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» PREFACE.

LIFE.

The author’s early training began in the public schools of Charlotte

' County, Va., principally the High School of Sinithville. In the year 1889

he entered Hampden—Sidney College, where he graduated with the A.'B.

degree at the commencement of 1892. He was then elected principal of the

Boydton High School, which position he resigned after two years to become

first assistant of the Commerce Street School in Roanoke, Va. After one

year’s work in this school he returned to Boydton to accept a position as

private. instructor for Col. Thomas F. Goode. Finally, in the year 1896 he

entered the University of Virginia to pursue a special course in Pure Mathe-

Inatics.

The following pages were presented to the Faculty as a dissertation for

the degree of Doctor of Philosophy. The subject met with the approval of

Dr. J. M. Page, and it may be added that, so far as could be learned from

the few works on Modern Mathematics in the University library, the inves-

tigations are new.
a, I 6‘ 4'5

UNIVERSITY or VIRGINIA, 1899.

 



 

 
 

 
 
 

 
 



ON THE GEOMETRY OF THE TRANSFORMATION GROUP

 

p, g, 7', av], yp, 2r, wp—y/g, 227'.

 

By J. E. WILLIAMS.

]. In the following sections we shall not attempt to make an exhaustive

discussion of the above group of infinitesimal transformations, but shall limit

ourselves to some of the most interesting and important of the investigations

which are possible. —

We shall begin by determining whether or not any invariant equations

exist, and by findincr all absolutely invariant points, as well as the pat/i-cm'ves

of the 0,. We shall limit our considerations to points, curves, etc, within a

finite distance of the origin.

1.

2. Representing the transformations of the group by wkf, where (l: = 1

. 8), we know that it an equation of the form 1"(a', y, s) = 0 is invariant

under the transformations of the 6,, we must have w,_.(F) = 0, either identically

or in virtue of 17(a', y, e) = O.*

If now we form the matris of the equations

9F

 

.r,(1i’):a-+ 00:0

.I._,(1.i‘)~:o[—3y —.—0=0

.111?) 0 + 0 +f = o

917

 

 

 

Ir,(1i)—0+w_97_l 0:0

13(11)- 3:1;+0+ 0:0

agar) ~- 0 + o + g 91’ = o

, ,_,31' 9F _
4‘ 7(1{)_u’l’ 9'7; - 7/"937- + 0 _

Cl?

X<FI=0-I-o M1“ =0

ma‘aouti..m'..1-n‘ae‘ craps,“ iafifiiiw  
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we find for one of the three row determinants

1 O 0

0 1 0 ,

0 0 1

which can never be zero. This shows that no system of values of w, 3/, 2 will

make all the three row determinants vanish, and hence we conclude that no

equation 1’17}, 3/, e) = 0, that is no surface, within a finite distance of the

origin, is invariant under every transformation of the GB.

3. The most general transformation of the group has the form

11")”: (as; —l— by + c.) j) + (111;!) — cry —[~ 0,) Q + (@253 —{— (/23 + (:3) r = 0 . (I)

Since, it a point is absolutely invariant under rlif', we must have {he 2' 6y =

82 = 0 at that point, all invariant points are found from the equations

. I aw+by+c=0

«,0; — (43/ —:~ 0, = 0

(52.22 + 6,3 + 02 = 0 ;

which give

(ac —]— 60L) __ ac, —— (1,0 _ b, + V7122 — Lingo,-
m=——-———.,——-——- ———?————- .c_—

«ml—(M " a'—l—a,/) ’ 2

These are the coordinates of all points invariant under the general transfor—

. mation ‘1’)". By specializing the~undeterlnined constants a, . . . , 0,, we find,

of course, the point or points invariant under each particular transformation

of the 0,. If, in particular, the transformation reduces to a translation, the

point moves off to infinity.

4. “Te shall now find the path-curves of the general transformation of the

G8. From equation (1) in Art. 3 we see that they are given by

(Zr (13/ (12

an; + by + o _ cm: — ay —|— c, _ at?” + 6,5 + c._,

 

The equations in a), 3/ can be made homogeneous by substituting

a7:w—/r, 37:3/—Zc,

where /I. and 7.: are determined fromthe equations

alt + M: + c = 0'

(1,72,. — ak + c, =_- O.  
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We then have

((7,773 — a?) cl}: -— ((2.7: + 63/) (Z5 = 0.

If now we put in this equation

Q
|

II is

it has the form

(a, — sue —— 022) In — (a + halide = O,

 

or

(1.7.- + L (— 2a —- 2/22) (2.2 _ 0

—."‘u,—2a2—~//.=J‘-’ '
:r

Hence

loga' + at log (a, —— 2a; — 62") = 4.1; log A ;

or substituting

‘
l

l l
Q
l

a
I

we easily find .

can? — 20.3337 —- [2372 = A.

Lastly, substituting for 7: and 37 their values .71 —— /I. and 3/ — k, respectively,

this equation has the form

aa; — 63/ — 2651.3/ + (2dr: —- 2a .171) .7; + (2/Ia + 2%) y + all)? —— 2a/r/c

——— Net —— 11:0. (2)

If new we find 07in terms of 3/, from

«Jr-2 — 265:2?7/ — 63/1 = A ,

we have

alru=ay+ I3/(1 + ab)+Aa,;

which substituted in

(137

(“.71 — (£37

gives

/3/(1 + ab) + Act,  
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Hence we get the other integral function of our differential equation from

(73/ (72

(Hana/j + 13—336W + 6.2 + c.

-)

If (7,0, < 6—45., it is easily seen that the integral of this equation is

(”W 1°gi§+\/7 +1+—aTAa/?3i

1 10 20,2 + 7/, — 1/ 5237:— 46120.,
— _, ,. :1 r13.

7),- — 4am)” 2(722 + b, —|— Vb,” -— sage, 05

 

— _ Ad,

3?\li/ +1+a,7

 
=BiZKLL2 + bg—l/é22—4(lgcgzm.

2(123 + 7)., —l— |/ 72,2 — 40,0, ’

]

EM(1+(ulnii

or substituting for 37 and A their values,

i (3/ \— 76) +\;(y—fi)i“ 2‘71“ (7' “173) ((7/6— I‘) ’t‘ (‘1,(w — I‘) E (—I+.i—.I.)Z

. _1_

= n 3w3 ,,,._..,,,,,,.. . (3)
215,: + 7)., + I7).2 —_4a,c._,

 

 

a

IVe shall not consider the case when (720., > 6;, since in so doing no simple

results are obtained.

Equations (2) and (3) taken together represent a family of curves which

are called the path-curves. This family, of course, is invariant in such manner

that each curve is absolutely invariant- while the points are interchanged among

each other.

5. It is interesting to observe that equation (2) represents a family of

cylindrical surfaces whose traces in the nay-plane are conic sections. If we

represent the coordinates of the centre of these conics by (w’, 3/) and find them

in the usual way, it is easily seen that

. _a(7ta + 7:72) + 7) (— 71w, —}— 7r(e)_
{I} = _/(,1,

— ((56 + a")

,_ _ a(—— 7m + 7m) — a (7m + 767))_

3/ —— l ~—(a, 7/ +c¢(7") —/{i’

 

 

where, as we have seen, 71. and 7c are found from the equations

alt—#673: ~l—c=0,

a,77——a7:+c,=0.
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WILLIAMS.

Hence
_

, 1' 7/ , ac — a c

£1!=7t=-‘-(——.(,:—j:——fl; 3/=7¢= ,I 3'.

c' + (1,7) or —|— (7,7)

Now this is the point which we found to be absolutely invariant under A7, in

the :ny-plttllé’. That is, the conics which we found as the path-curves in the

ray-plane have for their centre the point which is absolutely invariant.

A number of interesting problems suggest themselves in con nectiou with

this part of the subject. However we shall conclude this section with a remark

on the invariants* of n. points under the transformations of the 67,.

(5. If II points have an invariant under the (7-,, it is clear that for some

function f(a.',, 3/,, 2,) we must have for each transformation of the G, 2

 

:M' on

(if = A”! (71', + 2'5}!- d? —

'i 9'” C171

It is also clear that an in 'ariant of the transformations containing :L' and y is,

at the same time, invariant under those containing 2 only, and vice vars/z. We

have then from (1), omitting for the present the equations containing .2,

., . ,I: . , . ,7 r . \".

