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Abstract 

Renal perfusion pressure (RPP) plays a key role in pressure natriuresis, which in turn plays a key role in the long-term regulation 
of blood pressure. However, despite its importance in renal research, accessible methods of controlling RPP have been lacking. 
This project furthers the development of a LabVIEW program for controlling RPP from a proof of concept prototype into a working 
product. Telemetric RPP readings are sent from the transmitter via Excel to the LabVIEW program, which then infuses or withdraws 
a syringe attached to an aortic occluder directly upstream of the renal arteries. High RPP readings cause the program to infuse the 
syringe, inflating the aortic occluder and pinching the aorta, leading to lower downstream blood pressure and ultimately lower RPP. 
For low RPP readings, the reverse process occurs. While the original prototype was functional, it suffered from a number of design 
flaws that made troubleshooting and development difficult. The most notable consequence of these design flaws was the fact that 
the prototype’s functionality could not be validated without the use of a live rat for RPP data. The current project improves upon 
the prototype design by removing bloat and modularizing subcomponents, allowing for hardware-independent unit testing of each 
individual component. The current iteration’s design makes for a much more robust piece of software that is not only more 
accessible, but also easier to work with, develop, and troubleshoot. 
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Introduction 

Cardiovascular disease (CVD) and cerebrovascular disease (stroke) 
are two of the top five causes of death in the United States, accounting 
for roughly one in three and one in twenty deaths in the U.S., respectively. 
These numbers translate to someone dying from CVD once every 40 
seconds and from stroke once every 4 minutes.1,2 Monetary costs 
associated with CVD and stroke totaled $329.7 billion in 2018 and are 
projected to reach upwards of $1.1 trillion by 2035.3 Hypertension 
(HBP), typically defined as systolic blood pressures greater than 140 
mmHg or diastolic blood pressures greater than 90 mmHg, is a leading 
risk factor for both CVD and stroke.4,5 Furthermore, the prevalence of 
HBP in adults in the U.S. was 34% in 2018.3 Of these cases, 95-98% were 
of essential HBP with no clear attributable cause.6 The current 
understanding of the pathophysiology of HBP is relatively weak and 
uncertain, especially considering its colossal presence in American 
public health.  

Seeing as the vast majority of HBP cases are those of essential HBP 
with no known underlying cause, it is clear that the etiology of HBP is 
poorly understood.6 Although HBP is ultimately the result of a number 
of complex underlying factors, HBP is generally regarded as a secondary 
product of impaired pressure natriuresis.7,8 Indeed, pressure natriuresis is 
abnormal in almost all animal models of HBP.9 Renal perfusion pressure 
(RPP) plays a crucial role in the body’s regulation of blood pressure via 
pressure natriuresis and diuresis by way of controlling renal sodium and 
water output. An increase in arterial blood pressure leads to an increase 
in renal sodium and water excretion and a decrease renal sodium 
reabsorption. Since mean arterial pressure is the product of total 
peripheral resistance and cardiac output, cardiac output is the product of 
heart rate and stroke volume, and stroke volume is proportional to 
extracellular fluid volume (ECFV), it follows that blood pressure is 
proportional to ECFV. Therefore, decreases in ECFV via renal excretion 
lead to a subsequent decrease in blood pressure, and vice versa. This 

feedback mechanism for blood pressure control is extremely potent and 
results in a long-term feedback gain approaching infinity.10 

In order to properly identify and understand the mechanism by 
which the vast majority of HBP cases arise, this complicated network of 
interacting underlying causes needs to be untangled, isolated, and 
studied. Thus, RPP, which plays an active role in pressure natriuresis via 
blood flow autoregulation, renin release, and sodium excretion, is a key 
component in the pathophysiology of HBP.  

