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Abstract

This dissertation aims to establish rigorous results concerning the
behavior of diffusive or fractionally diffusive fluid regimes and identify
connections to and implications for theoretical topics relating to the
possible irregularity of the corresponding mathematical models. The
particular models of interest are the three dimensional Navier-Stokes
equations, the magnetohydrodynamical equations, and the fractionally
diffusive surface quasi-geostrophic equations.

Two issues concerning turbulent transport are examined. The first
relates to the characterization and existence of turbulent cascades across
inertial ranges in viscous (or fractionally diffusive) fluid systems and
amounts to providing rigorous support for physically and numerically
motivated descriptions of turbulent media. The second aims to estab-
lish sharp lower bounds for the dissipative length scales as these play an
important role in turbulent transport dynamics and have applications
to conditional regularity criteria involving anisotropic diffusion of the
transverse length scales associated with coherent vortex structures.

The regularity problems associated with these models are challeng-
ing and generally remain open. An important issue in this area relates
to the fact that the considered models are supercritical. Frequently, to
obtain regularity criteria in such a setting, conditions must be included
to render this supercritical behavior critical or, better yet, subcriti-
cal. Several results along these lines are included which are physically
motivated by the anitropic filamentary description of turbulent fluids.
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Chapter 1

Introduction

Turbulence is simultaneously a remarkably common and profoundly
complex phenomenon. It is an ubiquitous feature of fluids occupying
the world around us and beyond; indeed, the vast majority of the uni-
verse’s material mass takes the form of highly turbulent astronomical
plasmas [8]. These physical systems are thought to obey various sys-
tems of partial differential equations such as the Navier-Stokes equa-
tions (NSE) which describe viscous, incompressible flow, the magne-
tohydrodynamic equations (MHD) which describes a coupled system
consisting of a magnetic field and an interacting charged fluid, and, in
constrained geophysical contexts, the surface quasi-geostrophic equa-
tions (SQG). A concrete mathematical understanding of these models is
important as they provide indispensable insight for engineers and scien-
tists across a wide range of disciplines and applications such as nautical
and aerospace engineering, meteorology and oceanography, climate sci-
ence, magnetic confinement of plasmas in nuclear reactors, solar wind
turbulence and plasma dynamos, etc.

These models are also interesting from a mathematical standpoint.
An important open question is that of the global-in-time existence and
smoothness of weak solutions to 3D NSE (or, alternatively, the break-
down of such solutions) which constitutes a Millennium Problem posed
by the Clay Mathematics Institute. The global-in-time well-posedness
of other fluid models such as MHD or supercritical SQG also remain un-
solved. Considering the difficulty of these problems it is natural to seek
conditional regularity results based on physically reasonable criteria –
e.g. observational and numerical studies of turbulence – to illuminate
the nature of the models.

There are a variety of ways in which mathematical analysis can
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improve our understanding of these fluid models. Two such themes are
apparent in this dissertation.

The first of these lies in the use of mathematical analysis to char-
acterize and confirm observationally and numerically established fea-
tures of turbulent fluids as intrinsic properties of the governing systems.
Effectively, this approach looks to mathematics to better understand
physically based descriptions of fluid mechanics. This approach is ap-
parent in Chapter 2 as well as Chapter 3 (see Sections 3.2 and 3.4)
where physically significant properties of turbulent fluids are investi-
gated from a rigorous perspective.

The second applies the physically based knowledge of fluid dynamics
to theoretical issues, e.g. developing physically motivated conditional
regularity criteria. Work in this spirit is contained in Chapter 3 (see in
particular Section 3.3) and Chapter 4.

In the remainder of this Chapter we first introduce the fluid models
which will be of primary interest to us and proceed to give some im-
pression of the topics relating to them that this dissertation considers.

1.1 Fluid models

The Navier-Stokes equations describe the motion of a viscous, incom-
pressible fluid and is important for its role in practical applications as
well as its mathematical significance. Working in R3 with initial data u0

taken in an appropriate function space – typically this is the divergence
free subspace H of the energy space L2(R3) but can vary depending on
context – the velocity field u of a viscous, incompressible fluid and an
associated scalar pressure p satisfy the system,{

∂tu+ (u · ∇)u = −∇p+ ν∆u+ f,
∇ · u = 0; u(x, 0) = u0,

(NSE)

where ν is the kinematic viscosity and f is a divergence free forcing
term. The divergence free condition ∇·u = 0 characterizes the fluid as
incompressible while ν > 0 indicates the fluid is viscous. A consequence
of incompressibility can be seen by taking the divergence of the velocity
equation to obtain,

−∆p = ∂i∂j(ui uj). (1.1.1)
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Thus, the pressure is determined kinematically (modulo a harmonic
function) as the solution of an elliptic system and in typical circum-
stances can be recovered from the velocity via singular integral opera-
tors.

Alternatively, one can focus on the evolution of the vorticity ω =
∇ × u which is obtained from the above system by applying the curl
operator throughout and takes the form,{

∂tω + (u · ∇)ω = (ω · ∇)u+ ν∆ω,
∇ · ω = 0; ω0 = ∇× u0.

(1.1.2)

Again, incompressibility leads us to an elliptic relationship,

−∆u = ∇× ω, (1.1.3)

and, under minimal assumptions on the flow (e.g. those given in [32]),
we can express the velocity field in terms of singular integral operators
applied to the vorticity.

A rich mathematical literature exists regarding NSE (cf. [35, 81,
104] for foundational expositions). We forgo a general survey of the
historical development of the field as it is beyond the scope of this
document but, when describing our results, we will comment further
on the most relevant existing research.

The Navier-Stokes equations can be refined in certain contexts to
yield other fluid models. An example of this is the coupling of 3D NSE
and Maxwell’s equations through the Lorentz force which leads to an
evolutionary system for plasma flows – i.e. fluid media comprised of
charged particles – and an interacting magnetic field. The resulting
partial differential equations are known as the magnetohydrodynamic
system and are important for the study of astronomical plasmas such
as stellar winds, the interstellar medium, and accretion disks. More
precisely, MHD describes the evolution of the plasma’s velocity field u
and an interacting magnetic field b via the equations,

ut − ν∆u+ (u · ∇)u− (b · ∇)b+∇(p+ |b|2/2) = 0,
bt − η∆b+ (u · ∇)b− (b · ∇)u = 0,
∇ · u = ∇ · b = 0,
u(x, 0) = u0(x); b(x, 0) = b0(x),

(MHD)

where η and ν are the magnetic resistivity and kinematic viscosity
respectively and p is the fluid pressure. In comparison to NSE, u and
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b are both divergence free and essentially non-linear perturbations of
heat equations, and, consequently, similar connections can be drawn
between these fields, the pressure, and the vorticity and current fields
ω = ∇×u and j = ∇×b. The degree to which these formal similarities
extend to the dynamical behavior of real world phenomena is, however,
more subtle, a fact reflecting the more complicated transport terms.

Another refined model is the surface quasi-geostrophic system (SQG)
which was introduced in the context of the quasi-geostrophic equations
(QG), a geophysical 3D model for the displacement of a rotating, strat-
ified fluid from a solid body revolution, to address the fact that the QG
description of atmospheric and oceanic processes breaks down in regions
near the boundaries of certain geophysical fluids like the troposphere
of the atmosphere and the ocean surface. To capture the dynamical
characteristics of these regimes, QG is augmented with an assumption
that the vorticity potential is uniform, a modification which leads to
SQG. Technically speaking, the SQG equations govern the evolution of
fluid’s surface temperature θ which is subjected to inertial effects and
dissipative forces. The fluid velocity u and the surface temperature are
coupled through a streamfunction Ψ which is assumed to be indepen-
dent of the vertical coordinate. Over a flat surface, taken to be R2, the
system has the form,{(

∂t + u · ∇+ κΛα
)
θ = 0, u = (−∂2Ψ, ∂1Ψ),

θ(·, 0) = θ0, ΛΨ = −θ,
(SQG)

where 0 < α ≤ 2, κ ≥ 0, and θ0 is a scalar valued initial datum taken in
an appropriate function space. The dissipative operator Λα is a Fourier
multiplier determined by,

(Λαf)∧(ξ) = |ξ|αf∧(ξ).

If κ > 0 then values of α where 0 < α < 1, α = 1, or 1 < α ≤ 2
correspond to formulations of SQG which behave distinctly and are
respectively referred to as supercritical, critical, and subcritical. These
three regimes are connected to the well-posedness of the corresponding
system and can be seen as a struggle between the diffusive smoothing
effects of the fractional Laplacian versus the nonlinear effect of the
transport term.
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1.2 Turbulence in viscous, incompressible

fluids

Turbulence theories have traditionally focused on providing a precise
characterization of the dynamics of turbulent flows. Despite a chaotic
appearance, observational and numerical studies indicate that certain
regular processes transpire involving the creation, evolution, and de-
struction of coherent structures whether they be vortexes in 3D hydro-
dynamics, current sheets in 3D magnetohydrodyanamics, or tempera-
ture variance assemblages in surface quasi-geostrophic dynamics. For
mathematicians, challenges lie in rigorously affirming the ubiquity of
certain observationally apparent dynamics as well as providing more
precise estimates for physically significant quantities working directly
from the governing equations.

The dynamical processes of chief interest to us are the turbulent
cascades, i.e. the net, inertially driven transport of an ideally conserved
quantity from larger to smaller scale structures (cf. [28, 55, 8]). In the
three dimensional NSE energy cascade, for example, energy is injected
by a source at a “macro scale” and initially concentrates on vortex
filaments of approximately this scale. As turbulence evolves, energy is
transported by inertial effects from larger to smaller structures, that is,
it cascades. This transport process ceases at a dissipative scale where
inertial effects are outweighed by viscous forces and frictional diffusion
interferes with inertial transport dynamics. The dissipative scale can
be realized mathematically as the uniform analyticity radius of the flow
[55]. The range of scales between the macro and dissipative scales is
called the inertial range as, across it, inertial forces dominate. Our
work in this area focuses on two topics and we presently remark on
these.

(1) The first class of results is contained in Chapter 2 where we
examine the existence of certain cascades and related transport phe-
nomena in MHD and SQG turbulence.

In 3D MHD turbulence, the total energy – i.e. the sum of mag-
netic, kinetic, and potential energies – exhibits a direct cascade, a
fact broadly supported by numerical and observational evidence (for
several modern, numerically motivated spectral phenomenologies see
[9, 12, 90, 93]). In [15], Z.B. and Z. Grujić established conditions under
which, in a statistically significant sense, the energy flux is directed
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from larger to smaller scales across an inertial range and, furthermore,
is nearly constant. These results are carefully presented in Chapter 2.2.
Our conclusions follow directly from the 3D MHD equations under as-
sumptions which are physically reasonable for many turbulent plasmas
and, in particular, astronomical plasmas such as the solar wind and
the interstellar medium. In contrast to the current phenomenological
theories, the results do not appeal to the existence of a strong magnetic
guide field which indicates that the energy cascade is an intrinsic prop-
erty of the 3D MHD system and not solely an artifact of the plasma’s
environment.

A related dynamical process in 3D MHD turbulence reflects a pic-
ture of intermittently distributed regions of high spatial complexity, i.e.
current sheets, which become increasingly thin as turbulence evolves
[8, 19, 59, 60, 94]. One view is that this process is initiated and driven by
inertial effects associated with the cascades of ideally conserved quan-
tities (see [48, 82, 97, 110]; for an alternative view, see [13, 19]). This
is visible in the progressive concentration of enstrophy, i.e. the sum of
the squares of vorticity and current, on small-scale current sheets. Un-
derstanding this concentrative process is important as it is connected
to the development of current-driven instabilities, e.g. the tearing in-
stability (cf. [8]), which drives magnetic reconnection (the relationship
between magnetic reconnection and current structures has been studied
in [48, 94]). In [16] and Chapter 2.3, Z.B. and Z. Grujić identify con-
ditions under which the picture of concentrative inertial transport of
enstrophy is affirmed. In the case that non-inertial effects are negligible
at large scales, this indicates a detectable large-to-small scale transport
of enstrophy which is cascade-like. In this scenario, then, inertial forces
have a morphological effect on current sheets and, therefore, the advec-
tion of these structures is likely not entirely passive.

A spectral theory of SQG turbulence was initially considered by Blu-
men in [11] where he derives Kolmogorov-Kraichnan type scaling laws
and associated inertial ranges (see also [67]). Here, there are two ideally
conserved quantities, the surface temperature variance and the depth-
integrated total energy, and their respective densities are |θ|2 and |u|2.
In a submitted work which is also described in Chapter 2.4, Z.B. and
Z. Grujić provide a rigorous affirmation of the existence of a forward
temperature variance cascade across an inertial range under conditions
which are consistent with qualitative properties of turbulence. The con-
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dition triggering the cascade is interesting as it must accommodate the
inherent non-locality introduced by fractional diffusion. To overcome
this, a non-local extension operator L (which has been studied exten-
sively in [21]) is incorporated through which the fractional Laplacian
of the temperature variance on R2 can be recovered as the trace of the
normal derivative of Lθ. Using this, we provide a formula for the local
temperature variance flux which is akin to local inequalities developed
in [22] and [39].

(2) The second topic of interest to us which relates to turbulent
cascades involves determining sharp lower bounds for the uniform an-
alyticity radius – recall that this length is connected to the scale at
which diffusive effects outweigh the inertial mechanisms which drive
the cascade – associated with certain fluids and is contained in Chap-
ter 3. Such bounds for solutions to NSE and related models have been
developed in a variety of settings using several theoretical devices. For
viscous fluids, these results frequently depend on Fourier methods and
are restricted to the whole space or the torus. A pioneering work along
these lines is that of Foias and Temam (cf. [54]) where it is shown that
certain solutions become Gevrey-regular at times t > 0 and, moreover,
the uniform analyticity radius increases with time. Another approach
was developed by Grujić and Kukavica and is carried out in physical
space using Lp(Rn) norms, cf. [62, 76], and, in the limit of L∞ initial
data (cf. [64]), has implications for geometric-measure based regularity
criteria as highlighted in [61].

Chapter 3 contains an extension of the L∞(R3) approach to 3D
MHD with a conditional regularity criteria in mind (these results are
also contained in [14]). The regularity criteria considers the super-
level sets of the magnitudes of the velocity and magnetic fields and is
essentially a requirement that these sets be sparse in a suitable, lower
dimensional sense. Several formulations of the criteria are included and
are consistent with the observation that the velocity field plays a more
important role as far as regularity is concerned than the magnetic field
(this reflects the the formal structure of the induction equation which
is effectively linear in b).

Interestingly, the Lp approach developed by Grujić and Kukavica in
[62] can be extended to accommodate local forcing. A proof of concept
for this idea is illustrated in [63] where they study the problem for a
nonlinear heat equation on a bounded domain with Dirichlet boundary
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conditions. In Chapter 3.4 we use a structurally similar approach to
[63] to locally estimate the analyticity radius of solutions to NSE on R3

with locally real analytic forcing – these results reflect an ongoing col-
laboration between Z.B., Z. Grujić, and I. Kukavica. The work in [63]
is comparably more direct than the considered problem because, there,
the nonlinear contribution to the heat equation is local and involves
no derivatives. This contrasts the Navier-Stokes equations where the
pressure constitutes a non-local effect on the evolution of the velocity
and the transport term involves a differential component. Despite these
complications sharp lower bounds can still be established. Our work
differs further from that of [63] which is built around energy functional
estimates as our technique is based on an iterative approximation ar-
gument going back to Kato’s semigroup approach to strong solutions
(cf. [72]). For our purposes, though, we must consider an approxi-
mation scheme which involves recursively solving second order linear
heat equations with non-incompressible forcing and our techniques are
considerably more involved than the estimates of [72] or [62] (the latter
reference also extends the approach of [72] but does so in a global, and
thus less messy, context).

1.3 Anisotropic diffusion and regularity

The second theme mentioned at the outset reflects the aim of developing
physically motivated conditional regularity criteria and this character-
izes the aims of Chapter 4. To highlight our efforts there, note that
a “scaling-gap” exists between known a priori finite quantities, take,
for instance, sup0<t<T ||u||22 or sup0<t<T ||∇u||1, and quantities with re-
spect to which regularity can be conditioned, e.g. sup0<t<T ||u||33 or
sup0<t<T ||∇u||22. Under the natural scaling for 3D NSE,

u(x, t) 7→ uλ(x, t) :=
1

λ
uλ

(
x

λ
,
t

λ2

)
,

we see that the a priori controlled quantities exhibit supercritical scal-
ing – our examples scale as λ1 – while those sufficient for regularity
scale critically as λ0. This mismatch is referred to as the “scaling-gap”
and indicates 3D NSE is a supercritical problem.

Typically, conditional regularity results include premises which ex-
plicitly bridge this scaling gap. For example, a significant result in
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regularity theory was non-existence of solutions which are backward-
in-time self-similar and singular (cf. [68, 88, 105]). Because self-similar
solutions are by construction scaling invariant, their study is effectively
a restriction to a class of critical solutions. Indeed, self-similar solu-
tions satisfy a scaling invariant point-wise bound, ess sup

(
(|x − x0| +√

T − t)|u(x, t)|
)
<∞, where the essential supremum is taken over an

appropriate parabolic cylinder. For non-self-similar solutions satisfying
this critical estimate, regularity has been affirmed in the axisymmetric
case (cf. [25, 24, 74, 95]; the general case remains open). This dis-
cussion illustrates a general theme wherein, first, the flow is assumed
to exhibit some feature which is critical and, second, additional re-
strictions are identified from which regularity is derived. Other criteria
which possess this structure, for example the partial regularity result
of [20], require additional conditions on the smallness of the presumed
finite scale-invariant quantity.

In [43] and [61], a dynamic approach to bridging the scaling gap
is introduced which is physically motivated by the persistence of the
axial lengths of vortex filaments. In conjunction with known a priori
decay rate for the volume of the region of intense vorticity (these can be
obtained via results in [31] and [81]), this determines a decay rate for
the axially-perpendicular radius of vortex filaments which matches the
critical scaling of local, one-dimensional sparseness, a rate identified in
[61] in terms of the decay of the uniform analyticity radius. Thus, the
anisotropic physical picture indicates certain supercritical quantities
behave critically in an asymptotic sense (it is in this regard that the
scaling gap is bridged).

On its own the criticality discussed in [43] and [61] is insufficient
to trigger the regularity criteria of [61] and additional work is required
to break criticality. In Chapter 4 two strategies are given which break
the critical scenario highlighted in [43] by establishing conditions which
lead to logarithmic improvements to the known a priori decay rate of
the volume of a localized super-level set of |ω| (these results are also
contained in [17] and [18]). The decay rate is obtained as a consequence
of the uniform-in-time control of the L1 norm of the vorticity which is
granted provided ∇× u0 is a finite measure (cf. [31]). The logarithmic
improvements we seek rely on establishing conditions which lead to the
uniform-in-time control of local L logL-type quantities.

Our two strategies are, in a sense, complimentary. In contrast to
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one another, the first class of conditions can be characterized as ‘wild
in time’ possessing a uniform algebraic structure, while the second are
‘wild in space’ possessing a uniform geometric structure. The proofs
are based on an adaptation of a method in [31], the novel component
being the utilization of analytic cancellations in the vortex-stretching
term via the Hardy space version of the Div-Curl Lemma [29], H1–
BMO duality [103], and the intimate connection between the BMO
norm and the logarithm. The arguments diverge at a technical level.
The key step for the former relies on the structure of the evolution of
the scalar components of vorticity and a result from [102] which state
that the BMO norm of the logarithm of a polynomial is bounded inde-
pendently of the coefficients. The latter approach depends on a sharp
pointwise multiplier theorem in BMO [71] and Coifman-Rochberg’s
BMO-estimate on the logarithm of the maximal function of a locally
integrable function [30] which depends only on the dimension of the
space and, importantly, is independent of the function.
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Chapter 2

Cascades and transport
processes in astronomical
and geophysical turbulence

2.1 Introduction

Turbulent flow can be characterized by its high degree of spatial com-
plexity. In the 3D hydrodynamic case, this is visible as the preferential
distribution of energy on intermittent vortexes. As inertial mechanisms
manipulate the flow, a dynamic process occurs in which energy is trans-
ported from larger to smaller scale structures (this motivates the term
“cascade”). The foundational literature on this subject focuses on the
hydrodynamic case, cf. [55] for an overview, and considerable mathe-
matical effort has been applied to rigorously understand this process.
Similar turbulent dynamics are apparent in more refined evolution-
ary systems. This chapter considers turbulent transport phenomena in
the magnetohydrodynamical system and the surface quasi-geostrophic
model. Here, we are most interested in affirming the existence of tur-
bulent cascades across physically meaningful ranges of scales as well as
showing that the inter-scale energy flux is local in the sense that it
occurs predominantly between structures of comparable scale. Before
attending these subjects we take a moment to more carefully introduce
the idea of the turbulent cascade and briefly highlight prior develop-
ments relating to hydrodynamic turbulent cascades and flux locality.

A direct cascade, whether it be in a fluid or plasma, is the net in-
ertial transport of an ideally conserved quantity from larger to smaller
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scales (cf. [28, 55, 8]). Roughly put, a source injects energy and, as
the medium transitions to turbulence, large scale coherent structures
emerge – vortex filaments in the hydrodynamic case; current sheets
in 3D MHD turbulence – on which this energy is concentrated. As
turbulence evolves, the energy is transported by inertial effects from
macro-scale eddies to progressively smaller scales in a uni-directional
fashion. The process ceases at a scale at which inertial effects are out-
weighed by dissipative forces (either viscous or resistive) and, instead
of being transported to even smaller scales, energy is lost as heat. The
range of scales over which this cascade persists is referred to as the
inertial range. In the 3D hydrodynamic energy cascade, the inter-scale
transport obeys two fundamental properties: constancy and scale lo-
cality of the flux. The first of these means that the energy flux at any
particular scale within the inertial range is comparable to that at any
other scale in the inertial range, i.e. at scales within the inertial range it
is nearly constant. Locality of the flux means that the energy exchange
is predominantly between structures of comparable scale.

A pioneering mathematical step toward rigorously affirming the ex-
istence of an energy cascade was carried out in frequency space by Foias,
Manley, Rosa, and Temam in [52] (see also their monograph [53]). Re-
garding locality of the flux, positive steps were taken in the context of
the Littlewood-Paley spectrum in [26] and [27] (see also [47, 98]). The
creation and dynamics of vortex structures are relevant to this subject
as their morphological properties relate to the spatial distribution of
the vorticity and is connected to the regions on which the cascade is
effected (see [31, 32, 38]).

A more recent approach has by R. Dascaliuc and Z. Grujić provides
the foundation for our own efforts. In [40] they develop a dynamic,
multi-scale averaging process which is applied to study features of vis-
cous hydrodynamic turbulence (we recall the specifics of this method-
ology in Section 2.2.1; this technique has subsequently been used in
[41, 42, 43, 45]). The process acts as a detector of significant sign-
fluctuations associated with a physical density at a given scale and is
used to show that the orientation of a particular flux – i.e. the en-
ergy flux – is, in a statistically significant sense, is concentrative. The
analysis is carried out entirely in physical space, a contrast to other
approaches which have identified ‘scale’ with Fourier wavenumbers or
Littlewood-Paley dyadic blocks. An interesting feature of this approach
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is that locality can be derived dynamically as a direct consequence of
the existence of the turbulent cascade in view and exhibits comparable
upper and lower bounds throughout the inertial range. In comparison,
the previous locality results were essentially localized kinematic upper
bounds on the flux, the corresponding lower bounds being consistent
with turbulent properties of the flow [26, 47].

In this chapter we extend and adapt the approach of R. Dascaliuc
and Z. Grujić to study turbulent transport in astronomical plasmas in
Sections 2.2 and 2.3 as well as certain geophysical fluids in Section 2.4.

2.2 Energy cascades and related processes

in astronomical plasmas

The 3D magnetohydrodynamic equations model the evolution of a cou-
pled system comprised of a magnetic field and an electrically conduct-
ing fluid’s velocity field. Throughout turbulent MHD regimes such as
stellar winds and the interstellar medium, observational and numerical
evidence indicate that energy is transported from larger to smaller scale
structures in a regular fashion reminiscent of the hydrodynamic energy
cascade (cf. [8, 12, 93, 9]). This process is consistent with the picture
wherein energy is preferentially distributed on intermittently located
and progressively thinning coherent current and vortex structures re-
ferred to as current sheets (cf. [8, 16, 60, 59, 19, 94]).

Although the existence of an energy cascade in 3D MHD turbulence
is widely accepted in the physics community (see [8] for an overview
and [75, 69] for the classical phenomenologies), there is considerable
disagreement regarding the details. A contentious issue lies in under-
standing the anisotropic influence of a strong magnetic field on scaling
properties of the energy spectrum (this discussion began in earnest in
[57, 58]; in contrast, the classical phenomenologies of Iroshnikov and
Kraichnan assumed an isotropic spectral transfer [75, 69]). In [58],
a critical balance assumption – i.e. that there is a single timescale
for parallel and perpendicular motion (to the magnetic mean field) in
a turbulent eddy – was introduced allowing for the derivations of a
distinct perpendicular energy spectrum and a scaling relationship be-
tween the lengths of perpendicular and parallel fluctuations. Numerical
results indicated the picture is more complex than that described in
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[58] and various competing phenomenologies have been developed (cf.
[12, 86, 56, 7] for several examples). Lively debate remains as to which
is the most effective (cf. [91, 6]).

There is potential, in light of the discussion highlighted above, for
a contribution to this debate based on a mathematical analysis of the
governing system. Prior to now, however, neither the existence of an
energy cascade nor the scale locality of the flux have been rigorously af-
firmed (non-rigorous results concerning locality of the flux can be found
in [3]; a rigorous study of a related phenomenon, the concentration of
enstrophy, has been carried out in [16] and is described in Section 3 of
this chapter). The purpose of this section is to provide such results;
in Section 2.2.3, we establish the cascade of total energy by studying
the orientation of the total energy flux in a suitably statistical man-
ner (which is detailed in Section 2.2.1) across an inertial range and, in
Section 2.2.6, affirm scale locality of the energy flux.

We remark that our conclusions follow directly from the 3D MHD
equations under assumptions which are physically reasonable for turbu-
lent regimes wherein the magnetic Prandtl number is not significantly
smaller than one (i.e. η . ν). In particular, it applies to astronomical
settings such as the Solar wind and the interstellar medium. Inter-
estingly, and contrasting the current phenomenological theories cited
earlier, no appeal is made to the existence of a strong magnetic guide
field. This indicates that the energy cascade is an intrinsic property of
the 3D MHD system and not solely an artifact of the plasma’s environ-
ment.

Due to the coupling between the magnetic field and plasma, each
of which is imbued with its own energy, there are a number of transfer
mechanisms by which energy can ‘flow’ between scales. In particular,
kinetic energy can remain tied to the velocity field or magnetic energy to
the magnetic field, but each energy can also be transferred between the
two fields. A secondary purpose of this section is to identify conditions
under which the distinct energies are transported, in a statistical sense,
from larger to smaller scales (see Sections 2.2.4 and 2.2.5). Additionally,
by considering the stretching effect of the velocity field on the magnetic
field lines, we identify a scenario and range of scales for which the
dominant inter-field energy exchange is directed from the velocity field
to the magnetic field (see Section 2.2.7).
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2.2.1 (K1, K2)-covers and ensemble averages

The main purpose of this section is to describe how ensemble averaging
with respect to (K1, K2)-covers of an integral domain B(0, R0) can be
used to establish essential positivity of an a priori sign-varying density
over a range of physical scales associated with the integral domain
(cf. [40]). The application to turbulence lies in showing certain flux
densities are directed, on average, into structures of a particular scale –
i.e. the cascade is uni-directional from larger to smaller scales – as well
as the near-constancy of the averaged densities – i.e. the space-time
averages over cover elements are all mutually comparable – across a
range of scales, the inertial range.

The ensemble averages will be taken over collections of space-time
averages of physical densities localized to cover elements of a particular
type of covering – a so called (K1, K2)-cover – of the region of turbulent
activity. For simplicity, this region will be taken as a ball of radius
R0 centered at the origin and, to reflect the turbulence literature, is
henceforth referred to as the integral domain (also known as the macro-
scale domain). The time interval on which we localize is chosen for
dimensional consistency to be of length T for which,

T ≥ R2
0

ν
.

The (K1, K2)-covers are now defined.

Definition 2.2.1. Let K1, K2 ∈ N and 0 ≤ R ≤ R0. The cover of
the integral domain B(0, R0) by the n (open) balls, {B(xi, R)}ni=1 is a
(K1, K2)-cover at scale R if,(

R0

R

)3

≤ n ≤ K1

(
R0

R

)3

and, for any x ∈ B(0, R0), x is contained in at most K2 cover elements.

For the remainder of this section, all covers are understood to be
(K1, K2)-covers at scale R. The positive integers K1 and K2 represent
the maximum allowed global and local multiplicities, respectively.

In order to localize a physical density to a cover element we incor-
porate certain refined cut-off functions. For a cover element centered at
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xi, let φi(x, t) = η(t)ψ(x) where η ∈ C∞(0, T ) and ψ ∈ C∞0 (R3) satisfy,

0 ≤ η ≤ 1, η = 0 on (0, T/3), η = 1 on (2T/3, T ),
|∂tη|
ηδ
≤ C0

T
,

(2.2.1)

and,

0 ≤ ψ ≤ 1, ψ = 1 on B(xi, R),
|∂iψ|
ψρ
≤ C0

R
,
|∂i∂jψ|
ψ2ρ−1

≤ C0

R2
, (2.2.2)

where 3/4 < δ, ρ < 1.
By φ0 we denote a refined cut-off function centered at x = 0 localiz-

ing to the ball B(0, R0) (thus φ0 is the cut-off function for the integral
domain and is supported on B(0, 2R0)).

Comparisons will be necessary between averaged quantities localized
to cover elements at certain scales R < R0 and averaged quantities
taken at the scale of the integral domain, R0. To accommodate this
we impose several additional conditions for points xi lying near the
boundary of B(0, R0). If B(xi, R) ⊂ B(0, R0) we assume ψ ≤ ψ0.
Alternatively, when B(xi, R) 6⊂ B(0, R0), additional assumptions are
in order. To specify these, let l(x, y) denote the collection of points on
the line through x and y and define the sets,

S0 = B(xi, R) ∩B(0, R0),

S1 =
{
x : R0 ≤ |x| < 2R0, ∅ 6=

(
l(x, 0) ∩ ∂B(xi, R) ∩B(0, R0)c

)}
,

S2 =

({
x : R0 ≤ |x| < 2R0, ∅ 6=

(
l(x, x0) ∩ ∂B(xi, 2R) ∩B(x0, R0)c

)}
∪B(xi, 2R)

)
∩ (S0 ∪ S1)c.

Then, our assumptions are that ψ satisfies (2.4.3), ψ = 1 on S0, ψ = ψ0

on S1, and suppψ = S2. The above conditions ensure that ψ ≤ ψ0 and
that ψ can be constructed to have an inwardly oriented gradient field.

These tools are employed to study properties of a physical density
at a physical scale R associated with the integral domain B(0, R0). To
illustrate this, let θ be a physical density (e.g. a flux density) and define
its localized space-time average on a cover element at scale R around
xi as,

Θ̃xi,R =
1

T

∫ T

0

1

R3

∫
B(xi,2R)

θ(x, t)φδi (x, t) dx dt,
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where 0 < δ ≤ 1. Let 〈Θ〉R denote the ensemble average over localized
averages associated with cover elements, i.e.,

〈Θ〉R =
1

n

n∑
i=1

Θ̃xi,R.

Examining the values obtained by ensemble averaging the local aver-
ages associated to a variety of covers at a fixed scale allows us to draw
conclusions about the flux density θ at comparable and greater scales.
For instance, stability (i.e. near constancy) across the set {〈Θ〉R} indi-
cates that the sign of θ is essentially uniform at scales comparable to
or greater than R. On the other hand, if the sign were not essentially
uniform at scale R, particular covers could be arranged to enhance neg-
ative and positive regions and thus give a wide range of sign varying
values in {〈Θ〉R}. Our methodology, then, establishes the essential pos-
itivity of an a priori sign varying density θ at a scale R, by showing
the positivity and near constancy of all elements of {〈Θ〉R}.

An indispensable observation is that, if θ is an a priori non-negative
density, then the ensemble averages taken at scales below the integral
scale are all comparable to the integral scale space-time average. We
make this notion precise in the following lemma.

