

To compute Fedge we can write, explicitly

Fedge =
1
Lx

∑
αβ

Lx

∑
x,x′=1

2

∑
y′=1

3

∑
y=1

Jαβ(x, y; x′, y′). (3.33)

Calculating Fedge in this form we find with our measurement protocol

Fedge = p2 + p3 + p4. (3.34)

The contribution of Fbulk to the transport can also be evaluated readily, as it is
made up of products and an inverse of 6 × 6 matrices and so can be easily computed
for any p. In Fig 6, we combine these two terms and compare with direct simulations
of the dynamics which exhibit excellent agreement.

We now make the following especially important remark that both Fbulk and Fedge

depend only on the bulk properties of the system (assuming weak constraints to be
described below). This implies that the flow is completely insensitive to the details of
the structure of the edge or local perturbations. This can be argued in the following
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FIGURE 7: Initial particle density chosen for the flow analysis. All sites
below the line y = ℓ1 are filled with particles (shown in blue). All sites
above y = ℓ2 are empty. The probability of finding a particle at sites in-
between y = ℓ1 and ℓ2 is left arbitrary as the charge density in this region

will not affect the flow.

way. We first note that

⟨I|J|I⟩ = 0 (3.35)

i.e. there is zero total current in a uniform density system. Eq (3.35) can be seen from
the form of the dynamics generated by our R matrices, (3.23), since

−i∂θ|θ=0Ri|I⟩ = ⊕⟨α,β⟩∈Ai

(
0 p
−p 0

)
⊕other sites I|I⟩ = 0.

Now, consider a modification of the stochastic dynamics along the bottom edge of the
system still obeying the no total current condition (3.35), and that there is no explicit
bulk current introduced (the latter restriction of no added bulk currents may be re-
moved upon closer analysis, see appendix 3.E). Assuming the current operator is short
ranged (with range of at most one unit cell), one can rewrite the expression (3.32) as

Fedge =
1
Lx

⟨I|JPy≤2|I⟩ = − 1
Lx

⟨I|JPy>2|I⟩ (3.36)

the expression on the right hand side for Fedge is independent of how we vary J on the
lower boundary. In other words, the global zero current condition together with the fact
that the two edges responsible for the transport are physically separated means that the
contribution of Fedge to the flow must be protected. Together with the bulk nature of
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Fbulk, we see indeed a protected flow. A more detailed proof can be constructed as
follows (with details in the appendix): Consider the following matrix, describing the
perturbed dynamics:

RM(r, r′) =



R̃ ry, r′y ≤ ℓ1 − (N + 1)

Rcyc ℓ1 − (N + 1) ≤ ry, r′y ≤ ℓ2 + (N + 1)

R̃′ ry, r′y ≥ ℓ2 + (N + 1)

0 otherwise

(3.37)

where R̃, R̃′ are real matrices such that RM is doubly stochastic, i.e. RM is identical to
Rcyc in the bulk but modified near the boundary.

In appendix 3.E, we prove that the flow of RM is equivalent to the flow of Rcyc

assuming that

⟨I| RM(θ = 0) = ⟨I| and RM(θ = 0) |I⟩ = |I⟩ (3.38)

⟨I|JM|I⟩ = 0, (3.39)

where JM is the current operator associated with RM. The first condition requires that
RM preserves particle number and that a uniform density is a steady state of the evo-
lution; this implies that the transition matrix remains doubly stochastic. The second
condition is the requirement that no net current can flow in the completely filled sys-
tem. Note, the conditions (3.38) and (3.39) are certainly satisfied whenever RM is a
product of symmetric, doubly stochastic matrices which encapsulates a large class of
physically relevant perturbations including, for example, local potentials, local varia-
tions of the hopping parameter, and removal of sites from the lattice. Indeed, repeating
the argument leading to (3.21), including the presence of local potential terms (or varia-
tion in thop) in the local Hamiltonian will just locally change the hopping probability p,
retaining the form of the dynamics as in (3.22) with modified ps (i.e. still made of dou-
bly stochastic building blocks). Removal of sites can similarly be described by taking
p = 0 for transitions to the removed site. Due to its stability, the flow may be viewed as
a continuous topological invariant for the system. We emphasize that such protection
cannot be achieved in 1D systems, which can be easily disconnected by the removal of
a few sites.

A technical remark is in order here. The simulation result in Fig 6 was computed
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using Eq (3.29) with the cut defined as shown in Fig. 5. Therefore, the quantity com-
puted in the simulations, Fsim (Eq. (3.29)), is equivalent to placing the counting field θ

only at a subset of the horizontal edges as opposed to placing θ on all horizontal edges
as was used in defining Rcyc(θ) through Eq. (3.23). Accounting for the number of edges
included in the simulations - these include 2 edges per two dynamical unit cells - and
that each dynamical unit cell involves 4 edges and that no charge accumulation occurs,
we find simply

Fsim =
F
4

(3.40)

which was used in the comparison Fig. 6.

At this point, we wish to further discuss and clarify the nature of the protection of
the flow in (3.30) and in what sense it is localized on the edge. In our set up, the charge
density is constant in a thick neighbourhood of the edge. It is important to emphasize,
however, that the protection is not simply due to Pauli blocking, but a feature of the
classical stochastic dynamics. This is evident when we consider the flow when the
density in the occupied (blue) region in Fig. 7 is uniformly reduced to a lower density
ρ < 1. In this case (especially at low density), Pauli blocking is not important for the
dynamics. However, the linearity of our stochastic dynamics shows that the new Flow
will be F(ρ) = ρF(ρ = 1). Thus, the flow is protected (in the sense explained above) for
any filling ρ, in sharp contrast with most topological insulators.

Another interesting feature of the charge transport here is that the flow we com-
pute (for p ̸= 1) is the result of the collective contribution of fermions that approach
the edge, travel along it for a time, and then diffuse away, rather than the result of
single wave packets traveling along the edge without dispersing. An alternative per-
spective that can help clarify the edge nature of the flow can be obtained by adding a
particle sink/source where holes/particles can be injected/extracted from the system.
In this case holes injected in the bulk will only contribute to charge flow (for a finite
time) when they reach the edge. Note, the edge flow is due to unbound charges which
are only a partial contribution to the local currents in the system. For example, in the
completely filled system, since the density is uniform and the R matrices are symmetric
there can be no current on any link in the system. The net zero current is the result of
two different cancellations in the bulk and on the edges of the system. In the bulk, the
zero current is the result of local current loops that give rise to a uniform magnetiza-
tion and the net current is ∇× M = 0. On the edge, the net current is zero as a result
of cancellation between the bound currents, as in the bulk, and unbound currents that
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exist only on the edge. The distinction, however, between charge transport (which is
localized on the edge) and current (which is not localized on the edge) is largely in-
dependent of the present work and similar distinctions must be made, for example, in
discussions of Floquet topological insulators [15].

For topological insulators, a bulk gap implies that small alterations to the bulk
Hamiltonian will not destroy an edge mode so long as symmetries protecting the topo-
logical phase are preserved [7]. The actual value of the current will depend on the
density and on the details of how the bands are filled. Similarly, here, small changes
in the carrier density will lead to changes in the magnitude of the flow, but not its ex-
istence. Interestingly, unlike topological insulators, the existence of the flow and the
protection we discuss are independent of the initial filling, which manifests itself in the
off-diagonal part of G when the process starts.

On the other hand, while here the flow is robust (in the sense explained above) at
any density, it’s value is not in general robust to arbitrary global changes of the param-
eters. In our system, it is possible to continuously change the flow by small extensive
perturbations, say, changing the total period T. However, as stated, the exact value for
the flow of the system during N cycles is protected against even strong perturbations
as long as these are far enough (i.e. within a distance at least N) from the interface with
the region which is not of uniform density (see Appendix 3.E). Perturbations within
the interface region may alter total charge transport values by inducing bulk currents
in the system (see Fig. 3.E.1).

It is interesting to compare the behavior in the Zeno limit with a Floquet topo-
logical insulator evolution in our system which is equivalent to the one introduced in
[20]. There, a periodic driving protocol is used as the source of chirality in the system,
where hopping between neighbouring sites are sequentially turned on, but without any
measurements. Explicitly, the analogous evolution for us, ΛFloq, is:

ΛFloq =
(

Un
A8

⊗ Ūn
A8

) (
Un

A7
⊗ Ūn

A7

)
...
(

Un
A1

⊗ Ūn
A1

)
(3.41)

where we have adapted the 5 step procedure on a square lattice of [20] to an analogous 8
step procedure on a Lieb lattice. To simplify the comparison, we have neglected the 5th
"holding period" step and sublattice potentials in the original Rudner et. al. procedure
[20].
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(A)

(B)

FIGURE 8: (a) Charge transfer for Floquet system (left) and measurement
protocol in the Zeno limit (right) where, in both cases, the hopping proba-
bility p = 0.96. (b) Charge transfer after each measurement step for the Flo-
quet system and measurement protocol with hopping probability p = 0.96.
Note the convergence of the 3rd and 8th step to half the total flow per cy-

cle.

FIGURE 9: Flow after each measurement step for hopping probabilities
p = 0.98 (left) and p = 0.94 (right). Note, in the long time limit, the 3rd
and 8th measurement step of both hopping probabilities converge to half

the total flow per measurement cycle.
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FIGURE 10: Flow after each measurement step for n = 60 and n = 200. For
both, T

8 = π
2 .

Note the measurement protocol in the Zeno limit (Eq. 3.15) is precisely the Flo-
quet evolution interspersed with measurements between each step. Markedly, when
p = 1 the two evolutions are equivalent since the measurement projectors act trivially
in the perfect switching case (when the initial G is diagonal).

We now turn to investigate the simulated dynamics in this regime. Away from the
perfect switching cycle, p = 1, we find an interesting distinction between the Floquet
evolution and the Zeno limit of the measurement/evolution cycle as shown in Fig.
8. Examining the charge transfer on the resolution of the 8 steps per cycle, we find a
double step structure in the charge transfer which is not present in the corresponding
Floquet evolution. Namely, the 3rd and 8th step of the measurement protocol each
contribute half of the total flow per complete cycle. The reason for this double step
structure is the following. The dynamics of particles in the lattice are governed by a
classical, chiral random walk determined by Rcyc. The 3rd and the 8th step are the only
two steps that cross the slice through the Lieb lattice, and thus all transport must occur
within these 2 steps. For a particle starting far away from the slice, all information about
whether the particle would cross the slice during the 3rd or 8th step in the deterministic
p = 1 case is lost. Hence, in the long time dynamics, a particle is equally likely to cross
the slice on either step leading to the observed double step structure. We emphasize
that this double step structure holds for all p ̸= 1 (see figure 9). However, similar to
the Floquet evolution, the Flow per full measurement cycle decreases away from 1 for
p < 1 as shown in figure 6.
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FIGURE 11: Flow per cycle as the measurements per step moves away from
the Zeno limit. Compared are the values found from the near-Zeno limit
approximation, Eq. (3.30) with the transformation Eq. (3.42), and the flow
found from direct simulation. Both analytics and simulations are done in

the perfect switching cycle, i.e. T
8 = π

2 .

3.6 Away from the Zeno limit

We now turn to consider the important question of whether the flow is still present
when the frequency of measurements is reduced, i.e. we study the evolution under
our measurement protocol away from the Zeno limit. In Fig. 11 we show the flow as
function of log(n). We see that the flow is reduced, but still finite as the measurement
frequency is reduced, crossing over from near constant behavior at high frequency, to
roughly logarithmic behavior, F ∼ 0.2 log2(n)− 0.4 at low frequency n, with F ∼ 0.2
particles per cycle at n = 8 measurements per step.

The blue line in Fig. 11 represents an analytic perturbative near-Zeno correction
which fits the simulations remarkably well for n > 64. To arrive at it, we start with Eq.
(3.15), now retaining terms up to and including order O(nτ2). We prove in appendix 3.F
that the resultant evolution, to order O(nτ2), can still be completely described in terms
of the dynamics of the diagonal of G, with the classically stochastic transfer matrices Ri

replaced by the matrices Rnz,i given by

Rnz,i = Ri − nτ2R̃i (3.42)

where R̃i is the near-Zeno correction to Ri. As in the Zeno case, we define

Rnz = Rnz,8Rnz,7Rnz,6Rnz,5Rnz,4Rnz,3Rnz,2Rnz,1 (3.43)
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FIGURE 12: A comparison of, from left to right, the zeno limit, the full mea-
surement protocol with 500 measurements per measurement step, and the
near zeno approximation with 500 measurements per measurement step -
all with T

8 = π
2 . Plotted are the local particle densities for a 33 by 33 site

Lieb lattice after 51 measurement steps for the lower-half filled plane set
up given in Fig. 4.

and, in treating Rnz, only terms up to O(nτ2) are kept after combining equations (3.42)
and (3.43). Finally, the blue line of Fig. 11 is obtained by substituting (3.43) into (3.30).
In Appendix 3.F, we solve for (3.43) explicitly, but here we will focus only on the flow
resulting from Rnz. We also note here that, similar to the Zeno limit case, the flow
in the near-Zeno limit is protected to perturbations localized on the boundaries (see
appendix 3.E). Furthermore, numerical simulations suggest that this protection persists
even in the low frequency measurement regime. We leave a detailed investigation of
this observation to future work.

In Fig 12 we show what the evolution of density in the system away from the
Zeno limit looks like. The main feature is clearly the ability of particles to spread faster
into the bulk, since the evolution is not confined as effectively to a sequence of two-
site evolution steps as in the Zeno case. We emphasize, however, that there is still
significant charge transport even far away from the Zeno regime (Fig. 11). On the
other hand, the double step structure is broken with the 8th step in the measurement
cycle providing an increasing percentage of the total flow per cycle as the number of
measurements per measurement step is reduced. This is shown, for example, in Fig. 10.
This is because particles on the edge are less affected by the move away from the Zeno
limit (as they have fewer neighboring sites to spread too). Since the 8th measurement
step hops across the Flow cut at the edge, a larger percentage of the Zeno limit flow is
retained.
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3.7 Concluding remarks

In this work we presented a framework for inducing edge modes via measurement
protocols. Our work is complementary to the many recent advances in studying time
periodic systems such as topological Floquet insulators [20, 86]. The resultant behavior
is a remarkable demonstration of the role of an observer in quantum mechanics as
fundamentally different from a classical observer.

Several remarks are in order regarding open problems. First, we emphasize that
the behavior analyzed in this paper is that of the average transport and dynamics of
densities over all possible measurement outcomes. While it is reasonable to expect that
such an average would well represent the typical behavior of the system for a typical
history of measurement outcomes (a“quantum trajectory”), it is of much interest to
study how well this expectation holds by studying both fluctuations and the behavior
of the quantum trajectories in our system.

While we have concentrated on the study of the two point function G, it would
be also interesting to establish the limiting behavior of the many body density matrix ρ

as the system is observed. In particular, this would allow us to study the development
of entropy and non trivial correlation in the system. Indeed, in recent works, e.g. [104,
109, 116, 117], it has been shown that certain protocols of repeated measurements in-
terspersed with free unitary evolution induce a phase transition in the Rényi entropy
dependant on the rate of measurement. In our model, we have found that no two-point
correlations are generated up to first order in the expansion away from the Zeno limit,
keeping the system close to a product state at all times. However, for low measure-
ment rates, these correlations are clearly generated. This suggests phase transitions of
mutual information measures with the measurement rate may be present.

It is important to note that, while in this work we have focused mainly on the
Lieb lattice, our procedure may be easily generalized to other lattices. For example, we
provide a similar 8-step protocol on a square lattice and a 6-step protocol on a “mod-
ified” kagome lattice in appendix 3.B. Furthermore, we describe some restrictions on
the kinds of protocols that can be implemented on a given lattice.

We note that while our dynamics is driven by non-interacting evolution, the for-
malism (see [52]) allows for an arbitrary initial state, including interesting highly cor-
related ones. Moreover, we expect that in the Zeno limit, the inclusion of certain in-
teractions may be efficiently implemented with a proper modification of the current
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treatment, which we leave for future work.

Finally, we suggest that a measurement protocol such as ours, while challenging,
may be experimentally realizable. One possibility is the use of quantum dot arrays as
the underlying lattice [140]. Another promising direction is quantum gas microscopes.
Here, experiments working with ultracold 6Li fermions have established the ability to
resolve particle presence at single sites see e.g. [76, 78, 141].
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Appendix

3.A Remarks about Steady States

What kind of steady states can we expect in a system like ours where evolution and
density measurements are intertwined? Here it is convenient to look at the steady states
of the correlation matrix G rather then the full density matrix ρ. Let us consider how
the Hilbert-Schmidt norm of G changes under unitary evolution and measurements Eq.
(1.29a, 1.29b) above. The Hilbert-Schmidt norm is defined as

∥G∥2
HS ≡ Tr

{
G†G

}
= ∑

ij
|Gij|2. (3.44)

Clearly, ∥G∥HS, is invariant under unitary evolution of G. Particle measurements of G,
as described by (3.2), on the other hand, set to zero some of the matrix elements of G
and thus can only decrease ∥G∥HS. A necessary (though not sufficient) condition for
some Gsteady to be a steady state of some super-operator Λ, i.e. ΛGsteady = Gsteady is
that the Hilbert-Schmidt norm remains constant. This provides a restriction on Λ. Any
particle detection measurement contained in Λ must act trivially, i.e. not eliminate any
matrix elements. Thus, without loss of generality writing Λ ≡ ∏i ΠiUi we require that

ΛGsteady = ∏
i

ΠiUiGsteady = ∏
I

UiGsteady (3.45)

Note, for our measurement procedure, this is clearly true for any scalar matrix
Gsteady. For a Gsteady with a non-uniform diagonal (such as that of a single localized
particle) to be a steady state of the measurement protocol, we can only satisfy Eq. (3.45)
in the Zeno limit with T

8 fine tuned to π
2 .

One possibility to find non-equilibrium steady states in the system, as well as
offer an insight into larger systems is to use particle injection and removal as was pre-
viously done in [52]. To stabilize the system where the left half is filled with particles,



82 Chapter 3. Stirring By Staring: Measurement Induced Chirality

we may use a strip of width L, where we start where we constantly try to inject particles
from the left, and extract any particle that arrives to the right of the sample.

In the context of the present paper, we instead look at the effective behavior of
the system, when it is partially filled and evolve over times which are long, but short
compared to the time it would take to arrive at the real uniform density steady state.

3.B The measurement protocol on other lattices

In this section we remark on lattices on which one can perform the measurement pro-
tocol outlined above. Our protocol is directly inspired by Floquet cycles where a collec-
tion of pairs of neighbouring sites are activated at any given step. To mimic this type
of dynamics, we require the ability to isolate the activated pairs by performing rapid
measurements on neighbouring sites. Thus, to apply our protocol directly, we require
that there is no hopping amplitude to go between two distinct pairs. For a Hamiltonian
describing nearest neighbour hopping on a lattice, this means that the edge distance
between unmeasured pairs is at least two (see upper left figure in Figure 3.B.1).

This restriction then rules out the simple cycle on a square lattice originally intro-
duced in [20], where individual squares are traced out in 4 steps, as in this case the edge
distance between isolated pairs is only one. This does not, however, mean a measure-
ment protocol cannot be implemented on a square lattice. A solution is to increase the
size of the cycle to an 8 step process that traces out a path around clusters of 4 squares
(see right figure in Figure 3.B.1). Here, the edge distance between activated pairs is 3,
and thus they can be isolated using rapid measurements. Note, in this example proto-
col, there is a site at the center of the cycle that is never activated, i.e. always measured.
If this site is removed, we find precisely the 8 step protocol on a Lieb lattice introduced
in this paper. This choice was made to minimize the number of required measure-
ments and to remove any spreading of particles through these unactivated sites away
from the Zeno limit. We also here give an example of another measurement protocol
with 6 measurement steps on a “Modified” Kagome Lattice, as opposed to the 8 steps
for our protocol on a Lieb lattice, as shown in Fig. 3.B.2
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FIGURE 3.B.1: Upper Left: The measurement protocols require the bonds
(red) between unmeasured sites (green) to be separated by at least two
edges. This allows for at least one measured site (crossed) between them.
Lower Left: The naive attempt to perform the measurement protocol on
the Kagome lattice does not work because two of the surrounding mea-
sured sites around the unmeasured sites (circled with red) overlap with
other unmeasured sites (denoted as the ends of black links). Right: An
example of a measurement protocol on a square lattice that satisfies the
requirement that the edge distance between unmeasured pairs must be at
least 2. If the unactivated (always measured) sites in this protocol are re-
moved, we have exactly the 8 step protocol on a Lieb lattice introduced in

this paper.

