
Debugging and Implementing new Features in a Production Codebase

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Andre Knocklein

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

1

Debugging and Implementing new Features in a

Production Codebase

CS4991 Capstone Report, 2022

Andre Knocklein

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ak2qt@virginia.edu

Abstract:

A software company based in Northern

Virginia had an expansive codebase in

continuous development with the desire to

fix customer-reported bugs and implement

customer-requested features. The variety of

tasks I was assigned to in a variety of

languages using a variety of tools allowed

for the opportunity to use a general

debugging methodology. This involved the

use of tools I had not used before like a

Linux machine to host the local build and

Google’s site debugging tools. Using these

tools allowed for an effective way to

understand a codebase far too large to

comprehend by traditional reading of the

code. The methodology I used to understand

the codebase allowed for the implementation

of a dozen bug fixes and a few new features

that are currently part of the product. The

codebase still has bugs, and there will be a

continuous maintenance of the code, as is

the nature of production code.

1. Introduction

Production code is a monstrously large

project even for those that have worked on it

for a long time, so for someone with no

experience with it, it can be challenging to

understand. When I started my internship at

SitScape, this became my problem. I saw

hundreds of files of code with thousands of

lines each while my largest coding project at

that point was under a thousand lines long. I

didn’t know how I would manage to even

understand it let alone work to improve it,

but with the correct tools, the correct

mentors, and enough time, I was able to do

some very good work in that codebase.

2. Background

The problem was not just the size of the

codebase, but also the way in which it was

written. It was almost entirely composed of

JavaScript and PHP which I had no

experience with. Given that the codebase I

needed to understand was in an unfamiliar

language made its daunting size even more

challenging to conquer. Another

compounding factor was that there was

almost no documentation for the code and

certainly no centralized documentation. The

only documentation that was available was

conditional on whether or not the developer

that coded that section decided to leave

some comments on what they did. For an

experienced programmer, this would not

have presented much of a problem, but with

little experience, I expected to struggle.

3. Literature Review

McCauley1 (2008) is relevant to this paper as

it discusses different ways that debugging

occurs and also different ways of learning

debugging. My experience at the internship

was my debugging learning experience

which can be contrasted with those in

McCauley.

Similarly, Vessey2 (1985) explores how both

experts and novices go about debugging.

This will provide a tool to compare my own

2

experience with so that I can place myself

on a scale for before and after the internship.

4. Process Design

During my time at SitScape, I

broadly worked on two different types of

tasks. One was to fix bugs that have been

reported; the other was to implement new

features that will be useful to the customers.

4.1 Debugging

 The size of the SitScape platform

means that there are many opportunities for

bugs to creep in. There is a process for

finding these bugs and then fixing them

which I went through often.

 4.1.1 Problem Definition

Whenever we discovered a bug, we

reported it to upper management who then

created a ticket for it. This ticket was then

assigned to me. Most of the time, the ticket

itself did not give me a complete

understanding of what the intended behavior

should be, so I met with upper management

to discuss exactly what was wrong and how

it should work from a business perspective.

 4.1.2 Cause Identification

Once I knew what the problem was,

my first task was to identify where the

problem originated. This is quite complex

when the codebase is hundreds and hundreds

of files with thousands of lines of code each

which all work together to create the

product. Sometimes, a problem seemed to

have an easy-to-identify location in the code

that caused the problem, but in actuality, the

problem was caused by a line of code in a

completely different file.

 A big help in this was the use of a

virtual machine I used in order to host the

software locally. This allowed me full

access to most of the files of the software

through Google’s debugging screen which

allowed me to find the files containing the

functions that get called when the problem is

caused. Usually this just provided a starting

point for my search for the cause, and I

needed to keep searching by making use of

breakpoints and inspecting values of

variables. If a value was not what it should

be, I used that as a road map to the location

of the cause where I started debugging.

 4.1.3 Debugging

Once I had found the cause, I needed

to implement the fix. Usually, in the process

of discovering where the problem was, some

of the debugging and brainstorming of

possible solutions was already done. The

specific implementation of the changes I

made varied widely among all of the tickets

assigned to me, but the most common way

in which I solved the problem was educated

guessing with trial and error. Since I was

new to the programming languages that

were used, I used the rest of the codebase as

a guide to come up with my solution.

Usually, it would not work the first time

around, and I had to go through many

iterations. In this process, breakpoints

became very useful as the nature of the

codebase did not easily allow for print

statements to readily show what was

happening. Breakpoints were my favored

alternative as the codebase was too complex

to create test cases. Once I had implemented

the change, I tried to recreate the bug, and I

was always sure that any other functionality

that might be affected also still worked.

