
Closed-Loop Feedback System for Controlling Renal Perfusion Pressure via
LabVIEW

A Technical Report for BME 4064

Presented to the Faculty of the School of Engineering and Applied Sciences
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree
Bachelor of Science in Biomedical Engineering

Author

Pai Li
May 01, 2020

Technical Project Team Members

Pai Li

On my honor as a University Student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Signature __ Date __________

Approved __ Date __________
Pin-Lan Li, M.D., Ph.D., Virginia Commonwealth University School of Medicine, Department of
Pharmacology and Toxicology

17

Closed-Loop Feedback System for Controlling Renal Perfusion
Pressure via LabVIEW

Pai Lia,1, Pin-Lan Li, M.D., Ph.D.b

a Fourth Year Biomedical Engineering Undergraduate at the University of Virginia
b Professor of Pharmacology and Toxicology at Virginia Commonwealth University School of Medicine
1 Correspondence: pl9ed@virginia.edu

Abstract

Renal perfusion pressure (RPP) plays a key role in pressure natriuresis, which in turn plays a key role in the long-term regulation
of blood pressure. However, despite its importance in renal research, accessible methods of controlling RPP have been lacking.
This project furthers the development of a LabVIEW program for controlling RPP from a proof of concept prototype into a working
product. Telemetric RPP readings are sent from the transmitter via Excel to the LabVIEW program, which then infuses or withdraws
a syringe attached to an aortic occluder directly upstream of the renal arteries. High RPP readings cause the program to infuse the
syringe, inflating the aortic occluder and pinching the aorta, leading to lower downstream blood pressure and ultimately lower RPP.
For low RPP readings, the reverse process occurs. While the original prototype was functional, it suffered from a number of design
flaws that made troubleshooting and development difficult. The most notable consequence of these design flaws was the fact that
the prototype’s functionality could not be validated without the use of a live rat for RPP data. The current project improves upon
the prototype design by removing bloat and modularizing subcomponents, allowing for hardware-independent unit testing of each
individual component. The current iteration’s design makes for a much more robust piece of software that is not only more
accessible, but also easier to work with, develop, and troubleshoot.

Keywords: renal perfusion pressure, LabVIEW, feedback system

Introduction

Cardiovascular disease (CVD) and cerebrovascular disease (stroke)
are two of the top five causes of death in the United States, accounting
for roughly one in three and one in twenty deaths in the U.S., respectively.
These numbers translate to someone dying from CVD once every 40
seconds and from stroke once every 4 minutes.1,2 Monetary costs
associated with CVD and stroke totaled $329.7 billion in 2018 and are
projected to reach upwards of $1.1 trillion by 2035.3 Hypertension
(HBP), typically defined as systolic blood pressures greater than 140
mmHg or diastolic blood pressures greater than 90 mmHg, is a leading
risk factor for both CVD and stroke.4,5 Furthermore, the prevalence of
HBP in adults in the U.S. was 34% in 2018.3 Of these cases, 95-98% were
of essential HBP with no clear attributable cause.6 The current
understanding of the pathophysiology of HBP is relatively weak and
uncertain, especially considering its colossal presence in American
public health.

Seeing as the vast majority of HBP cases are those of essential HBP
with no known underlying cause, it is clear that the etiology of HBP is
poorly understood.6 Although HBP is ultimately the result of a number
of complex underlying factors, HBP is generally regarded as a secondary
product of impaired pressure natriuresis.7,8 Indeed, pressure natriuresis is
abnormal in almost all animal models of HBP.9 Renal perfusion pressure
(RPP) plays a crucial role in the body’s regulation of blood pressure via
pressure natriuresis and diuresis by way of controlling renal sodium and
water output. An increase in arterial blood pressure leads to an increase
in renal sodium and water excretion and a decrease renal sodium
reabsorption. Since mean arterial pressure is the product of total
peripheral resistance and cardiac output, cardiac output is the product of
heart rate and stroke volume, and stroke volume is proportional to
extracellular fluid volume (ECFV), it follows that blood pressure is
proportional to ECFV. Therefore, decreases in ECFV via renal excretion
lead to a subsequent decrease in blood pressure, and vice versa. This

feedback mechanism for blood pressure control is extremely potent and
results in a long-term feedback gain approaching infinity.10