411,7 'I-ipi : 0: A27 ._._ Ti’/. 2 0: Alf Timi'ji : 0:

ll
ll '7'.

r n \l _ - 7 .~‘_ \I l \l __' -

A57 :2 Tti/il’i —- O 2 A77 T594297 “ Til/i211 — 0-

Tbis is a complete system of five members in 2)). variables, so that there are

27L —- 5 solutions. The solutions common to 41,7" = 0 and Alf: 0 are seen

to be

_ 4)

.7), -—— :c,>;- IL,- and 3/, -— 3/,—,- 37,, where 7' _ .I . . . 77,] = i —|— n —— 2.

It now these solutions be introduced into the other equations, the latter become

Ila/"E .‘i'a- 97‘ = 0
19!;

.,.
. v, cf“

Akvfi'f; ~(tj 37;— 0

" l'

3/,7 ...
\I 0‘

_

I._—(c

A7,: -IJ—é; 0,1—1,...,7I.—1,y_t,+21,—1.

U

 

The solutions of 112,7" 2-. 0 are

u . .

4, 16,17}, where t = 2 . . . 7r — 1, y = 7a. . . . 2n —~ 3.

(’17:

'

* Lie‘s Continuierliche Gruppen.
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. . 26

Writing 15‘ ecu2,,__3—:.....A u, 02,,_;,, the two remaining equations become

"7

expressed in terms of the 22,-

q

Ajj'gz'l‘if. i=0...n-—2,j=2§+n—1, 210:1
'01- av} ,

r
a ». a

J's/15 2"(7’1'2’71— 1 ""‘ 2112,”) 41]): + A (v,,,_1v,).9'§ = O ,

3

i =.1..21.—2,j=i+n-—-1,s=n—1...22z—3.

The solutions of X)” = 0 are

2),, 21,,_, —- 21,v,+,,_, , where 2' = 1 . . . 22 — 2,

Finally writing for 21, . . . 21.,,_1 — 'u,,_, 71211—3 respectively 2/), . . . w._,,,_;,, and intro-

ducing these solutionsinto X,,/’ = O, we have

A’f—Jwvjf—i— .."20J"5:=O ,2' 1...?2—2,j=i+21—2.
C10}

Hence we find that n — 2 of the common solutions have the forms

we _ .

Jii—ltn—l: 21:1...72—2;
20,.

while 71 — 3 have the forms

20. _ — w.
Q‘,:_i_l_3, s:71.,,,‘2;;,_4.

'wn—lwx

The .1, considered in the plane are nothing but the double areas of tri-

angles; and it is easily seen that we can form 72 —- 3 other independent func-

tions of the J,- and 0, which will also be double areas of triangles.

Considered in space, since the above solutions satisfy the equations in 2

also, these results show that the projections of all areas 011 the my-plane remain

invariant under all transformations of the 0,.

As we have said, the solutions obtained from the equations in 2 will also

be invariants of the whole group. Here, as we shall see, it is-‘only necessary

to consider the case with four variables, whence general results may be obtained

by inspection. iVe have then

412;, -: 7.! + 7.2 + 7.3 _{_ 7.4 = 0

‘er '-— 217’1 + 227's ’l‘ 33713 ‘l‘ 311711 = 0

‘st 535 31273 ’l‘ 222% ’i‘ 232”; ’i" 3427} = 0 -  
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The solutions common to 111,)”: 0 and XL)”: 0 are easily found to be

3—2. 21—3

1—,25352’1: _3_.._..._.‘._—_.—'02_

22—4, 22—23

The remaining equation, when these variables are introduced, takes the form

n, .

v,(v.+1)ng—212(v2+1)%=

The solution to this equation is

 
2), v2 . F2, — ml {23 — c,

_ 7-: l . .-._ . ,

2),+1 v3+1 Lat—23} tag—2,)

1

which is the (tn/mrmonic ratio of the 3 ordinates of the four points.

It is clear that if we consider 21, points, the results will be 71. —— 3 inde-

pendent anharmonic ratios of the n points taken four at a time. This is equiv-

alent to saying that the anharmonic ratio of any four planes parallel to the

wy-plane is invariant under the 0,. Thus we find that 21. points have 322. — 8

invariants under the Gs, of which 71. — 3 contain only the variables 2,, while

the others contain only the w, and 3/,.

If new we consider only two points, the complete system consists of eight

members in only six variables, and therefore has no solution. We can, how-

ever, form the matrix of the equations and determine whether or not any rela-

tions exist between the elements such as will make all the six row determinants

vanish. Such relations, if any exist, may be seen to be invariant. The matrix

IS

110 0 O O

001 100

O
O

O
O

O
O

O
O

O
O

i
n

1
—
d

(
x
)

I
—
I

u

a

1

1
u  0 O 0 0 i
n

It is readily seen that if .7}, = a), and 3/, = 2/, at the same time, all the six row

determinants of this matrix will vanish, since in each two columns will be  
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identical. Also if 2, = 2 each determinant will vanish for the same reason.

We therefore have two invariant relations, namely, 2, = 2,, and the simulta-

neous relations a}, = .2), and 3/, = 3/2. '

Now the t'ansformation

(aw + 63/ + c) 3) + (up: — my —|— (:,)g

in the cry—plane leaves the point given by

2121+ 63/ —|— c = 0)

' (1)

(1,.2' ~— (63/ + c, = 0 g

I

invariant. Let this point he a“, 3/. If another point .212, 3/2 is held, both a“, 3/

and 17):, 3/2 must satisfy (1,). But this is impossible unless (62 -I- (2,?) = 0; that

is, the equations would not be indemendent. Hence if we hold .213, 3/._, all points

in the my-plane are absolutely invariant. Hence the invariant simultaneous

relations rs, = at, and 3/, = 3/2 mean that if we hold (11,, 3/2, the point :v, 3/, 2 can

only move along the line

w, = 511.,

.7/1 = 3/2

The invariant relation 2, = 22 means that if the points lie in a plane before

they are tansformed, they lie in a plane after they are transformed.

By a somewhat similar process, we could find the invariants of 212. points

and )1. planes.

.
'
f
-

2.

7. We will now extend the transformations of the group with a view to

finding the (223 crenlial invariant of the lowest order, and subsequently all those

of higher orders, where 3/ and 2 are functions of .7. IVe will in general write

(ZII'II/ ([113 , ,.

at], 9'” 7a.—

From

(13/,,_, — ;I/,,(Z:1: 0

we have at once the increment which 3/” receives by means of any infinitesimal

transformation in the form

(ZO3/,,__, (Ma- .

"3/” = (1:0 _ 3/" 7.1.2: ’ (1)
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and similarly for 2,,

()3 =: (iii—.1 _ 3 '15"” (2)

" (la: "’ (Ice

The transformations, as is well known, are extended by means of these for-

mulae. In order to find the differential invariant of the lowest order, we must

extend the transformations three times and equate the resultsto zero, since

that will give a complete system of eight members in nine variables, and there-

fore one solution. If we extend less than three times, it may be seen that we

have more independent equations than variables, so that according to the

general theory of the complete system no solution exists. Hence the differ-

ential invariant of the lowest order will be of the third order. Thus extending

by means of (1) and (2), we have

X, ”1.753%: = 0

q .

XJ‘: f,—— = 0-. 6,,

.1323? = 0
C1:

, .__ Effie?“ _

4.2 a“ ' 321—0

.. 9' 9' . 9' s
X51 .._ 7/ 9': — 21'535—1— w. 57—, — 32/12.. 5; — (a2. + 2223/.) f

b 0 97.. I . Qf‘

‘— (43/19:: + 31/2") 5,; ”“ (3/331 ‘l' 33/232 ‘l‘ 33/153) 5; = 0

“"3
51.3

1‘. ' 5‘ ' '3 ' O '

.m- “'7‘ . "7‘ + .2, :7: 2,, if. = 0
C

0 ' 97.4 97' 9f 9/
1'. '__;':"'Z_i—-—2 u—‘7 ' —2 "—-3?-.——°-"J~

‘ “7‘ ’ J 91/ ‘J' 9y. '92 “I c._»/ ‘ -’

. . c" ' 9 " .. . 9 ' .
X5] _.. 2" gt: + 1.22, 47: + f. (2, + 22,) 37: + ‘2. (32,2, +

L49 9': e192

 

The first four equations show that .21, 3/, 2, 3/, are not contained in the solution

sought. The complete system can thus be written in the form

 
 

 



.
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. .- , 9f 9.23 . 9 . 622" 3-"Amf :2 3/1341 :9, + 3.7/1.7/2 937, + (3/231 + ”ii/1’42) 9;, + (iii/1% + 33/2) Sit/1s

+ (m2, —}— 33/22, + 37 13:1) 2:47;: 2 0
:1

 H

\
t
.

