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ABSTRACT 

Large-scale matrix multiplication is complex 

and costly, so it is commonly run on 

distributed systems for an efficient run time, 

but this risks data security within the 

matrices. Existing algorithms for Secure 

Distributed Matrix Multiplication, include 

Secure Mat-Dot Code, Gap Additive Secure 

Polynomial Code, and Linear Code. The goal 

of my project was to research and select the 

best algorithm, implement it with security 

measures, and make adjustments to improve 

efficiency. The Secure Mat-Dot Code 

algorithm was the best, given its flexibility 

and complexity. My team and I implemented 

the solution with secret sharing, coding 

theory, and polynomial codes to reduce 

latency and keep the matrices private. On a 

2048x2048 matrix, average run time was 207 

seconds. To further reduce latency and 

improve efficiency, the best optimization 

methods were multithreading, pre-calculating 

the computationally heavy operations, 

optimizing interpolation, and transposing the 

matrix. These modifications reduced the run 

time for a 2048x2048 matrix by 92.3% (207s 

to 16s). Implementations that would further 

speed up the program include removing 

modular arithmetic by implementing a Galois 

field, replacing the Vandermonde matrix with 

Lagrange’s method, and using OpenMP 

instead of SHMEM. 

 

 

1. INTRODUCTION 

Matrix multiplication is essential to many 

fields, including data science and cloud 

computing. It may be a simple mathematical 

operation for smaller matrices, but as the 

matrix grows, it becomes increasingly more 

difficult to perform matrix multiplication. To 

get an idea of how complex it becomes, for a 

naïve matrix multiplication method (with a 

triple nested for-loop), where the matrix 

dimensions are N x N, the total time 

complexity would be O(N3). 

 

2. RELATED WORKS 

D’Oliveria, et. al. (2020) discusses GASP 

codes as a solution to the problem of 

inefficient and nonsecure matrix 

multiplication. They posited that constructing 

polynomial codes based on arithmetic 

progressions is a major advantage to this 

approach, though the complexity of 

implementing GASP codes is a major 

drawback. My project did not utilize GASP 

codes given its complexity and the restraints 

imposed on me by the internship timeline, but 

it was important to read about and explore it 

as a viable option. 

 

Makkonen (2022) discusses different schemes 

that can be used for secure distributed matrix 

multiplication. They described schemes such 

as Secure Mat-Dot code, GASP code, and 

Linear SDMM. The secure Mat-Dot code is 

presented as simplistic but effective by 



 

splitting the computation into smaller chunks 

and using Reed-Solomon codes to securely 

disperse the chunks to each of the nodes. My 

project borrowed a portion of Makkonen’s 

recommendation by using the Secure Mat-Dot 

algorithm in my implementation. 

 

Bryant, et. al. (2012) proposes the use of 

blocking as a potential solution to optimize 

code. The major advantages to adopting this 

approach include the implementation 

simplicity, since it is just a reorganization of 

inner for-loops, and its proven effectiveness 

in increasing temporal locality. My approach 

to optimizing my code included utilizing 

blocking, which ended up being very effective 

in decreasing the run time of my matrix 

multiplication. 

 

3. PROJECT DESIGN 

I decided to use the Secure Mat-Dot 

algorithm, which divides the matrix 

multiplication computation into smaller 

pieces, and uses Reed-Solomon codes to 

securely distribute the pieces to different 

nodes. 

 

3.1  Reed-Solomon Codes 

A common solution to the problem of 

inefficient matrix multiplication is 

parallelism. A naïve implementation would 

have one node perform the entire matrix 

multiplication, but parallelism would mean 

using multiple nodes to work on computing 

their own subsection of the final matrix. They 

would perform their computations at the same 

time and combine their results at the end to 

get the final product in a timelier manner. The 

issue with parallelism, however, is the 

straggler effect–the final answer depends on 

each node’s computations, so the entire 

matrix multiplication computation is only as 

fast as its slowest node. The solution to this is 

using Reed-Solomon codes, also known as 

polynomial codes, which encode matrices in a 

way that the result no longer depends on 

every node finishing its computations, and 

only requires a subsection of the nodes to 

finish. 

 

Another issue with parallelism is security. If 

the original matrices contain sensitive 

information, then it is possible for 

compromised worker nodes to extract that 

information. Security vulnerabilities can be 

addressed by Reed-Solomon codes, which are 

designed for reliability and security. 

Randomly generated matrices also add an 

extra layer of security when used in 

combination with the original matrices when 

creating the polynomial codes. 

 

3.2  Secure Mat-Dot Algorithm 

The Secure Mat-Dot Algorithm splits the 

matrix multiplication computation into 

chunks and uses Reed-Solomon codes to 

distribute the pieces securely and reliably 

between the nodes. 

 

Let A and B be two matrices, A is of size t x s 

and B is of size s x r. The goal is to compute 

C = AB, with m worker nodes available, while 

also ensuring that up to k colluding nodes 

gain no information about either matrix. 