Lemma 2.2.2. Let f(x, t) ∈ L1
loc((0, T ) × R3) be non-negative. Let

{xi}ni=1 be centers of elements of a (K1, K2)-cover of B(x0, R0) at scale
R < R0. Setting,

F0 =
1

T

∫ T

0

1

R3
0

∫
f(x, t)φ0(x, t) dx dt,

and,

Fxi,R =
1

T

∫ T

0

1

R3

∫
f(x, t)φxi,R(x, t) dx dt,

we have,

1

K1

F0 ≤ 〈F 〉R ≤ K2F0. (2.2.3)

Proof. Recalling that φxi,R ≤ φ0 and the definition of (K1, K2)-covers
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we have that,

〈F 〉R =
1

T

∫ T

0

1

nR3

∫
f(x, t)

n∑
i=1

φxi,R(x, t) dx dt

≤ 1

T

∫ T

0

1

R3

R3

R3
0

∫
f(x, t)K2φ0(x, t) dx dt = K2F0,

and,

〈F 〉R =
1

T

∫ T

0

1

nR3

∫
f(x, t)

n∑
i=1

φxi,R(x, t) dx dt

≥ 1

T

∫ T

0

1

R3

1

K1

R3

R3
0

∫
f(x, t)φ0(x, t) dx dt =

1

K1

F0.

For additional discussion of (K1, K2)-covers and ensemble averages,
including some computational illustrations of the process, see [45].

2.2.2 3D incompressible MHD equations

Our mathematical setting is that of weak solutions to the 3D magne-
tohydrodynamic equations over R3 (cf. [96] for the essential theory).
Define V = {f ∈ L2(R3) : ∇ · f = 0} (where the divergence free con-
dition is in the sense of distributions) and let V be the closure of V
under the norm of the Sobolev space, (H1(R3))3, and, H, the closure
of V under the L2 norm. By a solution to MHD we mean a weak
(distributional) solution to the coupled system,

ut − ν∆u+ (u · ∇)u− (b · ∇)b+∇(p+ |b|2/2) = 0,

bt − η∆b+ (u · ∇)b− (b · ∇)u = 0,

∇ · u = ∇ · b = 0,

u(x, 0) = u0(x) ∈ V,
b(x, 0) = b0(x) ∈ V,

where η and ν are the magnetic resistivity and kinematic viscosity
respectively and p(x, t) is the fluid pressure.
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Our present work utilizes suitable weak solutions for MHD. These
are weak solutions which additionally satisfy the generalized energy
inequality (among other things – see [66] for a precise definition),∫ T

0

∫
(ν|∇u(x, t)|2 + η|∇b(x, t)|2)φ(x, t) dx dt (2.2.4)

≤ 1

2

∫ T

0

∫
(|u(x, t)|2 + |b(x, t)|2)φt(x, t) dx dt

+
1

2

∫ T

0

∫
(ν|u(x, t)|2 + η|b(x, t)|2)∆φ(x, t) dx dt

+
1

2

∫ T

0

∫
(|u(x, t)|2 + |b(x, t)|2 + 2p(x, t))(u(x, t) · ∇φ(x, t)) dx dt

−
∫ T

0

∫
(u(x, t) · b(x, t))(b(x, t) · ∇φ(x, t)) dx dt,

for a.e. T ∈ (0,∞) and any non-negative φ ∈ C∞0 (R3 × [0,∞)).
Existence of suitable weak solutions for MHD is proven in [66] using

an adaptation of the traditional method for NSE found in [20]. Our
application of these will require the generalized energy inequality men-
tioned above as well as the following regularity properties (these can
also be found in [66]).

Proposition 2.2.3. For u0, b0 ∈ H and u0 ∈ W 4/5,5/3, suppose (u, b, p)
constitutes a suitable weak solution to MHD. Then, (u, b, p) satisfies,

u, b ∈ L∞(0,∞;H), u, b ∈ L3(0,∞;L3(R3)),

∇u,∇b ∈ L2(0,∞;L2(R3)), p ∈ L3/2(0,∞;L3/2(R3)).

The fact that suitable weak solutions only satisfy a generalized en-
ergy inequality (as opposed to equality) introduces the possibility that
energy is dissipated not only by viscosity or resistivity but also by
singularities. In the case that the weak solution in question is regular,
equality is attained in the generalized energy inequality, (2.2.4), and the
potential for loss of flux due to singularities is eliminated. To stream-
line discussion we establish cascades for regular solutions and include
an illustrative result for the non-regular case only in the context of the
cascade of the modified (due to energy loss from possible singularities)
total energy flux (cf. Section 2.2.3). The study of the possible energy
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loss due to singularities is itself an interesting subject but the case of
MHD is not sufficiently distinct from that of NSE (which can be found
in [40]) to justify an independent exposition.

2.2.3 Total energy cascade

The total energy flux through the boundary of the ball B over the
interval (0, T ) is given (cf. [8]) by,

1

2

∫ T

0

∫
∂B

(|u|2 + |b|2 + 2p) n̂ · u dx dt−
∫ T

0

∫
∂B

(u · b)(n̂ · b) dx dt,

where n̂ is the unit normal vector directed inward. Our analytic results
are enabled by substituting an inwardly directed vector field, ∇φi, for
n̂ where φ is a refined cut-off function for the ball B(xi, R). Localized,
space-time averaged total energy fluxes into balls centered at the points
xi of radius R, over the interval (0, T ), are then defined as,

FE
xi,R

:=
1

2

∫ T

0

∫
(|u|2 + |b|2 + 2p)(u · ∇φi) dx dt

−
∫ T

0

∫
(u · b)(b · ∇φi) dx dt.

It is informative to remark on the genesis of the last term, the advection
of the cross-helicity via the magnetic field. The transfer of magnetic to
kinetic energy is driven by the Lorentz force while the stretching of the
magnetic field lines is responsible for the transfer of kinetic energy to
magnetic energy. Since these are complementary, the sum experiences
a global cancellation but locally leaves us with a flux-type term,∫ T

0

∫
((b · ∇)b · φu+ (b · ∇)u · φb) dx dt (2.2.5)

= −
∫ T

0

∫
(u · b)(b · ∇φ) dx dt.

The appearance of this term is interesting because it is only non-zero if
there is some degree of non-locality in the energy transfer between the
two fields.

In the following we work in a fixed integral domain, B(0, R0), with
associated cut-off φ0. Certain integral domain quantities will be used to
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determine lower bounds on the inertial ranges over which our cascades
are shown to persist. These are the integral scale space-time averaged
kinetic and magnetic energies and are defined in terms of a technical
parameter, δ, as,

eu0 = eu0(δ) =
1

T

∫ T

0

1

R3
0

∫
1

2
|u|2φδ0 dx dt,

and,

eb0 = eb0(δ) =
1

T

∫ T

0

1

R3
0

∫
1

2
|b|2φδ0 dx dt,

and the integral scale space-time averaged enstrophies which are given
by,

Eu
0 = ν

1

T

∫ T

0

1

R3
0

∫
|∇u|2φ0 dx dt,

and,

Eb
0 = η

1

T

∫ T

0

1

R3
0

∫
|∇b|2φ0 dx dt.

The combined kinetic and magnetic energies or enstrophies will be iden-
tified by omitting the superscript (i.e. e0 := eu0 +eb0). Note that, because
e0 is decreasing with δ, we will take liberties suppressing the dependence
of e0 on δ with the understanding that the indicated quantity is that
associated with the smallest appropriate value.

We will establish that the cascade persists over a range of scales
bound above by the integral scale and below by a modified Taylor
micro-scale. The Taylor micro-scale is,

τ =

(
ν e0

E0

)1/2

,

and is taken from the hydrodynamic theory where, as a measure of
inertial to viscous forces, it provides an intermediate scale between the
macro-scale and the Kolmogorov dissipation scale (cf. [8]). Our modifi-
cation will depend in part on the magnetic Prandtl number, denoted by
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Pr, a non-dimensional number given by the ratio of kinematic viscosity
to magnetic resistivity, i.e.,

Pr =
ν

η
.

Essentially, its role in the modification is to incorporate information
about the magnetic resistivity which is absent from our prescribed time
scale (recall T > R2

0/ν) and the Taylor micro-scale.
With these definitions and labels in mind we are ready to present

our main result regarding the existence of an inertial range combined
energy cascade as an intrinsic feature of the 3D MHD system.

Theorem 2.2.4. Assume u and b are suitable weak solutions to 3D
MHD with sufficient regularity that equality holds in (2.2.4).

Let {xi}ni=1 ⊂ B(0, R0) be the centers of a (K1, K2)-cover at scale
R. For a scale and cover independent positive parameter,

β :=

(
1

2CK1K2(1 + Pr−1)

)1/2

,

where C is a constant determined by structural properties of 3D MHD
and our cut-off functions, if τ/β < R0 then,

1

2K1

E0 ≤
〈
FE
〉
R
≤ 2K2E0,

provided R is contained in the interval [τ/β,R0].

Proof. Let φxi,R denote a refined cut-off function for the cover element
B(xi, R). Assuming the premises above and in virtue of (2.2.4), we
have for any cover element that,

FE
xi,R
≥
∫ T

0

∫
(ν|∇u|2 + η|∇b|2)φxi,R dx dt

−
∣∣∣∣12
∫ T

0

∫
(|u|2 + |b|2)∂tφxi,R dx dt

∣∣∣∣
+

∣∣∣∣12
∫ T

0

∫
(ν|u|2 + η|b|2)∆φxi,R dx dt

∣∣∣∣.
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Recalling the properties of our cut-off functions,

|∂tφxi,R| ≤ c0

φρxi,R
T

,

as well as the fact,
1

T
≤ ν

R2
= Pr

η

R2
,

we conclude that,

1

2

∫ T

0

∫
(|u|2 + |b|2)∂tφxi,R dx dt

≤ c0
ν

R2

∫ T

0

∫
|u|2φρxi,R dx dt+ c0Pr

η

R2

∫ T

0

∫
|b|2φρxi,R dx dt.

Our cut-off functions also satisfy,

|∆φxi,R| ≤ c0
φ2ρ−1

R2
,

and, consequently,

1

2

∫ T

0

∫
(ν|u|2 + η|b|2)∆φxi,R dx dt

≤ c0
ν

R2

∫ T

0

∫
|u|2φ2ρ−1

xi,R
dx dt+ c0

η

R2

∫ T

0

∫
|b|2φ2ρ−1

xi,R
dx dt.

Noting that ρ > 2ρ− 1 we have, upon combining the above estimates,
that,

FE
xi,R
≥
∫ T

0

∫
(ν|∇u|2 + η|∇b|2)φxi,R dx dt

− c0

R2

∫ T

0

∫
(ν|u|2 + η(1 + Pr)|b|2)φ2ρ−1

xi,R
dx dt.

Using Lemma 2.2.2, we observe that,

K2E0 ≥
〈

1

T

∫ T

0

1

R3

∫
(ν|∇u|2 + η|∇b|2)φxi,R dx dt

〉
R

≥ 1

K1

E0,
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and, 〈
1

T

∫ T

0

1

R3

∫
1

2
(ν|u|2 + η(1 + Pr)|b|2)φ2ρ−1

xi,R
dx dt

〉
R

≤ νK2e
u
0 + η(1 + Pr)K2e

b
0

≤ νK2

(
1 + Pr−1)e0.

We can thus interpolate the ensemble average between integral scale
quantities as,

1

K1

E0 − ν
c0K2(1 + Pr−1)

R2
e0 ≤

〈
FE
〉
R
≤ K2E0 + ν

c0K2(1 + Pr−1)

R2
e0.

It is worth remarking that the upper bound follows in virtue of the
assumed regularity (i.e. equality in (2.2.4)) and this is the only place
where this assumption is used. In particular, the lower bound holds for
non-regular solutions.

Continuing, we now specify a value for β, the modification to the
inertial range, to be,

β =

(
1

2c0K1K2(1 + Pr−1)

)1/2

.

Because R lies in the inertial range – i.e. τ/β ≤ R ≤ R0 – we have,

ν
c0K2(1 + Pr−1)

R2
e0 ≤

1

2K1

E0.

The final lower bound for the ensemble average is thus,

〈
FE
〉
R
≥ 1

2K1

E0.

The upper bound follows trivially with our definition of β and we con-
clude that,

1

2K1

E0 ≤
〈
FE
〉
R
≤ 2K2E0.
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We make two remarks before proceeding to other topics. First, the
condition triggering the cascade is essentially a requirement that the
gradients of the velocity and the magnetic fields are large (averaged,
over the integral domain) with respect to the fields themselves; this will
hold in the regions of high spatial complexity of the flow (the correction
parameter β depends on certain a priori bounded quantities; however,
none of these involve gradients). Second, the dependence of the length
of the inertial range on Pr has consequences for when the above result
is most physically relevant. The correction to the Taylor micro-scale
is minimized when Pr−1 . 1, that is, when η . ν. This is exactly
the scenario for turbulent plasmas in astronomical settings such as the
solar wind and the interstellar medium.

A brief discussion of how to obtain a result for possibly non-regular
suitable weak solutions is appropriate. As noted in the proof, the as-
sumption of regularity was only used in establishing the upper bound
on the ensemble average and we presently address how this can be al-
ternatively accommodated. The physical cause of a strict inequality
in the generalized energy inequality is interpreted as the loss of energy
due to possible singularities. This lost energy will be denoted by F∞φ
(or F∞xi,R if φ is the cut-off for a (K1, K2)-cover element) and is defined
as the value that “fills in” the inequality (2.2.4); i.e., it satisfies,∫ T

0

∫
(ν|∇u|2 + η|∇b|2)φ dx dt+ F∞φ (2.2.6)

=
1

2

∫ T

0

∫
(|u|2 + |b|2)φt dx dt+

1

2

∫ T

0

∫
(ν|u|2 + η|b|2)∆φ dx dt

+
1

2

∫ T

0

∫
(|u|2 + 2|b|2 + 2p)(u · ∇φ) dx dt

−
∫ T

0

∫
(u · b)(b · ∇φ) dx dt.

To account for the possible strictness of the above inequality we replace
the fluxes considered previously with fluxes modified to include the
possible loss of energy due to singularities. For example, in the case of
the total energy flux, we establish an interpolative bound on ensemble
averages corresponding to the localized modified total energy fluxes,

FE,∞
φ = FE

φ − F∞φ .
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Positivity and near-constancy results are then given in terms of the
modified flux specified above. The cascade of total energy modified due
to possible non-regularity is then given by the following theorem, the
proof of which is identical modulo a substitution of FE,∞

φ for FE
φ to the

proof of (2.2.4).

Theorem 2.2.5. Assume u and b constitute a suitable weak solutions
to 3D MHD. Let {xi}ni=1 ⊂ B(0, R0) be the centers of a (K1, K2)-cover
at scale R where the cut-off functions are defined with T ≥ R2/ν. For
a scale- and cover-independent, positive parameter,

β :=

(
1

2CK1K2(1 + Pr−1)

)1/2

,

where C is a constant determined by structural properties of 3D MHD
and our cut-off functions, if τ < βR0, then,

1

2K1

E0 ≤
〈
FE,∞〉

R
≤ 2K2E0,

provided R is contained in the interval [τ/β,R0].

2.2.4 Cascade-like dynamics of the total fluid en-
ergy

Our attention is now turned to establishing conditions under which dis-
tinct, inertially transported quantities exhibit cascade-like dynamics.
Note that our terminology is modified to reflect the physics literature
wherein the term ‘cascade’ typically refers to an ideally conserved quan-
tity. We first consider the inertially driven concentration of total fluid
energy. The localized flux quantity of interest is,

1

2

∫ T

0

∫
(|u|2 + 2p)(u · ∇φ) dx dt

= −
∫ T

0

∫
((u · ∇)u+ p) · (φ u) dx dt.

Remark 2.2.1. The total fluid energy flux consists of the kinetic energy
flux and the pressure flux, the local and the non-local parts, respectively.
However, the cascade-like results obtained in this section, paired with
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the scale-locality of the flux presented in Section 7, indicates that the
dominant component (on average) is the local one, i.e., the kinetic en-
ergy flux. Alternatively, one can study the kinetic energy cascade on its
own and try to interpolate the ensemble-averaged pressure flux between
suitable integral-scale quantities. See Section 2.2.5.

Results are ultimately intended for the dimensional form of the
equations (as was the case for the cascade of total energy) but it will
be convenient to carry out estimates in a dimensionless setting. Before
doing so we verify that a positive result in one context implies an anal-
ogous result in the other. Beginning with a dimensional problem where
the integral domain has radius R0 (the characteristic length scale) and
ν is the kinematic viscosity (these will be our fundamental dimensions;
they also determine the characteristic time scale T = R2

0ν
−1), non-

dimensionalization is achieved using the dimensionless variables and
functions,

x∗i =
xi
R0

, t∗ =
t

T
, u∗(x, t) =

T

R0

u(x, t), and b∗(x, t) =
T

R0

b(x, t).

We will establish the existence of dimensionless cascade-like behavior
over an inertial range determined by the relationship,(

R0

R

)δ
e∗0
E∗0

< β,

where,

e∗0 =

∫ 1

0

∫
1

2
(|u∗|2 + |b∗|2)φ0 dx

∗dt∗,

and,

E∗0 =

∫ 1

0

∫
(|∇∗u∗|2 + |∇∗b∗|2)φ0 dx

∗dt∗,

and β is a dimensionless constant (here∇∗ indicates differentiation with
respect to the dimensionless variable). This has consequences for the
dimensional setting in virtue of the equivalence,

e0

E0

= R2
0

e∗0
E∗0

,
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which follows from a change of variable and the chain rule. Similar
computations verify the following relationships,

eu0 =
R2

0

T 2
eu
∗

0 , e
b
0 =

R2
0

T 2
eb
∗

0 , E
u
0 =

ν

T 2
Eu∗

0 , and Eb
0 =

η

T 2
Eb∗

0 ,

where the dimensionless quantities eu
∗

0 , eb
∗

0 , Eu∗
0 , and Eb∗

0 are defined in
analogy with their dimensional counterparts.

For the flux presently of interest, total (fluid) energy, setting,

Fxi,R =
1

TR3

∫ T

0

∫
((u · ∇)u+∇p) · (φxi,Ru) dx dt,

and,

F ∗xi,R =
R3

0

R3

∫ 1

0

∫
((u∗(x∗, t∗) · ∇∗)u∗(x∗, t∗) +∇∗p∗(x∗, t∗))

· φxi,R(x∗, t∗)u∗(x∗, t∗) dx∗ dt∗,

we see that,

Fxi,R =
ν

T 2
F ∗xi,R.

The equivalence of non-dimensional and dimensional cascades can
be seen by considering an example theorem in the dimensionless context
which asserts that, for certain dimensionless quantities βu and βb, if,

R0

βu

(
eu
∗

0

Eu∗
0

)1/4

< R < R0 and
R0

βb

(
eb
∗

0

Eb∗
0

)1/4

< R < R0,

then,
1

2K∗
E∗0 ≤ 〈F ∗〉R/R0 ≤ 2K∗E

∗
0 .

By the quantitative relations identified above, the consequence for
the dimensional scenario is, if,

R
1/2
0

βu

(
ν eu0
Eu

0

)1/4

< R < R0 and
R

1/2
0

βb

(
η eb0
Eb

0

)1/4

< R < R0,

then,
1

2K∗
Ẽ0 ≤ 〈F 〉R ≤ 2K∗Ẽ0,
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where Ẽ0 is determined at the scale of the integral domain – in par-
ticular, it is independent of the scale and choice of a (K1, K2)-cover –
by,

Ẽ0 =

(
Eu

0 + Pr Eb
0

)
.

Finally, note that in the dimensionless variables our refined cut-off
functions localize spatially to balls of (dimensionless) radius R/R0 for
0 < R ≤ R0 and temporally to the (dimensionless) interval [0, 1] and, in
analogy to properties (2.4.2) and (2.4.3), satisfy the following gradient
estimates,

|∇∗φ(x∗, t∗)| ≤ c0
R0

R
φρ(x∗, t∗), (2.2.7)

and,

φt∗(x
∗, t∗)| ≤ c0φ

ρ(x∗, t∗).

Since we can recover dimensional cascade-like behavior from the
non-dimensional counterpart we are justified in considering only the
latter. We subsequently suppress the asterisks used above to indicate
non-dimensionality noting that, for the remainder of this section, we
are working with dimensionless quantities.

Following [96], solutions to dimensionless 3D MHD satisfy,
∂tu− 1

Re
∆u = −(u · ∇)u−∇p− S

(
∇ |b|

2

2
− (b · ∇)b

)
,

∂tb− 1
Rm

∆b = ∇× (b× u),

∇ · u = ∇ · b = 0,

where Re and Rm are the Reynolds and magnetic Reynolds numbers
respectively and the non-dimensional number, S, is defined in terms
of the Hartmann number, M , to be S = M2/(ReRm) (note that the
Hartmann number is a dimensionless quantity given by the ratio of the
electromagnetic force to the viscous force). We will assume the initial
datum are divergence free and belong to the typical energy spaces, i.e.,

u(x, 0) = u0(x), b(x, 0) = b0(x) ∈ L2(R3).

In order to obtain a local cancellation between coupled non-linear
terms, we assume sufficient regularity so that the following derivation
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is justified. Taking the scalar product of the equation of motion by
φu and the induction equation by Sφb, integrating, and rearranging we
obtain a flux density for total (fluid) energy into the ball B(xi, R/R0)
(here φ denotes an appropriate refined cut-off function),

∫ 1

0

∫ (
1

2
|u|2 + p

)
· (∇φ · u) dx dt

=
1

Re

∫ 1

0

∫
|∇u|2φ dx dt+

S

Rm

∫ 1

0

∫
|∇b|2φ dx dt

− S
∫ 1

0

∫
∇φ · (b× (u× b)) dx dt

− 1

2

∫ 1

0

∫
|u|2φt dx dt−

1

2Re

∫ 1

0

∫
|u|2∆φ dx dt

− S

2

∫ 1

0

∫
|b|2φt dx dt−

S

2Rm

∫ 1

0

∫
|b|2∆φ dx dt.

Bounds for the lower order terms on the right hand side follow. The
last four terms are bounded in a manner similar to that seen in the
proof of (2.2.4). Here, however, we acknowledge the change of variable
and cite the properties of our refined cut-off functions, (2.2.7), as well
as the chain rule, to obtain the following bounds:

∣∣∣∣12
∫ 1

0

∫
|u|2φt dx dt

∣∣∣∣ ≤ c0

(
R0

R

)2 ∫ 1

0

∫
|u|2φ4ρ−3 dx dt, (2.2.8)∣∣∣∣ 1

2Re

∫ 1

0

∫
|u|2∆φ dx dt

∣∣∣∣ ≤ c0
1

Re

(
R0

R

)2 ∫ 1

0

∫
|u|2φ4ρ−3 dx dt,∣∣∣∣S2

∫ 1

0

∫
|b|2φt dx dt

∣∣∣∣ ≤ c0S

(
R0

R

)2 ∫ 1

0

∫
|b|2φρ dx dt,∣∣∣∣ S

2Rm

∫ 1

0

∫
|b|2∆φ dx dt

∣∣∣∣ ≤ c0
S

Rm

(
R0

R

)2 ∫ 1

0

∫
|b|2φ4ρ−3 dx dt.

Repeatedly using Hölder’s inequality, the Gagliardo-Nirenberg inequal-
ity, and Young’s inequality, yields the following bound for the non-linear
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term originating in the induction equation,∣∣∣∣c0S
R0

R

∫ 1

0

∫
φρ(b× (u× b)) dx dt

∣∣∣∣
≤ c0S

R0

R

∫ 1

0

∫
(|u|1/2φρ−3/4)(|b|1/2)(|u|1/2|b|3/2φ3/4) dx dt

≤ c0S
R0

R

∫ 1

0

||uφ2ρ−3/2||1/22 ||b||
1/2
2 ||(|u|1/2|b|3/2φ3/4)||2 dt

≤ c0
R0

R

(
M1/2Rm1/2

Re1/4

)(
M3/2

Re3/4Rm3/2

)
·
∫ 1

0

||uφ2ρ−3/2||1/22 ||b||
1/2
2 ||u||

1/2
2 ||∇(bφ1/2)||3/22 dt

≤ c0
M2Rm2R4

0

ReR4

(
sup
t
||u||22

)(
sup
t
||b||22

) ∫ 1

0

||uφ4ρ−3||22 dt

+
S

4Rm

∫ 1

0

||∇(bφ1/2)||22 dt

≤ c0(MRm)2
(

sup
t
||u||22 sup

t
||b||22

) 1

Re

R4
0

R4

∫ 1

0

||uφ4ρ−3||22 dt

+
S

4Rm

∫ 1

0

||(∇b)φ1/2||22 dt+
c0S

Rm

R4
0

R4

∫ 1

0

||bφ4ρ−3||22 dt. (2.2.9)

Taking ensemble averages and applying Lemma 2.2.2 where needed
we introduce the quantities eu0 , eb0, Eu

0 , and Eb
0 to obtain,

〈F 〉R ≥
1

K1

1

Re
Eu

0 +
1

K1

S

Rm
Eb

0 − c0
K2S

Rm

(
2 +Rm

)R4
0

R4
eb0

− c0
K2

Re

(
1 +Re+ (MRm)2

(
sup
t
||u||22 sup

t
||b||22

))R4
0

R4
eu0

=
1

K1

1

Re
Eu

0 − Cu
K2

Re

R4
0

R4
eu0 +

1

K1

S

Rm
Eb

0 − Cb
K2S

Rm

R4
0

R4
eb0,

where in the last line we have set,

Cu = c0

(
1 +Re+ (MRm)2

(
sup
t
||u||22 sup

t
||b||22

))
,

and,
Cb = c0

(
2 +Rm

)
.
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Similarly, an upper bound is,

〈F 〉R ≤ K2
1

Re
Eu

0 + CuK2
1

Re

R4
0

R4
eu0

+K2
S

Rm
Eb

0 + CbK2
S

Rm

R4
0

R4
eb0.

Defining now the parameters for a correction to the inertial range
by,

βu =

(
1

2K1K2Cu

)1/4

,

and,

βb =

(
1

2K1K2Cb

)1/4

,

we have justified the following theorem.

Theorem 2.2.6. Let {xi}ni=1 ⊂ B(0, R0) be the centers of a (K1, K2)-
cover at scale R. For βu and βb defined above, if,

τ := max

{(
eu0
Eu

0

)1/4

,

(
eb0
Eb

0

)1/4}
< min{βu, βb} =: β,

then for scales R where τ/β ≤ R/R0, we have,

1

2K1

(
1

Re
Eu

0 +
S

Rm
Eb

0

)
≤ 〈F 〉R ≤ 2K2

(
1

Re
Eu

0 +
S

Rm
Eb

0

)
.

Remark 2.2.2. The above is particularly relevant in scenarios where
S/Rm ∼ 1 and the integral scale magnetic energy dominates the integral
scale kinetic energy. In this case it is possible to free the parameter βu
from its dependence on Re by replacing (2.2.8) with the bound,

1

2

∫ 1

0

∫
|u|2∂tφxi,R dx dt ≤ K2e

b
0.

This accommodates large values of Re and is applicable to settings in-
volving the confinement of a liquid metal by a strong magnetic guide
field [106]. Without these assumptions on the flow the physical rele-
vance of the above result is diminished by the fact that the dependencies
of βu and βb on the fluid and magnetic Reynold’s numbers result in an
inertial range which decreases in length as Rm and Re increase.
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2.2.5 Other cascade-like dynamics

We presently identify conditions under which cascade-like dynamics are
exhibited by individual energy exchange mechanisms such as the ex-
change of energy between the velocity and magnetic fields. We continue
to work with the dimensionless formulation and note that throughout
this section all solutions are assumed to be suitable weak solutions to
the dimensionless 3D MHD system which are regular enough for the
localized energy equality to hold.

The localized (by the scalar function φ to a ball of radius R/R0) flux
term responsible for the u-to-u energy exchange driven by the advection
of the velocity field is,

F u
xi,R

:= −
∫ 1

0

∫
(u · ∇)u · (φ u) dx dt (2.2.10)

=
1

2

∫ 1

0

∫
|u|2(u · ∇φ) dx dt.

Similarly, the (localized) b-to-b energy transfer driven by the advec-
tion of the velocity field is,

F b
xi,R

:= −
∫ 1

0

∫
(u · ∇b) · (φ b) dx dt (2.2.11)

=
1

2

∫ 1

0

∫
|b|2(u · ∇φ) dx dt.

The fluid pressure flux-type term is,

F p
xi,R

:= −
∫ 1

0

∫
∇p · (φ u) dx dt =

∫ 1

0

∫
p (u · ∇φ) dx dt. (2.2.12)

As already mentioned, the transfer of magnetic to kinetic energy is
driven by the Lorentz force while the stretching of the magnetic field
lines is responsible for the transfer of kinetic energy to magnetic energy;
combined (locally), they yield the following term – the advection of
cross-helicity by the magnetic field,

F ub
xi,R

:=

∫ 1

0

∫
((b · ∇)b · (φ u) + (b · ∇)u · (φ b)) dx dt (2.2.13)

= −
∫ 1

0

∫
(u · b)(b · ∇φ) dx dt.
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Until now we have only investigated cascades associated with col-
lections of flux-type terms including the term for the flux of the fluid
pressure. Due to the unique structure of this term, additional effort
is required to establish cascade-like behavior for combined fluxes ex-
cluding the pressure flux. More precisely, we will need to bound the
quantity,

∫ 1

0

∫
p (u · ∇φ) dx dt.

To do so we will use the estimate,

||uφ1/2||3 =

(∫
(|u|3/2φ3/4)(|u|3/2φ3/4) dx

)1/3

≤
((∫

|u|2φ dx
)3/4(∫

|u|6φ3 dx

)1/4)1/3

≤ C||uφ1/2||1/22 ||∇(uφ1/2)||1/22 ,
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which leads to the estimate,∣∣∣∣ ∫ 1

0

∫
p (u · ∇φ) dx dt

∣∣∣∣
≤ C

R0

R

∫ 1

0

||pφρ−1/2||3/2||uφ1/2||3 dt

≤ C
R0

R

∫ 1

0

||pφρ−1/2||3/2||uφ1/2||1/22 ||∇(uφ1/2)||1/22 dt

≤ C
R0

R

(∫ 1

0

||pφρ−1/2||3/23/2 dt

)2/3(∫ 1

0

||uφ1/2||62 dt
)1/12

·
(∫ 1

0

||∇(uφ1/2)||22 dt
)1/4

≤ CRe1/3

(
R0

R

)4/3(∫ T

0

||pφρ−1/2||3/23/2 dt

)8/9(∫ 1

0

||uφ1/2||62 dt
)1/9

+
1

8Re

∫ 1

0

||∇(uφ1/2)||22 dt

≤ CpRe
1/3

(
R0

R

)4/3(∫ 1

0

||uφ1/2||22 dt
)1/9

+ C
1

Re

(
R0

R

)2 ∫ 1

0

||uφ2ρ−1||22 dt

+
1

4Re

∫ 1

0

||(∇u)φ1/2||22 dt, (2.2.14)

where we have used Hölder’s inequality, the Gagliardo-Nirenberg in-
equality, and Young’s inequality. Note that the quantity appearing
above,

Cp =
(

sup
t
||uφ1/2

0 ||2
)4/9
(∫ 1

0

||pφρ−1/2
0 ||3/23/2 dt

)8/9

, (2.2.15)

is dimensionless and a priori bounded in virtue of regularity proper-
ties of suitable weak solutions (cf. [66]). In addition, it contains no
gradients and is independent of the particular cover element at scale R.

Regarding the first term on the right hand side of (2.2.14), in order
to pass from ensemble averages of localized quantities to an integral
scale quantity we will need a simple consequence of the finite form
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of Jensen’s inequality. Specifically, for a set of non-negative values,
{ai}ni=1, we have,

n∑
i=1

a
1/9
i

n
≤
( n∑

i=1

ai
n

)1/9

.

