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Abstract

The escalating trend towards processing information and abstract features at the edge

has compelled researchers to reconsider the methodology for performing these tasks

with minimal energy consumption. Edge accelerators confront unique challenges that

demand a reconsideration of the fundamental approach to algorithm execution. No-

tably, the sporadic nature of peak workload demands at the edge calls for a solution

involving synchronizing the workload execution rate with the actual occurrence of

events. This thesis explores the potential of architectures that compute information

and process signals in the temporal domain, introducing the concept stimulus-driven

workload execution by leveraging Asynchronous Stream Computation (ASC) prin-

ciples to expedite edge Machine Learning workloads. A comprehensive analysis is

conducted on the fundamental computational elements required for developing Neu-

ral Network (NN) models to evaluate the impact of an ASC-based computational

paradigm.

A primary objective of this research is to investigate mechanisms addressing the

disparity between conventional processing power and the high memory bandwidth

required for storing high-dimensional data vectors. This goal is realized through

the development of Compute-in-Memory (CiM) architectures, utilizing asynchronous

streams to regulate the execution rate of data-intensive operations like Vector-Matrix

Multiplications (VMMs), Multiply-and-Accumulate (MAC), and dot product, among

others. To gauge the impact of these stream-based CiM tiles in practical Machine

Learning scenarios, the thesis implements an end-to-end streaming Convolutional

Neural Network image classifier model aligned with Asynchronous Stream Compu-

tation (ASC) principles. The implemented classifier architecture exhibits a scalable

performance between 28 - 249 Frames/second (FPS) while maintaining an energy

e!ciency of 81.54 and 247.08 TOPS/W. Furthermore, the research encompasses the

meticulous design of essential computational elements to facilitate and optimize this

implementation.



The thesis also delves into reimagining the neural encoding scheme within Spiking

Neural Networks (SNNs) using the proposed !”! encoding. This encoding tech-

nique enables dual-purpose neural connections, facilitating feature extraction while

suppressing noise-like features from propagating through the network. These neurons

possess unique noise-filtering characteristics, making them suitable for integration into

models capable of robustly handling input feature-dependent noise and random tem-

poral perturbations within the physical signal. We implemented reservoir computing

networks in the spiking domain and demonstrated their e"ectiveness by implementing

liquid-state machine models for time-series predictive engines. We also showed the

robustness of the network against low-quality audio.
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Chapter 1

Introduction

Edge Machine Learning (ML) workloads frequently involve the utilization of high-

dimensional feature vectors, and they exhibit a pronounced demand for memory,

particularly in the context of Convolutional Neural Networks (CNNs). Nonetheless,

the persistent challenge known as the "memory-wall" problem, characterized by a

discernible performance gap between computational power and memory bandwidth,

necessitates the exploration of innovative data computation architectures. One such

solution is the adoption of a Compute-in-Memory (CiM)-based architecture, where

arithmetic computations take place within the memory array. The ongoing research

and development e"orts in both academia [59] and industry [20] have yielded CiM-

based accelerators demonstrating energy e!ciency, surpassing 100 TOPS/W.

Edge accelerators face distinctive challenges owing to sporadic peak workload

demands triggered by intermittent occurrences. Sporadic events are characterized by

their aperiodic nature and the crucial importance of actionable information within

each event. Current methodologies either necessitate the device to be in an "always

on" mode, continuously "sni!ng" for actionable events, or rely on a smaller processor

to "wake up" the main processor in the presence of relevant information. Exacerbating

this situation, a constrained energy budget complicates matters, requiring algorithms

to operate in the most energy-e!cient state.

While traditional architectures use wake-up processors for dual-mode performance

scaling, employing techniques like Dynamic Voltage and Frequency Scaling (DVFS)[8]
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for finer granularity, these approaches face scalability limitations and encounter chal-

lenges with emerging non-volatile memory (eNVM) devices, as noted in existing

literature[71]. Conventional design for edge accelerators balances energy e!ciency

and accuracy, or performance and accuracy [29, 39]. Techniques such as neuron skip-

ping, reduced bit precision, weight pruning, etc., are common but result in static

solutions. However, as we transition to "ultra-edge" devices with renewable energy

sources, energy cycle unreliability becomes a key bottleneck, causing potential down-

time when energy reserves drop below critical thresholds.

We propose an innovative computational approach inspired by biological neural

systems, utilizing Asynchronous Stream Computing (ASC) based temporal streams

to encode information within the temporal domain. These streams represent data

through the duty cycle and frequency of a digital signal, facilitating sparse event

representation and seamless interaction with Computation-in-Memory (CiM) tech-

nologies. Our approach involves designing computational elements and neurons ad-

hering to ASC principles, introducing "stimulus-based workload execution". In this

paradigm, the rate at which computations are performed directly correlates with the

amplitude and rate of change of the actionable event. This paradigm dynamically

scales performance in real-time based on event occurrences, o"ering a more flexible

solution. To address energy scalability bottlenecks in ultra-edge devices, we scale the

frequency spectrum of the encoding technique, modifying computation energy. Our

goal is to shift the design space from energy e!ciency versus accuracy to energy e!-

ciency versus performance, prioritizing workload execution at multiple energy thresh-

olds, even if it entails reducing the computational throughput. We demonstrated the

"stimulus-driven workload execution" technique with a Convolutional Neural Net-

work (CNN) for image classification. Our evaluation assessed the accelerator’s energy

e!ciency across di"erent inference quantities. Employing a circuits-to-architecture

design strategy, we meticulously simulated various computational elements, laying

the groundwork for accelerator development. This dissertation includes the hardware

module library to implement additional feature abstraction modules and processing

elements, enabling the creation of diverse CNN models capable of handling complex
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datasets, thus enhancing the versatility of our approach.

Given that our approach utilizes temporally encoded streams for conveying and

computing information, there is a natural inclination to explore compatibility with

spiking neurons, which operate in the temporal domain. Spiking neural models have

garnered considerable attention recently due to their e"orts to mimic the energy

e!ciency observed in biological systems [26]. These models encode information in

sparse dimensions, o"ering enhanced energy e!ciency and facilitating e!cient feature

representation by minimizing redundancy. In recent years, the research community

has extensively explored various neural encoding techniques to replicate properties

observed in biological systems, such as those found in audio cochlear [73] and dynamic

vision-based systems [27]. This has led to sparser schemes such as Delta modulation

(”) and Sigma-delta (!”) encoding. These schemes enable feature communication

between neurons only when they exceed a certain threshold, leading to even sparser

feature representations between layers within a network.

In this dissertation, we extend the capabilities of delta-modulated neurons by

introducing a novel evolution in this encoding approach termed Sigma-Delta-Sigma

(!”!/SDS) neural encoding. Our proposed encoding method stands out for its

adeptness in filtering out noise-like components from critical features, achieved through

a unique feedback mechanism and intrinsic delay within the encoding technique. This

work aims to construct noise-robust spiking models capable of feature extraction even

in the presence of noisy input stimuli.

1.1 Hypothesis and Contributions

Hypothesis: Reimagining edge computation through the utilization of asynchronous

temporal streams emerges as a transformative approach, fostering an energy-scalable

architecture and empowering the implementation of noise-robust neural encoding tech-

niques tailored for spiking-based models. In defending this dissertation, we will make

the following contributions to the state of the art:

• Open source simulation framework: We aim to create an open-source
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framework using Python, dedicated to modeling the behavioral aspects of ASC

computational elements. This framework will seamlessly integrate these ele-

ments, enabling the emulation of various neural network models. Its primary

purpose is to expedite the development of asynchronous stream-based neural

models, inspire future research, and o"er benchmarks for device researchers.

Moreover, the framework will facilitate the incorporation of device models, al-

lowing researchers to simulate the performance of temporal-based in-memory

computation platforms.

• Redesign CNN computation elements in the ASC domain and gen-

erate customized cell library: The simulation framework will facilitate a

swift architecture assessment process, leveraging the speed of design-to-test in-

herent within software simulation. In parallel, we plan to unveil hardware IP

modules to actualize robust ASICs from the simulated models. These mod-

ules will encompass standard cell libraries, featuring computational elements

designed based on the open-source Process Design Kit (PDK) from Skywater

130nm technology. The intention is to make these modules readily available to

the broader research community.