3.C Some derivation details

In this section we supply a few more details about the formulas used in the main text.
I. Proof of Eq. (3.7):

∏a∈Ac πa = ∑a∈Ac Pa ⊗ Pa + PA ⊗ PA

We first note that: if a ̸= b then pa pb = 0, pa(1 − pb) = pa. Thus in the product

∏a∈Ac πa = ∏a∈Ac(Pa ⊗ Pa + (1 − Pa)⊗ (1 − Pa)) (3.46)

the term of the form Pa ⊗ Pa can only appear in a product of the form (Pa ⊗ Pa)∏a′∈Ac;a′ ̸=a(1−
Pa′) ⊗ (1 − Pa′) = Pa ⊗ Pa. Next note that: ∏a∈Ac(1 − Pa) = ∏a∈A Pa. Therefore

∏a∈Ac(1 − Pa)⊗ (1 − Pa) = PA ⊗ PA. Combining these we get Eq. (3.7).
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FIGURE 3.B.2: An example measurement protocol on a “Modified”
Kagome lattice that utilizes 6 measurement steps (as opposed to the 8 step
procedure used on the Lieb lattice). The black bonds indicate free hopping

pairs and measurement is indicated by blue colored sites.

II. Derivation of equation (3.13):

ΠA [H ⊗ I − I ⊗ H]ΠA

= (∑a∈Ac Pa ⊗ Pa + PA ⊗ PA) [H ⊗ I − I ⊗ H] (∑b∈Ac Pb ⊗ Pb + PA ⊗ PA)

= (PA ⊗ PA) [H ⊗ I − I ⊗ H] (PA ⊗ PA)

= HA ⊗ PA − PA ⊗ HA (3.47)

where HA ≡ PAHPA and we used that if a, b ∈ Ac then PAPa = PAPb = 0 and that
PaPb = δabPa.
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3.D Bulk-Edge decomposition: Proof of formula (3.30).

Our starting point is Eq. (3.26). Taking the ∂θ derivative and using the doubly-stochastic
nature of Rcyc (when θ = 0), i.e. ⟨I| Rcyc(θ = 0) = ⟨I| and Rcyc(θ = 0) |I⟩ = |I⟩, we find

FN = 1
NLx

i∂θχN(θ)|θ=0 = 1
NLx

i∂θ⟨I|RN
cyc(θ)G |I⟩ |θ=0 = 1

NLx
∑N−1

m=0⟨I|JRm
cyc(θ = 0)G|I⟩

= 1
NLx

∑N−1
m=0⟨I|J

[
Rm

cyc(θ = 0), G
]
|I⟩+ 1

Lx
⟨I|JG|I⟩, (3.48)

where we have defined J = −i∂θRcyc(θ)|θ=0 and G is a diagonal matrix representing the
initial density distribution, i.e., if written in matrix elements, Gα,β(r, r′) = δαβδr,r′gα(r)
with r = (x, y) and r′ coordinates of the unit cell, α, β internal sites, and gα(r) the initial
probability for a particle at a site indexed by (r, α). Below we suppress the angle when
describing Rcyc(θ = 0), and will just write Rcyc.

In our setup (see Fig. 7), we fill the system in such a way that gα(r) = 1 for y < ℓ1

and gα(r) = 0 for y > ℓ2. Let us define the set

Sm = {r : ℓ1 − m ≤ y ≤ ℓ2 + m}. (3.49)

The set Sm contains the interface between empty and full region, "thickened" by a height
m below and above. Let also PSm be the projection on the set Sm defined as in (3.8).
Explicitly:

PSm,α,β(r, r′) = δαβδr,r′

1 ℓ1 − m ≤ y, y′ ≤ ℓ2 + m

0 otherwise
. (3.50)

We now prove that we can freely move the projection PSm to either side of the
commutator

[
Rm

cyc, G
]
, namely, taking the range of Rcyc to be short, range(Rcyc) ≤ 1,

then [
Rm

cyc, G
]
= PSm

[
Rm

cyc, G
]
=
[

Rm
cyc, G

]
PSm = PSm

[
Rm

cyc, G
]

PSm (3.51)

Proof: Consider the commutator
[

Rm
cyc, G

]
. Note that since Rαβ(r, r′) = 0 if |r −

r′| > 1, we have Rm
αβ(r, r′) = 0 if |r− r′| > m. Therefore, looking at the matrix elements,

we have (
[

Rm
cyc, G

]
)αβ(r, r′) = Rm

αβ(r, r′)
(

gβ(r′)− gα(r)
)
= 0 when |r − r′| > m or

gβ(r′)− gα(r) = 0. Thus, the matrix elements of
[

Rm
cyc, G

]
can only be non-zero when

simultaneously |r − r′| ≤ m and gβ(r′) − gα(r) ̸= 0. Let us check when the matrix
elements can be non-vanishing.
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Since the system is filled the system in such a way that gα(r) = 1 for y < ℓ1, we
see that if y < ℓ1 − m, the condition that |r − r′| ≤ m implies y′ ≤ ℓ1, and in particular
gβ(r′) = gα(r) = 1, making the commutator vanish. Similarly, the commutator will
vanish if y > ℓ2 + m. And of course the same considerations can be applied to y′. We
conclude that non-zero matrix elements are only possible if

ℓ1 − m ≤ y, y′ ≤ ℓ2 + m (3.52)

which implies (3.51).

Since the boundaries of the system are not included in the Sm region, we may also
replace the open boundary conditions of Rm

cyc with periodic ones, denoted by Rm
B , to

get: [
Rm

cyc, G
]
= PSm

[
Rm

cyc, G
]
= [Rm

B , G] PSm (3.53)

Similarly, since J is short ranged, far from the boundaries, the matrix elements of J are
identical to those of JB ≡ −i∂θRB(θ)|θ=0, namely JPSm = JBPSm . This behavior holds
when m < min(ℓ1 − range(J), Ly − ℓ2 − range(J)), which will always be assumed in the
following treatment. Thus, we have:

⟨I|J
[

Rm
cyc, G

]
|I⟩ = ⟨I|JPSm

[
Rm

cyc, G
]
|I⟩ = ⟨I|JBPSm [Rm

B , G] |I⟩ (3.54)

Substituting in Eq. (3.48) we get

FN =
1

NLx

N−1

∑
m=0

⟨I|JBPSm [Rm
B , G] |I⟩+ 1

Lx
⟨I|JG|I⟩

=
1

NLx

N−1

∑
m=0

⟨I|JBPSm Rm
B G|I⟩ − 1

NLx

N−1

∑
m=0

⟨I|JBPSm G|I⟩+ 1
Lx

⟨I|JG|I⟩

=
1

NLx

N−1

∑
m=0

⟨I|JBPSm Rm
B G|I⟩+ 1

NLx

N−1

∑
m=0

⟨I|J(G − PSm G)|I⟩ (3.55)

where in the last line we used that in the bulk ⟨I|JBPSm G|I⟩ = ⟨I|JPSm G|I⟩.

To proceed we note that

G − PSm G = (1 − PSm)G = (Py<ℓ1−m + Py>ℓ2+m)G = Py<ℓ1−m (3.56)
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where Py<ℓ1−m, Py>ℓ2+m are projectors onto the regions with y below y = ℓ1 − m and
y above y = ℓ2 + m respectively. Also, we used that: Py<ℓ1−mG = Py<ℓ1−m, and
Py<ℓ2+mG = 0, which follow immediately from the definition of G. Therefore:

FN =
1

NLx

N−1

∑
m=0

⟨I|JBPSm Rm
B G|I⟩+ 1

NLx

N−1

∑
m=0

⟨I|JPy<ℓ1−m|I⟩ (3.57)

We can further simplify as follows. Let us assume there is no bulk current per
unit cell. Then, if averaged over a bulk strip whose width is a unit cell, we have
⟨I|J(Py<ℓ1−m − Py<ℓ1−(m−1))|I⟩ = 0, which, finally, taking range(J) = 1, yields the form

FN =
1

NLx

N−1

∑
m=0

⟨I|JBPSm Rm
B G|I⟩+ 1

Lx
⟨I|JPy≤2|I⟩

≡ Fbulk + Fedge. (3.58)

In other words, we have split the charge transport into a term that depends only on the
bulk properties of the system,

Fbulk =
1

NLx

N−1

∑
m=0

⟨I|JBPSm Rm
B G|I⟩, (3.59)

and a term that can be computed near the edge,

Fedge =
1
Lx

⟨I|JPy≤2|I⟩. (3.60)

Let us consider the two terms separately.

The edge term. Fedge we can efficiently compute ⟨I|JPy≤2|I⟩, which can be done
explicitly by writing the transition matrix for a ladder geometry of small extension in
the y direction. Note that due to the short-range nature of J, the edge expression can be
further reduced to ⟨I|Py≤3 JPy≤2|I⟩. Doing so for our system on Mathematica we find
with our measurement protocol Fedge = p2 + p3 + p4.

The bulk term Fbulk. Assuming the translational invariance of RB, we can write
Fbulk expressed in k-space by defining the momentum states

|k⟩α =
1√
V

∑
r

eik·r |r, α⟩ , |r, α⟩ =
∫ d2k

(2π)2 e−ik·r |k⟩α (3.61)
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where V = LxLy is the number of unit cells. To proceed, let us write the uniform density
vector |I⟩ as

|I⟩ = ∑
r,α

|r, α⟩ =
√

V ∑
α

|k = 0⟩α . (3.62)

Therefore, using the momentum representation in (3.59) we arrive at

Fbulk =
V

NLx

N−1

∑
m=0

∑
αβ

(JB)αγ (⟨k = 0| PSm Rm
B G |k = 0⟩)γβ (3.63)

To evaluate this expression, we need, explicitly

⟨kx = 0, ky|α G |k′x = 0, k′y⟩β
=

δαβ

Ly
∑
y

gα(y)e−iy(ky−k′y). (3.64)

where gα(y) = L−1
x ∑x gα(r). For the evolution, let us write Rm

B in the form

⟨kx = 0, ky|α Rm
B |k′x = 0, k′y⟩β

= δkxk′x δkyk′y

m

∑
v=−m

Cαβmveikyv. (3.65)

where the coefficients Cαβmv depend on the model. The restriction −m ≤ v ≤ m follow
from the range of Rm

B being limited to m. Also note that:

⟨k|α PSm |k′⟩β =
δαβδkxk′x

Ly
∑

ℓ1−m≤y≤ℓ2+m
e−iy(ky−k′y). (3.66)
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Putting these together we have

(⟨k = 0| PSm Rm
B G |k = 0⟩)αβ

=
1
Ly

∫ dk′y
2π ∑

ℓ1−m≤y≤ℓ2+m
eik′yy

m

∑
v=−m

Cαβmveik′yv ∑
y′

gβ(y′)e
−ik′yy′

=
1
Ly

∑
ℓ1−m≤y≤ℓ2+m

∑
y′

m

∑
v=−m

Cαβmv

(∫ dk′y
2π

eik′y(y−y′+v)

)
gβ(y′)

=
1
Ly

m

∑
v=−m

Cαβmv ∑
ℓ1−m≤y≤ℓ2+m

gβ(y + v)

=
1
Ly

m

∑
v=−m

Cαβmv ∑
ℓ1−m+v≤y≤ℓ2+m+v

gβ(y)

=
1
Ly

m

∑
v=−m

Cαβmv

[(
ℓ2

∑
y=ℓ1

gβ(y) + m

)
− v

]

=
1
Ly

(
i∂ky [R

m
B (k)]αβ +

(
ℓ2

∑
y=ℓ1

gβ(y) + m

)
[Rm

B (k)]αβ

)
|k=0. (3.67)

Therefore, we have

Fbulk =
V

NLx

N−1

∑
m=0

∑
αβγ

(JB)αγ (⟨k = 0| PSm Rm
B G |k = 0⟩)γβ

=
1
N

N−1

∑
m=0

∑
αβ

{
i[JB(k)∂ky(Rm

B (k))]αβ|k=0 +

(
ℓ2

∑
y=ℓ1

gβ(y) + m

)
[JB(k)(Rm

B (k))]αβ|k=0

}
(3.68)

Next, we note that in Eq. (3.68) above, we can use

∑
αβ

m[JB(k)(Rm
B (k))]αβ|k=0 = 0 (3.69)

This follows from the fact that RB is a stochastic matrix, with RB |I⟩ = |I⟩, and the
assumption that there is no net current in the uniform density system:

0 = ⟨I| JB |I⟩ = ⟨I| JBRm
B |I⟩ = V ∑

αβ

[JB(k)(Rm
B (k))]αβ|k=0 = 0. (3.70)
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Let us define cα ≡ ∑ℓ2
y=ℓ1

gα(y). We then have:

Fbulk =
1
N

N−1

∑
m=0

∑
αβ

{
i[JB(k)∂ky(Rm

B (k))]αβ|k=0 + [JB(k)(Rm
B (k))]αβcβ|k=0

}
(3.71)

Now, using repeatedly that RB |I⟩ = |I⟩, we write :

1
N

N−1

∑
m=0

∑
αβ

{
i[JB(k)∂ky(Rm

B (k))]αβ|k=0 + [JB(k)(Rm
B (k))]αβcβ|k=0

}
=

i
N

N−1

∑
m=1

∑
αβ

{
[JB(k)

m−1

∑
q=0

Rq
B(k)∂ky RB(k)]αβ|k=0 + [JB(k)

RB(k)N − I
RB(k)− I

]αβcβ|k=0

}

=
1
N ∑

αβ

{
i[JB(k)

(N[I − RB(k)] + RN
B (k)− I

[I − RB(k)]2
)

∂ky RB(k)]αβ|k=0

+[JB(k)
RB(k)N − I
RB(k)− I

]αβcβ|k=0

}
(3.72)

We now consider the large N limit. If we assume that cβ doesn’t scale with N, the
dominant term becomes

Fbulk = i ∑
αβ

[JB(k)
1

I − RB(k)
∂ky RB(k)]αβ|k=0, (3.73)

which is Eq. (3.31).

3.E Robustness of Flow

In this section, we show that the results of Appendix 3.D are robust to perturbations
near the boundary (see Fig. 3.E.1). Consider a perturbation of our stochastic dynamics
Rcyc, affecting regions away from the bulk of the sample where we have our interface
between the occupied and unoccupied regions. Let us take it as described by a modified
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FIGURE 3.E.1: An illustration of the stability of the flow. When the ini-
tial state has uniform density below the line ℓ1, our N cycle flow is only
sensitive to perturbations occurring in the region above ℓ1 − N. For large
N, the initial density configurations (a), (b), and (c) will have the same N
cycle transport despite having drastic differences in R matrices (e.g. by in-
troducing new edges in the system drawn in black above). On the other
hand, panel (d) will have a reduced N cycle flow, since, in contrast with
panel (b), the partially filled area on the upper part of the new edge will

not be enough to cancel the flow below it.
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dynamics given by RM of the form:

RM(r, r′) =



R̃ ry, r′y ≤ ℓ1 − (N + 1)

Rcyc ℓ1 − (N + 1) ≤ ry, r′y ≤ ℓ2 + (N + 1)

R̃′ ry, r′y ≥ ℓ2 + (N + 1)

0 otherwise

(3.74)

where R̃, R̃′ are real matrices such that RM is doubly stochastic, i.e. RM is identical to
Rcyc in the bulk but modified near the boundary. We now calculate the flow for this
new matrix RM and show it is equivalent to that of Rcyc. The situation is illustrated in
figure 3.E.1.

Following Eq. 3.48, we find the flow for RM is

FN =
1

NLx
i∂θ⟨I|RN

M(θ)G|I⟩ (3.75)

where we have added the counting field such that [RM(θ)]αβ = [RM]αβ e−i(βx−αx)θ with
α = (αx, αy) and β = (βx, βy). Defining a matrix which is only modified in the bottom
edge,

R′
M(r, r′) =


R̃ ry, r′y ≤ ℓ1 − (N + 1)

Rcyc ry, r′y ≥ ℓ1 − (N + 1)

0 otherwise

(3.76)

we note that

RN
MG = R

′N
M G (3.77)

This is because the only non-zero contributions to RN
MG come from terms at ry, r′y ≤

ℓ2 + N, hence we are free to replace R̃′ → Rcyc in the region ry, r′y > ℓ2 + N without
changing the result. Combining eq. 3.75 with 3.77 and following the rest of the steps in
eq. 3.48 we find

FN =
1

NLx

N−1

∑
m=0

⟨I|J ′M
[

R
′m
M (θ = 0), G

]
|I⟩+ 1

Lx
⟨I|J ′MG|I⟩ (3.78)
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where J
′
M is the current associated with R

′
M.

Similar to 3.51, we find[
R

′m
M (θ = 0), G

]
=
[

R
′m
M (θ = 0), G

]
PSm . (3.79)

Note that in the region Sm, R
′
M is identical to Rcyc. We therefore have[

R
′m
M (θ = 0), G

]
PSm =

[
Rm

cyc(θ = 0), G
]

PSm = [Rm
B (θ = 0), G] PSm (3.80)

Repeating the steps that led to 3.57, we find

FN =
1

NLx

N−1

∑
m=0

⟨I|JBPSm Rm
B G|I⟩+ 1

NLx

N−1

∑
m=0

⟨I|J ′MPy<ℓ1−m|I⟩ (3.81)

Note, the first term in 3.81 is equivalent to the Fbulk contribution for Rcyc. We will now
show that 1

NLx
∑N−1

m=0⟨I|J
′
MPy<ℓ1−m|I⟩ is equivalent to the Fedge contribution from Rcyc.

Note,

1
NLx

N−1

∑
m=0

⟨I|J ′MPy<ℓ1−m|I⟩ =
1

NLx

N−1

∑
m=0

⟨I|J ′MPℓ1−N+m>y>ℓ1−N|I⟩+
1
Lx

⟨I|J ′MPy<ℓ1−N|I⟩

=
1

NLx

N−1

∑
m=0

⟨I|JPℓ1−N+m>y>ℓ1−N|I⟩+
1
Lx

⟨I|J ′MPy<ℓ1−N|I⟩ (3.82)

=
1
Lx

⟨I|J ′MPy<ℓ1−N|I⟩

where in the second and third lines we have used the fact that J
′
M is identical to J for

y > ℓ1 − N and that Rcyc has no bulk transport implies ⟨I|JPℓ1−N+m>y>ℓ1−N|I⟩ = 0.
Furthermore,

1
Lx

⟨I|J ′MPy<ℓ1−N|I⟩ =
1
Lx

⟨I|J ′M
(

I − Py>ℓ1−N
)
|I⟩ (3.83)

We now restrict ourselves to the case where ⟨I|J ′M|I⟩ = 0, i.e. no net current in
the uniform density state. Note, this is the case when R is a product of bi-stochastic
symmetric matrices, which includes many of the most natural perturbations near the
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boundary (random potentials, removed sites, variation in hopping amplitude or mea-
surement step timing, etc.). In this case, we find

1
Lx

⟨I|J ′M
(

I − Py>ℓ1−N
)
|I⟩ = − 1

Lx
⟨I|J ′MPy>ℓ1−N|I⟩ = − 1

Lx
⟨I|JPy>ℓ1−N|I⟩ (3.84)

=
1
Lx

⟨I|JPy≤2|I⟩ = Fedge

We thus have that flow is unaffected by arbitrary evolution near the boundary.
It is only dependant on the bulk properties of the evolution. Note, this argument also
holds if Rcyc is replaced by Rnz, the dynamics in the near Zeno case. In other words,
transport is completely protected even (to first order) away from the Zeno limit. In fact,
numerical simulations suggest that edge transport is unaffected by perturbations near
the boundary even in the low frequency measurement regime. Proof of this, however,
is still a work in progress.

3.F The Near-Zeno Approximation: Derivation of Rnz

Our starting point is Eq. (3.12). Let us now include terms of order up to O(τ2), and
rewrite it as

ΠAi(U ⊗ Ū)ΠAi = ΠAi − iτ
[
HAi ⊗ PAi − PAi ⊗ HAi

]
−τ2

2
ΠAi [H ⊗ I − I ⊗ H]2 ΠAi + O(τ3)

= ΠAi(UAi ⊗ ŪAi)ΠAi − τ2ζAi(H) + O(τ3) (3.85)

where

ζAi(H) =
1
2

ΠAi

[
H2 ⊗ I + I ⊗ H2 − 2H ⊗ H

]
ΠAi

−1
2

[
H2

Ai
⊗ PAi + PAi ⊗ H2

Ai
− 2HAi ⊗ HAi

]
(3.86)
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From this we find

ΠAi+1

(
ΠAi(U ⊗ Ū)ΠAi

)n ΠAi−1

= ΠAi+1

(
ΠAi(UAi ⊗ ŪAi)ΠAi − τ2ζAi(H)

)n
ΠAi−1 + O(nτ3)

= ΠAi∩Ai+1(U
n
Ai
⊗ Ūn

Ai
)ΠAi∩Ai−1

−τ2ΠAi∩Ai+1

n−1

∑
m=0

(Um
Ai
⊗ Ūm

Ai
)ζAi(H)(Un−1−m

Ai
⊗ Ūn−1−m

Ai
)ΠAi∩Ai−1 + O(τ3n) (3.87)

The first term in (3.87) corresponds to the evolution in the Zeno limit and gener-
ates the operation Ri on the diagonal of G (as is explained in the Zeno Limit Section).
The second term, as will be shown, corresponds to the R̃i operations on the diagonal of
G.