Taking an ensemble average of normalized quantities yields,

Cp
n

n∑
i=1

(
R0

R

)3(
R0

R

) 4
3
(∫ 1

0

∫
|u|2φxi,R dt

) 1
9

≤ Cp

(
R0

R

)4(
1

n

n∑
i=1

∫ 1

0

(
R0

R

)3 ∫
|u|2φxi,R dx dt

) 1
9

≤ Cp

(
R0

R

)4(
K2e

u
0

) 1
9 . (2.2.16)

Bounds for the remaining flux densities are,

∣∣F u
xi,R

∣∣ ≤ C
R0

R

∫ 1

0

||u||2||uφ2ρ−3/2||1/22 ||∇(uφ1/2)||3/22 dx dt

≤ C

(
R0

R

)4

sup
t
||u||42

∫ 1

0

||uφ2ρ−3/2||22 dt

+
1

8Re

∫ 1

0

||∇(uφ1/2)||22 dt

≤ C
(
Re4/3 sup

t
||u||42 + 1

) 1

Re

(
R0

R

)4 ∫ 1

0

||uφ2ρ−3/2||22 dt

+
1

4Re

∫ 1

0

||(∇u)φ1/2||22 dt,

and,

∣∣F b
xi,R

∣∣, ∣∣F ub
xi,R

∣∣ ≤ S

4Rm

∫ 1

0

||(∇b)φ1/2||22 dt (2.2.17)

+ C
(
Rm4/3 sup

t
||u||42 + 1

) S

Rm

(
R0

R

)4

·
∫ 1

0

||bφ2ρ−3/2||22 dt.
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Henceforth, we will be concerned with the scenario in which the
kinetic energy over the integral domain and within the prescribed time-
scale remains bounded away from zero. In particular we take this to
mean eu0 ≥ 1. This is the trade-off for considering purely kinetic fluxes.
The result concerning cascade-like behavior for the direct kinetic to
kinetic energy transfer driven by the advection of the velocity field
follows.

Theorem 2.2.7. Assume u and b are solutions of 3D MHD possessing
sufficient regularity so that the generalized energy equality holds. Let
{xi}ni=1 ⊂ B(0, R0) be the centers of a (K1, K2)-cover at scale R. Sup-
pose that the flow is such that eu0 ≥ 1. For certain values βu and βb,
if,

τ := max

{(
eu0
Eu

0

)1/4

,

(
eb0
Eb

0

)1/4}
< min{βu, βb} =: β,

then, for scales R where τ/β ≤ R/R0, we have,

1

2K1

(
1

Re
Eu

0 +
S

Rm
Eb

0

)
≤ 〈F u〉R ≤ 2K2

(
1

Re
Eu

0 +
S

Rm
Eb

0

)
.

Proof. The main estimates have already been established. Based on
the localized energy equality we have

F u
xi,R
≥ 1

Re
Eu
xi,R

+
S

Rm
Eb
xi,R
−
∣∣F p

xi,R
+Nxi,R

∣∣
− 1

2

∫ 1

0

∫
|u|2φt dx dt−

1

2Re

∫ 1

0

∫
|u|2∆φ dx dt

− S

2

∫ 1

0

∫
|b|2φt dx dt−

S

2Rm

∫ 1

0

∫
|b|2∆φ dx dt.

By the assumption on the flow we can replace the exponent of 1/9 in
the bound (2.2.16) with 1. Taking ensemble averages, we obtain the
lower bound,

〈F u〉R ≥
1

2K1Re
Eu
xi,R
− CuK2

1

Re

(
R0

R

)4

eu0

+
S

K1Rm
Eb
xi,R
− CbK2

S

Rm

(
R0

R

)4

eb0,
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where

Cu = C
(
CpRe

4/3 +Re+ 1 + (MRm)2 sup
t
||u||22 sup

t
||b||22

)
,

and,

Cb = C
(
Rm4/3 sup

t
||u||42 +Rm+ 1

)
.

This is sufficient to establish values for βu and βb (containing no gradi-
ents) and conclude in the standard fashion.

At this point, noting that F b and F ub both satisfy (2.2.9), we have
already demonstrated the steps involved in establishing cascade-like
behavior for the densities F b and F ub. We consequently omit the proofs.

Theorem 2.2.8. Let {xi}ni=1 ⊂ B(0, R0) be the centers of a (K1, K2)-
cover at scale R. Suppose that the flow is such that eu0 ≥ 1. For certain
values βu and βb, if,

τ := max

{(
eu0
Eu

0

)1/4

,

(
eb0
Eb

0

)1/4}
< min{βu, βb} =: β,

then for scales R where τ/β ≤ R/R0, we have,

1

2K1

(
1

Re
Eu

0 +
S

Rm
Eb

0

)
≤ 〈F b, F ub〉R ≤ 2K2

(
1

Re
Eu

0 +
S

Rm
Eb

0

)
.

2.2.6 Locality of the energy flux

According to turbulence phenomenology in the purely hydrodynami-
cal setting, the average energy flux at scale R is supposed to be well-
correlated only with the average fluxes at nearby scales (throughout the
inertial range). This phenomenon has been confirmed in [47, 26, 40, 41].
In the plasma setting, the question of locality has been somewhat con-
troversial. Recently, Aluie and Eyink [3] produced an argument in favor
of locality of the total energy and cross-helicity fluxes. Numerical work
also supports locality (cf. [46] for the case of decaying turbulence).

Our context allows us to affirm a particular flux’s locality as a di-
rect consequence of the existence of the corresponding, nearly-constant
turbulent cascade per unit mass. We illustrate this in the case of the
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kinetic energy flux (transported by the velocity). Denote the time-
averaged local fluxes associated to the cover element B(xi, R) by Ψ̂xi,R,

Ψ̂xi,R =
1

T

∫ T

0

∫
1

2
|u|2(u · ∇φi) dx,

and the time-averaged local fluxes associated to the cover element
B(xi, R), per unit mass, by Φ̂xi,R,

Φ̂xi,R =
1

T

∫ T

0

1

R3

∫
1

2
|u|2(u · ∇φi) dx.

Then, the (time and ensemble) averaged flux is given by,

〈Ψ〉R =
1

n

n∑
i=1

Ψ̂xi,R = R3 〈Φ〉R = R3 1

n

n∑
i=1

Φ̂xi,R.

The following manifestation of locality follows directly from Theo-
rem 2.2.7. Let R and r be two scales within the inertial range delineated
in the theorem. Then,

1

4K2
1

(
r

R

)3

≤ 〈Ψ〉r
〈Ψ〉R

≤ 4K2
2

(
r

R

)3

.

In particular, if r = 2kR for some integer k,

1

4K2
1

23k ≤ 〈Ψ〉2kR
〈Ψ〉R

≤ 4K2
2 23k,

i.e., along the dyadic scale, the locality propagates exponentially.

2.2.7 A scenario exhibiting predominant u-to-b en-
ergy transfer

In [43] a dynamic estimate is given on the vortex-stretching term (in
the vorticity formulation of 3D NSE) – across a range of scales – using
the ensemble averaging process we have illustrated above. The purpose
was to present a mathematical evidence of the creation and persistence
of integral scale length vortex filaments by establishing the positivity of
the ensemble-averaged vortex stretching term across a range of scales
extending to the integral scale.



40

In the induction equation for the magnetic field, the nonlinear term
(b·∇)u is responsible for the stretching of magnetic field lines. Positivity
of (b · ∇)u · (φ b) indicates the magnetic field line is being elongated, a
phenomenon which corresponds to a transfer of energy from the velocity
field to the magnetic field (negativity would reflect a diminution of
the field line and a local transport of energy from the magnetic field
to the fluid flow). Consequently, to conclude that the predominant
energy exchange between the velocity and magnetic fields is from the
velocity field to the magnetic field across a range of physical scales, it
will be sufficient to establish (in an appropriate statistical sense) the
positivity of (b · ∇)u · (φ b) across these scales. Before proceeding to
this task we remark that recent numerical work (cf. [46]) indicates
that imbalanced exchanges are common in certain forced and decaying
turbulent regimes.

We label the space-time localized quantity of interest as,

Vxi,R =

∫ 1

0

∫
(b · ∇)u · (b φxi,R) dx dt,

and note that our work is carried out in the context of the dimensionless
formulation of 3D MHD where we take Rm = S = 1 for convenience.
We also assume the weak solution in question is regular.

Theorem 2.2.9. Let {xi}ni=1 ⊂ B(0, R0) be the centers of a (K1, K2)-
cover at scale R. For a certain value (which will be apparent in the
proof) β > 0, if,

τ :=

(
eb0
Eb

0

)1/4

< β,

then for scales R where τ/β ≤ R/R0, we have,

1

2K1

Eb
0 ≤ 〈Vxi,R〉R ≤ 2K2E

b
0.

Proof. Starting with the induction equation it is routine to obtain,∫ 1

0

∫
(b · ∇)u · (bφxi,R) dx dt =

∫ 1

0

∫
|∇b|2φxi,R dx dt

−
∫ 1

0

∫
1

2
|b|2(∂tφxi,R −∆φxi,R) dx dt

+
1

2

∫ 1

0

∫
|b|2(u · ∇φxi,R) dx dt.
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Note that, for a refined cut-off function φ, the bounding process evident
in the derivation of (2.2.9) can be modified to yield,∫ 1

0

∫
|b|2

2
u · ∇φ dx dt ≤ C

(
R0

R

)4(
sup
t
||u||2

)4
∫ 1

0

||bφ||22 dt

+
1

4

∫ 1

0

||∇(φ b)||22 dt.

Consequently, after taking ensemble averages and recalling the last two
estimates in (2.2.8),

〈Vxi,R〉R ≤ K2E
b
0 +K2

(
sup
t
||u||42 + 2

)(R0

R

)2

eb0

and,

〈Vxi,R〉R ≥ K2E
b
0 −

C

2K1

(
sup
t
||u||42 + 2

)(R0

R

)2

eb0.

Selecting an appropriate value for β allows us to conclude in the stan-
dard fashion.

2.3 Enstrophy transport and concentra-

tion in astronomical plasmas

We have mentioned previously that observational and numerical data
support a picture of turbulent MHD regimes comprised of intermit-
tently distributed regions of high spatial complexity – these are the co-
herent current and vortex structures, i.e. current sheets – which become
increasingly thin as turbulence evolves [8, 60, 59, 19, 94]. One view is
that this process is initiated and driven by inertial effects associated
with the cascades of ideally conserved quantities, (see [82, 48, 97, 110];
regarding the genesis of solar wind current sheets, an alternative view
is given in [19, 13] where it is speculated that they are magnetic flux
tubes generated in the solar corona and passively advected by the solar
wind; modern theories and numerical studies regarding turbulent cas-
cades and spectra can be found in [9, 12, 15, 93, 90] and were briefly
discussed previously in Chapter 2.2).
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Although enstrophy – taken here as the sum of the squares of vor-
ticity and current – is not conserved in the ideal equations (and so
we avoid the term “enstrophy cascade”), it does become increasingly
concentrated on small-scale current sheets. Understanding this con-
centrative process is important because it effects the development of
current-driven instabilities (for example, the tearing instability, cf. [8])
which drive magnetic reconnection (the relationship between magnetic
reconnection and current structures has been studied in [48, 94]).

This section is concerned with establishing conditions which rigor-
ously affirm that the inertially driven transport of enstrophy is concen-
trative across an appropriate range of scales. In particular, we show the
enstrophy flux is predominantly oriented (in a statistical sense) from
larger to smaller scale structures and, moreover, is local and occurs at a
nearly constant rate. In the case that non-inertial effects are negligible
at large scales this indicates a detectable concentration of enstrophy
where the inertial contribution is cascade-like. Also of note is the im-
plication that, at least in our scenario, inertial forces – i.e. advection
of the enstrophy by the fluid – effect the morphology of current sheets
and, therefore, these structures are not passively advected by the fluid
medium.

Although our main interest is the 3D setting, for illustrative pur-
poses it is useful to consider the concentrative progression in 2D (we
here summarize [8]; it is the intention of the author and collaborators to
comment specifically on the 2D case in a future paper concerned with a
variety of features of 2D MHD turbulence including the inverse cascade
of magnetic potential and the direct cascade of energy). In 2D, early in
the turbulent evolution, the current is predominantly distributed along
eddy boundaries while, at later stages, it becomes spiked at eddy cen-
ters. Unlike 2D fluid turbulence where the concentration of enstrophy
is driven solely by inertial forces – the enstrophy cascade – the Lorentz
force does not vanish in 2D MHD and therefore introduces a possible
source of enstrophy [28, 55, 32, 38]. This complicates the creation,
transport, and destruction of enstrophy and, consequently, something
superficially similar to the fluid “enstrophy cascade” should only be
visible if the Lorentz force is depleted by some intrinsic mechanism and
the enstrophy flux is nearly constant, local, and directed from larger
to smaller scales. Heuristic arguments and numerical evidence indicate
that such depletive effects exist (cf. [73, 8, 9]) and this supports the
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idea that, at least in 2D, enstrophy undergoes a concentrative process
with qualities similar to a cascade.

In 3D MHD the situation is further complicated by stretching ef-
fects which can contribute to or detract from the concentrative process.
Indeed, it is possible for the concentration to occur independently of
inertial effects if enstrophy is depleted at large scales and sourced at
small scales (this is why the concentrative process is distinct from the
notion of “cascade”). Our interest is whether or not, in a circumstance
where non-inertial effects experience a hybrid geometric/smoothness
based depletion, the enstrophy transport is concentrative.

The results in this section are directed at two conclusions: (1) that
the enstrophy flux is predominantly oriented from large to small scale
structures across a range of scales and (2) that the enstrophy flux is
nearly constant across this range. These indicate that the inter-scale
transport of enstrophy is cascade-like (even if the apparent evolution of
enstrophy does not display this) and is consistent with the concentra-
tive picture highlighted above provided additional non-linear effects –
creation, stretching, or dissipation of enstrophy – are depleted by cur-
rent sheet geometry or positively contribute only at small-scales. This
also indicates that the inertial transport of enstrophy is active in that
fluid advection effects the structure of current sheets.

These conclusions will be established using the same dynamic, multi-
scale averaging process described in Section 2.2.1 of this chapter. Here
this device acts as a detector of significant sign-fluctuations associated
with the enstrophy flux density at a given scale to show that the enstro-
phy flux is, in a statistically significant sense, oriented from larger to
smaller scales, thereby indicating a concentration effect toward struc-
tures of progressively fine scale is transpiring. To achieve this we will
establish several dynamic estimates for quantities associated with non-
inertial terms (originating in the current-vorticity formulation of 3D
MHD; see Sections 2.3.2 and 2.3.3) and we include several assumptions
(see (A1)-(A3) in Section 2.3.1) to accommodate these estimates. Chief
among these is a requirement, (A1), that the vorticity field satisfies a
hybrid geometric/smoothness property in the region of high spatial
complexity. Requirements of this type (i.e. conditions depleting non-
linearities) have been used to formulate conditional regularity results
for both 3D NSE (cf. [34, 5]) and 3D MHD (cf. [108, 107, 65]) and
our particular formulation is chosen for its robustness with regard to
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its mathematical applications. We include a comment highlighting a
more complicated but potentially more physically motivated configu-
ration with the same mathematical effects (see Remark 2.3.1 following
our statement of assumption (A1)).

Scale-locality of the enstrophy flux is included as a direct corollary
of our main result (see Section 2.3.4). Even for cascading quantities, the
locality question is generally more complicated in 3D MHD than in 3D
NSE due to the variety of transporting mechanisms (cf. [2, 3]). Under
the same conditions that indicate the inertial transfer of enstrophy is
concentrative, we affirm that the inertially driven inter-scale transfer is
predominantly between comparable scales and, moreover, this locality
propagates exponentially along the dyadic scale.

2.3.1 Enstrophy concentration

Our mathematical setting is again that of weak solutions to the mag-
netohydrodynamic equations. Taking the curl of MHD we obtain an
evolution equation for the vorticity, ω = ∇× u,

∂tω −∆ω = −(u · ∇)ω + (ω · ∇)u+ (b · ∇)j − (j · ∇)b (2.3.1)

as well as for the current, j = ∇× b,

∂tj −∆j = −(u · ∇)j + (j · ∇)u+ (b · ∇)ω − (ω · ∇)b (2.3.2)

+ 2
3∑
l=1

∇bl ×∇ul.

In our study we substitute for the inward kinetic and magnetic enstro-
phy fluxes through the boundary of a ball, B = B(x0, 2R),

−
∫
∂B

1

2
|ω|2(u · n) dσ = −

∫
B

(u · ∇)ω · ω dx,

−
∫
∂B

1

2
|j|2(u · n) dσ = −

∫
B

(u · ∇)j · j dx,

the inwardly oriented kinetic and magnetic enstrophy fluxes through
a shell S(x0, R, 2R) by incorporating a (nearly radial) refined cut-off
function, φ exhibiting the properties specified in Section 2.2.1. After
multiplying (u ·∇) ω and (u ·∇) j respectively by φ ω and φ j, we have



45

the following realization of the local kinetic and magnetic enstrophy
fluxes at scale R around the point x0,

Φω
x0,R

:=

∫
1

2
|ω|2(u · ∇φ) dx = −

∫
(u · ∇)ω · (φω) dx,

Φj
x0,R

:=

∫
1

2
|j|2(u · ∇φ) dx = −

∫
(u · ∇)j · (φj) dx,

and we define the local combined enstrophy flux by Φx0,R = Φω
x0,R

+

Φj
x0,R

. Formulas for the localized enstrophy fluxes are realized via the
non-linear terms (u · ∇) ω and (u · ∇) j by multiplying (2.3.1) and
(2.3.2) respectively by φ ω and φ j and integrating. In this manner we
see that the localized kinetic enstrophy flux is given by,

F ω(t) :=

∫ t

0

∫
1

2
|ω|2(u · ∇φ) dx ds (2.3.3)

=

∫
1

2
|ω(x, t)|2ψ(x) dx+

∫ t

0

∫
|∇ω|2φ dx ds

−
∫ t

0

∫
1

2
|ω|2(∂sφ+ ∆φ) dx ds−

∫ t

0

∫
(ω · ∇)u · (φω) dx ds

−
∫ t

0

∫
(b · ∇)j · (φω) dx ds+

∫ t

0

∫
(j · ∇)b · (φω) dx ds

=

∫
1

2
|ω(x, t)|2ψ(x) dx+

∫ t

0

∫
|∇ω|2φ dx ds

+Hω +Nω
1 + Lω +Nω

2 ,
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while the localized magnetic enstrophy flux is given by,

F j(t) :=

∫ t

0

∫
1

2
|j|2(u · ∇φ) dx ds (2.3.4)

=

∫
1

2
|j(x, t)|2ψ(x) dx+

∫ t

0

∫
|∇j|2φ dx ds

−
∫ t

0

∫
1

2
|j|2(∂sφ+ ∆φ) dx ds+

∫ t

0

∫
(ω · ∇)b · (φj) dx ds

−
∫ t

0

∫
(b · ∇)ω · (φj) dx ds−

∫ t

0

∫
(j · ∇)u · (φj) dx ds

−
∫ t

0

∫ (
2

3∑
l=1

∇ul ×∇bl
)
· (φj) dx ds

=

∫
1

2
|j(x, t)|2ψ(x) dx+

∫ t

0

∫
|∇j|2φ dx ds

+Hj +N j
1 + Lj +N j

2 +X,

and we label their combination as F (t) = F ω(t) + F j(t).
To establish the concentrative effect of inertial forces on the com-

bined enstrophy we will show that the ensemble averages of localized
spatio-temporal averages of the above densities associated with an arbi-
trary (K1, K2)-cover are positive and nearly constant across a range of
scales. Before formulating our assumptions we specify several technical
values. Fix a value K∗ so that,

K∗ ≥ max{(K1K2)1/2, 3K2/4, K1},

and set,
α = 4KPK

2
∗ ,

where KP is a constant which will be quantified in Section 2.3.3.
Our assumptions are:

(A1) Hybrid Geometric/Smoothness Assumption. It is assumed
for some threshold M > 0 that we have,

|ω(x+ y, t)− ω(x, t)| ≤ |ω(x+ y, t)||y|
1
2 ,

provided |y| < 2R0 +R
2
3
0 , x in {|∇u| > M}, and ω(x+ y) 6= 0.
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Remark 2.3.1. This assumption is less satisfying than its ana-
logue in the fluid case of [45] where it was sufficient to assume
the numerically and observationally motivated assumption of co-
herence of the direction of vorticity as this depleted the only non-
inertial effect (that of vortex stretching). In our setting, coherence
of the vorticity does not deplete all non-inertial effects but (A1)
does.

It is worth mentioning another sufficient formulation as it may
be more physically appropriate if the current field is less volatile
than the vorticity field. In the modified formulation we assume
the vorticity field satisfies a directional coherence condition iden-
tical to that in [45] and the current satisfies a hybrid geomet-
ric/smoothness condition (like (A1) but with ω replaced with j).
The assumption on j depletes all non-linear terms except the vor-
tex stretching term via a kinematic argument which mirrors that
given in the next section for ω while the vortex stretching term
is depleted by the coherency assumption. This alternative con-
figuration is motivated by the 2D dynamics (cf. [8]) where the
current and vorticity concentrate on largely overlapping regions.
Here, the current assumes the structure of an elongated monopole
while the vorticity-structure consists of four monopoles squished
together in a grid so that the orientation of the vorticity is oppo-
site on adjacent monopoles. Extending this intuition to 3D hints
that the current is less oscillatory than the vorticity.

(A2) Modified Kraichnan-Type Scale. Let e0, E0, and P0 denote
the time averaged total energy, total enstrophy, and modified total
palenstrophy at the integral scale. Precisely,

e0 =
1

T

∫ T

0

1

R3
0

∫
φ4ρ−3

0

(
|u|2

2
+
|b|2

2

)
dx ds,

E0 =
1

T

∫ T

0

1

R3
0

∫
φ2ρ−1

0

(
|ω|2 + |j|2) dx ds,
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and,

P0 =
1

T

∫ T

0

1

R3
0

∫
φ0

(
|∇ω|2 + |∇j|2) dx ds

+
1

TR3
0

∫
1

2
|ω(x, T )|2ψ0(x) dx.

The modification of palenstrophy is due to the nature of the tem-
poral cut-off; in addition, note that the cut-off’s are modified for
technical reasons and ρ was specified in the construction of these
functions.

Set,

E0 =

(
E0

P0

) 1
2

,

and,

ε0 =

(
e0

P0

) 1
4

.

Define the modified Kraichnan-type scale σ0 by,

σ0 = max{E0, ε0}.

Our assumption (A2) is that, for β = β(M,K1, K2,
∫ T

0
||ω||22 dt)

with 0 < β < 1 (the precise value will be identified later), we
have,

σ0 < βR0.

Remark 2.3.2. The Kraichnan-type scale determines the lower
limit of scales at which the concentrative effect is affirmed. For
us this is realized by restricting to scales R with σ0/β < R. In
comparison to the analogous and identically named parameter in
the 3D NSE case we here see a correction of β by a power of 1/2
necessitated by the emergence of energy-level quantities in Section
2.3.2.

(A3) Localization and Modulation – Because
∫ T

0
||ω||22 ds is an a

priori bounded quantity (cf. [96]), for a given constant C0 > 0
there exists R∗0 so that, for any R0 ≤ R∗0, we have,(∫ T

0

||ω||2
L2(B(0,2R0+R

2
3
0 ))

ds

)1/2

≤ 1

C0

.
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The localization assumption on R0, the radius of the integral scale,
is that, for C0 = α, we have R0 ≤ R∗0. A precise (up to certain
parameters) value for α will materialize in the proof.

The modulation assumption imposes a restriction on the time
evolution of the integral-scale kinetic and magnetic enstrophies
across (0, T ) consistent with our choice of the temporal cut-off.
Precisely,∫

|ω(x, T )|2ψ0(x) dx ≥ 1

2
sup
s

∫
|ω(x, s)|2ψ0(x) dx,∫

|j(x, T )|2ψ0(x) dx ≥ 1

2
sup
s

∫
|j(x, s)|2ψ0(x) dx.

Remark 2.3.3. Regarding localization, we have essentially in-
troduced an upper bound on the range of scales across which the
concentrative effect is affirmed and note that this restriction is
largely technical (see [45] for a preliminary statement of a lemma
which will show that the near-constancy across a bounded range
of scales extends to a range above that bound).

Using the terminologies of the above assumptions we are ready
to state our main result which establishes the positivity and near-
constancy of the combined enstrophy flux across a range of physical
scales, the implication of which is that the combined enstrophy is con-
centrated by inertial forces.

Theorem 2.3.1. If a weak solution u, b of 3D MHD satisfies (A1)-(A3)
on B(0, 2R0)× (0, T ) then,

1

4K∗
P0 ≤ 〈Φ〉R ≤ 4K∗P0,

for all σ0
β
≤ R ≤ R0 and K∗ dependent only on K1 and K2.

Remark 2.3.4. It will be plain that the localization estimates to be
presented in the following section imply that (A1) alone guarantees
smoothness over the spatio-temporal integral domain; hence, we are ef-
fectively concerned with the global-in-space (R3) weak solutions that are
smooth over the integral domain. However, since we do not impose
any boundary conditions on the integral domain, the control over the
‘smooth’ norms is strictly local.
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Before continuing to the proof of Theorem 2.3.1 we observe that en-
strophy flux locality – i.e. that the transport of the combined enstrophy
is predominantly between scales of comparable size – is an immediate
corollary. Discussion of this corollary and its precise statement is with-
held until Section 6.

To prove Theorem 2.3.1, we will confine ensemble averages of the
localized (to a ball of radius R centered at x0) combined enstrophy flux
between scale- and cover-independent multiples of the localized (to the
integral domain) total-palenstrophy, P0. Local estimates to this effect
are contained in Section 2.3.2. Based on these, in Section 2.3.3, the
ensemble averaging methodology is applied to complete the proof of
Theorem 2.3.1.

2.3.2 Estimates

In this section each of the terms from (2.3.3) and (2.3.4) are bounded
by quantities which can be related to e0, E0, and P0 via the appara-
tus of ensemble averaging with respect to (K1, K2)-covers at scale R.
Throughout, we limit our consideration to a fixed ball of radius R and
suppress the corresponding subscripts. We label various constants by
K, Ke, KE, and KP and note these are dependent on K1, K2 and
quantities determined by structural properties of 3D MHD.

Bounds for the linear terms in (2.3.3) and (2.3.4) follow simply from
properties of the spatial cut-off (see (2.4.3)), i.e.,

H := Hω +Hj ≤ KE

R2

∫ T

0

∫
φ2ρ−1

(
|ω|2 + |j|2

)
dx ds.

Before proceeding to bound the nonlinear terms a digression is
necessary to introduce the kinematic framework derived in [32] and
adapted to MHD in [107] and [65]. Recall that the deformation tensor
of the velocity field can be decomposed in terms of a symmetric com-
ponent, the strain tensor of u, S, and a skew component, ω × ·. Put
precisely,

∇u = S − 1

2
ω × . (2.3.5)

The operators in the above decomposition have the following singular



51

integral representations:

ω(x) =
1

4π
P.V.

∫
σ(ŷ)ω(x+ y)

dy

|y|3
, (2.3.6)

and,

S(x) =
3

4π
P.V.

∫
M(ŷ, ω(x+ y))

dy

|y|3
, (2.3.7)

for,

ŷ =
y

|y|
, σ(ŷ) = 3ŷ ⊗ ŷ − I,

and,

M(ŷ, f) =
1

2

(
ŷ ⊗ (ŷ × f) + (ŷ × f)⊗ ŷ

)
.

A key feature for our treatment of the term ∇ul will follow from the
fact that σ and M (the latter when f is held constant as a function of
y) have mean zero on the unit sphere. Integral operators such as these
are discussed in [103] and [101]. We connect the above to the term
∇ul ×∇bl by noting for the unit vector el we have,

∇ul = Su el −
1

2
ω × el.

Using the zero mean value property we write,

|∇ul| ≤
∣∣∣∣P.V.∫

|y|<R2/3

(
1

4π
σ(ŷ)

(
ω(x+ y)− ω(x)

)
+

3

4π
M(ŷ, ω(x+ y)− ω(x))

)
dy

|y|3

∣∣∣∣
+

∣∣∣∣ ∫
|y|≥R2/3

(
1

4π
σ(ŷ)ω(x+ y) +

3

4π
M(ŷ, ω(x+ y))

)
dy

|y|3

∣∣∣∣
= I1 + I2.

Our treatment is now divided between I1 and I2. For the former,
the hybrid geometric-smoothness assumption (A1) entails that,

I1 ≤ K(σ,M)

∫
|y|≤R2/3

|ω(x+ y)− ω(x)| dy
|y|3

≤ K(σ,M)

∫
|y|≤R2/3

|ω(x+ y)| dy
|y|5/2

,
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and, therefore, by the Hardy-Littlewood-Sobolev inequality (cf. Chap-
ter V of [103]),

||I1||3 ≤ K||ω||L2(B(xi,R2/3)). (2.3.8)

Regarding I2, Hölder’s inequality allows that,

I2 ≤ K(σ,M)

∫
|y|≥R2/3

1

|y|2
ω(x+ y)

|y|
dy

≤ K(σ,M)

(∫
|y|≥R2/3

1

|y|4
dy

) 1
2
(∫

|y|≥R2/3

|ω(x+ y)|2

|y|2
dy

) 1
2

≤ K(σ,M)
1

R1/3+2/3
||ω||L2(R3) =

K

R
||ω||L2(R3). (2.3.9)

Note that we can apply the exact same argument to ω and obtain,

ω(x) =
1

4π
P.V.

∫
|y|<R2/3

σ(ŷ)(ω(x+ y)− ω(x))
dy

|y|3
(2.3.10)

+
1

4π

∫
|y|≥R2/3

σ(ŷ)ω(x+ y)
dy

|y|3

≤ K||ω||L2(B(xi,R2/3) +
K

R
||ω||L2(R3).

We are now ready to establish bounds on the coupled non-linear
terms and start with the most involved, the term involving ∇ul ×∇bl,
that labelled X, as this will illustrate many of the computational steps
necessary for the other terms. Here we show that,∫ T

0

∫
φj · ∇ul ×∇bl dx ds (2.3.11)

≤ KP

α

(
1

2
sup
s
||ψ

1
2 j||22 +

∫ T

0

∫
φ|∇j|2 dx ds

)
(2.3.12)

+
KE

R2

∫ T

0

∫
φ2ρ−1|j|2 dx ds

+
α2Ke

R4

∫ T

0

∫
φ4ρ−3 |b|2

2
dx ds,

and begin by splitting the spatial integral across the regions where
|∇u| ≥ M and its complement. Considering the complement, we see
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that,

∫ T

0

∫
|∇u|≤M

φj · ∇ul ×∇bl dx ds

≤
∫ T

0

∫
|∇u|≤M

M |φ1/2j||φ1/2∇bl| dx ds

≤ K
M2

R2

∫ T

0

∫
φ2ρ−1|j|2 dx ds+

1

R2

∫ T

0

∫
φ2ρ−1|∇bl|2 dx ds.

≤ 1

α

∫ T

0

||φ
1
2∇j||22 ds+

M2

R2

∫ T

0

∫
φ2ρ−1|j|2 dx ds

+
K

R4

∫ T

0

∫
φ4ρ−3|b|2 dx ds

The second integral above can be expressed in terms of energy and
palenstrophy level terms. Indeed, for k, h, and l distinct elements of
{1, 2, 3}, we have that,

∫ T

0

∫
φ2ρ−1(∂ibl)

2 dx ds

= −
∫ T

0

∫
φ2ρ−1bl∂i∂ibl dx ds−

∫ T

0

∫
∂iφ

2ρ−1bl∂ibl dx ds

=

∫ T

0

∫
φ2ρ−1bl(∂kjh − ∂hjk) dx ds+

1

2

∫ T

0

∫
∂i∂iφ

2ρ−1b2
l dx ds

≤ 2

∫ T

0

∫
φ2ρ−1|b||∇j| dx ds (2.3.13)

+
1

2

∫ T

0

∫
|∂i∂iφ2ρ−1||b|2 dx ds

≤
∫ T

0

∫ (
2α

1
2φ2ρ−3/2|b|

)(
α−

1
2φ1/2|∇j|

)
dx ds (2.3.14)

+
K

R2

∫ T

0

∫
φ4ρ−3|b|2 dx ds.

Applying Young’s inequality to the first term of (2.3.14) leads to a final
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bound for the case when |∇u| < M , namely,

∫ T

0

∫
|∇u|≤M

φj · ∇ul ×∇bl dx ds

≤ 1

α

∫ T

0

∫
φ|∇j|2 dx ds+

KE

R2

∫ T

0

∫
φ2ρ−1|j|2 dx ds

+
αKe

R4

∫ T

0

∫
φ4ρ−3|b|2 dx ds.