• Develop noise-resilient spiking neural encoding utilizing Lava as the

base framework: To introduce our innovative Sigma-Delta-Sigma neuron,

we plan to integrate our encoding technique into the Intel Labs Lava software

platform. By implementing this neural encoding approach, our objective is

to develop noise-resilient spiking neural network models capable of performing

classification tasks even with lower-quality incoming features.

1.2 Organization

The remaining sections of the dissertation are organized as follows:

Chapter 2: Background introduces the current state-of-the-art (SoA) ap-

proaches to implementing edge-based ML accelerators and the challenges faced while

4



implementing these solutions.

Chapter 3: Asynchronous Stream Computing: Computing through

Temporal Streams presents the fundamental concepts of ASC that enable an

energy-scalable and precision-scalable computational paradigm and quantifies the cost

for this scalability in terms of energy e!ciency.

Chapter 4: EAS-CiM: Foundational Blocks for CNN models introduces

the various circuit elements designed to implement computational elements for CNN

models and presents benchmarking results based on datasets used by academia and

industry.

Chapter 5: !”! Neuron: Noise-Resilient Spiking Neural Encoding in-

troduces a novel spiking encoding mechanism and depicts its unique noise-invariant

mechanism through information encoding benchmarking models and datasets used

by the industry.

Chapter 6: Conclusions and Future Work summarizes the dissertation and

further discusses the implications and future research directions of our work.
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Chapter 2

Background

2.1 Specific Challenges in Edge Computing for ML

The rapid expansion of IoT applications is expected to lead to the deployment

of approximately 41.6 billion IoT devices by 2025, collectively generating close to

79.4 zettabytes (ZB) of data globally [46]. To manage this substantial data influx

and streamline processing, the predominant framework employed is a tiered pyramid

structure, which divides data processing responsibilities across di"erent layers (Fig. 2-

1a). At the base layer, edge devices collect raw data directly from the environment

and relay it upward to the intermediate "fog" layer. In this fog tier, preliminary

network-level computations and routing occur, e"ectively serving as a conduit that

reduces the load on higher layers. Finally, data reaches the cloud at the top of the

pyramid, where intensive data analysis and computation take place. This tier is also

the primary interface for end users, allowing them to access the processed information.

Despite its e"ectiveness, this pyramid structure has limitations, particularly in

latency and real-time response. Consequently, recent advancements have focused on

shifting more processing capabilities directly to the edge layer. By processing data

closer to the source, edge devices can deliver actionable insights and reduce the de-

pendency on cloud-based processing. This approach not only mitigates the latency

associated with multi-tier data relays but also enhances privacy, as data remains closer

to its origin. Edge computing, therefore, presents a promising alternative by enabling
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(a) (b)

Figure 2-1: (a) Present day pyramid distribution of computing devices, (b)
Global sensory data generation and expected growth trend [2].

timely responses and empowering end users with near-instant access to meaningful

information without relying solely on the cloud for computation. Alongside the shift

from cloud to edge computing, there is a compelling motivation to concentrate on

edge-based processing capabilities. In recent years, we have witnessed a rapid surge

in the volume of sensory data generated and collected by edge devices, a trend ex-

pected to grow exponentially over the next decade (Fig. 2-1b). However, a key insight

emerges from this increase in data volume: despite exponential data growth, the ac-

tual information extracted has reached a point of equilibrium. This observation is

crucial for information extraction strategies, highlighting the need for algorithms that

can e"ectively compress raw data to yield "actionable information."

To address this, the development of optimized edge-based machine learning (ML)

models becomes essential. Such models must not only be lightweight and e!cient to

operate at the edge but also capable of producing high-value insights from extensive

data streams. Furthermore, advancing hardware architectures that can accelerate

these ML algorithms on edge devices is equally critical. A holistic hardware-software

co-design approach is needed to ensure the seamless integration and deployment of

edge-oriented models and devices, creating a unified system that maximizes perfor-

mance while minimizing latency and energy consumption.

The widespread deployment of IoT and edge devices brings unique challenges,

particularly in environments where stable power supplies are either impractical or
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impossible to maintain. For example, sensors deployed in remote or harsh conditions

often cannot rely on "battery-powered" solutions due to logistical limitations, and

frequent maintenance or replacement of batteries is often not feasible. Instead, energy

harvesting systems provide an alternative by capturing ambient energy from sources

like solar radiation, thermal gradients, and kinetic movement [51, 66]. However, these

energy sources are inherently variable and intermittent, leading to power outages that

disrupt device functionality and result in data loss within volatile memory.

To manage these issues, energy-e!cient power management and data process-

ing techniques such as Dynamic Voltage and Frequency Scaling (DVFS) [8, 50] and

wake-up processing have been adopted. DVFS dynamically adjusts a processor’s volt-

age and frequency based on workload demands, allowing the system to save power

during low-activity periods by reducing the operating frequency and voltage. This

technique minimizes energy consumption while maintaining a balance between power

and performance. However, DVFS’s e"ectiveness is often limited to certain levels of

performance scaling, as it usually operates in discrete steps and may be constrained

to a few predetermined power-performance states. This restriction means that while

DVFS can help reduce power consumption, it cannot fully address the high variability

in available power for energy-harvesting devices.

Complementary to DVFS, wake-up processing introduces an additional layer of

power savings by utilizing a secondary, ultra-low-power processor that can handle

basic tasks and activate the primary processor only when necessary [69, 55]. This

approach significantly extends battery life by allowing the main processor to remain

inactive during idle periods. While wake-up processing provides energy e!ciency,

it too has limitations due to its binary "on-o"" nature, o"ering only two levels of

performance—active or standby. As a result, it lacks the granularity needed to scale

performance according to variable workloads, which is essential in environments where

power availability and computational demands can fluctuate widely.

In the context of deploying machine learning (ML) algorithms at the edge, a key

constraint arises from the "memory-intensive" nature of these workloads. Unlike

traditional computational tasks, ML workloads often require significant amounts of
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data to be moved repeatedly between memory and the processing unit, exacerbating

the well-known "memory wall" problem. The memory wall describes the growing

disparity between a processor’s speed and the limited bandwidth of memory, creat-

ing a bottleneck where memory access becomes the dominant limitation on system

performance. This issue is particularly acute in ML workloads, which rely heavily

on data-intensive operations, such as matrix multiplications and convolutions, that

demand frequent memory access. Consequently, as computational power continues

to increase, the relatively slower memory access speed severely constrains the overall

performance of ML models.

For edge computing, where power is limited and energy harvesting cycles are

inconsistent, this memory bottleneck becomes even more drastic. The need for high-

density, low-energy, non-volatile memory (NVM) devices that can handle frequent

read-write cycles without excessive power consumption is paramount. This demand

has driven research toward developing emerging Non-Volatile Memory (eNVM) tech-

nologies, such as Resistive RAM (ReRAM), Magnetoresistive RAM (MRAM), and

Phase Change Memory (PCM) [37, 52, 62]. These eNVM technologies are attractive

candidates due to their high memory density, non-volatility, and lower energy re-

quirements for data storage and retrieval. Their inherent characteristics allow them

to perform certain computations directly in memory, helping to alleviate the memory

wall by reducing the need for data transfer between the processor and memory.

In edge computing, where power constraints and intermittent energy harvesting

cycles are the norm, traditional power management techniques like Dynamic Voltage

and Frequency Scaling (DVFS) fall short of addressing the demands of eNVM tech-

nologies. DVFS operates by lowering voltage and frequency to save energy during

low-load conditions, which works well in conventional digital systems. However, with

emerging NVMs, this technique is less e"ective as these devices have unique opera-

tional requirements, such as specific voltage thresholds for write and erase operations,

which cannot simply scale with frequency and voltage without risking functionality.

Therefore, applying DVFS in these contexts can introduce significant instability, data

integrity issues, and non-linear energy consumption, rendering it incompatible with
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the reliable, e!cient operation of these memory devices [71].

