




ABSTRACT

Semi-continuous data appear frequently in many scientific fields which is a special

type of data which include a number of continuous data with reoccurrences of some

discrete numbers. For example, in epidemiology studies, data often include both zeros

for those areas without certain disease, and positive values indicating the severity de-

gree of the diagnosed epidemic cases in other places. Such data often include outliers

and errors from the experiment and the measurement, which are not preventable.

Modeling the semi-continuous data in the presence of noise is challenging because

of the appearance of outliers and the skewness from the normal distribution within

the data. Both of them may mislead the modeling result. It is imperative to model

problems with such data, but available techniques are very limited.

This dissertation aims to develop a formal methodology using supervised learning

when: (1) relevant information is stored in a series of images; (2) images are usually

noisy and distorted from each other; (3) the data set for modeling is a data set with

a semi-continuous response variable; and (4) the modeling goal is to understand the

causal mechanism between variables and to predict future events accurately. The

developed methodology includes three models for this objective: an image fusion

algorithm, an outlier detection framework and a two-part generalized hierarchical

model for semi-continuous data. They have been applied to a real corrosion problem

and modeling results showed that this methodology solved this problem effectively.

Corrosion data were efficiently extracted from corrosion images, outliers within the

extracted data were detected and treated properly and most importantly, the under-

lying causal mechanisms between material microstructures and corrosion evolution
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were revealed by the generalized hierarchical model.

Four major contributions have been made: a supervised learning methodology is

constructed for problems with information stored in both semi-continuous data and

a series of noisy images; an outlier detection framework for supervised learning is

constructed to enhance prediction accuracy; an image fusion algorithm is designed

to extract and combine information from multiple noisy images, and the estimation

of the generalized hierarchical model helps material scientists to reveal the causal

mechanisms between grain boundary characteristics and the intergranular corrosion,

as well as to predict future corrosion occurrences. Future works of this dissertation

are discussed at last.



ACKNOWLEDGMENTS

My PhD life at University of Virginia is one of the most wonderful experience in

my life. I enjoyed every bitter and sweet moment during this journey. All the precious

memories will become the real treasure for the rest of my life. I would never have

been able to finish this dissertation without the guidance of my committee members,

help from my friends, and support from my family, especially my husband.

First, I’d like to express my deepest gratitude to my two advisors, Prof. Donald

Brown and Prof. Robert Kelly. I would like to thank Prof. Brown for patiently

guiding on my study, for correcting on my writing, and for caring for our family.

Thank you for providing me with such an excellent research opportunity. I would like

to thank Prof. Kelly for introducing me to the world of corrosion. You were always

there whenever I had questions or difficulties with my project. Thank you for your

understanding and support during my difficult times. It was my pleasure to work with

you and your group. I benefited a great deal from your guidance, and I have learned

a lot from you, not only for being a good researcher and experimentalist, but also for

being a good person. I would also like to thank my other committee members, Prof.

Learmonth, Prof. Patek, Prof. Lambert, for your guidance and insights through my

PhD study. Meanwhile, I am truly thankful for talking with Prof. Sean Agnew.

Thank you for patiently explaining to me many details of materials microstructures.

I owe sincere and earnest thankfulness to Richard White, who successfully taught

me to conduct difficult experiments, such as EBSD, polishing and etching. You are

so kind and considerate that I really enjoyed working with you. My special thank

goes to Mary Lyn Lim. Thank you for helping me with the complicated experiment

iii



iv

when I had no clue about it, and for cheering me up when I was down. I am also

obliged to my dear colleagues Courtney Crane, Joelle Burzinski, and Elissa Bumiller

in Dr. Kelly’s group who supported me and had valuable discussions with me. Also,

financial support for this study from the Office of Naval Research (Dr. Airan Perez),

Grant N000140810315, is sincerely appreciated. I would like to thank my friends at

UVa who have made my PhD life enjoyable: Xiaohuan, Tiantian, Yonghang, Ruwei,

Zhenyu, Hui Hua, Haiyan, Zhang Nan, Yiyi, Jian Kang, Dandan, Mingyi, Wang Lu,

Yijing, among others.

Last but foremost, I am sincerely grateful to my family. I would like to thank

my parents, for giving me thoughtful care and love that makes my life cheerful, for

supporting me to realize my dream, and for taking care of my baby so that I was

able to make this dissertation possible. I would also like to thank my parents-in-law

for consistently understanding and supporting us, and for helping us to take care of

the family when we were too busy to make it. Most importantly, I am truly indebted

and thankful to my husband Xiaofeng for the love and support that he has provided

me throughout our years together. You have always been there to pick me up, to

encourage me and to care for me when my confidence was shaken. I can never thank

you enough for all you do for our family. I love you. Finally, thank you for your

arrival, Aaron. You are my motivation to finish this and your smile reminds me of

the truly meaning of life. Thank you for being the most important part of my life!



CONTENTS

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and Contributions . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Scope of the Rest of Dissertation . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 9

2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Generalized Additive Model . . . . . . . . . . . . . . . . . . . 12

2.1.3 Hierarchical Model . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Other Supervised Learning Methods . . . . . . . . . . . . . . 15

2.2 Semi-continuous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Background of Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Intergranular Corrosion of Aluminum Alloys . . . . . . . . . . 23

2.5.2 Grain Boundary Characteristics . . . . . . . . . . . . . . . . . 23

3 Methodology 26

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Methodology Development Strategy . . . . . . . . . . . . . . . . . . . 31

v



CONTENTS vi

4 Image Fusion 33

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Data Collection: Image Fusion . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Outlier Detection 46

5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Data Cleaning: Outlier Detection . . . . . . . . . . . . . . . . . . . . 48

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Generalized Hierarchical Modeling 53

6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Data Modeling: A Generalized Hierarchical Model for Semi-continuous

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Semi-continuous Data . . . . . . . . . . . . . . . . . . . . . . 55

6.2.2 Mathematical Definition of the Problem . . . . . . . . . . . . 58

6.3 A Two-Part Generalized Hierarchical Model for Semi-Continuous Data 59

6.3.1 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.2 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Methodology Application 68

7.1 Background of the Intergranular Corrosion Problem . . . . . . . . . . 68

7.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Experimental Approach . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3.1 Sample Preparation and Etching . . . . . . . . . . . . . . . . 71

7.3.2 Electron Backscatter Differaction Imaging . . . . . . . . . . . 72

7.4 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4.1 Intergranular Corrosion Quantitation . . . . . . . . . . . . . . 74



CONTENTS vii

7.4.2 Grain Boundary Characteristics . . . . . . . . . . . . . . . . . 75

7.5 Methodology Application . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.5.1 Image Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.5.2 Outlier Detection Framework . . . . . . . . . . . . . . . . . . 81

7.5.3 Two-part Generalized Hierarchical Model for Semi-continuous

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Conclusions 103

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.4 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 107



LIST OF FIGURES

1.1 A corrosion image of Alloy AA5083-H131 from the optical microscope

at magnification=200X. Degree of sensitization is 57 mg/cm2. Sample

was sensitized at 100◦C for 45 days. Sample was etched in the solution

of 20g ammonium persulfate and 100ml water at room temperature for

1 hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A microstructure image from Electron Backscatter Diffraction system

at magnification=200X. Degree of sensitization is 24 mg/cm2. Sample

was sensitized at 100◦C for 7 days. . . . . . . . . . . . . . . . . . . . 5

3.1 The flowchart of Methodology Development . . . . . . . . . . . . . . 32

4.1 Example of a pair of images to be registered. Top: an EBSD im-

age at Magnification=200X; Bottom: an optical microscope image of

intergranular corrosion at Magnification=200X . . . . . . . . . . . . . 37

4.2 Distributions of percent β coverage calculated from manually outlined

image and the fused image . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 An example of the distribution of semi-continuous data . . . . . . . . 56

7.1 Ammonium persulfate etching comparison of different etching times on

AA5083-H131 for sample 1: 0 min to 30 min. Magnification = 500X.

DoS = 49 mg/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



LIST OF FIGURES ix

7.2 Ammonium persulfate etching comparison of different etching times on

AA5083-H131 for sample 1: 40 min to 70 min. Magnification = 500X.

DoS = 49 mg/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Ammonium persulfate etching comparison of different etching times on

AA5083-H131 for sample 2: 0 min to 30 min. Magnification = 500X.

DoS = 49 mg/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4 Ammonium persulfate etching comparison of different etching times on

AA5083-H131 for sample 2: 40 min to 70 min. Magnification = 500X.

DoS = 49 mg/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.5 Mean percent β coverage, DoS vs. sensitization time . . . . . . . . . 77

7.6 Mean Percent β coverage vs. DoS . . . . . . . . . . . . . . . . . . . . 78

7.7 Grain Orientation (φ1,Φ, φ2) in the Euler Space . . . . . . . . . . . . 79

7.8 Demonstration of Orientation Difference Angles . . . . . . . . . . . . 80

7.9 Examples of Images with Grain Boundary Characteristics . . . . . . . 90

7.10 Flowchart of the methodology application: an intergranular corrosion

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.11 Image registration demonstration. Left: an EBSD image and an optical

microscope image; Right: a registered image with colored boundaries

for different orientations . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.12 Degree of IGC calculation . . . . . . . . . . . . . . . . . . . . . . . . 92

7.13 Mean PMAE comparison between ODF and major robust regression

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.14 PMAE comparison of different models for ODF application . . . . . . 94

7.15 PMAE comparison for randomized data and original data . . . . . . . 95

7.16 Histograms of variables in the corrosion example . . . . . . . . . . . . 96

7.17 Histograms of variables in the corrosion example - continued . . . . . 97

7.18 Histograms of variables in the corrosion example - continued . . . . . 98



LIST OF FIGURES x

7.19 Scatter plot matrices of all variables in the corrosion data set . . . . . 99

7.20 GAM plots of model part I . . . . . . . . . . . . . . . . . . . . . . . . 100

7.21 GAM plots of model part II . . . . . . . . . . . . . . . . . . . . . . . 101

7.22 Mean PMAE comparison of 11 tested regression models with 95% con-

fidence intervals for the corrosion example . . . . . . . . . . . . . . . 102



LIST OF TABLES

4.1 Functions used in the developed image fusion algorithms . . . . . . . 41

5.1 Strategy of Outlier Detection Framework . . . . . . . . . . . . . . . . 50

7.1 Mean PMAE values with 95% confidence intervals of ODF and major

robust regression models . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 PMAE Comparison of Different Models for ODF Test . . . . . . . . . 83

7.3 PMAE Comparison for Randomized Data and Original Data . . . . . 84

7.4 Details of tested methods for model comparison . . . . . . . . . . . . 86

7.5 Mean PMAE of 9 tested models for the corrosion example . . . . . . 87

xi



CHAPTER 1

INTRODUCTION

This chapter introduces the background information, motivation, objectives and

contributions of this dissertation study.

1.1 Background and Motivation

Semi-continuous data appear frequently in many scientific fields such as economy,

ecology, physics, medicine and so on. It is a special type of data which include a num-

ber of continuous data with a reoccurrence of some discrete numbers. For example, the

medical research about the drinking outcomes among alcohol-dependent individuals

in Liu et al. (2008) used individual alcohol consumption data, which include positive

and continuous values indicating the percentage of daily alcohol consumption and a

large amount of zeros indicating no alcohol consumption. In epidemiology studies,

data often include both zeros for those areas without certain disease, and positive

values indicating the degree of severity of diagnosed epidemic cases in other places.

Such data often include outliers and errors from the experiment and the measure-

ment, which are not preventable. Modeling the semi-continuous data in the presence

of noise is challenging because of the appearance of outliers and the skewness from

the normal distribution within the data. Both of them may mislead the modeling

result.

Semi-continuous data in the presence of noise are also common in material science

studies. For instance, the variable Percent β Coverage records the percentage of the
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amount of corrosion occurred along each grain boundary from several aluminum alloy

samples. These observations are collected from experimental images. This variable

takes values from 0 to 1, with a large proportion of reoccurrences of 0’s and 1’s,

corresponding to the situations of no corrosion occurred and totally corroded. This

special distribution is due to the grain boundary characteristics of different grain

boundaries and this variable is considered as a semi-continuous variable. Modeling the

noisy semi-continuous corrosion data is a challenging and imperative task, because we

are eager to understand the underlying causal mechanisms behind the data. However,

the appearance of noise makes the statistical models inaccurate and unstable. We

need a robust model which can resist to those noises. Although this is a similar

problem to robust regression, classic robust regression models were not designed for

semi-continuous data. This dissertation aims to construct a formal methodology to

satisfy the need for the robust modeling of semi-continuous data in the presence of

noise. The methodology is applied to an important example, which is the prediction

of intergranular corrosion in AA5XXX-series alloys.

According to a national study of the corrosion cost in the United States funded

by the Federal Highway Administration (Koch et al., 2002), the annual estimated

direct cost of corrosion in 2001 was $276 billion, equal to 3.1% of the national Gross

Domestic Product (GDP). This amounted to $981 per U.S. resident per year, based on

the population of 2001. Indirect annual cost of corrosion was up to $552 billion, which

doubled the direct cost. These facts show the imperative need of intensive corrosion

control studies. Koch et al. (2002) also pointed out in the report that one of the

effective strategies for corrosion control was corrosion performance assessments and

corrosion prediction, by improving the determination of severity of corrosion damage,

rates of corrosion and methods of evaluating corrosion growth.

Among many metallic and nonmetallic materials, aluminum alloys are most widely

used in marine, aerospace, automobile and manufacture industries because they have
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many advantages such as low density, high strength-to-weight ratio and tunable

strength (Mondolfo, 1976). However, corrosion of aluminum alloys also limits their

usage in these areas, especially for marine structures due to their corrosive seawater

environment. Increasing the corrosion resistance of such alloys can be a challenging

yet important problem and numerous studies and strategies have been carried out to

improve the corrosion resistance of such alloys (Kim et al., 2001; Lo et al., 2009; Unwin

et al., 1969; Yuan, 2006) since their usage became popular. According to those previ-

ous studies, there are many dominant factors that keep this problem so challenging.

This dissertation deals with some of these significant difficulties which were either not

paid enough attention to or were not solved efficiently by previous researchers in the

material science and other similar engineering areas. These difficulties are discussed

as follow.

First, collecting data for modeling can be difficult and time-consuming when data

are stored in different forms of images. For instance, corrosion occurrences on alloy

materials can be captured by optical microscopes in the form of gray scale images.

Usually these images only have a limited number of features such as lines and dots.

They are different from regular pictures because of the lack of meaningful complex

objects like faces, trees or buildings. Figure 1.1 shows an example of such image.

To characterize features of materials, another type of image, the electron backscatter

diffraction (EBSD) image, is obtained by the HKL Channel EBSD acquisition system

(Day and Trimby, 2004), as shown in Figure 1.2. Both Figure 1.1 and Figure 1.2 are

containing different information about the corrosion degrees and physical properties of

the same aluminum alloy. In order to build prediction models for such alloy, relevant

corrosion data such as the degree of corrosion, the length of each grain boundary

(black lines in Figure 1.1), need to be extracted from these two types of images,

which are the only sources of such data. This essential task is called image fusion,

which means combining information from different types of images to construct a
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complete data set for modeling use. The quality of the extracted data directly affects

the quality of the prediction models to be built, so it is significantly important to

have images fused as accurately as possible. Due to its broad application areas from

medical science to material science, image fusion is one of the difficulties that is worth

being analyzed and resolved.

Figure 1.1: A corrosion image of Alloy AA5083-H131 from the optical microscope at
magnification=200X. Degree of sensitization is 57 mg/cm2. Sample was sensitized at
100◦C for 45 days. Sample was etched in the solution of 20g ammonium persulfate
and 100ml water at room temperature for 1 hour.

Second, as the major resource of data, images from experiments or scientific mea-

surements are usually noisy, sometimes even distorted, due to the limitation of equip-

ments being used or the properties of objects being recorded. Such noisiness can be

observed in Figure 1.1, for example. Black dots within grains are all unwanted noises

from the corrosive environment, and they are irrelevant to the desired data from this
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Figure 1.2: A microstructure image from Electron Backscatter Diffraction system at
magnification=200X. Degree of sensitization is 24 mg/cm2. Sample was sensitized at
100◦C for 7 days.

image. Unfortunately, data extracted from such images via image fusion often include

unwanted noisiness unavoidably. The noisiness shows up in the collected data set as

outliers, which would indirectly affect the performance of the prediction models con-

structed based on them. Detecting and removing these outliers is a practical method

to enhance the prediction accuracy of modeling, as well as to ensure the real causality

mechanisms are explained. This task is as important as the image fusion mentioned

above. It is worth extra deep analysis to make data clean for modeling.

