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y PREFACE.
Lire.

The author’s early training began in the public schools of Charlotte

" County, Va., principally the High School of Smithville. In the year 1889

he entered Hampden-Siduey College, where he graduated with the A."B.
degree at the commencement of 1892. He was then elected principal of the
Boydton High School, which position he resigned after two years to become
first assistant of the Commerce Street School in Roanoke, Va. After one
year’s work in this school he returned to Boydton to accept a position as
private instructor for Col. Thomas F. Groode. Tinally, in the year 1896 he
entered the University of Virginia to pursue a special course in Pure Mathe-
matics.

The following pages were presented to the Faculty as a dissertation for
the degree of Doctor of Philosophy. The subject met with the approval of
Dr. J. M. Page, and it may be added that, so far as could be learned from
the few works on Modern Mathematics in the University library, the inves-

tigations are new. 4.194%

UNIVERSITY oF VIRGINTA, 1804,







ON THE GEOMETRY OF THE TRANSFORMATION GROUP

PO My Y, Yps 2, wp —yg, Fr.

By J. E. Wiprianms,

1. In the following sections we shall not attempt to make an exhaustive
discussion of the above group of infinitesimal transformations, but shall limit
ourselves to some of the most interesting and important of the investigations
which are possible. )

We shall begin by determining whether or not any invariant equations
exist, and Ly finding all absolutely invariant points, as well as the path-curves
of the' .  We shall limit our cousiderations to points, curves, ete., within a
finite distance of the origin.

§ 1
2. Represeuting the transtormations of the group by @, 7, where (£ =1
. 8), we know that it an equation of the form 77(2, y, z) = 0 is invariant
under the transformations of the ¢, we must have ,(F') = 0, either identically
or in virtue of /(z, y, ) = 0.*
If now we form the matrix of the equations

J’

Y =% 1040=0
L) =0 450 =0
ey 040+ =0

9]1
(ﬁ)—0+w_o7’-| 0=0

X(F) — 7i£+040 0

X - 040+ =0

gy = g L oF .
Q)

(F)=040+2—F=0

*Lie’s Continuierliche Grappen, Kap. 16.
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we find for one of the three row determinants

1 00
010 |,
0 01

which can never be zero. This shows that no system of values of 2, y, 2 will
make all the three row determinants vanish, and hence we conclude that no
equation /(2, 9, ) = 0, that is no surface, within a finite distance of the
origin, is invariant under every transformation of the G..

3. The most general transformation of the group has the form

Xf=(ax 4 by 4 ) p + (02 — ay +¢,) g + (@7 + bz + ¢)r=0. (1)
Since, if a point is absolutely invariant under X/, we must have ow = dy =
0z = 0 at that point, all invariant points are found from the equations
) | ax 4 by + ¢ =0

ap — ay + ¢ =0

@ + bz + ¢y = 0
which give
(ac + be,) . ae, — e o = 17D — daye,

@b T A Fah T 2

L= —

These are the coordinates of all points invariant under the general transfor-

. mation [Xf. By specializing the undetermined constants «, ..., ¢, we find,

of course, the point or points invariant under each particular transformation
of the ¢ 1If, in particular, the transformation reduces to a translation, the
point moves off to infinity.

4. We shall now find the path-curves of the general transformation of the
(. Trom equation (1) in Art. 3 we see that they are given by

da dy dz

ar + by + ¢ aw—ay + ¢ w@F + bg + ¢

The equations in 2, ¥ can be made homogeneoﬂs by substituting
v=x—h, y=y—=rk,
where / and £ are determined from the equations
wh + bk 4+ ¢=0
ah —ak +¢ =0.
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We then have

(@ — ay) dz — (am + by) dz = 0.

If now we put in this equation

<2
ll
@

it has the form

(@, — 2uz — bF) do — (a + bz)adz = 0,

or
dx Ly (— 2 - 2z)dz _
= Ty — 2az — b )
x
Hence
log @ -+ & log (¢, — 2az — 12°) = 4 log A5

or substituting

‘l
|
gl

R

we easily find

wat — 2axy — byt = 4.

Lastly, substituting for # and y their values @ — 4 and y — £, respectively,
this equation has the form

apt — byt — 2aey + (20k — Qe,h) & + (2ha + 2kb)y + ot — Qahk
’ — W — A =0. (2)
If now we find 7 in terms of y, from

aat — Qaxy — byt = 4,

we have

a@ = wy + Vyr(l + ad) + dag;

which substituted in
dy
e — ay
gives
dy .
VAL + ) + Ag




8 WILLIAMS. .ON THE GEOMETRY OF THE TRANSFORMATION GROUP, ETC.

Hence we get the other integral function of our differential equation from

(/? dz

<1+alb)%\fj R OEE

2

If ac, < 6—4—2-, it is easily seen that the integral of this equation is

R l°g§§+\/7’ Ty g ab§

1 log 24 4 by — ¥ b — da,e,

S - =log B.
by — da,ey)X 22 + by + 1707 — dau, °8

§= _T—Tu,_g(wl,,, 332“ + Z’z“l///gz—‘l“z“‘-’z m
( Y/ \/?/ }— 1 + al ] ” 2((._,-: + ,)-_» 'I' o /)-_32 - 4(1203 ( ) ’

or substituting for y and A their values,

{ (v — &) +‘\"(:y,,f,ulff,)%_7‘ By (v — fl';> (%— k) + @’ (@ — A §<l+mm/

br _ Aaa ) — L
=25 3 Aayz + b — 1 /}’ — dayg, E(bq‘-‘—-mcc-.v)’f . (3)
2,z + by + 170, — dage,

9

We shall not consider the case when «,c, > 04, since in so doing no simple
results are obtained.

Equations (2) and (3) taken together represent a family of curves which
are called the path-curves. This family, of course, is invariant in such manner
that each curve is absolutely invariant while the points are interchanged among
each other.

5. It is interesting to observe that equation (2) represents a family of
cylindrical surfaces whose traces in the zy-plane are conic sections. If we
represent the coordinates of the centre of these conics- by (2, ') and find them

in the usual way, it is easily seen that
o alha 4 kb) + b (— hay + ka) _
= = A,
— (b + &)

P a(—ha + ka) — a,(ha + kD) _
y= l — (b + « l~) =k,

where, as we have seen, 4 and % are found from the equations
ah bk +c¢=0,
ah — ak + ¢ =0.




ON THE GEOMETRY OF THE TRANSFORMATION GROUP, ETC. 9

WILLIAMS.
Hence _
, we -+ b , ac, — @,C
a:=/:,=a—{-—.(,i—i——ﬁ; y =h=—t—7.
@+ ad a® -+ b

Now this is the point which we found to be absolutely invariant under A7, in
the ay-plave. That is, the conies which we found as the path-curves in the
azy-plane have for their centre the point which is absolutely invaviant.

A number of interesting problems suggest themselves in connection with
this part of the subject. However we shall conclude this section with n remark
on the invariants® of n points under the transformations of the ¢.