“
i

(
I
)

H
.

+

_
\
! o
r
”

i

\
s

+

..
.

,

k
\
‘
l
\

H C

r
.
)

h
)

1
-

D
F

l
é
‘
l

.

 

r 9 9
1 3 :2 9 .' ..

I ‘f ”I 9’31 - 912 C ‘2 93/3 5

973' 9 3 .. 9 3
112,732.22. 5,—. + (2.3 ea.) 5- +1.32.z.+ 22.15: = 0

“l ’ 2 "'3

These equations can be greatly simplified by algebraic reduction. Replace

11:”)? = 0 by Alf — 3/, Alf: O and Kg": 0 by 1117‘ — 2 [Of == 0. We

then have

,. ,.__,, 9 ' . 9/" , 973'

Anf 3/231 % + 37/7 4’” ’l' (II/.3131 + 33/232) 1 ‘ = 0

' 532 5.7/3 3 L3:;

_ . of 9 ' cf
v ’ "" k' M ’1, 5 U _

.3 (1.7L '__. 3, 5-9— + .52 5:- -t- (J; 9» — U

Luv] LS4: 91:3

1 -. 1 . q .. 1, . q .

r .,_ cf (‘7' 1-. cf .. 3.. Cf

‘17,)“ A- :1 't. —}—- 017/, 5—3 —i— 2:, A, 'i 4/,-,"—— 'l" 3:3 ,;.' = 0

5;, e32 Cd: CZ, ca,

77,. Q .

7 1 g ‘ V. -_

.AHJ' ’2, —.':- + 3:, 0-: —— 0

DJI- 9133

Again, replace in these equations Alf = 0 by .l',,]" — 3/, .IZf = 0 and X7f = 0

by .137" — 311,7” = O, and the equations are reduced to the forms

A}, 7“

4‘3L74' :: '. q‘

 

.igf

 

mu; 37” 1335:0-’1

c2, 2,,

I
n

It now remains to find the solution to this complete system. As an expla—

nation of the method by which we shall proceed, we recall the following

theorem from the theory of the complete system.

If A ,f = 0 “511,17": 0,7”01‘2/2. a complete system in. Me variables ", . . . 9;“,  
W
.
.
.
_
.
_
-



 

.
3
3
A
:
fi
;
n
a
_
~
;
:
f
.
1
‘
:
£
'
r
«
1
'
<
-

.
,
_
x
-
_
-
.
,
_
3
.
_
.
r
\
,
_
.

”
:
3

.
_
.

_
,

_
.

.
.

.
.

A
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,
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.
.
.
.

3
.
-
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Me integration of tire some can. be accomplished in. l/Lcy‘hllowing mtmner. We

seal: the solutions 30, . . . c,,_, (37"AL7" = O ; llwnj'orm

 

7
0 "

Aaf= 1129913327: "l“ - - - 'i‘ 11259124 3,27‘ 1 = 0 ~

, ‘3’ '11—-

0" Me ratios of 15/26 Ago, are not functions ofo, . . . e,,_, alone, 3/16 equation

11,7” = 0 will always break up into several donations. We integrate one of

these (mil introduce its s()l'zlli()71.s¢1, . . . 3.0%, into 113,)" = 0. The recalling egan-

 

lion
1,, 5,7,.

:1 7,

L
L

t.

Act/’1 75",“ + Asst".- :7“ + -- - “i" A;,<,.",,_2 A," = 0

591 ‘9':
C 51-2

is trcntcrl in a similar manner, aml so on. [fr < )1 2/1eflncl ultimately Ma

7). ~— 2' solutions oft/1c cmuplclc system.

Now the solutions of X57" = 0 are

21: 3/2: 32: “Ha l/zi-zl ‘” Oil/2:33 ”‘ 7t 3

Introducing these solutions as above indicated, the remaining equations assume

the forms

1' 3 97' 3 3 ' ”V o
4-1.7" ‘ 317?;- “l 3.1 7;: ’i’ ” 7r =

ea, c.:., c".

" e I _, 2': II.

:‘f 1.7,.

,7 I ‘ L
~;. “I __

115,73 ._. =1 ,5” —-— 18y. 2., ‘97,— —— t)

t .

2., a

3/., 4 —— ’u, - - w

19, .9,

Introduce these into the other two equations and they have the forms

. 9.7" .. 9.7" . 9f __

117.]? '" 3.7/2 .53); +
U 23") ’i" 8”) 51;) —— 0

., 9f .2, 9f_
Aflf 5; — 183/, 0 9w _ 0.

Finally the solutions of X5)” = 0 are

i 3/, and 93/,2;2 —|— 2/; " v, ;

and X7)” becomes
"5 '

Q 3

‘Y7.f-— 33/2! 3%: ’l‘ 87), “5:51 : 0 .
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Hence the common solution of all the equations, that is the solution of the

complete system, is found to'be

[_._'€_1_;_9?/g'322 'l‘ ~|(312/32 —6./.2253)

--3~~%s/a—- ——22/283)

This then is the difl‘erential invariant of the lowest order. -Those of

higher orders can be found by further extending the transformations, and for

future use we shall find two of the fourth order. Extending as above, and

omitting terms containing :0, 3/, .27, y/l, since these variables do not occur in the

solutions, we have

.
0
.
)

\
l
’
:

lX./’ 2.2.3: +57/.y»-: +(o2'2'.+21/._>:<4y.y.+3o.~'>

 

9o.

+ (W. + 33/.2n++37/.2.3:)_,_ —.— (03/./.103/3/.,)._:—_

Xffl 2. 37 + 33/2: + 9212 + 42 .3:: + 3231+ 53/. 993 = 0

These equations can be simplified exactlyr as in the preceding case, and we

have after this reduction

 

’63]: '

, .

elaf— "7/:2 ”‘‘l' 17:32l':¢,

374‘
f p 9

Alsf 31 3': ‘l‘
Cal

of 3/0 3 sf of
r 0 Ir L. " S" I. L )= ‘_ \-

ALf is 5.7/2 3,," ”l" "2 9,; "l— Jig/:23 +1“393is—l 0/; fiI/l ——O

,3 . 3 .

Alf-322 .2. ;— + 3.2.. :27: = 0 .
c353 " C23

The solutions of Alf = (l are

2'], 3/3, 3/“, 11/3, and 32f —— 2.21.2321 u.
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These solutions introduced into the other equations give

*1 9,

115.70: 3.92255; + 10J2J381; —“ 2J331" 3f=0

q .

21137‘ 21%; + 2” f * 0'~1

r 1 r a)” E: ' V f ‘ 'fl _117'7‘ 37/2 97/; ‘l‘ 4" :1 5;“ I 03/. + Z“ c N 0

If we next take 41:37": 0 we have as solutions

It —--1 .

3/2? 3/31 3/4: :35 _—‘. I) ,

*1

and in these variables the other two equations have the forms

'7 ' t -) ’7 - i

115.24 r 5.1;»? + 10w;J 22/1313: 0
CL .

r 1521‘ _ 9f .- 9f o, 9f_
117'7‘__---'57/29,7 3/2 *— 43/3253}; + ').7/.| 83/; + AU 92') — 0 .

\Ve next find the solutions of Xfif = 0 to be

3/2: 5.7/32 ‘“ 33/27/1 - m: .73.: ’i‘ 33/22” I: ”E

and X7’7" assumes the form

Of 374' a .
-- n . s , L ,| 1.

ll 7f riy/2 4— —|— 5m 5' + b): 4f 2 0 .

C [/1 C 7)

Hence we find

 

 

/ _ m __ 5.7/32 "“ 3717/1 /’ _. 7h, _ (57/32 ’_ 37 2? 0212

9 _ — '—' ’1' —‘ '~—_-—_'_'_' 4 H ‘ '_' li'fl—i “‘—"'“'.*"_u_'f "‘ '— ‘ n

‘ 3/28” :72“ i 7‘ 3117/3." + 5.7/2- (' ' . _ 231511)

This plocess of extendinrr the transformations could be kept up indefi-

nitel3', and the diffelential inva1iants of 11113 desi1ed Older could be found,

theor”eticall3, but such a piocess would soon become vely cumbersome, so

that we shall111 the next article give a more convenient method by which all

the differential invariants of an order higher than the fourth can he found by

mere differentiation.