For edge ML accelerators, accuracy—though important—is often a secondary con-

sideration, particularly when small gains in precision demand disproportionate in-

creases in energy. The primary goal is to ensure e!cient computation that aligns with

power constraints, enabling edge devices to deliver meaningful performance within the

limitations of intermittent power sources. For these applications, a high degree of en-

ergy e!ciency is paramount, even at the cost of peak performance or slight sacrifices

in model accuracy. In scenarios where incremental gains in precision require a sub-

stantial increase in energy, it is more advantageous to prioritize scalable energy usage

to extend device uptime and reduce latency. In the following sections, we will review

current state-of-the-art solutions that address the aforementioned challenges, exam-

ining both their strengths and limitations, with a focus on how this dissertation aims

to address these shortcomings.

2.2 Compute-in-Memory: An alternate to Von Neu-

mann Architectures

Compute-in-memory (CiM) [34] represents a paradigm shift in traditional com-

puting by integrating data storage and processing within the same memory array,

thereby addressing the limitations of conventional von Neumann architectures where

memory and processing are separated. At its core, CiM eliminates the need for fre-

quent data transfers between memory and the processor by enabling computations

to occur directly within memory cells. This is particularly advantageous in scenarios

where intensive data access and manipulation are required, as CiM minimizes the

delays and energy costs associated with data movement. This fundamental change

is achieved through specialized memory arrays that can perform operations such as

bitwise logic, matrix multiplications, and accumulations directly within the memory,

thus accelerating processing while reducing power consumption.

One of the key benefits of CiM is the significant reduction in data movement costs,

a known bottleneck in both performance and power consumption for conventional ar-
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chitectures. With CiM, the memory wall—where memory bandwidth lags behind

computational speed—is e"ectively mitigated, allowing for much faster data process-

ing. This reduced data movement enhances performance and extends the battery life

of energy-constrained devices, making CiM highly suitable for edge applications.

Given ML algorithms’ high data access requirements, CiM is uniquely well-suited

for ML acceleration, especially at the edge. ML workloads, including operations such

as matrix multiplications and convolutional neural network (CNN) computations, are

data-intensive and benefit greatly from reduced memory access times. In edge ML

applications, where power and latency constraints are critical, CiM o"ers an e!cient

alternative to traditional architectures, delivering the computational power needed for

complex ML tasks with minimal energy overhead. Integrating memory and computa-

tion within a CiM system allows for faster, low-energy data processing, which aligns

with the stringent power budgets typical in edge deployments. Compute-in-Memory

(CiM) encompasses a range of implementation strategies, primarily categorized into

analog and digital approaches, each o"ering distinct advantages tailored to various

computational needs. These di"erent "flavors" of CiM provide flexibility in optimizing

for factors such as energy e!ciency, speed, and computational accuracy.

2.2.1 Analog CiM

Analog CiM (see Fig. 2-2a) leverages the analog properties of memory devices to

perform computations directly within the memory array. This approach is particularly

e"ective for operations like matrix-vector multiplications, which are fundamental to

many machine-learning algorithms. By utilizing the inherent physical characteristics

of memory elements, analog CiM can perform these operations in a highly parallel

manner with significant energy savings. For instance, analog CiM implementations

can exploit Ohm’s law and Kirchho"’s current law to execute weighted summations

across memory cells, which is ideal for accelerating neural network computations.

This method o"ers substantial benefits in terms of energy e!ciency and throughput,

as it minimizes the need for digital-to-analog and analog-to-digital conversions that

are typically required in traditional digital systems.

12



BL  Switch Matrix

D/A

D/A

D/A

W
L 

Sw
itc

h 
M

at
rix

A
/D

A
/D A
/D

MUX

Mux
Decoder

Adder

Shift 
Register

Adder

Shift 
Register

Adder

Shift 
Register

Mux Decoder

Column Decoder

MUX

n cells as  one
synapse

Decoder Driver

W
L 

D
ec

od
er

D
ec

od
er

 D
riv

er

Adder
Register

VSA VSA

Adder
Shift 

Register

Adder
Register

VSA VSA

Adder
Shift 

Register

(a) (b)

Figure 2-2: Architectural diagram of (a) an Analog CiM, and (b) a Digital
CiM.

Ali Shafiee et al. [59] introduced the ISAAC architecture, a comprehensive frame-

work integrating memristive crossbar arrays and digital components to form a pipelined

structure, where neuron sets within each CNN layer are processed in the crossbar while

intermediary values are stored in eDRAM bu"ers. This architecture assigns crossbars

to specific layers, reducing reprogramming needs and optimizing chip area, which sig-

nificantly enhances throughput, energy e!ciency, and computational density in CNN

tasks. Similarly, Qi Liu et al. [44] addressed Analog CiM bottlenecks, such as IR drop,

with a sign-weighted 2T2R memristor array and a resolution-adjustable LPAR-ADC

interface to balance accuracy and power. Additionally, researchers have explored

adaptations of conventional memory cells in Analog CiM architectures. Zhengyu

Chen et al. [13] introduced a 3-transistor (3T) analog memory cell (DARAM) that

encodes weights as analog voltages, achieving a 10× reduction in transistor count over

traditional SRAM-based cells. Further power e!ciency was achieved through ana-

log sparsity-based methods like compute-adaptive ADC skipping and weight-shifting,

resulting in a 2× reduction in power consumption. However, analog CiM also faces

challenges, such as sensitivity to noise, device variability, and non-idealities in analog
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signal processing. These factors can a"ect the precision and reliability of computa-

tions, which might be a limitation for applications requiring high numerical accuracy.

2.2.2 Digital CiM

Digital CiM(see Fig. 2-2b), on the other hand, incorporates computational logic

within the memory array using digital circuits. This approach can be implemented

through modifications to conventional memory technologies, such as SRAM or DRAM,

to embed logic gates that perform basic operations like addition, multiplication, and

bitwise functions [67, 14, 65]. Digital CiM maintains the advantages of standard dig-

ital computation, such as robustness to noise and high precision, while still reducing

data movement by co-locating processing and storage. Digital CiM implementations

are generally more compatible with existing digital systems and fabrication processes,

making them easier to integrate into current technology stacks. They o"er a good

balance between performance and reliability, which is crucial for applications where

computational accuracy cannot be compromised.

Digital CiM architectures o"er a distinct advantage in scalability and energy ef-

ficiency over analog designs, as bit vectors can be sequentially fed into the CiM tile,

making digital precision more feasible. For example, Yu-Der Chih et al.[14] pro-

posed a 6T SRAM-based, all-digital CiM macro optimized for energy-e!cient MAC

operations in CNNs. This design supports configurable bit-widths for both input

activations (1-8 bits) and weights (4, 8, 12, or 16 bits), using bit-serial multiplication

and parallel adder trees to maximize parallelism, energy e!ciency, and throughput.

Researchers have also focused on optimizing the read mechanisms at the memory

bank level to further improve energy e!ciency. For instance, Jian-Wei Su et al.[65]

introduced a segmented-BL charge-sharing (SBCS) scheme for e!cient MAC oper-

ations, maintaining high signal margin with low energy consumption. Supporting

this approach, they developed a source-injection local multiplication cell (SILMC) to

stabilize signal margin against transistor variations, along with a prioritized-hybrid

ADC (Ph-ADC) for compact, low-power analog readout.

Each of these CiM approaches—analog and digital—brings unique benefits and
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trade-o"s. Analog CiM excels in energy e!ciency and parallelism, making it well-

suited for low-power, high-throughput applications like real-time image and signal

processing at the edge. Digital CiM provides a more reliable and precise computa-

tional environment, which is advantageous for applications requiring exact calcula-

tions and compatibility with conventional digital systems. By leveraging the strengths

of these di"erent CiM implementations, edge ML accelerators can be tailored to meet

the diverse demands of edge computing, providing e!cient and scalable solutions that

maximize performance while minimizing energy consumption.

2.3 Emerging Devices Facilitating Non-Von Neumann

Architectures

Emerging non-volatile memory (eNVM) devices, such as memristors, phase-change

memories (PCM), and magnetic devices, are drawing significant attention in edge

machine learning for their potential to transform computation at the hardware level.