6. It » points have an invariant under the (7, it is clear that for some
function 7' (2, ¥, 27) we must have for each transformation of the G :

2 2,
of =2 s oy + X -‘:f 0y, -
e

Tt is also clear that an invariant of the transformations containing x and y is,
ab the same time, invariant under those containing z ouly, and wvice versa. We
have then from (1); omitting for the present the equations containing z,

H

" n
wr Vo ; o ! o AT,
“1' ,f ‘lipi 0 H ‘X‘.'./- "l'l'I/: 0 ’ ‘l-l,f ‘l‘i'l’i{[/' — 0 )

t

3 U3
o : R O , .
Ry ’l't?/f/)i =0, ot -1-zf’«r27i = %1?/1‘2)1' = 0.

This is a complete system of five members in 2u variables, so that there are
I A ;

9% — 5 solutions. The solutions commou to X, f = 0 and X,/ = 0 are scen

to be
R | ;

@, — - g and Yy — Yi— where i = 2 ...0, ) =4 - n — 2.

It now these solutions be introduced into the other equations, the latter beconte

X f= Yy, Of =0

i 9(6.,
Ay
Xof = 2y —;1:: 0
i
o
v - \I 0‘ —_— /' — (‘
N f = Xy 2 0,i=1, oon—1,j=14 +n—1.
C(tJ-
The solutions of X7/ = 0 are
ie
] . .
;’;1, wy;, where ¢ = 2...n—1,j=mn...22—3.

T

* Lie's Continuierliche Gruppen.
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" w
Writing i?l oo Wy g = Yy ... Vg3, the two remaining equations become
Loy

expressed in terms of the v;

/’
Tr=3 ¥ 0. n—2j=itn—1 09=1

V; avj ¢
> b3} , 9
A..f (’Uzvn 1 — Y ’U) —Ll]):l -+ b (un—l'v.v) ‘9'5‘ =0 ,

)
i=1...n—9,j=i4+n—1s=n—1...2n — 3
The solutions of X, /= 0 are
Viy Vnet — Vilnt wherei =1...n — 2,

Finally writing for v, ... v,y — v, Vs, vespectively w, ... w,, , and intro-
ducing these solutions into X,/ = 0, we have

A’f—_wwj 7‘-{— wj’:f__ , i=1...0n—2, j=14+n—2

C?

Hence we find that 2 — 2 of the common solutions have the forms

Wiy .
dy = R i=1...0—2;
w;
while n — 3 have the forms
w, _, — W,
Q, = =2 §=n...2n —4.
Wy Wy o

The 4, considered in the plane are nothing but the double areas of tri-
angles ; and it is easily seen that we can form # — 3 other independent func-
tions of the 4, and €, which will also be double areas of triangles.

Considered in space, since the above solutions satisfy the equations in z
also, these results show that the projections of all areas on the zy-plane remain
invariant under all transformations of the G

As we haye said, the solutions obtained from the equations in z will also
be invariants of the whole group. Here, as we shall see, it is‘only necessary
to consider the case with four variables, whence general results may be obtained
by inspection. We have then

Xfomr d vty r,=0
X f—=zp +2py + 2y + 20 = 0
‘st =l 4 2t + airy + 2°r = 0.
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The solutions common to X, 7 = 0 and X,/ = 0 are easily found to be

‘The solution to this equation is

Y Vs .. lrgx - Jﬂl EX 'ﬁ,_c.g‘l
v+ 1w+ 17 (75— [z.,—..u’

L3

which is the anharmonic ratio of the z ordinates of the four points.

It is clear that if we consider n points, the results will be » — 3 inde-
pendent anharmonie ratios of the n points taken four at a time. This is equiv-
alent to saying that the anbarmonic ratio of any four planes parallel to the
ay-plane is invariant under the &, Thus we find that » points have 3n — 8
invariants under the G, of which » — 3 contain only the variables z;, while
the others contain only the z; and y,.

If now we consider only two points, the complete system consists of eight
members in only six variables, and therefore has no solution. We can, how-
ever, form the matrix of the equations and determine whether or not any rela-
tions exist between the elements such as will make all the six row determinants
vanish. Such relations, if any exist, may be seen to be invariant. The matrix

is
11 0 0 0

0
0 0 1 1 0 0

o O

o <o
[ <
o je=
= <
K [W
w —_

2

2

)

w

0 0 O 0

w

It is readily seen that if , = @, and 7, = y, at the same time, all the six row
determinants of this matrix will vanish, since in each two columns will be
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identical. Also if 2, = 2, each determinant will vanish for the same reason.
We therefore have two invariant relations, namely, 2, = z,, and the simulta-
neous relations z, = a, and y, = .. '

Now the transformation

(az 4+ by + ) p + (@ — ay + ¢)¢
in the 2y-plane leaves the point given by

wx + by +¢=10)
( (1)
wr— ay + ¢ =0 g

’

invariant. Let this point be 2/, 3. It avother point a,, v, is held, both ', ¥/
and @,, y, must satisfy (1),  DBut this is impossible nuless «* 4- «,6 = 0; that
is, the equations would not be independent. Hence if we hold w,, 9, all points
in the ay-plane are absolutely invariant. Hence the invariant simultaneons
relations z, = &, and y, = 7, mean that if we hold @,, y,, the point , y, z can
only move along the line

@, = i,

=1

The invariant relation z, = 2z, means that if the points lie in a plane hefore
they are transformed, they lie in a plave after they are transformed.

By a somewhat similar process, we could find the invariants of m poiuts
and » planes.

78

2.

7. We will now extend the transformations of the group with a view to
finding the digferentiul invariant of the lowest order, and subsequently all those
of higher orders, where y and z are functions of 2. We will in general write

(,Z“"l/ (/u',;. -
dar Y g =
From

Yy — Yl 0

we have at once the increment which 7, receives by means of any infinitesimal
transformation in the form

doy, ., dox

TYn = de O e’ (1)
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and similarly for z,

0z, = ﬁzl'_:l —z _l/()::L' (2)
" dz "

The transformations, as is well known, are extended by means of these for-
mule. In order to find the differential invariant of the lowest order, we must
extend the transformations three times and equate the results to zero, since
that will give a complete system of eight members in nine variables, and theve-
fore one solution. If we extend less than three times, it may be seen that we
have more independent equations than variables, so that according to the
general theory of the complete system no solution exists. Hence the differ-
ential invariant of the lowest order will be of the third order. Thus extending
by means of (1) and (2), we have

X f= ;7—; =0
g
X, f = ‘:—— =0
of =4
X =0
[
oo L of
L=y Ty, =0
. LA o . of N
Xof -y f: -y 35—. — I3 f—l — Y\ A; — (94 + 220) f
13 3 97.' . N Qf‘
— (dnys + 3U5°) 3?/‘ — (21 + Byz + 3yi2) AT = 0
3 C2y

Al Q4 Jf ars
NS 0 w0 48 =0
<

oy
T

Xof £f~ af 07 A oF _ 9

oy s . o ‘
X.f-. & J—‘ 4 2zz, ,,f 4+ 2 (z° + zz,) ”j« 4 2 (32,2, +
C & c ».32

The first four equations show that z, y, 2, y, are not contained in the solution
sought. The complete system can thus be written in the form
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. aF 2 I n 8f
X f=y2 %gl + 3Y.y» 931; + (32 + 2912) Eé + (s + 392) i.;
X Zy Cd
+ (ysz + 3y.2 + 3y,2,) g‘ =0
s
2 af o
Lf oz :xft + 2 q{ + 2 "; =0
CE Gy bt
) o ) A ~ d 2L
A2 AT AL A L
oF 3 o
11:;,70::, 2z, 3—27: + (’dlz i Zez) %— + (32132 -+ 22‘) %7: =0