8. Let 1; he a difl'ere1'1tial invariant of the lowest order of the UL; we now

. F (Jul . . . .

seek a functmn !. 1:1: y,.-, //|,1-1, . . . , g5, ,_ 1 which shall he a (hf’terentlal

' ( m l

invariant whenever 1; is.*

* Lie’s Continuierliche Grnppen, Rap. ‘22.  
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Indicating by 4? the increment received by means of an infinitesimal trans—

formation of the group, since

7195 :: 999/0:

we have

7M7; (390’. 7191: + 79’. ride:

or since (l and r} can be interchanged,

, \ , (1736 , 7/727:
no , , -— L0 .

’ dw ‘ (1.7:

Now since 99 is to be invariant, it receives no increment ; that is ()7; = 0.

Hence

‘ \ , , dill:
(Hip : —-—- (rm 7...- .

7 .L .

It 1n thls equation we subst1tute for 6.1: 1ts values as given by the transforma-

tions 3), g, 7‘, my, we .find in each case that 7759’ = 0. For 3/p, we have 0.7: — 3/,

and therefore 7155' = — 5927/]. In the same way we may find the increments

which 90' receives by means of the other transformations.

Extending now the transformations so as to have a complete system of

eight members in nine variables, and omitting terms (Art. 7) containing

9!! 9!! 9!! 9!!
,3,— , ~7— , A; , T , it is easily seen that one complete system has the form
cm 93/ c.: 0.7/1

 

 

 

*r , 9!! .7 3.! 9 - 9!.) . ..» 9-!

def '3/1’41 9g" + 53/13/21 9—H. ‘l‘ (7/231 ”i“ .‘3/132) '31:: “i— (43/1'3/3 "I" 5.7/2”) 9/"

"’1 32 “2 . :1

"U

+ .0271 55,1 ~ 0
cc

’W ) 0

If 3- c7: .3- a. . :7. = 0
u — "1 #3,, v: '3

Cal 032

’17 :17; o ) :1 1 07)
r 1 C... v - \- -1. 1. .. p .-

I- 2 37 ,»~-~- - 92, -_ 47. ~— —- a' ,, = 0
1 "f 1831+ . -972 l— “ _ 33.: + .l 9:13 i , €55,

. 9...) ., 9..)

AI; 14.23187. + (2.2, + 2,“) 5,? = 0.

In these equations replace Alf = 0 by Ara/u — 7y. X37": 0, and iii/’2 O

by (I; — 3111/”: 0. We then have

 

 

o J a
I 6.. 7, Cum

4 . __ /,a M- +3 37 "- -»~ —
hf u. l 9;: J2 83/;

r —"'9'J+”9'J—0

6 _ '95, ”2 932

'3 a ' ,

ifvl 3—9 + 33-7—55! + 2= 3'! + 471-93 + :3 = 0
651 - °./2 . €32 .. 9.7/3 cg)

. ’19
r r) C.

As, :: 7:41 A, = 0 .

can:

 
 

 



I
.
_
“
.
.
-
m
e
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The last equation shows that 22 is not contained in the solution; and since

this is the case, the first and second show that the solution is also free of 2,

and 3/,,. Hence, we find the common solution from

[lit/2 _ £83,

3.7/2 — ‘15, i

which we write in the form

I

w
J ~— —'.

$9 3/2173

Hence, whenever 39 is a differential invariant, do is a differential invariant of

the next higher order. Therefore, by means of Jo, which is called the dig/”(57'-

emfiial pm‘mneter, we can find from any differential invariant one of a higher

order by simply differentiating the given differential invariant totally with

respect to .' and multiplying the result by 1/3/31’”. Thus

J(J) =w» .]_
-l 3.7/2.1 . :1

is a differential invariant of the fifth order. Also

J(.[1) 3—— [5

is a differential invariant of the fifth order, which is clearly independent of J_,,.

In the same manner we see that

we.» .J"<</.') ~— 41-1..)

is a differential invariant of the sixth order; and universally

.J”(J,) and J"(.[,)

are two independent differential invariants of the ('71 + 4)th order. Thus it is

clear that we can write 'down all the differential invariants of any required

order. . ‘

We have reserved the finding of the invariant differential equations and

invariant systems from the determinants of the equations forming the complete

systems for the next section, wherein we shall also discuss the equivalence of

curves. 3 ‘

§ 3.

11‘9777'vrtlcmm 07" 077.7 7263'.

S). If we extend the transformations of our 0', once, it is easily seen from

the determinants of the matrix so formed that the only invariant differential

equation of the .l'. 0 is 3, =2 0.

 



  

l O 0 0 0 . 0 O O 0

0 1 0 ' 0 0 0 0 0 0

0 O 1 0 O 0 0 O 0

0 w 0 1 0 0 O 0" 0

2/ 0 0 — 7/1“ ~ 3/13. — 37/132 —(y2~2. -I- 2913/2) —(4yl3/.~1 + 37/22) —(.7/:121+33222+3y123)

0 2 0 .2, 0 0 2.,

a: —3/ 0 —23/, —2, ——33/, —‘...2._., —4y,, —32,,

0 0 22 0 2.22, 0 L (2, + 2.2,) 0 (52,2, + 9.2.2.,
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If we extend twice, we have the matrix

  

1 0 O 0 O 0 0

O 1 O 0 i O 0

0 0 1 0 0 0 0

0 a: 0 1 0 0 0

y 0 0 2 31* — 3121 2 3313/. — (3.21 + 27/12.)

0 .2 O .2, 0 .2,

a: — 3/ 0 — 27, — 2, — 33/2 —- 22.,

O O .22 i 0 2.2.2, 0 2 (.2,2 + 22,) i  
Indicating by J, the determinant formed from this matrix by suppressing

the 3th row, we easily find

41:; :4 33/223121 J7 .3 23133/13/21 J '3 _ 63/223312 , ~15: "— 63/2313: J1 * 63/119913:1;

J. 2 — 332221322. J2 '2 63/13/251032/1
— r). J. '—_— 67-321“ (7/ — my.)-

Since .2, is the only factor common
to all these determinants,

the only

invariant
differential

equation
is 2, = 0. If, however,

we write 1,, = as, we

find that 7 2 = Dis an invariant
equation

of If. 0. We also see that 2, = 7/, == 0

and 2, = .2,. = 0 are invariant
systems

of equations.
But .2, = 0 is a conse-

quence
of 2, = 0, which gives no new results.

These are all 15/172 invariant

equations
ofan. order lower than the #177711.

If we extend the transformations

three times, we have the matrix
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Indicating,in this case, by J, the dete1minant formed by suppressing the

7th column, we find

J11 —“18513.923 1 4’s :3 33149293 1 J7 : 1831292332 1

Jr. , 231 (63/223331 “‘ 4333/32 "‘ 93/229422) 1 Jr. : 18"513/2 (9223133 _ 3222922) -

The others vanish identically." We see from these determinants that the only

single invariant equation i .2,: 0, while .2, .= ‘7/2 = 0 is an invariant system;

and it is clear that these are the only results obtained from further extension

of the transformations. Hence, all invariant equations of the third and higher

orders are obtained from the differential invariants.

By writing 1,, = 0, we find in particular under this head 3/, = ,7/3 = 0 as

an invariant system ; but as 3/3 = 0 is a consequence of y, = 0, this case gives

us nothing new.

I: It now we perform the transformations of the (7’, on a curve which

admits of 720 transformation of the G3, this curve generates an invariant family

of m 3 curves. They may be represented by:

(a) One equation, of the zero order and one of the V11[ . 0.

(b) One equation of the I. O. and one of the V11. 0.

(c) One equation of the [I . 0. and one of the V1. 0.

((1) One equation of the [I]. O. and one of the V. 0.

(ee) Two equations of the IV. 0.

Since no equation of the zero order exists, case (a)18 excluded.

In considering case (b), we find that the only differential equation of the

I. O. is 2, = 0. Hence the curves are plane curves, lying in the 30‘ planes

.2 = const. Since no figure in the any-plane is changed by 7', .22', 227', the 007

curves are the same in eaclrplane parallel to the cry-plane. Hence the differ-

ential equation of the V11 . 0. is one which is invariant under

2). q. 7710. rvz) — ya. my;

147.], .4) = 0. (1)

Lie has shown* how to reduce this equation in the following manner.