These devices o"er distinct advantages, including non-volatility, multi-bit storage

precision, and reduced power consumption, making them highly suitable for energy-

e!cient, low-power edge applications. Recent works [59, 20, 67, 44] have demon-

strated edge ML accelerators that leverage eNVM devices as both storage and com-

putational elements, highlighting their versatility in these architectures.

These eNVM devices operate based on diverse physical principles. For example,

RRAM (Resistive RAM) utilizes resistive switching by forming and breaking con-

ductive filaments within a dielectric layer; PCM (Phase Change Memory) encodes

data by transitioning between crystalline and amorphous states in a chalcogenide

material; MRAM (Magnetoresistive RAM) employs magnetic tunnel junctions, stor-

ing data through the alignment of magnetic orientations; and FeFET (Ferroelectric

FET) relies on electric field-induced polarization states within a ferroelectric layer,

allowing data to persist without power. The choice of device depends on the sys-

tem requirements, such as energy e!ciency, storage precision, and endurance, for the
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targeted ML acceleration.

Despite their promising features, deploying emerging devices in large-scale, practi-

cal applications poses several challenges, including device-to-device variations, limited

fabrication yields, endurance constraints, leakage power, and reliability concerns over

prolonged use. A primary barrier to widespread adoption is the limited compatibility

of these devices with current CMOS fabrication techniques, which restricts scalable

integration across various edge platforms. Overcoming these challenges is crucial for

realizing the full potential of eNVM devices in edge ML applications. Depending on

the device type and fabrication process, the severity of these issues can vary signifi-

cantly. Comprehensive reviews by Je-Min Hung et al. [32] and An Chen [12] discuss

these benefits and challenges in detail, particularly for CiM-based applications, as

summarized in Table 2.1.

Table 2.1: Qualitative Summary of eNVM devices based on system metrics

Device Energy Consumption Endurance Device Variations

RRAM Medium
(ns to µs write time)

Medium
(108 to 1012 cycles)

High
(Stochastic behavior,
intrinsic variability)

PCM
High

(2 ns to 200 ns write time,
high switching power)

High
(108 to 1015 cycles)

Medium
(Disturbance issues,

phase-change consistency)

MRAM Low
(1.3 ns to 25 ns read time)

Medium-High
(approx. 108 cycles)

Low-Medium
(Patterning,

magnetic stability)

FeFET Low
(Field-driven, low-power)

Low-Medium
(Reliability issues)

Medium-High
(Charge trapping,
parasititic e"ects)

2.4 Spiking Neural Networks: Insights from Biolog-

ical Models

Biological systems, such as the brain, are capable of performing complex compu-

tations with very little power, far surpassing traditional artificial computing systems

in this regard [15]. This energy e!ciency, combined with the ability to manage large
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amounts of sensory data and extract critical features for decision-making, has inspired

researchers to explore computational models that emulate these biological processes.

The focus is on creating systems that can replicate the brain’s ability to operate

in noisy, variable environments while minimizing energy consumption, making this

approach particularly attractive for edge machine learning applications.

One of the most promising avenues in this area is the development and imple-

mentation of Spiking Neural Networks (SNNs). Spiking neural models have garnered

considerable attention recently due to their e"orts to mimic the energy e!ciency

observed in biological systems [26]. These models encode information in sparse di-

mensions, o"ering enhanced energy e!ciency and facilitating e!cient feature repre-

sentation by minimizing redundancy. These networks mimic the way neurons in the

brain communicate via spikes, transmitting information only when a certain thresh-

old is reached, which conserves energy compared to continuous communication in

traditional neural networks. Various research works have demonstrated the superior

energy e!ciency of SNNs for specific tasks. For example, SNNs have been successfully

applied to image recognition [70] and sensory processing tasks, where they not only

matched the performance of conventional deep learning models but also did so with

significantly lower power requirements. Neuromorphic hardware platforms such as

Intel’s Loihi [16] and IBM’s TrueNorth [4] have showcased these benefits in practical

implementations, further proving their potential in energy-constrained environments

like the edge.

2.4.1 Fundamental spiking encoding schema

In the early stages of spiking neural network (SNN) research, e"orts primarily

focused on mimicking the function of neurons found in biological systems, especially

vertebrates. This bio-inspired approach introduced foundational neuron models, such

as Integrate-and-Fire (IF), Leaky Integrate-and-Fire (LIF), and time-to-first spike

(TTFS), laying the groundwork for encoding methods that capture neuron activation

in response to stimuli. Initially, neural encoding aimed to replicate neuronal behavior

by using rate encoding, where information is conveyed through the average firing
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rate of spikes over a given time. This approach aligned well with basic biomimetic

goals, yet it presented limitations in capturing the full potential of temporal dynamics

observed in biological neurons. Broadly speaking, various encoding schemas can be

classified irrespective of their biological mechanism into the following categories:

Rate Encoding: In rate encoding, information is conveyed through the average

firing rate of neurons over a set period, with the critical information encoded in the

density of spikes within that interval. The timing of individual spikes can be ei-

ther deterministic or random, but it is the spike rate that primarily represents the

encoded stimuli. Although computationally e!cient, rate encoding is limited in appli-

cations requiring precise temporal dynamics. It aligns with traditional neural network

methodologies but does not fully exploit the low-latency, event-driven capabilities in-

herent to SNNs.

Temporal Encoding: Temporal encoding techniques, such as time-to-first spike

(TTFS) and spike-time-dependent encoding, capture information in the precise timing

of individual spikes rather than in their overall rate. This approach enables faster,

more energy-e!cient communication by focusing on the exact moment of each spike.

For example, TTFS encodes data in the time interval between a stimulus and the first

spike, facilitating low-latency processing and e"ectively capturing temporal patterns.

Temporal encoding supports biologically realistic processing features, such as phase

locking and temporal synchrony. However, the precision required in spike timing

demands a more robust implementation, as variations in these intervals can lead to

sub-optimal information processing.

Population Encoding: Instead of relying on a single neuron, population encoding

uses a group of neurons to represent information, with each neuron responding to

di"erent features or aspects of the data. This approach mirrors the organization

of biological sensory systems, where diverse neuronal populations work together to

process complex stimuli. Population encoding is especially e"ective in tasks requiring

high-dimensional representations, o"ering robustness against noise and variation in

individual neuron responses.
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2.4.2 Evolution of ” class neurons

Recently, we have seen a paradigm shift in encoding techniques, wherein the focus

has shifted from biomimicry to emulating certain functional characteristics observed

within biological neurons. The evolving landscape of temporal encoding techniques

exhibits a significant divergence, marked by methodologies relying on the di"eren-

tial amplitude between consecutive feature samples in a time series format. This

has led to sparser schemes such as Delta modulation (”) and Sigma-delta (!”) en-

coding. These schemes enable feature communication between neurons only when

they exceed a certain threshold, leading to even sparser feature representations be-

tween layers within a network. These spiking encoding schemes have shown notable

e"ectiveness in fields like image and audio processing. For instance, Ilya Kiselev

et al. [35] implemented a biologically inspired 64 × 2 channel silicon cochlea front

end for stereo audio sensing, employing asynchronous Delta (”) modulation to en-

code analog-filtered signals into sparse event streams. This system extracted features

through bandpass filters (BPFs) scaled across the human auditory range (8 Hz to

20 kHz), achieving e!cient, event-driven outputs with a power consumption of only

55µW at a rate of 100k events/s.

The Delta neuron class has also been impactful in image and video processing,

especially where real-time response is needed within strict energy constraints. Re-

searchers at Dayton Engineering Advanced Projects Lab [27] developed a neuromor-

phic system for real-time vision-based autonomous drone navigation using Intel’s

Loihi 2 processor. Their approach utilized a spiking Sigma-Delta Neural Network

(SDNN) to directly process high-resolution camera data onboard, generating control

actions in real time. Leveraging Loihi 2’s spiking capabilities, the SDNN achieved

robust, energy-e!cient navigation under low size, weight, and power (SWaP) con-

straints, emulating sparse, asynchronous processing similar to human perception.

