
Improving Latency for Secure Distributed Matrix Multiplication: Optimizing

the Secure Mat-Dot Code Algorithm

CS4991 Capstone Report, 2024

Tiffany Bui

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

tnb6zdz@virginia.edu

ABSTRACT

Large-scale matrix multiplication is complex

and costly, so it is commonly run on

distributed systems for an efficient run time,

but this risks data security within the

matrices. Existing algorithms for Secure

Distributed Matrix Multiplication, include

Secure Mat-Dot Code, Gap Additive Secure

Polynomial Code, and Linear Code. The goal

of my project was to research and select the

best algorithm, implement it with security

measures, and make adjustments to improve

efficiency. The Secure Mat-Dot Code

algorithm was the best, given its flexibility

and complexity. My team and I implemented

the solution with secret sharing, coding

theory, and polynomial codes to reduce

latency and keep the matrices private. On a

2048x2048 matrix, average run time was 207

seconds. To further reduce latency and

improve efficiency, the best optimization

methods were multithreading, pre-calculating

the computationally heavy operations,

optimizing interpolation, and transposing the

matrix. These modifications reduced the run

time for a 2048x2048 matrix by 92.3% (207s

to 16s). Implementations that would further

speed up the program include removing

modular arithmetic by implementing a Galois

field, replacing the Vandermonde matrix with

Lagrange’s method, and using OpenMP

instead of SHMEM.

1. INTRODUCTION

Matrix multiplication is essential to many

fields, including data science and cloud

computing. It may be a simple mathematical

operation for smaller matrices, but as the

matrix grows, it becomes increasingly more

difficult to perform matrix multiplication. To

get an idea of how complex it becomes, for a

naïve matrix multiplication method (with a

triple nested for-loop), where the matrix

dimensions are N x N, the total time

complexity would be O(N3).

2. RELATED WORKS

D’Oliveria, et. al. (2020) discusses GASP

codes as a solution to the problem of

inefficient and nonsecure matrix

multiplication. They posited that constructing

polynomial codes based on arithmetic

progressions is a major advantage to this

approach, though the complexity of

implementing GASP codes is a major

drawback. My project did not utilize GASP

codes given its complexity and the restraints

imposed on me by the internship timeline, but

it was important to read about and explore it

as a viable option.

Makkonen (2022) discusses different schemes

that can be used for secure distributed matrix

multiplication. They described schemes such

as Secure Mat-Dot code, GASP code, and

Linear SDMM. The secure Mat-Dot code is

presented as simplistic but effective by

splitting the computation into smaller chunks

and using Reed-Solomon codes to securely

disperse the chunks to each of the nodes. My

project borrowed a portion of Makkonen’s

recommendation by using the Secure Mat-Dot

algorithm in my implementation.

Bryant, et. al. (2012) proposes the use of

blocking as a potential solution to optimize

code. The major advantages to adopting this

approach include the implementation

simplicity, since it is just a reorganization of

inner for-loops, and its proven effectiveness

in increasing temporal locality. My approach

to optimizing my code included utilizing

blocking, which ended up being very effective

in decreasing the run time of my matrix

multiplication.

3. PROJECT DESIGN

I decided to use the Secure Mat-Dot

algorithm, which divides the matrix

multiplication computation into smaller

pieces, and uses Reed-Solomon codes to

securely distribute the pieces to different

nodes.

3.1 Reed-Solomon Codes

A common solution to the problem of

inefficient matrix multiplication is

parallelism. A naïve implementation would

have one node perform the entire matrix

multiplication, but parallelism would mean

using multiple nodes to work on computing

their own subsection of the final matrix. They

would perform their computations at the same

time and combine their results at the end to

get the final product in a timelier manner. The

issue with parallelism, however, is the

straggler effect–the final answer depends on

each node’s computations, so the entire

matrix multiplication computation is only as

fast as its slowest node. The solution to this is

using Reed-Solomon codes, also known as

polynomial codes, which encode matrices in a

way that the result no longer depends on

every node finishing its computations, and

only requires a subsection of the nodes to

finish.

Another issue with parallelism is security. If

the original matrices contain sensitive

information, then it is possible for

compromised worker nodes to extract that

information. Security vulnerabilities can be

addressed by Reed-Solomon codes, which are

designed for reliability and security.