These equations cau

be greatly simplified by algebraic reduction. Replace

Xf=0by X)f —y Lf=0and X,f=0by Xf—24&/=0 We

then have

Yo = ys

[0
-

AV

2y Yy Zy
ﬁf dF i
< - -
) ‘i‘%@j ‘f'dsé¢ =4
< < <3
AL N g A A
A w, of . of < o, OF
A -"' ():7/2 5{ “}“ 2.3._! :”) 'f'“ 4"7/.‘ A" 'l" 13»:3 . == 0
cZ) Yo e, clYy c'Zy
54 AL
bz& + 3z, :';T == 0
S C.:".‘

Again, replace in these equations X, f' =0 by ;7' —y, X f=0and X, f=0

by X, f — X f =0,

X f

‘X’ﬁ. 7" =g

X7

X

aud the equations are rednced to the forms

I
34 E"y.,
~ Qf [ af
#2482, = 0.
V2 oz,
[N 2 Lt-/"

It now remains to find the solution to this complete system. As an expla-
nation of the method by which we shall proceed, we recall the following
theorem from the theory of the complete systetn.

IfF A f=0...4,1=0 form a complete systent in the variables u; ... 2,

e e e
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the integration of the same can be accomplished in the following manner. We

seck the solutions ¢, ... ¢, of A,f = 0; then Sorm

) Ara
Ay f = Ay, % + .o Ay 9;7‘ X = 0.
7 CYn--

If the ratios of the Ay, ure not Funetions of @y ... @y alone, the equation

A, f =0 will always break up into several equations. We integrate one of

these and, introduce its solutions &y . .. d_y 1180 A, f =0. Theresulting equu-

tion
of of of
[~ + -
Ay w5+ P SUR = o 4 Ayl ap— = 0
e <l S AT
is treated in « similar manner, and so on. [fr < nwe find wltimately the
i n — v solutions of the complete system.
i Now the solutions of X7 = 0 are
‘ 2y, Y 2 and oy Gy.'zy — 1.
; Iutroducing these solutions as above indicated, the remaining equations assume
i the forms
: ~ N L A4
- p cr < of
Nofa 3 b ngs s = 0
; [ 7y ctl
! of L3 F
X By, + 24 i o =
g ! % s T éz, - &
| o or
S - S 2. L' __
‘4 “h‘,r — B4, 7T 18!/, 2y —:\—[-; =
- 9 L
| . .
{' The solutions to .\, 7 = 0 are easily found to be
i
{ 2 "
! Yoy F— Y , =W
i | <
[
% . . 0
Introduce these into the other two equations and they have the forms
é np A ap
{ 1’ 3 C.f , L/.f i g'f .
{ N F = 3y, 2 p e Sw o =0
o = 30 Qs TS w

Z

. 2 of
X & _ 18,20 i']: = 0.

M M

Finally the solutions of X, /"= 0 are

y, and yv* + w T 03

and .Y, /' becomes

. of of
- X7~ 3y, "“TZ + 8, 3 =0,




16 WILLIAMS. ON THE GEOMETRY OF THE TRANSFORMATION GROUP, ETC.

Hence the common solution of all the equations, that is the solution of the
complete system, is found to be

;oo Yt o a (e — Bys)
fan g E 27,

This then is the differential invariant of the lowest order. - Those of
higher orders can be found by further extending the transformations, and for
future use we shall find two of the fourth order. Extending as above, and
omitting terms containing i, ¥, 2, 7, since these variables do not occur in the
solutions, we have

g

3 A
X.f—yz Zﬁz + 7/1?/»' f +( + 292 -) f F (4., + 37 ’)
1

L
~h

i

Yy
+ (71 + By + 37/.~g) 5 - 6y + 1002 5 -—f =
PPN U
X.f— 2 ff. 1 3y, 55 + 23; L ,;’i + 32 97‘ + By, 951 —0
S =2z gf— + (2} + 2z,) f:, + (32,2, -+ 22,) ::f- =0

These equations can be simplified exactly as in the preceding case, and we
have after this reduction

'\f. d
-
Xof - By =— + Wz |',g
oF
r g -
Nz = -
(A
F 2 2 oF F
- J . € L' - - K “ : _ [N
‘"\T,f - 5.7/.’ S + 2, 9,',‘ -+ Lz/:SQ + 2 ey 92 8 ’)J4 ‘\’/l =10
ap 1
Nofee oz 2+ Bz, f;-f =0
C‘?.! C.‘:'_.,,
The solutions of A ' = 0 are
Ziy Yoy Yon Yy and 82,0 — 22z, 70w
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These solutions introduced into the other equations give

2 2F 3
X f = 3?/22i + 102y, 5,1‘/{ — 2y2° Eii =0

ay“‘ ci
Ap
S
£y
g & a5y Y =
AL By, 9?/:, + 4y, 5.;/—‘ Y + 2w e 0

If we next take ./ = 0 we have as solutions

wo__ .,
Yoy Y Y pur i v
<1

and in these variables the other two equations have the forms

oF AL ~p
Xf o 8yl 10y, 3L — 9y, q/: —0

"y ",
e O O s O g o
1\.7'76 froend -5‘7/-3 9—?): "‘i‘ 4?/3 ?:’7; + ').7/-[ 8?/‘ + a0 ?2') = 0 .

We next find the solutions of .\, 7 = 0 to be

Yo Byt — Byays . my yi A Byte =0

and A7, f assumes the form

o ap A Y
N By, -,:—f— - 8 ,:7‘ -+ Su ",\f =0,
Cla ch ch
Hence we find
n Syt — 3.y, "
,/_' == —ui == —.———_WT_—__ s /—4 = - =
Y Yo n

This process of extending the transformations could be kept up indefi-
nitely, and the differential invariants of any desired order could be found,
theoretically ; but such a process would soon become very cumbersome, so
that we shall in the next article give a more convenient method by which all
the differential invariants of an order higher than the fourth can be found by
mere differentiation.

8. et ¢ be a differential invariant of the lowest order of the (/,; we now

(l"'r-} which shall be a differential

. [
seek a fnnction ¥ a2, vy, 2,9, 2, .- 5 &,
) am |

invariant whenever ¢ is.*

* Lije's Continuierliche Gruppen, Kap. 22.
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Indicating by o the increment received by meaus of an infinitesimal traus-
formation of the grouyp, since
do = ¢'dz
we have
olde = o0 de - ¢ . oda

or since ¢ and 4 can be interchanged,

- v,  dic ,dox
0e - T — )
’ dr T ode

Now since ¢ is to be invariant, it receives no increment ; that is d¢ = 0.
Hence

: \ , dox

l)("O [ (rf -—/-——'— .
(25t »

If in this equation we substitute for oz its values as given by the transforma-
tions p, ¢, », 2y, we find in each case that d¢" = 0. TFor yp, we have oo = 7,
and therefore d¢’ = — ¢’y,. In the same way we may find the increments
which ¢’ receives by means of the other transformations.