Similarly, Waseem Sharif et al. [60] introduced a spiking SDNN for enhancing spatial-

temporal resolution in event cameras, aimed at improving real-time visual processing.

To address the challenges of low resolution and sparse data typical of event cameras,
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their method incorporated binary spike integration with a spatiotemporal learning

mechanism for optimized spatial and temporal feature extraction. Evaluations on

datasets like NMNIST, CIFAR10-DVS, and ASL-DVS showed a 17x improvement in

event sparsity, with greater operational e!ciency than traditional ANNs.

2.5 Barriers to Designing Hardware for Edge-based

Neural Network Accelerators

Mapping ML workloads to edge accelerators presents significant challenges, largely

due to the limitations of edge hardware in memory, computational power, and en-

ergy e!ciency. Many ML models, like Convolutional Neural Networks (CNNs) and

Deep Neural Networks (DNNs), are designed for powerful cloud environments but

are often tailored for edge deployment through techniques like model compression

and quantization. However, these adaptations come with trade-o"s in accuracy, as

reducing precision (e.g., INT8 or INT4) can lead to information loss. To address edge-

specific needs, unique models such as Spiking Neural Networks (SNNs) and Binary

Neural Networks (BNNs) have also been developed, specifically optimized for energy

e!ciency and reduced memory usage. Despite their potential, these models often

require non-standard training approaches, and developing robust training techniques

remains challenging. Successfully implementing edge AI requires extensive design

space exploration, balancing trade-o"s in energy e!ciency, performance, precision,

and latency to achieve optimal results.

Furthermore, most edge devices deployed today are inference-only, meaning they

process data but cannot learn or train in real time, limiting the adaptability of edge AI

in dynamic environments. Without continual learning capabilities, these models can-

not adapt to changing conditions, such as variations in lighting or temperature, which

may impact data distributions and, consequently, model performance. To enable ef-

fective edge AI, e"orts are needed from both sides: algorithm developers must design

models specifically suited to edge constraints, while hardware engineers should create
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customized architectures that accelerate specific model types. Additionally, limited

memory bandwidth on edge hardware makes e!cient memory management crucial,

underscoring the need for cohesive, hardware-aware model design that achieves real-

time, resilient performance in diverse conditions.

Developing hardware for edge-based CNN accelerators faces several critical bar-

riers. First, power and energy constraints are paramount, as edge devices often rely

on limited power sources, making it challenging to achieve high performance without

sacrificing energy e!ciency. Most current ML architectures for edge devices aim to

balance accuracy with either performance or energy e!ciency. For example, Longwei

Huang et al. [31] introduced a precision-scalable RISC-V-based Deep NN processor

optimized for extreme edge platforms, achieving a balance between energy e!ciency

and accuracy scalability. Their processor supports diverse precision levels (2-bit to

16-bit fixed-point) for inference, enhancing accuracy while preserving data privacy.

By reusing multi-precision integer multipliers and optimizing FPGA resource alloca-

tion, they achieved a 1.1 - 14.6× increase in energy e!ciency and a 16.5× boost in

floating-point throughput for on-device learning compared to previous architectures.

However, while focusing on accuracy vs performance is essential, the overlooked

additional hardware cost is substantial. Precision-scalable designs demand reconfig-

urable hardware and an increased silicon footprint, but these resources may see limited

utilization. Precision scalability is inherently linked to computational demand, which,

at the edge, is often sporadic. Thus, while the logic of addressing high computational

loads may justify additional hardware, the practical, intermittent demands at the

edge highlight a trade-o" between hardware cost and actual utility.

Second, memory limitations are significant; edge devices lack the extensive mem-

ory resources typical in cloud or high-performance computing, complicating handling

large CNN models and frequent memory accesses. ML algorithms are inherently

memory-intensive, demanding substantial data storage and retrieval during training

and inference. Modern ML models, especially deep learning networks, use large ma-

trices and tensors to represent weights, activations, and gradients. As discussed in

Section 2.2, CiM o"ers a novel and orthogonal alternative to conventional Von Neu-
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mann architectures, which have traditionally served as edge hardware accelerators.

Mark Horowitz [30] estimated that, in modern superscalar processors, over 50%

of the processor’s die energy cost comes from cache and memory management. This

issue is even more pronounced when mapping CNN/DNN workloads to an edge device,

where innovative techniques are essential, both in ML algorithm design and hardware

data flow management. For example, Arnab Raha et al. [54] developed FlexNN,

a framework implementing a novel sparsity-based acceleration logic. By analyzing

the sparsity in activations and weights, FlexNN bypasses unnecessary computations,

reducing memory access and data movement costs, achieving a speedup of 1.8×–3.3×

for dense workloads and approximately 1.8× for semi-sparse workloads.

The brain processes vast amounts of information with minimal energy, inspiring

the development of computing systems that mimic this e!ciency. SNNs o"er an event-

driven processing approach, where computation is triggered only when necessary,

inherently supporting energy-e!cient processing. This feature is highly beneficial for

edge computing, where power constraints are critical. As described in Section 2.4,

SNNs excel in representing information sparsely, making them a promising solution for

feature extraction at the edge, where events tend to be sporadic. The ability of spiking

models to encode information with minimal redundancy and reduced dimensionality

is particularly valuable in such contexts.

The practical implementation of SNNs remains challenging, with reliable train-

ing often proving cumbersome and leading researchers to adopt proxy model ap-

proximations. Unlike conventional Artificial Neural Networks (ANNs), which benefit

from backpropagation as a champion algorithm, SNNs lack a similarly robust train-

ing method. Common approaches include localized training algorithms that lever-

age neuron-level plasticity, though these often achieve lower accuracy on standard

datasets, and ANN-to-SNN conversion, which, while e"ective, is not a true SNN ap-

proach. This conversion method trains the model as an ANN and then approximates

activation functions for SNN adaptation.

For instance, Xiangwen Wang et al. [68] extensively reviewed supervised learning

algorithms for SNNs, assessing them across five key criteria: spike train learning abil-
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ity, o#ine and online processing support, locality of learning rules, stability of optimal

solutions, and compatibility with spiking neuron models. Some algorithms are lim-

ited to learning single spikes, while others are capable of handling entire spike trains,

which makes them more versatile for complex tasks. Certain methods support both

o#ine and online learning, though others are restricted to one mode, limiting their

flexibility. While single-layer and some recurrent SNNs maintain locality, multilayer

feed-forward and certain recurrent SNNs lack this property, which impacts scalability.

Stability in achieving optimal solutions varies across methods, with some providing

reliable performance and others lacking consistency. Additionally, certain algorithms,

such as gradient descent-based approaches, are compatible only with specific neuron

models, while others are more widely applicable.

In today’s edge ML landscape, where practical applications and relevant datasets

demand robust performance, the theoretical energy e!ciency of SNNs is not always

fully realized. This limitation often arises from the dataset characteristics and training

procedures required. For instance, Lei Deng et al. [17] examined SNN performance

across datasets, showing that SNNs perform well on simpler, ANN-oriented datasets

like MNIST, where they maintain accuracy with lower compute costs. On more

complex datasets, such as CIFAR-10, SNNs struggle to match ANN accuracy and

may require longer processing times. SNNs excel on SNN-specific workloads, such

as DVS-CIFAR-10, where sparse activity patterns enable lower computation costs.

In sum, while SNNs are e"ective on simpler or SNN-specific datasets, they are less

suitable for complex, ANN-oriented tasks.