Randomly generated matrices also add an

extra layer of security when used in

combination with the original matrices when

creating the polynomial codes.

3.2 Secure Mat-Dot Algorithm

The Secure Mat-Dot Algorithm splits the

matrix multiplication computation into

chunks and uses Reed-Solomon codes to

distribute the pieces securely and reliably

between the nodes.

Let A and B be two matrices, A is of size t x s

and B is of size s x r. The goal is to compute

C = AB, with m worker nodes available, while

also ensuring that up to k colluding nodes

gain no information about either matrix.

We begin by selecting n such that 2(n+k)-1 ≤

m, and splitting both matrices into n

submatrices:

A = [A1 … An]

B = [
𝐵1

…
𝐵𝑛

]

Now, C = AB is equivalent to A1B1 + … +

AnBn, since we have An submatrices and Bn

submatrices. Each submatrix of A, which will

be referred to as Ai, has a size of t x
𝑠

𝑛
, and

each submatrix of B, which will be referred to

as Bi, has a size of
𝑠

𝑛
 x r. If n does not divide

s, then zero columns and zero rows are added

to A and B respectfully, until n divides s. Each

submatrix of A and B is then encoded using

Reed-Solomon codes, and the following

matrices are randomly generated: matrices R1,

…, Rk of size t x
𝑠

𝑛
 (so that each submatrix has

the same dimensions as Ai), as well as

matrices S1, …, Sk of size
𝑠

𝑛
 x r (so that each

submatrix has the same dimensions as Bi).

Thus, we can define three polynomials:

f(x) = A1 + … + Anxn-1 + R1xn + … + Rkxn+k-1

g(x) = Bn + … + B1xn-1 + S1xn + … + Skxn+k-1

h(x) = f(x) · g(x)

h has a degree of 2(n+k-1), and when

simplified, h has l = 2(n+k)-1 terms. h defines

a Reed-Solomon encoding of C since the xn-1

term in h is A1B1 + … + AnBn. Thus, by

computing l points of h, we can interpolate

the polynomial and find C. Since l = 2(n+k)-

1≤m, we can recover C by having each

worker node compute one point of h.

We accomplish this by generating values
𝛼1, … , 𝛼𝑚 . For each 𝑖 ∈ {1, … , 𝑚} , we

compute the matrices 𝐴�̃� = 𝑓(𝛼𝑖) and 𝐵�̃� =
𝑔(𝛼𝑖) and send them to node i. Each node

then computes 𝐶�̃� = 𝐴�̃�𝐵�̃� = ℎ(𝛼𝑖) and returns

𝐶�̃�. Once 2(n+k)-1 different points (𝛼𝑖 , 𝐶�̃�) of h
are returned, we interpolate the polynomial
h(x) = C1 + C2x + … + Clxl-1 and return C =

Cn, the product of AB.

4 RESULTS

The base case implementation of the Secure

Mat-Dot Algorithm had a total run time of

207 seconds, where the size of the matrix was

2048x2048, the number of splits (of A and B

into the submatrices) were 15, and the number

of worker nodes used were 55. While keeping

these values constant, we tested different

optimization methods. The most effective

optimization methods were to compile with

optimization level -O3, pre-calculating the 𝛼𝑖

powers, improving how we gather shares of

elements, removing unnecessary

computations and data structures, and

transposing the matrix to improve memory

access patterns. Our final run time with the

optimizations was 16 seconds.

We also wanted to see if blocking the matrix

to improve cache use would be better than

transposing. Transposing was faster given our

constants, but we wanted to alter the values of

splits and matrix dimensions to see which had

a better total runtime. The transpose solution

was consistently faster for varying matrix

dimensions and number of splits. Thus, the

transpose solution is the optimal solution.

We also wanted to compare our

implementations to a single-node naïve

implementation and a single-node Strassen’s

algorithm implementation. They are single

node to maintain security. We expected our

Secure Mat-Dot algorithm implementation to

run slower since it had the added steps to

improve security and distributions. However,

when compared at varying numbers of nodes,

splits, and matrix dimensions, our algorithm

consistently performed better than the naïve

and Strassen’s implementations.