To see this, we start by noting that the operator ΠAi∩Ai+1 kills the correlations be-
tween every pair of sites, unless both sites are within Ai ∩ Ai+1. Hence, off-diagonal
elements of G are only generated if (Um

Ai
⊗ Ūm

Ai
)ζAi(H)(Un−1−m

Ai
⊗ Ūn−1−m

Ai
) can gen-

erate correlations between the elements of Ai ∩ Ai+1. The operators (UAi ⊗ ŪAi) can
only generate correlations within the neighboring pairs inside of Ai. Now, note that the
neighboring pairs within Ai are separated by at least 3 edges. Therefore, to generate
correlations between the neighboring pairs using a power of H, i.e. Hν, we must have at
least ν ≥ 3. ζAi(H), on the other hand, contains H with a power of at most 2. It follows
then that neither ζAi(H) nor (UAi ⊗ ŪAi) can generate correlations between the adja-
cent pairs in Ai. Hence, any correlations generated by (Um

Ai
⊗ Ūm

Ai
)ζAi(H)(Un−1−m

Ai
⊗

Ūn−1−m
Ai

) will be subsequently killed by ΠAi∩Ai+1 . We thus again have that the evolu-
tion of G may be described fully by the dynamics of the diagonal of G. Furthermore,
we may replace ΠAi∩Ai+1 in (3.87) with an operator that simply kills all correlations,
namely ∑a Pa ⊗ Pa.

At this point in the analysis, there are two cases for the action of (UAi ⊗ ŪAi)

which we will now consider. For sites in Ac
i and for sites in Ai without a neighboring

site also in Ai (see Fig. 3.F.1), (UAi ⊗ ŪAi) simply acts as an identity. On the other
hand, for sites in Ai with a neighboring site also in Ai, (UAi ⊗ ŪAi) will induce Rabi
oscillations within the neighboring pair inside of Ai.

We further note that, for any given site b, the near-Zeno term in (3.87) only in-
duces an interaction between b, the closest element or pair in Ai to b, and other nearest
neighbors to this element/pair in Ai (see Fig. 3.F.1). This is by nature of the fact that the
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FIGURE 3.F.1: For any given Ai, here we take without loss of generality
i = 3, some elements of Ai have a neighbor also in Ai. Other sites in Ai
have no such nearest neighbor. As described in Appendix 3.F, all sites
evolve in the near-Zeno approximation in one of two ways. Lone sites in
Ai and nearest neighbors to lone sites in Ai (as shown in orange) exhibit
an evolution given by case 1 of the near-Zeno term of (3.87). However,
the evolution for sites that are in an adjacent pair in Ai or neighboring an

adjacent pair in Ai (shown in purple), are governed by case 2.

H2 ⊗ I and I ⊗ H2 terms (the only terms that act non-trivially on sites outside of Ai) in
ζAi(H) are sandwiched by ΠAi , and so can only affect nearest neighbors to any given
element of Ai. We therefore find that we have two disjoint sets of sites, as given in Fig.
3.F.1, that are affected by the near-Zeno term in (3.87) differently.

Case 1: Here (Orange Sites in Fig. 3.F.1), the second term in Eq. (3.87) becomes

−τ2 ∑
a
(Pa ⊗ Pa)

n−1

∑
m=0

ζAi(H)∑
b
(Pb ⊗ Pb)

= −nτ2 ∑
a,b

(Pa ⊗ Pa) ζAi(H) (Pb ⊗ Pb) (3.88)

We now simplify to find
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∑
a,b

(Pa ⊗ Pa) ζAi(H) (Pb ⊗ Pb)

= ∑
a,b

(Pa ⊗ Pa)

{
1
2

ΠAi

[
H2 ⊗ I + I ⊗ H2 − 2H ⊗ H

]
ΠAi

−1
2

[
H2

Ai
⊗ PAi + PAi ⊗ H2

Ai
− 2HAi ⊗ HAi

]}
(Pb ⊗ Pb)

= ∑
a

deg(a) (Pa ⊗ Pa)− ∑
a,b

PaHPb ⊗ PaHPb (3.89)

where we have used the fact that HAi = PAi HPAi = 0 since in case 1 no element of Ai

has a nearest neighbor also in Ai.

This implies that R̃i is given by

Case 1:
[
R̃i
]

ab =


deg(a) for a = b

−1 for a, b nearest neighbors

0 Otherwise

(3.90)

Case 2: Here (purple sites in Fig. 3.F.1), note that UAi ⊗ ŪAi = e−iτO where we have
defined

O ≡ HAi ⊗ PAi − PAi ⊗ HAi . (3.91)

Furthermore, the following relations hold

O2 = 2(PAi ⊗ PAi − HAi ⊗ HAi) ≡ 2E, (3.92)

OE = 2O, (3.93)

where we have defined E in the first line and used the fact that HAi simply acts like the
pauli matrix σx for nearest neighbors in the subspace Ai, i.e. H2

Ai
= PA.

It then follows that
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UAi ⊗ ŪAi = e−iτO =

(
E
2
− E

2

)
+ 1 − 2iτ

O
2
− (2τ)2 E

2
+

i
3!
(2τ)3 O

2
+ ...

=

(
1 − E

2

)
+

E
2

cos 2τ − i
O
2

sin 2τ (3.94)

We therefore find

n−1

∑
m=0

(Um
Ai
⊗ Ūm

Ai
)ζAi(H)(Un−1−m

Ai
⊗ Ūn−1−m

Ai
)

=
n−1

∑
m=0

[(
1 − E

2

)
+

E
2

cos 2mτ − i
O
2

sin 2mτ

]
ζAi(H)

×
[(

1 − E
2

)
+

E
2

cos 2mτ + i
O
2

sin 2mτ

] (
Un−1

Ai
⊗ Ūn−1

Ai

)
=

[
n
(

1 − E
2

)
ζAi(H)

(
1 − E

2

)
+

n
2

E
2

ζAi(H)
E
2
+

n
2

O
2

ζAi(H)
O
2

]
(1 − E) + O(1)

(3.95)

where in the last line we have restricted ourselves to the perfect switching cycle,
i.e. nτ = π

2 , and neglected any terms in the sum that are not at least O(n).

It is now convenient to rewrite ζAi(H):

ζAi(H) =
1
2

ΠAi

[
H2 ⊗ I + I ⊗ H2 − 2H ⊗ H

]
ΠAi −

1
2

[
H2

Ai
⊗ PAi + PAi ⊗ H2

Ai
− 2HAi ⊗ HAi

]
=

1
2

ΠAi

[
H2 ⊗ I + I ⊗ H2 − 2H ⊗ H

]
ΠA − E ≡ Z − E (3.96)

where Z has been defined in the last line. We may now combine Eqs. (3.95) and
(3.96) to find
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n−1

∑
m=0

(Um
A ⊗ Ūm

A )ζ(H)(Un−1−m
A ⊗ Ūn−1−m

A )

=

[
n
(

1 − E
2

)
(Z − E)

(
1 − E

2

)
+

n
2

E
2
(Z − E)

E
2
+

n
2

O
2
(Z − E)

O
2

]
(1 − E) + O(1)

= n
[

Z − EZ
2

− ZE
2

+
3
8

EZE +
1
8

OZO − E
]
(1 − E) + O(1)

= n
[

Z + E − 1
2
{E, Z}+ 1

8
EZE − 1

8
OZO

]
+ O(1) (3.97)

where {E, Z} = EZ + ZE is the anti-commutator.

Now, combining Eqs. (3.87) and (3.97), we find that the near-Zeno term in (3.87)
becomes

−nτ2 ∑
a,b

(Pa ⊗ Pa)

[
Z + E − 1

2
{E, Z}+ 1

8
EZE − 1

8
OZO

]
(Pb ⊗ Pb) (3.98)

Considering each of the terms in (3.98), we have
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∑
a,b

(Pa ⊗ Pa) Z (Pb ⊗ Pb) = ∑
a

deg(a) (Pa ⊗ Pa)− ∑
a,b

PaHPb ⊗ PaHPb (3.99)

∑
a,b

(Pa ⊗ Pa) E (Pb ⊗ Pb) = ∑
a∈Ai

Pa ⊗ Pa − ∑
a,b∈Ai

PaHPb ⊗ PaHPb (3.100)

∑
a,b

(Pa ⊗ Pa)

[
−1

2
{E, Z}

]
(Pb ⊗ Pb) = − ∑

a∈Ai

[deg(a) + 1] (Pa ⊗ Pa) (3.101)

+ ∑
a,b∈Ai

(
2 +

deg(a) + deg(b)
2

)
PaHPb ⊗ PaHPb

+
1
2 ∑

a∈Ac
i ,b∈Ai

(PaHPb ⊗ PaHPb + h.c.)

−1
2 ∑

a∈Ac
i ,b∈Ai

(
PaHHAi Pb ⊗ PaHHAi Pb + h.c.

)
∑
a,b

(Pa ⊗ Pa)

[
1
8

EZE
]
(Pb ⊗ Pb) = 2 ∑

a∈Ai

Pa ⊗ Pa − 2 ∑
a,b∈Ai

PaHPb ⊗ PaHPb (3.102)

∑
a,b

(Pa ⊗ Pa)

[
−1

8
OZO

]
(Pb ⊗ Pb) = −2 ∑

a∈Ai

Pa ⊗ Pa + 2 ∑
a,b∈Ai

PaHPb ⊗ PaHPb (3.103)

Finally, we therefore have that R̃i becomes

Case 2:
[
R̃i
]

ab =



deg(a) for a = b ∈ Ac
i

−1 for a, b ∈ Ac
i and nearest neighbors

−1
2 for (a ∈ Ai and b neighbors the adjacent pair in Ai

that includes a) or vice versa
deg(a)+deg(b)

2 for a, b ∈ Ai and nearest neighbors

0 Otherwise

(3.104)

Now, Eqs. (3.90) and (3.104) may be combined to find the full R̃i. Note, on the
seem between case 1 and case 2, for example the element

[
R̃i
]

ab with a as an orange
site in Fig. 3.F.1 and b as a blue site, case 1 and case 2 match as required for consis-
tency. Namely, the element

[
R̃i
]

ab = −1 if a, b are nearest neighbors, and 0 otherwise.
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Furthermore, note that R̃i is a Zero Line-Sum matrix. Hence, the rows and columns of
Rnz,i = Ri − nτ2R̃i sum to 1. Furthermore, this implies the rows and columns of Rnz

also sum to 1 as required for the usage of Eq. (3.30).

3.G Deterministic Hopping

Evolution in the Zeno Limit with perfect swapping is deterministic. Thus edge trans-
port and bulk localization can be seen directly.

Figure 3.G.1 shows a Lieb lattice with two layers of dynamical unit cells in the y
direction and infinitely many in the x direction. The following gives the transport of a
particle beginning at any given site after one complete measurement cycle (represented
by arrows). Note, after no more than 5 measurement cycles, each particle returns to
either its initial position or its initial position shifted by one dynamical unit cell to the
right or left.

Periodic Boundary Conditions:

• 1 → 1

• 2 → 12eikx → 5 → 4 → 3 → 2

• 6 → 11 → 10 → 9 → 8 → 6

• 7 → 7

where e−ikx indicates a shift by one unit cell to the right. Note that after 5 measure-
ment cycles every particle returns to its initial position in agreement with Rcyc(k, θ)5 = I
as described below Eq. (3.28). Now turning to open boundary conditions.

Open Boundary Conditions:

• 1 → 6 → 1e−ikx

• 2 → 12eikx → 5 → 4 → 3 → 2
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• 7 → 7

• 8 → 11eikx → 10eikx → 9eikx → 8eikx

Note here that, in contrast to the periodic boundary conditions, there is particle
transport in the x direction. Namely, particles at sites 1 and 6 shift to the right by one
unit cell every 2 measurement cycles, and particles at 8, 9, 10, and 11 shift to the left one
unit cell every 4 measurement cycles.

FIGURE 3.G.1: Lieb lattice with two layers of dynamical unit cells in the y-
direction. The bottom and top of the lattice represent a "flat" and "jagged"

edge configuration respectively.
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Chapter 4

Arrested Development and
Fragmentation in Strongly-Interacting
Floquet Systems

4.1 Introduction

As experimental tools have progressed (e.g. [142, 143]), the microscopic control of
quantum systems has become increasingly accessible. These advancements, along with
a correlated increase in theoretical interest, have led to the discovery of many new and
surprising phenomena that emerge when periodic driving, interactions, and their in-
terplay are considered.

For example, periodically driven systems can be used to stabilize otherwise un-
usual behavior. A recent important example is topological Floquet insulators [14, 86,
144], where novel topological features of the band structure may emerge due to in-
herent periodicity of the non-interacting quasi- energy spectrum. Furthermore, it was
shown in [15] that, by combining spatial disorder with a topological Floquet insula-
tor model introduced by Rudner-Lindner-Berg-Levin (RLBL) [20], a new topological
phase may be realized called the anomalous Floquet-Anderson insulator (AFAI). Dis-
crete time crystals [12, 13, 145, 146] are another important example of behavior that
may occur in periodically driven, but not static [147], systems. Namely, a time crystal
is a system where time-translation symmetry is spontaneously broken (in analogy to
spatial translation symmetry spontaneously breaking to form ordinary crystals).

Combining periodic driving with interactions, however, can often be problematic
as generic, clean, interacting Floquet system are expected to indefinitely absorb energy
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from their drive and thus quickly converge to a featureless infinite temperature state
[148–150]. This problem may be side-stepped by considering Many-Body Localization
(MBL) [27, 145, 150–154], in which strong disorder is utilized to help stave off ther-
malization, by considering the effective evolution of pre-thermal states [26, 28, 155–
158] that, in the best cases, take exponentially long to thermalize, or by connecting the
system to a bath to facilitate cooling and arrive at interesting, non- equilibrium steady-
states [29, 159–161].

Yet another route for realizing non-trivial dynamics despite the expected runaway
heating from interacting, Floquet drives is to consider systems where the ergodicity is
weakly broken, i.e. where there are subspaces (whose size scales only polynomially in
the system size) of the Hilbert space that do not thermalize despite the fact that the rest
of the Hilbert space does. These non-thermal states are called quantum many-body
scars [162–164] and have been shown to support many interesting phenomena includ-
ing, for example, discrete time crystals [165]. Furthermore, in constrained systems, the
full Hilbert space may fragment into subspaces where some of the subspaces thermal-
ize while others do not [164, 166, 167]. When the fraction of non-thermal states are
a set of measure zero in the thermodynamic limit, the system is an example of quan-
tum many-body scarring. However, in other cases, the non-thermal subspaces form a
finite fraction of the full Hilbert space and therefore correspond to a distinct form of
ergodicity breaking.

In addition to leading to heating, interactions are also often responsible for our
inability to efficiently study or describe many body quantum states in both Floquet
and static Hamiltonian systems. However, there are situations when interactions play
the opposite role in creating specialized states of particular simplicity or utility. For
example, systems with interactions can exhibit counter-intuitive bound states due to
coherent blocking of evolution. A nice class of such systems are the edge-locked few
particle systems studied in [168, 169].

In this work, we consider Floquet drives where hopping between neighboring
pairs of sites are sequentially activated. The theoretical and experimental tractability
of such models have made them a popular workhorse for fleshing out a broad range
of the exciting properties of periodically driven systems (e.g. [20, 170–174]). We find
that, when interactions are added to such systems, there exist special values of inter-
action strength and driving frequency where the dynamics becomes exactly solvable.
Furthermore, the complete set of these special parameter values may be determined via
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emergent Diophantine equations [175]. At other parameter values, the Hilbert space is
fragmented. Initial states contained within some, thermal, subspaces will ergodically
explore the subspace (though not the entire Hilbert space), while other initial states
contained within other, non-thermal, subspaces will evolve according to a classical cel-
lular automation (CA) [176, 177], i.e. the system evolves in discrete time steps where
after each step the occupancy of any given site is updated deterministically based on a
small set of rules determined by the occupancy of neighboring sites.

As examples, we consider RLBL(-like) models with added nearest neighbor (NN)
or Hubbard interactions as well as an even-odd Floquet drive in one dimension with
NN interactions (more detailed descriptions of these models given below). We note
that some work has been done in the first two cases [42, 43] where it was argued that
novel, MBL anomalous Floquet insulating phases emmerged when a disorder potential
was added. We will discuss how our focus on special parameter values leads to new
insights into these models and how it suggests a possible route towards other exciting
phenomena such as the support of discrete time crystals within fragments of the Hilbert
space.

4.2 Conditions for evolution by Fock state permutations

In this section, we examine conditions for deterministic evolution of Fock states into
Fock states in fermion models. Here we consider real space Fock states, which have a
well defined fermion occupation on each lattice site (We will also refer to such states as
fermion product states). We consider models where hopping between non-overlapping
selected pairs of sites is sequentially activated. Two models of this type, discussed in
detail below, deal with Hubbard and nearest neighbour interactions. The approach can
be naturally extended to deal with more general interactions in sequentially applied
evolution models.

4.2.1 Example 1: Hubbard-RLBL

As a particularly illuminating example, consider the Rudner-Lindner-Berg-Levin model
[20]. This model is an exact toy model for a topological Floquet insulator and has been
very useful in flushing out some of their salient properties. In addition, it provides the
starting point for other states, such as the anomalous Floquet-Anderson insulators [15].
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The model is two dimensional, however, it’s simplicity lies in its similarity to even-odd
type models, [170, 172–174], in that the evolution activates disjoint pairs of sites at each
stage. The model can be tuned to a particular point where the stroboscopic evolution of
product states is deterministic exhibiting bulk periodic motion and edge propagation.
Similarly, one can tune the driving frequency to completely freeze the stroboscopic evo-
lution. Here, we add interactions to the model and ask when we can make the evolution
a product state permutation, at least in some sectors. The Hubbard-RLBL evolution is
written as

U = UwaitU4U3U2U1 (4.1)

where Ui(V, τ) = e−iτHi . For i = 1, ..4,

Hi = −thop ∑
(i,j)∈Ai;σ

(a†
i,σaj,σ + h.c.) + V ∑

i∈Ai

ni,↑ni,↓ (4.2)

where ni,σ = a†
i,σai,σ and the sets Ai are described in Fig. 1. Throughout the rest of the

paper we will work in units where thop = 1 and h̄ = 1.

Above, Uwait is any unitary diagonal in number state basis. For example, the
model investigated in [43] has Uwait → Udis where Udis corresponds to evolution un-
der the Hamiltonian Hdis = ∑i vi(ni,↑ + ni,↓) with vi a vector of uniformly distributed
random real numbers within the bounded interval [−W, W], i.e. the waiting period
corresponds to evolution with a disordered on-site potential and no hopping 1. In that
work, it was shown that this model supports a new family of few-body topological
phases characterized by a hierarchy of topological invariants. These results may be
viewed from the following perspective. First, finely-tuned points where the dynamics
is exactly solvable were studied (namely, τ = π

2 and V = 0 or V → ∞). Second, it is
argued that regions near these special points are stabilized (i.e. localized, at least for
finite particle number cases) by disorder leading to robust phases. Finally, topological
invariants characterizing these phases (V small vs. V large) can be found and shown to
be distinct implying two differing topological phases. An application of the methods
we propose in this work will allow us to generalize the first step above and find fami-
lies of these exactly solvable points. We leave discussions of when regions in parameter

1Technically, in [43] a weak disorder potential is added during the Ui steps and then the disorder
strength during the wait step is effectively made stronger by increasing the length of time the wait step
is applied. However, this slight difference in how the disorder potential is applied does not seriously
alter the dynamics and so we will not make a hard distinction between the two.
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FIGURE 1: The RLBL model. Hopping is sequentially activated among
neighbouring sites connected in the set Ai, i = 1, ..., 4.

space near these points may or may not be stabilized by disorder to future work. Since,
at these exactly solvable points, we will be mapping product states to product states,
Udis will only act as an unobservable global phase and thus for the rest of our analysis
we will set Uwait = I.