Third, the special types of data extracted from the images often limits the usage

of classic efficient and popular statistical learning methods. For instance, the data ex-

tracted from the above two images are often semi-continuous data, which are different

from the assumptions of traditional statistical models. The data can be characterized

as a mixture of non-zero continuously distributed values and a certain proportion of
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repeated single values, such as 0’s (Olsen and Schafer, 2001). On one hand, such

data do not have a normal distribution, so typical regression models would not be

suitable for them; on the other hand, semi-continuous data usually come from surveys

or experiments, so those single values such as zeros have important real meanings,

and researchers are especially interested in those values. For example, zeros mean no

corrosion occurred in corrosion science, and researchers are interested in why those

areas are free of corrosion. Because those data are from the scientific experiment,

statistical learning models constructed for such data are desired to provide causality

mechanism explanations. However, in practice, only a limited number of such models

are available there for scientists and engineers who are dealing with this special type.

Therefore, it is imperative to explore more deeply in this area. It will be beneficial

to design models especially for this specific type of data.

Not limited to the corrosion problems, there are lots of similar phenomena, in

which valuable information is usually in the form of both special experimental data

and a series of noisy images with few features. For example, biological scientists

investigate tumor growth using test results and multiple MRI images. Meteorologists

forecast future weather through local meteorological data and several satellite cloud

pictures. The addressed difficulties with their frequent appearances in many scientific

areas give the motivation of this dissertation. A method for robust modeling of semi-

continuous data is described and analyzed in this dissertation.

1.2 Objective and Contributions

The objective of this dissertation is to develop a formal methodology using super-

vised learning for problems with the following characteristics:

(1) Relevant information is stored in a series of images;

(2) Images are noisy and distorted;
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(3) Data for modeling include semi-continuous variables; and

(4) The modeling goal is to understand the causal mechanism and to predict future

events accurately.

The developed formal methodology is applied to an intergranular corrosion prob-

lem in this dissertation, but it is also applicable to similar phenomena, such as weather

forecasting of different areas based on satellite cloud pictures, tumor growth prediction

based on magnetic resonance images (MRI) and epidemic disease spreading modeling.

This dissertation provides four major contributions:

(1) A supervised learning methodology is constructed to model processes with infor-

mation stored in both semi-continuous data and a series of noisy images. Cor-

rosion prediction problems can be solved by this methodology and we provide a

case study.

(2) An outlier detection framework for supervised learning is constructed to enhance

prediction accuracy. It is applied to a generalized hierarchical model for the

corrosion prediction problem. It is applicable to other supervised learning models,

such as linear regression, random forest and generalized additive model.

(3) An image fusion algorithm is presented that can extract and combine information

from multiple noisy images. Corrosion images taken by different equipment are

fused by this algorithm to collect data for modeling. It might also be applicable

to a wider range of areas such as magnetic resonance imaging (MRI) for tumor

growth monitoring and geographic information integrating.

(4) The estimation of the generalized hierarchical model can help material scientists

to reveal the causal mechanisms between grain boundary characteristics and the

intergranular corrosion, as well as to predict future corrosion occurrences.



8

1.3 Scope of the Rest of Dissertation

The remainder of this dissertation addresses the developed formal methodology

for problems with specific characteristics described above. This formal methodol-

ogy includes various models and algorithms for data collecting, data cleaning and

prediction model construction, which are introduced and analyzed in the following

chapters respectively. Also, modeling results and conclusions from the application to

an intergranular corrosion prediction problem are presented as the model evaluation.

Chapter 2 introduces related research on supervised learning, outlier detection,

image registration and a specific topic about intergranular corrosion; chapter 3 focuses

on the framework for the methodology; Chapter 4, 5 and 6 describes each component

of the methodology development in detail; Chapter 7 gives an application example

of the methodology, which is to predict intergranular corrosion given corrosion image

data. It also shows the modeling results of the applied methodology; Chapter 8

addresses dissertation conclusions and recommendations for future work.



CHAPTER 2

LITERATURE REVIEW

In this chapter, five research areas relevant to this dissertation are reviewed: su-

pervised learning, semi-continous data, outlier detection, image registration and back-

ground information about corrosion. Supervised learning is the main topic of this

dissertation and several classical regression and classification models are introduced

under this section. The relevant information about intergranular corrosion and grain

boundary characteristics is also presented, which motivates this research and will be

used as an application of the developed methodology in Chapter 7.

2.1 Supervised Learning

With the development of tools for data collecting, vast amount of data are gen-

erated from many fields. Thus, it is important to learn from these data and explain

patterns as well as trends behind the data. According to Friedman et al. (2001), if

we predict the values of outputs based on a number of input observations by some

learning algorithms, then this learning process is called supervised learning. Suppose

there is an observation set T = {(xi, yi)|i = 1, 2, . . . , N}, and it is assumed that the

model Y = f(x) + ε represents the relationship between inputs and outputs. Super-

vised learning aims to learn the function f through some learning algorithms, and

produces outputs f̂(xi) corresponding to inputs xi. The learning algorithm aims to

minimize the difference between the original and the generated outputs yi − f̂(xi),

which is known as learning by example.

9
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Supervised learning is a broad topic in the statistical learning field. The two

major components of supervised learning are linear models and nonlinear models for

both regression and classification problems. Linear regression models assume that

the relationship between inputs and outputs is linear, or similarly the function f is

assumed to be linear. In many cases, linear regression models are simple and effective

to explain how inputs affect outputs. They can also be generalized into many complex

models. If the predictor takes values from a discrete set, then it is possible to partition

the input space into a collection of labeled regions. Linear models for classification

aim to find linear boundaries to separate these regions. There are various methods

to find linear decision boundaries, such as the indicator matrix method, discriminant

analysis, logistic regression and separating hyperplanes. More detailed reviews about

linear regression and classification models are well presented in Seber (2004), Weisberg

(2005), Duda et al. (2001) and Friedman (1994). For most of the real data sets, it

is not always the truth that f(X) = E(Y |X) is linear in response to X. Thus, we

transform the input vector X in a nonlinear way, and utilize linear models with this

newly derived input space. This nonlinear method is considered as an extension of

the linear methods, and is known as the basis-function method. Important basis-

function based methods for nonlinear regression and classification problems include

the piecewise polynomials, smoothing splines (de Boor, 1978; Green and Silverman,

1994), nonparametric logistic regression and wavelet smoothing (Daubechies, 1992).

The kernel-based technique is another class of regression techniques. It estimates the

regression function f(X) by fitting a simple but different model separately at each

query point x0 and only uses observations close to that point (Loader, 1999).

There exist many other important techniques in the supervised learning area.

The generalized additive model is an effective and flexible statistical technique to

characterize the nonlinear relationship between inputs and outputs. It can be used for

both regression and classification problems. They are fitted by a scatterplot smoother
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and all p functions can be estimated simultaneously, as shown in Hastie and Tibshirani

(1990). Tree-based methods play an important role in supervised learning area. They

partition the input space into a set of rectangles and fit separate simple model for each

one. Other learning techniques include the support vector machine (SVM), neural

network and random forest. Boosting is one of the most powerful learning method

developed in the last decade. It is a procedure of combining the results of many weak

learners and reweighting their importances by majority vote (Schapire and Freund,

1999). More explanations about boosting methods can be found in Schapire and

Singer (1999) and Friedman (2002). Details of some widely used supervised learning

methods are discussed in the following sections.

2.1.1 Linear Model

Linear models for regression are the most popular and well developed super-

vised learning methods in statistical learning area. Suppose the input vector is

X = {X1, X2, . . . , XN}, and the real-value output is Y . The linear regression model

which represents the relationship between the input and output is in the form of

f(X) = β0 +
N∑
i=1

Xiβi (2.1)

where β′is are unknown parameters or coefficients that need to be estimated, and

X ′is are quantitative values. This model is linear in the parameters, so it is called a

linear regression model. To estimate unknown parameters, the most popular method

is least squares estimation (Sorenson, 1970), which is to minimize the residual sum

of squares (RSS)

min RSS(β) =
N∑
i=1

(yi − f(xi))
2 (2.2)

where (xi, yi), i = 1, . . . , N are from a set of training data (Friedman et al., 2001).

Linear models for classification basically have the same modeling strategy as linear
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models for regression. The difference between them is that classification problems

have numeric levels of qualitative inputs. For instance, if a variable T is a three-

level factor input, then we can define Xj, j = 1, 2, 3, such that Xj = I(T = j).

Therefore, the effect of T is represented by a group of Xj along with a set of level-

dependent constants (Friedman et al., 2001). Popular linear models for classification

include logistic regression, linear discriminant analysis (Mardia et al., 1980), and

linear separating hyperplanes addressed in Vapnik (2000).

As a flexible generalization of linear models, generalized linear models focus on

the problems where the response variable is related to the predictors through a link

function (Nelder and Wedderburn, 1972). The link function can take various forms

such as identity, inverse, log and logit. Nelder and Wedderburn (1972) developed an

iteratively re-weighted least squares method for maximum likelihood estimation, in

order to estimate the parameters of generalized linear models.

2.1.2 Generalized Additive Model

The generalized additive model is a supervised learning model developed by Hastie

and Tibshirani (1990). It is a flexible combination of the properties of generalized

linear models and additive models. It is able to capture and characterize the nonlinear

regression effects between the response variable and predictors, which is valuable and

essential when linear models fail for some problems. A generalized additive model

has a form of

Y = α +
N∑
i=1

fi(Xi) + ε (2.3)

where fj’s are nonparametric smooth functions, and ε is the error term with mean

zero. These smooth functions can be estimated by many different algorithms, such as

cubic smoothing spline (Green and Silverman, 1994) and kernel smoother (Wand and

Jones, 1995). Hastie and Tibshirani (1987) developed a local scoring algorithm to

estimate the smooth functions fj nonparametrically, with a scatterplot smoother as
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a building block. Wood (2008) discussed further about estimating the smooth func-

tions of GAMs within a penalized likelihood framework. Wood (2008) pointed out

that existing methods for penalized likelihood fitting may not converge under some

circumstances, and summarized the three basic approaches for smoothness estimation:

generalized cross-validation (GCV) (Golub et al., 1979), restricted maximum likeli-

hood or penalized quasi-likelihood (Breslow and Clayton, 1993), and direct smooth-

ness estimation based on Akaike information criterion (Akaike, 1973) or GCV. A more

stable and direct estimation method was developed in this work to avoid drawbacks

of the pre-existing methods.

2.1.3 Hierarchical Model

As an extension of generalized linear regression models, hierarchical models (also

known as multilevel models) are widely used to deal with data having hierarchical

structures in biology, pharmacology, psychology, education and so on. Hierarchical

models enable us to explore the variation at different levels within the hierarchy, which

can bring good interpretability of variances from different variables. Hierarchical

models were systematically studied by Goldstein (1995) and they can be classified

into linear hierarchical models and nonlinear hierarchical models (Pinheiro, 1994).

Linear hierarchical models were developed as variance components models in the

first place. Henderson (1953) introduced the ANOVA method to estimate variance

components for unbalanced data and it became the standard estimation method for

linear hierarchical models before fast computation tools were invented. Crump (1946)

developed a maximum likelihood estimation (MLE) method and it was extended by

Hartley and Rao (1967) for a large class of variance components models. After MLE,

restricted maximum likelihood estimation (RMLE) was introduced and developed

by Thompson Jr (1962) and Patterson and Thompson (1971). Then, generalized

linear hierarchical models were able to be estimated using EM algorithms to ob-
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tain (R)MLEs of the variance components. More general estimation approaches were

proposed after MLE and RMLE, such as Bayesian inference (Harville, 1974), a combi-

nation of empirical Bayes and MLE (Laird and Ware, 1982), and MLE with a scoring

method (Chi and Reinsel, 1989). Bayesian analysis using the Gibbs sampler, intro-

duced by Geman et al. (1984), is another important topic in this area (Gelfand et al.,

1990; Wakefield et al., 1994). This method can relax the restricted assumption of

Gaussian distributions for the random effects and error terms. However, it still has

drawbacks including intensive computation efforts and the need of prior distributions

of all individual level parameters. Liang and Zeger (1986) and Zeger et al. (1988) dis-

cussed the generalized linear hierarchical models with a link function, which can also

be considered as a type of nonlinear hierarchical models. Detailed and comprehensive

reviews of linear hierarchical models and estimation methods are shown in books of

Searle et al. (1992), Lindsey and Aickin (1994), Longford (1993) and Gelman et al.

(2007).

Nonlinear hierarchical models were firstly introduced in the pharmacokinetics area

by Beal and Sheiner (1980). Many nonlinear hierarchical models were discussed by

Gallant and Corporation (1987), Pinheiro and Bates (2009), Grossman and Koops

(1988). MLE methods have been developed based on Taylor expansions to estimate

this type of model. Many efforts have been made to estimate nonlinear hierarchical

models. Mallet et al. (1988) created a nonparametric MLE method for nonlinear hier-

archical models without assumptions of the distribution of random effects. Davidian

and Gallant (1992) proposed a smooth nonparametric MLE method for nonlinear

hierarchical models. Bennett et al. (1996) applied a Bayesian method to estimate

the nonlinear hierarchical models. The assumption was that the distributions of ran-

dom effects and error terms were known and prior distributions of individual level

parameters were also known.

Nonlinear hierarchical models include those models in which some levels are linear
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and other levels are nonlinear as well. This type of model was introduced by Vonesh

and Carter (1992). They are also called mixed effects models. Model parameters

can be estimated by a generalized least squares procedure. As addressed by Pinheiro

and Bates (2009), nonlinear hierarchical models are useful when we need simplicity,

good interpretability and more importantly, validity from the modeling beyond the

observed range of data.

2.1.4 Other Supervised Learning Methods

Many supervised learning algorithms, other than classical ones described above

have been recently developed since the using of high efficiency computation tools.

Support Vector Machine (SVM) is one of the most successful and effective methods,

which was originally introduced by Vapnik in 1963 (Vapnik, 2000). It can be used

for both classification and regression problems. The basic idea of SVM is that it

works as a classifier, and generates a hyperplane or a set of hyperplanes in a high

dimensional space, in order to separate the inputs into different classes. The optimal

hyperplane has the greatest distance to the nearest data point of any class. SVM was

firstly developed as a linear classifier, and later nonlinear classifier algorithms were

introduced in Boser et al. (1992) by using kernel functions. Frequently used kernel

functions include polynomial functions and the Gaussian radial-basis function.

Random Forest (Breiman, 2001) is another popular supervised learning algorithm

developed recently, and is also one of the most accurate learning methods. Performing

as a classifier, Random Forest combines many decision trees together, and gives a

class as an output which is the mode of the classes by those trees. It is characterized

by the “bagging” algorithm (Breiman, 1996) with the random selection of features

(Amit and Geman, 1997; Ho, 1998). Random Forest is able to handle large size data

sets with many input variables efficiently, and generate unbiased estimations of the

generalization error. However, it also has some disadvantages as other methods have,
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such as overfitting some data sets with noisy data points. The choice of the number

of decision trees to be used in the model also affects its performance.

Multivariate Adaptive Regression Splines (MARS) is a nonparametric adaptive re-

gression procedure introduced by Friedman (1991), and it works well for high dimen-

sional data. It can be considered as a generalization of the stepwise linear regression

which automatically models the nonlinearity. MARS takes the form

f(X) = β0 +
N∑
j=1

βjBj(X) (2.4)

where Bj(X) is a basis function or a linear spline, cj is a coefficient. MARS can

also be applied to classification problems, given special developed modeling strategies

such as PolyMARS (Kooperberg et al., 1997). MARS can deal with both numeric

and categorical data, and is well suited for large data sets. MARS is a nonparametric

regression, so model validation can only be done indirectly with techniques such as

cross-validation.

Boosting is known as one of the most important and powerful statistical learning

algorithms developed in the last decade. As the most popular boosting method,

“Adaboost” was introduced by Schapire and Freund (1999). The idea of boosting

is to combine the outputs of a group of “weak” learners or classifiers, in order to

generate a strong learner. A learner is considered as a “weak” learner if its error rate

is only slightly better than random guessing. The final prediction is made based on

a reweighted majority vote of many “weak” learners. After repeated modifications,

such a voting procedure is able to give a powerful prediction:

C(x) = sign(
N∑
i=1

αiCi(x)) (2.5)

where C(x) is the updated classifier, Ci are “weak” learners, α1, α2, . . . , αN are com-

puted by the boosting algorithm. Different boosting algorithms may give different
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weighting strategies. Suppose there are M observations. “Adaboost.M.1” updates αi

as

αi = log(
1− erri
erri

) (2.6)

where erri =
∑M

j=1 wjI(yj 6=Ci(xj))∑M
j=1 wj

, and wj is the weight of each observation, with an

initial value of 1/M .

2.2 Semi-continuous Data

Semi-continuous data are often characterized as a mixture of non-zero continuously

distributed values and a certain proportion of repeated single values, such as 0’s (Olsen

and Schafer, 2001). Such data appear frequently in economics, ecology, physics and

medicine. For example, the research about the drinking outcomes among alcohol-

dependent individuals in Liu et al. (2008) has individual alcohol consumption data,

which include positive and continuous values indicating the percentage of daily alcohol

consumption and a large amount of zeros indicating no alcohol consumption. In

epidemiology studies, data often include both zeros for those areas without certain

disease, and positive values indicating the severity degree of diagnosed epidemic cases

at other places. Semi-continuous data are also common in material science studies.