As a key physiological marker for pressure natriuresis, pathological 
values of RPP can cause renal dysfunction. However, pathogenesis of 
chronic hypertensive kidney damage is complex. Damage to renal 
function can occur either by direct damage to the kidneys (RPP-
independent) or by changing RPP such that end-stage renal disease 
occurs (RPP-dependent). Investigating RPP-dependent factors requires 
controlling RPP as the experimental variable, whereas investigating RPP-
independent factors may require maintaining RPP as a controlled 
variable. In either case, a reliable method for controlling RPP is necessary 
in HBP research. In fact, early renal research implementing mechanical 
servo-control of RPP were what revealed the importance of pressure 
natriuresis in the first place.7,11 Furthermore, since the exact role of RPP 
is not fully understood, the ability to control RPP is a required component 
to eventually understanding both renal dysfunction and essential HBP. 

Programmatic RPP Control 

As previously mentioned, systems for programmatically controlling 
RPP have been developed in the past.12–15 However, prior systems suffer 
from a number of issues surrounding implementation. Systems such as 
those developed by Hester et al. or Nafz et al. typically involved hardware 
implementations via mechanical servo-control.12,15 Setting up a closed-
loop feedback system on the hardware level requires a feedback circuit 
that works directly with analog signals from the RPP recorder (a Grass 
polygraph in the case of Hester et al.) and syringe pump, not to mention 
any other necessary components such as amplifiers and filters. It requires 
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specialized knowledge of relatively low-level concepts such as signal and 
data representation. A software-based feedback system, on the other 
hand, is much simpler to understand and implement. Most programming 
languages operate on a higher conceptual level that more closely mirrors 
human language, thus requiring less specialized knowledge to develop 
and operate. 

To this end, Xia et al. developed a software-based approach to RPP 
control using LabVIEW.16 A telemetric transmitter was transplanted into 
the infrarenal aorta via the femoral artery. This transmitter then fed the 
RPP data to DataQuest ART Gold Acquisition V3.10 (Data Sciences 
International), which could dynamically update the RPP readings to an 
Excel file. The LabVIEW virtual instrument (VI) would then read the 
input RPP and communicate with a syringe pump (NE-1000, New-Era 
Pump Systems) attached to an inflatable Silastic vascular occluder 
(DocXS Biomedical Products) implanted around the aorta above the 

infrarenal arteries. Thus, when RPP was too high, the VI would infuse 
the syringe, inflating the occluder, leading to lower downstream blood 
pressure, therefore lowering RPP. Conversely, when RPP was too low, 
the VI would withdraw the syringe, deflating the occluder, leading to the 
reverse effect. This setup produces a typical closed-loop feedback system 
for controlling RPP (Fig. 1). 

However, their 2008 VI was an unstable proof of concept that 
suffered from critical crashes and malfunctions. The code contained a 
number of unnecessary or redundant sections, leading to a lack of 
readability which made further troubleshooting and development 
difficult. Their VI also suffered from a number of poor design choices 
likely stemming from the fact that it was developed as a proof of concept 
with the goal of demonstrating feasibility. For example, the entire 
program code was duplicated in order to accommodate a second pump 
(Fig. 2). This design choice meant any changes need to be made twice, 
and significantly increases the chances failure due to the interconnected 
nature of the program. Furthermore, although there were some attempts 
to organize the VI into components, by and large the VI was one giant 
block of code. Some of the few sub-VI’s that did end up being developed 
performed multiple functions. Thus, unit testing was impossible, and 
troubleshooting errors was extremely difficult. A further impediment was 
the fact that no proper testing environment existed for the VI due to the 
way in which hardware constraints were integrated into the program. The 
only way to verify the VI’s functionality was to monitor a live rat’s RPP 
and ensure that its RPP stayed within the predetermined threshold values. 
There was no way to independently validate system decision making 
behavior or pump behavior. Thus, validation of any changes to the VI 
required full operational testing. Due to the highly iterative nature of 
software development, neither of these options are feasible in the long 
run. 

Here, we take Xia et al.’s LabVIEW VI and developed the program 
from a proof of concept prototype to a working product. In addition, we 
developed a testing environment in order to verify changes and additions, 
as well as formal documentation and instructions on GitHub (see End 
Matter). 

Fig. 2. Sample Main Program Block Diagram from Original VI.  The entire block diagram was duplicated in order to accommodate a second pump. 
Many case structures in this section are unnecessary. Lack of documentation further hampers readability. 