We now look for conditions to simplify the evolution (4.1) in such a way that
the total evolution reduces to a permutation on the set of product states, i.e. when an
initial configuration of fermions is placed at a selection of locations it will evolve into a
different assignment of locations without generating entanglement.

To do so, we note that the evolution of each pair of sites, may be considered sep-
arately due to the disjoint nature of the set of pairs Ai. Thus, we consider the evolution
on a pair of sites i, j

U(i,j)(V, τ) = e−iτ(a†
i,σaj,σ+h.c.)+τV(ni,↑ni,↓+nj,↑nj,↓). (4.3)

Since the evolution preserves particle number, we can treat the sub-spaces of 0, 1, 2, 3,
and 4 particles in each neighboring pair of sites separately. In the case of 0 or 4 particles,
evolution is trivially the identity (due to Pauli blocking in the 4 particle case). For 1 or 3
particles, one of the two sites is always doubly occupied, and thus the interaction term
in (4.2) is a constant and does not affect evolution. In this case, solving the two site non-
interacting evolution we see that in the one-particle sector, a fermion starting initially
at site i has a probability p = sin2 τ to hop to the other site in pair j and probability
1 − p to stay. Similarly, in the 3-particle sector, an initially placed hole in site i has the
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same probability, p to hop to the other site j. Thus, when

τ =
π

2
ℓ (4.4)

for some integer ℓ, evolution for initial product states in the 1,3 particle subspace is
completely deterministic with trivial evolution for even ℓ and the particle hopping to
the other site in the pair with probability 1 (henceforth referred to as perfect swapping)
when ℓ is odd. Clearly, for these values of τ (and independently of V), no new entan-
glement is created in any pairs with 1 or 3 particles. To render the evolution in the 2
particle pair subspace simple, it is shown in appendix 4.A.1 that deterministic evolution
occurs when the two conditions below are simultaneously satisfied:

τ
√

42 + V2 = 2πm (4.5)

and
1
2

τV + πm = πn (4.6)

with n, m ∈ Z. Note that (4.5) guarantees the preservation of the number of doubly
occupied sites (doublons). When n is even, the sub-system will return to its initial state.
On the other hand, if n is odd, the system will exhibit perfect swapping i.e. each particle
will hop to the other site in the pair. By solving for τ and V in terms of n and m, we
may now summarize when evolution is deterministic in each of the particle number
sub-spaces:

particles τ V
1 or 3 τ = π

2 ℓ V arbitrary

2, opposite spins τ = π
2

√
2mn − n2 V = 4(n−m)√

2mn−n2

otherwise any any

(4.7)

when n or ℓ are even (odd) evolution is frozen (perfect swapping). To keep the solutions
real, Eq. 4.7 also implies we must take 2mn − n2 > 0.

Can all the conditions (4.4), (4.5), and (4.6) be simultaneously satisfied? In such a
case the evolution of U is simply a permutation (being a product of identities and site
swaps) and generates no new entanglement in any of the sectors.
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4.2.2 The Diophantine Equation

Combining the conditions (4.4), (4.5), and (4.6) together yields the following equation:

ℓ2 + n2 = 2mn. ℓ, n, m ∈ Z (4.8)

Eq. (4.8) is a homogeneous Diophantine equation of degree 2 and can be solved.

We now give a brief review of Diophantine equations and the strategy for solving
homogeneous quadratic equations. A reader familiar with Diophantine equations or
interested only in the concrete results may skip to the next subsection.

Diophantine equations are algebraic (often polynomial) equations of several un-
knowns where only integer or rational solutions are of interest. They are named in
honor of Diophantus of Alexandria for his famous treatise on the subject written in
the 3rd century though the origins of Diophantine equations can be found across an-
cient Babylonian, Egyptian, Chinese, and Greek texts [175]. Despite their often innocu-
ous appearance, they are an active area of research with solutions frequently requiring
surprisingly sophisticated mathematical techniques and have been the centerpiece of
several famous, long-standing mathematical problems that have only been (relatively)
recently resolved, including Fermat’s Last Theorem [178] and Hilbert’s Tenth Problem
[179].

In this section, we are interested in the relatively simple case of a homogeneous
quadratic Diophantine equation, i.e. equation of the form

XTQX = 0 (4.9)

with variables XT = (x0, x1, ..., xn) and coefficients given by the n × n symmetric ma-
trix Q with integral diagonal entries and half integral off-diagonal entries. As we shall
see, however, for interactions beyond Hubbard a broader class of Diophantine equa-
tions may need to be considered. For information on broader classes of Diophantine
equations and for more information on the derivation to follow, see, for example, [175].

The general strategy for finding rational (we will specialize to integer solutions
for our cases of interest at the end) solutions to (4.9) is to first find a particular solution
and then generate all other rational solutions from the particular solution. Particular
solutions can be found simply by inspection or through existing efficient algorithms
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FIGURE 2: Any line passing through the null surface has two points of
intersection. Given a particular solution X0 of the homogeneous Diophan-
tine eq (4.10), other rational solutions are found by looking at lines ema-

nating from uX0 with rational slopes .

[175]. The main task is then to generate all other rational solutions from a given partic-
ular solution.

Take XT
0 = (x0,0, x1,0, ..., xn,0) to be a particular solution, i.e.

XT
0 QX0 = 0. (4.10)

Since (4.9) is quadratic, any line through X0 will intersect the hypersurface defined by
(4.9) at a single other point (see Fig. 2). Furthermore, if the line through X0 is rational
(i.e. has rational coefficients), as we see below, this implies that the second intersection
point must also be rational. Therefore, it is possible to generate every rational solution
to (4.9) by finding the second intersection point of every rational line through uX0,
where u is rational.

Here, since (4.9) is homogeneous, it is convenient to work in projective space
Pn(Q) where a general line passing through X0 is parameterized by
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X = uX0 + vW (4.11)

with (u, v) ∈ P2(Q) and any W = (w1, .., wn) ∈ Pn(Q) not equal to X0. Combining
(4.11) and (4.9),

0 = (uX0 + vW)TQ(uX0 + vW) (4.12)

= v
(

2uWTQX0 + vWTQW
)

(4.13)

where we have simplified using (4.10). We may thus take as the solution (u, v) =(
WTQW,−2WTQX0

)
. Combining with Eq (4.11) and multiplying by a general d ∈ Q

to restore full solutions (since we considered X as an element of a projective space), we
find

X = d
[
(WTQW)X0 − 2(WTQX0)W

]
. (4.14)

For integer solutions, we need simply to rescale W → W
ζ and d → dζ2 where ζ =

gcd(wi). After rescaling, the only non-integer information is coming from d, so all inte-
ger solutions may be found simply by considering d ∈ 1

ξ Z with ξ = gcd((WTQW)X0 −
2(WTQX0)W).

For the relevant case of n = 3, let us, without loss of generality, diagonalize Q =

diag(A, B, C) and let WT = (w1, w2, 0) where (after rescaling with ζ) w1 and w2 are co-
prime integers and the final element of W may be set to 0 due to the required linear
independence with X0. Simplifying (4.14) then becomes

X = d(Aw2
1 + Bw2

2)

 x0,0

x1,0

x2,0

− 2d(w1Ax0,0 + w2Bx1,0)

 w1

w2

0

 (4.15)

= d

 −(Aw2
1 − Bw2

2)x0,0 − 2Bw1w2x1,0

(Aw2
1 − Bw2

2)x1,0 − 2Aw1w2x0,0

(Aw2
1 + Bw2

2)x2,0

 (4.16)
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4.2.3 Solution for product state permutation dynamics with Hubbard

interaction

Following the previous section, we write our Diophantine eq. (4.8) in a diagonal form:

ℓ2 + n2 = 2mn (4.17)

=⇒
(

ℓ ñ m
) 1 0 0

0 1 0
0 0 -1


 ℓ

ñ
m

 = 0, (4.18)

where we have defined ñ ≡ n − m. Note, this is the famous Diophantine equation for
Pythagorean triples.

By inspection, a non-trivial solution is ℓ = −1, ñ = 0, m = 1. Utilizing Eq. (4.16)
we find

 ℓ

ñ
m

 = d

 w2
1 − w2

2

2w1w2

w2
1 + w2

2

 (4.19)

=⇒

 ℓ

n
m

 = d

 w2
1 − w2

2

[w1 + w2]
2

w2
1 + w2

2

 (4.20)

Note, Eq. (4.19) is the standard solution for Pythagorean triples.

We thus found that the set of n, m, and ℓ simultaneously satisfying the conditions
for simple dynamics can be written as:

ℓ = d(w2
1 − w2

2) (4.21a)

m = d(w2
1 + w2

2) (4.21b)

n = d(w1 + w2)
2 (4.21c)

where w1, w2 ∈ Z, w1, w2 are coprime, and d ∈ 1
ξ Z with ξ = gcd((w2

1 − w2
2), (w

2
1 +

w2
2), (w1 + w2)

2). Note, in (4.21), if ℓ is even (odd) then so is n. This implies that the
only way to completely satisfy the conditions in Eq. (4.7) is if all motion is frozen or all
motion (not constrained by Pauli exclusion) becomes perfect swapping.
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Inspecting the above solutions, we see that 2mn− n2 = (w2
1 −w2

2)
2, automatically

satisfying the condition 2mn − n2 > 0 for V and τ to be real. Finally our solution is
summarized by

τ =
π

2
d(w2

1 − w2
2) ; V =

8w1w2

|w2
1 − w2

2|
. (4.22)

Note that V doesn’t depend on the choice of d, and that any choice involving w1 = 0
or w2 = 0 will yield a non-interacting model. As an illustration, consider the following
example choices:
1. Taking w1 = 1, w2 = 0, d = 1 yields τ = π

2 , V = 0, which is the non-interacting
dynamics considered in the original RLBL model, with perfect swapping.
2. Taking w1 = 3, w2 = 1, d = 1 yields τ = 4π, V = 3. Since ℓ is even in this case, the
dynamics is completely frozen.
3. Taking w1 = 3, w2 = −1, d = 1 yields τ = 4π, V = −3, i.e. frozen dynamics in a
model with an attractive Hubbard interaction.

It is important to note that the special values of interaction strength and driving
frequency in Eq. (4.22) hold for any Hubbard-Floquet procedure where hopping be-
tween pairs of sites is sequentially activated. This is the case for such systems on any
lattice and in any dimension. We also note, that the Diophantine solution is ill suited
to describe the singular case of infinite V and finite τ and therefore this situation must
be handled separately. In the limit of large V, the interaction strength overpowers the
hopping strength and all evolution is frozen in the 2-particle sector. On the other hand,
evolution in the 1,3 particle sector is independent of V and therefore may exhibit perfect
swapping or freezing. Thus, in this case, it is possible to have one sector (the 2-particle
sector) frozen while the other (the 1,3 particle sector) exhibits perfect swapping.

To visually represent the position of our special points we introduce the follow-
ing function as a qualitative estimate for how far a given evolution U is from being a
permutation of basis states:

Fp,q(U) = − log
||U||p,q

dim(U)1/q = −1
q

log
∑n,m |Un,m|p

dim(U)
(4.23)

where dim(U) is the dimensionality, and ||U||p,q = (∑n,m |Un,m|p)1/q is the p, q matrix
entry-wise norm. Note that for a complex permutation, each row has a single non zero
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FIGURE 3: Special Diophantine points in the Hubbard-RLBL model and
‘distance’ of the two-site evolution from being a permutation of number
states. Here we plot

√
F4,4(U) as function of V, τ. The darker regions in-

dicate regions where the two-site evolution is close to pure number state
permutation.

entry of absolute magnitude 1, therefore, for any p, q > 0,

Fp,q(complex permutation) = 0.

Note that for any unitary matrix U, F2,q(U) = 0. However, for p > 2, q > 0 we have that
Fp,q(U) > 0 whenever U is a unitary that is not a complex permutation. The following
extensivity property is straightforward to verify:

Fp,q(U1 ⊗ U2) = Fp,q(U1) + Fp,q(U2). (4.24)

In figure Fig. 3, we plot F4,4 for the two site Hubbard evolution showing regions where
the two-site evolution is close to permutative and marking the Diophantine spots where
it is exact. Interestingly, while the special points admit exact evolution, the plot shows
many regions where the evolution is close to perfectly permutative. Exploration of
what happens when the evolution is not exact, but perturbatively close to it is out of
the scope of the present chapter, but will be initiated in chapter 5 (see also [4]).
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FIGURE 4: RLBL-like model on a Lieb lattice. Hopping between neigh-
boring pairs of sites within Ai is activated during step i of the Floquet
drive. The same sequence of activated site pairs is achieved with the chiral
measurement scheme introduced in chapter 3. During each step i, evolu-
tion is confined between neighboring sites in Ai by rapidly measuring (in
the Zeno limit) all sites in the complimentary set Ac

i . Both models, with
NN interactions, will share the same conditions (Eqs. (4.29) and (4.30)) for

number state to number state evolution.

4.2.4 Example 2: Nearest neighbour interactions on a Lieb lattice.

In the next two examples, we consider interactions involving nearest neighbours. Un-
fortunately, adding nearest neighbour interactions to the RLBL model directly destroys
an essential feature for the solvability of the problem: that the evolution operators of
different pairs of sites are not directly coupled (and therefore commute). Here, instead,
we choose to work with RLBL-like dynamics on a Lieb lattice as described in chapter
3. A Lieb lattice is a decorated square lattice as shown in Fig. 4. The dynamics we con-
sider here essentially activates pairs that are separated by several lattice sites at each
step. The sequence of activations is described in Fig 4.

Here, we consider spinless fermions on the Lieb lattice. There are 8 steps. At step
i we activate hopping between sites that are nearest neighbours that belong to the set
Ai. The evolution is given by:

U = U8U7U6U5U4U3U2U1 (4.25)
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FIGURE 5: Evolution of a 2-site pair in the NN-RLBL model on a Lieb lat-
tice. All evolution is restricted to the red ellipse above. Evolution within
the red ellipse (i.e. between site 1 and site 2) is determined by τ, V, and the
neighboring particle number difference ∆ = |N1 − N2|. In this case, N1 = 2
and N2 = 1, so ∆ = 1. If the ∆ = 1 condition on V and τ in Eq. (4.29) is
satisfied, then the particle at site 2 will exactly return to site 2 after a time
τ (at intermediate times, the particle may be in a generic superposition of

being located at site 1 and site 2).

where Ui = e−iHiτ, and

Hi = −thop ∑
(i,j)∈Ai

(a†
i aj + h.c.) + V ∑

<i,j>
ninj (4.26)

We proceed, as in Section 4.2.1, by considering the evolution of a single connected pair
during step i and exactly solving for values of V and τ where the pair exhibits freezing
or perfect swapping. The evolution of a 2-site pair of sites i, j for one step is given by

U(i,j) = e−iτ[−thop(a†
i aj+h.c.)+Vni ∑k:⟨i,k⟩ nk+Vnj ∑k:⟨j,k⟩ nk]. (4.27)

Note that the number operators on neighbours of i, j commute with the evolution. Let
the initial number of occupied neighbours of the sites i and j be Ni and Nj respectively
(not counting i, j themselves). Evolution of the 2-site pair is now exactly solvable in
terms of ∆ = Ni − Nj, the difference in the number of particles neighboring sites i and
j in the 2-site pair respectively (see Figure 5).

Solving the two site evolution, we find that evolution is frozen when√
4 + ∆2V2τ = 2πm (4.28)

for some m ∈ Z. We find that the evolution may only be perfect swapping when
∆ = Ni − Nj = 0 or when V = 0 and occurs when τ = π

2 + πm for m ∈ Z (see
appendix 4.A.2 for details).
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In the rest of the paper, whenever considering the evolution on a pair of sites,
we will denote ∆ as the difference in the number of (static) particles that are nearest
neighbours of the two sites during the relevant evolution step.

4.2.5 A coupled set of Diophantine Equations

For a generic initial position of the particles, Ni − Nj will not be uniform across the
sample. Thus, for proper particle permutation dynamics, we must simultaneously find
a solution of (4.28) for all possible values of |Ni − Nj|. As we have seen for V = 0
there is no dependence on neighbour occupation and evolution will be frozen or perfect
swapping if τ = π

2 m with m, correspondingly, even or odd. In the rest of the section
we concentrate on V ̸= 0.

Note that Ni takes the values 0, .., Di − 1, where Di is the degree (number of neigh-
bours) of lattice site i. It follows that |Ni − Nj| ∈ {0, .., max(Di, Dj)− 1}. Thus, if Dmax

is the maximum degree of the lattice, we have the simultaneous conditions:√
4 + ∆2V2τ = 2πm∆ ∀ ∆ = 1, ..., (Dmax − 1) (4.29)

τ =
π

2
m0 corresponds to ∆ = 0 (Ni = Nj) (4.30)

with all mi ∈ Z.

Equations (4.29) and (4.30) provide Dmax equations that must be solved simulta-
neously. The first two equations set the values for τ and V in terms of m0, m1:

τ =
π

2
m0 ; V2 = 4(

4m2
1

m2
0
− 1). (4.31)

However, the rest of the equations for mi, with i > 1, must be simultaneously solved
with these values for τ and V yielding the coupled equations:

4m2
l = (1 − l2)m2

0 + 4l2m2
1 (4.32)

ml ∈ Z , l = 2, 3, ..., (Dmax − 1) (4.33)

A first solution to this system may be obtained by taking m0 = 2m1 = 2m2 = ... =
2mDmax−1, which, by (4.31), turns out to be the same as the non-interacting frozen case
V = 0. We now search for other solutions, with V ̸= 0.
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Solution for Dmax = 3. For Dmax = 3, we describe a general solution in appendix
4.A.2 that yields non-trivial solutions. The result: m0

m1

m2

 = d

 −32w1w2

−3w2
1 − 16w2

2

2
[
−3w2

1 + 16w2
2
]
 . (4.34)

We note that m0 resulting from (4.34) is always even (see the end of Appendix 4.A.2)
and thus can only yield frozen evolution when V ̸= 0. Due to the hierarchy of the
equations, total freezing must then occur for any solutions with Dmax ≥ 3.

Solution for Dmax = 4. We combine equations (4.34) and the ∆ = 3 equation from
(4.29) to find a new Diophantine equation for the case Dmax = 4:

1
d2 m2

3 = 81w4
1 + 2304w4

2 − 1184w2
1w2

2 (4.35)

The Diophantine equation (4.35) is harder to solve. However, a numerical search does
find non-trivial (V ̸= 0) solutions. For example, (w1; w2; m3) = (3; 9471; 4305592257)
and d = 1 is a solution with V ≈ 6, 394 and τ = 454, 608π. Whether there exist V, τ

such that lattices with a maximum degree larger than 4 may exhibit fully product state
permutation evolution is an open question.

The result for Dmax = 4 required simultaneous solution of the equations for two
different primes (l = 2 and l = 3) which suggests the conjecture that there are solutions
to the system of equations for any Dmax. Similar to the strategy above, by solving for
Dmax = k, it is possible to construct a new Diophantine equation for Dmax = k + 1.
Determining whether this tower of equations is solvable is outside the scope of the
present paper. On the other hand, as can already be seen in the case of Dmax = 4, the
values of V, τ for which the system exhibit such freezing for any initial number state
quickly become prohibitively large for typical physical systems as the maximum lattice
degree increases.

Remark. It is straightforward to generalize the Hamiltonian (4.26) to include more
elaborate interactions as long as at each step the number operators associated with the
neighbourhood of each evolving pair is constant. For example, we can write

Hi = −thop ∑
(i,j)∈Ai

(a†
i aj + h.c.) + ∑

i∈Ai

Vijninj, (4.36)
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Given the number of particles in the neighborhood of each 2-site pair, we write (note
here we include the potentials V in the the definition of ∆):

∆ij = ∑
k:⟨i,k⟩

Viknk − ∑
k:⟨j,k⟩

Vjknk (4.37)

and the freezing condition becomes:

τ
√

4 + ∆2
ij = 2πmij, mij ∈ Z (4.38)

for all ∆ij of the form (4.37).

4.2.6 Example 3: Deterministic evolution in the measurement induced

chirality model on a Lieb lattice.

As another example, we consider the measurement induced chirality protocol of chap-
ter 3 with added nearest neighbour interactions and in the Zeno limit. In that work,
a simple hopping Lieb lattice model of fermions was subjected to repeated measure-
ments changing according to a prescribed chiral protocol. In contrast to the previous
models, the Hamiltonian is not time dependent and all hopping terms in the Hamilto-
nian remain activated throughout the process.