Here in the intergranular corrosion problem we are solving, the response variable

Percent β Coverage records the percentage of the amount of corrosion occurred along

each grain boundary from several aluminum alloy samples. This variable takes values

from 0 to 1, with a large proportion of reoccurrences of 0’s and 1’s, corresponding

to situations of no corrosion occurred and totally corroded. This special distribution

is due to the grain boundary characteristic differences among grain boundaries and

we consider such a variable as a semi-continuous variable. Analysis of the semi-

continuous data is challenging because of the presence of skewness from the normal

distribution within the data.



18

2.3 Outlier Detection

With the development of information technology, more and more data have been

collected and analyzed for the purpose of knowledge discovery. Sometimes, collected

data include human or machine errors. These errors are considered as outliers for

the modeling purpose. For example, a measurement is wrongly recorded due to

limitations of designed algorithms in a science experiment. Another type of outliers

is the unusual incident such as credit card frauds Kou et al. (2005) and computer

virus attacks Ertoz et al. (2003). It is desirable to remove or correct errors from the

dataset for a better understanding of patterns underneath, and it is also important

to report unusual incidents for safety consideration. Both of these needs are called

outlier detection.

Outlier detection has been one of the most important topics in statistics since the

19th century. With the rapid growth of data dimensions and types of data sources, it

is worth making more effort to develop outlier detection methods for these data. In

practice, various outlier detection techniques have been developed. Chandola et al.

(2009) provided a comprehensive survey of outlier detection techniques. These tech-

niques are based on different statistical and data mining methods such as classifi-

cation models, neural network models, Bayesian networks, SVM, rule-based models,

the nearest-neighbor models (using distance to the kth nearest neighbor and using

relative density), clustering algorithms, and other information theoretic models.

Besides the above techniques, there are many new approaches developed recently

for outlier detection. Abe et al. (2006) presented an approach to reduce outlier

detection problem to a classification problem, and then applied a selective sampling

mechanism based on active learning to the reduced classification problem. Aggarwal

and Yu (2008) examined and applied a density based approach to the problem of how

to remove the uncertainty from data. Latecki et al. (2007) developed an unsupervised

algorithm for outlier detection. A nonparametric density estimation was modified to
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obtain a robust local density estimation and then outliers were detected by comparing

the local density of each point to the local density of its neighbors . Kriegel et al.

(2008) discussed outlier detection techniques for high-dimensional data. Instead of

using distance-based approaches to high-dimensional data, the authors proposed a

novel approach named angle-based outlier detection and also compared it to other

distance-based methods. Filzmoser et al. (2008) also discussed outlier detection in

the high dimension. The algorithm adopted properties of principal components to

identify outliers in the transformed space, so that the computational time was less

than other existing methods. Another outlier detection schema for high dimensional

data was proposed by Kriegel et al. (2009), utilizing axis-parallel subspaces. Their

model determined how much the object deviates from the neighbors in this subspace.

She and Owen (2010) developed an outlier detection method based on penalized

regression, utilizing a thresholding based iterative procedure to detect outliers. Cerioli

(2010) developed multivariate outlier tests based on the high-breakdown Minimum

Covariance Determinant estimator. The rules have a good performance under the null

hypothesis of no outliers in the data. Riani et al. (2009) applied the forward search

method to obtain robust Mahalanobis distances for outlier detection in a multivariate

normal data set. Several new robust distances were also introduced, and comparison

results showed the power of this approach. Nguyen and Welsch (2009) presented a

robust linear regression approach utilizing the “maximum trimmed squares” (MTS),

which maximized the sum of the q smallest squared residuals, instead of the least

trimmed squares (LTS), to capture the set of outliers. Plus, MTS can be solved

efficiently in polynomial time.

Generally, there are two types outlier detection models, based on different ob-

jectives of outlier detection problems. For problems aiming to just find out unusual

incidents or outliers, unsupervised learning methods are typically utilized, such as

distance-based models in Knorr and Ng (1998). Observation points far from the ma-
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jority points are considered as outliers. These methods are applicable to problems

such as credit card fraud detection and computer virus attack detection. To evaluate

this type of methods, a predefined data set including known outliers is used as a test

set (Aggarwal and Yu, 2001). The more accurately known outliers are filtered out,

the better a method performs. The other type of problems belongs to the realm of su-

pervised learning. Outliers in such problems usually mislead the result of regression

or classification, which leads to bad prediction performance. Outlier detection for

such problems aims to remove noisy data or correct wrong data and to enhance the

performance of regression models. Robust regression is a type of methods for noisy

data when discarding noisy data is not ideal for the purpose of modeling (Wilcox,

2012). It performs better than the ordinary least squares in the presence of heavy

tailed distributions. Most common methods of robust regression include M-estimation

introduced by Huber (1964), least median squares (LMS) and least trimmed squares

(LTS) (Rousseeuw, 1984). The general M-estimator minimizes the objective function

n∑
i=1

ρ(ei) =
n∑

i=1

ρ(yi −XTβ) (2.7)

where the symmetric function ρ gives the weight of each residual to the objective

function. LMS orders all the residuals and replaces the sum of residual squares in

the ordinary least squares with the median residual squares. LTS minimizes the sum

of squared residuals over a subset of all points, and the residuals are ordered as well

(Rousseeuw, 1984). Improved prediction accuracy is considered as the criterion to

evaluate an outlier detection method for problems of regression (Brossart et al., 2011;

Naseem et al., 2011; Rousseeuw and Leroy, 1987; Xu et al., 2008; Zhang et al., 2010).

Naseem et al. (2011) used the Receiver Operating Characteristic curve (ROC curve)

to indicate the predicted classification accuracy of their model, in order to evaluate

the performance of their outlier detection model for face recognition. Xu et al. (2008)
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conducted a linear robust regression using a recursive outlier-removal algorithm and

evaluated the model by giving an increased R2 of the regression.

Numerous outlier detection methods have been developed, from unsupervised

learning to supervised learning, but it is still challenging for practitioners to select

an appropriate one among these techniques and treat outliers correctly. In addition,

because of the complexity of the outlier types and different objectives of studies, ad

hoc outlier detection models should be developed individually.

2.4 Image Registration

Image fusion is a process to combine information from multiple images into a

single image or data set, and image registration is a critical step for image fusion.

Image registration aligns two or more images of the same scene, but taken at different

times, from different angles, and by different sensors (Zitova and Flusser, 2003). In

order to gain adequate and accurate information from the combination of images,

studies have been done on image registration since the last decades (Brown, 1992).

Image registration is being frequently utilized in many areas, such as medical imaging

(Lester and Arridge, 1999; Maintz and Viergever, 1998; Van den Elsen et al., 2002),

remote sensing (Fonseca and Manjunath, 1996; Le Moigne et al., 2002), microscopy

images (Ozdemir and Casasent, 1999), and so on. Detailed surveys of these methods

are presented by Brown (1992) and Zitova and Flusser (2003).

Based on the type of image acquisition methods, image registration problems are

classified into three categories: different viewpoints, different times and different sen-

sors to model registration (Zitova and Flusser, 2003). Since image sources and types of

distortions are various, it is difficult to develop a universal image registration method-

ology applicable to all problems. Generally, image registration methods firstly detect

features such as areas, lines and points from images. Then, they define a similarity

measurement to match features. At last, they estimate transform models, which can
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transform an image into its target image (Russ, 2007). Many efforts have been made

for feature detection methods (Goshtasby, 2005; Goshtasby and Stockman, 1985; Ka-

pur and Casasent, 2000; Mahadevan and Casasent, 2003). The detected features

from unregistered images need to be matched with matching methods, or similarity

measure functions. The objective of matching is to find a feature correspondence,

estimate parameters and then align two images together with the minimum mis-

alignment errors. Many feature matching and similarity measurement techniques

have been developed, including the correlation-like methods (Diniz, 2010), sequential

similarity detection algorithms (Barnea and Silverman, 1972), projection-based regis-

trations (Cain et al., 2002) and the Fourier methods (Bracewell, 2000; De Castro and

Morandi, 2009). Detailed descriptions of these methods could be found in surveys

of Lester and Arridge (1999) and Brown (1992). To estimate the transform model,

approaches were developed for various specific problems. Among these approaches,

the local mapping (Goshtasby, 1986; Wiemker et al., 1996), radial basis functions

(Ehlers and Fogel, 1994; West et al., 1997) and elastic registration methods (Bajcsy

and Kovacic, 1989; Wollny and Kruggel, 2002) are frequently adopted. Control point

registration is a method which allows users to manually select common features in

each image for mapping to the same location. It is best used for images with distinct

features, but also with noises and distortions. It has been implemented in the image

processing toolbox in Matlab. Since its performance relies on the manual selection

of distinct features, this method is not computationally efficient and lack of stability.

Few studies have been carried out on image registration for pairs of experimental

images such as EBSD images and microscope images. Although many studies have

been conducted to improve the performance of image registration, it is still one of the

most difficult and critical tasks in image processing.
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2.5 Background of Corrosion

2.5.1 Intergranular Corrosion of Aluminum Alloys

Aluminum alloys are widely used in marine, aerospace, automobile and manu-

facture industries because they have many advantages such as light weight, high

strength-to-weight ratio and tunable strength. However, corrosion of aluminum al-

loys also limits their usage in these areas, especially for marine structures. Numerous

studies have been carried out to improve the corrosion resistance of such alloys (Kim

et al., 2001; Lo et al., 2009; Pan et al., 1996; Unwin et al., 1969; Yuan, 2006).

5XXX series alloys are used in this dissertation, which contain magnesium (Mg)

more than 3 wt%. It has been shown that alloys with Mg more than 3 wt% can become

saturated with Mg, leading to the formation of an intermetallic compound β (Al2Mg3).

β usually precipitates along grain boundaries when exposed to temperatures higher

than 70◦C (Dix et al., 1958). Therefore, such alloy is susceptible to intergranular

corrosion (IGC) due to the sensitization caused by active β which only precipitates

along grain boundaries. Evaluation of intergranular attack can be difficult. For

5XXX series alloys, the susceptibility to IGC is quantitatively measured by ASTM-

G67 standard test, known as the Nitric Acid Mass Loss Test (NAMLT), according to

the Annual book of ASTM standards for Testing and Materials (2002).

2.5.2 Grain Boundary Characteristics

When two dissimilarly orientated crystals or grains meet, the space between them

constitute a grain boundary on the surface (Yuan, 2006). Grain boundaries play an

important role in corrosion science, because many studies have shown that a grain

boundary provides a preferential site for precipitation. And grain boundary charac-

teristics (GBCs), such as grain boundary misorientation, boundary plane and grain

orientations, are critical factors in determining the precipitation rate and morphol-
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ogy (Butler and Swann, 1976; Garg and Howe, 1992; Vaughan, 1968; Yuan, 2006).

Grain boundary misorientation (θ) is defined the angle required to rotate the set of

crystal axes of one grain into coincidence with that of the other one in its neighbor.

Mathematically, θ is calculated as

θ = min|cos−1{tr[O24 · (g−1
1 g2)]− 1

2
}| (2.8)

where O24 is a set of 24 symmetry operators for cubic crystals, and g1, g2 are rotation

matrices of grain 1 and grain 2. Intergranular corrosion (IGC) is a type of corrosion

selectively attacking grain boundaries or closely adjacent regions without attacking

grain bodies. It occurs between adjacent grain bodies, and different alloys show

various electrochemically active paths for IGC.

Pan et al. (1996) and Unwin and Nicholson (1969) well studied the property and

behavior of grain boundaries and concluded that they are strongly affected by local

chemistry and atomic structures. The only GBC parameter considered correlating

to IGC is misorientation (denoted as θ). It is sometimes expressed in terms of Coin-

cidence Site Lattice (CSL). Chan et al. (2008) found that low-angle boundaries and

grain boundaries with Σ3 (60◦〈111〉) and Σ7 (38.21◦〈111〉) are more likely to have

higher corrosion resistance than other random boundaries. Grain boundaries with

CSL equal to Σ13 (27.79◦〈111〉) are also found to have higher corrosion resistance,

but this is uncertain due to limited observations(only 18 boundaries). Unwin and

Nicholson (1969) found that there were a large amount of β-phase on grain bound-

aries with θ in the range of 2◦ to 15◦. Jakupi et al. (2010) also studied the corrosion

resistance of Σ3 grain boundaries and they stated that Σ3 has high corrosion re-

sistance in alloy 22 and the corrosion resistance capability decreases in the grain

orientation order, which is 〈111〉 > 〈110〉 > 〈100〉. Yuan (2006) has shown that in

addition to misorientation, grain boundary plane also has an influence on IGC growth
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and β phase preferentially grew on 〈111〉 with 〈112〉 and boundaries with θ less than

20◦ are resistant to IGC. Kim et al. (2001) found that grain boundaries with θ below

15◦ can be hardly attacked by IGC in pure aluminum.

Although many efforts and studies have been made to explore the correlation

between GBCs and IGC, physical origins underlying relationships between IGC and

GBCs are still unknown and the utilized analysis approaches are very limited (Lo

et al., 2009). In order to explain the underlying causal relationships and predict

future IGC based on GBCs, a rigorous statistical analysis is needed.



CHAPTER 3

METHODOLOGY

As discussed in Chapter 1, methods are needed when: (1) relevant information

is stored in a series of images; (2) images are noisy and distorted; (3) the data

set for modeling is a structured data set with semi-continuous variables; and (4) the

modeling goal is to understand the causal mechanism between variables and to predict

future events accurately. In order to construct this formal methodology and solve this

problem, three procedures have been considered and three models have been carried

out respectively.

In this chapter, the statement of the problem to be modeled and the mathematical

definition of the problem are firstly given in Section 3.1 and Section 3.2. These two

sections address the objective of the developed methodology as well. Then, Section

3.3 describes the three components of the methodology.

Chapter 4, Chapter 5 and Chapter 6 describe the three components of this method-

ology in more details. Each chapter includes a problem definition where the con-

structed model is applicable. Chapter 4 gives data collection procedure, which gives

an image fusion algorithm to extract information from multiple noisy images; Chapter

5 describes a data cleaning procedure, which provides an outlier detection framework

to prepare clean data for supervised learning models; and Chapter 6 shows the final

data modeling procedure, which models the data set and predicts future events based

on a specially designed generalized hierarchical model for a special data type known

as the semi-continuous data.

26
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3.1 Problem Statement

As discussed in Chapter 1, semi-continuous data appear frequently in many sci-

entific fields such as economy, ecology, physics, medicine and so on. It is a special

type of data which includes a number of continuous data with a reoccurrence of some

discrete numbers. Such data often include outliers and errors from the experiment

and the measurement, which are not preventable. Modeling the semi-continuous data

in the presence of noise is challenging because of the appearance of outliers and the

skewness from the normal distribution within the data. Both of them may mislead the

modeling result. Semi-continuous data in the presence of noise is common in material

science studies. For instance, the variable Percent β Coverage records the percentage

of the amount of corrosion occurred along each grain boundary from several alu-

minum alloy samples. These observations are collected from experimental images.

This variable takes values from 0 to 1, with a large proportion of reoccurrences of 0’s

and 1’s, corresponding to situations of no corrosion occurred and totally corroded.

This special distribution is due to the grain boundary characteristics of different grain

boundaries and this variable is considered as a semi-continuous variable.

Generally speaking, there are some scientific processes of which information is

mainly stored in a series of noisy images with only few features. Data extracted from

images are in the form of semi-continuity with outliers. Modeling the noisy semi-

continuous data is a challenging and imperative task, because we want to understand

the underlying causal mechanisms behind the data, but few available models are

suitable for such data. This dissertation aims to construct a formal methodology to

satisfy the need for the robust modeling of semi-continuous data in the presence of

noise. The methodology is applied to an important example, which is the prediction

of intergranular corrosion in AA5XXX-series alloys.

In order to model these processes, it is essential to fuse multiple noisy images

together to extract relevant data stored in these images. This data collection step is
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known as image fusion. For instance, corrosion occurrences on materials are captured

by optical microscopes in the form of gray scale images in corrosion science. Usually

these images only have a limited number of features such as lines and dots.They are

different from regular pictures because of the lack of meaningful composite features

such as faces, special objects or buildings. To characterize features of materials,

electron backscatter diffraction (EBSD) images are obtained by the HKLTM Channel

EBSD acquisition system (Day and Trimby, 2004). Fusing the optical microscope

image with the EBSD image together could present valuable characteristics of the

material which is being studied, and the corrosion evolution process on that material

is able to be modeled with the extracted information. Many problems in other fields

have similar characteristics, such as medicine and meteorology. More specifically,

it is imperative to align multiple magnetic resonance images (MRI) taken from the

same object at different times to monitor the tumor growth. It is also important

to register several satellite cloud pictures to track meteorological changes and make

weather forecasting based on the path changes of meteorological features.

Therefore, images are the main source of essential information to model event

processes in many scientific fields. However, there are only a limited number of

automated methods available to utilize these images. Take corrosion images as an

example. Corrosion occurrences are usually detected by human eyes and then are

measured manually regarding length or width of the corrosion events. This procedure

not only limits the processing efficiency, but also extracts data inconsistently because

of the objective views of different operators. In this way, these would lead to a data

set with a number of biased data and a very limited size.