Fig. 1. System Block Diagram.  Block diagram along with physical 
representation 
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Program Redesign 

The primary goal was to fix the design flaws inherent in the original 
prototype. Most importantly, the components of the program needed to 
be broken down into modular components to allow for unit testing. Thus, 
the project had 3 main goals: redesigning the program framework, 
designing and developing a testing environment, and creating 
documentation.  

Redesigning Framework 

As mentioned previously, the main goal of the redesign was to 
separate and modularize components, specifically into discrete sub-VI’s. 
In doing so, each component could be independently tested and verified, 
making troubleshooting and further development much simpler. Due to 
the lack of readability of the prototype, the program was redesigned with 
a bottom-up approach, where the basic components of the program were 
built anew. 

The program could be broken down conceptually into 3 main 
functions: reading in RPP data, making a decision, and controlling the 
syringe pumps. Thus, sub-VI’s were created for each component. 
Furthermore, additional pumps are added via an array and identified 
through their VISA Serial Port. As a result, it is necessary to correctly 
identify which pump corresponds to which sample when initializing the 
program. The new VI can theoretically accommodate any number of 
samples with the addition of a pump network address, although the fact 
that arrays iterate one at a time may cause issues with timing when it 
comes to extremely large numbers of samples. However, for a typical lab, 
and for Dr. Li’s lab for whom this VI was designed for specifically, an 
array-based implementation for multiple pumps should not cause issues.  

The input sub-VI (importExcel_DDE.vi) uses an OpenDDE 
implementation to read values from specific cells in an Excel 
spreadsheet. The choice to use OpenDDE to communicate with Excel 
rather than more traditional methods such as reading in a delimited 
spreadsheet was due to the nature of the transmitter software used in Dr. 
Li’s lab. The software could only dynamically export live data to an Excel 
spreadsheet, necessitating communication with Excel. Protocols 
involving ActiveX and LabVIEW’s Report Generation Toolkit were also 
explored. However, ActiveX methods depend on the version of Excel in 
question, meaning the sub-VI would need to be updated alongside each 
Office or Excel version upgrade. LabVIEW’s Report Generation Toolkit, 
although more robust than OpenDDE, was not available on the computers 
in the lab. Thus, the lab would need to upgrade LabVIEW should they 
need to make any changes to the sub-VI. As a result, an OpenDDE-based 

approach proved best despite it being an older, clunkier implementation 
that requires the Excel file in question to be open.  

The input RPP values were then fed into a logic sub-VI 
(system_logic.vi) which determines the appropriate course of action 
based on a straightforward series of conditional cases comparing the 
input RPP to the predetermined thresholds. The output is an integer 
corresponding to the cases used by New Era’s drivers (Infuse: 0, 
Withdraw: 1, No Action: 2, Error: 3). This integer is fed into a pump 
control module (pump_control.vi), which writes the appropriate 
commands to a NE-1000 syringe pump.  

The pump control sub-VI uses a number of drivers and sub-VI’s 
from New Era’s LabVIEW library. The general process of pump control 
starts with initialization steps: initialize pump, read firmware, turn off 
power failure mode, turn off safe mode, and clear memory. This is 
followed by setting specific parameters: syringe diameter, flow rate, 
target volume, and direction. The direction parameter is what is fed from 
system_logic.vi. The program then infuses or withdraws the syringe until 
the dispensed volume reaches the target volume. The volume dispensed 
is read from the syringe pump itself, hence the clear memory step during 
initialization. Once this step is complete, the pump is reset. 

Values from every stage of the process is fed into a logging sub-VI 
(create_log.vi) which keeps track of the parameters involved and writes 
the data into separate csv files for each sample identified by the VISA 
Resource Name, along with the date and time. If a log file already exists, 
it appends the information to the end. This log file can then be used for 
both validation and for troubleshooting down the line.  

Creating a Testing Environment 

Validation of each component was done via unit testing during 
development. Each sub-VI can be run as an independent program to 
check if the actual outputs match the expected outputs for any given 
input. However, in order to test the functionality of the program as a 
whole, a method of generating spoofed data was necessary. 