It is easily seen that it can be written in the form

of which the form is

Fl” fit/J91 0 ' 12>

where J, = 3/,:00, f,-—._ yf'p,“

and 1”: = 33/23/4 "‘ 5.7/2.~ 1 P3 = 33/2295 ”“ 15.7/2J33/1 ' 1:37J33 -

If (2) has been integrated we find an equation of the general form

a=7Mt

* Mathematische Annalen, Band XXXII.  
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Now introduce as new variables J and U = 7."‘=l7 ' then we findi: .. 3 )

dU_lfig-l- .7/32 ‘1J.___-l-IU2
 

{/31 — 3 f/a—ff’s 3 H '15 i,

01‘ .

fl Mir 0: 3,
.1], =3 7e.) ' <

which is a Riccati’s equation.

3 If . W(UJ,) = const.

is an integral equation of (3), we can find two other integral equations 0

J5 = (II(J,) as follows. Extending 3/1), we have

7- f) -) a 7 i -) ’3

41f: 7 J 7/1' if 2 37/17/2531— (47/19. + 37/2“) 5.)}: ~ (5312. + 10m.) 91-
V 2 . :1

m M iii/1

9.7/1 ,

from which we see that

KM) = 0, .170) = ._ 3ng

and - r , _ 8 W .4

A ( W) _ _._ 3 EU 3/2'

"' ’ 9W- 7’ll .,
ACT] W) = 93/23 c902 + Gym/2" "9U" 

Now

W = const., 11'( IV) = const., 11317 W) = const.

represent three independent integral equations of J, = (ll (J,); and if we elim-

inate 3/5, ,7/3,, an we obtain a differential equation in 7y, and 7,, which can be

integrated by two quadratures.

For case (0) we know that the only differential equation of the [I . 0. is

found by writing I, = 00 , which gives

.7/2 = 0 -

But then all the differential invariants of higher orders either vanish or become

infinite ; so that this case is excluded.

The two equations under ((1), of the 1]] . 0. and V. 0. are

, 97022.3 + .2 (27.2 — 67.32.) .
I, —: _'_/:..____.__~_“I _l‘/_iL_____'/‘i.i = ‘ _,, 2123/28], const (1)

and [lift/1. J5) = 0- (2)

The integration of (2) can be reduced as in case (b). If from 11': 0 we find

3/ 2 770(1)), then, substituting in (1) for 3/2 and 3/, their values in terms of a), we

have

2 - 2..

1 ”:1 * (".52 ‘3)

51,3

2..2 ..

[3 _ 9‘92“: ‘i" "1

'51

 

= const.,

I
4
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which is a differential equation of the third order in 2 and w. This equation

may be written in the form '

which, as Lie has shown, can be 1educed to a Riccati’s equation of the first .

ordei.

If we put

then will (13/

or I_Z_/___1/2?._ +1,Vr.)

If W(yw) = const. is an integral equation of this Riccati’s equation, we can

find the required integral equations of w = F(0c) by differentiation. If we

write

I
\
.

"Er-‘17. 3”: ’l‘ 2321 f“ + (222., + 2212) 1

92, C
L
)
‘
.
"
L
‘
)

5‘
H

1
:
.

then X, W = const. and X, (XSW) = const. are known integral equations of

w =-_ F(.7c) ; it is sufficient, therefore, to show that W, 111W, and AMA; W)

are independent functions of w, 2, 2, and 2,. From

 

412(31) :

AMI/=1H 113(1):) 2°",

33/

r r,r_ 32111491ng

214.1,." ) — 4 ":?‘/”.,“'’1')‘tt'i 93/ ~21

we see that W, X W, X(41",. W) are really independent with respect to 2, 03,21,

and 3/. Thus the integration of w—_ If (a1")IS reduced to the Riccati’5 equation.

Finally, considering case (e), we see that if the difierential invaiiants are

1,, 1,, J4, the two equations of the fourth order may be written

'2! (1:1: [49 J1.) = 01 "('..-(131111°]1)=

or

(”(13311) =0: ’[I'([3,JI):O

II : If now the curve admits of (me transformation of the 05, the invariant

family consists of only CD 7 curves, which are defined 1

(a) By one equation I. 0. and one VI. 0.; which are .2, = O, 170/, JG)

= O. This case is similar to case (b) in I.

(b) By one equation [I . O. and one V. 0.; which case, as in I, is excluded.  
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(0) By one equation [I]. 0. and one IV. 0. They are clearly I, = const.

and J, = const. The second equation can be integrated. The first can also

be expressed in the variables a; and .2 as in case ((1) in I.

III. If the curve admits of two transformations, the family consists of

co “curves, which are defined

(a) By one equation I. O. and one V. 0.

They are .2, = 0 and F(J,, I._) = 0; and this case is similar to (a) in II.

(b) By one equation of the U. 0. and one of the 1V. 0.

This case is again excluded.

(0) By two equations of [I]. 0.

Since there is only one invariant equation of the third order, we exclude

this case also. ‘

IV. If the curve admits of three transformations there are co ” curves in

the family, which are represented by

(a) One equation of the I. 0. and one of the IV. 0.

(b) One equation of the [I . 0. and one of the [I]. 0.

Cases similar to (a) have already been considered. Case (b) gives only

3/2 =. 0 as the invariant equation of the second order. The only invariant

system would be 3/: = O, 3/, = 0, which is excluded. For 3/, = 0 is a conse—

quence of 3/._, = 0; that is the integration of 3/, = 0 must give 3/, = 0; other-

wise the equations are incompatible. So that we have only one invariant

equation.

V. Suppose next that the curve admits of four transformations of the 0,;

the family then consists of to " curves, and is defined by

(a) One equation of the .1 . O. and one of the [I]. 0.

(b) Two equations of the II. 0.

Case (a) is excluded ; for if .2, = 0, lg, becomes elusive. Also case (b) is

excluded, since there do not exist two invariant equations of the second order.

VI. If the curve admits of five transformations, the 0)“ curves of the

family then generated are defined by

(a) One equation I. 0. and one [I . 0.

As we have seen, the equation of the first order is .2, = 0. There are

two of the second order which we can consider in connection with .2', = 0.

They are 3/, = 0 and 2,. = 0. If we take y, = 0 and .2, = O, we find ca“

straight lines lying in the w‘ planes = const. But .2, = 0 and .2_ = 0 give

us no case, since .22 := O is a consequence of .2, = 0.

VII. If the curve admits of six transformations of the group, the w

curves of the family must be defined by two invariant equations of the first

order. But since there is only one invariant of the first order, this case is

excluded.

-)
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VIII. Lastly we consider the case when the curve admits of seven trans-

formations. But this case is excluded, since the on1 curves of the family

would have to be defined by an invariant equation of the zero order in con-

nection with one of the first order, while no invariant equation of the zero

order exists.

From the consideration of all these cases we conclude that there are

no invariant families of a)", on", or 00‘ curves. In other words, no curve

admits of exactly four or exactly six or exactly seven transformations of the

0,. Hence, if two curves are equivalent under the 0,, they are either mem-

bers of families of plane curves defined by 17(J, . . . J, = 0, lying in the

planes 2 = const.; 01' they are members of a family co“ curves defined by

I, = const. and _F(J,, J.) = 0, or (I) (I3 1,) = 0 and ’1”([,,J,) = 0; or finally

they are members of a family of co 7 curves defined by I, = const. and J, =

const.

5‘ 4.

10. Having disposed of the problem concerning invariant curve—families

as defined by iniariant differential equations, the next step which most natu-

'ally suggests itself is the corresponding investigation for invariant families of

sun/”twee. We shall accordingly devote this section to finding all the differen-

tial invariants which express properties of surfaces, and invariant partial (lif-

ferential equations.

Here .2 must be considered as some function of a: and 3/, say

.2

We shall in general write

 

 

3.. 1.. :12
.9 7) v c . I] L'

"— 2 "‘ —- a _'

9.7: c"/ 5‘
.

9‘2 __ 9‘2
q , --— All , ., I.

a!” 9-0-3‘7/

and find in the following manner the increments received by the functions 3),

y, etc., under the transformations of the (3,.

If then 3

3 = f (017/) ,
we have

(1.2 = pdm + 9313/,

and hence

(70.2 = 8/7 . (1m + 01/. (13/ + p . (16.1; + y . (My . (1)

In extending the transformations of the group by means of (I) we shall,

as usual, preserve the order in which they occur in Section I.

It is clear that d]; = rig = O for Alf, X33", and X3]:
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For xI’,/, since 5.2 = O, we have

0 {33) . d3) + (lg . d3/ + (111.); j: (01) + g) (1.1; + fig . 43/;

from which we find -

. ()3) I: — g , rig 0 L

In the same way we see that for J’f

rig)~—0, dg— ~12).