5 CONCLUSION

The project demonstrated that the

implementation of secure distributed matrix

multiplication using polynomial codes and a

shared memory system is feasible and more

efficient than other single-node options such

as the naïve approach and Strassen’s

algorithm. This opens the door to further

exploration since the incorporation of

polynomial codes in secure distributed matrix

multiplication is proven to be effective and

efficient.

6 FUTURE WORK

In the future, I would want to improve and

optimize the code. One example would be

improving the way I am performing matrix

multiplication, which is through transposing

the matrix, by trying multi-threading or

algorithms such as Strassen’s algorithm. Also,

I could remove the modular arithmetic by

expanding the field to all real numbers or by

implementing a Galois field. I could test

Lagrange’s method in place of the

Vandermonde matrix. I could also try

different parallelism systems; I am currently

using SHMEM, but I could experiment with

OpenMP. I could also test a completely

different algorithmic scheme instead of the

Secure Mat-Dot algorithm, such as GASP

code.

7 ACKNOWLEDGMENTS

This project was completed while I was an

Advanced Computing Systems Research

Intern for the National Security Agency. I was

part of a three-person scrum team, including

Bailey Canham from California State

University, Los Angeles, and Nathan Daly

from Johns Hopkins University. We were

mentored by Fiona Knoll, who is an Assistant

Professor of Computer Science at the United

States Naval Academy.

REFERENCES

Bj ̈orck, ̊Ake, and Victor Pereyra. “Solution

of Vandermonde Systems of Equations.”

Mathematics of Computation, vol. 24, no.

112, 1970, pp. 893–903. JSTOR,

https://doi.org/10.2307/2004623. Accessed

21 Jul. 2022.

Bryant, Randal E, and David R O’Hallaron.

CS:APP2e Web Aside MEM:BLOCKING:

Using Blocking to Increase Temporal

Locality*. 5 June 2012,

https://csapp.cs.cmu.edu/public/waside/was

ide-blocking.pdf.

D’Oliveira, Rafael G., et al. “GASP Codes for

Secure Distributed Matrix Multiplication.”

IEEE Transactions on Information Theory,

vol. 66, no. 7, 11 Feb. 2020, pp. 4038–

4050.,

https://doi.org/10.1109/tit.2020.2975021.

Li, Jie, and Camilla Hollanti. “Private and

Secure Distributed Matrix Multiplication

Schemes for Replicated or MDS-Coded

Servers.” IEEE Transactions on

Information Forensics and Security, vol.

17, 30 Jan. 2022, pp. 659–669.,

https://doi.org/10.1109/tifs.2022.3147638.

Makkonen, Okko. “New Schemes for Secure

Distributed Matrix Multiplication:

Cooperative and Analog SDMM.”

Aaltodoc, 22 Mar. 2022, p. 78+4.,

http://urn.fi/URN:NBN:fi:aalto-

202203272571. Accessed 20 July 2022.

Martin D. Schatz, Robert A. van de Geijn,

and Jack Poulson. 2016. Parallel Matrix

Multiplication: A

Systematic Journey. SIAM J. Sci. Comput.

38, 6 (2016), C748–C781.

https://doi.org/10.1137/140993478.

“Selecting Optimization Options.”

Documentation – Arm Developer, Arm

Limited,

https://developer.arm.com/documentation/

100748/0612/using-common-compiler-

options/selecting-optimization-options.

“Shamir’s Secret Sharing.” Wikipedia,

Wikimedia Foundation, 5 July 2022.

https://en.wikipedia.org/wiki/Shamir

“Strassen Algorithm.” Wikipedia, Wikimedia

Foundation, 13 June 2022.

“The Importance of Scalability in Software

Design.” Award-Winning App

Development Company, Concepta

Technologies,

https://www.conceptatech.com/blog/importa

nce-of-scalability-in-software-design.

https://doi.org/10.1137/140993478
https://developer.arm.com/documentation/100748/0612/using-common-compiler-options/selecting-optimization-options
https://developer.arm.com/documentation/100748/0612/using-common-compiler-options/selecting-optimization-options
https://developer.arm.com/documentation/100748/0612/using-common-compiler-options/selecting-optimization-options
https://en.wikipedia.org/wiki/Shamir