Extending now the transformations so as to have a complete system of
eight members in nine variables, and omitting terms (Art. 7) containing
aLg L 2L 20

n- s A—y Al =, it is easily seen that one complete system has the form
oL 93/ ¢E oY,

1 ) 2L . ;U 9, 5 S° B
‘lﬁf "2 2 + 3,12 v + (W20 + 2p12,) e (4, -+ 3y5°) C‘/-
“1 J2 bt g1
Q0
+ ¢y =0
NG
D0 ()
Xf 257 e =0
6 — F1a; %2y
o'z 2,
a 20 20 20 20
roop c'og C Cui [ Cad
Y. z By ot 4 2%, 2 L dy, 2T -0 LT =0
< 4.]‘ 1921 + ./.. 9?2 'i_ iy 951 + 1 9:{ X l y E\‘w/
. a4 o oY
X f =2z P (22, + 2%) = 0.

In these equations replace X, f = 0by &,/ —» X, /=0, wd X, /=0
by X f — 24, f=0. We then have

Al J 2
’d [ n Cud
X f vz <= 4 Byt =
hf J2¥1 9':2 ./.! 9]/:,
> ‘""9'!—{—"9'2—0
O =19z T T 8,
2 A i A
GF e i(—! + 3% ——f,’l -+ 2z, f,'z g 23 =0
€2 T Y ey oy ¢y
. 20
r 0 Caw
As' == = A == O .
ce,
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The last equation shows that z, is not contained in the solution; and since
this is the case, the first and second show that the solution is also free of
and y,. Hence, we find the common solution from

dy, _ d¢

3y, ¢
which we write in the form
’
©
do =
4 7.0

Hence, whenever o is a differential invariant, Jo is a differential ‘invariant of
the next higher order. Therefore, by means of o, which is called the differ-
ential parameter, we can find from any differential invariant one of a higher
order by simply differentiating the given differential invariant totally with
respect to @ and multiplying the result by 1/7,'. Thus

_ 45y, — Yyty, — 40y,
J(J.l) - 3?/2.1 - '];'n
is a differential invaridut of the fifth order. Also
A(L) = 1

is a differential invariant of the fifth order, which is clearly independent of </,
In the same manner we see that

S ()= ()
is o dQifferential invariant of the sixth order; and universally
dn(J,) and JML)

are two independent differential invariants of the (n + 4)th order. Thus it is
clear that we can write ‘down all the differential invariants of any required
order. : ‘
We have reserved the finding of the invariant differential equations and
invariant systems from the determinants of the equations forming the complete
systems for the next section, wherein we shall also discuss the equivalence of
curves. ‘ :

$ 3.

Fyuivalence of Curves.

9. If we extend the transformations of our G\ once, it is easily seen from
the determinants of the matrix so formed that the only invariant differential
equation of the /. 0 is z, = 0.
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If we extend twice, we have the matrix

1
0

i

Zz

0

0 0
1 0
0 1
z 0
0 0
0 =z
—y 0
0 =z

0
0
0
1

- :’/12

0

— 2,

0

0

0
0

— Y&

2

0 0
0 0
0 0
0 0
—3yY — (¥& + 2y2)
0 2y
— 37, — 2z,
0 2 (2" + zz,) |

Indicating by J; the determinant formed from this matrix by suppressing
the ¢th row, we easily find

4 == By'a?,

invariant differential equation is z, = 0.

and z, = z, = 0 are invariant systems of equations.
quence of z; = 0, which gives no new results.

4 = 22"y, ,

= b 2, 3.2
‘J:i T 3.7/2 e,

J
Jy = By (@Y, — Y),

4

- .
CEAPN S A

= by,

4= 6yy2’,

A== by’ (y — ay).

Siuce z, is the only factor common to all these determinants, the only
If, however, we write /, = o, we
find that , = 0 is an invariant equation of //.0. We also see thatz =y,=0

These are

equations of an order lower than the third.
If we extend the transformations three times, we have the matrix

0 —u* —wz —3yy —(pe + 2u.) —(4ys + Bys°) — (3% 82+ BY12)

1 0 0 0
01 0 0
001 0
0 2 0 1
y 0

0 =z 0
z —y 0 —2,
0 0 =2 0

0

0
0
0

2..

=1

ar
£

0
0
0
0

0

- 33/2

0

0

0
0
0

0
0
0
0

0

- 4.’/:5

But 2, = 0 is a conse-

all the invariant

(== e N )

0
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Indicating, in this case, by 4, the determinant formed by suppressing the

ith column, we find
4y — 182, dy == 32 'y, o, = 18z0yy%z,

dy o 22, (Byyze — 42%y" — 9.8, d; 0 182y, (12 — 32)°y) -
The others vanish identically. We see from these determinants that the only
single invariant equation is 2, = 0, while 2, = , = 0 is an invariant system;
and it is clear that these are the only results obtained from further extension
of the transformations. Hence, all invariant equations of the third and higher
orders are obtained from the differential invariants.

By writing -/, = 0, we find in particular under this head y, = y, = 0 as
an invariant system; but as y, == 0 is a consequence of y, = 0, this case gives
us nothing new.

I: If now we perform the transformations of the G on a curve which
admits of 7o transformation of the G, this curve generates an invariant family
of o ® curves. They may be represented by :

(a) One equation of the zero order and one of the V///. 0.

(b) One equation of the /. 0. and one of the V//. 0.

(c) One equation of the //. 0. and one of the V/. 0.

(d) One equation of the //7 . 0. and one of the V. 0.

(e) Two equations of the / V. 0.

Since no equation of the zero order exists, case (a) is excluded.

1o considering case (b), we find that the only differential equation of the
[.0.is z, = 0. Hence the curves are plane curves, lying in the »' planes
z = const. Since no figure in the ay-plane is changed by #, 27, 2*r, the w7
curves are the same in each plane parallel to the zy-plane. Hence the differ-
ential equation of the VZ/.0. is one which is invariant under

Py 0 Yp W — YL, A
F(J, ... J)=0. (1)

Lie has shown* how to reduce this equation in the following manner.
It is easily seen that it can be written in the form

of yvhich the form is

797 3 =0 o
where J, =y, =y,
and o = 3y, — Byst, oy = BYYs — 18yaysys + 4yt

It (2) has been integrated we find an equation of the general form
S, = 0.
* Mathematische Annalen, Band XXXIIL
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Now introduce as new variables /,, and I = »,~%. : then we find
¢ 2 3

AU _ Loty 1J,+ U

dJ; 8 y e, 3 T
or .
M I'It_.i' 0_2 3)
df; =8 D)’ (

which is a Riccati’s equation.
If . W(UJ,) = const.

is an integral equation of (8), we can find two other integral equations o
J, = @ (J)) as follows. Extending yp, we have

” Qf 2 97" 97" 2 9f d .
Ath: '?/TTJ - é?—/; — 33/1?/2 ‘az — (43/,"?/3 -} 3_7/2) 9?_/_‘ — (5?/]?/4 -+ 102/2?/3) 5:5‘ :
from which we see that :
Y()=0, X(U)=--3ys
and : —— aw
(W)= -3 S W

Sl QW

: IO ; P
XX (W) = 9y, c@U” + 6yt T ;

Now _
W = const., X(W) = const, XX (W) = const.
represent three independent integral equations of o/; = @ (/) ; and if we elim-
inate ys, ¥y, Yy We obtain a differential equation in y, and #,, which can be
integrated by two quadratures.
Tor case (c) we kuow that the only differential equation of the /7. 0. is
found by writing /, = w0, which gives
. =0.
But then all the differential invariants of higher orders either vanish or become
infinite ; so that this case is excluded.
The two equations under (d), of the //7. 0. and V. 0. are
/, — 9.7/22322 + 2 (ﬁl?/:sz - 6'.'/2233)
3 212!/-_:8/3

and F(/fy, ) =0, (2)
The integration of (2) can be reduced as in case (b). If from /" = 0 we find
y = ¢ (2), then, substituting in (1) for y, and 7, their values in terms of @, we
have

= const. (1)

2 L,
18— 6,’z)
30

2, 2 P
Is . 9‘,52 Z + 2

<=1

= const.,

3
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which is a differential equation of the third order in z and 2. This equation
may be written in the form '

which, as Lie has shown can be reduced to a Riceati’s equation of the first
order.
If we put

then will dy

or IZ_/ = 1/2 + F(a) .