For 1Y6)” we have 0‘2 —- .2. Hence

dz * prim + My 0)) . (la) + rig . My,
or

_ (6‘3) — 3)) (1.3) + (8g — g) (23/ f. 0;
which shows that"

3.2):2): (Igzg.

In exactly the same way the increments of 3) and g for .I’Tj and 41’, /, respec—
tively, are found to be

4);) .2: —J) , (lg —~ g, and 0‘3) 2.- 22)), o‘g j; 22g.

Hence the transformations mwe extended may be written

, __9/
ill/>419};

, _e/
I, “977/

r —:8f

‘ * "“93

_ 97" 6‘
41,f__$937—991]:

2' 8f

X74 “”92‘3’97

5" 3' 9

‘llf—‘gaé 'i‘Pé; +76%

63/" a); at 9.;

W 7' 9'
X,,/_2':,;§ —l 22,3)?» +2399?"

To write 4,1,)”: 0 . . . 12f: 0 would give no result, since then the first
three equations would show that the invariant function f would have to be
free of a), 3/, 2 and consequently the others would show that it would have to
be free of p and g also.

Let us then extend the transformations again. We know that

dj) Ma: + 8113/, (lg —— sdm + tdy;
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so that . (My) — ()‘7'. (la: + (is . (l3/ + 7.1.16.3; + 8. (My

(2)

(13g 2 (is . (la: + (it . 83/ + 8 . dds + t . 1033/

It is again clear from (2) that 3), g, etc., receive no increments for X,f,

llf, and Alf. '

For XL)”, (7}) == — g;

hence — 117g — (Sir/w + My) 7' (33' . (lac + (is . (13/ + sda';

from which we find

(Ir ,1‘» —- .13, d.“ '—« —— t ,

while the second of equations (2) shows that (it = 0.

In precisely the same manner 67', (is, lit can be found for the other trans-

formations, and the complete system of eight members in eight variables may

be written '

d',f_§f=0

(3.1,-

., 3 ‘

A... 7" 21' = 003/ 5

:1 .

.1:,/' “,7: = 0
OH

:1 ,. 5, . a . 7 ,,

.17.]“221 -— (I. 2': — ‘38 n/ — ‘3‘]: = 0
C’y 1.2) C7 v.5

. 9)" 9f 97‘ 9'
‘15.. ”27/9,; ‘11:? —" 7'51; — 28 Da— = 0

‘r‘f..38qu_2)€f+gaf_l_r€[_{_bQZ'_Lt€[=O

‘ "' _ 6‘2 9]) 9g 97' 98 I 31

*1 9f q l' ’11’ 9f 3 l

X ~~..' cf— .2. —— 5!. r 5/.— — 9/'-'— —'— 21* — = 0

“f"— 9w yé‘3/ ap+19g ‘w‘ a:

a " *1 ' 0,0 :‘f‘ a

V ' 519,7; ,., 9.7‘ _1_ a ‘2 9 .__ ’ 34..-! 0». cf
.1,,/ .. a; , 2.1292) . 2.9 9/2 + 4(2) 1 22) 9,. r (as +22%,

Since a), 3/, 2 are not contained in f, the determinant of these equations

may, after an obvious reduction, be written "

I ..— g 0 — 2.5- — t 0

i 0 —— 3) 0 —— ’I' ~ 28

i 1) r/ 7' 8 t

i - 3) g —- 2r 0 22

O 0 2)“ pg 13"  
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If we expand this determinant and place the result equal to zero, we have an

invariant differential equation.*

The equation is easily found to be

fit — 2pgs + gar = 0 .

It has for its integral

9 =w59(a) + m), 2 = a,

01‘ 2/ = wt?) + ¢ (.2), "

which is the general equation to ruled smfaces, where the straight line gene—

rators are all parallel to the my-planexl‘

11. Since the determinant considered above is not identically zero, the

complete system has no solution. In order then to have more variables than

equations, and therefore one or more solutions, it is necessary to extend the

transformations further. To do this we have

(Zr :: ‘uda' + ally

(s — ads; + pdy

(ll 2‘: mice + lcly;

also (262' __ 6‘0 . (la: + rln' . (lg —}— ‘n . (1er + a . (My l

([88 z a; . (a; + 3,; . (13/ + 0.115.?) + ,1 . (ldg/ l (3)

(Mt 6/1 . (la: + 6/1 . (lg + p. . (28w + i. .(lrly l

Here again p, g, etc., receive no increments under 411]”, me', and ‘19.,pr

Since for 41"], 0.7: __» 0, 3y ' m, (7]) ~— —— g, (lg e 0, 87' _. —— 28, (is __ — If,

()1: = O; we have from (3)

— ..(ls j; —— (adv: + /( (lg) -,--:-. 1),; . (lac + (Fr; . (lg/ + (7 . (lac

— (ll — (prim —l— My) :2 u‘rr . (la- + 6/1 . (lg/ —{— pdw

0__ 0 ,d/I..(l;1: + dl.(ly --l— l.(l.11.

If in these last three equations we collect the coefficients of (la: and (lg and

equate separately to zero, we find

010—, —— 30’, (30‘; — 2/1, 6/1 — l, d}. .4 0.

For X,f, equations (3) have the forms

0 —’ 0‘0 . (lzc + 0‘17. (ly + ‘0 .(lg/

— (lr. .2 — (pcla- + ady) : (in. (la + (l/1.d1/ + a . (lg

— 2(ls : — 2 (a . (la: + /r(l3/) 0p . (la: + d}. . (13/ + ,u . d? ;

from which we find

\ . N \ \~

()‘I)——,0, 00——‘u, 0/(-——20', I;A__——-3/z.

 

* Lie’s Continuierliche Gruppen, Rap. 16.

'l Laurent’s Traits D'Analyse, Tome VI.
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In like manner it will be easily seen that f01;Yfif

(111 j: ‘n , do ,__ a , (111,—-_-: 11. , 171:». l .

For 11;)”,

(7‘11 = — 3‘11, 0‘03}: — a", 8/1 511, d}. E 32 .

Finally we have for .Kf,

1211 E 2211 + 61y) , 1711 3':— 220 + 21g + 421.9

1211_—-2211. —i- 2115 + £115,822 22‘). + 6gt.

If now the transformations be written in the extended form, and All)“ he

9,1" 6’7"

replaced by 11’f —— 3119.7“; and ii the terms containing 951: , 9'7), :43; be omitted

(Since a}, y, andz do not occur in the solutions) the complete system maybe

written in the f01m

,. “fl. 2-51”- V 91"..» 91' ,91;
‘14.f”'I‘—+

21‘ -}‘ttlél+ 30' El? [- ..1‘115‘77—l [9‘11“0

911‘ .725, 0.7“_ ,Qr'mo 9,1" 91'_

X”1’211'4’93211*1’971l‘
”212+31“97—0

2121‘”2 3,1

. . ‘. ‘W ' 1 "'

xljlf __qu_11:252’24;‘l'2l§{—-3/
1if—ai'f—l—luj—l—mc".=0

@1100 5‘11 9/.

91 1, c . ’1 ' 0 c

115.1”?29 9,71 22199.1% (1' :51 3712;]:+(11 + 21131077: + (2)5 + 21:)33:

The next objectIS to find the solutions of this complete system, and owing

to the complicated forms in which some of the results occur we shall resort

to a device by means of which the work can be greatly simplified.

Let us first consider the complete system,Dnriven by the sub-gmup

All)"_g “Z —l— ‘25 :3: +- £21.: 0
ob

Xsf11—11-11'gi—1— 253%:0

TIL—[fiflj-/--.al'fif 212:7: 0.

The solutions of 1177]" = 0 are found to be

-1

.. j) v 7- " l . .

.s' 111 , pg ((2, '—-» 163, In It, .
,.
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These solutions can now be introduced into the other two equations in

the usual way. It will be seen that

1174(1Ix):t'_%;

a

XII.) :— 1' -— j—

2 o

.417 (u): 2721 __2s Ir—— é; J 42.}; (uz’u3 — “12132)

L ,

4, 2

410%) '— 92995 v 77., "2154.

In like manner it will be found that

xY(1l[)__

p»

59(1‘2');

 

and the two equations will have the forms

q .

1Y1 7“; M i ~l—II2312 + 2 (II,II, — n1163) :7:+ 2111'“: Q: =

G” c 6-, M"

‘1’/___,°f+ §f+21I13—f=0.

II3 C'III caged.1

The solutions of Xfif = O are

”3 ’01 , ”I'll” —— 162 __ U3 , “1 [(13 — (l4 . U” .