Even with a highly efficient image fusion method, wrong data can be unavoidably

extracted from such noisy and sometimes distorted images, due to both the limitation

of the image fusion method and measurement errors. For example, on the corrosion

images, noises within grains due to the excessive exposure to the corrosive solution are
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easily considered as intergranular corrosion. Including such data in the intergranular

corrosion data set can mislead the regression models built based on them. An outlier

detection method is needed to filter out and remove these wrong data, in order to

improve the quality of data for modeling. This step is considered as data cleaning.

Utilizing the clean data, a supervised learning method is constructed to make

predictions of future events, as well as to provide the causal mechanism operating in

the process. The data being used in this dissertation are from corrosion experiments

with a special data type called semi-continuous data. The constructed supervised

learning method is able to deal with semi-continuous data very well, by providing a

high prediction accuracy and good model interpretability.

In summary, the objective of this dissertation is to develop a formal methodology

using supervised learning methods for problems with characteristics:(1) relevant in-

formation is stored in a series of images; (2) images are usually noisy and distorted;

(3) the data set for modeling is a structured data set with semi-continuous variables;

and (4) the modeling goal is to understand the causal mechanisms between variables

and to predict future events accurately.

3.2 Problem Definition

Suppose there is a process Ω = {Y,X1, X2, · · · , XP}, where Y is the response

variable of interest and Xi are features or predictors, i = 1, 2, · · · , P . In the real

world, it is almost impossible to observe the process Ω directly. But instead, what is

available for observation is the process Ωo = {Xo
1 , · · · , Xo

m, Img1, · · · , Imgn}, where

{Xo
1 , · · · , Xo

m} are observations of features {X1, · · · , Xm}, and {Img1, · · · , Imgn}

are images. The difference between the two processes Ω and Ωo is that the re-

sponse variable Y and features {Xm+1, · · · , XP} in Ω are only accessible from images

{Img1, · · · , Imgn} in Ωo.

Therefore, to model the process Ω, the first step is extracting relevant information



30

from images {Img1, · · · , Imgn} in Ωo. Mathematically, there is a need to find a

function h

{Y o, Xo
m+1, · · · , Xo

P} = h(Img1, · · · , Imgn) + εimg (3.1)

such that

dist({Y o, Xo
m+1, · · · , Xo

P}, {Y,Xm+1, · · · , XP}) < δimg (3.2)

where

(1) Y o is the extracted response variable from the process Ωo,

(2) {Xo
m+1, · · · , Xo

P} are extracted features from images {Img1, · · · , Imgn} in Ωo,

(3) h is a mapping from images to underlying information,

(4) εimg is a random error,

(5) dist() is a distance function measuring the difference between two sets of variables

(such as Euclidean distances between two sets), and

(6) δimg is a threshold.

After extracting valuable information from images successfully, the final objective

is finding a function f characterizing complex relationships between the response

variable Y and observed features Xo
1 , . . . , X

o
m, X

o
m+1, . . . , X

o
P :

Y = f(Xo
1 , · · · , Xo

m, X
o
m+1, · · · , Xo

P ) + ε (3.3)

such that

||Y o − Ŷ ||2 < δ∗ (3.4)
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where

(1) {Xo
m+1, · · · , Xo

P} ⊂ h(Img1, · · · , Imgn),

(2) Y o is the extracted response variable in the future,

(3) Ŷ is the prediction of model f(·),

(4) ε is a random noise, and

(5) δ∗ is a threshold.

3.3 Methodology Development Strategy

In this dissertation, the developed formal methodology is considered as a system,

which includes three components. The framework to implement the three components

gives the solution to problems with the four characteristics described above. Each

component indicates one individual component of the system, which is also able to

solve a specific problem independently. The flowchart of the framework of this formal

methodology is shown in Figure 3.1. As shown in Figure 3.1, the whole system can be

divided into three components or subsystems: (1) the image fusion system with image

data; (2) outlier detection system with noisy data; and (3) the modeling system with

clean data. The final model for the problem of interest is the output of this whole

system. Within each subsystem, a test procedure is included as a validation step.

Only if the test result is reliable, it is possible to continue with next subsystem. The

following three chapters describe the three subsystems in detail, and they constitute

the content of methodology development in this dissertation.
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Figure 3.1: The flowchart of Methodology Development



CHAPTER 4

IMAGE FUSION

This chapter introduces the first subsystem in the developed formal methodology,

the image fusion model. The problem is firstly defined formally and then developed

algorithms are described in details.

4.1 Problem Definition

Image fusion is a general process of combining relevant information from two or

more images into a single image or data set. The content of relevant information

depends on the application under consideration. Images to be fused should be regis-

tered or aligned first, and therefore, image registration is a critical step for obtaining

a highly accurate fusion result. This dissertation mainly focuses on the development

of an effective image registration method for noisy and distorted experimental images,

as the first model of the developed formal methodology.

Image registration is a process of setting up a point-by-point correspondence pro-

jection between two or more images, which are acquired either at different times, by

different equipment, or from different points of view. This process is able to align two

or more images together so that contents of relevant information stored within images

can be extracted, combined and compared (Chu et al., 2010). Only when images are

aligned successfully, the process of image fusion can be finished by extracting and

combining information from aligned images.

According to studies of Sabuncu (2004), Zitova and Flusser (2003), Chu et al.

33
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(2010) and Caner et al. (2006), the image registration problem can be theoretically

defined as follows:

Let G1 = {G1i |G1i ⊂ Rd, i ∈ N}, and G2 = {G2i |G2i ⊂ Rd, i ∈ N} be two sets of

real valued images defined on Rd, where d ∈ Z+ is the dimension of the images (usually

d ∈ {2, 3}). For example, suppose that G1i is an image of intergranular corrosion

occurred on an area of aluminum alloy. G1i is taken by an optical microscope at time

t, then all images taken by this optical microscope at any time from 1 to T, T ∈ N

constitute G1 (t ≤ T ). Similarly, if G2i is a magnetic resonance image (MRI) of a

tumor taken at some time point p, then G2 may include the series of MRI images

taken at different times, such as p + 1, p + 2, . . . , p + N . Equation 4.1 describes the

mapping between G1i and G2i as

G1i = H[Ψ(G2i)] + Υi (4.1)

where

(1) G1i ∈ G1, G2i ∈ G2;

(2) Ψ : Rd 7→ Rd is a geometric transformation that models the alignment;

(3) H : G2 7→ G1 captures variations across image sets;

(4) Υi is a random noise;

(5) ‖ G1i ‖=‖ Ψ(G2i) ‖.

The objective of image registration techniques is to estimate the geometric trans-

formation function Ψ by maximizing the alignment measure function p : G1×G2 7→ R.

The alignment measure function p measures the degree of alignment between two im-
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ages to be registered. For 2-dimension images (d = 2), p can be defined as

p(G1i,Ψ(G2i)) =
m∑

x=1

n∑
y=1

I{[G1i]xy, [H ◦Ψ(G2i)]xy} (4.2)

and

I =


1 if [G1i]xy = [H ◦Ψ(G2i)]xy,

0 if [G1i]xy 6= [H ◦Ψ(G2i)]xy.

(4.3)

where

(1) [G1i] is an m× n image;

(2) [G1i]xy is the value of pixel (x, y) on image G1i;

(3) [H ◦Ψ(G2i)]xy is the value of pixel (x, y) on the registered image of G2i.

Thus, the registration problem can be phrased as an optimization problem:

Ψ∗ = arg max p(G1i,Ψ(G2i)|H) (4.4)

Equation 4.4 defines the problem of interest, and addresses the objective of the image

registration problem which is to find the optimal transformation function Ψ∗ such

that the degree of alignment between two images is maximized. In the next section,

an image fusion algorithm is designed and implemented in this dissertation to achieve

this objective, serving as the first subsystem of the whole system for the formal

methodology, as shown in Figure 3.1.

4.2 Data Collection: Image Fusion

In this dissertation, the developed formal methodology is applied to an intergran-

ular corrosion prediction problem as a methodology application. The provided image
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data are from corrosion experiment with noisiness and distortion. The desired image

fusion technique for corrosion images should be able to firstly register a series of im-

ages with different kinds, taken by different equipments, but from the same surface

area. And then it is able to extract valuable information from the registered image

and calculate the value of relevant features as well.

As observed in Figure 4.1, corrosion images used in this dissertation have several

special characteristics, which would prevent us from utilizing classical and popular

image fusion algorithms directly. First of all, both types of images do not have as

many features as pictures from our daily life. For example, there is no colorful or any

meaningful objects shown on the optical microscope images of corrosion (the bottom

one). Only grains with boundaries and noisy particles from the experiment. Similarly,

the electron backscatter diffraction (EBSD) image (the top one) only has grains with

different colors which indicate different characteristics of grains. Second, the optical

microscope images of corrosion are noisy (black particles), especially for those which

are highly corroded. When being implemented with widely used image fusion algo-

rithms, such noisiness is usually not taken into consideration, so that the extracted

information is very likely to include unwanted or misleading data. For example, it is

possible that the black particles on the optical microscope image are considered as

corrosion, which is not the true case. Third, EBSD images are actually not images

taken by cameras, but projected images from numerical computations processed by

the HKL software through some algorithms. Therefore, when it is not possible to

detect some boundaries on EBSD images, they are generated by numerical interpo-

lations. Fourth, EBSD images are distorted from a flat surface due to the 70◦ tilted

sample placed in the chamber of EBSD acquisition system. Such distortion makes it

more difficult to align the EBSD image with the optical microscope image which is

taken from a flat surface. Fifth, these two types of images measure different prop-

erties of materials independently. Based on these special features and the addressed
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objective, an ad hoc image registration technique is designed and implemented with

these images. The following sections introduce this technique which includes three

algorithms working consequently to achieve the objective.

Figure 4.1: Example of a pair of images to be registered. Top: an EBSD image at
Magnification=200X; Bottom: an optical microscope image of intergranular corrosion
at Magnification=200X
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Algorithm 1 computeIGC(): Image Registration with Percentage β Coverage Cal-

culation
Require: GE, GC , α∗, σ∗

1: Gbw
E = bw(GE),Gbw

C = bw(GC)

2: {Gadj
E , Gadj

C } = roughAdj(Gbw
E , G

bw
C )

3: {GE,b} = identifyBound(Gadj
E ),B = size({GE,b})

4: create a zero vector CorrPect, and size(CorrPect) == B

5: for b = 1 to B do

6: α← 0

7: CorrPectb = cover(GE,b, G
adj
C , α)

8: while α ≤ α∗ AND CorrPectb < σ∗ do

9: α← α + 1

10: CorrPectb = cover(GE,b, G
adj
C , α)

11: end while

12: end for

13: return CorrPect

Before explaining the proposed algorithms in detail, definitions of several single

functions used in these algorithms are given in Table 4.1. All of these functions are

available in Matlab and are coded already for use.

Function computeIGC() in Algorithm 1 is the main function in the method of

image registration and the calculation of Percentage β Coverage. Inputs of the func-

tion computeIGC() include two different types of images, such as an EBSD image

and an optical microscope image in this application, and two hyperparameters α∗ and

σ∗. α∗ and σ∗ can be estimated from a collection of test images. The procedures of
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Algorithm 2 roughAdj(): Rough alignment of two images with resizing

Require: Gbw
1 , Gbw

2 , δrough, Nmax

1: n← 0, match← 0, bestMatch← 0, Ψbest = {rotate(0), enlarge(0),move(0)}

2: while n < Nmax AND match < δrough do

3: Ψn = {rotate(ϕr,n), enlarge(ϕe,n),move(ϕm,n)}

4: match = p(Gbw
1 ,Ψn(Gbw

2 ))/size(Gbw
1 )

5: if bestMatch < match then

6: bestMatch← match

7: Ψbest ← Ψn

8: end if

9: n← n+ 1

10: end while

11: Gbw
2r = resize(Ψbest(G

bw
2 )), such that size(Gbw

1 ) == size(Gbw
2r )

12: G1f = skeleton(Gbw
1 ), G2f = skeleton(Gbw

1r )

13: return {G1f , G2f}
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Algorithm 3 cover(): Computation of Percentage β Coverage on each boundary

Require: Gb, GC , α

1: if size(Gb! = size(GC)) then

2: return error message

3: end if

4: [M,N ] = size(Gb)

5: create a zero matrix Gr1
b and Gr2

b , such that size(Gr1
b ) == size(Gr2

b ) == [M,N ]

6: for m = 1 to M do

7: for n = 1 to N do

8: if [Gb][m− α : m+ α, n− α : n+ α]! =a square with only white color then

9: if [GC ]mn == black color then

10: [Gr2
b ]mn ← 1

11: end if

12: end if

13: if [Gb]mn! = white color then

14: [Gr1
b ]mn ← 1

15: end if

16: end for

17: end for

18: corrPectb = max{1,
∑

m

∑
n [Gr2

b ]mn∑
m

∑
n [Gr1

b ]mn
}

19: return corrPectb
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Function Name Function Explanation

bw()
a function to transform color images into black
and white images.

size()
a function to compute the size of a vector or ma-
trix.

rotate() a function to rotate images by a certain degree

enlarge()
a function to enlarge images by a certain percent-
age

move()
a function to move images by a number of pixels
along a certain direction

resize() a function to zoom images to a given size

skeleton()
a function to reduce widths of lines to the unit
width using algorithms shown in Lam et al.
(2002).

Table 4.1: Functions used in the developed image fusion algorithms

Algorithm 1 are introduced as follow.

First, both types of images are transformed into binary images using function

bw(). Then they are roughly aligned together using Algorithm 2, which is described

particularly in the following part. After a rough alignment, both images have an equal

size. Objects, such as black lines on both images, are processed to have the same unit

width. Next, based on the adjusted EBSD image Gadj
E , function identifyBound() is

utilized to generate a series of B images GE,b, b = 1, . . . , B,B ∈ N. Each GE,b has the

same image size as the adjusted image Gadj
E , but only contains one unique object, such

as grain boundary in the corrosion example, from Gadj
E . Thus, B is equal to the total

number of unique objects on image Gadj
E . Function identifyBound() is able to be

realized with the original feature data by the EBSD acquisition system HKL. Line 5

to Line 12 in Algorithm 1 are designed to compute the percentage of β coverage on

each grain boundary. The general idea behind the calculation is to thicken each grain

boundary on the EBSD image in order to make it fully cover the corresponding grain

boundary on the optical microscope image as completely as possible, with certain

constraints enforced by the hyperparameters α∗ and σ∗. The output of Algorithm 1
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is a vector of the percentage of β coverage for all grain boundaries detected by the

EBSD image.

Function roughAdj() in Algorithm 2 is a function to roughly align two images

together. It assists the function performance of Algorithm 1. The inputs of function

roughAdj() are two black and white imagesGbw
1 , Gbw

2 , along with two hyperparameters

δrough, Nmax. Here in the corrosion example, image Gbw
1 can be the optical microscope

image and Gbw
2 can be the EBSD image. This function applies different kinds of

transformations to image Gbw
2 in order to maximize criteria defined in Equation 4.4.

Different transformations include rotating, enlarging and moving images, as explained

in Table 4.1. In Algorithm 2, function p() is defined in Equation 4.3. After the optimal

transformation combination is found, two images are resized to an equal size. Objects

such as black lines on both of them are skeletonized to the unit width. The output

of function roughAdj() is a pair of roughly aligned images with the same image size.

Function cover() in Algorithm 3 computes the percentage of β coverage on each

boundary detected by the EBSD image. The inputs of Algorithm 3 are two images

Gb, GC and a parameter named as the thickening factor α. This algorithm can be

considered as a two-stage process. In the first stage, the width of each object (black

lines, for instance) on Gb is thickened from the unit width to the width of 2α+1. The

position of each object does not change. In the second stage, the algorithm covers

the thickened line on GC and then counts the total number of black pixels within the

covered area. The percentage of β coverage on each grain boundary is calculated as

a normalized term of the total number of covered pixels.

4.3 Evaluation

As discussed in Chapter 2 Section 2.4, numerous image registration algorithms

have been developed in image processing, but few existing techniques of image regis-

tration are applicable to images from experiments with few features such as the EBSD
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experiment and optical microscopes. Noisy pixels are shown on such images due to the

limitation of the experiment, and the geometric distortion between the EBSD image

and the microscope image also prevents the application of many available methods.

Our image registration algorithms are especially developed for such images, in order

to align both images and extract valuable data and relevant properties of the objects,

where images are taken from.

To evaluate the performance of our image registration algorithms, they were tested

on an EBSD image and a microscope image of the intergranular corrosion from the

aluminum alloy sample of DoS (degree of sensitization) = 49 mg/cm2. In order to

measure the performance of the image fusion algorithms, intergranular corrosion was

manually outlined on all grain boundaries (252 grain boundaries), and the average

percentage of β coverage (Eigc) was calculated as Eigc = 0.7693. It is assumed that a

well-performed algorithm should give an average percentage of β coverage as close to

Eigc as possible.