Moreover, the irregular, spike-based communication patterns in SNNs pose chal-

lenges for mapping onto conventional digital hardware, which is optimized for contin-

uous data flows. Current state-of-the-art hardware like Loihi [16] and SpiNNaker [49]

are digital emulations of biological neurons, designed to implement SNN models on

digital platforms. However, these digital implementations often limit the full energy

e!ciency potential that SNNs could theoretically achieve. Additionally, designing

neuromorphic hardware that captures the complex dynamics of biological neurons

while remaining e!cient in silicon demands innovative solutions. Key challenges such
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as scalability, precision in spike generation, and power management during spike pro-

cessing remain active research areas. Bridging the gap between SNNs’ energy-e!cient

promise and the practical constraints of hardware is a primary focus for researchers

aiming to make these models viable for real-world edge applications.
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Chapter 3

Asynchronous Stream Computing:

Computing Through Temporal

Streams

In applications where energy e!ciency takes precedence over accuracy, Stochastic

Computing o"ers an energy-e!cient solution, because arithmetic and logical opera-

tions can be carried out with simpler gates. Engineers also realized that accuracy

and precision can often be traded o" for other metrics, such as power and/or cost,

depending on the requirements of the application [3]. The overall accuracy of these

operations is a knob that can be adjusted by varying the length of the stochastic

number [19]. The fact that the accuracy of the system is related to the length of the

stochastic number in a conventional stochastic system leads to a trade-o" between ac-

curacy and throughput. Stochastic Computing streams/numbers can be generated by

employing Random Number Sources, Linear Feedback Shift Registers (LFSRs), noisy

emerging technologies, etc. [22, 72]. Asynchronous streams can be created through a

Pulse Density Modulation (PDM) method, and are often generated through clockless

Sigma-Delta (!”) Modulator circuits [36].

Asynchronous Stochastic Computing (ASC) is an alternative to the conventional

stochastic methodology introduced by Gaines [21], where an analog value/ event can

be represented as a stochastic stream, p, and is represented by the average duration
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(a) (b) (c)

Figure 3-1: Signal properties of (a) di!erent value ASC streams (b) Mul-
tiplication operation using AND gate, and, (c) Temporal characteristics
with relation to the input value, p.

for which the stream takes a high (Vh) voltage level. Fundamentally, ASC encodes

the incoming analog information in the time domain, and the amplitude of the signal

correlates with the stream’s instantaneous frequency, f and duty cycle, 𝜀, through the

relations below [23]:
f

fc
= 1→ p2 𝜀 =

1 + p

2
(3.1)

, where fc is the natural frequency of the modulator when the input is zero and

p is the normalized value of the input to the maximum value. Fig. 3-1a exhibits

transient signals that represent di"erent values of p. Arithmetic operations such

as multiplication can be implemented through simple logic gates such as AND, as

depicted in Fig. 3-1b. From a feature encoding perspective, any feature vector can

be mapped to a set space of p ↑ [→1 + 1], which translates to an output frequency

and duty cycle, as depicted in Fig. 3-1c.

3.1 Energy-E!cient Computing: A Scaling Perspec-

tive

To understand the energy and frequency dynamics involved while generating asyn-

chronous streams, it is necessary to understand the fundamental concepts of an Asyn-

chronous Continuous Time !” modulator as shown in Fig.3-2a. The modulator op-

erates on the di"erence between the input source, Iin, and the output signal Vout. To

operate on the di"erence, Vout is represented in the current domain by a switched
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(a) (b)

Figure 3-2: (a) Conceptual diagram for !” modulator, (b) Timing diagram
of the transient signals to determine the instantaneous frequency of the
stream.

current source, Ifb, and the di"erence is integrated on the capacitor node, Cint. The

buildup of the voltage, Vc causes the output of the Schmitt trigger to switch when the

switching threshold of the trigger is reached. The output pulse, Vout, has a constant

amplitude, an instantaneous output frequency (f), and duty cycle (𝜀). These tempo-

ral parameters depend on the input signal dynamics, thus characterizing the stream

as discrete in amplitude but continuous in time. The relation between f , 𝜀 and the

input value is described in Eq. 3.1.

3.1.1 Energy & Frequency Model

In the energy model for the !” modulator, three primary components are used

to calculate the energy dissipation: energy dissipated to the load (EL), capacitive

energy dissipation (Eint) and energy required to drive the feedback current mirror

circuit (Efb) and account for all the dynamic and static energy dissipation within the

module. The frequency of the stream is set by the amplitude of the input signal, it

would imply that the number of transitions and switching activity would be dependent

on the input value. Therefore, the energy required for generating a single output

stream pulse is the energy required per stream transition. The expressions for each

of these components are described below:

Eint = Cint ↓ (𝜀2H → 𝜀2
L
)
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where 𝜀H , and 𝜀L are the upper and lower switching threshold voltages of the Schmitt

trigger within the !” modulator.

EL = CL ↓ V 2
DD

Efb = VDD ↓ Ifb ↓
1

f

Therefore, the total energy dissipation per transition would be;

Etot = Eint + EL + Efb (3.2)

where CL, VDD are the load capacitance and supply rail of the !” modulator circuit,

respectively. To calculate the instantaneous output frequency of the stream, the

transitional period of the stream must be calculated. For an analog input, Iin, there

would be a time-varying voltage buildup of Vc on the capacitor, Cint. The timing

diagram of the stream is depicted in Fig.3-2b and the respective transitional periods

are derived below:

Ton =
2 ↓ Cint ↓ 𝜀hys

Ifb + Iin

Toff =
2 ↓ Cint ↓ 𝜀hys

Ifb → Iin

=↔ T = 2 ↓ Cint ↓ 𝜀hys

)︃
2Ifb

I2
fb
→ I2

in

[︃

f =
I2
fb
→ I2

in

4 ↓ Cint ↓ 𝜀hys ↓ Ifb
(3.3)

A key deduction that can be made from (3.3), is the identification of knobs that

can be utilized to understand how e"ectively can one scale the stream throughput

while following a minimum energy cost curve.

28



3.1.2 Sensitivity Analysis for e!cient scaling

To analyze the sensitivity of energy to the instantaneous frequency due to a change

in a design knob, it is necessary to identify knobs that would critically a"ect the

design space. By carrying out a sensitivity analysis for each knob, it is possible to

understand the trade-o" one would achieve regarding energy and frequency metrics.

A design knob, with a larger sensitivity, can be a more e"ective knob in optimizing

the circuit for a given region. To be chosen as a design parameter, they need to

be uncorrelated and scalable. This allows us to explore the e"ect each parameter

exclusively has on the metrics under consideration. The sensitivity of a parameter,

X, can be defined as [36];

Sx(X) =

𝜗Ptot

𝜗x

𝜗D

𝜗x

]︃]︃]︃
x=X

(3.4)

In our analysis, the design optimization is carried out by employing Ifb, Cint,

and 𝜀hys as the knobs. To normalize the design space exploration, we consider a

reference design with a constant output frequency, Fref , and the corresponding energy

dissipation is calculated for that reference point. Every other design point within

the space exploration is considered an incremental/decremental point regarding the

reference point.

In the case of Cint, a higher value results in a larger time constant and therefore,

causes Vc to reach the switching threshold voltages at a slower rate, resulting in a

lower frequency. 𝜀hys has a similar e"ect wherein increasing/decreasing the parame-

ter, e"ectively a"ects the transitional period lengths and hence lowers/increases the

frequency. This is reflected in (3.5) & (3.6) and shows that their respective sensi-

tivities have diminishing returns as the value of the two design knobs are increased.

The diminishing returns for Cint can be attributed to the fact that the reduction in

Eint as the frequency increases is also reflected by the negative value of sensitivity in

the equations. In the case of 𝜀hys, there is a quadratic e"ect and the relative drop
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in sensitivity occurs at a much faster rate. The dynamic range of 𝜀hys is the limiting

factor that prevents it from scaling the frequency across the entire range. However,

this can be attributed to the fact that the scalable nature of 𝜀hys is often limited

by the supply voltage and is reflected in the analysis. The deviation in energy per

transition due to a change in Cint can be calculated as;

𝜗Etot

𝜗Cint

= 𝜀2
hys

+ 2𝜀L𝜀hys +
4𝜀hys

1→ p2

The variation in frequency due to a change in Cint, is formulated below;

𝜗f

𝜗Cint

=
→1(I2

fb
→ I2

in
)

2Ifb𝜀hysC2
int

Therefore, the sensitivity of the total energy per transition to the frequency due to a

change in Cint is derived below;

SCint =

𝜗Etot

𝜗Cint

𝜗f

𝜗Cint

=

4Ifb(Cint𝜀hys)2

⌊︃

⌋︃
𝜀hys

2
+ 𝜀L +

2

1→ p2

⌈︃

⌉︃

→1(I2
fb
→ I2

in
)