It was shown in chapter 3 that in the limit of rapid measurements, the so called
the Zeno limit, the resulting dynamics is a classical stochastic process of permuting
Fock states. We will see that, in this case too, we can find special values of interaction
strength and protocol duration where the dynamics becomes deterministic. In fact, we
will see the dynamics is governed by the same Diophantine equation as in example 2.

Specifically, we consider fermions hopping on a Lieb lattice with nearest-neighbor
interactions given by

H = −thop ∑
<i,j>

a†
i aj + V ∑

<i,j>
ninj. (4.39)

We now apply the measurement protocol introduced in chapter 3 to the system. Namely,
we consider an 8 step measurement protocol in which, during the ith step that runs for
a time τ, the local particle density in all sites in a set Ac

i of sites are measured. In the
Zeno limit, all evolution during a step is restricted to neighboring sites in the subspace
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Ai (See figure 4 for details), while the rest of the sites are kept frozen. Thus, in the
Zeno limit, the evolution is effectively split into 8 steps evolved by the Hamiltonian
(4.26), interspersed by an additional measurement. The measurements keep projecting
the system onto Fock states, however, the particular states at hand are statistically dis-
tributed. However, if the step evolution (4.27) maps Fock states into Fock states, the
whole procedure yields a deterministic evolution of an initial Fock state into another.
In other words, the conditions for permutative evolution (and the corresponding set
of Diophantine equations) for this model are equivalent to those found in the interact-
ing Floquet model investigated in example 2. This implies that the dynamics of the
measurement induced chirality model and unitary Floquet evolution are equivalent
at the special points in parameter space where Fock states are mapped to Fock states.
However, if parameters are perturbed away from these special points, the dynamics of
the two examples quickly begin to differ. This is due to the non-unitary nature of the
measurements as opposed to the completely unitary evolution in the unitary Floquet
case.

4.3 Hilbert Space Fragmentation

In Section 4.2.5, we gave Dmax conditions that must be simultaneously satisfied for
Fock state permutative dynamics in models on a Lieb lattice with NN interactions.
Similarly, in Section 4.2.1 we gave conditions for permutative evolution in the Floquet-
Hubbard RLBL model. If in these models not all of these conditions are satisfied, then
the evolution of a general initial state will require consideration of the full quantum
many-body Floquet Hamiltonian.

However, evolution for certain initial states may still be deterministic even if only
one or a few of the conditions for Fock state to Fock state evolution are met. This
fragments [164] the Hilbert space, H, into disconnected Krylov supspaces, Ki, i.e.

H =
⊕

i

Ki, Ki = spann{Un|ψi⟩} (4.40)

where we have chosen a states |ψi⟩ that are number local states in such a way that Ki

are unique. In the rest of this section, we will explore the nature of the Hilbert space
fragmentation in the example interacting Floquet and measurement induced models
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discussed in the previous section. Namely, we will see how the Hilbert spaces in these
systems simultaneously support Krylov subspaces that are one-dimensional and corre-
spond to frozen product states, few dimensional and correspond to states that evolve
according to a classical cellular automation [176, 177], and exponentially large sub-
spaces that may evolve with more generic quantum many-body evolution.

4.3.1 Arrested development

Let us take as an example the NN-RLBL model on a Lieb lattice considered in Section
4.2.4. There, it was shown that when the parameters V, τ satisfy the conditions (4.29)
and (4.30) with m0 even, then the evolution of each step in the Floquet drive is given by
the identity. However, certain initial states do not require all of the conditions (4.29) and
(4.30) to be satisfied in order for this freezing of the dynamics to occur. For example,
initial Fock states where ∆ = 1 for every activated 2-site pair only require

√
4 + V2τ =

2πm1 with m1 ∈ Z to be satisfied in order to exhibit frozen dynamics. Even if every
other condition (4.29) and (4.30) with ∆ ̸= 1 fails to be satisfied, such states will still be
frozen under the NN-RLBL evolution. However, in this case, initial states containing
at least one 2-site pair with ∆ ̸= 1 may evolve into a superposition of Fock states.
Therefore, the Hilbert space has been split (fragmented) into subspaces of Fock states
that are frozen and a subspace of states which are not frozen.

In Fig. 6 we give examples of frozen particle configurations. At the top of the
figure are configurations that require the satisfaction of only the ∆ = 0 condition (4.30)
to be frozen, configurations in the middle of the figure require only the ∆ = 1 condition,
and at the bottom of the figure is a particle configuration that will be frozen so long as
both the ∆ = 1 and ∆ = 3 conditions (4.29) are satisfied. If the conditions for ∆ = 0,
∆ = 1, and ∆ = 3 are all satisfied then the entire Fig. 6 represents a frozen particle
configuration. We emphasize here that, even if only one of the conditions (4.30), (4.29)
are satisfied, that the number of frozen particle configurations grows exponentially in
system size.

Additionally, we note here that the chiral nature of the Floquet procedure played
no role in the emergence of these frozen states. In fact, any procedure that sequentially
activates hopping between neighboring pairs of sites (suitably spaced to keep evolution
disjoint after adding NN interactions) will exhibit the exact same frozen states. For
example, even if we consider a new procedure where, at each step in the evolution, the



122
Chapter 4. Arrested Development and Fragmentation in Strongly-Interacting Floquet

Systems

FIGURE 6: A Zoo of frozen particle configurations when only some of the
conditions in (4.29) and (4.30) are satisfied on a nearest neighbour inter-
acting Lieb-RLBL model. At the top, a particle configuration that requires
only that the ∆ = 0 condition (and m0 even) be satisfied for frozen evo-
lution. In the bulk of the system are particle configurations that will be
frozen so long as the ∆ = 1 condition is satisfied. The lower edge of the
system provides an example of a particle configuration that will be frozen
so long as both the ∆ = 1 and ∆ = 3 conditions are satisfied. Since all
the particle configurations above are disconnected, the simultaneous satis-
faction of the ∆ = 0, ∆ = 1, and ∆ = 3 conditions implies that the entire

system above will be frozen.

system is evolved with a Ui from equation (4.25) chosen at random (uniformly), i.e. an
example realization of this aperiodic, random evolution is given by

U = ...U4U5U3U3U1U2U7U3. (4.41)

The exact same states will be frozen in this model as in the NN-RLBL model on a Lieb
lattice.

Therefore, for any model of the form (4.41) we have the following situation. The
Hilbert space is fragmented into a (exponentially large) non-frozen subspace and an
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exponential number of subspaces corresponding to frozen states. In general cases, ini-
tial states in the non-frozen subspace are free to ergodically explore their Krylov sub-
space leading to chaotic dynamics. Such behavior is referred to as Krylov-restricted
thermalization [180]. However, if additional symmetries and structure are present, the
non-frozen subspace may be further split into additional subspaces (see Sec. 4.3.4).

4.3.2 Krylov Subspaces of Cellular Automation

Since the dynamics of a particle configuration that obey the Diophantine conditions
depends crucially on particles on the neighbouring sites, it can be naturally encoded
as a cellular automation step. We will now see how Krylov subspaces supporting
classical CA [176, 177] at each evolution step may emerge in interacting Floquet and
measurement-induced systems when a few of the conditions for number state to num-
ber state evolution are satisfied.

To elucidate this effect, we consider again the NN-RLBL model on the Lieb lattice.
In this case, we take the ∆ = 0 and the ∆ = 1 conditions for number state to number
state evolution to both be satisfied, but this time the ∆ = 0 condition is satisfied for
perfect swapping while the ∆ = 1 condition is satisfied for freezing. This may happen
at, for example, τ = π

2 and V =
√

12.

It is now possible to find number states such that the initial particle configuration,
|Ψinit⟩, and the resulting states after evolution of each step in the Floquet drive, all
satisfy either ∆ = 0 or ∆ = 1 for every activated two-site pair in the system with a single
particle. We give an example particle configuration where this may occur in Figure 7.
Here, the space of states spann{Un|Ψinit⟩} defines a Krylov subspace where evolution
is completely given by a CA since at each step in the Floquet drive the local particle
densities are updated deterministically based on the neighboring particle densities (i.e.
if ∆ = 0 or 1).

Similarly to the case of frozen initial particle configurations, disjoint unions of
particle configurations that evolve as a CA will also evolve as a CA. For particle con-
figurations whose CA evolution leaves all particles contained in a volume that does
not scale with system size (for example, the evolution of the configuration in Figure 7
remains contained within the 5 × 5 site square), the number of CA Krylov subspaces
will grow exponentially with the system size (since there are exponentially many dis-
joint unions of such particle configurations). These CA subspaces may coexist with
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FIGURE 7: Example evolution within a cellular automation Krylov sub-
space set by the simultaneous satisfaction of the ∆ = 0 and ∆ = 1 condi-
tions in equations (4.29) and (4.30). In this case, 2-site pairs with ∆ = 0
evolve with perfect swapping while 2-site pairs with ∆ = 1 are frozen. The
resulting cellular automation for this example initial particle configuration
results in the particles returning to their initial sites after 19T. Example
values of V, τ that achieve this evolution are V =

√
12 and τ = π

2 . Particle
trajectories are drawn with orange, green, and magenta arrows.

frozen Krylov subspaces as well as with exponentially large subspaces with more gen-
eral quantum evolution.

It is important to note that these CA subspaces break the underlying T time trans-
lation symmetry of the evolution operator. For example, the particle configuration in
Fig. 7 returns to its initial configuration after 19T. However, the exact realization of this
Krylov subspace requires fine-tuning in parameter space. If an alteration of this model
was possible such that the realization of these Krylov subspaces did not require fine-
tuning, then such a model would be a realization of a time-crystal. In fact, since the
systems we’ve considered may simultaneously support Krylov supspaces that break
the T time translation symmetry in different ways, such a stabilized system would si-
multaneously support several different time crystals depending on which Krylov sub-
space contains the initial state. Recent works [42, 43] have argued that disorder may
stabilize dynamics for regions in parameter space near similarly fine-tuned points in
an interacting, RLBL model to achieve anomalous Floquet insulating phases. The basic
idea is to consider a high frequency regime, where the expansion studied in e.g. [28, 38]
shows that the effective evolution in the high frequency limit only acts non-trivially on
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small resonant spots that take an exponentially long time to destroy localization. This
in turn is associated with the robustness of prethermal phases and localization when an
MBL Floquet system is perturbed. In the RLBL system our special points for the model
require, for example, τ ∼ π

2 which is not a high frequency drive. However, if the sys-
tem is instead viewed in the rotating frame of the chiral RLBL drive, the evolution can
be effectively presented as a high frequency drive, related to the inverse of the param-
eter offsets between τ, V and the perfect point (see [42] for details). It is thus possible
to show that disorder stabilizes the evolution. In chapter 5 we extend this treatment
to address when disorder may stabilize dynamics for the entire system or for specific
Krylov subspaces in a more general set of models.

4.3.3 Frozen states of Floquet evolution on a chain with nearest neigh-

bour interactions

A major tool used in the analysis of the interacting Floquet and measurement models
above was that the interactions preserved the disjoint nature of the steps of the periodic
drive. However, using the same tools as in the disjoint case, it is possible to find frozen
states even when the activated neighboring pairs interact (i.e. do not commute).

Here, we investigate an example model where the interactions ruin the disjoint
nature of the Floquet drive and show how, at special values of interaction strength and
driving frequency, it is still possible to find states that are frozen. Namely, we take as
an example a 1D, NN interacting Hamiltonian of the form

H(t) = H0(t) + V
N−2

∑
i=0

nini+1 (4.42)

where

H0(t) =

∑i even(a†
i ai+1 + h.c.) 0 ≤ t < T

2 ≡ τ

∑i odd(a†
i ai+1 + h.c.) T

2 ≤ t < T.
(4.43)

Similarly to the previous cases, let us again consider a single 2-site pair where
hopping is activated. If the occupancy of the sites neighboring the pair happen to be
static, then the conditions for frozen or perfect swapping (4.29) and (4.30) will still hold
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(except here with Dmax = 2). However, this is, of course, not generally the case. Even if
a neighboring pair is stroboscopically frozen, the number of particles at neighbouring
sites may change during the evolution and ruin the conditions (4.29) and (4.30).

However, if every 2-site pair with a single particle is located on the edge of a
domain wall in the system, then ∆ will again be well defined (since any neighboring
particles will be stationary due to Pauli exclusion) and the conditions (4.29) and (4.30)
will hold for these particle configurations. In Figure 8, we give examples of such states
that will be stroboscopically frozen when the ∆ = 1 condition is satisfied, i.e. all these
states are eigenstates to the evolution operator U(T) = Te−i

∫ T
0 H(t).

FIGURE 8: Particle configurations frozen in the Even-Odd NN model at
values of V, τ that satisfy the ∆ = 1 condition in (4.29). The only 2-site
pairs with a single particle are located on the domain walls. Since, within
the uniform domain, particles are frozen at all times due to Pauli exclusion,
the neighboring particle number difference for 2-site pairs on the domain

wall is constant and given by ∆ = 1.

We now turn to numerically investigating the emergence of these frozen states
and the Hilbert space fragmentation in this system. We exactly diagonalize U(T) at the
special points V =

√
12, τ = π

2 and τ = π 2. Here, the condition for frozen ∆ = 1
is satisfied, while ∆ = 0 is perfect swapping or frozen respectively. If the activated
neighboring pairs were disjoint, evolution at these parameter values would be exactly
solvable (with dynamics either being a CA or stroboscopically frozen). As we will see,
however, this is not the case here. The Hilbert space instead fragments into exponen-
tially many subspaces of frozen domain wall states and a single, exponentially large,
ergodic subspace.

2As a technical note, the frozen domain wall states will be highly degenerate and numerical diagonal-
ization will give a random basis of eigenstates within the degenerate subspace. To find the frozen states
within this basis, we apply a small disorder potential during the wait step in the evolution to split the
energy levels. This disorder potential will add only a global phase to the frozen states and thus allows a
direct numerical route to finding them.
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To seperate the two classes of subspaces, we calculate the half-chain entangle-
ment entropy of the eigenstates (shown in Figure 9). The frozen eigenstates have zero
entanglement entropy while the other eigenstates have finite (and as can be seen from
Fig. 9, large) entanglement entropy. Upon plotting the average local particle densities
of a sample of the zero entanglement entropy eigenstates, we find that they do indeed
correspond to the expected frozen domain wall states.

While the number of domain wall states NFroz grows exponentially with system
size, their fraction of the total Hilbert space dimension goes to zero. To see this, con-
sider e.g. states that satisfy the ∆ = 1 condition (with similar consideration applying
to ∆ = 0 situations). Such states are characterized by occupied domains that are sep-
arated from each other by at least 3 sites (see Fig (8)) so that particles on the edges
of separate domains do not interact with each other at any stage of the evolution. A
rough lower bound on the number of such states is 2⌊N/3⌋, if we only look at domains
whose length is a multiple of 3 starting at sites 3, 6, ..., ⌊N/3⌋. An upper bound can
easily be obtained by noticing that the total number of domains cannot exceed ⌊N/3⌋,
thus we have an upper bound by considering the entropy of the positions of domain
wall boundaries ∑⌊N/3⌋

k=0 (N
k ). In the large N limit, this is dominated by the term ( N

N/3)

which scales as 2NSbi(1/3) ≈ 20.92N, by Stirlings approximation, with the entropy func-
tion Sbi(a) = a log2(

1
a ) + (1 − a) log2(

1
1−a ). In summary, we see that NFroz grows ex-

ponentially in system size but the fraction of frozen states compared to the full Hilbert
space dimension (which scales as 2N) is zero in the thermodynamic limit.

The large half-chain entanglement entropy of non-domain wall states suggests
that the rest of the Hilbert space might be thermalized. To provide further evidence
to this claim, we analyze an indicator often used to differentiate between ergodic and
integrable systems: the statistics of level spacing ratios.

For thermalizing systems, it is expected [149] that the evolution operator U re-
sembles random matrices drawn from a circular ensemble (the analog of gaussian en-
sembles for unitary matrices). Unlike the evolution operators for integrable systems,
eigenstates of circular ensembles are random vectors and the spectrum exhibits level
repulsion. Thus, it is possible to argue whether a system is ergodic by analyzing the
statistics of the spacing of energy levels to see if the distribution is Poissonian (cor-
responding to no level repulsion) or if it corresponds to the expected level spacing
distribution of circular ensembles (see [149] for explicit formulas).
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FIGURE 9: Half-chain entanglement entropy of all eigenstates of the evolu-
tion in the even-odd NN Floquet model. Eigenstates were found by exactly
diagonalizing a 16 site chain. The parameter values were chosen such that
both the ∆ = 0 and ∆ = 1 conditions in (4.29) and (4.30) are satisfied:
V =

√
12, τ = π

2 (left) and τ = π (right). Despite the non-disjoint nature
of the activated hopping site pairs, the conditions (4.29) and (4.30) will still
be valid for domain wall states that will, therefore, be frozen under the
dynamics. These number states have no entanglement entropy and are in-
dicated with red arrows in the figure above. The other eigenstates exhibit
near-maximal entanglement entropy. This is a signature of the fragmenta-
tion of the Hilbert space into frozen Krylov subspaces and a ergodic Krylov

subspace.

Namely, consider the level spacings between two neighboring eigen-quasienergies
ε (i.e. ε’s are the phases of the eigenvalues of U),

δn = εn+1 − εn. (4.44)

The ratio of level spacings is given by

rn =
min{δn, δn+1}
max{δn, δn+1}

. (4.45)

We then expect the statistics of r to match that of the circular ensembles instead of
yielding a Poissonian distribution if the system is ergodic.

In our case, however, the system is not completely ergodic since the domain wall
number states are eigenstates of the evolution. We instead wish to study the nature of
the subspace which is the compliment of the set of all frozen Krylov subspaces within
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the Hilbert space. We thus will only consider δn in (4.44) if the corresponding eigen-
states of εn+1 and εn have non-zero half-chain entanglement entropy. The results of this
analysis are shown in Fig. 10. As can be seen in the figure, the probability distribution
is in good agreement with that of the circular orthogonal ensemble (COE) suggesting
that the Krylov subspace is thermal.

In summary, we have shown that the Hilbert space of the even-odd NN Floquet
model is fragmented at special values of interaction strength and driving frequency.
The fragmented Hilbert space simultaneously supports exponentially many (in system
size) frozen Krylov subspaces and a single, exponentially large ergodic Krylov sub-
space. In this model, we did not find evidence of CA subspaces. Whether these sub-
spaces are realizable in other non-disjoint models is an open question. Furthermore,
for neighboring two-site pairs each with a single particle, the interactions between the
pairs could conspire to produce special values of V, τ not given by equations (4.29) and
(4.30) where evolution is stroboscopically frozen. We leave both these open questions
for future work.

FIGURE 10: Level spacing statistics in the non-frozen Krylov subspace for
evolution in the even-odd NN Floquet model. As in Fig. 9, parameter val-
ues are chosen as V =

√
12, τ = π

2 (left) and τ = π (right). The probabil-
ity distribution, P(r), of the level spacing ratios, r, for quasi-energy levels
not corresponding to frozen eigenstates provides good agreement with the
level spacing probability distribution of random matrices in the circular
orthogonal ensemble (COE). This suggests that the Krylov subspace is er-

godic.

4.3.4 Remarks on Fragmentation and Ergodicity in NN-RLBL

In this section, we study numerically the entanglement entropy of eigenstates and level
statistics in the NN-RLBL model with the Diophantine conditions only partly satisfied.
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We show that the fragmentation seems to allow for a yet richer structure than shown in
the 1D example above. In particular, we consider the NN-RLBL model with parameters
τ = 2π√

7
and V =

√
3. Here, activated hopping pairs with ∆ = 1 are frozen, but none of

the other conditions (4.29) or (4.30) are satisfied. We plot the entanglement entropy of
the eigenstates of the evolution in Fig. 11.

FIGURE 11: Entanglement entropy for eigenstates of the evolution in the
NN-RLBL model. Parameters are given by τ = 2π√

7
and V =

√
3 which

corresponds to activated hopping pairs with ∆ = 1 frozen and none of the
other ∆ conditions satisfied. On the left we consider evolution of 3 particles
in an 8× 6 lattice and on the right the evolution of 4 particles in an 8× 4 lat-
tice. In both cases, ∆ = 1 frozen yields frozen particle configurations lead-
ing to a set of zero entanglement entropy eigenstates. Additionally, there is
a subspace of near-maximal entanglement entropy eigenstates. However,
circled in red, there are eigenstates with entanglement entropy in-between
the two extreme values. The span of these eigenstates forms another non-
ergodic subspace of the Hilbert space that is distinct from frozen or cellular

automation subspaces.