If W(yz) = const. is an mtegral equation of this Riccati’s equation, we can
find the required integral equations of w = /(2) by differentiation. If we
write

C

A ’cf + 222, -+ (222, + 227°)

oz,

I~

510,

b

o2
1=

1)

then X,V = const. and .Y, (X;W) = const. are known integral equations of
w = F(z); it is sufficient, therefore, to show that IV, X1, and X (X )
are independent functions of 2, 2, 2, and 2, From

Xi(z) =
X.JV—iH Xy =20,
oy
OV Y — 8”’ ”’¢~
XX W) =14 "}‘/““ 7t 4 4 oy zz,

we see that Il X, W, X (X, IV) are really independent with respect to z, z, 2,
and . Thus the integration of w = J () is reduced to the Riccati’s equation.

Finally, considering case (e), we see that if the differential invariants are
1, I, J,, the two equations of the fourth order may be written

2, (-Z;’ [49 J) =0, &4 (IJ: 7, '/)
or
(I)([?a [l) =0, 'ﬁ([;s J,)=0.

II: If now the curve admits of one transformation of the &y, the invariant
family consists of only w7 curves, which are defined A

(a) By one equation /. 0. and one V/.0.; which are z, = 0, (-, ... Jy)
= 0. This case is similar to case (b) in L.

(b) By one equation /7 . 0. and one V. 0.; which case, as in I, is excluded.
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(¢) By one equation /77 .0.and one /V'.0. They are clearly /, = const.
and J/, = const. The second equation can be integrated. The first can also
be expressed in the variables z and 2 as in case (d) in L

IIL. If the curve admits of two transformations, the family consists of
o ®curves, which are defined

(2) By one equation /. 0. and one . 0.

They are z, = 0 and F'(J,, J;) = 0; and this case is similar to (a) in IL.

(b) By one equation of the 7/ . 0. and one of the /V". 0.

This case is again excluded.

(¢) By two equations of //7. 0.

Since there is only one invariant equation of the third order, we exclude
this case also. ‘

LV. If the curve admits of three transformations there are oo ® curves in
the family, which ave represented by

(a) One equation of the /. 0. and one of the 7}. 0.

(b) One equation of the /7. 0. and one of the ///. 0.

Cases similar to (a) have alveady been considered. Case (b) gives only
¥, = 0 as the invariant equation of the second order. The only invariant
system would be 7, = 0, 7, = 0, which is excluded. Tor y, = 0is a conse-
quence of 7, = 0; that is the integration of 7, = 0 must give y, = 0; other-
wise the equations are incompatible. So that we have only one invariaut
squation.

V. Suppose next that the curve admits of four transformations of the (;
the family then consists of w ' curves, and is defined by

(2) One equation of the / . 0. and one of the //7 . 0.

(b) Two equations of the /7. 0.

Case (a) is excluded ; for it z; = 0, [, becomes elusive. Also case (b) is
excluded, since there do not exist two invariant equations of the second order.

VI. If the curve admits of five transformations, the w® curves of the
family then generated are defined by

(a) One equation /. 0. and one // . 0.

As we have seen, the equation of the first orderis z = 0. There ave

two of the second order which we can consider in connection with z = 0.
They are 5, = 0 and 2, = 0. If we take 7, =0 and 2z =0, we find =
straight lines lying in the w ' planes z = const. But z = 0 and 2z, = 0 give
us no ease, since z, = 0 is a consequence of z, = 0.

VIL If the curve admits of six transformations of the group, the »?®
curves of the family must be defined by two invariant equations of the first
order. DBut since there is only one invariant of the first order, this case is
excluded.
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VIII. Lastly we consider the case when the curve admits of seven trans-
formations. But this case is excluded, since the o' curves of the family
would have to be defined by an invariant equation of the zevo order in con-
nection with one of the first order, while no invariant equation of the zero
order exists.

From the consideration of all these cases we conclude that there ave
no invariant families of w?*, % or o' curves. In other words, no curve
admits of exactly four or exactly six or exactly seven transformations of the
G, Hence, if two curves are equivalent under the @, they are either mem-
bers of families of plane curves defined by /7(-/; ... ;) = 0, lying in the
planes z == const.; or they are members of a family «o® curves defined by
1, = counst. and F'(J,, /) = 0, 00 @ ([, [) = 0 and ¥ (L, J,) = 0; or finally
they are members of a family of o7 curves defined by /, = const. and o/, =
const,

§ 4.

10. Having disposed of the problem concerning invariant curve-families
as defined by invariant differential equations, the next step which most natu-
ally suggests itself is the corresponding investigation for invariant families of
surfaces. We shall accordingly devote this section to finding all the differen-
tial invariants which express properties of surfaces, and invariant partial dif-
ferential equations.

Here z must be considered as some function of 2 and 7, say

2

We shall in general write

oz 22,
[Ca— » ve . q e L
A Y AT — Yy Ry oEE
on Qy 2
:

Mz &z

g T o

ol 9-1.;"'.?]/

and find in the following mauner the increments received by the functions p),
g, ete., under the transformations of the (..

If then »

z=F(=y),
we have
dz = pday + qdy,
and hence
doz = dp.de + dyg.dy + p.doe + ¢.ddy. (1)

In extending the transformations of the group by means of (1) we shall,
as usual, preserve the order in which they occur in Section I.
Tt is clear that dp = dy = 0 for X f, L7, and X, /.




26 WILLIAMS. ON THE GEOMETRY OF THE TRANSFORMATION GROUP, ETC.
For X, 7, since 0z = 0, we have
0 dp.de+ dg.dy + gde = (Op + q) de + oy . dy ;
from which we find :
] op=—yq, 0 0!
In the same way we see that for Lf
op—0, 0y — —p.
For X, f we have 0z — 2. Hence

dz = pda + gdy  op.da + ay.dy,
or

_ (@ —p)de + (g — ¢)dy - 0;
which shows that

’)p:Z); {)Y::Y

In exactly the same way the inerements of 2 and ¢ for .X, f and .Y, f, respec-
tively, are found to be

0p == —p, dy —~q, and op ~-22p, 0o = 2.