When these solutions are introduced, th has the form

'11" ”I” “1"r- C u C C

A. : 22111. 4' .. —— 21.,“ —!— 2121.) '— "v.11. 4- = 0'hf I .1 av] l ( .. I 1 .5. 902 + ‘4 .1 .1903 1

and this equation is equivalent to

Il’vl __ (1112 _ (51):,»

2'011’2 1’22 ”i" ”1713 21’2'U3 .

 

. . 21. . .
One solutlon is clearly 73-5 , and, if we place this equal to some constant (I, we

I

have in order to determine the other

(22), _ (1212

20¢:2 2123 + (”212'

This equation is lmmogcneous, and it is therefore known at once that the inte—

4 grating factor is

1 9‘:

v2v1 — cw,"

* Page’s OrdinaiyDifferentialEquations-Art. 64.

 

 



WILLIAMS. ON THE GEOMETRY OF THE TRANSFORMATION GROUP, ETC. 31

Hence we have

21) vi 2:2 — av‘- -v2 — 3m)"

f__L;__ 121)2 + ‘—————‘— - 2., ‘3 (2211: c;

v-l’viz —'_“pf—‘73
”2.1.01 _"— (6'01'

@1222 — avl"

 

 
and therefore

, 2

Log (vlvf —- avid) — Log vi2 = c.

The two solutions are then

”3 _.. , 2 "‘4 2 .
2

:ul —~ 3 ——9t,

'

711 223

and
a 3 -'

v v; —- av 'u.‘ —— v v. . .

n1 s- .. .1, .. .1. _ Jun“ . l. V-‘ W 7'93 ._ 2])93 + 2):; ,

'01“ (”I

12 We shall next seek r21fluential pa)(222262673 for this 82124-g7'0u]) by means

of which all solutions of a higher order can be found. We know that if (.0 is a

function of m and y

 

A

a

dr=§:dw ‘” 2'2-
9 +WJ:

.. . .1
. . c P up

or writln ‘1 _____ .and , _ n

gala: 20’” 3y 9‘”

(2g: 2: gxdw + (153/232

Also

(28:; ::; 0%. . (2.1: + 81¢}, . (23/ + at . (20.7: + (’53, . (My.

If now go is to be an invarimzt function, then must 175: = 0 _: and therefore,

0 ;.: (3%. . (17!) + (794,, . (23/ +‘ ,b‘x . (2173: + 55!, . (203/. (It)

For X1': mg, equation (4;) becomes

(20 —|— ’79., . (2y + 5;” . r2.v ‘“ (8% + $53,) (.20: -|— 8% . (2y;
0n..0597; .

from which we get

(29% = __ 901/! (7551/ = 0 '

In like manner for If it is easily seen that
.

3%=0,®w:—%;

and for X7)”

(2%: = '_ $53“ (2.6!! = 97.7w

Hence the complete system has the form

a q 9

thfqzj‘l'gs'f'l‘fl‘N/q'é
zo

XM10f+7'3:—{ 23Ef‘l‘tp inf—=0

“551/

.
t

J

.
fl
)

.
Q
)

\
k
.

0 .

‘
G
p

0
)

.
1
3_1°.fi #_.%_ Lmhg #_

‘X‘7f: 1);; l“??? 27 '9), F253“ 9x9 ‘+‘IpJ/‘ ‘—
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We already know two solutions of this complete system. If now We solve

Ar)” = 0, we find among other solutions

4199 "“1191, — m-

This solution is found to be common to the other two equations also. Again

it is observed that 55,0 and % enter the three equations just as do ]) and g,

respectively. We can then write the other solution at once, which is

D199 ' 59th "" 2901.903/8 + 90.1127.

By means of the differential parameters, 121512 and 0,99, can be found all

solutions of higher order common to 1Y3)" = O, X57” 2 O, and 1Y7f = 0. We

can then introduce these solutions into 1115f: 0 and J'f = 0, and thus find

the solutions of our original complete system. We shall be content with find-

ing,r one of these solutions and a differential palameter for the whole group.

One of the solutions common to X,f—— 0,11'7" = 0, and 112]”: 0, was

found to be

21'! — 2348 + fr —-- u, .

\Vhen the Viniables a, 15/1, and i. are added, another can be found by means

of 31% which has the f01m

Z2 ('11,) p"). —— 311%” —,'-~ 3])1130- — 931; ;;_ u._,.

If now u, and 11 be intioduced into [lif—_ 0, it is easily seen that they

are solutions of Xf = 0 also. We then introduce the same into rlfif== 0,

and find

1131' 311,;1 +41,21‘ ,

which has the solution

“1.1

,“23

(11'?— 217116 + 1"”)

(1W1 — 3113111 + 3291”0 - 111')

The other three could be found in a similar manner. We will say they are

.13, 1173, and L3.

13. We shall next find differential parameters for the complete system.

It is clear that for Alf and Xsf

1:1.

(3% = 6% = 0 .

,lf now we introduce into Xuf = 0 and 11;]? = 0 the solutions

82 -— 7'2 m '11]

1122 — 2145- + (fr 112

P1611 "‘ 7%: ”:1

I) I!

(Fet- L' —- nggpys + (fry-7' :IT‘ '11.! ,
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the two equations take the forms

3156f; 22115—21 +321,313+ 21.631113 -1— 21457]:— = 0

. .1
‘u:1

Are/"m ”(62‘1" " ”3”71110:
8‘111

The solutions of 11’,f = 0 are

'112 = '111 , 21,, ”" 112, 2112132 + 21,21,| v, .

When these solutions are introduced, A",7" has the form

AM: 31¢.1.f.ag§_
q

'5

 

The solutions are easily found to be

 

J — ”23—— 7633— (1)9911 "‘ 959x)”

M=gzg=w:§f:7v
1 2 2’ 299.5 - Y 7

and ‘

D : ’Ui‘ “32 ”'7'f)(1)991/ _' 91996) + (1)25" 217/8 ’l‘ [2’2“9'1‘2’: _ 2‘5159011'5 + 391/2701) ‘

1'70 —‘ , .1 ' it _ C)

v. (fl 118+ 1W)

If the operations indicated by these parameters be performed on 15,113, K3,

and L“, all essential differential invariants of higher orders can be found by

mere differentiation.

We shall make use of the above results in the next section, where we shall

conclude our investigations with a discussion of the equivalence of surfaces.

,5 5.

Equiwdencc of Surfaces.

14. If a family of surfaces is given by an equation of the form

3=flw> (D

we may always write this equation in the form

3 "‘ 1211:1706,” — $0) + 90(J ”—3/0) +1” ("' “‘ may "i" "'0 (w — {110) (.2/ _‘ yo)

2, , .1

‘i' 2—)(3/_3fi1)“’l‘ (2)

where 20,210 . . . 2,, . . . are the values of 3,1) . . . 2 . . . when we assign to a: and

3/ their initial values .120, 2/0.

Now it is clear that the number of surfaces in the family (1) will depend

upon the number of arbitrary constants, 2-0, [)0 . . . to . . . in equation (2). If

the partial differential coefficients .2”, p, . . . 1 . . . are connected by no relation,

there will clearly be an unlimited number of surfaces in the family. But if all
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the partial differential coefficients except 22, are expressed by means of a sys-

tem of partial differential equations in terms of the remaining 71 differential

coefficients, equation (2) will contain only 71 arbitrary constants; that is, the

family (1) will consist of co " surfaces.

Now if we perform (122 the transformations of the 0,. upon a surface which

admits of 720 transformation of the 6%,, this surface will generate during the

transformation a family of C133 surfaces which, as a family, is invariant under

the 08. This family of co 8 surfaces

2=F(w,2y,cl...cs)

must be defined by a system of partial differential equations, which is com-

pletely (uni/680211111221) integral1le.* There is an infinite number of partial

differential equations in this system: but we can suppose them arranged so

that beginning with those of the lowest order they proceed to those of higher

orders. Also we may assume that from the equations of the 12th order, all

partial differential coeflicients of that order cannot be eliminated ; and, finally,

that the differentiation of one of the equations of the system will always give

another equation which has already been obtained belonging to the systemxl‘

The system of equations so arranged will always determine, from a certain

point on, all the higher differential coefficients of z, with respect to a: and 3/, in

terms of those of lower order (countng '3 as a differential coefficient of the zero

order) ; and as the family consists of co 5 surfaces, those of the lower differen—

tial coefficients which are connected by no relations cannot exceed gig/12 in

number.