In order to properly identify and understand the mechanism by
which the vast majority of HBP cases arise, this complicated network of
interacting underlying causes needs to be untangled, isolated, and
studied. Thus, RPP, which plays an active role in pressure natriuresis via
blood flow autoregulation, renin release, and sodium excretion, is a key
component in the pathophysiology of HBP.

As a key physiological marker for pressure natriuresis, pathological
values of RPP can cause renal dysfunction. However, pathogenesis of
chronic hypertensive kidney damage is complex. Damage to renal
function can occur either by direct damage to the kidneys (RPP-
independent) or by changing RPP such that end-stage renal disease
occurs (RPP-dependent). Investigating RPP-dependent factors requires
controlling RPP as the experimental variable, whereas investigating RPP-
independent factors may require maintaining RPP as a controlled
variable. In either case, a reliable method for controlling RPP is necessary
in HBP research. In fact, early renal research implementing mechanical
servo-control of RPP were what revealed the importance of pressure
natriuresis in the first place.7,11 Furthermore, since the exact role of RPP
is not fully understood, the ability to control RPP is a required component
to eventually understanding both renal dysfunction and essential HBP.

Programmatic RPP Control

As previously mentioned, systems for programmatically controlling
RPP have been developed in the past.12–15 However, prior systems suffer
from a number of issues surrounding implementation. Systems such as
those developed by Hester et al. or Nafz et al. typically involved hardware
implementations via mechanical servo-control.12,15 Setting up a closed-
loop feedback system on the hardware level requires a feedback circuit
that works directly with analog signals from the RPP recorder (a Grass
polygraph in the case of Hester et al.) and syringe pump, not to mention
any other necessary components such as amplifiers and filters. It requires

18

specialized knowledge of relatively low-level concepts such as signal and
data representation. A software-based feedback system, on the other
hand, is much simpler to understand and implement. Most programming
languages operate on a higher conceptual level that more closely mirrors
human language, thus requiring less specialized knowledge to develop
and operate.

To this end, Xia et al. developed a software-based approach to RPP
control using LabVIEW.16 A telemetric transmitter was transplanted into
the infrarenal aorta via the femoral artery. This transmitter then fed the
RPP data to DataQuest ART Gold Acquisition V3.10 (Data Sciences
International), which could dynamically update the RPP readings to an
Excel file. The LabVIEW virtual instrument (VI) would then read the
input RPP and communicate with a syringe pump (NE-1000, New-Era
Pump Systems) attached to an inflatable Silastic vascular occluder
(DocXS Biomedical Products) implanted around the aorta above the

infrarenal arteries. Thus, when RPP was too high, the VI would infuse
the syringe, inflating the occluder, leading to lower downstream blood
pressure, therefore lowering RPP. Conversely, when RPP was too low,
the VI would withdraw the syringe, deflating the occluder, leading to the
reverse effect. This setup produces a typical closed-loop feedback system
for controlling RPP (Fig. 1).

However, their 2008 VI was an unstable proof of concept that
suffered from critical crashes and malfunctions. The code contained a
number of unnecessary or redundant sections, leading to a lack of
readability which made further troubleshooting and development
difficult. Their VI also suffered from a number of poor design choices
likely stemming from the fact that it was developed as a proof of concept
with the goal of demonstrating feasibility. For example, the entire
program code was duplicated in order to accommodate a second pump
(Fig. 2). This design choice meant any changes need to be made twice,
and significantly increases the chances failure due to the interconnected
nature of the program. Furthermore, although there were some attempts
to organize the VI into components, by and large the VI was one giant
block of code. Some of the few sub-VI’s that did end up being developed
performed multiple functions. Thus, unit testing was impossible, and
troubleshooting errors was extremely difficult. A further impediment was
the fact that no proper testing environment existed for the VI due to the
way in which hardware constraints were integrated into the program. The
only way to verify the VI’s functionality was to monitor a live rat’s RPP
and ensure that its RPP stayed within the predetermined threshold values.
There was no way to independently validate system decision making
behavior or pump behavior. Thus, validation of any changes to the VI
required full operational testing. Due to the highly iterative nature of
software development, neither of these options are feasible in the long
run.