≤ 1

α

(
1

2
sup
s
||ψ

1
2 j||22 +

∫ T

0

∫
φ|∇j|2 dx ds

)
(2.3.15)

+
KE

R2

∫ T

0

∫
φ2ρ−1|j|2 dx ds+

α2Ke

R4

∫ T

0

∫
φ4ρ−3 |b|2

2
dx ds.

Looking now at the regions of high spatial complexity – i.e. where
|∇u| ≥M – we split into two cases using the decomposition for ∇ul,

∣∣∣∣ ∫ T

0

∫
|∇u|≥M

φj · ∇ul ×∇bl dx ds
∣∣∣∣

≤
∫ T

0

∫
|∇u|≥M

I1|φ1/2∇bl||φ1/2j| dx ds

+

∫ T

0

∫
|∇u|≥M

I2|φ1/2∇bl||φ1/2j| dx ds.

For the integral involving I1, the hybrid geometric/smoothness assump-
tion plus the localization and modulation assumptions will serve to min-
imize palenstrophy level terms. Applications of Hölder’s inequality and
the bound (2.3.8) and subsequently the Gagliardo-Nirenberg inequality
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and Young’s inequality gives an initial bound,

∫ T

0

∫
|∇u|≥M

I1|φ1/2∇bl||φ1/2j| dx ds

≤ K

(∫ T

0

||ω||2L2(B(xi,R2/3) ds

) 1
2
(∫ T

0

||φ
1
2∇bl||26||φ

1
2 j||22 ds

) 1
2

≤ 1

α

(
1

2
sup
s
||ψ

1
2 j||22 +K

∫ T

0

||∇(φ
1
2∇bl)||22 ds

)
≤ 1

α

(
1

2
sup
s
||ψ

1
2 j||22 +K

∫ T

0

||∇φ
1
2 ⊗∇bl||22 ds (2.3.16)

+K

∫ T

0

||φ
1
2∇∇bl||22 ds

)
.

where the constant α emerges from the localization assumption, (A3).
We further decompose the last two terms. For the first, by expanding
the integral, using the bound (2.3.13), applying Young’s inequality,
and employing the properties of our cut-off functions, we obtain the
estimate,

K

α

∫ T

0

||∇φ
1
2 ⊗∇bl||22 ds =

K

α

∫ T

0

∫
(∂iφ

1
2 )2(∂jbl)

2 dx ds

≤ K

αR2

∫ T

0

∫
φ2ρ−1(∂jbl)

2 dx ds

≤ K

αR2

∫ T

0

∫
φ2ρ−1|b||∇j| dx ds

+
K

αR2

∫ T

0

∫
|∂i∂iφ2ρ−1||b|2 dx ds

≤ 1

α

∫ T

0

∫
φ|∇j|2 dx ds

+
K

αR4

∫ T

0

∫
φ4ρ−3|b|2 dx ds.

The last term of (2.3.16) can be expressed in a similar fashion as
the above but with several additional steps. To begin, basic calculus
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leads to the identity,

||φ
1
2∇∇bl||22 =

∫
φ(∂i∂jbl)

2 dx

=

∫
(∂i∂jφ)(∂jbl)(∂ibl) dx+

∫
φ(∂j∂jbl)(∂i∂ibl) dx

+

∫
(∂jφ)(∂jbl)(∂i∂ibl) dx+

∫
(∂iφ)(∂j∂jbl)(∂ibl) dx,

the terms of which we now estimate. For the first, using Young’s in-
equality we see that,

K

α

∣∣∣∣ ∫ (∂i∂jφ)(∂jbl)(∂ibl) dx

∣∣∣∣ ≤ K

∫
|∂i∂jφ||∂jbl||∂ibl| dx

≤ K

R2

∫
φ2ρ−1|∂jbl||∂ibl| dx

=
K

R2

∫ (
φρ−1/2|∂jbl|

)(
φρ−1/2|∂ibl|

)
dx

≤ K

R2

∫
φ2ρ−1|∇bl|2 dx.

Moving on, since b is divergence free and assuming k, h, and l are
distinct, we have,

K

α

∣∣∣∣ ∫ (∂jφ)(∂jbl)(∂i∂ibl) dx

∣∣∣∣
=
K

α

∫
|∂jφ||∂jbl||∂hjk − ∂kjh| dx

≤ K

α

∫
|∂jφ||∂jbl||∂hjk| dx

≤
∫ (

K

α
1
2R

φρ−1/2|∂jbl|
)(

1

α
1
2

φ
1
2 |∂hjk|

)
dx

≤ K

αR2

∫
φ2ρ−1|∇bl|2 dx+

1

2α

∫
φ|∇j|2 dx

≤ K

R4

∫
φ4ρ−3|b|2 dx+

1

α

∫
φ|∇j|2 dx.

Using Young’s inequality and properties of the cut-off function, the
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remaining term is bounded as,

K

α

∣∣∣∣ ∫ φ(∂j∂jbl)(∂i∂ibl) dx

∣∣∣∣ ≤ K

α

∫
φ(∂i∂ibl)

2 dx+
K

α

∫
φ(∂j∂jbl)

2 dx

≤ KP

α

∫
φ|∇j|2 dx.

Combining the above (and observing α > 1) leads to a final bound
for the term involving I1, namely,∫ T

0

∫
|∇u|≥M

φj · ∇ul ×∇bl dx ds

≤ KP

α

(
1

2
sup
s
||ψ

1
2 j||22 +

∫ T

0

∫
φ|∇j|2 dx ds

)
+
αKe

R4

∫ T

0

∫
φ4ρ−3|b|2 dx ds (2.3.17)

Turning to the non-singular case of our decomposition of |∇ul|, we
use α to de-emphasize non-localization-apt palenstrophy level quanti-
ties. Its emergence is forced upon an application of Young’s inequality
with a reciprocal cost to an energy level quantity. Using the direct
estimate (2.3.9) on |I2| and then applying Hölder’s inequality, Young’s
inequality, and the same steps used to obtain and proceed from (2.3.14),
we see that,∫ T

0

∫
|∇u|≥M

I2|φ1/2∇bl||φ1/2j| dx ds

≤ K

R

(∫ T

0

||ω||22 ds
) 1

2
(∫ T

0

||φ
1
2 j||22||φ

1
2∇bl||22 ds

) 1
2

≤
(

1√
α

sup
s
||ψ

1
2 j||2

)(
αK

R2

∫ T

0

||φ
1
2∇bl||22 ds

) 1
2

≤ 1

α

1

2
sup
s
||ψ

1
2 j||22 +

αK

R2

∫ T

0

||φ
1
2∇bl||22 ds

≤ 1

α

(
1

2
sup
s
||ψ

1
2 j||22 +

∫ T

0

∫
φ|∇j|2 dx ds

)
(2.3.18)

+
αKe

R4

∫ T

0

∫
φ4ρ−3 |b|2

2
dx ds.
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Combining the bounds (2.3.15), (2.3.17), and (2.3.18) establishes
the bound (2.3.11) and concludes our discussion of the term involving
∇ul ×∇bl.

Bounds for the remaining four critical order nonlinear terms, Nω
1 ,

Nω
2 , N j

1 , and N j
2 , are now attended. The processes for estimating Nω

1

and N j
2 are identical up to labeling. We only illustrate the latter.

Splitting the space integral depending on the size of |∇u| we have,
when |∇u| < M , that,

N j
2 =

∫ T

0

∫
|∇u|<M

(j · ∇)u · φj dx ds ≤M

∫ T

0

||φ
1
2 j||22 ds.

When |∇u| ≥ M , noting by direct comparison that |j| ≤
√

5|∇b|, we
bound the quantity,∫ T

0

∫
|∇u|≥M

|∇u||φ
1
2

√
5∇b||φ

1
2 j| dx ds,

in an identical fashion to the term originating from the Lorentz force.
We thus obtain that,

N j
2 =

∫ T

0

∫
(j · ∇)u · φj dx ds

≤ KP

α

(
1

2
sup
s
||ψ

1
2 j||22 +

∫ T

0

∫
φ|∇j|2 dx ds

)
(2.3.19)

+
KE

R2

∫ T

0

∫
φ2ρ−1|j|2 dx ds+

α2Ke

R4

∫ T

0

∫
φ4ρ−3 |b|2

2
dx ds,

and,

Nω
1 =

∫ T

0

∫
(ω · ∇)u · φω dx ds

≤ KP

α

(
1

2
sup
s
||ψ

1
2ω||22 +

∫ T

0

∫
φ|∇ω|2 dx ds

)
(2.3.20)

+
KE

R2

∫ T

0

∫
φ2ρ−1|ω|2 dx ds+

α2Ke

R4

∫ T

0

∫
φ4ρ−3 |u|2

2
dx ds.

The terms N j
1 and Nω

2 also enjoy formally identical bounding pro-
cedures. The spatial integrals are still split into regions depending on
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|∇u|. When |∇u| < M we have the point-wise estimate |ω| ≤ 51/2M
and we obtain a scaled version of prior bounds. When |∇u| ≥ M we
use the kinematic estimate, (2.3.10), on |ω|. The same familiar argu-
ment now shows that N j

1 and Nω
2 are both bounded by the right hand

side of (2.3.19).

To summarize,

N := Nω
1 +Nω

2 +N j
1 +N j

2 ≤
KP

α

(
1

2
sup
s

(
||ψ

1
2ω||22 + ||ψ

1
2 j||22

)
+

∫ T

0

∫
φ
(
|∇ω|2 + |∇j|2

)
dx ds

)
+
KE

R2

∫ T

0

∫
φ2ρ−1

(
|ω|2 + |j|2

)
dx ds

+
α2Ke

R4

∫ T

0

∫
φ4ρ−3 |u|2 + |b|2

2
dx ds.

Examining Lω and Lj we note that upon integrating by parts and
summing a cancellation occurs leaving us with,

L := Lω + Lj =

∫ T

0

∫
(j · ω)(∇φ · b) dx ds.

Although the above term is lower order and can be bounded in a more
efficient way than what transpires below, we choose the less direct ap-
proach to limit problem specific dependencies of the parameter β. We
again split the spatial integral to obtain on one hand that,

∫ T

0

∫
|∇u|≤M

(j · ω)(∇φ · b) dx ds

≤
√

5M
1

R

∫ T

0

||φ
1
2 b||2||φρ−1/2j||2 ds

≤ KE

R2

∫ T

0

∫
φ2ρ−1|j|2 dx ds+

α2Ke

R4

∫ T

0

∫
φ4ρ−3|b|2 dx ds,

and, on the other hand, using the kinematic decomposition of ω as a



60

singular integral, that,∫ T

0

∫
|∇u|≥M

∫
|y|≥R2/3

σ(ŷ)ω(x+ y)
dy

|y|3
|j||∇φ · b| dx ds

≤ 1

α

1

2
sup
s
||ψ

1
2 j||22

+
α2Ke

R4

∫ T

0

∫
φ4ρ−3|b|2 dx ds,

and, ∫ T

0

∫
|∇u|≥M

∫
|y|<R2/3

σ(ŷ)ω(x+ y)
dy

|y|3
|j||∇φ · b| dx ds

≤ 1

α

(∫ T

0

(
||φ

1
2 j||2|| |∇φ|

1
2 b||2

)2
dx ds

) 1
2

(2.3.21)

≤ 1

α

(
1

2
sup
s
||ψ

1
2 j||22 +

∫ T

0

||φ
1
2∇j||22 dx ds

)
+
α2Ke

R4

∫ T

0

∫
φ4ρ−3|b|2 dx ds.

Combining the above we conclude that L is also bounded by the quan-
tity given in (2.3.19).

2.3.3 Proof of Theorem 2.3.1

This section contains the proof of Theorem 2.3.1. We work in the
context of an arbitrary (K1, K2)-cover at scale R, {B(xi, R)}ni=1, of the
integral domain B(0, R0) where R < R0 < 1 and assume the premises
of Theorem 2.3.1 hold.

First we establish bounds for averages associated to an arbitrary
cover element centered at xi (note that x0 was arbitrary in the previous
subsection and the bounds were independent of x0; our subscripts here
indicate localization around xi at scale R), i.e. for,∫ T

0

Φxi,R ds =

∫
1

2
|ω(x, T )|2ψi(x) dx+

∫ T

0

∫
|∇ω|2φi dx ds

+

∫
1

2
|j(x, T )|2ψi(x) dx+

∫ T

0

∫
|∇j|2φi dx ds

+Hi +Ni + Li +Xi.
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Observe that,

Hi +Ni + Li +Xi

≤ KP

α

(
1

2

(
sup
s
||ψ

1
2
i j||L2(B(xi,2R)) + sup

s
||ψ

1
2
i ω||L2(B(xi,2R))

)
+

∫ T

0

∫
φi
(
|∇j|2 + |∇ω|2

)
dx ds

)
+
KE

R2

∫ T

0

∫
φ2ρ−1
i

(
|ω|2 + |j|2

)
dx ds

+
α2Ke

R4

∫ T

0

∫
φ4ρ−3
i

(
|b|2

2
+
|u|2

2

)
dx ds.

The properties of (K1, K2)-covers (see (2.2.3)) allow us, upon taking
ensemble averages and applying the modulation part of (A3), to pass
to a lower bound involving only integral scale quantities,〈

1

T

∫ T

0

1

R3
Φxi,R ds

〉
R

≥ 1

K1

P0 −K2
KP

α
P0 −

K2KE

R2
E0 −

α2K2Ke

R4
e0.

At this point we specify the value for α,

α = 4KPK
2
∗ ,

and recall that,

K∗ ≥ max{(K1K2)1/2, 3K2/4, K1}.

Consequently,

K2
KP

α
≤ 1

4K1

,

and, therefore,〈
1

T

∫ T

0

1

R3
Φxi,R ds

〉
R

≥ 3

4K1

P0 −
K2KE

R2
E0 −

α2K2Ke

R4
e0.

A consequence of (A2) is that,

α2K2Ke

R4
e0 ≤ β4α2K2KeP0,
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and,

K2KE

R2
E0 ≤ β2K2KEP0.

Therefore, noting 0 < β < 1,〈
1

T

∫ T

0

1

R3
Φxi,R ds

〉
R

≥ 3

4K1

P0 − β2K2(KE + α2Ke)P0.

The parameter β which modifies our Kraichnan-type scale is now chosen
to be small enough that,

2β2K1K2(KE + α2Ke)) < 1.

Then, 〈
1

T

∫ T

0

1

R3
Φxi,R ds

〉
R

≥ 1

4K1

P0 ≥
1

4K∗
P0.

Establishing the upper bound is, by properties of (K1, K2)-covers,
immediate because we chose K∗ so that 4K∗ ≥ 3K2. Indeed,〈

1

T

∫ T

0

1

R3
Φxi,R ds

〉
R

≤ K2P0 + 2P0 ≤ 4K∗P0.

Having established that,

1

4K∗
P0 ≤ 〈Φ〉R ≤ 4K∗P0,

the proof is complete.

2.3.4 Locality of the enstrophy flux

As mentioned previously, we can immediately deduce locality of the
flux from Theorem 2.3.1. Flux locality, in the context of turbulence
phenomenology, refers to the fact that the transfer takes place primar-
ily between comparable scales. This is realized in terms of the flux
by requiring that the time averaged flux at scale R is well-correlated
only with the time averaged fluxes at comparable scales. While flux lo-
cality is phenomenologically accepted in the hydrodynamic case, there
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has been some controversy about the locality in plasma turbulence (cf.
[2, 3] for a locality result on the energy level, as well as a discussion
and references on the topic). The present result establishes that the
combined enstrophy flux is local.

Define time averaged local magnetic and kinetic enstrophy fluxes
associated to the cover element around the point xi as,

Ψω
xi,R

=
1

T

∫ T

0

∫
1

2
|ω|2(u · ∇φi) dx ds = R3Φω

xi,R
,

Ψj
xi,R

=
1

T

∫ T

0

∫
1

2
|j|2(u · ∇φi) dx ds = R3Φj

xi,R
,

and, correspondingly, the combined enstrophy flux as Ψxi,R = Ψω
xi,R

+

Ψj
xi,R

.
Further, define the ensemble average over a (K1, K2)-cover of the

time-averaged combined flux to be,

〈Ψ〉R =
1

n

n∑
i=1

Ψxi,R = R3〈Φ〉R.

Using the clear relationships between the spatio-temporal and ensemble
averaged terms and the time and ensemble averaged terms, one can use
the bounds established in Theorem 2.3.1 to directly verify the following
theorem (for which the proof is omitted).

Theorem 2.3.2. Let u and b satisfy the assumptions of Theorem 2.3.1
and let R and r be two scales in the range σ0/β ≤ r, R ≤ R0. Then,

1

16K2
∗

(
r

R

)3

≤ 〈Ψ〉r
〈Ψ〉R

≤ 16K2
∗

(
r

R

)3

.

Remark 2.3.5. Note that along the dyadic scale – r = 2kR – the
locality propagates exponentially.

2.4 On the temperature variance cascade

in SQG turbulence

In this section we study the dynamical influence of inertial forces on
the temperature variance of solutions to the surface quasi-geostrophic
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(SQG) model and its generalizations. In particular, we are interested in
the inertial effect of a strongly rotating, stratified fluid u on a surface
temperature (or buoyancy) θ where the fluid’s streamfunction, Ψ, is
independent of the vertical coordinate. The evolution of θ is governed
by the SQG equations which have the form,

(
∂t + u · ∇+ κΛα

)
θ = 0 in R2 × (0,∞)

u = (−∂2Ψ, ∂1Ψ), ∇ · u = 0 in R2 × (0,∞)

θ(·, 0) = θ0 in R2,

(2.4.1)

where 0 < α ≤ 2 and κ ≥ 0 (which we subsequently take to be 1) are
parameters, the streamfunction and θ are related by ΛΨ = −θ, and Λα

is defined as a pseudo-differential operator by,

(Λαf)∧(ξ) = |ξ|αf∧(ξ),

for ξ ∈ R2. We will work with θ0 ∈ L2(R2) taking θ to be a weak solu-
tion to (2.4.1) noting that the global-in-time existence of such solutions
is well known for all values of α in (0, 2].

The SQG equations were introduced in the context of the quasi-
geostrophic equations (QG), a geophysically relevant 3D model for the
displacement of a rotating, stratified fluid from a solid body rotation,
to rectify the fact that the QG description of atmospheric and oceanic
processes breaks down in regions near the fluid’s boundaries such as the
troposphere and ocean surface. Essentially, there are various dynami-
cal regimes in the fluid media which demand more nuanced descriptions
than that given by QG. For surface proximate flow, this is achieved by
assuming the potential vorticity of a QG fluid is uniform. This assump-
tion allows one to derive the SQG equations from QG. These models are
also mathematically interesting as, due to the fact that strong stratifi-
cation makes the systems behave in a quasi-lower dimensional fashion,
they provide a potentially more friendly setting (compared to the 3D
Navier-Stokes equations or 3D Euler equations) to study the problem
of global regularity and, additionally, they serve as a testing ground for
turbulence theories (cf. [33, 37, 67]).

A spectral theory of SQG turbulence was initially studied by Blu-
men in [11] where he derives Kolmogorov-Kraichnan type scaling laws
and associated inertial ranges for the inviscid regime (see also [67]). In
SQG there are two ideally conserved quantities, the surface tempera-
ture variance and the depth-integrated total energy, the densities for
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these quantities are |θ|2 and |u|2, which behave in an analogous fashion
to 2D fluid enstrophy and energy in that they exhibit direct and in-
verse cascades respectively. Recent numerical work in [36] supports the
picture of intermittently distributed, thinning temperature assemblages
for α ∈ [0, 2]. Mathematically, the inverse energy cascade in QG turbu-
lence has been studied from a Littlewood-Paley perspective (cf. [33]).
The main goal of this section is to present a rigorous affirmation of the
existence of the temperature variance cascade and the scale-locality of
the temperature variance flux across an inertial range under conditions
which are consistent with qualitative properties of SQG turbulence.

The mathematical methodology used is an adaptation of that de-
veloped by Dascaliuc and Grujić to study cascades and flux locality
in hydrodynamic turbulence [40, 43] and extended to study related
properties in plasma turbulence [16]. The adaptation is necessary be-
cause fractional diffusion complicates our ability to study dynamical
properties of the flow via a localized temperature variance equation
(or inequality) as, on R2, no dominant, a priori positive dissipative
quantity is immediately apparent. To overcome this, we incorporate
an operator which extends scalar functions of R2 to R2 × (0,∞). The
fractional Laplacian of a function on R2 is then recovered via the trace
of the normal derivative of the extension. This approach has been ap-
plied to obtain regularity results for the critical case in [22] and certain
supercritical scenarios in [39].

2.4.1 Methodology

In this section we describe the ensemble averaging process which consti-
tutes the framework on which turbulent cascades will be studied. Our
methodology is an adaptation of the statistical apparatus of Dascaliuc
and Grujić originally developed to study hydrodynamic turbulence (cf.
[40]). At its core is a reformulation of the content of Section 2.2.1 but
taken over a 2D macro-scale domain B(x0, R0), the open ball of radius
R0 centered at x0. Multi-scale, statistical comparisons will be achieved
using 2D (K1, K2)-covers which are presently defined.

Definition 2.4.1. Let K1, K2 ∈ N and 0 < R ≤ R0. The cover of the
macro-scale domain B(x0, R0) by the n (open) balls {B(xi, R)}ni=1 is a
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(K1, K2)-cover at scale R if,(
R0

R

)2

≤ n ≤ K1

(
R0

R

)2

and, for any x ∈ B(x0, R0), x is contained in at most K2 cover ele-
ments.

Localization is achieved via refined cut-off functions. For a cover
element centered at xi of scale R, let φi(x, t) = η(t)ψ(x) where η ∈
C∞0 (0,∞) and ψ ∈ C∞0 (R2) take values in [0, 1] and satisfy,

η = 0 on (0, T/3) ∪ (5T/3,∞), η = 1 on [2T/3, 4T/3],
|∂tη|
η2δ−1

≤ C0

T
,

(2.4.2)

and,

ψ = 1 on B(xi, R),
|∂iψ|
ψδ
≤ C0

R
,
|∂i∂jψ|
ψ2δ−1

≤ C0

R2
, (2.4.3)

where 1/2 < δ < 1 is fixed. We require also that 2T ≥ Rα
0 where α

reflects the fractional exponent in (2.4.1).
The macro-scale cut-off function, φ0, is a fixed, refined cut-off func-

tion for the ball B(x0, R0) which is supported on B(x0, 2R0) having
spatial and temporal components ψ0 and η0.

Comparisons between sub-macro-scale quantities and macro-scale
quantities will be accommodated by imposing several additional con-
ditions on φi when xi lies near the boundary of B(x0, R0). If B(xi, R) ⊂
B(x0, R0) we assume ψ ≤ ψ0. Alternatively, whenB(xi, R) 6⊂ B(x0, R0),
let l(x, y) denote the collection of points on the line through x and y
and define the sets,

S0 = B(xi, R) ∩B(x0, R0),

S1 =
{
x : R0 ≤ |x| < 2R0 and ∅ 6=

(
l(x, x0) ∩ ∂B(xi, R) ∩B(x0, R0)c

)}
,

S2 =

({
x : R0 ≤ |x| < 2R0, ∅ 6=

(
l(x, x0) ∩ ∂B(xi, 2R) ∩B(x0, R0)c

)}
∪B(xi, 2R)

)
∩ (S0 ∪ S1)c.
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Then, assume that ψ satisfies (2.4.3), ψ = 1 on S0, ψ = ψ0 on S1, and
suppψ = S2. The above conditions ensure that φ ≤ φ0 and that ψ can
be constructed to have an inwardly oriented gradient field.

Extensions into a third spatial dimension will be necessary when
deriving a localized temperature variance equality. To accommodate
this, fix a vertical scale R∗ and let ψ∗ ∈ C∞([0,∞)) take the value 1 on
[0, R∗] and decrease to 0 across [R∗, R∗+R0), in a fashion mirroring the
(spatial) gradient restrictions imposed on φ0. Then, the vertical exten-
sions of our refined cut-off functions are just φ∗0(x, z, t) = φ0(x, t)ψ∗(z)
and φ∗i (x, z, t) = φi(x, t)ψ

∗(z). Note that the property φ∗i ≤ φ∗0 is triv-
ially preserved.

The statistical element of the methodology is carefully described in
[40] and Section 2.2.1, although some additional remarks are necessary
for our present work. Let g be a physical density and denote its localized
surface-time average over a cover element at scale R around xi by,

Gi =
1

T

∫ 2T

0

1

R2

∫
B(xi,2R)

g(x, t)φi(x, t) dx,

and let 〈G〉R denote the arithmetic mean – our version of ensemble
averages – over localized averages associated with cover elements,

〈G〉R =
1

n

n∑
i=1

Gi.

Assume that g∗ is an extension of g in the z-direction. Analogous
quantities involving the vertical extensions of cover elements are,

G∗i =
1

T

∫ 2T

0

1

R2

∫
B(xi,2R)

[ ∫ R∗+R0

0

g∗(x, z, t)φ∗i (x, z, t) dz

]
dx dt.

Note that no normalization is carried out in the z-direction. This is
consistent with the fact that the extended cut-off functions all have the
same vertical scale.

We extract statistical information about g at the scaleR by studying
the collection of all ensemble averages at the given scale. In particular,
for an a priori sign varying density, if all covers taken at scale R admit
ensemble averages which are mutually comparable and positive, e.g.,

1

C
K ≤ 〈G〉R ≤ CK,
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for positive, cover independent constants C and K, then this density is
essentially positive (i.e. positive in a statistical sense) at scale R.

2.4.2 The localized temperature variance flux

Recall that the temperature variance flux through the boundary of a
region B is, ∫

∂B

1

2
θ2 u · n̂ ds =

∫
B

(u · ∇θ) θ dx,

where n̂ is the outward normal vector. The refined cut-off functions
were constructed so that the gradient field ∇φi was oriented roughly
toward the center of the ball B(xi, R). This leads to the following
realization of the localized temperature variance flux into B(xi, R),∫

R2

1

2
θ2 (∇φi · u) dx = −

∫
R2

(u · ∇θ) θ φi dx,

which is a consequence of the fact that u is divergence free. An initial
formula for the surface-time integrated average flux into B(xi, R) now
follows from (2.4.1),

Fi :=

∫ 2T

0

∫
R2

1

2
θ2 (∇φi · u) dx dt

=

∫ 2T

0

∫
φi θΛ

αθ dx dt−
∫ 2T

0

∫
1

2
θ2 (∂tφi) dx dt.

The methodology of Dascaliuc and Grujić (cf. [40]) depends cru-
cially on localized energy estimates which are available in the context
of suitable weak solutions for 3D NSE (cf. [20]). Considering the non-
locality introduced by Λα, these local estimates are not directly acces-
sible for solutions to SQG when α < 2, and, consequently, an indirect
approach using an extension operator into a third spatial dimension is
necessary. Properties of the extension are detailed in [21]; it has previ-
ously been applied to the critical and supercritical formulations of SQG
in [22] and [39].

The desired extension operator, L, is defined in [21] via the initial
value problem,{

∇ · (zb∇L(f))(x, z) = 0 for (x, z) ∈ R2 × (0,∞),

L(f)(x, 0) = f(x) for x ∈ R2,
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where b = 1−α. The solution L(f) can be represented with a Poisson-
like formula and satisfies,

Λαf = lim
z→0

(−zb∂z(Lf)).

In the critical case this reduces to,

(Λf)(x) = ∂ν(Lf)(x) for x ∈ R2.

Let θ and u be solutions to (2.4.1) which are smooth on B(x0, 2R0)×
(0, 2T ). The extension of θ in the positive z-direction is denoted,

θ∗(x, z, t) = L(θ(·, t))(x, z).

Our formula for the time-integrated localized flux is obtained simi-
larly to the local energy estimates derived in [22] and [39]. Multiplying
(2.4.1) by θφi where φi is a refined cut-off function associated with the
ball B(xi, R) the extension of which in the positive z-direction is φ∗i , as
well as using the properties of L, we infer,

Fi =

∫ 2T

0

∫
R2

∫ ∞
0

∂z
(
φ∗i θ

∗zb∂zθ
∗) dz dx dt− ∫ 2T

0

∫
1

2
θ2 (∂tφi) dx dt

=

∫ 2T

0

∫
R2

∫ ∞
0

φ∗i |∇θ∗|2zb dz dx dt

+

∫ 2T

0

∫
R2

∫ ∞
0

∇φ∗i · ∇θ∗zb θ∗ dz dx dt

−
∫ 2T

0

∫
1

2
θ2 (∂tφi) dx dt.

2.4.3 The temperature variance cascade

Before stating the main result, we identify certain macro-scale averages
taken over the time interval [0, 2T ] and the ball B(x0, 2R0). These are,

ϑ0 =
1

T

∫ 2T

0

1

R2
0

∫
1

2
θ2φ2δ−1

0 dx dt,

ϑ∗0 =
1

T

∫ 2T

0

1

R2
0

∫ [ ∫ ∞
0

zb
1

2
θ∗2φ∗0

2δ−1 dz

]
dx dt,

ε∗0 =
1

T

∫ 2T

0

1

R2
0

∫ [ ∫ ∞
0

zb|∇θ∗|2φ∗0 dz
]
dx dt,
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and have dimensions l2−2α, l4−3α, and l2−3α respectively. These di-
mensions reflect the natural scaling associated with SQG – namely,
θl = lα−1θ(lx, lαt) – and are respected by the following length scale
which determines the lower limit of physical scales over which the vari-
ance cascade will be shown to persist,

σ0 = max

{(
ϑ0

ε∗0

)1/α

,

(
ϑ∗0
ε∗0

)1/2}
.

The main result concerning the temperature variance cascade fol-
lows.

Theorem 2.4.2. Fix K1 and K2 and let

β = min{(8C0K1K2)−1/2, (8C0K1K2)−1/α},

noting that C0 is fixed in the definition of our refined cut-off functions.
If,

σ0 < βR0,

then, for all R satisfying 1
β
σ0 ≤ R ≤ R0, any (K1, K2)-cover taken at

scale R yields an ensemble average satisfying,

1

4K1

ε∗0 ≤ 〈F 〉R ≤ 4K2ε
∗
0.

Proof. Invoking the definition of (K1, K2)-covers and the properties of
our refined cut-off functions (the fixed constant C0 is, in particular, in-
troduced in that context), several relationships are immediate regarding
the terms in the formula for Fi and the associated ensemble averages.
First,

A1 :=

∣∣∣∣ 1n
n∑
i=1

1

T

∫ 2T

0

1

R2

∫
R2

(∂tφi)
θ2

2
dx dt

∣∣∣∣ ≤ C0K2

Rα
ϑ0.

Second, using the properties of refined cut-off functions and Young’s
inequality, we see that,∣∣∣∣ ∫ 2T

0

∫
R2

∫ ∞
0

∇φ∗i · ∇θ∗zb θ∗ dz dx dt
∣∣∣∣

≤ 1

2

∫ 2T

0

∫
R2

∫ ∞
0

φ∗i |∇θ∗|2 zb dz dx dt

+
C

R2

∫ 2T

0

∫
R2

∫ ∞
0

1

2
θ∗2φ∗i

2δ−1zb dz dx dt.
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Ensemble averaging the last term above gives,

A2 :=
C

R2

1

n

n∑
i=1

∫ 2T

0

∫
R2

∫ ∞
0

1

2
θ∗2φ∗i

2δ−1zb dz dx dt ≤ C0K2

R2
ϑ∗0.

As the involved integrands are positive, direct comparison and the
definition of (K1, K2)-covers yields the following interpolative estimate,

1

K1

ε∗0 ≤
1

n

n∑
i=1

1

T

∫ 2T

0

1

R2

∫ ∫ ∞
0

zb |∇θ∗|2φ∗i dz dx dt ≤ K2ε
∗
0.

Returning to our formula for Fi, taking the ensemble average and using
the above facts reveals that,

〈F 〉R ≤
3

2

1

n

n∑
i=1

1

T

∫ 2T

0

1

R2

∫ ∫ ∞
0

zb |∇θ∗|2φ∗i dz dx dt+ A1 + A2

≤ 2K2ε
∗
0 +

C0K2

R2
ϑ∗0 +

C0K2

Rα
ϑ0,

and,

〈F 〉R ≥
1

2

1

n

n∑
i=1

1

T

∫ 2T

0

1

R2

∫ ∫ ∞
0

zb |∇θ∗|2φ∗i dz dx dt− A1 − A2

≥ 1

2K1

ε∗0 −
C0K2

R2
ϑ∗0 −

C0K2

Rα
ϑ0.