The result of our image registration algorithms were compared with that of an ex-

isting widely used technique named as Control Point Registration (Ingle and Proakis,

1999), which is implemented in Matlab. Details of this technique are introduced in

Chapter 2 Section 2.4. Ep is denoted as the result of our image fusion algorithms, and

Em is denoted as the result of the Control Point Registration method. The Control

Point Registration method requires users to identify several pairs of points on both

images at first, and then uses those points as references to complete the registra-

tion operation. In this evaluation, ten trials have been tried with different groups of

paired points. The average value of mean percent β coverage of 252 grain boundaries

this method output was Em = 0.1056 (sd = 0.0543). The fusion algorithm has been

applied to the same image, with ten different pairs of hyperparameters. Our fusion

algorithm gave an average result of mean percent β coverage on 252 grain boundaries

as Ep = 0.7273 (sd = 0.0774). Because the mean percent β coverage on the manually
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outlined image is Eigc = 0.7693, the fusion algorithm performs much better than the

Control Point Registration method.

Also, the distributions of the percent β coverage calculated from the manually

outlined image and the fused image were compared. Distribution plots are shown

in Figure 4.2. Similar patterns are displayed on both of the distributions. Further-

more, the two-sample Kolmogorov-Smirnov test (K-S test) (Lilliefors, 1967) has been

utilized to test whether the two datasets are significantly different from each other.

The null hypothesis of the K-S test is that the two samples are drawn from the same

distribution. The p-value of this test was 0.1108, which means we failed to reject the

null hypothesis at the 5% significance level.

The evaluations show that our image fusion model performs better than the Con-

trol Point Registration, in terms of the accuracy of the data extraction, and our image

registration algorithms are more suitable for image registration problems with images

from the EBSD experiment and the optical microscope.

In summary, this chapter introduces three algorithms which have been designed

and implemented with images from corrosion experiments. These three algorithms

constitute the formal image fusion algorithm desired in this dissertation, which is

served as the first subsystem in the whole system shown in Figure 3.1.
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Figure 4.2: Distributions of percent β coverage calculated from manually outlined
image and the fused image



CHAPTER 5

OUTLIER DETECTION

This chapter introduces the developed outlier detection framework. The formal

problem definition and the detailed algorithm are described here.

5.1 Problem Definition

Outliers are usually considered as errors or noise in the dataset, and they are

defined as “observations appearing to be inconsistent with the remainder of that

data set” (Barnett and Lewis, 1994; Hawkins, 1980; Johnson and Wichern, 2002).

Sometimes outliers within a dataset are carrying important information, but they may

mislead the statistical modeling and affect the prediction accuracy as well. Therefore,

it is desirable to identify these significant outliers and treat them properly before

constructing models using these data. The outlier detection problem is a popular

topic and has been studied for a long time in statistical learning. It can be defined

in many ways and from different perspectives, such as the distance-based method,

density-based method and residual-based method (Chatterjee and Hadi, 1986; Hoaglin

and Welsch, 1978; Rousseeuw and Leroy, 1987; Velleman and Welsch, 1981). In

this dissertation, the outlier detection problem is defined as follows in terms of the

objective of this study.

Suppose the extracted data from the image fusion step are D = [X, Y ], where X

are explanatory variables and Y is the response variable. Because the images where

the data are extracted from contain noises and the method of image fusion is not

46
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perfect, D contains noises and errors as well. These noises and errors are considered

as outliers. Our final objective is to build a statistical model E[Y ] = fR(X) which

is able to reveal the underlying relationship between X and Y , where E[Y ] is the

expectation of Y and fR(X) is the model of X. To achieve this objective, an outlier

detection model fO(D) is constructed which can provide us with a better data set

than D. Formally, the outlier detection problem can be formulated as follows:

An outlier detection method fO(D) is said to be useful if it satisfies:

MSE[fR(fO(D))] ≤MSE[fR(X)] (5.1)

where MSE[·] means the mean square errors of the statistical model fR; the smaller

MSE is, the better the model is; here MSE[·] can also be exchanged with other loss

functions such as the mean absolute errors (MAE); fO(D) = {DM , DO, Iaction} is the

outlier detection method, which has three types of outputs: the majority data set DM

including most of the data in D, the outlier data set DO = D − DM including the

rest data in D; and the indicator function Iaction indicating how to treat the detected

outliers.

Our objective is to find an useful outlier detection model fO(D) for the data set D

extracted from images. The next section introduces the outlier detection framework

developed in this dissertation which is compatible with different supervised learning

methods. In the corrosion problem where this method is applied, it is built on a

two-part generalized hierarchical model to filter out outliers and improve its predic-

tion performance. The outlier detection framework is considered as a data cleaning

subsystem in the formal methodology, shown in Figure 3.1.
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5.2 Data Cleaning: Outlier Detection

In order to minimize the influence of outliers on the prediction performance of

a supervised learning model, an outlier detection framework based on boosting is

developed as follows. Boosting is a supervised learning method, which is capable

of enhancing the accuracy of a statistical learning method. It combines a group

of learners to enhance their performance. This idea is one of the most successful

learning methods in the last decade (Friedman et al., 2001). Here in this dissertation,

boosting is applied with the outlier detection framework, so that the accuracy of this

method is greatly enhanced, compared with other available outlier detection methods.

This framework is able to detect outliers for general supervised learning models and

determine outliers automatically. The details of this framework are addressed below.

• Inputs

A training data set T = {(x1, y1), (x2, y2), · · · , (xn, yn)}.

• Procedures

1. For k = 1 to K, do

(a) Take a random sample S from T with size N , N < n

(b) Build a general regression model on sample S: yi = f(xi) + εi.

(c) Label the ith observation as 0 or 1 in terms of its fitted square residual

γi = ||yi−f(xi)||2, i = 1, . . . , N . The label function L
(m)
i is defined as:

L
(m)
i =


0 if γi ≤ δ

1 if γi > δ.

(5.2)

where δ = 1
N

∑N
i=1 γi + sd(γ),γ = (γ1, ..., γN). δ is the outlier thresh-

old.
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2. Compute Vi =
∑K

k=1 L
(k)
i .

Vi is the vote as an outlier for the ith observation over the K samples. Let

y′ be a binary response variable defined as:

y′i =


−1 if Vi ≥ α∗

+1 if Vi < α∗
(5.3)

where α∗ is the threshold for Vi.

3. Partition T into two subsets: M (the majority set) and O (the outlier set).

M = {(xi, yi) | y′i = −1, i = 1, 2, ..., n}, O = {(xi, yi) | y′i = +1, i =

1, 2, ..., n}.

4. Do classification on training set T ′ with AdaBoosting (Freund and Schapire,

1995).

T ′ = {(x1, y
′
1), (x2, y

′
2), ..., (xn, y

′
n)} and the classification error is calculated

by η = (False Positive + False Negative)/n.

5. Modeling strategy for two subsets M and O is established.

– If η is larger than η∗, then build model fT with all of observations and

no outliers are detected.

– If η is less than η∗ and the size of the outlier set O is less than a

threshold s∗, then drop set O and only model the majority set M with

fM .

– If η is less than η∗ and the size of O is large than s∗, then fit set O

and M with models fO and fM , respectively.

This modeling strategy is summarized in Table 5.1.

• Outputs
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Classification Error Size of the Outlier Set Outlier Treatment Model

η ≥ η∗ s < s∗ or s ≥ s∗ No outlier fT

η < η∗ s < s∗ Drop outliers fM

η < η∗ s ≥ s∗ Fit outliers fO and fM

Table 5.1: Strategy of Outlier Detection Framework

The integrated outlier detection framework model can be written as:

f(x) =



fT (x) if η ≥ η∗

fM(x) if η < η∗, s < s∗

fM(x) + fO(x) if η < η∗, s ≥ s∗

(5.4)

where

(1) s is the size of the outlier set O;

(2) η is the classification error; and

(3) s∗ and η∗ are threshold values of s and η respectively.

• Parameters

s∗ and α∗ are estimated by the cross-validation algorithm (Golub et al., 1979)

to get the minimum mean square error. K and η∗ are pre-defined parameters.

Here it is tested that K = 10 and η∗ = 0.3 performs the best on the corrosion

data.

5.3 Evaluation

This outlier detection framework (ODF) is especially developed for supervised

learning methods. It uses Adaboosting as a classification tool to vote for outliers

based on residuals. Basis functions can be supervised learning methods such as linear
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regression, support vector machine (SVM), random forest and so on. When outliers

are detected by this framework, they are either removed from the data or are used for

a different model. To apply it to real problems, the objective of applicable problems

should be enhancing the prediction accuracy of the models. As discussed in Chapter

2 Section 2.3, current major outlier detection methods usually include distance-based

methods, density-based methods and robust regression models such as M-estimation,

least median of squares and least trimmed of squares. For the purpose of regression,

robust regression plays an important role in the presence of outliers. To evaluate the

performance of our outlier detection framework, three groups of different comparisons

have been conducted.

Because the purpose of the ODF is to enhance the prediction accuracy of a re-

gression model, the first comparison is between the ODF based on a linear regres-

sion model and three common robust regression models, robust linear model with

M-estimation (RLM), least median of squares (LMS) and least trimmed of squares

(LTS). The predicted mean absolute error (PMAE) is used as the criterion to compare

their prediction performances. The intergranular corrosion data extracted from noisy

images are used here for the comparison. Using a test set evaluation method with 50

replicates, the ODF with a linear regression model has a mean PMAE of 0.249 with

a 95% confidence interval of (0.247, 0.252). The mean PMAE is 0.265 (0.263, 0.266)

for RLM, 0.306 (0.293, 0.320) for LMS, 0.349 (0.334, 0.364) for LTS. Because the

confidence interval of ODF has no overlap with other confidence intervals, the dif-

ferences are statistically significant at the level of 0.05. These results show that the

ODF with an ordinary least square regression outperforms the three major robust

regression models in terms of PMAE, and it is effective to enhance the prediction

accuracy of a regression model with the presence of outliers. Detailed comparison

results are shown in Section 7.5.2. The breakdown point of this outlier detection

technique is 1/n because the mean residual is used as the estimator.
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The second comparison is to test the effectiveness of the ODF by comparing the

PMAE of each of four different supervised learning methods with and without the

ODF. In this evaluation, four widely used supervised learning methods are applied.

They are support vector machine with a radial basis (SVMR), support vector ma-

chine with a linear basis (SVML), random forest (RF) and the linear hierarchical

model (MLM). The test is still taken on the intergranular corrosion data from noisy

images. The regression results show that with ODF, the prediction performances of

all four models are improved significantly because of a lower value of PMAE. Detailed

comparison results are shown in Section 7.5.2.

The last evaluation is to test if there is a significant difference between the outlier

set and the majority set defined in this outlier detection framework. The Multiple

Response Permutation Procedure (MRPP) in Mielke et al. (1976), Good and Wang

(2005) and Park et al. (2009) are used to do this evaluation. In MRPP, a new

data set is generated by permuting each predictor in the original data set while

keeping each observation’s outlier label unchanged. Here, the outlier label is obtained

from the ODF. This randomized data set is fitted by four different regression models

SVML, SVMR, RF and MLM. Adaboosting is used to classify if an observation is

an outlier or from the majority set on the training data. Test result shows that

the classification error obtained from the randomized data increases, and the PMAE

of each of the regression models increases as well. This suggests that there exist

clusters in the original data set, which are detected by the ODF successfully. But

the permutation after MRPP disrupts the clustering patterns, which leads to a poor

prediction performance for the randomized data. Therefore, it is shown that the ODF

is able to detect clusters within the data based on different regression models and it is

effective to detect the unusual patterns hidden in the data set. Detailed comparison

results are shown in Section 7.5.2.



CHAPTER 6

GENERALIZED HIERARCHICAL MODELING

This chapter gives the mathematical definition of the generalized hierarchical mod-

eling approach, and discusses its applicability. Then the characteristics of semi-

continuous data are introduced. A two-part generalized hierarchical model is built

for semi-continuous data, which is the third model in the formal methodology in this

dissertation.

6.1 Problem Definition

Suppose a statistical model

Y = f(X) + ε (6.1)

is a reasonable assumption for a dataset Dn×m, where

(1) Y is an n× 1 response vector;

(2) X is the covariate matrix;

(3) ε is the random error vector with E(ε) = 0;

(4) ε is independent of X.

Supervised learning attempts to learn the function f(·) by examples through a learn-

ing algorithm. A training dataset of observations T = (xi, yi), i = 1, . . . , N,N ≤ n

is assembled, and the learning algorithm produces outputs f̂(xi) in response to the

53
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inputs in T . The learning algorithm is able to modify f̂(·) by adjusting a group of its

parameters Θ corresponding to the difference yi− f̂(xi). Once the learning process is

completed, the objective of the supervised learning model is to minimize the differ-

ence between the predicted outputs and the actual outputs for all sets of inputs by

estimating the parameters Θ in f̂(·) (Friedman et al., 2001). In summary, in terms

of the squared error, this objective can be represented as

min L(Θ) =
N∑
i=1

(yi − f̂Θ(xi))
2 (6.2)

where

(1) yi is the real output for the ith observation;

(2) f̂Θ(xi) is the artificial output of function f̂(·);

(3) Θ is the parameter vector for function f̂(·); and

(4) L(Θ) is a loss function of Θ.

The generalized hierarchical model is one of many supervised learning models

within the supervised learning framework above. This dissertation focuses on the

development of a specific type of generalized hierarchical model developed for semi-

continuous data type. The next section addresses the need for such a model, and

its construction procedures. The developed generalized hierarchical model for semi-

continuous data is applied to the corrosion prediction problem in Chapter 7, in order

to provide users with a high prediction accuracy and good model interpretability.
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6.2 Data Modeling: A Generalized Hierarchical Model for Semi-continuous

Data

6.2.1 Semi-continuous Data

Semi-continuous data are often characterized as a mixture of non-zero continu-

ously distributed values and a certain proportion of repeated single values, such as

0’s (Olsen and Schafer, 2001). Such data appear frequently in economics, ecology,

physics and medicine. For example, the research about the drinking outcomes among

alcohol-dependent individuals in Liu et al. (2008) has individual alcohol consumption

data, which include positive and continuous values and a large amount of zeros. In

epidemiology, data often include both zeros for those areas without certain disease,

and positive values indicating the degree of severity of diagnosed epidemic cases in

other places. Semi-continuous data are also common in material science studies. Here

in the intergranular corrosion problem we are solving, the response variable Percent β

Coverage records the percentage of the amount of corrosion occurred along each grain

boundary from several aluminum alloy samples. This variable takes values from 0 to

1, with a large proportion of reoccurrences of 0’s and 1’s, corresponding to situations

of no corrosion occurred and totally corroded. This special distribution is due to the

grain boundary characteristic differences among grain boundaries and we consider

such a variable as a semi-continuous variable.

Analysis of the semi-continuous data is challenging. For instance, the ordinary

least squares method performs not quite well because of the presence of skewness from

the normal distribution within the data, which means that the assumption about the

normal distribution is not satisfied. Such skewness can not always be removed by

transformations on the data (Stanghellini and Gottard, 2011). In this dissertation,

we present a two-part generalized hierarchical model with a basis of the general-

ized additive model for such data. Figure 6.1 shows an example of the distribution
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of semi-continuous data. As shown in Figure 6.1, the semi-continuous data can be

characterized as a combination of two types of sample data: 1) samples from a con-

tinuous probability distribution, and 2) samples from a Bernoulli distribution. Unlike

sampling from a continuous distribution (e.g. Gaussian distribution or the uniform

distribution), the semi-continuous data do not have zero probability at the maximum

and the minimum values.
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Figure 6.1: An example of the distribution of semi-continuous data

Before defining the semi-continuous data, the definition of the semi-continuous

distribution is given below.
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Definition 1 A random variable X is said to have a semi-continuous distribu-

tion if X and its density f(x) satisfy the following conditions:

C1 ≤ X ≤ C2 (6.3)

f(x) = w1p1(x) + w2p2(x) (6.4)

w1 + w2 = 1, w1 > 0, w2 > 0 (6.5)

p1(X = k) =


q if k = C1

1− q if k = C2

(6.6)

In Definition 1, p1 is the density function of a Bernoulli distribution, and p2 is the

density function of a continuous variable. C1 and C2 are two constants, and C1 < C2.

If w1 → 1, then X is close to a discrete random variable. If w2 → 1, then X is close

to a discrete variable. Definition 1 shows that X is different from a discrete random

variable, because X is able to take an infinite number of values ranging from C1 to

C2. On the other hand, X is different from a continuous random variable, because X

has non zero probability at the maximum and the minimum values. Therefore, the

semi-continuous data is defined as follows.

Definition 2 The data is said to be the semi-continuous data if it is a sample

generated from a semi-continuous distribution.

This dissertation focuses on the problem of modeling the semi-continuous data as

a response variable in the data set, due to the property of the corrosion data which

the generalized hierarchical model is applied with. After defining the semi-continuous

data, the problem where a special supervised learning method is needed is well defined

as well in the next section.
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6.2.2 Mathematical Definition of the Problem

Suppose there is a sample Sy = {y1, · · · , yn} from a semi-continuous distribution.