Here, we take Xia et al.’s LabVIEW VI and developed the program
from a proof of concept prototype to a working product. In addition, we
developed a testing environment in order to verify changes and additions,
as well as formal documentation and instructions on GitHub (see End
Matter).

Fig. 2. Sample Main Program Block Diagram from Original VI. The entire block diagram was duplicated in order to accommodate a second pump.
Many case structures in this section are unnecessary. Lack of documentation further hampers readability.

Fig. 1. System Block Diagram. Block diagram along with physical
representation

19

Program Redesign

The primary goal was to fix the design flaws inherent in the original
prototype. Most importantly, the components of the program needed to
be broken down into modular components to allow for unit testing. Thus,
the project had 3 main goals: redesigning the program framework,
designing and developing a testing environment, and creating
documentation.

Redesigning Framework

As mentioned previously, the main goal of the redesign was to
separate and modularize components, specifically into discrete sub-VI’s.
In doing so, each component could be independently tested and verified,
making troubleshooting and further development much simpler. Due to
the lack of readability of the prototype, the program was redesigned with
a bottom-up approach, where the basic components of the program were
built anew.

The program could be broken down conceptually into 3 main
functions: reading in RPP data, making a decision, and controlling the
syringe pumps. Thus, sub-VI’s were created for each component.
Furthermore, additional pumps are added via an array and identified
through their VISA Serial Port. As a result, it is necessary to correctly
identify which pump corresponds to which sample when initializing the
program. The new VI can theoretically accommodate any number of
samples with the addition of a pump network address, although the fact
that arrays iterate one at a time may cause issues with timing when it
comes to extremely large numbers of samples. However, for a typical lab,
and for Dr. Li’s lab for whom this VI was designed for specifically, an
array-based implementation for multiple pumps should not cause issues.

The input sub-VI (importExcel_DDE.vi) uses an OpenDDE
implementation to read values from specific cells in an Excel
spreadsheet. The choice to use OpenDDE to communicate with Excel
rather than more traditional methods such as reading in a delimited
spreadsheet was due to the nature of the transmitter software used in Dr.
Li’s lab. The software could only dynamically export live data to an Excel
spreadsheet, necessitating communication with Excel. Protocols
involving ActiveX and LabVIEW’s Report Generation Toolkit were also
explored. However, ActiveX methods depend on the version of Excel in
question, meaning the sub-VI would need to be updated alongside each
Office or Excel version upgrade. LabVIEW’s Report Generation Toolkit,
although more robust than OpenDDE, was not available on the computers
in the lab. Thus, the lab would need to upgrade LabVIEW should they
need to make any changes to the sub-VI. As a result, an OpenDDE-based

approach proved best despite it being an older, clunkier implementation
that requires the Excel file in question to be open.

The input RPP values were then fed into a logic sub-VI
(system_logic.vi) which determines the appropriate course of action
based on a straightforward series of conditional cases comparing the
input RPP to the predetermined thresholds. The output is an integer
corresponding to the cases used by New Era’s drivers (Infuse: 0,
Withdraw: 1, No Action: 2, Error: 3). This integer is fed into a pump
control module (pump_control.vi), which writes the appropriate
commands to a NE-1000 syringe pump.

The pump control sub-VI uses a number of drivers and sub-VI’s
from New Era’s LabVIEW library. The general process of pump control
starts with initialization steps: initialize pump, read firmware, turn off
power failure mode, turn off safe mode, and clear memory. This is
followed by setting specific parameters: syringe diameter, flow rate,
target volume, and direction. The direction parameter is what is fed from
system_logic.vi. The program then infuses or withdraws the syringe until
the dispensed volume reaches the target volume. The volume dispensed
is read from the syringe pump itself, hence the clear memory step during
initialization. Once this step is complete, the pump is reset.