Hence the transformations once extended may be written

oo Of
Jllf._'.té‘)z;
-, _Of
X, “ 3y
é f:af
ey
_of @
4x.!f__w93;—y9]]:
ars 9}‘
Ll vy oy,
& af d
“'(]‘_—9?";:; ‘*‘})‘9’; ‘f"]é{;
A
‘17]4——1‘9%“?/9?7 pé‘]—) "’197
of If
Xs,f__Z'z,;g . 22p§~ -4—2399'5.

To write . =0 ... X,/ = 0 would give no result, since then the first
three equations would show that the invariant function /' would have to be

free of z, y, 2 and consequently the others would show that it would have to
be free of p and ¢ also.

Let us then extend the transformations again. We know that
dp  vde + sdy, dy — sdw + tdy ;




WILLIAMS. ON THE GEOMETRY OF THE TRANSFORMATION GROUP, ETC. 27

so that Cddp _or.dzx + os.dy + v .dox 4 5. ddy
(2)
dog=20ds . dx + ot.0y + s.doz + ¢. oy
It is again clear from (2) that p, ¢, ete., receive no increments for &/,
AL/, and X7 '

For X,f, W= —q;
hence —dqg  — (sdw -+ tdy) — or.de + o8 . dy + sdz;

from whieh we find

N h JE
or == —— ¢, o3~ — 1,

while the second of equations (2) shows that ¢ = 0.
In precisely the same manner o7, dg, 0f can be found for the other trans-
formations, and the complete system of eight members in eight variables may

be written

17 =0

e
2.4
Xr L=o
gy ]
np
XY =0
Y]“‘mgf — gﬁ — 2 Qf'_ L‘QZ—“ 0
o dy T ap - s
, oF  F O o3
Xof -y Ae =P e "5 = 28 5= 0
1’,f’_, k‘q 1_;_ /) Qf_;_ ,_/Qf_[_ » .c?f_{_ 8 QZ'_L g‘:"f: 0
b dz ap &y ap ds ' M
A 2.7 An a.0 of af
X.f—a S gy pul=0
S TV TP Ty T e T .
a7 a7 2F o F )
rp w8 o, 0F an S e S (90 c
XS = 5, 2zp B - 2zq i + 2 (zr + pP) 5+ (s + p9) 4

Since , 7, = are not contained in f, the determinant of these equations
may, after an obvious reduction, be written :

—q 0 —2 —¢ 0
0 —p 0 — 1 — 2
r» Y r $ .
o p ¢ —2r 0 2
0 o »p pm 7
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It we expand this determinant and place the result equal to zero, we have an
invariant differential equation.*

The equation is easily found to be

Pt — s + ¢r = 0.
It has for its integral
y=p(@) + $(), z=a,

or v =) + ¢(2), ~
which is the general equation to rwled surfaces, where the straight line gene-
rators are all parallel to the zy-plane.t

11. Since the determinant considered above is not identically zero, the
complete system has no solution. In order then to have more variables than

equations, and therefore one or more solutions, it is necessary to extend the
transformations further. To do this we have

dr = pde + ady
ds — ode + pdy
al = pdz + Idy ;
also dor _ op.de + do.dy + p.dox + o .doy
dds = do . dw + dp.dy + o ddw + . doy :> (3)
l

ot du.dw + 0k .dy -+ p.dox + A.doy
Here again p, ¢, etc., receive no increments under X, 7, X, 7, and X 7.
Since for X, 7, dz _0,dy =2, dp — — 7, 0¢g 70, 0r . — 2s, ds _ — ¢,
ot = 0; we have from (3)

1

— 2s = — (odx + p dy) == op .da + do.dy + o.dz :

—dt  — (pdx + Mdy) = oa.dz + op. dy + pdx g
0__ 0 Opde 4 oh.dy + 2. dw.

It in these last three equations we collect the coefficients of @2 and dy and
equate separately to zero, we find

op— —386, do=—2u, op - —1i, 0220,
For X, f, equations (3) have the forms
0—do.de+ do.dy + p.dy
—dr. :— (vdze + ody) =do.dz -+ op.dy +o.dy
—2ds — — 2(0.dx + pdy) op.de -+ 0k dy + p.ody;

from which we find

N . ) N N
op—0, 66 ——p, op——25, 0i—— 3.

* Lie's Continuierliche Gruppen, Kap. 16.
t Laurent’s Traite D’Analyse, Tome VI.
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In like manner it will be easily seen that for X/
op=p, 660, Op=p, ol =1

For X.f,
fp=—3p, Oo=—a, op=p, 0A=3L.
Finally we have for X7,
oo = %20 + 6, do =220 + vy + 4dps
op =2z + Ot + dgs, 0= 220 + 6gl.
If now the transformations be written in the extended form, and .,/ be
& af

replaced by X,/ — 2,/ and if the terms containing S ;7/ L']f be omitted

(since @, ¥, aud z do not oceur in the solutions) the u)mplete system may be

written in the form

o Sy a0,
X.f- /+2a,‘.}‘£5-‘—{—3o’??}..4‘{/.?77—{/.-&_—0

¢/
AR R AR N S AL T L
Xf= zjz;”l"r i T aoi o pil 11 =
Xf —»p qm 77 q 21{ -+ 2 @{‘3’ f"’i{* "::;}7:‘"" 34 2/{.—_0
Yf=p b f g+ B f+ (g + 290 3L+ (9 209 f

The next object is to find the solutions of this complete system ; and owing
to the complicated forms in which some of the results oceur, we shall resort
to a device by means of which the work can be greatly simplified.

Let us first consider the complete system given by the sub-gronp

NF g ,‘/ -+ s ;‘/: 4 f“,f =10

cl
X.f ])l -7 37: -+ %%:O
lf—'—;fr‘,_/--.mﬁf 2/‘7 0.

The solutions of . 7 = 0 are found to be

9

- o 2o
N, Py My, T, Pl
,.
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These solutions can now be introduced into the other two equations in
the usual way. It will be seen that

X, () —_—‘t'_l%;

2

Xiw) = — 2%

2 9
X () = 2])1 — s ;r—— %’2 J _;2_)'.'2 (wgrty — wya))
L )

. 9
X, (“4) — ‘)pgt v ])—' 1y, .

In like manner it will be found that

X ()

’

(u,)

and the two equations will have the forms

Ap
X, F=mu, —-Z‘: 4wt —Qi -+ 2 (gt — w ) :f Qe KA —
’ S cily Uy

J’/—————cf—l— f+‘)z/[3—f-0

Uy Sy Uty Ju,
The solutions of X, # = 0 are
A Dy Uty — Uy Yy, Uty — ty Uy,

When these solutions are introduced, .Y, # has the form
of of A
r c 0 [ C
A f = 2w, L+ (v vw,) 2L+ e, L = 0;
l.f' 1“2 c’vl I ( 2T 193 902 + =ty 9_03 )

and this equation is equivalent to

dv, _ dv, _ dv,
o, o'+ ooy 2up

. », . .

One solution is clearly 6-5 , and, if we place this equal to some constant «, we
1

have in order to determine the other

dv, _ do,
Quw, vt F av®’

This equation is Aomogeneous, and it is therefore known at once that the inte-

_ grating factor is

1 *

v, — av

* Page’s (5rdma.1y Differential Equo.tiuou's,..;*.rﬁ 64
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Hence we have
Qu,v. v.,‘-' + av? v — 3av?
f_—LL——rZ'v,—{- “.,l_ L, — Lildy, =¢;
vt —av? - vt — av®

vt — av’

and therefore S
Log (v — av’) — Log vi=c.