(3.5)

Similarly, the sensitivity of the other knobs can be derived and is calculated below;

S𝜔hys
=

𝜗Etot

𝜗𝜀hys

𝜗f

𝜗𝜀hys

=

4Ifb(Cint𝜀hys)2

⌊︃

⌋︃𝜀hys + 𝜀L +
2

1→ p2

⌈︃

⌉︃

→1(I2
fb
→ I2

in
)

(3.6)

SIfb
=

𝜗Etot

𝜗Ifb

𝜗f

𝜗Ifb

=
8Ifb(Cint𝜀hys)2VDD

→1(I2
fb
→ I2

in
)2

⌊︃

⌋︃
1

I2
in

+
1

I2
fb

⌈︃

⌉︃

(3.7)

The sensitivity of energy to the relative output frequency due to a change in Ifb as
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(a) (b) (c)

Figure 3-3: (a)Sensitivity analysis of design knobs vs frequency scaling,
Single Knob Optimization scenario for (b) low-frequency region, and (c)
high-frequency applications.

depicted by (3.7), exhibits a plateauing e"ect, where the relative change in energy

as the frequency is increased is almost constant, owing to the static energy costs

associated with the feedback current mirror. This implies that Ifb sensitivity drops

from its maximum value at the origin at a much lower frequency and then plateaus

out, and the relative decrease in sensitivity is much lower than that of the other two

design knobs. However, a critical cross-over point in the design space is when the

diminishing returns of 𝜀hys & Cint drops below the sensitivity of the Ifb at points C1

and C2, respectively, as seen in Fig. 3-3. This implies that, as the frequency scales, Ifb

would prove to be a more e!cient design knob after the respective cross-over points.

Single Knob Optimization: We utilize our insights gained from the sensitivity

analysis to carry out a case study to show how various knobs can be e"ective in

di"erent regions within the frequency scaling domain. To understand the energy and

frequency dynamics, it is necessary to understand the scenarios that would occur

during a practical design process. In most design approaches, it is often impractical

to have a dynamic tuning property for every knob within the circuit. Therefore,

depending upon the application and the required frequency scalability, it would be

highly beneficial to determine the knob that would be the most e"ective before design

and would result in a single knob optimization problem. To analyze single-knob

optimization, we consider two frequency scaling applications targeting sub-1 kHz

applications, such as body temperature and blood pressure monitors, as depicted

in Fig.3-3b. Experimental simulations reveal that when Cint and 𝜀hys are used as

separate scaling knobs, the relative energy savings are approximately 18% with a 50%
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increment in frequency, validating their e"ectiveness at lower frequencies. Conversely,

when Ifb serves as a single knob, the energy savings are less than 4%. In another

scenario, focusing on intravascular ultrasound signal processing applications operating

in the 100’s of kHz to MHz range (Fig.3-3c), using Ifb as the scaling knob is more

e"ective, with approximately 21% savings compared to the 17.5% savings with Cint

and 𝜀hys, showcasing its e!cacy beyond the inflection point highlighted in Fig. 3-3a.

3.1.3 Scalable ASC: Circuit Implementation

The insights gained from the sensitivity analysis and single knob optimization

problem, are validated by designing and simulating a scalable throughput !” Modu-

lator. The practicality of the optimization strategy is proved by designing a scalable

arithmetic unit that is capable of MAC operations within a microarchitecture system.

The e"ect of scaling of throughput on the overall accuracy of the operation is also an-

alyzed. The !” modulator circuit and ASC arithmetic modules were designed using

the 65nm TSMC LP process, and the simulated results utilizing Cadence Virtuoso

are depicted in this section.

3.1.4 Variable Stream Rate !” Modulator

To demonstrate the e"ectiveness of each knob and how the sensitivity analysis

results would be implemented in a practical application, a variable stream rate !”

Modulator has been designed, as shown in Fig. 3-4. The three design knobs, Ifb,

Cint and 𝜀hys, have dynamic scaling capabilities through programmable elements, as

seen in Figure 3-4. By properly sizing a current mirror’s transistor, MP and utilizing

switchable elements, MN,sw a combination of Ifb values can be generated ranging from

1 nA - 25 nA. Similarly, a programmable Metal-insulator-Metal (MiM) capacitor bank

has been designed to scale Cint from 50fF to 300fF. The parasitic and switching noise

components that would be introduced by utilizing a bank of switchable capacitors

can be minimized through proper sizing and allocating a reset period based on the

worst-case settling time required for the bank before the generation of an ASC stream.
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Figure 3-4: Schematic diagram of programmable !” Modulator

To implement a variable hysteresis loop for the Schmitt trigger, the feedback

strength of the circuit can be altered thereby varying the upper and lower switching

threshold. The resulting hysteresis loop of a 4-bit programmable Schmitt trigger

is shown in Fig.3-4. The frequency and duty cycle characteristics of the scalable

modulator over the dynamic input range of 0 → 0.8p, depict the scaling e"ect and

have been plotted for throughput ranges from 2kHz to 100 kHz.

3.1.5 Scalable ASC Arithmetic Unit

In our previous works, it has been proven that arithmetic operations such as mul-

tiplication can be carried out by employing simple logic gates (AND/XOR) [25] and

addition of streams can be implemented in a current-driven and integration method

[24]. As the adder operates on a similar current integration principle, a secondary

level of Pareto optimization can be carried out. Multiply-Accumulators (MAC) units

often account for more than 500 Million MAC (MMAC) operations in IoT edge sys-

tems [53]. This provides a significant incentive to design scalable MAC units that

can be energy-e!cient across a wide throughput range. The designed arithmetic unit

can be utilized for MAC operations, and the computational throughput of the system

can be altered by scaling the knobs. The implemented schematic model of the ASC

arithmetic unit is depicted in Fig. 3-5a.
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(a) (b)

Figure 3-5: Schematic diagram of the implemented arithmetic unit in ASC.

Another key metric in the computation of streams is the operation’s accuracy,

which depends on how uncorrelated the streams are. The measure of non-correlation

between two streams is defined by the Stochastic Computing Correlation (SCC)[25] for

streams X1 and X2 and is calculated using (3.8) and a transient simulation depicting

the results of computation for two streams is plotted in Fig. 3-5b.

SCC(X1, X2) =

{︃
}︃⟨

}︃⟩

pX1→X2→pX1pX2

min(pX1pX2)→pX1pX2
, if pX1↑X2 ↗ pX1pX2

pX1→X2→pX1pX2

pX1pX2→max(pX1+pX2→1,0) , otherwise
(3.8)

The non-correlation between streams can be varied through the design knobs,

which in turn a"ect the natural frequency of the modulator. From a micro-architectural

level, the optimization strategy is to ensure the scaling of the average throughput of

the system, in constraint to a minimum energy penalty. This would ensure an energy-

e!cient scaling arithmetic unit that can be deployed within distributed computing

systems.

From an application’s perspective, the validity of the sensitivity analysis is proved

by implementing the above-mentioned scalable arithmetic unit. A reference design

point with an average throughput of 100Hz was chosen for both arithmetic opera-

tions. By scaling each design knob, individually their optimal throughput range has

been determined. The non-coherence of the streams is guaranteed, by appropriately
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Figure 3-6: Design space exploration of ASC arithmetic unit depicting a)
Eavg/transition for addition, b) Relative Error for addition, c) Eavg/transition
for multiplication, d) Relative Error for multiplication as a function of
throughput

programming the knobs to reflect variations in fc. While utilizing Ifb as a knob, one

must ensure a constant ratio of p, to validate a fair comparison. This can be done

by scaling the input value in accordance with the change in Ifb. It must be noted

that, while the accuracy of the operations depends on the non-coherence between

two streams, there also lies a dependency on the actual value of the input itself [25].

This error can be attributed to the noise introduced as the input value instantaneous

approaches fc, resulting in limit cycle frequency components. The simulated results

of the arithmetic unit are depicted in Fig. 3-6.