Examining Fig. 11 we find that there are frozen particle configurations leading to
eigenstates with no entanglement entropy. There are no cellular automation subspaces
since only a Diophantine condition for freezing has been satisfied. Additionally, there is
a subspace containing eigenstates with near-maximal entanglement entropy suggesting
ergodicity. However, there is also a subspace of eigenstates with entanglement entropy
that is neither zero nor maximal. This suggests that the subspace compliment to the
frozen and cellular automation subspaces has been further fragmented into ergodic
and non-ergodic subspaces.

We further investigate this phenomena by examining the level spacing statistics
for the non-frozen subspace in Fig. 12. The statistics show some level repulsion as they
do not match that of the Poisson distribution, but the sampled ratios also do not align



4.3. Hilbert Space Fragmentation 131

with the distribution associated with the relevant ensemble of random matrices, the
circular unitary ensamble (CUE).

FIGURE 12: Level spacing statistics in the NN-RLBL model. Similar to Fig.
11, we consider evolution at τ = 2π√

7
and V =

√
3 with two different lattice

sizes and fillings: a) 3 particles in an 8 × 6 lattice, b) 4 particles in an 8 × 4
lattice. In both cases, we have, from left to right: level spacing statistics of
the full Hilbert space minus the frozen subspace, statistics for non-frozen
eigenstates with entanglement entropy, Sent, less than a cutoff value [3 for
a) and 2.6 for b)], and statistics for eigenstates with entanglement entropy
greater than a cutoff [3 for a) and 3.2 for b)]. The level spacing statistics for
all non-frozen eigenstates is a mixture of Poisson statistics (corresponding
to the subspace spanned by the eigenstates with Sent less than a given cut-
off) and circular unitary ensemble (CUE) statistics (corresponding to the
subspace spanned by the eigenstates with Sent more than a given cutoff).
In the 4 particle case, the entanglement entropy range between 2.6 and 3.2
contains a mixture of Poisson and CUE statistics, so we focus on the eigen-
states with Sent less than 2.6 or more than 3.2 where the Poisson and CUE

subspaces may be easily distinguished.

We now further separate the non-frozen subspace into the subspace spanned by
the eigenstates with near-maximal entanglement entropy and the subspace spanned by
the eigenstates without near-maximal entanglement entropy. Fig. 12 shows that the
level spacing statistics corresponding to the near-maximal states agrees with the dis-
tribution for the associated random matrix ensemble, while the level spacing statistics
associated with the eigenstates without near-maximal entanglement entropy seems to
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exhibit Poisson statistics. This, therefore, provides evidence to suggest that the non-
frozen subspace has fragmented into a subspace exhibiting chaotic dynamics and a
subspace exhibiting integrable dynamics.

We suspect that the splitting of the non-frozen subspace may be further under-
stood via a close consideration of the symmetries of the Floquet model, the satisfied
Diophantine conditions, and their interplay. Similarly, it may be possible to describe in
more detail the dynamics of the putative integrable subspace. However, we leave such
investigations for future work.

4.4 Summary and discussion

In recent years the study of quantum many body states that break ergodicity has been
an active field of research. Here, we considered conditions for dynamics in interacting
systems that takes initial local number states to local number states. We have found
such conditions for systems with sequentially activated hopping involving interactions
such as Hubbard and nearest neighbour density interactions. Studying the resultant
Diophantine relations between interaction strength, hopping energy, and hopping ac-
tivation time, we discovered solutions to a variety of such systems. The resultant dy-
namics can be cast into two types: (1) Evolution that is deterministic for any initial
Fock state (2) Fragmentation of the Hilbert space into deterministic sub-spaces and
non-deterministic ones.

Our results introduce new sets of dynamically tractable interacting systems, with
an emphasis on 2d where such results are scarce. Furthermore, the approach is appli-
cable to similar systems in other dimensions. At the special solvable points, we get a
variaty of behaviors from frozen dynamics of Fock states to cellular automata like evo-
lution of selected subspaces. In cases where only some of the Diophantine conditions
are met, we have shown that the special subspaces can exist simultaneously with states
that possess volume law entanglement entropy and level statistics suggesting thermal-
izing behavior.

As discussed in section 4.3.2, although the ratios of Hamiltonian parameters (in-
teraction strength, evolution time etc) considered here are finely tuned, previous work
suggests that similarly finely tuned points may be stabilized by disorder to realize novel
dynamical phases. In particular, periodic celullar automata evolution in our models
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may lead to new classes of time crystals.

The problem of finding complete freezing of Fock states also led us to an interest-
ing number theoretic problem involving the solution of a tower of Diophantine equa-
tions described in (4.29) and (4.30). We have shown explicitly solutions for dynamics
on lattices with maximal degree of up to 4 nearest neighbours and conjecture a solution
can be found for arbitrary maximal degree.

Another interesting question is that of the effect of long range interactions. We
expect that two main consequences may arise: (1) The removal of all exactly solvable
points, possibly destroying classical cellular automata like behavior in the system and
(2) The long-range interactions may act as an effective disorder (due to the many possi-
ble configurations of particles away from particular activated sites where the dynamics
occurs) stabilizing the classical like dynamics. A further possibility is that interactions
with finely tuned decay properties may facilitate additional Diophantine conditions.
However, except in rare cases, we do not expect that the new equations will combine
into a solvable system.

Finally, we remark that the Diophantine methods utilized in this work may be
applicable to bosonic systems, and systems with pairing terms where resultant cellular
automata may not be of the number preserving type.
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4.A Solutions for subspaces of two sites

4.A.1 Hubbard Floquet Evolution of 2-site Pair in the 2-particle Sec-

tor

We index the 4-particle configurations of the subspace as follows:

0 → ↑↓ __ (4.46a)

1 → __ ↑↓ (4.46b)

2 → ↑ _ _ ↓ (4.46c)

3 → _ ↓ ↑ _ (4.46d)

We therefore have that the representation of the Hubbard Hamiltonian (4.2) in this sub-
space is given by

H =


V 0 −1 −1
0 V −1 −1
−1 −1 0 0
−1 −1 0 0

 (4.47)

Hence, the evolution, U = e−iHτ, is given by
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U = e−
1
2 iVτ


e−

1
2 iVτ

[
1
2 + A

]
e−

1
2 iVτ

[
−1

2 + A
]

B B

e−
1
2 iVτ

[
−1

2 + A
]

e−
1
2 iVτ

[
1
2 + A

]
B B

B B e
1
2 iVτ

[
1
2 + Ā

]
e

1
2 iVτ

[
−1

2 + Ā
]

B B e
1
2 iVτ

[
−1

2 + Ā
]

e
1
2 iVτ

[
1
2 + Ā

]


(4.48)

where

A(V, τ) =
e

1
2 iVτ

2

[
cos
(

1
2

τ
√

16 + V2
)
− i

V√
16 + V2

sin
(

1
2

τ
√

16 + V2
)]

(4.49)

B(V, τ) = 2i
sin
(

1
2 τ

√
16 + V2

)
√

16 + V2
. (4.50)

and Ā is the complex conjugate.

We are now interested in finding when (4.48) is a permutation matrix. Note, for
non-zero V, |B| < 1. Thus, our only hope for a permutation matrix is if B = 0. This
occurs when 1

2 τ
√

16 + V2 = πm for some m ∈ Z, i.e. the condition given in (4.5).

Solving for A(V, τ) at condition (4.5) yields

A(V, τ)|Condition:(4.5) =
1
2

ei[πm+ 1
2 Vτ] (4.51)

In (4.48), U is a permutation matrix when, in addition to the requirement B = 0, |A| = 1
2

and Vτ
π ∈ Z. These 2 conditions are uniquely met when, using (4.51), πm + 1

2Vτ = πn
for some n ∈ Z. Thus, we have arrived at the condition given in (4.6). When (4.5) and
(4.6) are satisfied, U then becomes
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U|Conditions: (4.5) and (4.6) =


n − 1 n 0 0

n n − 1 0 0
0 0 n − 1 n
0 0 n n − 1

 mod 2 (4.52)

i.e. yielding the result that when n is even (odd) evolution is the identity (perfect swap-
ping).

4.A.2 Nearest Neighbor Floquet Evolution of 2-site Pair in 1-particle

Sector

The Hamiltonian of the jth 2-site pair is

Hj = −(a†
j1aj2 + h.c.) + Vnj1nj2 + VN1nj1 + VN2nj2 (4.53)

where N1, N2 correspond to the number of particles (outside the jth pair) neighboring
site 1 and site 2 in pair j respectively. Note, [N1,Hj] = [N2,Hj] = 0.

The representation of the Nearest Neighbor Hamiltonian in the 1-particle sector
is given by

H =

(
N1V −1
−1 N2V

)
(4.54)

Hence, the evolution, U = e−iHτ, is given by

U =
e−

1
2 i(N1+N2)Vτ

C

 C cos
[

C
2 τ
]
− i∆V sin

[
C
2 τ
]

2i sin
[

C
2 τ
]

2i sin
[

C
2 τ
]

C cos
[

C
2 τ
]
+ i∆V sin

[
C
2 τ
] 

(4.55)

where
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C(∆, V) ≡
√

4 + ∆2V2 (4.56)

∆ ≡ N1 − N2. (4.57)

For perfect swapping to occur, we must have that the diagonal elements of (4.55)
go to zero. This may only occur when

C
2

τ = π(m +
1
2
) for m ∈ Z ; ∆ = 0 (4.58)

For freezing to occur, we must have that the off-diagonal elements of (4.55) are
zero. Note, depending on the particle configuration, ∆ may take any value such that

∆ ∈ Z, and |∆| < max[deg(site 1), deg(site 2)].

where deg is the degree of the vertex. We must therefore have that C
2 τ = πm for all pos-

sible values of ∆ and with m ∈ Z, i.e. letting ∆i ∈ {0, 1, ..., max [deg(site 1), deg(site 2)]−
1} such that ∆i = ∆j iff i = j, we require

C(∆i, V)

2
τ = πmi ∀ i (4.59)

where mi ∈ Z.

Combining Equations (4.58) and (4.59) yields (4.29) and (4.30) in the main text.

We may now proceed by solving one value of ∆i at a time. We start with ∆0 and,
without loss of generality, let ∆0 ̸= 0 (if ∆0 = 0, we may simply replace m0 → m0

2 in the
final result), we have from (4.59) that

τ =
2πm0√

4 + ∆2
0V2

(4.60)

Now, looking next at ∆1 ̸= 0 (again, we may set m1 → m1
2 if ∆1 = 0), we use Eqs. (4.59)

and (4.60) to find
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√
4 + ∆2

1V2√
4 + ∆2

0V2
πm0 = πm1 (4.61)

=⇒ V = 2

√
m2

1 − m2
0

∆2
1m2

0 − ∆2
0m2

1
(4.62)

Now, taking any ∆j such that j ≥ 2 and combining Eqs. (4.59), (4.60), and (4.62)
and simplifying we find

m2
0(∆

2
1 − ∆2

j ) + m2
1(∆

2
j − ∆2

0) + m2
j (∆

2
0 − ∆2

1) = 0 ; mi →
mi

2
if ∆i = 0 (4.63)

Equation (4.63) therefore corresponds to a set of max [deg(site 1), deg(site 2)]− 3
Diophantine equations that must be solved simultaneously to find the values of mi (and
thus V, τ) that correspond to CA dynamics. Note, also, that in (4.63) we must replace
mi → mi

2 for whichever ∆i = 0.

Note, a particular solution for the first equation in (4.63) when ∆0, ∆1, ∆2 ̸= 0 is
m0 = ∆0, m1 = ∆1, m2 = ∆2. Hence, using (4.16), the solution to (4.63) for j = 2 is given
by

 m0

m1

m2

 = d

 −
[
(∆2

1 − ∆2
2)w

2
1 − (∆2

2 − ∆2
0)w

2
2
]

∆0 − 2(∆2
2 − ∆2

0)w1w2∆1[
(∆2

1 − ∆2
2)w

2
1 − (∆2

2 − ∆2
0)w

2
2
]

∆1 − 2(∆2
1 − ∆2

2)w1w2∆0[
(∆2

1 − ∆2
2)w

2
1 + (∆2

2 − ∆2
0)w

2
2
]

∆2

 (4.64)

To obtain the equivalent of (4.64) when, for example, ∆0 = 0, we must take m0 = 2∆0

instead of m0 = ∆0 in the particular solution of (4.63) and relatedly must use A =
∆2

1−∆2
2

4

instead of A = ∆2
1 − ∆2

2 in (4.16). Similar adjustments must be made to B, m1 or C, m2 if
∆1 = 0 or ∆2 = 0 respectively.

Equation (4.64) provides all possible solutions for m0, m1, m2 (and thus V, τ) that
yield classical dynamics for any two site pair with ∆ = ∆0, ∆1, or ∆2. As a corollary,
this implies that there exist values of V, τ (beyond the trivial V = 0 or τ = 0 solutions)
for any measurement protocol that sequentially isolates pairs of sites on a lattice such
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that all dynamics is a CA so long as the maximum degree of the lattice is at most 3. In
other words, in this case, we may choose ∆0 = 0, ∆1 = 1, and ∆2 = 2 and (remember-
ing to make the appropriate substitutions since ∆0 = 0) we find (4.64) becomes (4.34).
As discussed in the main text, combining (4.34) with the ∆ = 3 condition yields a new
Diophantine equation that may be solved numerically to find non-trivial solutions. For
arbitrary maximal degree, a tower of Diophantine equations emerges. Whether solu-
tions exist to these Diophantine equations for arbitrary maximal degree (and, if they
exist, what they are) we leave as an open problem.

Below Eq. (4.34) we also made the comment that, in this case, m0 is always even
implying frozen dynamics. We here show that this is the case by way of contradiction.
If m0 is odd, then (4.34) implies

−32w1w2

gcd[−32w1w2,−3w2
1 − 16w2

2,−6w2
1 + 32w2

2]
∈ 2Z + 1 (4.65)

i.e. an odd number. Hence, the gcd in the denominator must cancel all the powers of
2 in −32w1w2. This implies w1 must be even, since otherwise −3w2

1 − 16w2
2 would be

odd leaving the gcd in the denominator odd. Since w1 and w2 are coprime, w2 must be
odd. We factor out the powers of 2 from w1 leaving w1 = 2a1w′

1 where w′
1 is odd. In the

following, we will use two properties of the gcd:

gcd(A, B) = gcd(A, B + mA) (4.66)

gcd(A1A2, B) = gcd(A1, B) gcd(A2, B) (4.67)

for m ∈ Z and A1, A2 coprime. We now get

gcd[−32w1w2,−3w2
1 − 16w2

2,−6w2
1 + 32w2

2] (4.68)

= gcd[−(25+a1)w′
1w2,−3(22a1)w′2

1 − 24w2
2,−3(22a1+1)w′2

1 + 25w2
2] (4.69)

= gcd[−(25+a1)w′
1w2,−3(22a1)w′2

1 − 24w2
2,−3(22a1+2)w′2

1] (4.70)

= gcd[(25+a1),−3(22a1)w′2
1 − 24w2

2, (22a1+2)]A (4.71)

where in the third line we have added twice the second term in (4.69) to the third term
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using (4.66) and in the fourth line we focus only on terms in the gcd that may contribute
a factor of 2, compiling the rest of the terms (through the use of (4.67)) in A given by

A = gcd[−w′
1w2,−3(22a1)w′2

1 − 24w2
2,−3(22a1+2)w′2

1] gcd[(25+a1),−3(22a1)w′2
1 − 24w2

2,−3w′2
1].

For the gcd (4.71) to cancel all the powers of 2 in −32w1w2 (thus making (4.65)
odd), we therefore must have that

25+a1 = gcd[(25+a1),−3(22a1)w′2
1 − 24w2

2, (22a1+2)] (4.72)

This, however, is a contradiction since for gcd[(25+a1), (22a1+2)] = 25+a1 we must
have a1 ≥ 3, but then we have

gcd[(25+a1),−3(22a1)w′2
1 − 24w2

2, (22a1+2)] (4.73)

= 24 ̸= 25+a1 . (4.74)
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Chapter 5

Fragmentation and Novel Prethermal
Dynamical Phases in Disordered,
Strongly-Interacting Floquet Systems

5.1 Introduction

Periodic driving of quantum systems has emerged as an exciting tool that may be used
to engineer otherwise exotic behavior [144]. Furthermore, periodically driven (Floquet)
systems may support phases that are forbidden in systems evolving under static Hamil-
tonians. Two prominent examples are Discrete Time Crystals [12, 13] and anomalous
Floquet topological insulators [15, 42, 43]. Time Crystals are a proposed phase [181] in
which continuous time translation symmetry of a system is spontaneously broken (in
analogy with the spontaneous breaking of spatial translation symmetry in the forma-
tion of crystal lattices). Following a No-Go theorem for time crystals in static systems
[147], it was discovered that it is possible for the discrete time translation symmetry in
periodically driven systems to be spontaneously broken forming Discrete Time Crys-
tals [146]. Anomalous Floquet topological insulators take advantage of the inherently
periodic nature of the non-interacting quasi-energy spectrum of periodically driven
systems to exhibit novel topological features in the band structure that are impossible
for static systems. This anomalous band structure was realized in a model by Rudner-
Lindner-Berg-Levin (RLBL) [20]. By adding a disordered on-site potential to the RLBL
model, it was then found that the system supports a robust, new topological phase
called the anomalous Floquet-Anderson topological insulator [15]. The physical mani-
festation of this exotic, topological band structure is the emergence of chiral edge modes
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existing alongside a fully localized bulk. Both Discrete Time Crystals and the anoma-
lous topological edge behavior of anomalous Floquet topological insulators have been
realized across a variety of physical platforms [182–187].

A priori, it may be surprising that Floquet systems may exhibit robust phases
since energy may be indefinitely absorbed from the drive, eventually leading to a fea-
tureless, infinite temperature state [148–150]. However, this thermalization may be
combated using three main mechanisms: 1) The driven system is connected to a reser-
voir, which acts as a heat sink, leading to non-trivial non-equilibrium steady states [29,
159–161]. 2) Only systems where energy is absorbed exponentially slowly from the
drive are considered, leading to a pseudo-stable “prethermal” phase [26, 28, 188–190].
3) Disorder is added to the system, resulting in a localizing effect, that prevents ther-
malization. This phenomena is referred to as many-body localization (MBL) [27, 35, 38,
145, 150–154, 191] and is an interacting generalization of Anderson localization [30].

In constrained systems, there exists yet another route towards ergodicity break-
ing - Hilbert Space Fragmentation [164, 166, 167, 192]. In this case, the full Hilbert space
is broken into subspaces that evolve independently. This leads to cases where a system
may have some Krylov subspaces that thermalize while others do not. When the size of
the non-thermal Krylov subspaces scales polynomially with system size (i.e. only rep-
resenting a measure zero portion of the full Hilbert space), the states in these subspaces
are referred to as quantum many-body scars [162–164].

In this work, we consider a broad class of Floquet models where hoppings be-
tween neighboring pairs of sites are sequentially activated. A large number of Floquet
systems that have received theoretical and/or experimental attention are contained
within this class of models (e.g. [15, 20, 42, 43, 170–174]). In chapter 4 it was shown
that the dynamics of clean, interacting systems in this class of models may become
exactly solvable for certain driving frequencies and interaction strengths. Specifically,
these parameter values lead to evolution of Fock states into Fock states. The special
points in parameter space where this occurs are found by solving an emergent set of
Diophantine equations [175]. At other points in parameter space (also found via a set
of Diophantine equations), the Hilbert space is fragmented into subspaces supporting
either Frozen dynamics, classical cellular automation [176], or ergodic behavior.

Here, we add a disordered potential to the class of interacting, Floquet systems
considered in chapter 4. We find that the disorder stabilizes, via K-body localization
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(described below) [40], the dynamics of systems perturbed away from the special, Dio-
phantine points in parameter space, leading to novel, robust phases. The exotic dy-
namics of these phases may include, for example, the spontaneous breaking of time
translation symmetry to form Discrete Time Crystals.

Furthermore, we find that there are other regions in parameter space, away from
any special, Diophantine points, that also represent K-body localized phases. These
regions are given by values of interaction strength and driving frequency that ‘almost’
(see Sec. 5.3) satisfy Diophantine conditions. In addition, at the points in the clean
model where Hilbert space fragmentation occurs, the added disorder ensures that the
frozen and cellular automation Krylov subspaces are stable to perturbations (in driving
frequency and interaction strength) away from the special points in parameter space.
In some cases the subspace is localized by the disorder. In other cases, the cellular au-
tomation dynamics of the subspace is stabilized over long time scales but is eventually
expected to thermalize.