Recalling the definition of β and the assumption that σ0/β ≤ R ≤ R0,
we conclude our proof as we have shown that,

1

4K1

ε∗0 ≤ 〈F 〉R ≤ 4K2ε
∗
0.

Scale-locality of the temperature variance flux, i.e. that the average
flux at a scale R lying in the inertial range is most strongly correlated
with the average fluxes at nearby scales, follows directly from Theorem
2.4.2 and, moreover, this correlation propagates exponentially along
the dyadic scale (this is expected in SQG turbulence where large scale
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strain plays less of a role than in hydrodynamic turbulence, cf. [92]).
We adopt the notation,

Gi =
1

T

∫ 2T

0

∫
1

2
θ2 u · ∇φi dx dt = R2Fi,

for the time averaged localized temperature variance flux into the ball
B(xi, R) and 〈G〉R for the associated ensemble average over a (K1, K2)-
cover taken at scale R. The following corollary affirms the scale-locality
of the temperature variance flux across the range of scales on which the
cascade persists. The proof is omitted.

Corollary 2.4.3. If the premises of Theorem 2.4.2 are satisfied and
1
β
σ0 ≤ r, R ≤ R0, then,

1

16K1K2

(
r

R

)2

≤ 〈G〉r
〈G〉R

≤ 16K1K2

(
r

R

)2

.

To see the exponential propagation along the dyadic scale, observe
that,

1

16K1K2

22k ≤ 〈G〉r
〈G〉R

≤ 16K1K222k,

where r = 2kR for some integer k.
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Chapter 3

Uniform analyticity radii and
anisotropic diffusion

3.1 Introduction

The uniform analyticity radius associated with a fluid’s velocity field
has been connected to small scales of spatial complexity by the ob-
servation that analytic functions have Fourier transforms which fall off
exponentially at high wavenumbers. The implication is that the behav-
ior at small physical scales is dampened so long as a solution is analytic
and this motivates a connection between the uniform analyticity radii
of a fluid and the dissipative scale – i.e. the scale at which viscous forces
dominate inertial effects and inertial range transport dynamics break
down as energy is lost in the form of heat. A careful description of this
is given in [55] (see, in particular, Chapter 6.3.2) and there has subse-
quently been a mathematical interest in providing sharp lower bounds
for this length scale directly from the governing equations. A pioneer-
ing work in this area is due to C. Foias and R. Temam (cf. [54]) using
Gevrey space techniques. This approach has recently been revisited
using modern Fourier analysis techniques (cf. [10, 4]) and also applied
to study the decay of the analyticity radii of solutions to 3D Euler with
real analytic initial data (cf. [79, 78, 80]). An alternative approach
was developed in [62, 63, 76] using Lp space techniques (3 < p < ∞)
and, later, extended to the case of mild solutions with initial data in
L∞(R3) (cf. [64]; we contain an extension of this argument to 3D MHD
in Section 3.2).

Existing approaches for solutions of to NSE require that the forcing
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term is itself spatially analytic and, moreover, has a uniform analyticity
radius λf , i.e. it is the restriction of a function that is analytic on the
domain {x+ iy ∈ C3 : |y| < λf}. Because the forcing has a local influ-
ence on the evolution of a flow it is natural to investigate whether or not
the dependence of the velocity field’s analyticity radius on the analyt-
icity radius of the forcing term can be localized. An affirmative answer
can be formulated (see Section 3.4) by adapting a technique developed
in [63] to estimate the analyticity radius of a non-linear heat equation
defined on a bounded domain. The contrast between the work of [63]
and our own result lies in the fact that the non-linear contributions are
considerably more complicated in NSE and the approximation scheme
constructed in [63], when adapted to solutions of 3D NSE, introduces
non-linear terms which are not depleted by incompressibility. Although
we work with a similar scheme our estimates are carried out using mild
solutions in a fashion motivated by [72]. The benefit here lies in the
approaches elegance as well as illustrating how Kato’s method can be
extended to non-linear perturbations of heat equations possessing sec-
ond order linear terms.

The uniform analyticity radius has also been connected to the reg-
ularity of a solution to 3D NSE (cf. [61]). In particular, the analyticity
properties of a solution can be connected to a physically and numer-
ically apparent anisotropic diffusion which leads to one-dimensional
sparseness of the region of high spatial complexity in such a way to
prevent the formation of a singularity. Essentially, if the transverse
length scales of the super-level sets of the vorticity decay at a faster
rate than the uniform analyticity radius then a regularity criteria spec-
ified in [61] is triggered. In 3D MHD turbulence, a strong anisotropic
effect is also apparent in the evolution of current sheets [8]. The sec-
ond result of this chapter establishes a similar regularity criteria for
solutions to 3D MHD and is contained in Section 3.3.

3.2 Sharp lower bounds on the analyticity

radii of solutions to 3D MHD with L∞

initial data

We are interested in the 3D MHD system with bounded initial data
and its analytic extension into C3. The R3 system is as stated in prior
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sections but we presently substitute the labels U and B for u and b since
the latter will be associated with complex extensions of the former fields
throughout this chapter.

Let λ > 0 and recall that the fundamental solution of the homo-
geneous heat equations – i.e. ∂tf − λ∆f = 0 – is given (for t > 0)
by,

Gλ(x, t) =
1

(2πλt)D/2
e
−|x|2
4λt = G(x, λt).

Using the Gaussian kernel we have the following definition of mild so-
lutions to MHD.

Definition 3.2.1. Let U0, B0 ∈ L∞(RD), both divergence free. The
functions U,B ∈ C((0, T ), L∞(RD)) comprise a mild solution to MHD
on the time interval [0, T ) if, for every (x, t) ∈ RD×(0, T ), they satisfy,

Uk(x, t) =

∫
RD
Gν(x− w, t)U0k(w)dw

−
∫ t

0

∫
RD
∂jGν(x− w, t− s)Uj(w, s)Uk(w, s)dwds

+

∫ t

0

∫
RD
∂jGν(x− w, t− s)Bj(w, s)Bk(w, s)dwds

−
∫ t

0

∫
RD
∇Gν(x− w, t− s)Π(w, s)dwds,

and,

Bk(x, t) =

∫
RD
Gµ(x− w, t)B0k(w)dw

−
∫ t

0

∫
RD
∂jGµ(x− w, t)Uj(w, s)Bk(w, s)dwds

+

∫ t

0

∫
RD
∂jGµ(x− w, t)Bj(w, s)Uk(w, s)dwds,

where,

∆Π = −∂j∂k(UjUk −BjBk).
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We will extract information about a mild solution via a standard
iterative argument. Consider the recursively defined scheme,

U (0) = Π(0) = B(0) = 0

∂tU
(n) − ν∆U (n) = −U (n−1) · ∇U (n−1) +B(n−1) · ∇B(n−1) −∇Π(n−1)

∂tB
(n) − µ∆B(n) = −U (n−1) · ∇B(n−1) +B(n−1) · ∇U (n−1)

U (n)(x, 0) = U0(x); B(n)(x, 0) = B0(x)

∆Π(n) = −∂j∂k(U (n)
j U

(n)
k −B

(n)
j B

(n)
k ).

When n = 0 the approximating fields are obtained by solving homoge-
neous heat equations and Poisson equations and, for subsequent values
of n, are solutions to inhomogeneous heat or Poisson equations and
existence is thus guaranteed via classical results which also ensure the
smoothness properties of previous iterates are inherited. We will addi-
tionally show that certain uniform bounds are satisfied for all values of
n and for this we need several lemmas. Note that, up to the incorpo-
ration of a constant λ, these are identical to their counterparts in [77]
and employ facts from [101, 103]. Proofs are consequently omitted.

Lemma 3.2.2. If f ∈ L∞ then there exists a unique solution, π ∈
BMO, to the problem,

−∆π = ∂j∂kf.

Furthermore,
||π||BMO ≤ C||f ||∞.

Lemma 3.2.3. For T > 0 and fj ∈ L∞(0, T, BMO) where j =
1, . . . , D, we have the inequality,∣∣∣∣ ∫ t

0

∫
RD
∂jGλ(x− y, t− s)fj(y, s)dyds

∣∣∣∣ ≤ Cλ
√
T ||f ||

L∞(0,T,BMO),

where Cλ is a constant depending on λ and D.

We turn now to an inductive argument which we use to establish
uniform L∞(R3× (0, T )) estimates for an appropriate time T > 0. Hy-
pothesize that U (n−1), B(n−1), and Π(n−1) all satisfy the scheme distribu-
tionally and that the first two vector fields are in L∞(R3×(0, T )). Then,
U (n) and B(n) exist and, moreover, can be expressed via Duhamel’s pro-
cedure while the existence of Π(n) follows from Lemma 3.2.2. More can
be said about these solutions.
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Lemma 3.2.4. Given U0, B0 ∈ L∞ there exists T1 > 0 so that if T ≤ T1

then, for all n ∈ N and all pairs (x, t) ∈ RD × [0, T ), we have,

||U (n)||L∞([0,T )×RD) + ||B(n)||L∞([0,T )×RD)

≤ 2C1(||U0||L∞([0,T )×RD) + ||B0||L∞([0,T )×RD)),

where C1 is independent of n and depends on µ, ν, and D, and,

T1 =
1

4(||U0||L∞(RD) + ||B0||L∞(RD))2
.

Proof. Using the formulas for U (n) and B(n) obtained via Duhamel’s
procedure, an integration by parts yields,

U (n)(x, t) =

∫
RD
Gν(x− w, t)U0(x)dw

−
∫ t

0

∫
RD
∂jGν(x− w, t− s)U (n−1)

j (w, s)U (n−1)(w, s)dwds

+

∫ t

0

∫
RD
∂jGν(x− w, t− s)B(n−1)

j (w, s)B(n−1)(w, s)dwds

−
∫ t

0

∫
RD
∇Gν(x− w, t− s)Π(n−1)(w, s)dwds,

and,

B(n)(x, t) =

∫
RD
Gµ(x− w, t)B0(x)dw

−
∫ t

0

∫
RD
∂jGµ(x− w, t− s)U (n−1)

j (w, s)B(n−1)(w, s)dwds

+

∫ t

0

∫
RD
∂jGµ(x− w, t− s)B(n−1)

j (w, s)U (n−1)(w, s)dwds.

Applying Lemma 3.2.3 to each summand above (and noting that the
products of approximates from the scheme appearing in the integrands
are in BMO since L∞ ⊂ BMO) grants that,

|U (n)| ≤ Cν ||U0||L∞(RD) + Cν
√
T ||U (n−1)||2L∞((0,T )×RD)

+ Cν
√
T ||B(n−1)||2L∞((0,T )×RD) + Cν

√
T ||Π(n−1)||L∞((0,T ),BMO),
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and,

|B(n)| ≤ Cµ||B0||L∞(RD)

+ 2Cµ
√
T ||U (n−1)||L∞((0,T )×RD)||B(n−1)||L∞((0,T )×RD).

Also, in light of Lemma 3.2.2 we have that,

||Π(n−1)||L∞((0,T ),BMO)

≤ C
(
||U (n−1)||2L∞((0,T )×RD) + ||B(n−1)||2L∞((0,T )×RD)

)
,

where C is the constant appearing in Lemma 3.2.2. Letting C1 be
appropriately large we obtain the estimates,

|U (n)|+ |B(n)| ≤ C1(||U0||L∞(RD) + ||B0||L∞(RD))

+ C1

√
T
(
||U (n−1)||2L∞((0,T )×RD)

+ 2||U (n−1)||L∞((0,T )×RD)||B(n−1)||L∞((0,T )×RD)

+ ||B(n−1)||2L∞((0,T )×RD)

)
,

which factors to give a bound independent of n, x, and t, i.e.,

|U (n)|+ |B(n)|
≤ C1(||U0||L∞(RD) + ||B0||L∞(RD))

+ C1

√
T
(
||U (n−1)||L∞((0,T )×RD) + ||B(n−1)||L∞((0,T )×RD)

)2
.

Setting,

T1 =
1

4(||U0||L∞(RD) + ||B0||L∞(RD))2
,

and assuming that 0 < T ≤ T1 we obtain for n = 1 that,

|U (1)|+ |B(1)| ≤ 2C1(||U0||L∞(RD) + ||B0||L∞(RD)),

and, by induction, this extends to all n ∈ N, i.e. we have,

|U (n)|+ |B(n)| ≤ 2C1(||U0||L∞(RD) + ||B0||L∞(RD)).

The existence of mild solutions as limits of approximation scheme
elements follows from a typical contractivity argument.
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Theorem 3.2.5. Given U0, B0 ∈ L∞(RD) there exists T2 > 0 so that,
for T < T2, a mild solution to MHD exists on [0, T ] with,

T2 =
1

(4C1C2(||U0||L∞(RD) + ||B0||L∞(RD)))2
,

where C2 is a constant depending on µ, ν, and D. Furthermore, the
mild solution obtained in this fashion is unique.

Proof. We assume that U0, B0 ∈ L∞(RD). Our first step will be to
appropriately restrict T in order to establish the inequality,

||U (n+1) − U (n)||L∞((0,T )×RD) + ||B(n+1) −B(n)||L∞((0,T )×RD)

≤ α(||U (n) − U (n−1)||L∞((0,T )×RD) + ||B(n) −B(n−1)||L∞((0,T )×RD)),

for some α ∈ (0, 1). Let U (n+1) = U (n+1) − U (n) and B(n+1) = B(n+1) −
B(n). By applying Duhamel’s principle and an integration by parts we
obtain formulas for U (n+1) and B(n+1). The bounding procedure from
Lemma 3.2.4 ultimately leads to the estimate,

|U (n+1)|+ |B(n+1)|
≤ C
√
T ||U (n)||L∞((0,T )×RD)

·
(
||U (n)||L∞((0,T )×RD) + ||B(n)||L∞((0,T )×RD)

+ ||U (n−1)||L∞((0,T )×RD) + ||B(n−1)||L∞((0,T )×RD)

)
+ C
√
T ||B(n)||L∞((0,T )×RD)

·
(
||U (n)||L∞((0,T )×RD) + ||B(n)||L∞((0,T )×RD)

+ ||U (n−1)||L∞((0,T )×RD) + ||B(n−1)||L∞((0,T )×RD)

)
≤ C
√
T4C1(||U0||L∞((0,T )×RD) + ||B0||L∞((0,T )×RD))

·
(
||U (n)||L∞((0,T )×RD) + ||B(n)||L∞((0,T )×RD)

)
.

Set C2 to be the value of the constant C as it is appears above,

T2 =
1

(4C1C2(||U0||L∞(R3) + ||B0||L∞(R3)))2
.
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Assuming T = αT2 where α ∈ (0, 1), we see that,

||U (n+1)||L∞((0,T )×RD) + ||B(n+1)||L∞((0,T )×RD)

≤ α
(
||U (n)||L∞((0,T )×RD) + ||B(n)||L∞((0,T )×RD)

)
.

Consequently we obtain a bound which diminishes as n escapes, namely,

||U (n)||L∞((0,T )×RD) + ||B(n)||L∞((0,T )×RD)

≤ αn−1(||U (1)||L∞((0,T )×RD) + ||B(1)||L∞((0,T )×RD)),

and a simple convergence argument applies. Noting that αn−1 vanishes
as n → ∞, the above bound ensures that both {U (n)} and {B(n)} are
pointwise Cauchy and so we obtain pointwise limits U and B. The dom-
inated convergence theorem (the dominator is the respective Gaussian
kernel, scaled) then verifies that U and B are indeed mild solutions.

Uniqueness follows from the fact that for two mild solutions U , B
and Ũ , B̃, we have,

||U − Ũ ||∞ + ||B − B̃||∞

≤ 4C
√
T̃ (||U − Ũ ||∞ + ||B − B̃||∞)

· (||U ||∞ + ||Ũ ||∞ + ||B||∞ + ||B̃||∞).

Then, taking T̃ small enough so that,

4C
√
T̃ (||U ||∞ + ||Ũ ||∞ + ||B||∞ + ||B̃||∞) < 1,

we obtain U = Ũ and B = B̃ on [0, T̃ ]. This argument is iterated to
obtain the conclusion across the entire time interval [0, T ].

Slightly more can be said and we include a corollary which will be
used later to minimize the geometric relevance of the magnetic field in
our regularity result.

Corollary 3.2.6. Suppose that U and B are the mild solutions obtained
above to MHD on the time interval [0, T ) (so, U0, B0 ∈ L∞(RD) and
T < T2). Then, there exists T3 > 0 so that

||B||L∞((0,T3)×RD) ≤ 2C3||B0||L∞(RD),

where C3 is a constant depending on D and µ.
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Proof. In the proof of Lemma 3.2.4 we saw the bound,

|B(n)| ≤ Cµ||B0||L∞(RD)

+ 2Cµ
√
T ||U (n−1)||L∞((0,T )×RD)||B(n−1)||L∞((0,T )×RD).

Set

T3 = min

{
T,

1

16C2
µ||U ||2L∞((0,T )×RD)

}
.

Then, for any (t, x) ∈ [0, T3)× RD,

|B(n)(t, x)| ≤ Cµ||B0||L∞(RD)

+
||U (n−1)||L∞((0,T3)×RD)

2||U ||L∞((0,T3)×RD)

||B(n−1)||L∞((0,T3)×RD).

Taking limits and setting C3 = Cµ we see,

||B||L∞((0,T3)×RD) ≤ C3||B0||L∞(RD) +
1

2
||B||L∞((0,T3)×RD).

Having established needed properties of the real-variable system we
proceed to adapt the arguments of [63] and [64] from the case of NSE
in D dimensions to that of 3D MHD. Essential to later work will be a
uniform bound on the analytic extensions of mild solutions to a certain
complex domain. We restrict our attention to highlighting this result
while appealing to the existing literature to fill in technical omissions.

Recalling the approximation scheme for the real variable discussion,
let u(n) + iv(n), b(n) + ic(n), and π(n) + iρ(n) be the analytic extensions of
U (n), B(n) and Π(n) respectively. Real analyticity of the n-th approxi-
mation is a consequence of real analyticity of solutions of the heat and
Poisson equations. Substituting these extensions into the scheme and
subsequently isolating real and imaginary parts reveals that the analytic
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extensions of the real-variable scheme satisfy the evolution equations,

∂tu
(n) − ν∆u(n) = −(u(n−1) · ∇)u(n−1) + (v(n−1) · ∇)v(n−1)

+ (b(n−1) · ∇)b(n−1) − (c(n−1) · ∇)c(n−1) −∇π(n−1)

∂tv
(n) − ν∆v(n) = −(u(n−1) · ∇)v(n−1) − (v(n−1) · ∇)u(n−1)

+ (b(n−1) · ∇)c(n−1) + (c(n−1) · ∇)b(n−1) −∇ρ(n−1)

∂tb
(n) − µ∆b(n) = −(u(n−1) · ∇)b(n−1) + (v(n−1) · ∇)c(n−1)

+ (b(n−1) · ∇)u(n−1) − (c(n−1) · ∇)v(n−1)

∂tc
(n) − µ∆c(n) = −(v(n−1) · ∇)b(n−1) − (u(n−1) · ∇)c(n−1)

+ (b(n−1) · ∇)v(n−1) + (c(n−1) · ∇)u(n−1),

as well as the kinematic equations,

∆π(n) = −∂j∂k(u(n)
j u

(n)
k − v

(n)
j v

(n)
k ) + ∂j∂k(b

(n)
j b

(n)
k − c

(n)
j c

(n)
k )

∆ρ(n) = −∂j∂k(u(n)
j v

(n)
k + u

(n)
k v

(n)
j ) + ∂j∂k(b

(n)
j c

(n)
k + b

(n)
k c

(n)
j ).

Letting y = αt with α ∈ Rn and t ≥ 0 allows us to determine a sharp
lower bound for the analyticity radius in terms of t. Substituting these
terms into the approximation scheme, omitting for brevity the terms
associated with the total pressure which are just solutions of Poisson
equations analogous to the real variable scheme, we obtain that,

∂tu
(n) − ν∆u(n) = αj(∂jv

(n))− (u(n−1) · ∇)u(n−1) + (v(n−1) · ∇)v(n−1)

− (b(n−1) · ∇)b(n−1) + (c(n−1) · ∇)c(n−1) +∇π(n−1)

∂tv
(n) − ν∆v(n) = −αj(∂ju(n))− (u(n−1) · ∇)v(n−1) − (v(n−1) · ∇)u(n−1)

+ (b(n−1) · ∇)c(n−1) + (c(n−1) · ∇)b(n−1) +∇ρ(n−1)

∂tb
(n) − µ∆b(n) = −αj(∂jc(n))− (u(n−1) · ∇)b(n−1) + (v(n−1) · ∇)c(n−1)

+ (b(n−1) · ∇)u(n−1) − (c(n−1) · ∇)v(n−1)

∂tc
(n) − µ∆c(n) = −αj(∂jb(n))− (v(n−1) · ∇)b(n−1) − (u(n−1) · ∇)c(n−1)

+ (b(n−1) · ∇)v(n−1) + (c(n−1) · ∇)u(n−1)

u(n)(x, 0, 0) = U0(x)

b(n)(x, 0, 0) = B0(x)

v(n)(x, 0, 0) = c(n)(x, 0, 0) = 0
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Note that these systems evolve from the initial data U0 and B0 and
are thus meaningfully defined even when these fields are not real-
analytic. Bounds on the sum of the L∞([0, T )× Rn) norms of u(n),
v(n), b(n), and c(n) for appropriate values of T (denote by Fn the set
{u(n), v(n), b(n), c(n)}) are obtained in a familiar fashion. Duhamel’s
Principle and a subsequent integration by parts yields formulas for each
approximate in Fn. These approximates can then be bounded using the
methods seen in the proof of Lemma 3.2.4. Combining these bounds
ultimately leads to,∑

f∈Fn

||f ||L∞((0,T )×RD) ≤ C(||U0||L∞(RD) + ||B0||L∞(RD))

+ C|α|
√
t

(∑
f∈Fn

||f ||L∞((0,T )×RD)

)

+ C
√
T

( ∑
f∈Fn−1

||f ||L∞((0,T )×RD)

)2

.

Let C4 heretofore denote twice the value of the constant appearing
above. Provided C4|α|

√
t ≤ 1 (that is, |y| ≤ 1

2C4

√
t), we have,∑

f∈Fn

||f ||L∞((0,T )×RD) ≤ C4(||U0||L∞(RD) + ||B0||L∞(RD))

+ C4

√
T

( ∑
f∈Fn−1

||f ||L∞((0,T )×RD)

)2

.

A consequence of the construction of F0 is that,∑
f∈F1

||f ||L∞((0,T )×RD) ≤ C4(||U0||L∞(Rn) + ||B0||L∞(RD)).

Set,

T4 =
1

16c4
4(||U0||L∞(RD) + ||B0||L∞(RD))2

.

If T ≤ T4 we have, proceeding inductively,∑
f∈Fn

||f ||L∞((0,T4)×RD) ≤ 2C4(||U0||L∞(RD) + ||B0||L∞(RD)).
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Setting ρ(t) =
√
t

2C4
we conclude that for t ∈ (0, T4) the sequence of

analytic extensions of U (n) +B(n) is uniformly bounded over

Dt =

{
x+ iy ∈ CD : |y| ≤ ρ(t)

}
.

We will eventually desire an improvement of the above bound which
leaves Dt unchanged. By paying a price on the size of the time interval,
we can scale the bound by a factor of β for β ∈ (1/2, 1]. The price is
to restrict the length of the time interval to be less than Tβ where,

Tβ =
(2β − 1)2

β4
T4.

Assuming such a restriction, for n = 1 we have,∑
f∈Fn

||f ||L∞((0,T )×RD) ≤ C4(||U0||L∞(RD) + ||B0||L∞(RD))

≤ 2βC4(||U0||L∞(RD) + ||B0||L∞(RD)),

and, for subsequent n, induction yields,∑
f∈Fn

||f ||L∞((0,T )×RD) ≤ 2βC4(||U0||L∞(RD) + ||B0||L∞(RD)).

We summarize the preceding discussion in a lemma.

Lemma 3.2.7. Given U0 and B0 in L∞(RD) there exists a universal
constant C4 so that, for any n ∈ N and β ∈ (1/2, 1] and for the time,

Tβ =
(2β − 1)2

β4
T4,

we have,

||u(n) + iv(n)||L∞(Ω) + ||b(n) + ic(n)||L∞(Ω)

≤ 2βC4(||U0||L∞(RD) + ||B0||L∞(RD)),

where,

Ω =

{
(x+ iy, t) ∈ CD × (0, T ) : |y| ≤

√
t

2C4

}
,

and 0 < T ≤ Tβ.
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Convergence of the analytic extensions of the approximations of the
mild solutions to the corresponding to analytic extensions of the mild
solutions is not attended. It turns out that these limits are also the
unique mild solutions to the (spatially) analytic MHD equations, but
we forgo a detailed proof of this as it is methodically redundant to
existing work (e.g. [62, 64]).

Theorem 3.2.8. Let U0 and B0 be in L∞(RD) and let U and B be
the (unique) real variable solution to MHD on the time interval [0, T ∗)
where T ∗ < T2. Then, for any 0 < T < min{T ∗, T4}, and for any
t ∈ [0, T ), U(·, t) and B(·, t) have analytic extensions for which the
domains of analyticity include Dt, denote these by u + iv and b + ic.
Furthermore, for β ∈ (1/2, 1], there exists T ∗β = min{T ∗, Tβ} so that
the following bound holds,

||u+ iv||L∞(Ω) + ||b+ ic||L∞(Ω) ≤ 2βC4(||U0||L∞(RD) + ||B0||L∞(RD)),

where,

Ω =

{
(x+ iy, t) ∈ CD × (0, T ∗β ) : |y| ≤

√
t

2C4

}
.

Proof. Because at each t the approximating functions in the analytic
scheme converge on a set containing an accumulation point, namely RD,
Vitali’s theorem grants that they converge to analytic functions u+ iv
and b+ic. Then, since these agree with U and B on RD, they constitute
analytic extensions of U and B. The bound follows immediately from
the bounds on the approximations.

3.3 A geometric measure-type regularity

criteria for 3D MHD

In a recent paper by Z. Grujić (see [61]), a local geometric measure-type
condition is shown to prevent finite time singularity formation (with
respect to the supremum norm) in NSE with initial data in L∞(R3).
The proof utilizes a relatively recent solution (due to Solynin, cf. [99])
to a generalization of the classical Beurling’s problem which is con-
cerned with estimating the harmonic measure at the origin and with
respect to the unit disk of a closed subset of [−1, 1]. In the context of
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[61], sharp lower bounds on the uniform radius of spatial analyticity
for mild solutions to NSE with initial data in L∞(R3), along with a
sparseness condition near the endpoint of a finite length regular time
interval [0, T ) reduce to a situation aptly estimated via Solynin’s re-
sult and the harmonic measure maximum principle. This allows one to
conclude that T is not a singular time and, thus, the solution extends
smoothly past T .

In this section we adapt the methods of [61] to the case of 3D
MHD to establish several regularity criteria involving local anisotropic
diffusion. Central to these is a sparseness requirement which assumes
a bound on the ratio between the (spatial, Lebesgue) measure of the
region of intense behavior on some interval centered at the point x0 and
the length of that interval. More specifically, for a vector field F over
Rn, we assume for each point x0 that there exists a unit vector, d(x0),
and and a magnitude (less than a uniform radius of analyticity), r(x0),
so that

|ΩF ∩ (x0 − rd, x0 + rd)|
2r

≤ δ,

for some δ ∈ (0, 1) where ΩF is the set of points where |F | is above
some threshold.

For 3D MHD, sparseness assumptions are natural based on the ob-
servationally and numerically motivated theories of turbulence due to
the inherent anisotropy evident therein. In particular, in the regime of
strong turbulence, the magnetic and velocity fields undergo dynamic
alignment and the regions of high spatial complexity – current sheets
– are quasi-2D intermittently distributed structures (c.f. [8] and [12]).
Thus, it is reasonable to expect that, at least at points where spatial
complexity is pronounced, both the velocity field and the magnetic field
are sparse in the plane perpendicular direction.

Because the equations for MHD and NSE are formally similar, the
mathematical theory of MHD is richly informed by that of NSE (c.f. [96]
for the fundamentals). Past work has been done to adapt key regularity
results from NSE to MHD. The utilization of coherence introduced in
[34] and improved in [5] has been adapted in the case of ideal MHD in
[107] and for non-ideal MHD in [65]. Mild solutions for MHD have been
studied in the context of BMO−1 (c.f. [85]) where the regularity result
of Koch-Tataru are extended. Real analyticity of (weak) solutions of
3D MHD has been treated for initial data in H1 in [108]; this work



87

is also notable as it establishes an analogue of the Beale-Kato-Majda
result in the L∞ context (see [109] for an extension to L1(0, T ;BMO)).

3.3.1 Requisite material

Definition 3.3.1. Let x0 be a point in R3, r > 0, S an open subset of
R3 and δ ∈ (0, 1). The set S is linearly δ-sparse around x0 at scale r if
there exists a unit vector d in S2 such that,

|S ∩ (x0 − rd, x0 + rd)|
2r

≤ δ.

We will be interested in sparseness of super-level sets. For a function
f(x, t), a time t, and a threshold M , a super-level set is defined to be,

Ωf (t,M) = {x ∈ RD : |f(x, t)| > M}.

There is a significant amount of freedom in choosing how to relate
various parameters and achieve the desired regularity outcome. We be-
gin with a very simple case, Theorem 3.3.3, which most closely mirrors
[61]. Here, the sparseness is imposed singly on the intersection of super-
level sets of U and B. Consequently, the (local) direction in which U
and B are sparse must agree. This is reasonable in the context of the
above discussion regarding MHD turbulence. It is, however, formally
restrictive and subsequent results are presented to reveal where added
subtlety can be achieved. The proof of this result will illustrate Grujić’s
argument and expedite discussion of later results.

The remaining two theorems achieve the same result as Theorem
3.3.3 but under relaxed assumptions. Theorem 3.3.4 assumes sparseness
on each field but with greater independence than in Theorem 3.3.3. A
technical parameter specifies a relationship between the thresholds of
the superlevel sets for U and B on which these sparseness assumptions
are made. Both the direction of sparseness and the scale are, however,
independent. Theorem 3.3.5 exploits the linearity of the magnetic field
in the induction equation to eliminate this sparseness condition. A cost
is here paid by demanding the supremum norm of the magnetic field is
suitably bounded (in a fashion dependent on how much we improved
the uniform bound) by a scaling of the supremum norm of a single
velocity profile.



88

The only non-classical result from the theory of harmonic measures
which is of interest to us is due to Solynin [99]. It is included for
convenience.

Theorem 3.3.2. (Solynin [99]). Let K be a closed subset of [−1, 1] such
that |K| = 2γ for some 0 < γ < 1. Suppose further that 0 ∈ D \ K.
Then,

ω(0,D, K) ≥ ω(0,D, Kγ) =
2

π
arcsin

1− (1− γ)2

1 + (1− γ)2
,

where Kγ = [−1,−1 + γ] ∪ [1− γ, 1].

Other necessary results can be found in [1, 89] and are also listed
in [61].

3.3.2 Regularity criteria

Note that heretofore T4 = T4(t0) and C4 = C4(t0) are determined in
the context of Theorem 3.2.8 with initial data U(t0) and B(t0) for some
time t0. These mild solutions are, up to a shift in the time variable, just
the restrictions of the original solutions to the time interval [t0, t0 +T4).
Also, we assume C4 ≥ 1 and observe that, if this is not the case, we can
re-determine constants and time interval lengths to reflect the constant
max{1, C4}.
Theorem 3.3.3. Suppose U0, B0 ∈ L∞ and consider the corresponding
mild solution comprised of U and B defined on an interval of regularity
[0, T ). Let δ ∈ (0, 1), h = h(δ) = 2

π
arcsin 1−δ2

1+δ2
, α = α(δ) ≥ 1−h

h

satisfying 1
2
≥ 1

21/h(2C4)α
. Assume there exists ε > 0 so that for any

t0 ∈ (T − ε, T ), either

1. t0 + T4 > T , or,

2. there exists a time t = t(t0) ∈ [t0 + T4/4, t0 + T4] so that, for any
x0 ∈ R3, with,

M =
1

21/h(2C4)α
(||U(t0)||∞ + ||B(t0)||∞),

and,
S = ΩU(M, t) ∩ ΩB(M, t),

there exists r with 0 < r < ρ(T4/4) such that S is linearly δ-sparse
around x0 at scale r in some direction d.
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Then, T is not a singular time.