 4.1.4 Result Verification

When I was happy with my

implementation, I usually showed upper

management again to verify that they agreed

that my implementation was satisfactory.

This step did not always happen. For small

bugs or if I was confident enough with my

fix, I just pushed my git branch so as to not

waste the time of my bosses.

 4.1.5 Quality Assurance Process

Once my branch was pushed, it went

into the quality assurance (QA) process.

Here, a member of the QA team scheduled a

3

meeting with me to ensure that my solution

worked as intended and more importantly

that it did not break anything else. Because

of this step, I felt it was okay to skip the

Result Verification step.

 When everything was cleared, the

QA team member merged my branch into

the development, and I could see my

solution in the actual production code.

4.2 New Features

 The process for implementing new

features was often similar to that of

debugging. The last two steps (Result

Verification and Quality Assurance Process)

are identical.

 4.2.1 Requirements Elicitation

 When I was tasked with

implementing a new feature, the most

important part was getting a complete

understanding of the intended characteristics

of that feature. This involved a meeting with

my bosses in order to gain a list of

requirements that the feature must have.

This is a common step in any software

development, and it was often helped by the

fact that the codebase already had many

features, many of them similar to what I had

to implement, a fact that also became useful

in the implementation. These meetings were

usually lengthy as it was important to

understand the requirements from the off so

that there were fewer iterations once the

actual implementation started. After the

meeting was over, I had the responsibility of

executing what my boss had tasked me to do

in accordance with the requirements.

 4.2.2 Implementation

With the requirements set out, my first task

was to identify where to implement the

feature. This was usually an easy task as

there would be similar features already in

place or my boss would tell me where they

would like the implementation to be. After

this, I would search the codebase for a

function or piece of code that did something

similar to what I wanted to implement so

that I could adapt something instead of

starting from scratch. This decision was

driven by my limited knowledge of the

programming languages I was being tasked

to use, but it was actually very useful. It

allowed me to both learn the programming

languages but more importantly, it allowed

me to understand the codebase better as my

search for code to adapt would lead to a

better understanding of the code I was

adapting from.

 As in the debugging process, the

actual implementation was always varied,

but the above process was consistent. When

I implemented the feature, I made use of

Google’s debugger again and I used more

breakpoints. The problem with my strategy

of adapting other code was that there would

be redundant or missing information. The

majority of the time I spent implementing

was to understand what information and

which lines of code were truly needed. In

some cases, I could adapt an entire function

almost identically and just change one or

two lines of code. Other times, the

implementations were much more

complicated, but the kit-bash approach I

used was useful and allowed me to

implement features quickly and robustly

even with my lack of experience and

knowledge.

 After I had implemented the feature,

the Result Verification and Quality

Assurance steps were the same as outlined

above.

5. Outcomes

Given the variety of fixes and

features that I worked on, the outcomes of

my work are similarly varied. My new

features are used by both other employees at

SitScape as well as the customers. The

quality-of-life improvements I implemented

through my bug fixes are especially useful

to customers who need to learn how to use

the SitScape platform. Some bugs used to

4

make some actions frustrating to work with,

and after I finished my ticket, the customer

did not need to wrestle with the software as

much.

6. Conclusion

 Working on these two types of tasks

taught me a lot. Firstly, I learned a lot about

JavaScript as that was the primary language

I had to use to implement what I needed to.

This will be very useful to me in the future

as JavaScript is one of the most commonly

used programming languages. I also learned

some of the JQuery library for JavaScript

which was also often used. Aside from

JavaScript, I also now have a basic

understanding of PHP. I did not use this

much during my time at SitScape but the

few functions I did write provided me with a

basic understanding of how it works.

 Maybe more valuable than the

knowledge of the programming languages

themselves is the learning how a production

codebase works. This includes the tools used

like Git and Virtual Machines, but it is more

than that. Gaining experience with the way

the system works in terms of how

everything is put together is invaluable.

7. Future Work

 The features I implemented and

fixed are still active on the SitScape

platform, and the platform is still being

worked on. New bugs will emerge as the

platform expands, and some features will

not work well together which will cause

problems. It is important to keep an eye on

how all parts of the system interact so that

problems can be identified. There will

always be work to be done in improving the

platform and fixing these problems.

References

1. Vessey, I. "Expertise in Debugging

Computer Programs: Situation-Based

versus Model-Based Problem

Solving" (1985). ICIS 1985

Proceedings. 18.

https://aisel.aisnet.org/icis1985/18

2. McCauley, R; Fitzgerald, S;

Lewandowski, G; Murphy, L;

Simon, B; Thomas, L; & Zander, C

(2008) Debugging: a review of the

literature from an educational

perspective, Computer Science

Education, 18:2, 67-92, DOI:

10.1080/08993400802114581