To this end, an independent Excel spoofing program (spoofExcel.vi) 
was developed that writes values to a specified cell(s) in an Excel 
spreadsheet. This program mimics the behavior of DataQuest’s 
transmitter software, which updates live RPP readings to a specified cell 
in Excel. It can either generate random RPP values, or values based on 
an input csv file. This program can then be run in conjunction with the 
main VI to test holistic program behavior. 

Fig. 3. Updated Main Program 
Block Diagram. Components of 
the program are separated out 
into discrete sub-VI’s. An array is 
used to accommodate an 
arbitrary number of samples, 
identified by the VISA Serial Port 
of the pump associated with the 
sample. 



 

20 

Creating Documentation 

One unusual design constraint is the fact that the program will 
primarily be worked on and used by VCU School of Medicine students 
and faculty with potentially no background in software development or 
computer science. As a result, the program needs to be readable enough 
and accessible enough such that any needed changes or adjustments to 
the program itself can be done by the layperson. To help combat this 
issue, documentation for the program detailing was created on GitHub. 
The behavior, inputs, outputs, and block diagrams of each VI and sub-VI 
were listed in simple language along with a glossary with general 
computer science terms. In addition, comments were provided 
throughout the block diagram itself detailing the function and behavior 
of more complicated components. 

Testing and Validation 

In order to validate the program’s functionality, it was run alongside 
the Excel spoofing program for about an hour with a sampling interval of 
5 seconds, once with random RPP values and once with RPP values from 
an input sine wave. The random value testing resulted in 595 decisions, 
and the sine wave RPP values resulted in 568 decisions. The decisions 
made by the program were validated against the logged RPP and 
threshold values (Fig. 4a,b). Pass/Fail criteria was based on whether or 
not the program ever made an incorrect decision based on the input RPP 
value and thresholds. This process was done programmatically using an 
R script, which itself was validated by intentionally using an older, buggy 
iteration of the RPP control program (Fig. 4c). The pre-validation data 
was also then confirmed manually to ensure the R script could properly 
identify incorrect decisions made by the program. The current iteration 
of the program passed both test cases.  
 
Discussion 

The current iteration of the program represents a massive 
improvement over the original proof of design prototype. Modularization 
of the subcomponents of the program allows for much easier 
troubleshooting and better readability. Furthermore, by developing with 
a bottom-up approach, all of the added bloat from the original program 
has been removed. Most importantly, the program has been developed to 
a point where testing can be done without the need for live rats for data. 

However, despite these improvements, there are a number of 
lingering concerns regarding the current state of the program. Due to the 
COVID-19 outbreak, operational testing in the lab was not possible. The 
first priority moving forward is to test the program in its operational 
environment. The computers used in Dr. Li’s lab run on much older 
hardware and software, and while the current iteration was developed 
with backwards compatibility in mind, validation is still needed. 
Furthermore, while data flow is easier to follow in a visual language, 
logical structures often are not. Case structures, especially, tend to be 
messier when compared to traditional high-level programming languages 
that loosely follow the English language.  

As a piece of licensed proprietary software, LabVIEW also has 
issues of access due to the way it is managed by National Instruments. 
Moving forward, it may be better to further refactor the program for 
development in an open source language such as Python. The benefits of 
open source software are pretty well known at this point, and switching 
the program over to a common open source language will allow for much 
greater access. It would also make it easier for others to improve upon 
the program and make adjustments to suit their individual needs. Not 
every lab is going to be using NE-1000 syringe pumps, after all.   

Nonetheless, the current iteration of the program offers a simple, 
accessible way to control for RPP for use in renal research. Due to its 
modular nature, it is easy not only to adapt for other uses, but also to test 

Fig. 4. Validation Testing Data.  (a) validation data for randomly 
generated RPP values (b) validation data for sine wave RPP values 
(c) pre-validation using an intentionally buggy program 

a. 

b. 

c. 
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and validate changes made. Because each individual component can 
operate as a standalone VI, troubleshooting when things do go wrong is 
also much simpler. The current iteration retains prior functionality while 
also being a more robust piece of software. 
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