Sy represents the semi-continuous measurement outcomes. For each yi ∈ Sy, there is

a vector of features associated with it: xi = (x1i, x2i, · · · , xni).

Each problem with the semi-continous data which needs a supervised learning

model usually has two parts. The first part is a classification problem. As it is shown

in Definition 1, there are two different parts of Sy, discrete values {C1, C2} and con-

tinuous values {c|C1 < c < C2}. Take the intergranular corrosion prediction problem

as an example. It is known that C1 = 0 means grain boundaries without corrosion,

C2 = 1 means completely corroded grain boundaries, and C1 < c < C2 denotes par-

tially corroded grain boundaries. It is necessary to classify the two extremes, in order

to study the patterns separately.

In other words, a classification function fclassify(x) ∈ {LabelC1 , LabelC2 , Labelc}

is desired, where LabelC1 and LabelC2 indicate that yi is likely to have the minimum

and maximum value respectively; and Labelc means that yi is not likely to have the

extreme values. Ideally, the classification function fclassify(xi) can be represented as:

fclassify(xi) =


LabelC1 if yi = C1

LabelC2 if yi = C2

Labelc if C1 < yi < C2

(6.7)

The overall objective is to find a function f(xi) to fit and predict the value of yi.

Mathematically, a function f(xi) is needed to satisfy
∑

i |yi − f(xi)| < ε for a small

ε. The smaller ε is, the better model f(xi) is. In next section, a two-part generalized

hierarchical model is built for the semi-continuous data, in order to solve the problem

stated above.



59

6.3 A Two-Part Generalized Hierarchical Model for Semi-Continuous

Data

This section describes the development of a two-part generalized hierarchical

model for solving the problem addressed in Section 6.2.2. This model is consid-

ered as a framework consisting of two generalized additive models (GAMs). Section

6.3.1 gives the model definition and Section 6.3.2 discusses an algorithm to estimate

the model parameters.

6.3.1 Model Definition

As defined in Section 6.2.2, two models are need to be built: fclassify(x) and f(x).

A two-part generalized hierarchical model consisting both of the two models has been

constructed to solve the problem. First, a classification model fclassify(x) with all the

data is built. Then, given fclassify(x), the overall model f(x) is defined as follows.

f(x) =


C1 if fclassify(x) = LabelC1

C2 if fclassify(x) = LabelC2

fregression(x) if fclassify(x) = Labelc

(6.8)

Equation 6.8 is the overall definition of the two-part generalized hierarchical model.

Model part I is a classification model fclassify, and model part II is a hierarchical

regression model fregression. Generally, any classification model, such as tree, support

vector machine, or neural network, are applicable. Similarly, any regression model,

such as a linear regression model, is suitable. Based on the discussion in Section

6.1, a supervised learning model with good prediction performance as well as good

interpretability is desirable for problems such as the corrosion prediction. Further-

more, finding out the individual impacts of grain boundary characteristics on the
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growth of intergranular corrosion is another objective for the application problem.

Therefore, the Generalized Additive Model (GAM) for both fclassify and fregression is

chosen as the base model. GAM assumes that there is additivity between individual

features, and it also allows nonlinear impacts from each feature on the response vari-

able. Because of the additivity, individual impacts are able to be separated. Because

of the nonlinearity, each feature can be modeled more flexibly than with regular linear

regression models.

Next, the definition of the first part of the model, fclassify is given below.

Model Part I: The Classification Model

fclassify(xi) =


LabelC1 if Pr(xi) < δl

LabelC2 if Pr(xi) > δu

Labelc if δl ≤ Pr(xi) ≤ δu

(6.9)

and

log(
Pr(xi)

1− Pr(xi)
) =

∑
j={1,··· ,J}

f c
j (xj) (6.10)

where

(1) Pr(xi) is the probability of yi = C2;

(2) δl and δh are two threshold values satisfying 0 < δl < δh < 1;

(3) J is the total number of features; and

(4) f c
j (xj) is the smooth function of feature xj.

Equation 6.10 is a generalized additive model which predicts the probability of yi =

C2. Equation 6.9 is a decision function mapping from the probability of yi = C2 to

three different labels: when the probability is small (Pr(xi) < δl), yi is assumed to
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have the value of C1; when the probability is large (Pr(xi) > δu), yi is assumed to take

the value of C2; if the probability is between the two thresholds (δl ≤ Pr(xi) ≤ δu),

yi is assumed to be between C1 and C2.

Given model part I, the second part of the model is defined as follows.

Model Part II: The Hierarchical Regression Model

E[yi|xi] =


C1 if fclassify(xi) = LabelC1

C2 if fclassify(xi) = LabelC2

fregression(xi) if fclassify(xi) = Labelc

(6.11)

and

fregression(xi) = E[yi|xi] = g−1(
∑

j={1,··· ,J}

f r
j (xj)) (6.12)

where

(1) g(·) is a link function and it is used to constrain the response variable to (C1, C2).

A popular choice of link function can be the logit function or the probit function.

(2) J is the total number of features;

(3) f r
j (xj) is the smooth function of feature xj.

(4) Equation 6.12 is equivalent to a generalized additive model

g(E[yi|xi]) =
∑

j={1,··· ,J} f
r
j (xj)

Equation 6.12 is a generalized additive model constrained by a link function g(·). It is

different from the one in Equation 6.10. First, Equation 6.10 predicts the probability

of the event that yi = C2, while Equation 6.12 predicts numerical values between

C1 and C2. Second, these two models are estimated with different sets of data.
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To estimate the model in Equation 6.10, the response variable should be a binary

categorical variable. To estimate the model in Equation 6.12, the response variable

should be a continuous numerical variable. Therefore, smooth functions f c
j (xj) and

f r
j (xj) in the two models are different.

From the above model definition, it is clear that the basic idea of the two-part

generalized hierarchical model is to build a classification model on the entire data

set first, in order to classify the discrete extreme values (e.g. 0 and 1, in the corro-

sion example) and the continuous data between extreme values. Then a hierarchical

regression model is constructed for the continuous data only.

In the developed two-part generalized hierarchical model, two types of parameters

are need to be estimated. One type is the threshold parameter δl and δu. The other

type is the smooth functions f r
j (xj) and f r

j (xj). Section 6.3.2 discusses details of how

to estimate both types of parameters. Given the estimated model parameters, the

prediction with new data {xnew} is straightforward. Model part I (Equation 6.9 and

6.10) is used to predict labels, and model part II (Equation 6.11 and 6.12) is used to

predict outcomes {ynew}.

6.3.2 Model Estimation

As discussed in Section 6.3.1, the two generalized additive models fclassify and

fregression, as well as the two threshold parameters, δl and δu, need to be estimated.

Generalized additive models have been studied extensively in statistics. There are

several well developed algorithms to estimate smooth functions for generalized ad-

ditive models. For example, Hastie and Tibshirani (1990) developed a back-fitting

algorithm to estimate GAM and Wood (2006) used spline functions and the iteratively

re-weighted least squares algorithm. Both algorithms are available in R, which is a

widely-used open statistical software. However, the major problem in our estimation

is about how to generate a training data set for each GAM. This section first briefly
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reviews the method in Wood (2006) to estimate GAM. Then, a detailed algorithm is

given on how to generate the training data set for each model in the two-part gen-

eralized hierarchical model and how to incorporate it with the well developed GAM

estimation algorithms. Lastly, the estimation of δl and δu using the cross-validation

method is discussed.

According to Wood (2006), each smooth function in GAM can be represented by

a sum of basis functions bi. It can be described as:

fj(x) =
B∑
i=1

βi · bi(x) (6.13)

A popular choice of basis functions is the cubic regression spline, which includes:

b1(x) = 1 (6.14)

b2(x) = x (6.15)

bi+2(x) = R(x, x∗i ) (6.16)

where

(1) {x∗i |i ∈ {1, · · · , B − 2}} are break points of the spline;

(2) R(x, z) is defined as:

R(x, z) =
[(z − 1

2
)2 − 1

12
][(x− 1

2
)2 − 1

12
]

4
−

(|x− z| − 1
2
)4 − 1

2
(|x− z| − 1

2
)2 + 7

240

24

(6.17)

With the above transformation, a GAM is converted to a generalized linear regression

model (GLM). GLM can be estimated efficiently by maximum likelihood estimation

using the iteratively re-weighted least squares method (IRLS). Penalizing the like-

lihood with the complexity of the model, which is called the penalized iteratively
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re-weighted least squares method (P-IRLS) is usually adopted to overcome the over-

fitting problem. This algorithm is implemented with the package “mgcv” in R by

Wood (2007).

To use the above algorithm to estimate GAM, training data are needed. Given

the original data set D = {(yi,xi)}, training data and estimate smooth functions for

both GAMs are estimated with Algorithm 4 below. In this algorithm, it is assumed

δl and δu are given.

Algorithm 4 estimates both GAMs with the original data set D. The R code

of this algorithm is supplied with this dissertation as supplementary materials. It

is assumed that δl and δu are known in the above algorithm. Practically, different

combinations of values of δl and δu have been tried, and the cross-validation method

is chosen to estimate the mean absolute errors because it is an effective and widely

used estimation method available (Golub et al., 1979). Then, the parameters with

the lowest mean absolute error are chosen as the optimal δl and δu, denoted as δ∗l and

δ∗u.

6.4 Evaluation

A two-part generalized hierarchical model based on the generalized additive model

is presented for semi-continuous data in this dissertation. It is especially developed for

problems with a semi-continous response variable skew from the normal distribution,

and the relationship between the response variable and predictors are nonlinear and

complex. The purpose of modeling such data is to capture the causal mechanisms

between variables and to predict future event. Our two-part generalized hierarchical

model separate the modeling process into two parts, one of which is a classification

procedure and the other one is a regression procedure. As discussed in Min and

Agresti (2002), the two-part model is preferable to models with transformation be-

cause it addresses the data in their original form. Such form of modeling is simple
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Algorithm 4 Algorithm 1: Estimation of Two-Part Generalized Hierarchical Model

1: Select subset Dclassify = {(yi,xi)|yi ∈ {C1, C2}, (yi,xi) ∈ D};

2: Estimate fclassify with Dclassify using the GAM estimation algorithm with yi as

the binary response variable;

3: Apply fclassify to predict label probability for D; the output is the probability set

Pr(D) = {Pri}

4: Label each observation in D by the following rules:

5: if Pri < δl then

6: Labeli = LabelC1

7: else

8: if Pri > δl then

9: Labeli = LabelC2

10: else

11: Labeli = Labelc

12: end if

13: end if

14: Select subset Dregression = {(yi,xi)|Labeli = Labelc, (yi,xi) ∈ D};

15: Estimate fregression with Dregression using GAM estimation algorithm with yi as

the continuous response variable;
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to fit and to interpret. In this dissertation, the generalized additive model is utilized

as the base model for each part, taking the advantage of the interpretability of GAM

because the relationships between variables are complex.

This section focuses on the performance evaluation of the developed two-part gen-

eralized hierarchical model for cleaned semi-continous data. The model is evaluated

by being compared its predicted mean absolute error (PMAE) with that of several

other classic models on the same data set. These classic models include linear re-

gression model, generalized additive model, support vector machine, random forest,

multivariate additive regression splines and boosted generalized linear and additive

models. These models are estimated in R and details of used estimation packages

are listed in Table 7.4 in Section 7.5.3. The two-part generalized hierarchical model

fclassify and fregression are fitted using GAM with the “mgcv” package in R. For

fregression, we used a logit link function and a probit link function to constrain the

response between 0 and 1, and compared those with the identity link function. In

order to evaluate the prediction performance of this developed model, the mean of

predicted mean absolute error (PMAE) has been utilized as a comparison criteria

with 100 trials of the test set method. From the results, it can be concluded that

the two-part generalized hierarchical models with the three link functions outperform

all other tested models in terms of the mean PMAE. For the different link functions,

the logit and the probit link function are able to constrain the response to (C1, C2),

so we prefer these two functions to the identity link function, and the 2P-GHM with

the logit link function gives a slightly better prediction result than the one with the

probit link function. In addition, since the generalized additive model is chosen as

the base model in both parts, the two-part generalized hierarchical model has a good

interpretability performance as well. Nonlinear impact patterns from each feature

have been captured and displayed to the users clearly. Detailed results of the two-

part generalized hierarchical model with three types of link functions, along with 8
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classic models on the cleaned intergranular corrosion data are shown in Table 7.5 and

Figure 7.22 in Section 7.5.3.

In summary, we present a two-part generalized hierarchical model based on the

generalized additive model for semi-continuous data, which is skewed from the nor-

mal distribution. The two-part structure does not require a data transformation, so

that the model is constructed on the original data form. We use a link function to

constrain the response variable between two extreme values, and compare the perfor-

mance of three different link functions. We implement the generalized additive model

to the presented model, by taking advantage of its good interpretability as well as

its ability to capture complex patterns within the data. Evaluation is provided us-

ing the intergranular corrosion data and the result shows that the presented model

outperforms eight other classic regression models, in terms of the mean PMAE.



CHAPTER 7

METHODOLOGY APPLICATION

This chapter describes the application procedures of the developed formal method-

ology by individual models on the intergranular corrosion prediction problem. The

background of the intergranular corrosion problem is introduced first, following with a

formal problem definition. Then, the experiment procedures are stated in detail from

sample preparation to image collecting. After describing the modeling data carefully,

the three models are estimated and evaluated with the corrosion data in consequence,

and the final results are given in terms of two criteria. This formal methodology is

also evaluated by a comparison with several other classical supervised learning meth-

ods. The comparison results show that the developed formal methodology outperforms

others significantly.

7.1 Background of the Intergranular Corrosion Problem

This application is part of a program to develop quantitative models that pre-

dict corrosion damage evolution from Intergranular Corrosion (IGC) to Intergranular

Stress Corrosion Cracking (IGSCC) in 5XXX-series alloys (aluminum alloys with

magnesium as the main alloying element). IGC and IGSCC are well-known failure

modes experienced by 5XXX-series alloys. Aluminum (Al) alloys are widely used in

marine, aerospace, automobile and manufacture industries because they have many

advantages such as low density, high strength-to-weight ratio and tunable strength

(Mondolfo, 1976). However, corrosion of aluminum alloys also limits their usage in

68
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these areas, especially for marine structures due to the corrosive environment. During

service, these materials can be sensitized due to the precipitation of β (Al3Mg2) phase

along grain boundaries. Various etching solutions show that some grain boundaries

are preferentially attacked relative to others, indicating preferential precipitation of

β. It has been speculated by Chan et al. (2008) that variations in the nature of grain

boundaries would lead to different precipitation preferences. Numerous studies have

been carried out to improve the corrosion resistance of such alloys (Kim et al., 2001;

Lo et al., 2009; Unwin et al., 1969; Yuan, 2006) since their usage became popular.

AA5XXX-series aluminum alloys, which contain more than 3 wt% Magnesium

(Mg), are used in the application of the formal methodology. These alloys are super-

saturated with respect to Mg at ambient temperatures, leading to a large driving force

for the formation of an intermetallic compound called β (Al2Mg3). The β usually pref-

erentially precipitates along grain boundaries when exposed to temperatures higher

than 70◦C, according to Dix et al. (1958). The β corrodes rapidly in most solutions,

including seawater, leading to materials that are susceptible to intergranular corrosion

(IGC). Evaluation of the intergranular attack can be difficult. For AA5XXX-series

alloys, the susceptibility to IGC is quantitatively measured by ASTM-G67 standard

test, known as the Nitric Acid Mass Loss Test (NAMLT). Pan et al. (1996) and Un-

win and Nicholson (1969) used transmission electron microscopy (TEM) to study the

properties of grain boundary precipitation as a function of quench rate and treatment

temperature. They concluded that the precipitation was strongly affected by local

chemistry and atomic structures. The only grain boundary characteristic (GBC) pa-

rameter considered for correlation to IGC was grain misorientation angle (denoted as

θ). Unwin and Nicholson (1969) found that there was a large amount of β along grain

boundaries with θ in the range of 2◦ to 15◦. Yuan (2006) had shown that in addition

to misorientation angle, grain boundary plane also had an influence on IGC growth

preferences. β phase preferentially grew on 〈111〉 with 〈112〉 and boundaries with θ
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less than 20◦ were resistant to IGC. Kim et al. (2001) showed that grain boundaries

with θ below 15◦ were hardly attacked by IGC in pure aluminum in 8%, 16% and

38% HCI solutions. Although many efforts and studies have been made to explore the

correlations between GBCs and IGC in several alloy systems (Briant, 1980; Shimada

et al., 2002; Tedmon Jr et al., 1971), the physical origins underlying relationships

between GBCs and IGC are still unknown and the utilized analysis approaches are

very limited (Lo et al., 2009). Some studies also found that low-angle grain bound-

aries and low-coincidence site lattice (CSL) boundaries have increased resistance to

carbide precipitation for different alloys (Chan et al., 2008; Jakupi et al., 2010; Kim

et al., 2001; Pan et al., 1996; Unwin et al., 1969; Yuan, 2006); no such analysis exists

for IGC of AA5XXX-series alloys. In order to explain the underlying relationships

between IGC and GBCs, and to predict future IGC based on given GBCs, a rigorous

statistical model is needed.