Note, the stability of our results hinge on K-body localization instead of the full
many-body localization. K-body localization is a generalization of MBL where a sys-
tem containing up to a maximum number of particles, K, is localized by disorder (thus
MBL is given in the limit of K → ∞). Unlike MBL, which has only been rigorously es-
tablished in one dimension, K-body localization is established in generic dimensional
systems [40]. However, K-body localized systems containing more then K particles will
eventually be thermalized via K + 1 particle correlations. Thus, in the thermodynamic
limit, we expect our results describe the system prethermally (except for cases, espe-
cially in 1D, where full MBL may occur).

To help illustrate our results throughout this work, we will use a Hubbard in-
teracting RLBL-like model on a square lattice. In addition to the model being partic-
ularly clear for expository purposes, it has also been the center of recent interest in
[43] where it was found that the model supports a novel topological phase called a
correlation-induced anomalous Floquet insulator (CIAFI). The phase is characterized
by a Hierarchy of topological invariants and supports quantized magnetization den-
sity. We describe how these results may be viewed from the perspective of this work
and describe new insights into the system that the Diophantine framework provides.

The rest of this paper is structured as follows. In Section 5.2, we briefly review
how Diophantine equations emerge in clean, periodically driven systems and their im-
plications for the dynamics at special driving frequencies and interaction strengths (as
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described in chapter 4). In Section 5.3, we perturbatively describe the evolution of these
(so far clean) systems with parameter values close to the special, Diophantine points.
Section 5.4 describes how, once disorder is added, the evolution in this perturbative
regime becomes K-body localized. For the example case of the Hubbard-RLBL model,
we provide a phase diagram for where this localization occurs. Section 5.5 describes
the stability of subspaces when Hilbert space fragmentation is weakly broken by per-
turbing away from points where a few (but not all) of the conditions for Fock state to
Fock state evolution are satisfied. In Section 5.6, we corroborate the above results with
numerical evidence. Finally, in Section 5.7 we provide concluding remarks.

5.2 Interacting Floquet models, Diophantine Equations,

and Hilbert Space Fragmentation

Here, we briefly review the identification of special evolution points following [3]. We
look for conditions on fermion models to evolve Fock states into Fock states determin-
istically. We consider periodically-driven models where hopping between neighboring
sites are sequentially activated. Namely, we divide the period, T, of the Floquet drive
into M steps where, during step m, particles are only allowed to hop between pairs of
sites given by a set Am. Interactions are then added to this free-hopping evolution, but
we restrict ourselves to interactions that do not contain terms connecting two (or more)
of the otherwise disjoint pairs with activated hopping. Specifically, evolution during
the Floquet period, U(T), is given by

U(T) = UM...U2U1 (5.1)

where Um = e−iτHm , τ = T
M , and

Hm = −thop ∑
(i,j)∈Am;σ

(a†
i,σaj,σ + h.c.) +Hint(Vm). (5.2)

where Vm is a set of interaction parameters. For the rest of this work, we will set thop =

1 unless otherwise noted.
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As an example, consider the case of the RLBL model with Hubbard interactions.
In this case, we set M = 4, choose Am as given in Fig. 1, and set

HHubbard
int (V) = V ∑

i
ni,↑ni,↓ (5.3)

with ni,σ = a†
i,σai,σ. Note, the Hubbard interaction is on-site and thus leaves the pairs

connected by Am disjoint.

FIGURE 1: The RLBL model. Hopping is sequentially activated among
neighbouring sites connected by the set Am, m = 1, ..., 4.

The next step is to find conditions for when individual, activated hopping pairs
map Fock states into Fock states. Since the site pairs are disjoint, we may do this indi-
vidually for each pair during each step m of the evolution.

In the Hubbard-RLBL model a 2-site pair has 16 possible initial Fock states. Let
us first consider the case of a single spin up at one site with an empty neighbor. We can
ignore the interacting term, and compute directly the probability, p, for the particle to
hop to site 2. We have

p = | ⟨vac| a2eiτ(a†
1a2+a†

2a1)a†
1 |vac⟩ |2 = sin2 τ,

showing that when τ = π
2 ℓ with ℓ ∈ Z, the evolution maps this particular Fock state

to a Fock state. Namely, the particle will remain at its initial site for τ with ℓ even and
hop to the neighboring site when ℓ is odd. We repeat this procedure for the other 15
possible initial Fock states. The lines in the following table summarize the conditions
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we find on τ and V and the resulting type of evolution:

particles τ V
1 or 3, frozen π

2 ℓ, ℓ even arbitrary
1 or 3, swap π

2 ℓ, ℓ odd arbitrary

2, opposite spins, frozen π
2

√
2mn − n2, n even 4(n−m)√

2mn−n2

2, opposite spins, swap π
2

√
2mn − n2, n odd 4(n−m)√

2mn−n2

otherwise any any

(5.4)

where ℓ, m, n ∈ Z, and 2mn − n2 > 0. The left column refers to the number of particles
in the initial state of the 2-site pair (spin-up + spin-down) and the type of evolution we
get. Thus, for example, if n is odd, and we start with a an up/down pair (a doublon)
sitting at site 1, the doublon will hop to site 2. On the other hand, if n is even, the
doublon will stay at site 1.

For a generic Fock state in the full system to evolve to another Fock state, we need
every 2-site activated pair to evolve deterministically. Hence, we require all the condi-
tions in Eq. (5.4) to be satisfied simultaneously. This leads to the following restriction
on ℓ, m, n

ℓ2 + n2 = 2mn. (5.5)

The equation (5.5), where we are only interested in integer solutions for ℓ, m, n, is a
Diophantine equation [175]. Diophantine equations are an active area of mathematical
research and, contrary to their often innocuous appeareance, there only exists general
solution methods for a few special classes of equations.

For the class of interacting Floquet models considered in this work, the Diophan-
tine equations that emerge from the conditions of Fock state to Fock state evolution
may not, in general, be solvable. Fortunately, in the Hubbard-RLBL case, Eq. (5.5) is
a polynomial Diophantine equation of degree 2 for which general solution methods
exist. The solutions can be parameterized as
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ℓ = d(w2
1 − w2

2) (5.6a)

m = d(w2
1 + w2

2) (5.6b)

n = d(w1 + w2)
2 (5.6c)

where w1, w2 ∈ Z, w1, w2 are coprime, and d ∈ 1
ξ Z with ξ = gcd((w2

1 − w2
2), (w

2
1 +

w2
2), (w1 + w2)

2).

Thus, the following values of τ, V yield deterministic Fock state to Fock state
evolution in the Hubbard-RLBL model

τ =
π

2
d(w2

1 − w2
2) ; V =

8w1w2

|w2
1 − w2

2|
. (5.7)

Importantly, note that the analysis leading to Eq. (5.7) was independent of the
fact that the driving procedure was RLBL. Thus, any periodic drive with sequentially
activated hopping pairs, in any dimension, with Hubbard interactions will also exhibit
deterministic Fock state to Fock state evolution at the special points in parameter space
given by Eq. (5.7).

In summary, for each step m in the Floquet evolution, the evolution of a special,
Diophantine point given by an evolution time τ0 and a set of interaction parameters
V0,m is given by

Um(V0,m, τ0) = Pm (5.8)

where Pm is a (complex) permutation matrix on Fock states 1. Furthermore, for local in-
teractions, Pm deterministically updates the occupation of individual sites based on the
occupation of neighboring sites. Starting from a product state, the evolution under an
operator such as this, up to a phase, can be thought of as a classical cellular automation.
It is for this reason that evolution such as this is sometimes referred to as “automation”
dynamics [177].

1A complex permutation matrix is a matrix where every row and column has a single non-zero ele-
ment whose modulus is 1.
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What happens if only some of the conditions for Fock state to Fock state evolution
are satisfied? In this case, the Hilbert space will fragment into subspaces. States in some
subspaces will still evolve under cellular automation, while states in other subspaces
are, in general, expected to ergodically explore their subspace.

For example, consider a Hubbard-Floquet model with a generic sequentially ac-
tivated hopping. Like the Hubbard-RLBL model, the conditions for Fock state to Fock
state evolution in this model are given by (5.4) (see discussion after Eq. (5.7)). Now
suppose only the fourth condition in (5.4) is satisfied (for example n = 3, m = 2 with
τ =

√
3

2 π and V = 4
√

3
3 ). This condition will state that an up down pair at neighbour-

ing sites will swap spins. Therefore, the subspace of states with exactly one particle on
each site (though the spin of each particle is left generic) is invariant under the evolu-
tion. Evolving any state in this subspace by Um will still be equivalent to evolving it
by Pm since there are no 2-site activated pairs with 1 or 3 particles in the system. This
implies that this exponentially large subspace will evolve as a classical process of spin
swaps. On the other hand, Fock states that do have 2-site pairs with 1 or 3 particles
will evolve into superpositions of Fock states under U. For general hopping activation
sequences, this leads to an ergodic exploration of the complimentary subspace. The full
Hilbert space is thus fragmented into independent subspaces exhibiting either cellular
automation or ergodic evolution.

5.3 Quantum dynamics in slow motion

We now investigate how the systems considered in the previous section evolve when
parameter values are perturbed away from the special, Diophantine points. Now the
evolution generates super-positions of Fock states and therefore entanglement. In this
case, the evolution during each Floquet period is given by the cellular automation of the
special point times an evolution with an effective local Hamiltonian during a reduced
time compared with the original evolution period. In other words, the correction to the
classical cellular automation is a ‘slow motion’ quantum dynamics.

5.3.1 Perturbation in Time

We first consider a perturbation in the evolution time τ = τ0 + δτ. We therefore have
that evolution of a step m is given by
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Um(V0,m, τ0 + δτ) = Um(V0,m, τ0)Um(V0,m, δτ) (5.9)

= Pme−iδτHm (5.10)

Combining this with Eq. (5.1) we have that the evolution of the full Floquet period is
given by

U = PMe−iδτHM ...P2e−iδτH2P1e−iδτH1 (5.11)

≡ PUquantum (5.12)

where P = PM...P2P1 is the unperturbed permutation, and the Uquantum is the quantum
correction to the dynamics:

Uquantum = (5.13)

= e−iδτP†
1P

†
2P

†
M−1HMPM−1..P2P1 ...e−iδτP†

1H2P1e−iδτH1 .

We note that the as long as the range of the permutations P is finite, the dynamics
Uquantum cannot build correlations further away from the range of allowed classical
dynamics. Moreover, the generation of super-positions of states is now governed by
the slow time scale δτ.

When tracking the evolution of a cluster of initial particles when the perturbation
is small (δτthop, δτV0,m ≪ 1 ), it is convenient to think of the quantum correction as
Uquantum = e−iδτHeff where Heff is given to lowest order in δτ as

Heff ≃
M

∑
m=1

P†
1P

†
2 ...P†

m−1HmPm−1...P2P1. (5.14)

Let us again take as an example the Hubbard-RLBL model. In this case, the vicin-
ity of frozen dynamics is particularly appealing. For frozen dynamics, Pm = I and
thus Heff ≃ H4 + H3 + H2 + H1 simply becomes the static Hubbard Hamiltonian on
the square lattice with V → 4V0. This means that, to a good approximation, HFloquet ≃
δτ
T HHubbard(4V0) with HFloquet the usual Floquet Hamiltonian defined by U(T) = e−iTHFloquet .

In other words, the stroboscopic evolution in the system is that of a slow-motion static
Hubbard evolution, i.e. after N evolution cycles, at time TN, the system will have
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evolved under a static Hubbard Hamiltonian (with interaction 4V0) for a reduced time
δτN. When Pm ̸= I, the evolution is a sequence of permutations followed by slowed,
modified Hubbard evolution. Note, the modified Hubbard evolution (given by special-
izing (5.14) to the Hubbard-RLBL case) includes hopping terms that are modified by the
permutations of lattice sites while the interaction terms are unaffected (since HHubbard

int

counts the number of doublons, which is preserved under the freezing and swapping
operations generating the dynamics at the special Diophantine points).

5.3.2 Perturbation in Interaction Strength

Now, suppose instead that we consider a perturbation in interaction parameters Vm =

V0,m + δVm. In the case that τ0δVm ≪ 1 for all δVm ∈ δVm, we expand

Um(V0,m + δVm, τ0)

≈ Pm

(
1 − i

∫ τ0

0
dseisHm(V0,m)δHinte−isHm(V0,m)

)
≡ Pme−iτ0Heff,m (5.15)

with Heff,m defined in the last line. Thus, in a similar fashion to the perturbation in τ

case, we find that

U = PM...P2P1e−iτ0Heff (5.16)

with

Heff ≃
M

∑
m=1

P†
1P

†
2 ...P†

m−1Heff,mPm−1...P2P1. (5.17)

Illustrating again with the Hubbard-RLBL model, Heff,m may be written explic-
itly in terms of creation and annihilation operators by solving each disjoint 2-site pair
in
∫ τ0

0 dseisHm(V0,m)δHinte−isHm(V0,m) separately and then summing. We find, to lowest
order in τ0δV, that

Heff,m = δV ∑
i∈2-site pairs

n≤2-part,ia†
i Tain≤2-part,i + n>2-part,i (5.18)
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where we have defined

T =
−1

16 + V2
0


12 − V2

0 −4 V0 V0

−4 12 − V2
0 V0 V0

V0 V0 4 4
V0 V0 4 4

 (5.19)

ai =
(

a2↑a2↓ a1↑a1↓ a1↑a2↓ a2↑a1↓

)T
(5.20)

and n>2-part,i projects onto the subspace with the ith 2-site pair having more than 2
particles, i.e.

n>2-part = 1 − n≤2-part

= ∑
a, b, c ∈ {1 ↑, 1 ↓, 2 ↑, 2 ↓}

a ̸= b ̸= c

nanbnc. (5.21)

In other words, evolution under Heff,m corresponds to correlated hopping for any 2-site
pairs containing 2 particles and a δV energy cost of having a two-site pair with 3 or
more particles.

5.3.3 Away From Special Points

Slowed effective quantum dynamics corrections to classical Fock state permutations
may occur away from the vicinity of the special Diophantine points. Here we explore
other regions in parameter space, far from special points, where the conditions for Fock
state to Fock state evolution are approximately satisfied. Specifically, consider the evo-
lution at step m consisting of the set Am of the activated two site pairs, and let H(i,j) be
the Hamiltonian for (i, j) ∈ Am.

Let us define:

D(i,j) = inf
P(i,j)

||e−iτH(i,j) −P(i,j)||HS ; D = max
(i,j)

D(i,j) (5.22)

where || · ||HS is the Hilbert-Schmidt norm of the (i, j) subspace. When D(i,j) ≪ 1 we
can say that the conditions for Fock state to Fock state evolution are approximately
satisfied for Hm and τ.
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We may now choose a P(i,j) that minimizes D(i,j) and write

e−iτH(i,j) ≡ P(i,j)e
−iτHe f f ,(i,j) . (5.23)

As before, e−iτHe f f ,(i,j) is close to the identity matrix when D is small, therefore the evolu-
tion corresponds to a permutation augmented with slowed quantum dynamics. Using
Eq. (5.23) the evolution of the full system for step m is

Um =
⊗

(i,j)∈Am

e−iτH(i,j) = Pme−iτHe f f ,m (5.24)

where we have defined

Pm =
⊗

(i,j)∈Am

P(i,j) (5.25)

He f f ,m = ∑
(i,j)∈Am

He f f ,(i,j). (5.26)

Equation (5.24) is of the general form of equations (5.15) and (5.10), and we find
analogously that the evolution of the full Floquet period is given by (5.16) and (5.17).

To illustrate the appearance of slow dynamics parameter space regions away from
special points, in Fig. 2 we plot regions where the Diophantine conditions are ap-
proximately satisfied in the Hubbard-RLBL model. Namely, we plot regions where the
Hilbert-Schmidt norm of the difference between the evolution of an activated pair and a
SWAP or Identity permutation is less than some small cutoff. In the figure, we consider
separately when 2 site pairs with 1 or 3 particles evolve approximately as a permuta-
tion and when 2 site pairs with 2 particles of opposite spin evolve approximately as
a permutation. Parameters where pairs with 1 or 3 particles are approximately frozen
(perfect swapping) are colored green (yellow) while parameters where pairs with 2
particles of opposite spin are approximately frozen (perfect swapping) are colored blue
(red). Thus, D is small only in regions of overlapping colors. Note that each special,
Diophantine point is surrounded by a region of overlapping colors, but not all regions
of overlapping colors contain a special point.

A couple of remarks are in order. Note that in the Hubbard-RLBL model, special
points are only found when all activated 2-site pairs are frozen or when all the pairs are
perfect swapping. This can be seen from Eq. (5.6) by verifying that the parity of ℓ and n
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FIGURE 2: Parameter space regions where the Diophantine conditions
(5.4) are approximately satisfied. Specifically, regions where the Hilbert-
Schmidt norm of the difference between the evolution of a step for an acti-
vated 2-site pair and the Fock state permutation corresponding to the sat-
isfaction of the ith condition in (5.4) is less than ϵ = 0.1 are filled with color
i (as given in the legend). The special, Diophantine points where evolution

is exactly a Fock state permutation are marked with a black “X.”

come out the same for any choice of d, w1, w2 (see chapter 4). Indeed, in Fig. 2 the special
points (represented by x) appear only when both single particle and doublon sectors
are simultaneously perfectly swapping (or simultaneously perfectly frozen). However,
Fig. 2 also shows that it is possible to approximately have perfect swapping in the 1
and 3 particle sector while pairs with 2 particles are approximately frozen (and vice
versa). Another thing to note is that when only some of the Diophantine conditions
are approximately satisfied, the fragmented Krylov subspaces that would emerge if
the conditions were perfectly satisfied may become connected by the slowed dynamics
He f f .

We note that an alternative measure for how far the evolution is from permutative
was presented in chapter 4, based on the function

Fp,q(U) = − log
||U||p,q

dim(U)1/q = −1
q

log
∑n,m |Un,m|p

dim(U)
(5.27)

defined on unitary matrices where dim(U) is the dimensionality, and ||U||p,q = (∑n,m |Un,m|p)1/q

is the p, q matrix entry-wise norm. It is straightforward to check that for p > 2, q > 0,
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the function F reaches its minimum Fp,q(U) = 0 if an and only if U is a complex per-
mutation matrix. However in figure 2 we wanted to distinguish between the different
types of permutative behavior (frozen vs perfect swapping) and so instead focused on
using (5.22).

In the next section, we add disorder to the system and find that the slowed dy-
namics is (in some cases) either K-body or many-body localized by the disorder. This
then stabilizes the cellular automation dynamics in regions where the conditions for
Fock state to Fock state evolution are approximately satisfied leading to robust phases.

5.4 Stabilizing Classical Evolution with Disorder

We now add disorder to the periodically driven, interacting models considered above.
Specifically, we investigate Floquet drives of the form

U(T) = UdisUM...U2U1 (5.28)

where we take Udis to be evolution under a disordered on-site potential with no hop-
ping, i.e.

Udis = e−iτHdis (5.29)

where

Hdis = ∑
i,σ

vini,σ (5.30)

with vi uniformly distributed in [−W, W]. However, the exact form of disorder doesn’t
play a role in the argument 2.

For Floquet systems of this type, sufficiently strong disorder will (either K-body
or many-body) localize the slowed dynamics but leave the cellular automation dynam-
ics unaffected. This happens when the cellular automation has a finite order and when

2Note, for example, if Hdis is included as a constant term throughout the evolution instead of only
being applied during the Udis portion of the drive, then all our results still hold [43]. In this case, the
strength of the disorder during the first 4 steps of the floquet drive must be kept small. The strength
during the 5th, disorder only, step may be made large by lengthening the time that Udis is applied.
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the disorder is large compared to the slowed evolution. This leads to the emergence of
robust phases with stabilized cellular automation dynamics.

5.4.1 Dynamics with disorder close to P = I

To illustrate how this occurs, we begin with the simpler case of when the cellular au-
tomation of the full Floquet period (though not necessarily each step m of the drive) is
the identity, i.e.

PM...P2P1 ≡ P = I (5.31)

where we have defined P as the full cellular automation. Examples of cellular automata
of this type include frozen dynamics and the perfect swapping Hubbard-RLBL model
with periodic boundary conditions (e.g. τ = π

2 , V = 0 or τ = 3π
2 , V = 16

3 ).