Values from every stage of the process is fed into a logging sub-VI
(create_log.vi) which keeps track of the parameters involved and writes
the data into separate csv files for each sample identified by the VISA
Resource Name, along with the date and time. If a log file already exists,
it appends the information to the end. This log file can then be used for
both validation and for troubleshooting down the line.

Creating a Testing Environment

Validation of each component was done via unit testing during
development. Each sub-VI can be run as an independent program to
check if the actual outputs match the expected outputs for any given
input. However, in order to test the functionality of the program as a
whole, a method of generating spoofed data was necessary.

To this end, an independent Excel spoofing program (spoofExcel.vi)
was developed that writes values to a specified cell(s) in an Excel
spreadsheet. This program mimics the behavior of DataQuest’s
transmitter software, which updates live RPP readings to a specified cell
in Excel. It can either generate random RPP values, or values based on
an input csv file. This program can then be run in conjunction with the
main VI to test holistic program behavior.

Fig. 3. Updated Main Program
Block Diagram. Components of
the program are separated out
into discrete sub-VI’s. An array is
used to accommodate an
arbitrary number of samples,
identified by the VISA Serial Port
of the pump associated with the
sample.

20

Creating Documentation

One unusual design constraint is the fact that the program will
primarily be worked on and used by VCU School of Medicine students
and faculty with potentially no background in software development or
computer science. As a result, the program needs to be readable enough
and accessible enough such that any needed changes or adjustments to
the program itself can be done by the layperson. To help combat this
issue, documentation for the program detailing was created on GitHub.
The behavior, inputs, outputs, and block diagrams of each VI and sub-VI
were listed in simple language along with a glossary with general
computer science terms. In addition, comments were provided
throughout the block diagram itself detailing the function and behavior
of more complicated components.

Testing and Validation

In order to validate the program’s functionality, it was run alongside
the Excel spoofing program for about an hour with a sampling interval of
5 seconds, once with random RPP values and once with RPP values from
an input sine wave. The random value testing resulted in 595 decisions,
and the sine wave RPP values resulted in 568 decisions. The decisions
made by the program were validated against the logged RPP and
threshold values (Fig. 4a,b). Pass/Fail criteria was based on whether or
not the program ever made an incorrect decision based on the input RPP
value and thresholds. This process was done programmatically using an
R script, which itself was validated by intentionally using an older, buggy
iteration of the RPP control program (Fig. 4c). The pre-validation data
was also then confirmed manually to ensure the R script could properly
identify incorrect decisions made by the program. The current iteration
of the program passed both test cases.

Discussion

The current iteration of the program represents a massive
improvement over the original proof of design prototype. Modularization
of the subcomponents of the program allows for much easier
troubleshooting and better readability. Furthermore, by developing with
a bottom-up approach, all of the added bloat from the original program
has been removed. Most importantly, the program has been developed to
a point where testing can be done without the need for live rats for data.

However, despite these improvements, there are a number of
lingering concerns regarding the current state of the program. Due to the
COVID-19 outbreak, operational testing in the lab was not possible. The
first priority moving forward is to test the program in its operational
environment. The computers used in Dr. Li’s lab run on much older
hardware and software, and while the current iteration was developed
with backwards compatibility in mind, validation is still needed.
Furthermore, while data flow is easier to follow in a visual language,
logical structures often are not. Case structures, especially, tend to be
messier when compared to traditional high-level programming languages
that loosely follow the English language.

As a piece of licensed proprietary software, LabVIEW also has
issues of access due to the way it is managed by National Instruments.
Moving forward, it may be better to further refactor the program for
development in an open source language such as Python. The benefits of
open source software are pretty well known at this point, and switching
the program over to a common open source language will allow for much
greater access. It would also make it easier for others to improve upon
the program and make adjustments to suit their individual needs. Not
every lab is going to be using NE-1000 syringe pumps, after all.