7.2 Problem Definition

This application study begins with electrochemical experiments, of which the out-

puts are in two forms of images. One type of images is known as the optical mi-

croscope image and another type of known as the Electron Backscatter Diffraction

(EBSD) image. Due to the limitation of the experiments, two images are distorted

from each other, with noises distributed on them. Since images are the only data

source for modeling, an image fusion model is necessary to extract information from

them with a high accuracy. Therefore, the developed image fusion model is applied

to both types of corrosion images for collecting enough relevant data for modeling

use.

The noises on the images will be extracted via the image fusion model as well

unavoidably. If these noises are added to the model along with other data, the

prediction results that the model presents will be misleading, sometimes even against
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the truth. To avoid such mistakes happening, it is imperative to filter out noises

from the data, and use clean data for modeling. The developed outlier detection

framework is built based on such a need, and is applied to the corrosion data after

being extracted from corrosion images with the image fusion model.

In this dissertation, electrochemical experiments have been done to simulate the

real corrosion phenomenon, so the amount of β coverage along each grain boundary

is quantitatively described by a percentage value. Each grain boundary could have

one of three cases when being exposed to the etching solution: no corrosion, totally

corroded and being corroded at some degree. Therefore, the variable which describes

each grain boundary’s degree of corrosion is a semi-continuous variable. It has many

occurrences of single 0’s and 1’s showing no corrosion or totally corroded respectively,

in addition to continuous positive values indicating the exact degrees of corrosion on

grain boundaries. Since the distribution of such a variable is strongly skewed from the

normal distribution, most classical regression models fail to provide a high prediction

accuracy. In addition, the causality relationship between the degree of corrosion

and a group of grain boundary characteristics is also demanded by material science

engineers. Thus, the developed two-part generalized hierarchical model for such semi-

continuous data is applied to this problem, aiming to provide material scientists and

engineers with a high prediction accuracy of future intergranular corrosion events as

well as good interpretability of causal mechanisms between various grain boundary

characteristics and the IGC growth preferences.

7.3 Experimental Approach

7.3.1 Sample Preparation and Etching

AA5083-H131 alloy has been initially solution heat-treated and quenched (SHT/Q),

and then sensitized at 100◦C for a period from 3 days to 45 days. Then a range of

samples have been cut and mounted. The ST surface of each sample is etched with
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solution of pH 1.2 ammonium persulfate ((NH4)2S2O8), because it is susceptible to

the intergranular corrosion (IGC), due to the sensitization caused by β (Al3Mg2)

which precipitates along grain boundaries. This solution is highly selective towards

β dissolution (Allen, 2010). The Degree of Sensitization (DoS) is determined by the

ASTM G67 Nitric Acid Mass Loss Test (NAMLT). In this application study, levels

of DoS are obtained as follow: 2 mg/cm2, 9 mg/cm2, 24 mg/cm2, 39 mg/cm2, 49

mg/cm2 and 57 mg/cm2.

In preparation for electrochemical analysis and EBSD imaging, the mounted

AA5083-H131 samples are firstly ground up to 1200 grit size with silicon carbide

(SiC) paper in the presence of water. Samples are rinsed with water and dried with

compressed air after each polishing step. Then samples are polished with 1.0 µm

diamond suspension and finished with 0.02 µm silica for 5 min respectively. At last,

samples are rinsed with alcohol and ion-etched for 15 min for the purpose of EBSD

imaging.

Samples are exposed in ammonium persulfate solution which is of 200 ml water

and 20 g ammonium persulfate ((NH4)2S2O8) (Allen, 2010). Different etching times

from 0 min to 70 min by 10 min are tested on two samples with DoS = 49 mg/cm2.

Test images are shown in Figure 7.1 to Figure 7.4. It is found that the percent β

coverage on grain boundaries for a sample plateaus by 60 min.

Therefore, etching time is chosen as 60 min for each sample at room temperature.

In this way, the β phase is revealed by the precipitation, while the matrix of the sample

is unattacked. Samples are rinsed with water after etching. Optical microscope images

are taken after etching is completed.

7.3.2 Electron Backscatter Differaction Imaging

With the prepared samples, JEOL JSM-840 Scanning Electron Microscope is used

to conduct the electron backscatter differaction imaging. The specimen is tilted 70◦
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Figure 7.1: Ammonium persulfate etching comparison of different etching times on
AA5083-H131 for sample 1: 0 min to 30 min. Magnification = 500X. DoS = 49
mg/cm2.

to the horizontal in the chamber. The working distance for EBSD scanning is 21mm

and the accelerated voltage is set to 20 KV. Magnification of images in this study

is set to 200X. The filament current is adjusted to 200 A. The EBSD acquisition

software named as HKL CHANNEL 5 Flamenco is utilized to obtain EBSD images

and relevant grain boundary characteristics from the scanning results.
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Figure 7.2: Ammonium persulfate etching comparison of different etching times on
AA5083-H131 for sample 1: 40 min to 70 min. Magnification = 500X. DoS = 49
mg/cm2.

7.4 Data Description

7.4.1 Intergranular Corrosion Quantitation

In this application study, the integrated effects of five grain boundary characteris-

tics on the growth of intergranular corrosion have been examined using the developed

formal methodology. The response variable in the data set is called percent β cov-

erage. It is defined as the ratio of the corroded length to the entire grain boundary

length, which is a quantitative way to describe the degree of intergranular corrosion

along individual grain boundaries. Image processing algorithms are utilized to quan-

tify this variable in this application study. If it is 0 for one grain boundary, then it
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Figure 7.3: Ammonium persulfate etching comparison of different etching times on
AA5083-H131 for sample 2: 0 min to 30 min. Magnification = 500X. DoS = 49
mg/cm2.

shows no corrosion. Similarly, if it is equal to 1 for a grain boundary, then it means

that this grain boundary is totally corroded. Any value between 0 and 1 indicates

the specific degree of corrosion quantitatively. Therefore, according to Definition 1 in

Chapter 6, the variable percent β coverage is a semi-continuous variable. In the data

set for modeling, about 2000 grain boundaries are included and their distribution plot

is shown in Figure 7.16(a).

7.4.2 Grain Boundary Characteristics

As predictors, five grain boundary characteristics are explained as follow. Grain

boundary misorientation angle (θ) is defined as the orientation angle required to rotate



76

Figure 7.4: Ammonium persulfate etching comparison of different etching times on
AA5083-H131 for sample 2: 40 min to 70 min. Magnification = 500X. DoS = 49
mg/cm2.

the set of crystal axes of grain 1 into coincidence with grain 2 in its neighborhood.

The demonstration of orientation angles is shown in Figure 7.7. Orientation difference

angles are the differences of orientation angles between two neighboring grains grain

1 and grain 2. The illustration of orientation difference angle is shown in Figure 7.8.

They are denoted as ∆φ1,∆Φ and ∆φ2, and

∆φ1 = |φ11 − φ21| (7.1)

∆Φ = |Φ1 − Φ2| (7.2)

∆φ2 = |φ12 − φ22| (7.3)
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Figure 7.5: Mean percent β coverage, DoS vs. sensitization time

where (φ11,Φ1, φ12) and (φ21,Φ2, φ22) are the orientation angle sets on three directions

of grain 1 and grain 2 in the Euler space respectively. An Electron Backscatter

Diffraction (EBSD) system called Channel5 from HKL Technology is used to obtain

grain misorientation angles about 〈111〉 axis and orientation angles.

The fifth grain boundary characteristic considered is the grain boundary length

l. Using a especially designed image processing algorithm, individual lengths of all

grain boundaries within the sampled areas have been detected. In addition to these

five grain boundary characteristics, Degree of Sensitization (DoS) is also included as

a predictor for modeling, which is believed to have a significant impact on the growth

of intergranular corrosion. In Figure 7.9, the bottom image is an EBSD image of

the sample with DoS of 39mg/cm2 and the top one is the microscope image of its

corresponding corroded area on the same sample. Values of variables θ,∆φ1,∆Φ,∆φ2

and l are derived from the Channel5 Tango software suites (Day and Trimby, 2004).
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Figure 7.6: Mean Percent β coverage vs. DoS

7.5 Methodology Application

The application of the developed formal methodology to the intergranular corro-

sion problem is accomplished in three steps. The procedures are shown in Figure 7.10

with details. Starting with the image fusion model, relevant data are extracted from

experiment images, and then noises within the data are filtered out by the outlier

detection framework. At last, with the clean data, the two-part generalized hierar-

chical model for semi-continuous data is constructed to make predictions for future

intergranular corrosion, and provide the causal mechanisms between different factors.

Each section below describes one step of the application procedures.
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Figure 7.7: Grain Orientation (φ1,Φ, φ2) in the Euler Space

7.5.1 Image Fusion

Two types of images are collected from corrosion experiments, the EBSD image

and the optical microscope image (as shown on the left panel of Figure 7.11). The

EBSD images map the orientation of individual grains in crystalline materials (Din-

gley and Randle, 1992; Randle et al., 1992). They are acquired by the HKL Channel

EBSD acquisition system when samples are tilted at about 70◦ in the chamber. The

optical microscope images are taken by optical microscopes directly above samples.

They present the intergranular corrosion on the material surface. Given a pair of such

images, the application objective is to quantify the percentage of β coverage on each

grain boundary, whose position is identified by the EBSD image.

About 2000 grain boundaries on six samples have been detected by the EBSD

acquisition system. With the developed image registration algorithms, the optical

microscope images are aligned with EBSD images of the same observed areas. Fig-
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Figure 7.8: Demonstration of Orientation Difference Angles

ure 7.11 shows a pair of such images with a demonstration of the registration. As

seen from Figure 7.11, two images are aligned pretty well.

The growth behavior of intergranular corrosion on each grain boundary is quanti-

fied by the percentage of the boundary length that is corroded after a 60min etching

in ammonium persulfate solution with pH = 1.2. Figure 7.12 shows the illustration

of percent β coverage calculation for individual grain boundaries.

To evaluate the performance of our image registration algorithms, they were tested

on an EBSD image and a microscope image of the intergranular corrosion from the

aluminum alloy sample of DoS (degree of sensitization) = 49 mg/cm2. In order to

measure the performance of the image fusion algorithms, intergranular corrosion was
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manually outlined on all grain boundaries (252 grain boundaries), and the average

percentage of β coverage (Eigc) was calculated as Eigc = 0.7693. Our fusion algorithm

gave an average result of mean percent β coverage on 252 grain boundaries as Ep =

0.7273 (sd = 0.0774). Using the widely used Control Point Registration method

(Ingle and Proakis, 1999), the average value of mean percent β coverage of 252 grain

boundaries this method output was Em = 0.1056 (sd = 0.0543).

Also, the distributions of the percent β coverage calculated from the manually

outlined image and the fused image were compared. Distribution plots are shown

in Figure 4.2. Similar patterns are displayed on both of the distributions. Further-

more, the two-sample Kolmogorov-Smirnov test (K-S test) (Lilliefors, 1967) has been

utilized to test whether the two datasets are significantly different from each other.

The null hypothesis of the K-S test is that the two samples are drawn from the same

distribution. The p-value of this test was 0.1108, which means we failed to reject the

null hypothesis at the 5% significance level.

The evaluations show that our image fusion model performs better than the Con-

trol Point Registration, in terms of the accuracy of the data extraction, and our image

registration algorithms are more suitable for image registration problems with images

from the EBSD experiment and the optical microscope.

7.5.2 Outlier Detection Framework

Since the purpose of the ODF is to enhance the prediction accuracy of a regression

model, the first comparison is between the ODF based on a linear regression model

and three common robust regression models, robust linear model with M-estimation

(RLM), least median of squares (LMS) and least trimmed of squares (LTS). The

predicted mean absolute error (PMAE) is used as the criterion to compare their pre-

diction performances. The intergranular corrosion data extracted from noisy images

are used here for the comparison. With a test set evaluation method with 50 repli-
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cates, the ODF with a linear regression model has a mean PMAE of 0.249 with a

confidence interval of (0.247, 0.252). The mean PMAE is 0.265 (0.263, 0.266) for

RLM, 0.306 (0.293, 0.320) for LMS, 0.349 (0.334, 0.364) for LTS. These results show

that the ODF with an ordinary least square regression outperforms the three major

robust regression models in terms of PMAE, and it is effective to enhance the predic-

tion accuracy of a regression model with the presence of outliers. Figure 7.13 shows

that the comparison of the PMAE with the 95% confidence interval of all the tested

models. All PMAE values with the 95% confidence intervals are shown in Table 7.1.

Models PMAE (CI)

LM 0.274 (0.273, 0.276)

ODF+LM 0.249 (0.247, 0.252)

RLM 0.265 (0.263, 0.266)

LMS 0.306 (0.293, 0.320)

LTS 0.349 (0.334, 0.364)

Table 7.1: Mean PMAE values with 95% confidence intervals of ODF and major
robust regression models

The second comparison is to test the effectiveness of the ODF by comparing the

PMAE of each of four different supervised learning methods with and without the

ODF. In this evaluation, four widely used supervised learning methods are applied.

They are support vector machine with a radial basis (SVMR), support vector machine

with a linear basis (SVML), random forest (RF) and the linear hierarchical model

(MLM). The test is still taken on the intergranular corrosion data from noisy images.

The regression results show that with ODF, the prediction performances of all four

models are improved significantly because of a lower value of PMAE. Figure 7.14

shows that using the developed outlier detection framework improves the performance

of all the tested models. All PMAE values with the 95% confidence intervals are shown

in Table 7.2.

Furthermore, the Multiple Response Permutation Procedure (MRPP) in Mielke
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Basis Model PMAE (CI) without ODF PMAE (CI) with ODF

SVMR 0.2455 (0.2429, 0.2481) 0.2359 (0.2348, 0.2370)

SVML 0.2511 (0.2482, 0.2540) 0.2456 (0.2443, 0.2469)

RF 0.2421 (0.2399, 0.2443) 0.2311 (0.2302, 0.2319)

MLM 0.2701 (0.2683, 0.2719) 0.2420 (0.2398, 0.2442)

Table 7.2: PMAE Comparison of Different Models for ODF Test

et al. (1976), Good and Wang (2005) and Park et al. (2009) are used to test whether

there is a significant difference between the outlier set and the majority set. Test

procedures are as follow: Generate a new data set by permuting each of the six

predictors in the original data set while keeping each observation’s outlier label un-

changed. The outlier label is obtained from ODF. This new data set is fitted by

different regression models and the regression results are shown below. Classification

errors are calculated. Adaboosting is used to classify if an observation is an outlier or

from the majority set on the training data. The classification error is the ratio of the

sum of false positives and false negatives to the size of the training set. Figure 7.15

shows that after randomizing, the classification error increases, and the PMAEs of

regression models are going up. This suggests that there exist clusters in the original

data set. Outliers are grouped in the cluster that is different from other observations.

The cluster that is including outliers are detected by the ODF. But the permutation

disrupts the clustering patterns, which leads to a poor prediction performance for the

randomized data. All PMAE values for this comparison are shown in Table 7.3.

7.5.3 Two-part Generalized Hierarchical Model for Semi-continuous

Data

A range of sensitized AA5083-H131 specimens are cut, mounted and prepared

using standard metallographical techniques. About 2000 grains have been detected

from 6 samples with degree of sensitization equal to 2 mg/cm2, 9 mg/cm2, 24 mg/cm2,
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Regression Models Data PMAE 95% CI

SVMR
Original Data 0.2359 (0.2348, 0.2370)

Randomized Data 0.4146 (0.4093, 0.4198)

SVML
Original Data 0.2456 (0.2443, 0.2469)

Randomized Data 0.4349 (0.4290, 0.4408)

RF
Original Data 0.2311 (0.2302, 0.2319)

Randomized Data 0.4031 (0.3985, 0.4078)

MLM
Original Data 0.2420 (0.2398, 0.2442)

Randomized Data 0.4101 (0.4057, 0.4145)

Table 7.3: PMAE Comparison for Randomized Data and Original Data

39 mg/cm2, 49 mg/cm2 and 57 mg/cm2, using the developed image fusion model.

These extracted data are cleaned by the outlier detection framework for a better

prediction performance of the regression modeling. The entire data set for modeling

is collected using methods described in Section 7.4. Histograms of variables percent β

coverage, misorientation angle (θ), orientation angle differences (∆φ1,∆Φ,∆φ2) and

grain boundary length (l) are shown in Figure 7.16(a) - Figure 7.18(b).

As seen in Figure 7.16(a), the distribution of percent beta coverage includes two

single values 0 and 1 clustered on two ends, and a continuous distribution of values

between them. This is a typical characteristic of semi-continuous data. Classic re-

gression models usually fail to fit such data due to their skewness from the normal

distribution. Therefore, the developed two-part generalized hierarchical model is ap-

plied to them, in order to obtain good prediction and interpretability performances.