Using (5.16) we find that, for parameters where the Diophantine conditions are
approximately satisfied, the evolution of one Floquet period T may be written

U = UdisPe−iτHeff (5.32)

= Udise−iτHeff (5.33)

≈ Udis

(
1 − i

∫ τ

0
dteitHdisHeff(t)e−itHdis

)
(5.34)

= Te−i
∫ τ

0 dtH(t) (5.35)

where

Heff(t) = e−itHdisHeffeitHdis (5.36)

H(t) = Hdis +Heff(t) (5.37)

We therefore have that the cellular automation evolution will be stable if the Hamilto-
nian (5.37) is localized.

To see when this is the case, we rewrite (5.37) as
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H(t) = H(0) + V(t) (5.38)

where

H(0) = Hdis +Heff(t) (5.39)

V(t) = Heff(t)−Heff(t); V(t) = 0. (5.40)

with f (t) = 1
τ

∫ τ
0 ds f (s) the time average and V(t) is the strictly time-dependent part

of H(t).

We note that Heff is a sum of local Hamiltonians sandwiched by Pm (5.17) and is
thus also local. This implies that V(t) is local as well and may be written

V(t) = ∑
i

Vi(t). (5.41)

Whenever H(0) is MBL, we may use a theorem by Abanin, De Roeck, and Huve-
neers [38] to show that the weak, local drive V(t) will not ruin the localization of H(0).
Namely, that the Hamiltonian (5.37) will be MBL whenever

τ||Vi(t)||HS ≪ 1 and
τ||Vi(t)||2HS

W
≪ 1 (5.42)

Note that τ||Heff||HS ≪ 1 implies τ||Vi(t)||HS ≪ 1. Hence, for sufficiently strong
disorder, the Hamiltonian (5.37) will be MBL so long as H(0) is MBL. A corrollary of
this result is that (5.37) will be K-body localized so long as H(0) is K-body localized 3.

We have thus reduced the problem to asking whether the static Hamiltonian H(0)

is localized. For 1D systems, we expect H(0) to be MBL. This is because, using a KAM
type scheme, it has been shown that models of this type (i.e. Hamiltonians with a

3This is because [38] uses a KAM type scheme to, order by order, find exactly the dressed ℓ-bits of the
Hamiltonian and thus prove it is MBL. This procedure may thus be stopped at some order K to show
K-body localization.
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disordered term plus a weak, local interacting term) are MBL in 1D under the weak
assumption of Limited Level Attraction (see [35]). In higher dimensions, rare regions
of weak disorder can cause an avalanche effect that ruins the MBL [36, 37, 41, 193]. This
delocalization, however, happens on exponentially long time scales and thus the sys-
tem is prethermally localized. Furthermore, these systems are expected to be K-body
localized. This is because the probability that the K-particle energy spectrum features
the accidental resonances that ruin localization goes to zero in the thermodynamic limit
[40].

In summary, we have shown that when disorder is added to a Floquet system
near a special point with P = I, then the dynamics is stabilized by (many-body or K-
body) localization and thus corresponds to a robust prethermal phase. We expect that
as we move further away from special points, the effective evolution would resemble
that of random local unitaries in which spreading has been studied in e.g. [194].

5.4.2 Discrete Time Crystals

We now consider a Floquet drive that corresponds to a perfect cellular automation with
some finite order ≥ 1, i.e.

PO = I; O ∈ N. (5.43)

Such dynamics, when stable to disorder and O > 1, is often called a discrete time
crystal. Indeed, the original time translation symmetry of the Floquet drive, T, has been
spontaneously broken in these interacting, localized Floquet phases that now have OT
time translation symmetry. Let us consider the evolution after O Floquet periods given
by

UO =
[
UdisPe−iτHeff

]O
(5.44)

= [UdisP]O e−iτHO,eff (5.45)

where, to first order in τ||He f f ,(i,j)||HS,

HO,eff =
O−1

∑
a=0

(
P†U†

dis

)a
Heff (UdisP)a . (5.46)
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Now, note that since P is a cellular automation (and thus updates the occupancy
of sites based on the occupancy of nearby sites), it transforms the number operator of a
site i in the following way

P†niP = ∑
i1

Pi1ni1 + ∑
i1,i2

Pi1i2ni1ni2

+... + ∑
i1,i2,...,iλ

Pi1i2...iλ ni1ni2 ...niλ (5.47)

where the coefficients Pi1 , Pi1i2 , ..., Pi1i2...iλ are only non-zero when all the sites i1, i2, ..., iλ

are within some finite region surrounding site i. This implies that

[UdisP]O e−iτHO,eff

= POe−iτHloce−iτHO,eff

= e−iτHloce−iτHO,eff (5.48)

where

Hloc =
O−1

∑
a=0

PaHdisP
a. (5.49)

Note that Hloc is a sum of local terms as in (5.47). We now repeat the steps (5.33) to
(5.38) to find that

UO = Te−i
∫ τ

0 dtH(t) (5.50)

with

H(t) = H(0) + V(t) (5.51)

and

H(0) = Hloc +HO,eff(t) (5.52)

V(t) = HO,eff(t)−HO,eff(t) (5.53)

HO,eff(t) = e−itHlocHO,effeitHloc (5.54)
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Again using [38], we find that (5.51) is k-body (many-body) localized whenever
H(0) is k-body (many-body) localized and (5.42) are satisfied. Again, since H(0) is a
fully MBL term plus a weak, local interacting term, we expect it to be k-body (many-
body) localized as discussed in the paragraph following (5.42).

We remark that the range of HO,eff, and thus ||Vi(t)||HS, increases with increasing
O. By (5.42), this implies that the region in parameter space where the system is local-
ized will shrink rapidly for increasing O, however the region will remain finite so long
as O is finite. This also suggests that general cellular automations without finite order
are not likely to be stabilized by the disorder. For example, for the perfect swapping
RLBL model, the bulk cellular automation has order 1 while the cellular automation
at the edge has infinite order (since particles are transported chirally along the edge).
This is another way of viewing why the edge modes of an interacting, perfect-swapping
RLBL model thermalize [42, 43] even while the system with periodic boundary condi-
tions does not.

5.5 Stabilized Subspaces

We now investigate when interacting models with sequentially activated hopping may
exhibit stabilized cellular automation dynamics in Krylov subspaces even when the
full Hilbert space does not support such dynamics. Namely, we consider two main
situations where this may occur.

First, we can have all the Diophantine conditions approximately satisfied, but the
corresponding cellular automation has infinite order when acting on some states (e.g
edge states in the RLBL model). However, some initial Fock states may exhibit finite
orbits under the cellular automation. These orbits may then be stabilized by disorder.

Another possibility is when only some of the Diophantine conditions are approx-
imately satisfied. Here, the Hilbert space fragmentation (that occurs when a few of
the Diophantine conditions are perfectly satisfied, see Ch. 4) may be stabilized by the
disorder.

In both these cases, we are thus interested in Floquet evolution that may be writ-
ten

U(T) = UdisUPe−iτHeff . (5.55)
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Here UP maps number states to number states only in a subspace N associated with
satisfied conditions. Let us consider cases where

UO
P |N⟩ = |N⟩ (5.56)

for some finite O ∈ N.

We now ask whether the subspace N is localized under the evolution U(T).

We first specialize to the situation where the subspace N is closed under the evo-
lution of U(T), i.e.

U(T)|N⟩ = |N′⟩ ∀ |N⟩ ∈ N (5.57)

where |N′⟩ ∈ N. A simple example when this (approximately) happens is when starting
with a few particles far away from the edge in the RLBL model. A more elaborate
example will be discussed below.

In this case, U(T) is therefore block diagonal with

U(T) =

(
UNc 0

0 UN

)
(5.58)

where UN acts on the space N and UNc acts on its compliment Nc.

Now, using (5.55) and (5.56) and repeating the steps (5.44) through (5.50), we have
that UO

N is localized.

We again illustrate our point using the Hubbard-RLBL model. Consider the case
where activated pairs with 1 or 3 particles are approximately perfect swapping while
pairs with 2 particles of opposite spin are approximately frozen (i.e. regions in Fig,
2 where yellow and blue overlap). Here, the corresponding cellular automation has
infinite order. However, the cellular automation does have finite order when acting on
subspaces with a fixed, finite number of particles. Furthermore, note that the Hubbard-
RLBL evolution is U(1) symmetric, thus the finite particle number subspaces are closed
under U(T). Therefore, by the arguments of this section, we have that the cellular
automation will be stabilized by disorder for any initial state with a fixed, finite number
of particles.

For cases where the subspace N is not closed under the evolution U(T) it might
be expected, in general, that the system will fail to localize. This is because, as soon as
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the initial state evolves outside the subspace N, the operator UP will act to delocalize
the state. However, we investigate such cases numerically in the next section and find
that initial states within N may still remain localized on prethermal time scales.

5.6 Numerical results

In this section, we numerically investigate the evolution of several example interacting
Floquet systems both with and without disorder. Namely, we investigate the stabiliz-
ing effect when disorder is added and if the evolution is consistent with localization
dynamics.

As a measure of localization, we use the Inverse Participation Ratio (IPR). Given
any state |Ψ⟩, and letting |n⟩ be the number state basis in real space, the IPR is defined
as

IPR = ∑
n
|⟨Ψ|n⟩|4 (5.59)

The IPR is 1 for any |Ψ⟩ that is a Fock state and goes as 1
N2 (where N is the dimension

of the Hilbert space) for an equal superposition of number states.

In Figure 3a, we plot the IPR as a function of time for three example values of V, τ

in the Hubbard-RLBL model starting from the initial Fock state of a doublon localized
in the center of the system.

In the first case, the second and fourth conditions in (5.4) are approximately sat-
isfied with V = 16

3 − 0.05, τ = 3π
2 + 0.05, i.e. we have perturbed both V, τ away from

the special point V = 16
3 , τ = 3π

2 where both single particles and doublons evolve with
swapping. Without disorder, the system will evolve with the effective slowed, interact-
ing dynamics as discussed in Section 5.3 since it is near a special point. However, the
doublon under this dynamics may still generate superpositions and spread throughout
the system. Thus, the IPR decreases. Note, however, that the Fock state permutation at
the special, Diophantine point has finite order (namely, order 1 since the perfect swap-
ping RLBL model acts as the identity in the bulk of the system). Therefore, by the
analysis of Section 5.4, it is expected that disorder will K-body (in this case, 2-body)
localize the evolution. Consistent with this result, it can be seen in Fig. 3a that the IPR
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approaches a constant value (∼ 0.8) when disorder is included. In Fig. 3b, the aver-
age density of spin-up particles 4 at each site is plotted after 10, 000 Floquet periods.
Without disorder, the particle spreads throughout the entire system. With disorder, it
remains localized around its initial location.

In the second case, we evolve under Hubbard-RLBL with the parameters V = 7.9,
τ = 2π + 0.1. This point in parameter space is not in the vicinity of any Diophantine
points, but, nonetheless, the first and fourth conditions (single particles frozen, dou-
blons swapping) in (5.4) are approximately satisfied (since the point is in an overlap-
ping red and green region in Fig. 2). Similar to the first case, the evolution without dis-
order exhibits slowed, effective dynamics with the IPR decreasing over time (Fig. 3a).
When disorder is added, the IPR again converges to a constant value (∼ 0.8). Note, the
Fock state permutation corresponding to single particles frozen and doublons swap-
ping does not have finite order. However, it does have finite orbits in the two particle
subspace, and, furthermore, the evolution is U(1) symmetric. Thus, evolution is con-
fined to the two particle subspace. This implies that, consistent with the numerics,
disorder is again expected to localize the system by the arguments of Section 5.5.

In the third case, we consider evolution at V =
√

2 − 0.01, τ =
√

2π + 0.01. Here,
only the third condition in (5.4) is approximately satisfied (doublons frozen). The exact
satisfaction of the third condition fragments the Hilbert space leaving any configuration
of doublons frozen while other particle configurations may thermalize. Since, in this
case, the third condition is only approximately satisfied, doublons may separate into a
spin-up and spin-down particle. This means that, unlike case 2, the perturbation allows
the system to evolve out of the Fock state permutation subspace and, as discussed at
the end of Section 5.5, disorder is not guaranteed to localize the evolution. This is re-
flected in Fig. 3a where the IPR no longer converges once disorder is added. However,
the disorder does help to stabilize the frozen dynamics of the doublon over long time
scales. The difference from the first two cases is also apparent when considering the
average particle density Fig. 3b. Here, the doublon is still with high probability local-
ized near its initial location, but once it splits (thereby leaving the frozen subspace) the
single particles may travel throughout the system. This creates a non-zero background
in the average particle density even far from the initial doublon location.

4Due to the up-down symmetry of the evolution, the average density of spin-down particles is equiv-
alent to the average density of spin-up particles and thus the spin-down density plots are not included.
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5.7 Summary and discussion

In this chapter, we have shown that interacting Floquet models with periodically acti-
vated pairs exhibit classical cellular automation dynamics corrected by a slowed, effec-
tive interacting evolution when a given set of conditions (e.g. (5.4)) are approximately
satisfied. Furthermore, when disorder is added to the system, these regions with ap-
proximately satisfied conditions become robust prethermal phases. If only a few of
the Diophantine conditions are satisfied, the Hilbert space fragments into cellular au-
tomation subspaces and ergodic subspaces. When the same conditions are instead ap-
proximately satisfied, the disorder stabilizes the dynamics in the cellular automation
subspace for long, but not infinite, time scales. On the other hand, these subspaces may
still support localization if the subspace is closed under the evolution.

The existence of these stabilized cellular automation phases opens the door to
a systematic investigation into their properties. For example, in [43] the disordered
Hubbard-RLBL model was investigated at τ = π

2 with V approaching 0 and V ap-
proaching infinity. It was found that, in this regime, the system belongs to a class of
anomalous Floquet topological insulators, called correlation-induced anomalous Flo-
quet insulators (CIAFI), labeled by a hierarchy of topological invariants. The two dif-
ferent values of V correspond to topological insulators with two differing topological
invariants. From the perspective of our work, this corresponds to the cases where single
particles and doublons are approximately swapping (conditions two and four approx-
imately satisfied) for V near 0 and corresponds to single particles swapping and dou-
blons frozen (conditions two and three approximately satisfied) for V large. Thus, any
parameter space region with those Diophantine conditions approximately satisfied will
also correspond to a CIAFI with the corresponding topological invariants. Similarly,
when other Diophantine conditions are approximately satisfied, we expect the system
to again correspond to a CIAFI with different topological invariants. This is just one
example of the interesting phenomena that may occur in systems with stabilized cellu-
lar automation dynamics and an exciting direction for future work is the investigation
of possible exotic behavior found in systems stabilizing other cellular automata. For
example, it would be interesting to consider interacting Floquet drives without U(1)
symmetry such that the corresponding cellular automation may not preserve particle
number.

One restriction used in this work to show localization was the finite order of
the cellular automation. It is an open question whether there are any systems where
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this constraint may be relaxed. Another interesting possibility is the generalization of
the models discussed in this work to aperiodically driven systems. If this is possible,
the prospective stabilized cellular automation corresponding to the evolution of such
a drive would necessarily be aperiodic as well and therefore allow for more general
stabilized cellular automata. Recent work has suggested the existence of prethermal
phases for aperiodically driven systems [195, 196].

Instead of periodic drives, it is also possible to restrict hopping to between pairs
of sites via measurements. Recently it was shown that, in this way, it is possible to
mimic the RLBL procedure to produce protected edge transport alongside a local bulk
via measurements alone [2]. Due to the non-unitary nature of the measurements, the
analysis in this paper does not directly apply in the measurement-induced setting. A
possible avenue for future investigations is determining if the stabilized cellular au-
tomation dynamics is also possible for measurement-induced systems and, if so, what
similarities and differences does the dynamics have with the Floquet systems consid-
ered here.
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FIGURE 3: Localization in Hubbard-RLBL: a) Evolution of the Inverse Par-
ticipation Ratio (IPR) in the Hubbard-RLBL model for a doublon initially
localized in the center of the system. From left to right, the figures cor-
respond to the second and fourth conditions in (5.4) being approximately
satisfied (both particles and doublons are swapping, V = 16

3 − 0.05, τ =
3π
2 + 0.05), the first and fourth conditions being approximately satisfied

(particles are frozen and doublons are swapping, V = 7.9, τ = 2π + 0.1),
and solely the third condition being approximately satisfied (doublons are
frozen, V =

√
2 − 0.01, τ =

√
2π + 0.01). The orange curve corresponds

to the evolution without disorder, while the blue curve corresponds to the
evolution with disorder. Disordered runs are averaged over 500 realiza-
tions of W = 10 with the range from the 25th to the 75th percentiles filled in
with light blue. Consistent with the theoretical arguments of Sections 5.4
and 5.5, the numerics suggest that disorder fully localizes the evolution in
the first two cases and stabilizes the classical dynamics over exponentially
long time scales in the third case. b) Average density of spin-up particles
per site after 10, 000 driving periods from an initial doublon localized in
the center of the system. From left to right, the same three values for V, τ
are used as in Fig. 3a. For each value of V, τ, the densities after evolution

without disorder (left) and with disorder (right) are plotted.
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Conclusion

Experimental progress has allowed for unprecedented control of quantum systems in
recent years. By probing, driving, and carefully connecting systems to external baths, it
is possible to not only induce exotic equilibrium dynamics in a tunable fashion, but also
realize novel phases of matter which are uniquely non-equilibrium in nature. In this
thesis, we have introduced and analyzed several systems where the surprising behav-
ior of non-equilibrium dynamics is showcased. Furthermore, through the usage and
introduction of several new theoretical advancements, it was shown that the physical
scenarios investigated in this work exhibit a variety of interesting, previously undis-
covered behavior. We, therefore, hope that this work will provide a foundation upon
which these appealing phenomena may be further explored, extended, and experimen-
tally investigated.

Specifically, in chapter 2 we analyzed the behavior of wake patterns induced by
disturbances moving through a sea of lattice fermions. The investigation of these prob-
lems, especially in regards to the disturbances with uniquely quantum characteristics
(such as measurement), appears to be completely new. It was shown that the wake pat-
tern may be described in terms of the velocity of the probe and its direction of motion
in comparison to the lattice vectors. Furthermore, stark contrasts were found to ex-
ist between the wake patterns of the different varieties of probes. Surprising behavior
emerged especially at half-filling where the wake in particle density behind a moving
detector vanishes and where the wake behind a particle extractor becomes invariant
of temperature. As the results for the geometry of a wake are essentially exact in the
linear response regime, this work provides an essential point of comparison for both
future experimental and theoretical studies into important extensions of the model (for
example, the inclusion of interactions).
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In chapter 3, we introduced a periodic sequence of measurements which showed
that it is possible to induce protected chiral edge transport through measurements
alone. In addition to the exciting similarities with other systems that exhibit protected
transport (such as Floquet topological insulators), the non-unitary nature of the evo-
lution provides key differences as well. The model we have here introduced therefore
provides a gateway (as well as a foundation of theoretical tools) into the study of dis-
tinctive features in periodic, non-unitary non-equilibrium dynamics. This system is
also intriguing due to the fact that it stands at an intersection point of several cur-
rently active fields of interest (including Floquet theory, dark-state engineering, and
measurement-induced phase transitions).

Chapters 4 and 5 focus on a class of closed systems where periodic driving and
interactions conspire to induce interesting phenomena and novel phases of matter.
Namely, it was shown that Diophantine equations may be used to find sets of inter-
action strengths and driving frequencies where the dynamics is given exactly in terms
of a complex permutation of number states. At other points in parameter space, an
exponentially large subspace of the Hilbert space exhibits this dynamics. In addition, it
was argued that when disorder is added this dynamics may be stabilized (prethermally
or via MBL) within finite regions of parameter space to realize novel phases of matter.
Our analysis therefore provides a tool to search for and describe exotic phenomena in
a general class of Floquet models which, as we have shown using these Diophantine
tools, include many of the uniquely non-equilibrium phases of matter which are the
subject of much active interest (such as time crystals and anomalous Floquet insula-
tors). An appealing direction for future work is to use the theoretical tools here devel-
oped to further investigate these interacting Floquet systems to see if there are other
completely novel non-equilibrium phases of matter or interesting phenomena which
exist as special cases within this class of models.

Overall, this dissertation has made theoretical pushes on a variety of fronts within
non-equilibrium physics to help show that, by taking advantage of the precise control
of quantum systems which is beginning to be experimentally achievable, it is possible
to realize exciting phenomena which are either rare or completely forbidden in equilib-
rium systems. One of the major end goals and motivations for research in this direction
is to engineer novel, non-equilibrium quantum devices which may act as tools with
previously unheard of capabilities. Furthermore, the study of non-equilibrium dynam-
ics is, in the end, the study of how we interact with and impact the physical systems
around us. Research in this direction is thus important, at least on some foundational
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level, as it is the rigorous study of the lens through which we observe the world.
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