 

We begin by selecting n such that 2(n+k)-1 ≤ 

m, and splitting both matrices into n 

submatrices: 

 

A = [A1 … An] 

 

B = [
𝐵1

…
𝐵𝑛

] 

 

Now, C = AB is equivalent to A1B1 + … + 

AnBn, since we have An submatrices and Bn 

submatrices. Each submatrix of A, which will 

be referred to as Ai, has a size of t x 
𝑠

𝑛
, and 

each submatrix of B, which will be referred to 

as Bi, has a size of  
𝑠

𝑛
 x r. If n does not divide 

s, then zero columns and zero rows are added 



 

to A and B respectfully, until n divides s. Each 

submatrix of A and B is then encoded using 

Reed-Solomon codes, and the following 

matrices are randomly generated: matrices R1, 

…, Rk  of size t x 
𝑠

𝑛
  (so that each submatrix has 

the same dimensions as Ai), as well as 

matrices S1, …, Sk of size 
𝑠

𝑛
 x r (so that each 

submatrix has the same dimensions as Bi). 

Thus, we can define three polynomials: 

 

f(x) = A1 + … + Anxn-1 + R1xn + … + Rkxn+k-1 

g(x) = Bn + … + B1xn-1 + S1xn + … + Skxn+k-1 

h(x) = f(x) · g(x) 

 

h has a degree of 2(n+k-1), and when 

simplified, h has l = 2(n+k)-1 terms. h defines 

a Reed-Solomon encoding of C since the xn-1 

term in h is A1B1 + … + AnBn. Thus, by 

computing l points of h, we can interpolate 

the polynomial and find C. Since l = 2(n+k)-

1≤m, we can recover C by having each 

worker node compute one point of h. 

 

We accomplish this by generating values  
𝛼1, … , 𝛼𝑚 . For each 𝑖 ∈ {1, … , 𝑚} , we 

compute the matrices 𝐴�̃� = 𝑓(𝛼𝑖)  and 𝐵�̃� =
𝑔(𝛼𝑖) and send them to node i. Each node 

then computes 𝐶�̃� =  𝐴�̃�𝐵�̃� = ℎ(𝛼𝑖) and returns 

𝐶�̃�. Once 2(n+k)-1 different points (𝛼𝑖 , 𝐶�̃�) of h 
are returned, we interpolate the polynomial 
h(x) = C1 + C2x + … + Clxl-1 and return C = 

Cn, the product of AB. 

 

4 RESULTS  

The base case implementation of the Secure 

Mat-Dot Algorithm had a total run time of 

207 seconds, where the size of the matrix was 

2048x2048, the number of splits (of A and B 

into the submatrices) were 15, and the number 

of worker nodes used were 55. While keeping 

these values constant, we tested different 

optimization methods. The most effective 

optimization methods were to compile with 

optimization level -O3, pre-calculating the 𝛼𝑖 

powers, improving how we gather shares of 

elements, removing unnecessary 

computations and data structures, and 

transposing the matrix to improve memory 

access patterns. Our final run time with the 

optimizations was 16 seconds. 

 

We also wanted to see if blocking the matrix 

to improve cache use would be better than 

transposing. Transposing was faster given our 

constants, but we wanted to alter the values of 

splits and matrix dimensions to see which had 

a better total runtime. The transpose solution 

was consistently faster for varying matrix 

dimensions and number of splits. Thus, the 

transpose solution is the optimal solution. 

 

We also wanted to compare our 

implementations to a single-node naïve 

implementation and a single-node Strassen’s 

algorithm implementation. They are single 

node to maintain security. We expected our 

Secure Mat-Dot algorithm implementation to 

run slower since it had the added steps to 

improve security and distributions. However, 

when compared at varying numbers of nodes, 

splits, and matrix dimensions, our algorithm 

consistently performed better than the naïve 

and Strassen’s implementations. 

 

5 CONCLUSION 

The project demonstrated that the 

implementation of secure distributed matrix 

multiplication using polynomial codes and a 

shared memory system is feasible and more 

efficient than other single-node options such 

as the naïve approach and Strassen’s 

algorithm. This opens the door to further 

exploration since the incorporation of 

polynomial codes in secure distributed matrix 

multiplication is proven to be effective and 

efficient. 

 

6 FUTURE WORK 

In the future, I would want to improve and 

optimize the code. One example would be 

improving the way I am performing matrix 



 

multiplication, which is through transposing 

the matrix, by trying multi-threading or 

algorithms such as Strassen’s algorithm. Also, 

I could remove the modular arithmetic by 

expanding the field to all real numbers or by 

implementing a Galois field. I could test 

Lagrange’s method in place of the 

Vandermonde matrix. I could also try 

different parallelism systems; I am currently 

using SHMEM, but I could experiment with 

OpenMP. I could also test a completely 

different algorithmic scheme instead of the 

Secure Mat-Dot algorithm, such as GASP 

code. 
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