The two solutions are then

V. : W .
3 = ”12 e S.’. — 9t ,

v, 2,
and
2 3 2
vt — av® v — v : .
hd LI S B (R 7'{[3 —_ 2_2)93 + Z)ll .
7 Y
12. We shall next seek i fferenticl parameters for this sub-group by means
of which all solutions of a higher order can be found. We know that if ¢ is a

function of 2 and ¥

N
s
de = /h ¢ dy;
¢ + ooy W
or writin A and X7 r
g 23" Puy & Sy Ey»

de = ¢yln + ¢yly .

Also :
ddg == Og, . de + og,  dy + ¢ - dox 4+ ¢, . doy .

If now ¢ is to be an invariant tunction, then must de = 0; and therefore,
0 = dg, . de + oo,  dy + ¢ . dox + ¢, . doy . (4)
For X, = aq, equation (4) becomes
0 == dg, . dz - dg, . dy + ¢, . de = (0, + ¢,) dz -+ oy, . dy ;
from which we get
0y = — @y, 0y = 0.

In like manner for X £ it is easily seen that

N N .
. 0@y = O) ng, = - Cas
and for AX; f
N N
0y = — Gz 0¢y = §y-

Hence the complete system has the form

e c &
Xl.f - qé '*_ 28 'f + f + by ﬁ'i =0

Xuf . f—{—?‘BZ—{ 2s f—|—¢ :ﬂf:O

ey

NPl
0
Kby
h
)
.

S

=
=)

S

_pof o o 8 oS o -
‘X;f:: pé\; f‘.’lg{(] 2 o *‘25?2 ‘,‘xa—‘—*_‘;og/f_—
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We already know two solutions of this complete system. If now we solve
X, f =0, we find among other solutions

dio = pgy — 994
This solution is found to be common to the other two equations also. Again
it is observed that ¢, and ¢, enter the three equations just as do » and ¢,
respectively. We can then write the other solution at once, which is
Dip - @t — 20,008 + ¢fr

By means of the differential parameters, 4,¢ and £,¢, can be found all
solutions of higher order common to X, /= 0,.X /=0, and X,/ = 0. We
can then introduce these solutions into X f = 0 and A f = 0, and thus find
the solutions of our original complete system. We shall be content with find-
ing one of these solutions and a differential parameter for the whole group.

One of the solutions common to .Y,/ = 0, X/ = 0, and A/ = 0, was
found to be

])'l — Qpqs + °r -, .

When the variables p, g, 1z, and / are added, another can be found by means
of di¢, which has the form

dy () — p*h — BpPqp + Bpgta — ¢to .
If now w, and w, be introduced into X,/ = 0, it is easily seen that they

are solutions of X,/ = 0 also. We then introduce the same into .\, 7 = 0,
and find

X.f 3ul,,f + 4o, ] ~._f ,

which has the solution
(T

1 ‘23

(P — 217'1é + ¢
(0" — 3p%gpe + 3pga — ¢'p)
The other three could be found in a similar manner. We will say they are
Jy Iy, and L,

13. We shall next find differential parameters for the complete system.

It is clear that for X, f and X, f

= Ay

d¢, = o¢, = 0.
If now we introduce into X/ = 0 and .1} /' = 0 the solutions
8 — vl
Pt — 2pys + o oy
Py — ¢z Uy

o 9
ol — 20,08 + @ =z,
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the two equations take the forms

Xof = 2wy ,,f + 3 Ti w, Z"Z - 5(—]:— =0
. ]

Uy
Xf - o ,—f=
* ¢ Ju
l
The solutions of A,/ = 0 are
Uy ==V, Uy T Yy, WL - wge, vy
When these solutions are introduced, X/ has the form

X, f= 3%waqf4y;§_

)
3

The solutions are easily found to be
3 3

do="%="4_ (Pgy — 9%a)
199::'}—;:!—‘-: 25—-—2 ‘_1_(217
1 2 P pqs = 41
and ‘
D o= 'U_%; {(82 - 7'i)(])g:7], _ Q%c) -+ (]) t— 2/)/8 + q ’)(ﬁ"’;t . 2(, 2 dind + %/-7') ?
=5 (7 — 2pqs + 47

If the operations indicated by these parameters be performed on Z,, J,, A,
and L, all essential differential invariants of higher orders can be found by

mere differentiation.
We shall make use of the above results in the next section, where we shall
conclude our investigations with a discussion of the equivalence of surfaces.

§ 5.
Lyuivalence of Surfaces.

14. If a family of surfaces is given by an equation of the form
&= f(zy) 1)

we may always write this equation in the form
g—z=p (@ —2) + 0y — %)+ ‘u (@ — @) + & (@ — ) (¥ — %)
Z \2
+ 2_)(?/_%)“ + ... (2)

where 2z, p, ... %, ... ave the values of 2, p ... ... when we assign to z and
y their initial values @, y,.

Now it is clear that the number of surfaces in the family (1) will depend
upon the number of arbitrary constants, z, p,...% ...in equation (2). If
the partial differential coefficients z, p, ... ¢ ... are connected by no relation,
there will clearly be an unlimited number of surfaces in the family. But if all
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the partial differential coeflicients except n, are expressed by means of a sys-
tem of partial differential equations in terms of the remaining n diferential
coefficients, equation (2) will contain only n arbitrary constants ; that is, the
family (1) will consist of o™ surfaces.

Now if we perform @/ the transformations of the & upon a surface whicli
admits of no transformation of the G, this surface will generate during the
transformation a family of o ® surfaces which, as a family, is invariant under
the /. This family of o ® surfaces

z=10(x,y,¢ ...0¢)

must be defined by & system of partial differential equations, which is com-
pletely (unbeschrankt) integrable* There is an infinite number of partial
differential equations in this system: but we can suppose them arranged so
that beginning with those of the lowest order they proceed to those of higher
orders. Also we may assume that from the equations of the pth order, all
partial differential coeflicients of that order cannot be eliminated ; and, finally,
that the differentiation of one of the equations of the system will always give
another equation which bas already been obtained belonging to the system.t

The system of equations so arranged will always determine, from a certain
point on, all the higher differential coeflicients of 2, with respect to @ and y, in
terms of those of lower order (counting z as a differential coeflicient of the zero
order); and as the family consists of o * surfaces, those of the lower differen-
tial coefficients which are connected by no relations cannot exceed e¢ight in
number.

It the surface upon which we perform the transformations of the &,
admits of 22 < 8 of these transformations, it will readily be seen that it assumes
» 8~ positions, which will form an invariant family of o= surfaces. What
has been said above for the family of w® surfaces is equally true for the family
of e * " ; that is, the latter family is defined by an invariant system of com-
pletely integrable partial differential equations, which determine all the higher
partial differential coefficients of z in terms of 8 — . of the lower differential
coeflicients, ete. .

It we indicate the partial differential coeflicients, up to the fourth order by

20,0 St opaopmh L0,8, M LN,

it is clear that when a family of ¥ surfaces is invariant, the system of partial
differential equations must contain fwo partial differential equations of the
third order, since there are ten partial differential coeflicients up to that order.