It will be clear from the following proof that (2) needs only hold at
finitely many times in (T − ε, T ) provided these are suitably spaced.

Proof. In the case of (1) we are done as the solutions with initial data
take at t0 are uniformly bounded on the interval (t0, t0 + T4) which
contains T .

In the case of (2) we apply an iterative argument which ultimately
reduces to case (1). Our main task is to establish that for any t0 there
exists a time t(t0) so that, for all x0 ∈ R3,

|U(x0, t)|+ |B(x0, t)| ≤ A,

where A = ||U(t0)||∞ + ||B(t0)||∞. Consequently, the procedure can
be repeated with t replacing t0 and, as each iteration moves the initial
time closer to T by a non-vanishing length, case (1) will eventually be
achieved.

To begin, let t0 ∈ (T − ε, T ) and x0 ∈ R3 be fixed. Let t = t(t0) be
as in the theorem and, therefore, by the sparseness assumption, there
exists a length r < ρ(T4/4) and a direction vector d so that,

S ∩ (x0 − rd, x0 + rd)|
2r

≤ δ.

Observing the the MHD system is rotationally and translationally in-
variant, let Q denote the transformation (rotation and translation) tak-
ing x0 to 0 and directing d to be parallel to the first coordinate vector,
e1. Let Ux0,Q and Bx0,Q comprise a mild solution to the transformed
MHD with initial data taken at t0.

By Theorem 3.2.8, on (0, T4), Ux0,Q and Bx0,Q have analytic exten-
sions satisfying the uniform bound,

|u+ iv|+ |b+ ic| ≤ 2C4A,

where the bounded terms are the appropriate analytic extensions. Fo-
cussing on the extension of the first spatial coordinate axis, hereafter
called just the real axis, we see the domains of analyticity contain the
disk centred at 0 of radius r, Dr because r < ρ(T4/4) ≤ ρ(t).
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Let K be the complement in [−r, r] of Q applied to S∩(x0−rd, x0 +
rd). If 0 ∈ K then,

|Ux0,Q(0, t)| ≤M ≤ 1

2
A,

and, as the same bound holds on |Bx0,Q(0, t)|, we are done. If 0 /∈ K
we turn to the theory of harmonic measures.

To apply the harmonic measure maximum principle (c.f. [1] pg. 39)
observe that, uniformly in Dr we have,

|u+ iv| ≤ 2C4A,

while uniformly in K we have,

|u+ iv| ≤M,

and, consequently,

|Ux0,Q(0, t)| ≤
(

A

21/h(2C4)α

)ω(0,Dr,K)(
2C4A

)1−ω(0,Dr,K)

.

The sparseness assumption entails that |K| ≥ 2r(1 − δ). Letting
1
r
K = {z ∈ C : rz ∈ K}, we obtain |1

r
K| ≥ 2(1−δ). Applying Theorem

3.3.2 with γ = 1 − δ to a subset K ′ ⊂ K where |K ′| = 2(1 − δ) yields
(noting that harmonic measure increases with K),

ω(0, D1,
1

r
K) ≥ ω(0, D1,

1

r
K ′) ≥ ω(0, D1, Kγ) =

2

π
arcsin

1− (δ)2

1 + (δ)2
= h.

Since harmonic measure is invariant under conformal mappings, it is
invariant under the mapping z 7→ rz. The previous inequality then
implies that,

ω(0, Dr, K) ≥ h.

Combining our bounds (noting C4 > 1 and M ≤ 2C4A) we have,

|Ux0,Q(0, t)| ≤
(

A

21/h(2C4)α

)h(
2C4A

)1−h

≤ 1

2
A.

And, undoing our transformation Q,

|U(x0, t)| ≤
1

2
A.
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Proceeding identically results in the same bound for |B(x0, t)| which
gives the conclusion for x0, namely,

|U(x0, t)|+ |B(x0, t)| ≤ ||U(t0)||∞ + ||B(t0)||∞.

As our selection of x0 was arbitrary this holds uniformly and the itera-
tive argument outlined at the onset of the proof allows us to conclude
that T is not a singular time.

Theorem 3.3.4. Suppose U0, B0 ∈ L∞ and consider the corresponding
mild solution comprised of U and B defined on an interval of regularity
[0, T ). Let δ ∈ (0, 1), h = h(δ) = 2

π
arcsin 1−δ2

1+δ2
, α = α(δ) ≥ 1−h

h
, and

γ ∈ (0, 1).
Assume there exists ε > 0 so that for any t0 ∈ (T − ε, T ), either

1. t0 + T4 > T , or,

2. there exists a time t = t(t0) ∈ [t0 + T4/4, t0 + T4] so that, for
any x0 ∈ R3, there exist rU and rB so that following sparseness
conditions are met:

• ΩU(t,MU) is linearly δ-sparse around x0 at scale rU where
0 < rU ≤ ρ(T4/4) and MU = γ

(2C4)α
(||U(t0)||∞ + ||B(t0)||∞),

and,

• ΩB(t,MB) is linearly δ-sparse around x0 at scale rB where

0 < rB ≤ ρ(T4/4) and MB = (1−γh)1/h

(2C4)α
(||U(t0)||∞+||B(t0)||∞).

Then, T is not a singular time.

Proof. The same iterative argument seen in the proof of Theorem 3.3.3
can be applied once we obtain for all x0 the bounds,

|U(x0, t)| ≤ γh(||U(t0)||∞ + ||B(t0)||∞),

and,

|B(x0, t)| ≤ (1− γh)(||U(t0)||∞ + ||B(t0)||∞).

This is shown by cases depending on the inclusion of x0 in the
relevant super-level sets. In the case where x0 ∈ ΩU(t,MU), an identical
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argument to that in the previous proof leads us to the estimate,

|Ux0,Q(0, t)| ≤
(

γ

(2C4)α
(||U(t0)||∞ + ||B(t0)||∞)

)ω(0,DrU ,K)

·
(

2C4(||U(t0)||∞ + ||B(t0)||∞)

)1−ω(0,DrU ,K)

.

Since 1 ≥ ω(0, DrU , KU) > h > 0 and γ ∈ (0, 1), γh ≥ γω(0,DrU ,KU ).
The desired bound follows. The case for x0 ∈ ΩB(t,MB) is identical up
to labeling.

If x0 /∈ ΩU(t,MU) then we have,

|U(x0, t)| ≤
γ

(2C4)α
(||U(t0)||∞ + ||B(t0)||∞).

Since h, γ ∈ (0, 1), α > 0, and 2C4 > 1, we clearly see that,

γ

(2C4)α
≤ γh,

which leads to the desired bound.
If x0 /∈ ΩB(t,MB) then we similarly have,

|B(x0, t)| ≤
(1− γh)1/h

(2C4)α
(||U(t0)||∞ + ||B(t0)||∞),

and, observing that,

(1− γh)1/h

(2C4)α
≤ (1− γh),

the desired estimate follows.
As we have dealt with each case we conclude that the initially stated

bounds are valid and, iterating, we see that T is not a singular time.

Theorem 3.3.5. Suppose U0, B0 ∈ L∞ and consider the corresponding
mild solution comprised of U and B defined on an interval of regularity
[0, T ). Let δ ∈ (0, 1), h = h(δ) = 2

π
arcsin 1−δ2

1+δ2
, α = α(δ) ≥ 1−h

h
.

Additionally, let β ∈ (1/2, 1) satisfy β1−h ≥ 1/(2C4)α.
Assume there exists ε > 0 and a collection of times t0, t1, . . . , tk ∈

(T − ε, T ), so that
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1. tk + T4 > T ,

2. ti+1 ∈ [ti + Tβ(ti)/4, ti + Tβ(ti)], and,

3. the following two criteria are met:

• for each i and for any x0 there exists r so that ΩU(ti+1,M) is
linearly δ-sparse around x0 at scale r where 0 < r ≤ ρ(Tβ/4)
and M = 1

(2C4)α
(||U(ti)||∞ + ||B(ti)||∞), and,

• 2C3||B(t0)||∞ ≤ (1− β1−h)(||U(t0)||∞ + ||B(t0)||∞).

Then, T is not a singular time.

In the above we specified a particular time at which to begin our
iterative argument in order to not trivialize the condition on the mag-
netic field. Note that in the context of the above theorem β and Tβ
reference Theorem 3.2.8. Also, when C4 ≥ 1 we have β1−h ≥ 1/(2C4)α.

Proof. We obtain for all x0 the bounds,

|U(x0, t1)| ≤ βh(||U(t0)||∞ + ||B(t0)||∞),

and,

|B(x0, t1)| ≤ (1− βh)(||U(t0)||∞ + ||B(t0)||∞).

Applying the now familiar argument with the modification that the
disk on which we are taking Ux0,t1 to be analytic is that on which the
bound |Ux0,t1 | ≤ 2β(||U(t0)||∞ + ||B(t0)||∞) holds (see Lemma 3.2.7),
yields the desired bound on U , namely,

|U(x0, t1)| ≤ β1−h(||U(t0)||∞ + ||B(t0)||∞).

A complementary estimate (noting T3 ≥ Tβ) on |B(x0, t1)| follows from
the second assumption and Corollary 3.2.6. These grant that,

|B(x0, t1)| ≤ 2C3||B(t0)||∞ ≤ (1− β1−h)(||B(t0)||∞ + ||U(t0)||∞).

Combining these bounds leads to,

|U(x0, t1)|+ |B(x0, t1)| ≤ ||U(t0)||∞ + ||B(t0)||∞.

Establishing identical relationships for ti+1 and ti follows in the exact
same manner and the iterative argument then grants that T is not a
singular time.
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3.4 Local estimates for the analyticity ra-

dius of solutions of the Navier-Stokes

equations with locally analytic forcing

We return to the subject of analyticity radii and are interested in
whether or not local lower bounds can be determined for flows subjected
to real-analytic forcing which have a possibly non-uniform analyticity
radius. To provide context, let f denote the forcing term from 3D NSE,
λf (x, t) the radius of spatial analyticity of f at (x, t), and let,

λf,T (x) = inf
t∈(0,T ]

λf (x, t).

Fix a point x∗ ∈ R3 and specify the length r∗ = λf,T (x∗)/2. By B∗
denote the ball of radius r∗ centered at x∗. Then, if x ∈ 2B∗ it follows
that λf,T (x) ≥ 2r∗−|x−x∗|, and, consequently, f(x, t) is the restriction
to R3 of a function F (x, y, t) + iG(x, y, t) which is defined and spatially
analytic on the domain,

Ωf,T (x∗) =
{
x+ iy ∈ C3 : x ∈ 2B∗, |y| < 2r∗ − |x− x∗|

}
,

provided t ∈ (0, T ].
A non-negative test function ψ can be constructed which is sup-

ported on 2B∗, evaluates to 1 onB∗, is radially non-increasing in |x−x∗|,
and additionally satisfies the estimates,

|ψ(x)| ≤ 2r∗ − |x− x∗|
r∗

,

and,

||∇ψ||∞ ≤
C

r∗
.

Let α ∈ R3 satisfy (x, αψ(x)t, t) is in the domain of analyticity of F+iG
provided t ≤ r2

∗; denote the set of all permissible vectors α by Sf . Let
Fα(x, t) = F (x, αψ(x)t, t) and Gα(x, t) = G(x, αψ(x)t, t).

Theorem 3.4.1. Assume that u0 is a divergence free vector field in
the Sobolev space W 1,q(R3) for some q > 3 and that f agrees with the
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restriction of the analytic function F + iG to 2B∗. If for some positive
time T we have,

Mf (T ) := sup
α∈Sf

(
sup

0<τ<T
‖Fα(τ)‖Lq(R3) + sup

0<τ<T
‖Gα(τ)‖Lq(R3)

)
<∞,

and, for some r > 2q/(q − 3),

M ′
f (T ) := sup

α∈Sf

[(∫ T

0

||∇Fα(τ)||rLq dt
) 1

r

+

(∫ T

0

||∇Gα(τ)||rLq dt
) 1

r
]
,

is finite, then there exists a positive time T1 occurring prior to T so
that 3D NSE has a solution u ∈ C([0, T1), Lq(R3)) which, at any time
t ∈ (0, T1), agrees with the restriction to B∗ of a function u(x, y, t) +
iv(x, y, t) which is analytic in the region,

Ω∗(t) = {x+ iy ∈ C3 : x ∈ B∗, |y| <
√
t

4C0

},

for a universal constant C0.

Remark 3.4.1. The time T1 will be obtained in terms of quantities
involving ‖u0‖W 1,q as well as Mf (T1) and M ′

f (T1) (see in particular
(3.4.20) and (3.4.30)). The proof, which is contained in Section 3.4.3,
additionally establishes that,

sup
0<t<T1

‖Uα(t)‖Lq + sup
0<t<T1

‖Vα(t)‖Lq ≤ C ||u0||q,

and,

t
r−2
2r

[(∫ t

0

‖∇Uα(τ)‖rLq dτ
) 1

r

+

(∫ t

0

‖∇Vα(τ)‖rLq dτ
) 1

r
]
≤ C ||u0||q,

for 0 < t < T1. The exponent r is introduced for technical reasons.

We prove Theorem 3.4.1 by studying complex perturbations of ele-
ments of a classical approximation scheme for 3D NSE. The scheme is
constructed by setting u(0) = p(0) = 0 and, for n ≥ 1, defining u(n) by
successively solving the system,

∂tu
(n) −∆u(n) = −u(n−1) · ∇u(n−1) −∇p(n−1) + f in R3 × (0, T )

∇ · u(n) = 0 in R3 × (0, T )

∆p(n−1) = −∂i∂j
(
u

(n−1)
i u

(n−1)
j

)
in R3 × (0, T )

u(n)(·, 0) = u0(·) in R3.
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This scheme has been studied extensively (cf. [72]) and its convergence
to a solution of 3D NSE in C([0, T );Lq(R3)) is known for appropriately
small values of T .

Let α ∈ Sf so that (x, αψ(x)t, t) is in the domain of analyticity
of F + iG provided t ≤ r2

∗. The smoothing properties of the heat
equation and the analyticity of f imply that u(n) and p(n) are themselves
restrictions to R3 of functions U (n) + iV (n) and P (n) + iΠ(n) which are
defined (at least) on R3 ∪ Ωf,T (x∗), are analytic on Ωf,T (x∗) and, at
points in Ωf,T (x∗)× (0, T ), satisfy,

∂tU
(n) −∆U (n) = −U (n−1) · ∇U (n−1) + V (n−1) · ∇V (n−1) −∇P (n−1) + F

∂tV
(n) −∆V (n) = −U (n−1) · ∇V (n−1) − V (n−1) · ∇U (n−1) −∇Π(n−1) +G

∆P (n−1) = −∂i∂j
(
U

(n−1)
i U

(n−1)
j − V (n−1)

i V
(n−1)
j

)
∆Π(n−1) = −2∂i∂j

(
U

(n−1)
i V

(n−1)
j

)
∇ · U (n) = 0 and ∇ · V (n) = 0

Note that (x, αtψ(x), t) is in the domain of analyticity of U (n) + iV (n)

and P (n) + iΠ(n). Let U
(n)
α (x, t) = U (n)(x, αtψ(x), t) with analogous

definitions holding for V
(n)
α , P

(n)
α , and Π

(n)
α and the forcing terms. We

presently derive evolution equations for U
(n)
α and V

(n)
α and kinematic

equations for P
(n)
α and Π

(n)
α .

Since the Cauchy-Riemann system,{
∂iU

(n)
α = ∂∗i V

(n)
α , ∂∗i U

(n)
α = −∂iV (n)

α ,

∂iP
(n)
α = ∂∗i Π

(n)
α , ∂∗i P

(n)
α = −∂iΠ(n)

α ,

is satisfied on Ωf,T (x∗) (note that ∂∗i denotes the partial derivative in

the i-th complex variable), we see that time derivatives of U
(n)
α and V

(n)
α

satisfy,

∂tU
(n)
α (x, t) = (∂tU

(n))(x, αtψ(x), t)− αlψ(x)(∂lV
(n))(x, αtψ(x), t)

∂tV
(n)
α (x, t) = (∂tV

(n))(x, αtψ(x), t) + αlψ(x)(∂lU
(n))(x, αtψ(x), t),

and that spatial derivatives satisfy,

∂jU
(n)
α (x, t) = ∂jU

(n)(x, αtψ(x), t)− αlt∂jψ(x)(∂lV
(n))(x, αtψ(x), t)

∂jV
(n)
α (x, t) = ∂jV

(n)(x, αtψ(x), t) + αlt∂jψ(x)(∂lU
(n))(x, αtψ(x), t).
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Provided,

|α|t ≤ r∗
C0

, (3.4.1)

where C0 is a sufficiently large positive constant the value of which will
be further refined as the proof develops, we obtain algebraically that,

(∂jU
(n))(x, αtψ(x), t) = b11

jk∂kU
(n)
α + b12

jk∂kV
(n)
α

(∂jV
(n))(x, αtψ(x), t) = b21

jk∂kU
(n)
α + b22

jk∂kV
(n)
α ,

where the functions blmjk are smooth, non-negative, bounded, and have
gradients supported in 2B∗. Extending this reasoning to second deriva-
tives yields,

(∂i∂jU
(n))(x, αtψ(x), t) = b11

kl∂l

(
b11
jm∂mU

(n)
α (x, t) + b12

jm∂mV
(n)
α (x, t)

)
+ b12

kl∂l

(
b21
jm∂mU

(n)
α (x, t) + b22

jm∂mV
(n)
α (x, t)

)
(∂i∂jV

(n))(x, αtψ(x), t) = b21
kl∂l

(
b11
jm∂mU

(n)
α (x, t) + b12

jm∂mV
(n)
α (x, t)

)
+ b22

kl∂l

(
b21
jm∂mU

(n)
α (x, t) + b22

jm∂mV
(n)
α (x, t)

)
.

Again using the Cauchy-Riemann system as well as repeated applica-
tions of the chain rule, we obtain a useful formula for the Laplacians of
U (n) and V (n),

(∆U (n))(x, αtψ(x), t) = ∆U (n)
α (x, t)

+ ∂l(a
11
lk ∂kU

(n)
α (x, t)) + ∂l(a

12
lk ∂kV

(n)
α (x, t))

+ c̃11
l ∂lU

(n)
α (x, t) + c̃12

l ∂lV
(n)
α (x, t),

(∆V (n))(x, αtψ(x), t) = ∆V (n)
α (x, t)

+ ∂l(a
21
lk ∂kU

(n)
α (x, t)) + ∂l(a

22
lk ∂kV

(n)
α (x, t)),

+ c̃21
l ∂lU

(n)
α (x, t) + c̃22

l ∂lV
(n)
α (x, t),

where the coefficient functions are supported on 2B∗ and satisfy,

||almjk ||∞ . |α| t |∇ψ|, (3.4.2)
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and,

||c̃lmj ||∞ . ||∇almjk ||∞ .
|α| t |∇ψ|

r∗
. (3.4.3)

The smallness condition (3.4.1) thus ensures that,

||almjk ||∞ ≤
C

C0

,

and,

||c̃lmj ||∞ ≤
C

r∗C0

.

The representations involving spatial derivatives hold for any con-
jugate pair analytic on Ωf,T (x∗); in particular, they hold for P (n), P

(n)
α ,

Π(n), and Π
(n)
α . They also lead to evolution equations for U

(n)
α and V

(n)
α ,

namely,

∂tU
(n)
α −∆U (n)

α (3.4.4)

= −U (n−1)
α,l

[
b11
lk ∂kU

(n−1)
α + b12

lk ∂kV
(n−1)
α

]
+ V

(n−1)
α,l

[
b21
lk ∂kU

(n−1)
α + b22

lk ∂kV
(n−1)
α

]
− b11

lk ∂kP
(n−1)
α − b12

lk ∂kΠ
(n−1)
α + αlc

11
lm∂mU

(n)
α + αlc

12
lm∂mV

(n)
α

+ ∂l(a
11
lk ∂kU

(n)
α ) + ∂l(a

12
lk ∂kV

(n)
α ) + c̃11

l ∂lU
(n)
α + c̃12

l ∂lV
(n)
α + Fα,

and,

∂tV
(n)
α −∆V (n)

α (3.4.5)

= −V (n−1)
α,l

[
b11
lk ∂kU

(n−1)
α + b12

lk ∂kV
(n−1)
α

]
− U (n−1)

α,l

[
b21
lk ∂kU

(n−1)
α + b22

lk ∂kV
(n−1)
α

]
− b21

lk ∂kP
(n−1)
α − b22

lk ∂kΠ
(n−1)
α + αlc

21
lm∂mU

(n)
α + αlc

22
lm∂mV

(n)
α

+ ∂l(a
21
lk ∂kU

(n)
α ) + ∂l(a

22
lk ∂kV

(n)
α ) + c̃21

l ∂lU
(n)
α + c̃22

l ∂lV
(n)
α +Gα,

where cijlm are smooth, bounded, and supported in 2B∗, and kinematic
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equations for P
(n)
α and Π

(n)
α , namely,

−∆P (n)
α = ∂l(a

11
lk ∂kP

(n)
α ) + ∂l(a

12
lk ∂kΠ

(n)
α ) + c̃11

l ∂lP
(n)
α + c̃12

l ∂lΠ
(n)
α

(3.4.6)

+ b11
ik∂k

(
b11
jl ∂l
(
U

(n)
α,i U

(n)
α,j − V

(n)
α,i V

(n)
α,j

)
+ b12

jl ∂l
(
2U

(n)
α,i V

(n)
α,j

))
+ b12

ik∂k

(
b21
jl ∂l
(
U

(n)
α,i U

(n)
α,j − V

(n)
α,i V

(n)
α,j

)
+ b22

jl ∂l
(
2U

(n)
α,i V

(n)
α,j

))
,

and,

−∆Π(n)
α = ∂l(a

21
lk ∂kP

(n)
α ) + ∂l(a

22
lk ∂kΠ

(n)
α ) + c̃21

l ∂lP
(n)
α ) + c̃22

l ∂lΠ
(n)
α

(3.4.7)

+ b21
ik∂k

(
b11
jl ∂l
(
U

(n)
α,i U

(n)
α,j − V

(n)
α,i V

(n)
α,j

)
+ b12

jl ∂l
(
2U

(n)
α,i V

(n)
α,j

))
+ b12

ik∂k

(
b21
jl ∂l
(
U

(n)
α,i U

(n)
α,j − V

(n)
α,i V

(n)
α,j

)
+ b12

jl ∂l
(
2U

(n)
α,i V

(n)
α,j

))
.

In the remainder of this section we carry out an inductive argument
which is motivated by the mild solution approach taken in [72]. Several
modifications are needed to accommodate the various terms appearing
in (3.4.4)–(3.4.7). The first is our handling of the pressure; this is
done directly using the Calderon-Zygmund theory in place of involving
the Leray projector and is addressed in subsection 3.4.1. The systems
(3.4.4) and (3.4.5) include linear second order terms as well as non-
linear terms with no structural cancellation due to incompressibility. To
accommodate these the Lr(0, T ;Lq(R3)) norms of spatial gradients need
to be considered where r is a value greater but close to 2; this contrasts
Kato’s work wherein controlling the L∞(0, T ;Lq(R3)) norms sufficed.
These estimates are carried out in subsection 3.4.2 and constitute the
bulk of the work required to prove Theorem 3.4.1. The proof itself is
contained in subsection 3.4.3.

3.4.1 Estimates in Ls for P
(n)
α (t) and Π

(n)
α (t)

In this subsection we provide bounds for the Ls norms of P
(n)
α (t) and

Π
(n)
α (t) based on the elliptic systems (3.4.6) and (3.4.7). We first expand
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P
(n)
α (x, t) in terms of singular integral operators,

P (n)
α (x, t) =

∫
R3

1

|x− y|
∆P (n)

α (y, t) dy

=

∫
R3

[
∂l
(
a11
lk ∂kP

(n)
α + (a12

lk ∂kΠ
(n)
α

)
+ c̃11

l ∂lP
(n)
α + c̃12

l ∂lΠ
(n)
α

]
dy

|x− y|

+

∫
R3

b11
ik∂k

(
b11
jl ∂l
(
U

(n)
α,i U

(n)
α,j − V

(n)
α,i V

(n)
α,j

)
+ b12

jl ∂l
(
2U

(n)
α,i V

(n)
α,j

)) dy

|x− y|

+

∫
R3

b12
ik∂k

(
b21
jl ∂l
(
U

(n)
α,i U

(n)
α,j − V

(n)
α,i V

(n)
α,j

)
+ b22

jl ∂l
(
2U

(n)
α,i V

(n)
α,j

)) dy

|x− y|
.

As t is fixed, it is suppressed throughout the remainder of this subsec-
tion. Label the first line of the last term of the above equation by I and
the remaining two lines by J . Integrating by parts, I can be written so
that no derivatives fall on P

(n)
α and Π

(n)
α ,

I =

∫
R3

∂k∂l

(
1

|x− y|

)[
a11
lkP

(n)
α + a12

lkΠ(n)
α

]
(y) dy

+

∫
R3

∂l

(
1

|x− y|

)[
(∂ka

11
lk )P (n)

α + (∂ka
12
lk )Π(n)

α

]
(y) dy

= I1 + I2.

The singular integral kernel of I1 is of CZ-type and we obtain for any
r ∈ (1,∞) that,

||I1||Lr ≤ Cr
(
||a11

lkP
(n)
α ||Lr + ||a12

lkΠ(n)
α ||Lr

)
≤ Cr||aijlk||L∞

(
||P (n)

α ||Lr + ||Π(n)
α ||Lr

)
≤ C |α| t

r∗

(
||P (n)

α ||Ls + ||Π(n)
α ||Ls

)
.

For our purposes s = q/2 > 3/2 and, upon investigating the proof
of Theorem 3 contained in Section 4 of Chapter II of [101], we can
bound Cs independently of s. Then, provided |α| is sufficiently small,
we obtain,

||I1||Ls ≤
1

4

(
||P (n)

α ||Ls + ||Π(n)
α ||Ls

)
.

For I2 we observe that, since the support of aijlj is a subset of 2B∗
and, in the worst case, its gradients have magnitudes comparable to
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r−1
∗ , and, again, this is compensated for by making C0 large and |α|t

correspondingly small to obtain,

||I2||Ls ≤
1

4

(
||P (n)

α ||Ls + ||Π(n)
α ||Ls

)
.

For J , we similarly apply integration by parts to obtain a formula
wherein all derivatives fall on the coefficient functions, the singular
kernels, or a combination of the two. When all derivatives fall on the
singular kernel we obtain via the CZ theory a bound in terms of the
L2s norms of U

(n)
α and V

(n)
α . In cases where a derivative falls on the

coefficient functions the fact that ∇bklij is supported in 2B∗ allows us to
obtain similar bounds.

Letting s = q/2 we ultimately conclude that,

||P (n)
α ||Lq/2 ≤ C

(
||U (n)

α ||2Lq + ||V (n)
α ||2Lq

)
, (3.4.8)

and, based on a procedurally identical argument, that,

||Π(n)
α ||Lq/2 ≤ C

(
||U (n)

α ||2Lq + ||V (n)
α ||2Lq

)
. (3.4.9)

Noting that the formulas for P
(n)
α and Π

(n)
α are of convolution type, a

similar argument holds for gradients. This ultimately yields,

||∇P (n)
α ||Lq/2 ≤ C

(
||U (n)

α ||Lq + ||V (n)
α ||Lq

)(
||∇U (n)

α ||Lq + ||∇V (n)
α ||Lq

)
,

(3.4.10)

and,

||∇Π(n)
α ||Lq/2 ≤ C

(
||U (n)

α ||Lq + ||V (n)
α ||Lq

)(
||∇U (n)

α ||Lq + ||∇V (n)
α ||Lq

)
.

(3.4.11)

3.4.2 Inductive estimates in Lq for U
(n)
α and V

(n)
α

This subsection is dedicated to showing that on some time interval
[0, T1] and for sufficiently small values of |α|, the Lq norms of U

(n)
α and

V
(n)
α are bounded solely in terms of the initial data and the complexified

forcing. To save space, when formally similar estimates apply across a
variety of terms we omit the details in all but a single illustrative case.
For ease of reading we break our treatment into a base case when n = 1
and an inductive step for general n ∈ N.
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Base case: Applying Duhamel’s formula in the context of (3.4.4)

allows us to express U
(1)
α in integral form as,

U (1)
α (t) = et∆u0 +

∫ t

0

e(t−τ)∆Fα(τ) dτ

+

∫ t

0

e(t−τ)∆
[
αlc

11
lm∂mU

(1)
α + αlc

12
lm∂mV

(1)
α

]
(τ) dτ

+

∫ t

0

e(t−τ)∆
[
∂l(a

11
lk ∂kU

(1)
α ) + ∂l(a

12
lk ∂kV

(1)
α )
]
(τ) dτ

+

∫ t

0

e(t−τ)∆
[

+ c̃11
l ∂lU

(1)
α + c̃12

l ∂lV
(1)
α

]
(τ) dτ.

Consider a fixed time t and apply the Lq norm throughout the integral
equation. Then, the terms involving the initial data and Fα satisfy,

‖et∆u0‖Lq ≤ C‖u0‖Lq ,

and, ∥∥∥∥∫ t

0

e(t−τ)∆Fα(τ) dτ

∥∥∥∥
Lq
≤ C T sup

0<τ<T
‖Fα(τ)‖Lq ,

while the remaining terms are bounded via classical techniques (see, for
instance, inequalities (2.3) through (2.5’) in [72]). For the first order
terms we apply Young’s convolution inequality and Hölder’s inequality.
Assuming T 1/2 ≤ r∗ this leads to estimates along the lines of,∥∥∥∥∫ t

0

e(t−τ)∆αlc
11
lm∂mU

(1)
α (τ)dτ

∥∥∥∥
Lq
≤ C|α|T

r−1
r

(∫ T

0

‖∇U (1)
α (t)‖rLq dt

) 1
r

,

where r > 2 is a fixed exponent (see the next inequality).
For the second order terms we move the derivative to the Gaussian

kernel (this also introduces a lower order term but, as this ultimately
satisfies the same estimate, we exclude it from consideration). Again
using the bounds from [72] and further stipulating that,

r >
2q

q − 3
,

we obtain,∥∥∥∥∫ t

0

∂le
(t−τ)∆a11

lk ∂kU
(1)
α (τ)dτ

∥∥∥∥
Lq
≤ C|α|T

r−1
r

(∫ T

0

‖∇U (1)
α (t)‖rLq dt

) 1
r

.
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Taken together with similar estimates for V
(1)
α we obtain an initial

Lq estimate,

sup
0<t<T

‖U (1)
α (t)‖Lq + sup

0<t<T
‖V (1)

α (t)‖Lq (3.4.12)

≤ C ‖u0‖Lq + C T
(

sup
0<τ<T

‖Fα(τ)‖Lq + sup
0<τ<T

‖Gα(τ)‖Lq
)

+ C |α|T
r−1
r

[(∫ T

0

‖∇U (1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (1)
α (t)‖rLq dt

) 1
r
]
.

We estimate the time-integrated quantities appearing in (3.4.12) by ap-

plying a spatial gradient across the integral equation for U
(1)
α (t) noting

that, since et∆ is a convolution operator, this extra gradient can be put
on the Gaussian kernel when appropriate. For the terms involving the
initial data and forcing we have,(∫ T

0

‖et∆∇u0‖rLq dt
) 1

r

≤ C T 1/r ||∇u0||Lq , (3.4.13)

and, (∫ T

0

∥∥∥∥∫ t

0

e(t−τ)∆∇Fα(τ) dτ

∥∥∥∥r
Lq
dt

) 1
r

(3.4.14)

≤ C T

(∫ T

0

||∇Fα(τ)||rLq dt
) 1

r

.