Distributions of other variables in the corrosion data set are also shown in Figure

7.16(b) - 7.18(b). Figure 7.19 shows the scatter plot matrices of all variables in the

data set. As being observed, the relationship between percent β coverage and DoS

seems to be positively linear, but relationships between other pairs do not fit a linear

model quite well. As a result, a generalized hierarchical model, instead of a linear

model, is inspired because of such observations.

This section focuses on the application of the two-part generalized hierarchical
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model for clean semi-continous data for good prediction and interpretability perfor-

mance. It is evaluated by being compared its predicted mean absolute error (PMAE)

with different link functions and with that of several other classic models using the

same corrosion data. These classic models include linear regression model, general-

ized additive model, support vector machine, random forest, multivariate additive

regression splines and boosted generalized linear and additive models. More details

about these models are shown in Table 7.4. The results from using these models are

shown in Table 7.5.

The 10-fold cross-validation technique is used to choose the optimal parameters

δl and δu in our model: δ∗l = 0.2 and δ∗u = 0.95. Then two parts of the two-part

generalized hierarchical model fclassify and fregression are fitted using GAM with the

“mgcv” package in R. The GAM plots of each predictor in model part I are shown in

Figure 7.20, and GAM plots of model part II are shown in Figure 7.21. As observed

in these two groups of figures, predictors ∆φ1 and ∆Φ are significant in model part I,

and predictors θ and l are significant in model part II. These results have important

meanings for material scientists and engineers because they are looking for physical

causalities behind these variables. Such nonlinear impact patterns from each predictor

on the response variable give them hints to consider the internal physical characters

of such material.

In order to evaluate the prediction performance of this developed model, the

mean of predicted mean absolute error (PMAE) has been utilized as a comparison

criteria with the 100-trial of testset method. Results of the two-part generalized

hierarchical model with three different link functions, along with 8 classic models

using corrosion data are shown in Table 7.5. Figure 7.22 shows means of PMAE of all

tested models with 95% confidence intervals. From the results, it can be concluded

that the three two-part generalized hierarchical models outperform all other tested

models in terms of the mean PMAE. For the different link functions, the logit and
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the probit link function are able to constrain the response to (C1, C2), so we prefer

these two functions to the identity link function, and the 2P-GHM with the logit

link function gives a slightly better prediction result than the one with the probit link

function. In addition, since the generalized additive model is chosen as the base model

in both parts, the two-part generalized hierarchical model has a good interpretability

performance as well. Nonlinear impact patterns from each feature have been captured

and displayed to the users clearly.

Model Name Explanation Estimation Pack-
age in R

LM Linear regression model stats

GAM Generalized additive model esti-
mated by REML; smooth terms are
chosen by GCV

mgcv

SVMR Support vector machine with a
Gaussian radial basis function

e1071

SVML Support vector machine with a lin-
ear kernel

e1071

RF Random forest with 100 trees randomForest

MARS Multivariate additive regression
splines

earth

GAMB Boosted generalized additive model mboost

GLMB Boosted generalized linear model mboost

2P-GHM-identity Two-part generalized hierarchical
model with an identity link function

Our algorithm with
GAM estimated by
mgcv

2P-GHM-logit Two-part generalized hierarchical
model with a logit link function

Our algorithm with
GAM estimated by
mgcv

2P-GHM-probit Two-part generalized hierarchical
model with a probit link function

Our algorithm with
GAM estimated by
mgcv

Table 7.4: Details of tested methods for model comparison
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Model Mean of PMAE 95% CI of mean PMAE

LM 0.237 (0.236, 0.238)

GAM 0.231 (0.230, 0.232)

SVMR 0.206 (0.205, 0.207)

SVML 0.222 (0.220, 0.223)

RF 0.215 (0.214, 0.216)

MARS 0.229 (0.227, 0.230)

GAMB 0.234 (0.231, 0.236)

GLMB 0.238 (0.237, 0.239)

2P-GHM-identity 0.198 (0.196, 0.199)

2P-GHM-logit 0.198 (0.196, 0.199)

2P-GHM-probit 0.199 (0.198, 0.201)

Table 7.5: Mean PMAE of 9 tested models for the corrosion example

7.6 Discussion

In grain boundary engineering, the Coincident Site Lattice (CSL) theory shows

that the degree of fit (Σ) between the structures of the two neighboring grains can

be represented by the ratio of coincidence sites to the total number of sites (Randle,

1996). Also, grain boundary energy is defined as the excess free energy associated

with the presence of a grain boundary, with the perfect lattice as the reference point.

Numerous studies and experiments have shown that there exists a strong correlation

between the amount of grain boundary energy and the microstructure of some special

grain boundaries, denoted as coincidence site lattices (Hasson et al., 1972; Kavner

and Devine, 1997; Li et al., 2009; Tschopp and McDowell, 2007), which leads to the

key of corrosion resistance solutions. For example, boundary with high Σ might be

expected to have a higher energy than the one with low Σ.

This application study has a contribution to the exploration of the relationship

between general high angle boundaries (between 30◦ and around 62◦) and the inter-

granular corrosion. The result of GAM model II in the developed generalized hierar-
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chical model shows that there exists a significant relationship between misorientation

angle and Percent β Coverage, which is shown on the first subfigure in Figure 7.21.

As observed, there are two peaks on that figure. One is at about 30◦ and the other

one is at around 55◦. This plot suggests that there exists a negative correlation be-

tween Percent β Coverage and misorientation from about 30◦ to 45◦, and a positive

correlation when misorientation is from 45◦ to 55◦.

When comparing these conclusions with previous work on the grain boundary

energy, it is found that the influential pattern of misorientation angle (between 15◦

and about 60◦) with 〈111〉 axis on the growth of β phase performs similarly as that

of the CSL on the grain boundary energy. Skidmore et al. (2004) have shown that

grain boundary energy increases sharply from low angles, then gradually decreases

from its highest point at 15◦ to 60◦, with some high grain boundary energy values

corresponding to angles around 30◦. Their observation is partially consistent with

that of this work. Since Skidmore et al. (2004) only used about 50 data points on the

trend plot, while there are over 2000 data points in this work, the conclusion from

this work is better supported by the larger data size. To my best knowledge, only

few literatures have considered the 〈111〉 misorientation axis, which has been studied

in this dissertation, and they did not provide a clear trend plot about 〈111〉 for small

angles below 20◦.

In the future, low angle boundaries with misorientation angles from 0◦ to 15◦

should be included in the data set as well. The Read-Shockley equation shows that

low angle grain boundary energy steadily increases with misorientation angles from

0◦ to 15◦ (Read and Shockley, 1950). With the developed image fusion model, a large

number of low angle boundaries are available for modeling. Therefore, it is possible

to test if the relationship between low angle boundaries and Percent β Coverage

is consistent with that between low angle boundaries and grain boundary energy,

according to Read and Shockley (1950). According to Kim et al. (2006), two more
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grain boundary parameters should be considered when defining a grain boundary.

These two parameters are utilized to describe the orientation of a grain boundary

plane.

7.7 Summary

In summary, the semi-continuous data is introduced at beginning of this chapter

and a two-part generalized hierarchical model is built for these data. Then the de-

veloped model is applied to the intergranular corrosion prediction problem because

the response variable in this problem is a semi-continuous variable. At last, in order

to evaluate the model performance, the developed model is compared with 8 other

classic regression models in terms of the predicted mean absolute error and model

interpretability. The developed model outperforms all its competitors and has a good

interpretability performance as well.

Material scientists and engineers would benefit from the modeling results which

provide clear nonlinear impact patterns from grain boundary characteristics on the

intergranular corrosion growth. For example, it is known from the results that grain

boundary characteristics ∆φ1 and ∆Φ are significant in model part I, which means

they mainly affect the β coverage in the classification of 0 or 1. Grain boundary

length l and misorientation angle θ are significant variables affecting the percent

β coverage within the range of 0 to 1, which might lead to the importance of grain

shapes in determining how intergranular corrosion growth preferentially. Future work

might focus on extending this modeling framework by implementing it with more

complicated base models, and looking for more efficient and reliable model estimation

methods for a better prediction performance.
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(a) A corrosion image of Alloy AA5083-H131 from the optical microscope at mag-
nification=200X. Degree of sensitization is 57 mg/cm2. Sample was sensitized at
100◦C for 45 days. Sample was etched in the solution of 20g ammonium persulfate
and 100ml water at room temperature for 1 hour.

(b) A microstructure image from Electron Backscatter Diffraction system at mag-
nification=200X. Degree of sensitization is 24 mg/cm2. Sample was sensitized at
100◦C for 7 days.

Figure 7.9: Examples of Images with Grain Boundary Characteristics
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Figure 7.10: Flowchart of the methodology application: an intergranular corrosion
example
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Figure 7.11: Image registration demonstration. Left: an EBSD image and an optical
microscope image; Right: a registered image with colored boundaries for different
orientations

Figure 7.12: Degree of IGC calculation
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Figure 7.13: Mean PMAE comparison between ODF and major robust regression
models
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Figure 7.14: PMAE comparison of different models for ODF application
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Figure 7.15: PMAE comparison for randomized data and original data
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(b) Histogram of the predictor: misorientation angle θ

Figure 7.16: Histograms of variables in the corrosion example
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(b) Histogram of the predictor: orientation angle difference ∆Φ

Figure 7.17: Histograms of variables in the corrosion example - continued
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(a) Histogram of the predictor: orientation angle difference ∆φ2

grain boundary length

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

80

0 200 400 600 800 1000

(b) Histogram of the predictor: grain boundary length

Figure 7.18: Histograms of variables in the corrosion example - continued
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Figure 7.19: Scatter plot matrices of all variables in the corrosion data set
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Figure 7.20: GAM plots of model part I
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Figure 7.21: GAM plots of model part II
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CHAPTER 8

CONCLUSIONS

This chapter summarizes the work this dissertation has accomplished, addresses

the conclusions drawn from the results of this research, and summarizes the con-

tributions this dissertation has presented. Suggestion on future work has also been

discussed in the last section.

8.1 Summary

In summary, this dissertation provides a formal supervised learning methodology

when: (1) relevant information is stored in a series of images; (2) images are noisy

and distorted from each other; (3) the data set for modeling is a data set with a

semi-continuous response variable; and (4) the modeling goal is to understand the

causal mechanism between variables and to predict future events accurately.

Many efforts have been made for problems with one of these characteristics, but

there is no effective method that works as a whole system for such a type of prob-

lems. In terms of these characteristics, three separate models have been constructed

to form the developed methodology, and work as a whole system. More importantly,

the three models are able to function independently with good performance, com-

pared with previous research works. The first model is an image fusion algorithm,

which is designed to extract relevant information from the image data sources. This

algorithm is able to deal with images with noises as well as distortions, which provides

an accurate data set for supervised learning. The second model is an outlier detection
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framework, which is built to filter out both outliers and influential observations from

the data set. This framework ensures that the supervised learning model built based

on these data describes the relationships between variables precisely. The last model

is a two-part generalized hierarchical model for semi-continuous data. It is especially

designed for supervised learning with semi-continuous data, which are widely existing

in many scientific research fields, such as medicine, material science and economics.

This model is able to deal with the semi-continuous data by providing a high predic-

tion accuracy and good model interpretability, compared with many other classical

regression models.

The developed formal methodology is applied to a real practical problem which

needs to predict the growth of the intergranular corrosion for 5XXX-series alloys,

based on several grain boundary characteristics, as well as explain the causal mech-

anisms between model factors. This intergranular corrosion prediction problem has

the exact four characteristics described above. Images from electrochemical experi-

ments are the major data source for modeling, and those images show a large amount

of noises. Due to the limitation of the experiment, some of those images are even

distorted from others. Also, the response variable in the model is a semi-continuous

variable, so most classical regression models fail to fit such data. Therefore, this is a

typical problem for the developed methodology in this dissertation. By solving this

problem, the developed three models have been applied to the problem in the form of

three subsystems. The output of the former model is the input of the next one. Each

model is evaluated and tested before proceeding to the next one. At last, this su-

pervised learning methodology shows a high prediction accuracy of the intergranular

corrosion, given a group of grain boundary characteristics. It also provides explains

for the causal mechanisms behind those factors. Conclusions drawn from results of

this application are able to guide material scientists and researchers about how to

explain the effects of the physical property of materials on the growth pattern of
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corrosion. Furthermore, these explanations will help with the research development

of the corrosion resistance of aluminum alloys, in order to prevent corrosion damages

in construction and industrial fields.

8.2 Conclusions

The following conclusions are drawn from the results of the developed methodol-

ogy, which is applied to an intergranular corrosion prediction problem with data from

5XXX-series alloys. These conclusions are based on the three separate models which

are evaluated and tested individually with the provided sample data. This section

also discusses results and conclusions from the modeling for this application.

(1) The regression results of the two-part generalized hierarchical model for semi-

continuous data imply that grain boundary characteristics ∆φ1 and ∆Φ are sig-

nificant in model part I, which means they mainly affect the β coverage in the

classification of 0 or 1. Grain boundary length l and misorientation angle θ are

significant variables affecting the percent β coverage within the range of 0 to 1,

which might lead to the importance of grain shapes in determining how inter-

granular corrosion grows preferentially along grain boundaries. The prediction

accuracy of this model ranks the highest, compared with other eight classical

supervised learning methods.

(2) The developed image fusion model shows a fast yet efficient method to register a

group of distorted images with noises, and extract valuable information from the

registered image. In the material science area, image registration work is usually

done by hand. Thus, image registration is often time-consuming and the results

are objective, depending on the operator’s criteria. This developed image fusion

model is not only able to save tons of processing time, but also can provide a

standard method with a high accuracy. To evaluate this method, it is compared

with a widely used algorithm in Matlab. The registration results from these two
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methods show that the developed model provides a significantly higher accuracy,

because it has a noise reduction function with the distortion correction.

(3) The outlier detection framework is designed to filter out two kinds of outliers.

One is the noisy outlier which would mislead the regression result if it is kept

in the data set. The other kind is the influential observation which perform dif-

ferently from regular observations but can provide important information to the

regression model. Thus, it is critical to distinguish between these two kinds of

outliers and treat them differently. The developed outlier detection framework is

compatible to various supervised learning models, and the results of the applied

corrosion problem indicate that after using this framework, the prediction accu-

racy of the regression model is significantly higher than the one without it. Such

an improvement on the prediction accuracy is attributed to the distinguishing

between two different kinds of outliers in the developed framework.

8.3 Contributions

The developed formal methodology is applied to an intergranular corrosion prob-

lem in this dissertation, but it is also applicable to similar phenomena, such as weather

forecasting of different areas based on satellite cloud pictures, tumor growth predic-

tion based on MRI images and epidemic disease spreading modeling. This dissertation

provides four major contributions:

(1) A supervised learning methodology is constructed to model processes with infor-

mation stored in both semi-continuous data and a series of noisy images. Cor-

rosion prediction problems can be solved by this methodology and we provide a

case study.

(2) An outlier detection framework for supervised learning is constructed to enhance

prediction accuracy. It is applied to a generalized hierarchical model for the
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corrosion prediction problem. It is applicable to other supervised learning models,

such as linear regression, random forest and generalized additive model.

(3) An image fusion algorithm is presented that can extract and combine information

from multiple noisy images. Corrosion images taken by different equipment are

fused by this algorithm to collect data for modeling. It might also be applicable

to a wider range of areas such as magnetic resonance imaging (MRI) for tumor

growth monitoring and geographic information integrating.

(4) The estimation of the generalized hierarchical model can help material scientists

to reveal the causal mechanisms between grain boundary characteristics and the

intergranular corrosion, as well as to predict future corrosion occurrences.

8.4 Suggestions for Future Work

(1) In the application of this dissertation, five grain boundary characteristics have

been collected for modeling the growth pattern of the intergranular corrosion in

5XXX-series alloys. In order to explore the causal mechanisms between IGC and

grain boundary characteristics more precisely, more features should be considered

and added to the current data set, such as CSL, grain boundary plane and grain

boundary energy, in addition to the five grain boundary characteristics.

(2) Significant grain boundary characteristics affecting the growth of intergranular

corrosion are given by the GAM model in the third subsystem. Investigation

on the physical property of the relationship between significant variables and β

phase is needed, in order to improve the understanding of grain boundary energy

as well as to enhance the corrosion resistance of aluminum alloys in the future.

(3) The developed two-part generalized hierarchical model outperforms most of the

popular supervised learning models for semi-continuous data, when applied to
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the corrosion data. A theoretical proof is needed to show the effectiveness of such

a model, from the aspect of statistical learning theory.

(4) The developed formal methodology is a whole system for problems with specific

characteristics. A software can be designed and implemented with this method-

ology, so that users are able to complete the analysis efficiently and quickly.

(5) In this dissertation, all of the three models are applied to one problem, which is

the intergranular corrosion prediction problem. However, the three subsystems

are able to function as independent models for various problems in different fields.

To evaluate the subsystems, it is necessary to apply them to different problems

with various data set.
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