- If these two equations are

L®@yzp ... 1) =0, L0 @yzp...0)=0 (3)
* Goursat, Vol. II, p. 41, . t Lie, Bd. I, Kap. 10,
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it is clear that the derived equations
oR® A 0L,@

d T oy T o

5\ _Q2(:l)
&y

=0, =0, 4)

“will determine four of the partial differential coefficients of the fourth order.

Hence, to determine a family of exactly w * surfaces, we must have the system
(8), (4), and one more equation of the fourth order which is not a consequence
of (3), (4). This equation has the general form

'Q:,i('l) (3/'?/2]) . ZV) =0;

and it is clear that all partial differential coefficients of the fifth and higher
orders are determined in terms of those of lower orders, leaving (say)

2 A AR A O
connected by no relation.
Proceeding in this manner, we are led to distinguish the following cases:

A. No equation of an ovder lower than the third occurs in the invariant
system of purtial differential equations.

Case 1. As we have seen, if fwo partial differential equations of the tkird
order occur, and one of the fourth (which is not » consequence of the other
two) this system of equations is exactly sufficient to determine an invariant
family of w® surfaces.

Case 11. We might have a system of Ziree different partial differential
equations of the ¢Aird order

09 =0, 09 =0, 9®=0

invariant, and none of lower order. In this case, all differential coefficients
of the fourth and higher orders are determined in terms of those of lower
orcers ; and thus as (say)

By Dy 1y 8 Ly

are connected by no relation, the invariant family consists of o 7 surfaces.
Case 171, Tt jfour differential equations of the ¢Aird order are invariant,
and none of lower orders, the family clearly consists of o ¢ surfaces.
These are all the possibilities when no differential equation of an order
lower than the third occurs.
B. No differential equation of an order lower than the second occurs.
There is only one invariant partial differential equation of the second
order, namely,
F=p%— 2pqs +¢gr=0.
The derived equations -
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determine fwo of the partial differential coeflicients of the third order, and
leave two of them arbitrary. Moreover, the second derived equations
Lo =10, ﬁw.r_r/ =0, 7,=0,

yy
determine three of the differential coefticients of the fourth order, and leave
two of them arbitrary. In general, we see that two of all the partial differen-
tial coeflicients of any order, after the secound, are arbitrary as far as £7=0
and its derived equations are concerned.

Thus when /7= 0 belongs to the invariant system of partial differential
equations which define the invariant family of surfaces, we may assume that
up to the fourth order /= 0 and its derived equations determine six of the
partial differential coefficients, (say)

4om A M, L, N,

>
in terms of those of lower orders.

Cuse I. Hence, if /' == 0 belongs to the invariant system of partial differ-
ential equations, it is clear that up to the fourth order, nine of the partial
differential coeflicients are still arbitrary as far as / = 0 and its derived equa-
tions are concerned. Asthe family cannot contain more than « ® surfaces, we
must, therefore, have an equation of the fourth order in the system which is
not derived from /' = 0.

This equation must, of course, have the form

U =0,

and will determine (say) s in terms of the other differential coeflicients. It is
clear that the derived equations of /7= 0 and £, = 0 determine all the ditter-
ential coefficients of the fifth order ; so that the invariant system of equations
F=0, F,=0, F,=0, F,=0, F,=0, F,6=0,
PO =0, Yh=0, £'=0,

a4
are exactly enough to determine an invariant family of oo ® surfaces.

Case [1. We might have, in connection with /"= 0 and its derived equa-
tions, fwo partial differential equations of the fowrth ovder invariant, of the
forms

QY =0, 29=0.

In this case, the only partial differentinl coeflicients which are arbitrary
may clearly be assumed to be (say)

Zy J), Q; ”, 8, i T,
that is, the family consists of only o surfaces.

Cuse II1. Tn connection with # = 0 we might have one differential equa-
tion of the third order invariant which is not a derived equation of /"= 0.
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It is clear that in this ease this other equation of the third order has the form
D .
2% =0;
and this equnation determines say o. All higher differential coeflicients are
now determined in terms of those of lower orders except
2’ _2)7 q, 7" S’ ‘”;
that is, the family consists of o ® surfaces.
Case I'V. 1f two equations of the third order which are not derived from
I =0, of the general forms
3 7 J—
L9 =0, 9 =0,

are invariant, the only arbitrary differential coeflicients are

B D, 0, 7 S,
Hence the family consists of o * surfaces.
These are all the possibilities when no partial differential equation of the
first order occurs.
C. Lartiul differential equations of the first order oceur.
No single invariant differential equation of the first order exists. The
only invariant system containing differential equations of the first order is
p=q=0,
which defines the invariant family of o' planes
z = const.

We may collect our results as follows :

I. If the invariant family consists of o * surfaces, it is defined by
(a) Two partial differential equations of ///.0. and one / V. 0., of the
forms
ilyy oy My L) =0, L ([y, Sy I, L) =0, L(4,...)=0.
(b) Oune partial differential eqnation of /7. 0. and one / V. 0. which ave
respectively .
F=pt —20s + ¢r =0, and £(L,... M) =0.
II. If the family consists of w07 sutfaces it is defined by
(a) Three partial differential equations /7. 0., of the forms
-'Ql([x oo dy) =0, L,(Ly... L) =0, 'Q:;([:s coo Ly) = 0.
(b) One partial differential equation 7/.0. and two / V. 0. of the forms
F=0, 2(/,... )=0, Y(,...M)=0.
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ITI. If the invariant family consists of w ¥ surfaces, it is defined by

(a) Tour partial differential equations ///. 0.
Oy . L)y=0, 8L ... L)y=0, &(1,...L)=0, &(/,...L)=0.

(b) One partial differential equation //. 0. and one //7. 0.
| F=0, (,...L)=0.

IV. If the invariant family consists of v surfaces, it can only be defined
by

(a) One partial differential equation /7. 0. and two ///. 0., which have
the forms

F=0, $(,...L)y=0, L(,...7L)=0.

There ave no invariant families of » !, @ ® or = ? surfaces; henee no sur-
face admits of exactly four, five, or six independent infinitesimal transforma-
tions of the ¢/. There is then only one other case.

V. The invariant family consists of the ' planes z = const. defined by

p=y¢y=0.

From the above considerations we reach the following important conclu-
sion :

Lf two surfaces are equivalent by means of the transformations of the (.,
their equations must both satisfy the paréial differential equations enwmerated
in some one of the above cuses I... V.

We may note in this connection that when

Pt —2pgs + ¢fr =20 . (5)
the invariant, /,, becomes clusive, as do also ¢ and Dy¢. Dub
Dy
dio

is a differential paramecter which is no¢ elusive; and this applied to ./, A, or
L, (some of them arc certainly not elusive) will give differential invariants of
the fourth and higher orders. In this way we can find «lf differential inva-
riants of the third and fourth orders which are not zero on account of (5) ;
and arbitrary functions of these differential invariants will be the invariant
cquations required in the system of partial differential equations defining the
invariant families of surfaces. .

We know also that (5) represents o * ruled surfuces; and this unlimited
assemblage of ruled surluces is divided into families of equivalent surfaces by
means of the other differential equations of the pavticulur invariant system.