Nonetheless, the current iteration of the program offers a simple,
accessible way to control for RPP for use in renal research. Due to its
modular nature, it is easy not only to adapt for other uses, but also to test

Fig. 4. Validation Testing Data. (a) validation data for randomly
generated RPP values (b) validation data for sine wave RPP values
(c) pre-validation using an intentionally buggy program

a.

b.

c.

21

and validate changes made. Because each individual component can
operate as a standalone VI, troubleshooting when things do go wrong is
also much simpler. The current iteration retains prior functionality while
also being a more robust piece of software.

End Matter

Author Contributions and Notes

P.L. designed and performed research, wrote software, analyzed data, and
wrote the paper.
The author declares no conflict of interest.
This article contains supporting information online at:
https://github.com/pl9ed/RPP-Control

Acknowledgments

I would like to show my appreciation to Dr. Pin-Lan Li for giving me the
chance to work on the program, as well as Min Xia for the program’s
original original development.

References
1. Johnson, N. B. et al. CDC National Health Report: leading causes of

morbidity and mortality and associated behavioral risk and protective
factors--United States, 2005-2013. MMWR Suppl. 63, 3–27 (2014).

2. Mozaffarian Dariush et al. Heart Disease and Stroke Statistics—2015
Update. Circulation 131, e29–e322 (2015).

3. Benjamin, E. J. et al. Heart Disease and Stroke Statistics-2018
Update: A Report From the American Heart Association. Circulation
137, e67–e492 (2018).

4. Fryar, C. D., Ostchega, Y., Hales, C. M., Zhang, G. & Kruszon-Moran,
D. Hypertension Prevalence and Control Among Adults: United
States, 2015-2016. NCHS Data Brief 1–8 (2017).

5. Merai, R. CDC Grand Rounds: A Public Health Approach to Detect
and Control Hypertension. MMWR Morb. Mortal. Wkly. Rep. 65,
(2016).

6. Beevers, G., Lip, G. Y. H. & O’Brien, E. The pathophysiology of
hypertension. BMJ 322, 912–916 (2001).

7. Hall John E. The Kidney, Hypertension, and Obesity. Hypertension
41, 625–633 (2003).

8. Guyton, A. C. & Coleman, T. G. Quantitative analysis of the
pathophysiology of hypertension. Circ. Res. 24, 1–19 (1969).

9. Ivy, J. R. & Bailey, M. A. Pressure natriuresis and the renal control of
arterial blood pressure. J. Physiol. 592, 3955–3967 (2014).

10. Hall, J. E. & Guyton, A. C. Textbook of Medical Physiology.
(Saunders, 2006).

11. Hall, J. E. et al. Mechanisms of escape from sodium retention during
angiotensin II hypertension. Am. J. Physiol. 246, F627-634 (1984).

12. Hester, R. L., Granger, J. P., Williams, J. & Hall, J. E. Acute and
chronic servo-control of renal perfusion pressure. Am. J. Physiol. 244,
F455-460 (1983).

13. Mori, T. & Cowley, A. W. Role of pressure in angiotensin II-induced
renal injury: chronic servo-control of renal perfusion pressure in rats.
Hypertens. Dallas Tex 1979 43, 752–759 (2004).

14. Woods, L. L., Mizelle, H. L. & Hall, J. E. Autoregulation of renal blood
flow and glomerular filtration rate in the pregnant rabbit. Am. J.
Physiol. 252, R69-72 (1987).

15. Nafz, B., Persson, P. B., Ehmke, H. & Kirchheim, H. R. A servo-
control system for open- and closed-loop blood pressure regulation.
Am. J. Physiol. 262, F320-325 (1992).

16. Xia, M., Li, P.-L. & Li, N. Telemetric signal-driven servocontrol of renal
perfusion pressure in acute and chronic rat experiments. Am. J.
Physiol. - Regul. Integr. Comp. Physiol. 295, R1494–R1501 (2008).