If the surface upon which we perform the transformations of the Ga

admits of 711 < 8 of these transformations, it will readily be seen that it assumes

33 3"” positions, which will form an invariant family of 033‘” surfaces. What

has been said above for the family of w 5 surfaces is equally true for the family

of co 5"" ; that is, the latter family is defined by an invariant system of com-

pletely integrable partial differential equations, which determine all the higher

partial differential coefficients of s in terms of 8 — In. of the lower differential

coefficients, etc. .

If we indicate the partial differential coefficients, up to the fourth order by

2, j), q, 2'. s, t, 1;, rr, /1, 2., 11?, 15', ill, L, N,

it is clear that when a family of w 5 surfaces is invariant, the system of partial

differential equations must contain two partial differential equations of the

[211712 order, since there are ten partial differential coefficients up to that order.

. If these two equations are

9,“) (mg/2p . . . 2.) = 0, .921“) (mg/rap . . . i.) = O (3)

* Goursat, Vol. II, p. ~11. . 'tLie, Ed. I, Kap. 10.
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it is clear that the derived equations

8.0,“) _ 812,6” _ 8.02“”

8.21—’ 8y*’ 8.71

6) _Q2(:l)

a

 

   :0, =0, m

'will determine four of the partial differential coefficients of the fourth order.

Hence, to determine a family of exactly as 3 surfaces, we must have the system

(3), (4), and one more equation of the fourth order which is not a consequence

of (3), (4). This equation has the general form

'93“) (313/21) . . . N) = O ;

and it is clear that all partial differential coefficients of the fifth and higher

orders are determined in terms of those of lower orders, leaving (say)

eaaastmc

connected by no relation.

Proceeding in this manner, we are led to distinguish the following cases:

A. No equation of an 07'1217' lower 2/111”. 1/111 1/11'2'12 occurs in, 2/16 invariant

53/826717, of 1711712212 diflrcntiwl cgaations.

Case I. As we have seen, if two partial differential equations of the third

order occur, and one of the fowl/1 (which is not a consequence of the other

two) this system of equations is exactly sufficient to determine an invariant

family of to 3 surfaces.

(Jase I]. We might have a system of 2/1166 different partial differential

equations of the 2/117’12 order

og=0,ow=0,eg=0

invariant, and none of lower order. In this case, all differential coefficients

of the fourth and higher orders are determined in terms of those of lower

orders ; and thus as (say)

,2, 2-)) ’11 7': 8: t: 1”

are connected by 710 relation, the invariant family consists of co 7 surfaces.

Case [I]. If four differential equations of the #11712 order are invariant,

and none of lower orders, the family clearly consists of oo 6 surfaces.

These are all the possibilities when no differential equation of an order

lower than the third occurs.

13. N0 (Zifitmatz'al 6171111127071 of an order lower 2/11171 2/111 86007112 occurs.

There is only one invariant partial differential equation of the second

order, namely,

1722732 — 217gs —|— 937' = O .

The derived equations ~  
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determine two of the partial differential coefficients of the third order, and

leave two of them arbitrary. Moreover, the second derived equations

Jilin: = 07 fifty : O: I? = 0;L'll/

determine t/17’ce of the differential coefficients of the fourth order, and leave

two of them arbitrary. In general, we see that two of all the partial differen-

tial coefficients of any order, after the second, are arbit any as fa' as F = O

and its derived equations are concerned.

Thus when F: 0 belongs to the invariant system of partial differential

equations which define the invariant family of surfaces, we may assume that

up to the fourth order 1*" = 0 and its derived equations determine six of the

partial differential coefficients, (say)

1 17 2., 111', L, N,
I 1',

in terms of those of lower orders.

0118c L. Helme, if F = 0 belongs to the invariant system of partial differ-

ential equations, it is clear that up to the fourth order, nine of the partial

differential coefficients are still arbit 'ary as fa' as 1" = 0 and its derived equa-

tions are concerned. As the family cannot contain more than to 3 surfaces, we

must, therefore, have an equation of the fourt/I. order in the system which is

not derived from F = O.

This equation must, of course, have the form

.Qf‘“ = 0 ,

and will determine (say) 8 in terms of the other differential coefficients. It is

clear that the derived equations of 17' = 0 and .Q, :2 0 determine all the differ-

ential coefficients of the fifth order; so that the invariant system of equations

F: 0, 112,, = 0, 17,, :2 0, 111,. =-. 0, 17,”: O, 11:“, = 0,

It“) .—:. 0, 0"" = O , 9,," = O,
".L‘

are exactly enough to determine an invariant family of w 3 surfaces.

Case [L We might have, in connection with F 2 O and its derived equa-

tions, two partial differential equations of the foiled/1 order invariant, of the

forms

.91“) = 0 , 122‘“ = 0 .

In this case, the only partial differential coefficients which are arbit 'ary

may clearly be assumed to be (say)

3,1), Q, 7', S, ‘17, 0';

that is, the family consists of only an 7 surfaces.

Case III. In connection with F = 0 we might have one differential equa-

tion of the third order invariant which is not a derived equation of 1" = 0.
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It is clear that in this case this other equation of the third order has the form

It _ .
.Q" _ 0 ,

and this equation determines say a. All higher differential coeflicients are

now determined in terms of those of lower orders except

2’ 2), q, 7', s, I”;

that is, the family consists of co 6 surfaces.

Case ['V. If two equations of the third order which are not derived from

1'1 = 0, of the general forms

3 __ :l __
.0," _. 0, .02" _ 0,

are invariant, the only arbitrary differential coeflicients are

2, p, g, r, 8.

Hence the family consists of co surfaces.

These are all the possibilities when no partial differential equation of the

first order occurs.

0. Partial difcrmtml equations of't/Lcfirst order occur.

No single invariant differential equation of thewfirst order exists. The

only invariant system containing differential equations of the first order is

2) = 9 = 0,

which defines the invariant family of col planes

.2 = const.

We may collect our results as follows :

I. If the invariant family consists of co "' surfaces, it is defined by

(a) Two partial differential equations of [H . O. and one I V. 0., of the

forms

-‘~’. ([3, 2/3, 113. £3) = 0, 92([32 J3) 7‘3. [13) = 0, 13(13 -- - M1) = 0-

(b) One partial differential equation of I]. 0. and one I V. 0. which are

respectively ;

172—22)ng _ 2111.9 + 93)- : O , and .Q([3 . . . 111,) = 0.

II. If the family consists of 0:7 surfaces it is defined by

(a) Three partial differential equations Ill. 0., of the forms

521([3 - - ' L3) = 0: 92(13 ' - - [13) = 0: 133([3 [43) = 0-

(1)) One partial differential equation [1. O. and two 1 V. 0. of the forms

F=0, 1!,(13... 1i!’_,)=0, lJ,(lg,...1ll,) =0.  
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III. If the invariant family consists of w “ surfaces, it is defined by

(a) Four partial differential equations [11. 0.

aupntn=0,au,nzq=o,aupnty=0,amputg=0.

(b) One partial differential equation I]. O. and one [I]. 0.

' F=o,omu¢p=e

IV. If the invariant family consists of co ' surfaces, it can only be defined

W

(a) One partial differential equation [1. 0. and two III. 0., which have

the forms

F: 0, .Q,(I,, ...L_.,) = O, !!,(I,, . .. [3) = 0.

There are no invariant families of w ", w 3, or w "’ surfaces ; hence no sur—

face admits of exactly four, five, or six independent infinitesimal transforma-

tions of the 0,. There is then only one other case.

V. The invariant family consists of the 33‘ planes : = const. defined by

P=Q=V

From the above considerations we reach the following important conclu-

sion :

If two surfaces are equivalent 723/ means oft/Le trmza/‘ormations oft/1e (15,,

their eyuations must bot/I, satisfy t/ze partial tlf/ferentictt count/Tons enumerated

in some one of the above eases [ . . . V.

We may note in this connection that when

2ft —— 21993 + (fr = O . (5)

the invariant, [3, becomes elusive, as do also the and Doro. But

121;?
41,90

is a differential parameter which is not elusive; and this applied to J3, It}, or

[.3 (some of them are certainly not elusive) will give differential invariants of

the fourth and higher orders. In this way we can find all differential inva-

riants of thethird and fourth orders which are not zero on account of (5) ;

and arbitrary functions of these differential invariants will be the invariant

equations required in the system of partial differential equations defining the

invariant families of surfaces. '

“To know also that (5) represents co "' rated surfaces; and this unlimited

assemblage of ruled surfaces is divided into families of equivalent surfaces by

means of the other differential equations of the particular invariant system.

 