The first order terms all satisfy the estimate,(∫ T

0

∥∥∥∥∫ t

0

∇e(t−τ)∆ αlc
11
lm∂mU

(1)
α (τ) dτ

∥∥∥∥r
Lq
dt

) 1
r

(3.4.15)

≤ C |α|T 1/r sup
0<t<T

‖U (1)
α (t)‖Lq ,

which can be verified using the standard estimates involving the heat
kernel as in [72]. The second order terms are more interesting as the
singular kernel in the time variable becomes critical when applying the
weak Young’s inequality. To get around this we apply the maximal
Lr-Lq-regularity of the heat kernel as discussed in [84]. Indeed, based
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on (3.4.2), we obtain,(∫ T

0

∥∥∥∥∫ t

0

∇∂le(t−τ)∆ a11
lk ∂kU

(1)
α (τ) dτ

∥∥∥∥r
Lq
dt

) 1
r

(3.4.16)

≤ C |α|T 1/2

(∫ T

0

‖∂kU (1)
α (t)‖rLq dt

) 1
r

,

where we have appealed to (3.4.2) and the stipulation T ≤ r2
∗.

Combining estimates (3.4.13) through (3.4.16) and noting similar

results are valid for V
(1)
α , we see that,(∫ T

0

‖∇U (1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (1)
α (t)‖rLq dt

) 1
r

≤ C T 1/r ||∇u0||Lq

+ C T

[(∫ T

0

||∇Fα(τ)||rLq dt
) 1

r

+

(∫ T

0

||∇Gα(τ)||rLq dt
) 1

r
]

+ C |α|T 1/r

[
sup

0<τ<T
‖U (1)

α ‖Lq + sup
0<τ<T

‖V (1)
α ‖Lq

]
+ C |α|T 1/2

[(∫ T

0

‖∇U (1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (1)
α (t)‖rLq dt

) 1
r
]
.

By restricting |α| to ensure that,

|α|T 1/2 ≤ 1

2C0

, (3.4.17)

we can absorb the last term above into the left hand side of the in-
equality. Returning to (3.4.12) this leads to an improved estimate for
the base case,

sup
0<t<T

‖U (1)
α (t)‖Lq + sup

0<t<T
‖V (1)

α (t)‖Lq (3.4.18)

≤ C ‖u0‖Lq + C |α|T ||∇u0||Lq

+ C T

(
sup

0<τ<T
‖Fα(τ)‖Lq + sup

0<τ<T
‖Gα(τ)‖Lq

)
+ C |α|T

2r−1
r

[(∫ T

0

||∇Fα(τ)||rLq dt
) 1

r

+

(∫ T

0

||∇Gα(τ)||rLq dt
) 1

r
]

+ C |α|2 T
[

sup
0<τ<T

‖U (1)
α ‖Lq + sup

0<τ<T
‖V (1)

α ‖Lq
]
,
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the last term of which can be absorbed into the left hand side in virtue
of (3.4.17). Using the labels,

M0 = C ‖u0‖Lq ,
M ′

0 = C ‖∇u0‖Lq ,
Mf = C sup

α∈Sf

[
sup

0<τ<T0

‖Fα(τ)‖Lq + sup
0<τ<T0

‖Gα(τ)‖Lq
]
,

M ′
f = C sup

α∈Sf

[(∫ T

0

||∇Fα(τ)||rLq dt
) 1

r

+

(∫ T

0

||∇Gα(τ)||rLq dt
) 1

r
]
,

the previous estimate can be reformulated as,

sup
0<t<T

‖U (1)
α (t)‖Lq + sup

0<t<T
‖V (1)

α (t)‖Lq (3.4.19)

≤M0 + T 1/2M ′
0 + T Mf + T (3r−2)/(2r) M ′

f .

Thus, fixing a time T0 so that,

T0 ≤ min

{
r2
∗,

(
M0

M ′
0

)2

,

(
M0

Mf

)
,

(
M0

M ′
f

) 2r
3r−2
}
, (3.4.20)

guarantees that for T ≤ T0 we have,

sup
0<t<T

‖U (1)
α (t)‖Lq + sup

0<t<T
‖V (1)

α (t)‖Lq ≤ 4M0, (3.4.21)

provided α is chosen in accordance with (3.4.17). This also leads to,(∫ T

0

‖∇U (1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (1)
α (t)‖rLq dt

) 1
r

(3.4.22)

≤ T 1/rM ′
0 + TM ′

f + 4C |α|T 1/rM0,

from which, considering (3.4.20), we obtain,

T (r−2)/(2r)

[(∫ T

0

‖∇U (1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (1)
α (t)‖rLq dt

) 1
r
]

(3.4.23)

≤M0 + T 1/2M ′
0 + T (3r−2)/(2r) M ′

f

≤ 4M0.
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Inductive step: The foundation for the inductive argument re-
flects inequalities (3.4.21) and (3.4.23). Indeed, we aim to show that
there exists a time T1 in (0, T0] so that if, for all T ∈ (0, T1) and some
n ∈ N, the inequalities,

sup
0<t<T

‖U (n)
α (t)‖Lq + sup

0<t<T
‖V (n)

α (t)‖Lq ≤ 4M0, (3.4.24)

and,

T
r−2
2r

[(∫ T

0

‖∇U (n)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (n)
α (t)‖rLq dt

) 1
r
]

≤ 4M0, (3.4.25)

are satisfied, then so are the inequalities,

sup
0<t<T

‖U (n+1)
α (t)‖Lq + sup

0<t<T
‖V (n+1)

α (t)‖Lq ≤ 4M0, (3.4.26)

and,

T
r−2
2r

[(∫ T

0

‖∇U (n+1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (n+1)
α (t)‖rLq dt

) 1
r
]

≤ 4M0, (3.4.27)

provided |α| is appropriately controlled in terms of T and r∗.

Our starting point is, again, Duhamel’s principle which leads us to
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the integral formula,

U (n+1)
α (t) = et∆u0 +

∫ t

0

e(t−τ)∆Fα(τ) dτ

+

∫ t

0

e(t−τ)∆
[
αlc

11
lm∂mU

(n+1)
α + αlc

12
lm∂mV

(n+1)
α

]
(τ) dτ

+

∫ t

0

e(t−τ)∆
[
∂l(a

11
lk ∂kU

(n+1)
α ) + ∂l(a

12
lk ∂kV

(n+1)
α )

]
(τ) dτ

+

∫ t

0

e(t−τ)∆
[

+ c̃11
l ∂lU

(n+1)
α + c̃12

l ∂lV
(n+1)
α

]
(τ) dτ

−
∫ t

0

e(t−τ)∆

[
U

(n)
α,l

[
b11
lk ∂kU

(n)
α + b12

lk ∂kV
(n)
α

]]
(τ) dτ

+

∫ t

0

e(t−τ)∆

[
V

(n)
α,l

[
b21
lk ∂kU

(n)
α + b22

lk ∂kV
(n)
α

]]
(τ) dτ

−
∫ t

0

e(t−τ)∆
[
b11
lk ∂kP

(n)
α + b12

lk ∂kΠ
(n)
α

]
(τ) dτ.

The terms from the first three lines, namely those involving the initial
data, the forcing, and the (n + 1)-level linear terms, all satisfy esti-
mates analogous to those established for the base case. The only new
estimates required for the inductive step involve the terms from the
remaining lines and we turn our attention to these.

To illustrate our approach for the local (n)-level terms we follow the
approach of [72] and obtain,∥∥∥∥∫ t

0

e(t−τ)∆U
(n)
α,l b

11
lk ∂kU

(n)
α (τ) dτ

∥∥∥∥
Lq

(3.4.28)

≤ C T (r−1)/r−3/(2q) sup
0<τ<T

‖U (n)
α (τ)‖Lq

(∫ t

0

‖∇U (n)
α (τ)‖rLq dτ

) 1
r

,

For the Lr–Lq estimates involving an extra derivative we similarly ob-
tain bounds along the lines of,(∫ T

0

∥∥∥∥∫ t

0

∇e(t−τ)∆U
(n)
α,l b

11
lk ∂kU

(n)
α (τ) dτ

∥∥∥∥r
Lq
dt

) 1
r

(3.4.29)

≤ C T (q−3)/(2q) sup
0<τ<T

‖U (n)
α (τ)‖Lq

(∫ T

0

‖∇Uα‖rLq dt
) 1

r

.
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The (n)-level terms associated with the pressure are dealt with using
the estimates established in subsection 3.4.1 and are achieved similarly
to (3.4.28) and (3.4.29). Focusing on P

(n)
α , for example, and applying

(3.4.10), we see,∥∥∥∥∫ t

0

e(t−τ)∆b11
lk ∂kP

(n)
α (τ) dτ

∥∥∥∥
Lq

≤ C T (r−1)/r−3/(2q)
(

sup
0<τ<T

||U (n)
α (τ)||Lq + sup

0<τ<T
||V (n)

α (τ)||Lq
)

·
[(∫ T

0

‖∇U (n)
α (τ)‖rLq dτ

) 1
r

+

(∫ T

0

‖∇V (n)
α (τ)‖rLq dτ

) 1
r
]
,

and,(∫ T

0

∥∥∥∥∫ t

0

∇e(t−τ)∆b11
lk ∂kP

(n)
α (τ) dτ

∥∥∥∥r
Lq
dt

)1/r

≤ C T (q−3)/(2q)
(

sup
0<τ<T

||U (n)
α (τ)||Lq + sup

0<τ<T
||V (n)

α (τ)||Lq
)

·
[(∫ T

0

‖∇U (n)
α (τ)‖rLq dτ

) 1
r

+

(∫ T

0

‖∇V (n)
α (τ)‖rLq dτ

) 1
r
]
.

With these estimates in mind we are ready to establish inequalities
(3.4.26) and (3.4.27) which will conclude our inductive argument. We
first consider (3.4.27) observing that,(∫ T

0

‖∇U (n+1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (n+1)
α (t)‖rLq dt

) 1
r

≤ C T 1/r ||∇u0||Lq

+ C T

[(∫ T

0

||∇Fα(τ)||rLq dt
) 1

r

+

(∫ T

0

||∇Gα(τ)||rLq dt
) 1

r
]

+ C |α|T 1/r

[
sup

0<τ<T
‖U (n+1)

α (τ)‖Lq + sup
0<τ<T

‖V (n+1)
α (τ)‖Lq

]
+ C|α|T

1
2

[(∫ T

0

‖∇U (n+1)
α (t)‖rLqdt

) 1
r

+

(∫ T

0

‖∇V (n+1)
α (t)‖rLqdt

) 1
r
]

+ C T (q−3)/(2q)
(

sup
0<τ<T

||U (n)
α (τ)||Lq + sup

0<τ<T
||V (n)

α (τ)||Lq
)

·
[(∫ T

0

‖∇U (n)
α (τ)‖rLq dτ

) 1
r

+

(∫ T

0

‖∇V (n)
α (τ)‖rLq dτ

) 1
r
]
.
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Provided T ≤ T0 this can be simplified using (3.4.17), the procedures
illustrated in our treatment of the base case, and the inductive hypoth-
esis, to ultimately yield,(∫ T

0

‖∇U (n+1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (n+1)
α (t)‖rLq dt

) 1
r

≤ T 1/rM ′
0 + T M ′

f + T (q−3)/(2q)−(r−2)/(2r) M2
0

+ C |α|T 1/r

[
sup

0<τ<T
‖U (n+1)

α ‖Lq + sup
0<τ<T

‖V (n+1)
α ‖Lq

]
.

This estimate will lead to (3.4.27) after we establish (3.4.26). To-
ward this we first observe that,

sup
0<t<T

‖U (n+1)
α (t)‖Lq + sup

0<t<T
‖V (n+1)

α (t)‖Lq

≤ C ‖u0‖Lq + C T
(

sup
0<τ<T

‖Fα(τ)‖Lq + sup
0<τ<T

‖Gα(τ)‖Lq
)

+ C |α|T (r−1)/r

[(∫ T

0

(
‖∇U (n+1)

α (t)‖Lq
)r
dt

) 1
r

+

(∫ T

0

(
‖∇V (n+1)

α (t)‖Lq
)r
dt

) 1
r
]

+ C T (r−1)/r−3/(2q)
(

sup
0<τ<T

||U (n)
α (τ)||Lq + sup

0<τ<T
||V (n)

α (τ)||Lq
)

·
[(∫ T

0

‖∇U (n)
α (τ)‖rLq dτ

) 1
r

+

(∫ T

0

‖∇V (n)
α (τ)‖rLq dτ

) 1
r
]
.

Using the inductive hypothesis, condition (3.4.17), and the formula for
the time integrated quantity, we see that,

sup
0<t<T

‖U (n+1)
α (t)‖Lq + sup

0<t<T
‖V (n+1)

α (t)‖Lq

≤M0 + T Mf + T (q−3)/(2q) M2
0 + T 1/2M ′

0 + T (3r−2)/(2r) M ′
f .

Then, assuming that,

T1 ≤ min

{
T0,

(
1

C0M0

) 2q
q−3
}
, (3.4.30)
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we obtain inequality (3.4.26) for T ∈ (0, T1], i.e.,

sup
0<t<T

‖U (n+1)
α (t)‖Lq + sup

0<t<T
‖V (n+1)

α (t)‖Lq ≤ 4M0.

We also obtain (3.4.27) since,

T (r−2)/(2r)

(∫ T

0

‖∇U (n+1)
α (t)‖rLq dt

) 1
r

+

(∫ T

0

‖∇V (n+1)
α (t)‖rLq dt

) 1
r

≤ T 1/2M ′
0 + T (3r−2)/(2r) M ′

f + T (q−3)/(2q) M2
0 +M0

≤ 4M0,

provided T is still taken in (0, T1].

3.4.3 Proof of Theorem 3.4.1

For t ∈ (0, T1], let,

Ω(t) =
⋃

α∈Sf ; |α|t1/2≤(2C0)−1

{x+ iy ∈ C3 : x ∈ 2B∗, y = αψ(x) t}.

The estimates from the previous section ensure that for all t ∈ (0, T1]
and n ∈ N we have the uniform bound,∫

Ω(t)

∣∣(u(n) + iv(n))(x, y)
∣∣q dx dy ≤ (2T

1/2
1

C0

)3

M0,

which, referring to Lemma 2.4 of [62], implies that {u(n) + iv(n)}n∈N
belongs to a normal family. This allows us to extract subsequences
which, following the argument contained in [62], converge to an analytic
function u+ iv on compact sets contained in Ω(t) such as the closure of
the domain Ω∗(t) which was specified in the statement of the theorem;
the details are omitted here to avoid technical redundancy. Assuming
the premises of Theorem 3.4.1 and taking T1 to be the value identified
in the previous subsection, we conclude that there exists a solution
u belonging to C(0, T1;Lq(R3)) which agrees with the restriction to
B∗ of a function U + iV which, for t ∈ (0, T1], is analytic on Ω∗(t)
and satisfies the complexified Navier-Stokes equations locally on the
parabolic domain,

{(x+ iy, t) ∈ C3 × (0, T1] : x+ iy ∈ Ω∗(t)}.
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Chapter 4

Logarithmically subcritical
scenarios for solutions to the
3D Navier-Stokes equations

4.1 Introduction

In this chapter we describe certain scenarios wherein locally smooth
weak solutions to 3D NSE behave subcritically with respect to the crit-
ical scaling of one-dimensional local sparseness. The context of our
work reflects two complementary publications, [44, 61], where a new
dynamic approach to bridging the scaling gap is elucidated. The phys-
ical motivation is the persistence (in the average sense) of the axial
lengths of vortex filaments. This picture is supported in experimen-
tal and numerical studies and by a mathematical result given in [44].
By considering this persistence and its implications for the decay rate
of the volume of the region of intense vorticity, a connection is found
between the scaling of the latter quantity and the critical scaling of
one-dimensional local sparseness. As this argument provides the con-
text for our own results we take a moment to make the matter more
precise.

The rigorous regularity criteria is presented in [61] and identifies the
critical scaling for the local one-dimensional sparseness of the region of
intense vorticity to be asymptotically comparable to c0||ω(t)||−1/2

∞ . The
proof of this geometric measure-type regularity criteria is based on an
interplay between the diffusion, the basic symmetries present in the 3D
NSE, and geometric properties of the harmonic measure which results
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in strong anisotropic diffusion (note that the contents of Section 3.3
illustrate this argument in the context of MHD). On the other hand,
the a priori estimates on the L1 norm of the vorticity found in [31, 81]
imply the volume of the region where vorticity magnitudes are high
decays according to,

Vol

(
Λt

(
1

c1

||ω(t)||∞
))
≤ c2

||ω(t)||∞
,

where Λt(y) = {x : |ω(x, t)| ≥ y}. Interestingly, if the region of intense
vorticity corresponds to the space occupied by filamentary vortex struc-
tures and the length of these filaments is non-decreasing – as would be
the case, for instance, if they are pinned to the characteristic length
scale of a turbulent volume – then the anti-axial diameters of these
filaments exhibit a rate of decay of order at least c3||ω(t)||−1/2

∞ . This
matches the critical scaling for local one-dimensional sparseness and it
is in this asymptotic sense that the problem is rendered critical. That
the vortex filaments have persistent lengths (in the average) which are
comparable to the scale of the turbulent region is not yet rigorously
established but is supported by numerical evidence as well as a math-
ematical evidence contained in [44].

The soundness of this argument is not by itself sufficient to trigger
a regularity result as additional work is required to break criticality
(the issue lies in comparing c0 and c3). In this chapter we show that
this can be partially overcome by illustrating two scenarios in which
the region of intense vorticity decays at a faster rate than the critical
rate discussed in [44, 61], thereby rendering the constants irrelevant.
We note for clarity that these are not stated as regularity criteria but
instead scenarios under which 3D NSE becomes subcritical with regard
to the scaling described in [44, 61].

The first strategy is detailed in Section 4.3 where we are interested
in concluding,

Vol

(
Λt

(
1

c1

||ω(t)||∞
))
≤ c3

||ω(t)||∞Φ
(
||ω(t)||∞

) ,
where Φ(x) = log(1 + x2) or Φ(x) = log log(e+ x2). These decay rates
will be obtained by imposing certain structural requirements on the
blow-up rates exhibited by vorticity components. Let ω+

j and ω−j re-
spectively denote the positive and negative vorticity components trun-
cated away from zero. We will define amenable blow-up rates of orders
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0 and 1 generally in Definition 4.3.1 and here only illustrate a class of
functions exhibiting such blow-up profiles and describe how the blow-
up rates are connected to ω±j . A function g (to be identified with one
of the ω±j s) exhibits a local algebraic blow-up (around x0, at time T ) if
there exists a constant C > 1 so that, for (x, t) in a parabolic cylinder,
Q = B(x0, r)× (0, T ), we have,

1

C

(
1

|p(x, t)|+ τ(t)

)α(t)

≤ |g(x, t)| ≤ C

(
1

|p(x, t)|+ τ(t)

)α(t)

,

where, at each time t, p(·, t) is some polynomial of degree less than a
fixed natural number d, α is positive valued and bounded away from
both 0 and ∞, and τ is a positive (up to T ) scalar function of time
which vanishes at the singular time. The envisioned blow-up occurs
at the zeros of p(x, T ) lying within B(x0, r). There is a considerable
amount of freedom present in the above construction as the polynomial
is allowed to vary wildly in the time dimension. We will also consider a
scenario where some asymmetry is allowed between the bounds assumed
on vorticity components. In particular, for appropriate blow-up rates
D±j (x, t), we will require,

D±j (x, t) ≤ |ω±j (x, t)| ≤ CD±j (x, t)β
±
j (t),

where β±j : (0, T )→ [1, Bj] for some fixed value Bj.
A key role is played in our analysis by the cancellations evident

in the vortex stretching term in the context of the real Hardy space
H1 exploited via the Div-Curl lemma [29] and the H1 − BMO dual-
ity [51, 50]. In the standard way this gives uniform-in-time control
of the vortex stretching term. The structural blow-up assumptions are
provided to ensure uniform-in-time control of the BMO norm of a mul-
tiplier (multiplied against the vortex stretching term). In the algebraic
case, this is enabled by the logarithm’s depletive effect on the unbound-
edness of the mean oscillations of polynomial functions, an effectiveness
witnessed by the remarkable fact (cf. a proof by Stein in [102]) that
there exists a constant C(d, n) so that, for any polynomial on Rn of
degree less than or equal to d,∣∣∣∣ log |P |

∣∣∣∣
BMO

≤ C(d, n).

Significantly, the constant is independent of the coefficients and this al-
lows us to introduce time-dependent algebraic comparability conditions
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on the spatial profiles prior to a possibly singular time in a manner
that preserves time-independent estimates on the BMO norms of the
logarithms of these profiles.

The second strategy is contained in Section 4.4. There we are in-
terested in a very mild, purely geometric assumption that leads to a
uniform-in-time L logL bound on the vorticity, effectively breaking the
aforementioned scaling. More precisely, the assumption is a uniform-
in-time boundedness of the localized vorticity direction in a weighted
local version of the space of bounded mean oscillations, b̃mo 1

| log r|
. An

interesting feature of this space (cf. [71]) is that it allows for discontin-
uous functions exhibiting very violent singularities, e.g. those along the
lines of sin log | log( something algebraic )|. Thus, the vorticity direction
can blow-up in a geometrically spectacular fashion – every point on the
unit sphere being a limit point – and the L logL bound will still hold.

4.2 Preliminaries from harmonic analysis

Here we review needed results from harmonic analysis and present a
lemma which will connect these ideas to the PDE context of Section
4.3.2. Following [103], the maximal function of a distribution f is de-
fined for all x ∈ Rn as,

Mhf(x) = sup
t>0
|f ∗ ht(x)|,

where h is a fixed test function supported on the unit ball so that∫
h dx = 1 and ht denotes t−nh(x/t).

Definition 4.2.1. The distribution f is in the Hardy space H1 if

||f ||H1 := ||Mhf ||1 <∞.

In [29], Coifman, Lions, Meyer, and Semmes reformulated and re-
fined some key features of the ‘sequential’ theory of compensated com-
pactness within the framework of Hardy spaces, the key idea being that
certain nonlinear quantities exhibit cancellations which lead to greater
regularity. One such result is the Div-Curl lemma.

Lemma 4.2.2. (Coifman, Lions, Meyer, Semmes – [29]) If E,B ∈
L2(R3)3 with ∇ ·E = 0 and ∇×B = 0 (in the sense of distributions),
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then E ·B ∈ H1, and there exists a universal constant C such that,

||E ·B||H1 ≤ C||E||L2 ||B||L2 .

Because weak solutions to the Navier-Stokes equations are diver-
gence free and because the curl of a gradient is always equal to the
trivial distribution, it follows that the advective term, (u · ∇)u, in the
velocity-pressure formulation exhibits div-curl structure, as does the
vortex stretching term, (ω · ∇)u, in the vorticity-velocity formulation.
Consequently, using Hardy spaces, refined regularity results can be es-
tablished for weak solutions of 3D NSE (see Chapter 3.2 of [81] for a
collection of such results).

The well known result of Fefferman (cf. [50, 51] as well as Stein’s
monograph [103]) establishes that the dual space of H1 is precisely
the space of functions of bounded mean oscillation, BMO. By fB we
denote the average of the locally integrable function f over the ball B
of volume |B|; i.e., fB = |B|−1

∫
B
f dx. The mean oscillation of f over

B is |B|−1
∫
|f − fB| dx and this is the quantity that characterizes the

space BMO.

Definition 4.2.3. The locally integrable function f is in BMO if
||f ||BMO <∞ where,

||f ||BMO := sup
x∈R3;0<r

1

|B(x, r)|

∫
B(x,r)

∣∣f(y)− fB(x,r)

∣∣ dy.
Several results about the space BMO will expedite future work.

An elementary fact is that, if g ∈ BMO, then the following implication
holds,

g(x) +m ≤ f(x) ≤ g(x) +M for a. e. x ∈ R3 (4.2.1)

=⇒ ||f ||BMO ≤ ||g||BMO +M −m.

The above is easy to see by directly comparing |f − fB| to |g + M −
(g +m)B| and concluding that, for all balls B, we have,

1

|B|

∫
B

∣∣f − fB∣∣ dx ≤ 1

|B|

∫
B

∣∣g − gB∣∣ dx+M −m.

We include a technical lemma regarding certain point-wise multipliers
on BMO which appears in a paper by Iwaniec and Verde (cf. Lemma
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2.1 of [70]; see also Lemma 5.10 of [23]). This result will allow us to use
the standard H1-BMO duality in an essentially local context instead
of working in the local versions of these spaces. It is worth mention-
ing that our results can be achieved in the local spaces using a local
non-homogeneous version of the Div-Curl lemma (cf. [29]) paired with
various local h1 − bmo dualities (cf. [23]) thereby obtaining estimates
on the localized vortex stretching term.

Lemma 4.2.4. (Iwaniec and Verde – [70]) Suppose h ∈ BMO(Rn)
and φ ∈ C1

0(Rn) is supported on the ball B. Then φh ∈ BMO(Rn) and
we have,

||φh||BMO ≤ C(n,R)||∇φ||∞
(

(||h||BMO +

∣∣∣∣ 1

|B|

∫
B

h dx

∣∣∣∣).
The space BMO enjoys an intimate connection with the logarithm.

This is illustrated in the following lemma due to Stein.

Lemma 4.2.5. (Stein – [102]) Let P be any polynomial in Rn of degree
less than or equal to d. Then there exists a constant C = C(d, n) so
that log |P | ∈ BMO and, moreover,

|| log |P | ||BMO ≤ C(d, n).

It turns out that the constant appearing above worsens as d in-
creases but does so linearly in d, a fact we will return to in Section
4.3.

A variety of local and weighted versions of H1 and BMO have been
studied and will provide a context for the main result of Section 4.4. A
local version of BMO, usually denoted by bmo, is defined by finiteness
of the following expression,

‖f‖bmo = sup
x∈R3,0<r<δ

Ω
(
f, I(x, r)

)
+ sup

x∈R3,r≥δ

1

|I(x, r)|

∫
I(x,r)

|f(y)| dy,

for some positive δ.
If f ∈ L1, we can focus on small scales, e.g., 0 < r < 1

2
. Let φ be

a positive, non-decreasing function on (0, 1
2
). We define local weighted

spaces of bounded mean oscillations as in [83], i.e.,

‖f‖b̃moφ = ‖f‖L1 + sup
x∈R3,0<r< 1

2

Ω
(
f, I(x, r)

)
φ(r)

.
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Of special interest will be the spaces b̃mo = b̃mo1 and b̃mo 1
| log r|

. Gener-

ally speaking these local, weighted spaces of bounded mean oscillation
are convenient when working with pointwise multipliers (cf. [71, 87,
83]). This is illustrated in a useful theorem from [83] which we include
as a lemma.

Lemma 4.2.6. Let h be in b̃mo and g in L∞ ∩ b̃mo 1
| log r|

. Then,

‖g h‖b̃mo ≤ c(n)
(
‖g‖∞ + ‖g‖b̃mo 1

| log r|

)
‖h‖b̃mo.

Essentially, then, the space of pointwise b̃mo multipliers coincides
with L∞ ∩ b̃mo 1

| log r|
.

We conclude this section by recalling Coifman and Rochberg’s esti-
mate on ‖ logMf‖BMO (cf. [30]). Let M denote the Hardy-Littlewood
maximal operator. Coifman and Rochberg [30] obtained a character-
ization of BMO in terms of images of the logarithm of the maximal
function of non-negative locally integrable functions (plus a bounded
part). The main ingredient in demonstrating one direction is the fol-
lowing estimate,

‖ logMf‖BMO ≤ c(n),

for any locally integrable function f . Note that this bound is completely
independent of f . Moreover, this estimate remains valid if we replace

Mf with Mf =
(
M
√
|f |
)2

(cf. [70]); the advantage of working with
M is that the L2-maximal theorem implies that,

‖Mf‖1 ≤ c(n)‖f‖1, (4.2.2)

a bound that does not hold for the standard maximal operator M .

4.3 Blow-up scenarios exhibiting logarith-

mically subcritical anisotropic diffu-

sion

4.3.1 Amenable blow-up rates

This subsection is dedicated to describing amenable blow-up rates and
proving a lemma which will connect these structures to the PDE con-
text of Section4.3.2. We denote by logm(x) an iterated composition
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of the logarithm with itself m − 1 times, that is, logm(x) = log ◦ · · · ◦
log(
√
em + x2) where m applications the natural logarithm are carried

out and em is a power of e defined so that logm(0) = 0. We will use
the following notation when defining functions of (x, t) possessing sin-
gularities at time T in the spatial set S ⊂ R3,

QT (x0, R, S) = B(x0, R)× (0, T ) ∪ ((B(x0, R) \ S)× {T},

and,
ΩT (S) = R3 × (0, T ) ∪ (R3 \ S)× {T},

where R > 0 and x0 ∈ R3. In contexts where x0 and R are fixed we
make the abbreviation QT (S) = QT (x0, R, S).

Definition 4.3.1. Fix x0 ∈ R3, R, T > 0, m ∈ N0 and a set of measure
zero, S, which is contained in a compact subset of B(x0, R).

a. An amenable blow-up rate of order m on QT (S) is a function,
D(x, t) : ΩT (S)→ [0,∞), which additionally satisfies,

i. there exists M0 > 0 so that sup0<t≤T || logm+1 D(x, t)||BMO <
M0,

ii. there exist M1,M2 > 0 so that 1/M1 ≤ D(x, t) on QT (S)
and D(x, t) ≤M2 on B(x0, R)c × (0, T ].

b. A function f(x, t) : QT (S) → R exhibits an amenable blow-up
rate of order 0 on QT (S) if there exists an amenable blow-up rate
of order 0, D(x, t), on QT (S), so that, for some C∗ > 1,

D(x, t) ≤ |f(x, t)| ≤ C∗D(x, t) for all (x, t) ∈ QT (S).

c. A function f(x, t) : QT (S) → R exhibits an amenable blow-up
rate of order 1 on QT (S) if there exists an amenable blow-up rate
of order 1, D(x, t), on QT (S), so that, for some C∗ > 0, A ≥ 1,
and a scalar function α : [0, T ]→ [1, A],

D(x, t) ≤ |f(x, t)| ≤ C∗D(x, t)α(t) for all (x, t) ∈ QT (S).

The condition (4.3.1.a.i) will prove crucial in establishing our esti-
mates in Section 4.3.2. At face value, however, it is not clearly mo-
tivated. To address this we specify an expansive class of functions
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which are simultaneously amenable blow-up rates of order 0 and are
reasonable blow-up scenarios given what is known about the structure
of possible singularities in weak solutions of 3D NSE. In the following,
R[x1, x2, x3] denotes the ring of tri-variate polynomials with coefficients
in R.

Definition 4.3.2. Use the notations of Definition 4.3.1 and fix d ∈ N.
The function D(x, t) : ΩT (S) → [0,∞) is an algebraic blow-up rate
of degree d on QT (S) if there exist functions τ : (0, T ] → [0,∞), α :
(0, T ]→ (0,∞), and ρ(x, ·) : (0, T ]→ R[x1, x2, x3] so that,

D(x, t) =

(
1

|ρ(x, t)|+ τ(t)

)α(t)

on QT (S),

and we additionally have,

i. for all t ∈ (0, T ], ρ(x, t) is a polynomial of degree less than or
equal to d and the zeros of ρ(x, T ) are contained in S,

ii. there exists A ≥ 1 so that α takes values in [A−1, A],

iii. τ(t) > 0 for t ∈ (0, T ) and vanishes as t approaches T ,

iv. the condition (4.3.1.a.ii.) is satisfied.

Remark 4.3.1. We have presented these algebraic blow-up rates be-
cause they constitute a concrete class of amenable blow-up rates of or-
der 0. To verify this, we check that condition (4.3.1.a.i.) is satisfied,
which is clear if we first expand logD(x, t) as,

log(D(x, t)) = −α(t) log
(
|ρ(x, t)|+ τ(t)

)
,

and then observe that,

max{log |ρ(x, t)|, log τ(t)} ≤ log(|ρ(x, t)|+ τ(t))

≤ log(2) + max{log |ρ(x, t)|, log τ(t)}.

Recalling the fact that BMO is a lattice, i.e. if f, g ∈ BMO, then,

||max{f, g}||BMO ≤ 2(||f ||BMO + ||g||BMO),

we are able to conclude by applying the implication (4.2.1) in conjunc-
tion with Lemma 4.2.5.
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Our main lemma contextualizes amenable blow-up rates to their
application in Section 4.3.2. As presently defined, the blow-up rates
require that f(x, t) (as given in Definition 4.3.1) is bounded away from
zero. To accommodate functions possibly not bounded away from zero
we employ an auxiliary function, F =

√
em + f 2, where em is deter-

mined by the order of the amenable blow-up rate in question. Based
on the sign of f we define,

F+ =

{
F, if f is non-negative,

1, otherwise,
F− =

{
1, if f is non-negative,

F, otherwise.

(4.3.1)

The factorization F sign f = F+(F−)−1 will allow us to independently
impose blow-up assumptions on a function’s positive and negative com-
ponents.

Lemma 4.3.3. Fix R0 > 0. Let S ′ ⊂ R3 be a set of Lebesque measure
zero for which S ′ ∩ B(0, R0) ⊂ B(0, R′0) where 0 < R′0 < R0. Suppose
the function f : ΩT (S ′) → R satisfies f ∈ L∞((0, T ];L1(B(0, R0))).
Fix φ ∈ C1

0(R3) so that φ is supported on B(0, R) and let S be a set of
measure zero satisfying S ′ ∩B(0, R0) ⊂ S ⊂ B(0, R0).

a. If f |QT (S) exhibits an amenable blow-up of order 0 in QT (S), then,

sup
0<t≤T

∣∣∣∣φ(x) log |f(x, t)|
∣∣∣∣
BMO

<∞.

b. If F+|QT (S) and F−|QT (S) exhibit amenable blow-up rates of order
0 in QT (S), then,

sup
0<t≤T

∣∣∣∣∣∣∣∣φ(x)
f(x, t)

F (x, t)
logF (x, t)

∣∣∣∣∣∣∣∣
BMO

<∞.

c. If F+|QT (S) and F−|QT (S) exhibit amenable blow-up rates of order
1 in QT (S), then,

sup
0<t≤T

∣∣∣∣∣∣∣∣φ(x)
f(x, t)

F (x, t)
log logF (x, t)

∣∣∣∣∣∣∣∣
BMO

<∞.
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Proof. (Part a.) Let D(x, t) be the amenable blow-up rate exhibited by
f |QT (S). We will freely reference the constants associated with D in the
statement of Definition 4.3.1 and subsequently make the abbreviations
QT (S) = QT (0, R0, S) and B = B(0, R0). Define an extension, F̃ , of

f |QT (S) to ΩT (S) by F̃ = |f | on QT (S) and F̃ = 1 on Bc × (0, T ]. Set

C̃∗ = max{C∗,M2} and D̃(x, t) = max{D(x, t),M−1
1 }. These defini-

tions ensure that, for all (x, t) ∈ ΩT (S),

1

C̃∗
D̃(x, t) ≤ F̃ (x, t) ≤ C̃∗D̃(x, t),

and, taking logarithms,

log
(
D̃(x, t)

)
− log C̃∗ ≤ log

(
F̃ (x, t)

)
≤ log

(
D̃(x, t)

)
+ log C̃∗.

Recalling the implication (4.2.1), we see that,

|| log F̃ (x, t)||BMO ≤ C(M0, C̃∗).

Because |f | = F̃ on the support of φ we have,

||φ log |f | ||BMO = ||φ log F̃ ||BMO

≤ C ||∇φ||∞
(
|| log F̃ ||BMO +

∣∣∣∣ 1

|B|

∫
B

log F̃ dx

∣∣∣∣),
where we have applied Lemma 4.2.4. The average appearing above is
uniformly bounded in time; this follows from the facts that M−1

1 ≤ |f |
and f ∈ L∞((0, T ];L1(B(0, R0))).

(Part b.) We begin by remarking that, for all y ∈ R,

sign y log(
√

1 + y2)− 1 ≤ y√
1 + y2

log(
√

1 + y2)

≤ sign y log
√

1 + y2) + 1.

Taking y = |f(x, t)|, in light of implication (4.2.1) it is sufficient to work
with the function (sign f) logF , where F , F+, and F− are defined as in
the comments preceding the statement of the lemma. Those definitions
were motivated by the fact that F sign f = F+(F−)−1 and, so,

log
(
F sign f

)
= log(F+)− log(F−).
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Let G be the extension by 1 of (fF−1 log(F ))|QT (S) from QT (S) to
ΩT (S) and adopt the notation from the proof of part a. of this lemma for
definitions of functions analogous to those mentioned above where we
designate by D± the blow-up rates exhibited by F±. Then, on ΩT (S),
we have,

log(F̃+)− log(F̃−)− 1 ≤ G ≤ log(F̃+)− log(F̃−) + 1,

and, therefore,

||G||BMO ≤ || log(F̃+)||BMO + || log(F̃−)||BMO + 2.

Appealing to part a. of the lemma, the dominating quantity is itself
bounded uniformly in time. Extending this to the desired estimate
proceeds directly,∣∣∣∣∣∣∣∣φ fF log(F )

∣∣∣∣∣∣∣∣
BMO

≤ C ||∇φ||∞
(
||G||BMO +

∣∣∣∣ 1

B

∫
B

log G̃ dx

∣∣∣∣),
which, again, is finite by assumptions on f .

(Part c.) We begin similarly, noting,

(sign f) log logF − 1 ≤ f

F
log logF ≤ (sign f) log logF + 1.

This leads us to consider,

log

((
logF

)sign f
)

= log

((
logF

)
+

)
+ log

((
logF

)
−

)
,

where, (
logF

)
+

= max

{(
logF

)sign f
, 1

}
,

and, (
logF

)
− = min

{(
logF

)sign f
, 1

}
.

It is easy to check that (logF )± = log(F±), and, therefore,

f

F
log logF = log log(F+)− log log(F−).
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A further observation is that, taking D±(x, t) to be the amenable blow-
up rates exhibited by F±, and setting k∗± = log(A±M1,± + logC∗,±)
(these are constants associated with D± as in Definition 4.3.1.a.), we
have for (x, t) ∈ QT ,

log log(C∗D±(x, t)α±(t)) ≤ log log(D±(x, t)) + k∗±,

and, recalling the comparability condition from Definition 4.3.1.c., this
implies that,

log log(D±(x, t)) ≤ F± ≤ log log(D±(x, t)) + k∗±.

The conclusion now follows in the same fashion laid out in part b.; we
omit the details.

4.3.2 Main result

Weak solutions to the 3D incompressible Navier-Stokes equations are
functions which satisfy (distributionally) the following system of PDEs,{

∂tu+ (u · ∇)u = −∇p+ ν∆u,
∇ · u = 0; u(x, 0) = u0 ∈ H,

(4.3.2)

where H is the L2 closure of the divergence free test functions and the
initial datum is understood in the sense of weak continuity (cf. [35] for
details). The evolution of the vorticity, ω = ∇×u, is of special interest
to us and satisfies,{

∂tω + (u · ∇)ω = (ω · ∇) + ν∆ω,
∇ · ω = 0.

(4.3.3)

For simplicity, we consider a weak solution on R3× (0,∞), evolving
from the initial data u0. We also require that the initial vorticity,
ω0 = ∇× u0, is in L1 ∩ L2.

The standard regularity results for weak solutions (cf. [35]) consist
of the a priori bounds,

sup
0<t<T ′

||u||2L2(R3) <∞ and

∫ T ′

0

||∇u||2L2(R3) dt <∞,
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for any T ′ > 0. In addition, since ω0 ∈ L1, a result from [31] ensures
that,

sup
0≤t≤T ′

||ω||L1(R3) <∞.

Note that since ω0 ∈ L2, our weak solution locally-in-time coincides
with the smooth solution; let T be the first (possible) singular time.

Fix a ‘macro-scale,’ R0 > 0, with the property that the intersection
of B(0, R0) × {T} with the singular set at time T is nonempty. Fix
0 < ε < R0. Our estimates are intended for integrals over the spatial set
B(0, R0−ε) and localization is achieved via multiplying equation (4.3.3)
by a smooth cut-off function ψ taking values in [0, 1] and satisfying,

suppψ ⊂ B(0, R0), ψ = 1 on B(0, R0 − ε), and
|∇ψ|
ψρ
≤ c

ε
,

where ρ ∈ (0, 1) is fixed. Instead of studying the evolution of |ω|
and |ωk| directly we introduce an auxiliary function. This approach
is an adaptation of that taken by Constantin in [31]. Define q(y) =√

1 + y2 : R→ R and let wk = q(ωk) : R3 → R. From these definitions
it is immediate that,

|ωk| ≤ wk, − 1 ≤ q′(ωk) =
ωk
wk
≤ 1, and 0 < q′′(ωk) =

1

w3
k

≤ 1.

(4.3.4)

For convenience we recall the following elementary facts (for y ≥ 1),

0 ≤ − log′′(y) ≤ log′(y) ≤ 1, y log′ y = 1, and 0 = log′(y) + y log′′(y).
(4.3.5)

To allow ωk to have varying sign we define the functions wk,+ and wk,−
in the same manner as (4.3.1). Recall that Λt(y) = {x : |ω(x, t)| ≥ y}
and note that throughout the remainder of this paper c1 denotes a
fixed constant taken to be greater than one. The role of c1 lies in
specifying the threshold for the super-level sets Λt(y) as fractions of
the supremum norm of the modulus of the vorticity at the time t, i.e.
y = c−1

1 ||ω(·, t)||∞.
We include two theorems, one each for the case of solutions pos-

sessing vorticity components which exhibit amenable blow-up rates of
order 0 and of order 1. The proof of the order 0 case extends easily
to the case of blow-ups of order 1 and the proof of the second result is
accordingly terse.
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Theorem 4.3.4. Let u be a Leray solution to (4.3.2) on R3 × (0,∞),
and suppose additionally that ω0 = ∇× u0 ∈ L1 ∩L2. Denote by T the
first singular time and by S the singular set of ω at time T . Fix positive
values R0 and ε so that ∅ 6= S ∩ B(0, R0) ⊂ B(0, R0 − ε) – i.e. there
are singular points in B(0, R0) but all such points are in B(0, R0 − ε)
– and let QT (S) = QT (0, R0, S).

(i) If wk,+|QT (S) and wk,−|QT (S) each exhibit amenable blow-up rates
of order 0 in QT (S), then there exists a positive value Mk for
which,

sup
t∈[0,T ]

∫
B(0,R0−ε)

|ωk(x, t)| log
(√

1 + |ωk(x, t)|2
)
dx < Mk.

(ii) Let c1 ba a fixed constant which is greater than 1. If, for all k,
the premises of part (i) are satisfied, then there exists a positive
constant M0 so that, for t ∈ [0, T ],

Vol

(
Λt

(
1

c1

||ω(t)||L∞(B(0,R0−ε))

))
≤ M0

||ω(t)||L∞(B(0,R0−ε)) log
(
1 + ||ω(t)||L∞(B(0,R0−ε))

) .
Theorem 4.3.4 applies to any local, spatially-algebraic blow-up sce-

nario in which the degrees of the polynomials stay uniformly bounded
near the (possible) singular time. Geometrically, this corresponds to
the number of vortex filaments being uniformly bounded as the flow
approaches the singular time. This is somewhat unsatisfactory since, a
priori, one cannot rule out a scenario in which the number of coherent
structures runs off to infinity. The technical reason behind this restric-
tion is that the bound on ‖ log |P |‖BMO blows up as the degree of P ,
d, goes to infinity. Fortunately, the bound on ‖ log |P |‖BMO is linear
in d (cf. [49]). Consequently, although the bound on the distribution
function, i.e. on the total volume of the super-level sets, will blow up
with d, at least in the case of comparable volumes, the bound on the
volume of a single vortex filament will still be subcritical (which suffices
due to the local nature of the argument).

As will be seen, our energy inequality-type method depends heavily
on classical techniques which leads us to consider local-in-time smooth
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solutions. It is possible to extend the estimates to some weak solutions
by considering a sequence of smooth approximations, e.g. the retarded
mollifiers from [20], but, as our estimates hinge on assumptions be-
yond the initial data, u0, we would have to ensure these are met by a
convergent subsequence of approximate solutions.

Proof. The evolution of ψwk log(wk) can be established from the evo-
lution of ωk by first writing,

∂t
(
ψwk logwk

)
= ψq′(ωk)

(
logwk + wk log′wk

)(
∂tωk

)
= ψq′(ωk)

(
logwk + wk log′wk

)(
ν∆ωk − (u · ∇)ωk + (ω · ∇)uk

)
,

which leads to (noting tacit summation over terms involving indices
other than k),

∂t(ψwk logwk)− νψ∆wk
(

logwk + wk log′wk
)

+ νψq′′(ωk)(∂iωk)
2
(

logwk + wk log′wk
)

= ψ(ω · ∇)ukq
′(ωk)

(
logwk + wk log′wk

)
− ψ(u · ∇)wk

(
logwk + wk log′wk

)
.

By integrating in space and time and dropping the positive quantity
involving q′′ from the left hand side, we obtain the following energy
inequality-type estimate,∫

ψ(t)wk(t) logwk(t) dx− ν
∫ t

0

∫
ψ∆wk

(
logwk + wk log′wk

)
dx ds

(4.3.6)

≤
∫ t

0

∫
ψ(ω · ∇)ukq

′(ωk)
(

logwk + wk log′wk
)
dx ds

−
∫ t

0

∫
ψ(u · ∇)wk

(
logwk + wk log′wk

)
dx ds

+

∫
ψ wk,0 logwk,0 dx.

The properties in (4.3.5) enable several key cancellations. For the dis-
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sipative terms, integration by parts reveals that,∫ t

0

∫
(∂2
jwk)ψ logwk dx ds

=

∫ t

0

∫ (
wk(∂

2
jψ) logwk + wk(∂jψ)(∂jwk) log′wk

)
dx ds

−
∫ t

0

∫
(∂jwk)

2ψ log′wk dx ds,

and, ∫ t

0

∫
(∂2
jwk)ψwk log′wk dx ds

= −
∫ t

0

∫
wk(∂jψ)(∂jwk) log′wk dx ds

−
∫ t

0

∫
(∂jwk)

2ψ

(
log′wk + wk log′′wk

)
dx ds.

A cancellation occurs upon adding the above equations leaving us with,

− ν
∫ t

0

∫
(∂2
jwk)ψ

(
logwk + wk log′wk

)
dx ds

= ν

∫ t

0

∫
(∂jwk)

2ψ

(
2 log′wk + wk log′′wk

)
dx ds

− ν
∫ t

0

∫
wk(∂

2
jψ) logwk dx ds.

Again noting (4.3.5), the integrand of the first term is positive and,
therefore, is dropped from the left hand side of estimate (4.3.6). The
second term can be dominated by an a priori finite quantity arising
from the standard energy inequality for weak solutions in conjunction
with the fact that our spatial integral is over a set of finite measure.
More precisely,∫ t

0

∫
wk(∂

2
jψ) logwk dx ds ≤ C

∫ T

0

∫
B(0,R0)

w2
k dx ds (4.3.7)

= C

∫ T

0

∫
B(0,R0)

|ωk|2 dx ds+ T |B(0, R0)|.



128

The integrals arising from the transport term in (4.3.3) also enjoy sub-
stantial cancellations,∫ t

0

∫
ψ u · ∇wk

(
logwk + wk log′wk

)
dx ds

=

∫ t

0

∫
ψ uj(∂jwk)wk log′wk dx ds−

∫ t

0

∫
ψ ujwk(∂jwk) log′wk dx ds

−
∫ t

0

∫
ujwk logwk∂jψ dx ds

= −
∫ t

0

∫
ujwk logwk∂jψ dx ds.

Noting that log(y) ≤ 4 y1/4,∣∣∣∣ ∫ t

0

∫
ujwk logwk|∂jψ| dx ds

∣∣∣∣
≤ C

∫ T

0

∫ (
|∂jψ|1/4|uj|

)(
|∂jψ|1/2|wk|

)
|wk∂jψ|1/4 dx ds

≤ C

∫ T

0

||ψρ/4u||4||wk||1/4L1(B(0,R0))||wk||L2(B(0,R0))

≤ C sup
0<t≤T

||wk||1/4L1(B(0,R0))

∫ T

0

||∇(ψρ/4u)||2||wk||L2(B(0,R0)),

where we have used Hölder’s inequality and the Sobolev inequality.
From here and in light of (4.3.7), a commutator estimate on the gradient
of the localized velocity allows the extension of the above estimate to
one in terms of a priori finite quantities.

The integral on the last line of the right hand side of (4.3.6) is finite
by our assumptions on the initial data.

At this point, based on (4.3.6), we have established,∫
(ψwk logwk)(t) dx

≤
∣∣∣∣ ∫ t

0

∫
ψ ω · ∇uk q′(ωk)

(
logwk + wk log′wk

)
dx ds

∣∣∣∣+R,

where R is comprised of those a priori bounded quantities accumulated
in the preceding estimates. Noting that,

ψq′(ωk)wk log′wk ≤ 1,
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an a priori bound follows for that part of the as of yet unbounded
quantity leaving us with,

∫
(ψwk logwk)(t) dx ≤

∣∣∣∣ ∫ t

0

∫
ψ ω · ∇uk

ωk
wk

logwk dx ds

∣∣∣∣+R.

TheH1-BMO duality and the Div-Curl lemma lead to the estimate,

∣∣∣∣ ∫ t

0

∫ (
ω · ∇uk

)(
ψ
ωk
wk

logwk

)
dx ds

∣∣∣∣
≤
∫ T

0

∣∣∣∣ω · ∇uk∣∣∣∣H1

∣∣∣∣∣∣∣∣ψωkwk logwk

∣∣∣∣∣∣∣∣
BMO

ds

≤
(

sup
0<t≤T

∣∣∣∣∣∣∣∣ψωkwk logwk

∣∣∣∣∣∣∣∣
BMO

)∫ T

0

∣∣∣∣ω · ∇uk∣∣∣∣H1 ds

≤
(

sup
0<t≤T

∣∣∣∣∣∣∣∣ψωkwk logwk

∣∣∣∣∣∣∣∣
BMO

)(∫ T

0

||ω||22 dt
)1/2(∫ T

0

||∇u||22 dt
)1/2

.

By Lemma 4.3.3 and the standard regularity of Leray weak solutions
all of the above are finite and we have thus established that, for all 0 <
t ≤ T , ||ψwk logwk(t)||L1(R3) is majorized by time-independent a priori
bounded quantities, the sum of which we label Mk. This completes our
proof of part (i) of the theorem.

Part (ii) of the theorem is proven in two steps. For the first, let,

λ(t) =
1

c1

||ω(t)||L∞(B(0,R0−ε)),

and observe that, for any x ∈ B(0, R0− ε) where |ω(x, t)| ≥ λ(t), direct
computation affirms that,

1 ≤
c1|ω(x, t)|

[
log(c1) + log

(
1 + |ω(x, t)|

)]
||ω(t)||L∞(B(0,R0−ε)) log

(
1 + ||ω(t)||L∞(B(0,R0−ε))

) .
This allows us to estimate the volume of the relevant super-level set of
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|ω| at time t,

Vol

(
Λt

(
1

c1

||ω(t)||L∞(B(0,R0−ε))

))
≤

c1 log(c1)||ω(t)||L1({|ω(x,t)|≥λ(t)}∩B(0,R0−ε))

||ω(t)||L∞(B(0,R0−ε)) log
(
1 + ||ω(t)||L∞(B(0,R0−ε))

)
+
c1||ω(t) log(1 + |ω(t)|)||L1({|ω(x,t)|≥λ(t)}∩B(0,R0−ε))

||ω(t)||L∞(B(0,R0−ε)) log
(
1 + ||ω(t)||L∞(B(0,R0−ε))

)
≤ KI0(t)

||ω(t)||L∞(B(0,R0−ε)) log
(
1 + ||ω(t)||L∞(B(0,R0−ε))

) ,
where we have set,

I0(t) =

∫
{|ω(x,t)|≥λ(t)}∩B(0,R0−ε)

|ω(x, t)| log
(
1 + |ω(x, t)|

)
dx,

and have introduced a time-independent constant K which depends on
the fixed values c1 and R0 as well as the a priori finite quantity,

sup
0≤t≤T

||ω(·, t)||L1({|ω(x,t)|≥λ(t)}∩B(0,R0−ε)).

The second step ensures we can control I0(t) in terms of the finite
bounds appearing in part (i) of the theorem. Tacitly summing over j,
we have,

I0(t) ≤ C

∫
B(0,R0−ε)

|ωj| log
(
1 +

√
ω2

1 + ω2
2 + ω2

3

)
dx.

An explicit reduction illustrates the argument (for simplicity we take
j = 1 and integrals over the indicated sets intersected with B(0, R0−ε)),∫

|ω1| log
(
1 +

√
ω2

1 + ω2
2 + ω2

3

)
dx

≤
∫
ω2
1≤ω2

2+ω2
3

√
ω2

2 + ω2
3 log

(
1 +

√
2(ω2

2 + ω2
3)
)
dx

+

∫
ω2
1>ω

2
2+ω2

3

|ω1| log
(
1 +
√

2|ω1|
)
dx.
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Applying the same reasoning to the first integral above and then re-
peating for all values of j eventually yields,

I0(t) ≤ C

∫
wi dx+ C

∫
wi logwi dx ≤ CMi.

The energy inequality-type construction used to prove the previous
theorem also works if we substitute logm ωk (as defined in Section 4.3.1)
in place of logwk. This allows the application of amenable blow-up
rates of order 1 in conjunction with Lemma 4.3.3.c. To ensure things
are meaningful, we modify our definition of q so that q(y) =

√
e+ y2

(so, now, wk =
√
e+ ω2

k) and refer to (4.3.1) to define wk,+ and wk,−.

Theorem 4.3.5. Let u be a Leray solution to (4.3.2) on R3 × (0,∞),
and suppose additionally that ω0 = ∇× u0 ∈ L1 ∩L2. Denote by T the
first singular time and by S the singular set of ω at time T . Fix positive
values R0 and ε so that ∅ 6= S ∩ B(0, R0) ⊂ B(0, R0 − ε) – i.e. there
are singular points in B(0, R0) but all such points are in B(0, R0 − ε)
– and let QT (S) = QT (0, R0, S).

(i) If wk,+|QT (S) and wk,−|QT (S) each exhibit amenable blow-up rates
of order 1 in QT (S), then there exists a positive value Mk so that,

sup
t∈[0,T ]

∫
B(0,R0−ε)

|ωk(x, t)| log log
(√

e+ |ωk(x, t)|2
)
dx < Mk.

(ii) Let c1 ba a fixed constant which is greater than 1. If, for all k,
the premises of part (i) are satisfied, then there exists a positive
value M0 so that, for t ∈ [0, T ],

Vol

(
Λt

(
1

c1

||ω(t)||L∞(B(0,R0−ε))

))
≤ M0

||ω(t)||L∞(B(0,R0−ε)) log log
(
e+ ||ω(t)||L∞(B(0,R0−ε))

) .
Proof. Multiplying equation (4.3.3) by,

ψq′(wk)
(

log logwk + wk(log log)′wk
)
,
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we obtain the evolution of ψwk log logwk. The point-wise estimates
in (4.3.5) adapt directly to the function log log(y) (indeed, they adapt
to any number of such self-compositions of the logarithm) and, after
integrating in space and time, all of the estimates and cancellations
from the previous proof – except those involving the vortex stretching
term – can be duplicated directly. We thus obtain, denoting by R some
a priori finite quantity,∫

(ψwk log logwk)(t) dx ≤
∣∣∣∣ ∫ t

0

∫
ψ ω · ∇uk

ωk
wk

log logwk dx ds

∣∣∣∣+R,

(4.3.8)

and, using Lemma 4.3.3.c., we are able to pull out of the integral the
uniformly-in-time bounded quantity,

sup
t

∣∣∣∣∣∣∣∣ψωkwk log logwk

∣∣∣∣∣∣∣∣
BMO

,

and conclude exactly as in the previous proof.

4.4 A geometric scenario exhibiting loga-

rithmically subcritical anisotropic dif-

fusion

Consider a weak (distributional) Leray solution u on R3. The vorticity
analogue of the Leray’s a priori bound on the energy was presented
in [31] where, assuming that the initial vorticity is in L1 (or, more
generally, a bounded measure), it is shown that the L1-norm of the
vorticity remains bounded on any finite time-interval. In this section
our goal is to obtain a spatially localized L logL bound on the vorticity
under a suitable assumption on the structural blow-up of the vorticity

direction ξ =
ω

|ω|
.

Fix a ball B(0, R0) ⊂ R3, and consider a test function ψ supported

in B = B(0, 2R0) with ψ = 1 on B(0, R0) and |∇ψ(x)| ≤ c
1

R0

ψδ(x)

for some δ > 0. Let w =
√

1 + |ω|2. We aim to control the evolution
of ψ w logw; by Stein’s lemma [100], this is essentially equivalent to
controlling the L1-norm of Mw.
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For simplicity of the exposition, we assume that the initial vorticity
is also in L2 and that T > 0 is the first (possible) blow-up time. This
way, the solution in view is smooth on (0, T ) and we can focus on
obtaining a supremum-in-time type bound.

Theorem 4.4.1. Let u be a Leray solution to the 3D NSE. Assume
that the initial vorticity ω0 is in L1 ∩ L2, and that T > 0 is the first
(possible) blow-up time. Suppose that

sup
t∈(0,T )

‖(ψξ)(·, t)‖b̃mo 1
| log r|

<∞.

Then,

sup
t∈(0,T )

∫
ψ(x)w(x, t) logw(x, t) dx <∞.

Remark 4.4.1. Since ω0 is in L1, in addition to the Leray’s a priori
bounds on u,

sup
0<t<T

‖u(·, t)‖L2 <∞ and

∫ T

0

∫
R3

|∇u(x, t)|2 dx dt <∞,

the following a priori bounds on ω are also at our disposal [31],

sup
t
‖ω(·, t)‖L1 <∞ and

∫ T

0

∫
R3

|∇ω(x, t)|
4

3+ε dx dt <∞.

Proof. Setting q(y) =
√

1 + |y|2, the evolution of w =
√

1 + |ω|2 sat-
isfies the following partial differential inequality ([31]),

∂tw −∆w + (u · ∇)w ≤ ω · ∇u · ω
w
. (4.4.1)

Since our goal is to control the evolution of ψ w logw we multiply
(4.4.1) by ψ (1 + logw). Here is the calculus corresponding to each of
the four terms:

1. Time derivative,

∂tw × ψ (1 + logw) = ∂t(ψ w logw),
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2. Laplacian,

−∆w × ψ (1 + logw)

= −∆(ψ w logw) + ∆ψ w logw

+ ψ
1

w

∑
i

(∂iw)2 + 2
∑
i

∂iψ ∂iw (1 + logw),

3. Advection,

(u · ∇)w × ψ (1 + logw)

=
∑
i

ui ∂iwψ (1 + logw)

=
∑
i

(
∂i(uiwψ (1 + logw))− uiw ∂iψ (1 + logw)− ui ψ ∂iw

)
=
∑
i

(
∂i(uiwψ (1 + logw))

− uiw ∂iψ (1 + logw)− ∂i(uiψw) + (ui ∂iψ w)
)
,

4. Vortex stretching,

ω · ∇u · ω
w
× ψ (1 + logw)

= ω · ∇u · ψ ω

|ω|
(1 + logw) + ω · ∇u · ψ

(
ω

w
− ω

|ω|

)
(1 + logw).

Integrating in time and space, dropping the zero and the positive
terms, and estimating the remaining terms in the straightforward fash-
ion via the Hölder and Sobolev inequalities, these formulas lead us to,

I(τ) ≡
∫
ψ(x)w(x, τ) logw(x, τ) dx

≤ I(0) + c

∫ τ

0

∫
R3

ω · ∇u · ψ ξ logw dx dt+R,

where τ in [0, T ) and R is a priori bounded.
To take the advantage of Coifman-Rochberg’s estimate, we decom-

pose the logarithmic factor as,

logw = log
w

Mw
+ logMw.
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Denoting

∫ τ

0

∫
R3

ω · ∇u · ψ ξ logw dx dt by J , this yields J = J1 + J2

where,

J1 =

∫ τ

0

∫
R3

ω · ∇u · ψ ξ log
w

Mw
dx dt,

and,

J2 =

∫ τ

0

∫
R3

ω · ∇u · ψ ξ logMw dx dt.

For J1, we use the pointwise inequality,

w log
w

Mw
≤Mw − w,

(a consequence of the pointwise inequalityMf ≥ f , and the inequality
ex−1 ≥ x for x ≥ 1). This leads to,

J1 ≤
∫ τ

0

∫
R3

|∇u|
(
Mw − w

)
ψ dx dt,

which is a priori bounded by the Cauchy-Schwarz inequality and the
L2-maximal theorem.

For J2, we have the following string of inequalities,

J2 ≤ c

∫ τ

0

‖ω · ∇u‖h1‖ψ ξ logMw‖bmo dt

≤ c

∫ τ

0

‖ω · ∇u‖H1‖ψ ξ logMw‖b̃mo dt

≤ c

∫ τ

0

‖ω‖2‖∇u‖2

(
‖ψ ξ‖∞ + ‖ψ ξ‖b̃mo 1

| log r|

)
·
(
‖ logMw‖BMO + ‖ logMw‖1

)
dt

≤ c sup
t∈(0,T )

{(
1 + ‖ψ ξ‖b̃mo 1

| log r|

)(
‖ logMw‖BMO + ‖ logMw‖1

)}
·
∫ T

0

∫
R3

|∇u|2 dx dt

≤ c
(

1 + sup
t∈(0,T )

‖ω‖1

)
sup
t∈(0,T )

(
1 + ‖ψ ξ‖b̃mo 1

| log r|

) ∫ T

0

∫
R3

|∇u|2 dx dt

by h1−bmo duality, the Div-Curl Lemma, the pointwise b̃mo-multiplier
theorem, the Coifman-Rochberg’s estimate, and the bound (4.2.2).
This completes the proof of the L logL estimate.
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Lovaśz-Simonovits lemma, dimension-free estimates for the distri-
bution function of the values of polynomials, and the distribution
of the zeros of random analytic functions. St. Petersburg Math.
J., 14:351–366, 2003.

[50] C. Fefferman. Characterizations of bounded mean oscillation.
Bull. Amer. Math. Soc., 77:587–588, 1971.

[51] C. Fefferman and E. M. Stein. Hp spaces of several variables.
Acta Math., 129(3-4):137–193, 1972.

[52] C. Foias, O. Manley, R. Rosa, and R. Temam. Estimates for the
energy cascade in three-dimensional turbulent flows. C. R. Acad.
Sci. Paris Sér. I Math., 333(5):499, 2001.

[53] C. Foias, O. Manley, R. Rosa, and R. Temam. Navier-Stokes equa-
tions and turbulence, volume 83 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge,
2001.



142

[54] C. Foias and R. Temam. Gevrey class regularity for the solutions
of the Navier-Stokes equations. J. Funct. Anal., 87(2):359–369,
1989.

[55] U. Frisch. Turbulence. Cambridge University Press, Cambridge,
1995. The legacy of A. N. Kolmogorov.

[56] S. Galtier, A. Pouquet, and A. Mangeney. On spectral scaling
laws for incompressible anisotropic magnetohydrodynamic tur-
bulence. Phys. Plasmas, 12(9):092310, 2005.

[57] P. Goldreich and S. Sridhar. Toward a theory of interstellar turbu-
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[88] J. Nečas, M. Růžička, and V. Šverák. On Leray’s self-similar
solutions of the Navier-Stokes equations. Acta Math., 176(2):283–
294, 1996.

[89] R. Nevanlinna. Analytic Functions. Springer-Verlag, 1970.

[90] J. Perez and S. Bolydrev. Strong magnetohydrodynamic turbu-
lence with cross helicity. Phys. Plasmas, 17(055903):1, 2010.

[91] J. C. Perez, J. Mason, S. Boldyrev, and F. Cattaneo. On the en-
ergy spectrum of strong magnetohydrodynamic turbulence. Phys.
Rev. X, 2:041005, Oct 2012.

[92] R Pierrehumbert, I. Held, and K. Swanson. Spectra of local and
nonlocal two-dimensional turbulence. Chaos, solitions and frac-
tals, 4(6):1111, 1994.

[93] J. J. Podesta and A. Bhattacharjee. Theory of incompressible
magnetohydrodynamic turbulence with scale-dependent align-
ment and cross-helicity. Astrophys. J., 718(2):1151, 2010.

[94] D. Pontin, A. Bhattacharjee, and K. Galsgaard. Current sheet
formation and nonideal behavior at three-dimensional magnetic
null points. Phys. Plasmas, 14(052106):1, 2007.
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