As it can be seen from Fig. 3-6 a) and c), Cint and 𝜀hys prove to be the preferred

design knob for low-frequency applications. The savings achieved by utilizing Ifb as a

knob, is evident at frequencies from 100KHz and upwards. The error analysis depicted

in Fig. 3-6 b) and d), verifies that the implemented solution is energy-e!cient whilst

ensuring that the relative error is limited within a desirable range, ±4%, for our
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(a) (b) (c)

Figure 3-7: (a) Schematic representation of ASC stream generation circuit,
(b) e!ect of jitter on ASC stream characteristics, and, (c) Scalable fre-
quency characteristics attained with implemented modulator circuit.

current analysis. Scaling an arithmetic unit’s throughput, without compromising the

overall accuracy, establishes a practically feasible solution that can be designed for

stochastic computing-based micro-architectures.

3.2 Precision in Information Encoding via ASC

.

3.2.1 Analytical Model for ASC Precision

Consider an ASC stream x(t) generated by a !” modulator (Fig. 3-7a) for a static

input pk, and its Fourier representation can be formulated as:

x(t) = pk + 4𝜀k

+↓⧸︃

n=1

sinc(n𝜀k) cos
⧹︃
2𝜛

n

Tk

t

⧸︁
(3.9)

where 𝜀k and Tk represent the duty cycle and period of the stream. To model the

precision of ASC streams, we analyze how noise, such as random circuit variations,

flicker, and thermal noise, manifests during encoding. In this work, jitter is the pri-

mary metric used to evaluate encoding robustness. Assuming Gaussian-distributed

jitter, 𝜚(t) ↘ N (0, 𝜍2), it introduces pulse-to-pulse variations in duty cycle and fre-

quency. Let 𝜚(t) represent the jitter (Fig. 3-7b), a"ecting both the duty cycle and

frequency as:
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(b)(a)

Figure 3-8: (a) Analytical and experimental plot depicting how jitter scales
vs To (b) ENOB vs latency plots for di!erent !” modulator frequencies.

𝜀jitter

k
(t) = 𝜀k +”𝜀k(t), f jitter

k
(t) = fk +”fk(t)

where ”𝜀k(t) and ”fk(t) are jitter-induced variations. Jitter also modulates the

phase and amplitude of Fourier components, a"ecting the sinc(n𝜀k) terms, leading to:

xjitter

k
(t) ≃ pk + 4𝜀jitter

k
(t)

↓⧸︃

n=1

sinc(n𝜀jitter

k
(t))

⃥︁
cos

⧹︃
2𝜛n

t

Tk

⧸︁
→ 2𝜛n

𝜚(t)

Tk

sin

⧹︃
2𝜛n

t

Tk

⧸︁⎛ (3.10)

The assumption of zero-mean jitter holds for an infinite observation period. How-

ever, for a finite period, To this is not the case, and as To increases, the system

aggregates multiple pulses, enhancing robustness. Averaging the jitter over To, the

e"ective jitter follows 𝜚avg(To) ↘ N (0, 𝜀
2

To
). The duty cycle and frequency over To are

modeled as:

𝜀jitter

k
(To) = 𝜀k +”𝜀k(To), f jitter

k
(To) = fk +”fk(To)

As To increases, jitter e"ects on both duty cycle and frequency diminish. The

Fourier series, averaged over To, shows reduced phase noise:
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(a) (b)

Figure 3-9: Evaluation of bit precision vs TOPS/W for scaled addition with
(a) ASDM-LP, and (b) ASDM-RP based implementation.

xjitter

k
(To) ≃ pk + 4𝜀jitter

k
(To)

↓⧸︃

n=1

sinc(n𝜀jitter

k
(To))↓

⃥︁
cos

⧹︃
2𝜛n

t

Tk

⧸︁
→ 2𝜛n

𝜚avg(To)

Tk

sin

⧹︃
2𝜛n

t

Tk

⧸︁⎛ (3.11)

As To increases, the impact of jitter decreases, reducing phase noise and enhanc-

ing the robustness of the encoding process. Fig. 3-8a shows the e"ect of To on the

jitter within the stream. SPICE-simulated results are compared against the ana-

lytical model, and the values are normalized for circuit independence. This jitter

contributes to information loss and can be utilized for calculating the Signal-to-Noise

Ratio (SNR), where SNR =
𝜀2
k

var(”𝜀k)
. This SNR can then be used to determine

the E"ective Number of Bits (ENOB), thus quantifying stream encoding precision.

Fig.3-8b presents the experimental ENOB at various modulator natural frequencies

(Fig. 3-7c) (Fc) as a function of To, which manifests as latency in the encoding pro-

cess. Scaling Fc increases the pulse count "n" for a given To, reducing average jitter

and improving encoding precision, but at the cost of higher dynamic power.

The analysis of computational e!ciency metrics, examining ENOB (E"ective

Number of Bits) versus latency, o"ers valuable insights for developing variable-precision
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(a) (b)

Figure 3-10: Evaluation of bit precision vs TOPS/W for dot product oper-
ation with (a) ASDM-LP, and (b) ASDM-RP based implementation.

accelerators. Understanding how computational e!ciency varies with bit precision is

essential for designing systems capable of exploring a broad design space to optimize

performance and power. In this study, we introduce two primary circuit implemen-

tation profiles targeting high-performance (HP) and low-power (LP) applications,

respectively. The HP design utilizes a programmable Schmitt trigger-based !” mod-

ulator, while the LP design is implemented through a Dynamic Leakage Suppression

(DLS) inverter. Detailed descriptions of these designs are provided in Section 3.3.

To evaluate scalable precision, we simulate both a scaled addition and a single-cell

dot product operation using an ASC stream and a 1T1R cell. Fig. 3-9 illustrates how

computational e!ciency (TOPS/W) changes with bit precision across both imple-

mentations and di"erent natural frequencies. From a TOPS/W perspective, scaling

the natural frequency (Fc) emerges as a key lever for achieving higher precision within

a given TOPS/W target. Specifically, increasing Fc by a factor of 5 across implemen-

tations yields an average precision gain of 1.5-1.85 bits. The DLS (LP) approach

nearly doubles computational e!ciency at moderate precisions (5-7 bits), making it

well-suited for applications prioritizing energy e!ciency at moderate accuracy levels.

In contrast, the Schmitt trigger (HP) implementation excels at higher precisions (↗8

bits), though its e!ciency gains diminish as precision further increases.
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s/w Programmable Current Mirror

Variable s/w Cint bank

Figure 3-11: Circuit diagram of implemented !” Modulator.

This pattern also holds for the dot product operation, shown in Fig. 3-10, where

an overall reduction in TOPS/W is attributed to the added memory read energy

cost, which is factored into the e!ciency metric. Scaling the natural frequency simi-

larly enhances computational e!ciency for each bit precision level. A key advantage

of ASC-based precision scaling lies in o"ering two design knobs—stream encoding

frequency and operation latency—to optimize e!ciency versus precision. This dual-

tuning capability provides an additional degree of design flexibility that conventional

digital hardware lacks without reconfigurable fabric architectures. Consequently, this

dual-approach strategy o"ers a clear framework for selecting the most e"ective im-

plementation based on specific precision and TOPS/W objectives.

3.3 !” Modulator Implementation & Design Metrics

Based on the discussion in Section 3.1 and identifying key frequency regions of

interest from an application standpoint, we have developed two implementations of

the !” modulator circuit. The first design focuses on achieving a programmable

modulator circuit to validate the energy scaling of the stream encoding. For this

purpose, we implemented a modulator circuit with a programmable Schmitt trigger,

as shown in Fig. 3-11. As described in Section3.1.3, the integration capacitor (Cint)

can be scaled between 50-300 fF using a programmable MiM capacitor bank based

on switched elements. Additionally, to control the reference current injected into
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Figure 3-12: Circuit diagram and hysteresis loop of (a) Programmable
Schmitt Trigger, and (b) DLS inverter

the circuit, we incorporated programmable two-way transmission gates with a binary

scaling method, allowing current values to be adjusted between 1-25 nA.

The hysteresis of the Schmitt trigger is made programmable by varying the strength

of positive feedback to the input inverter pair. This approach enables control over

the width of the bistable circuit’s hysteresis loop (see Fig. 3-12a). In the continuous

encoding of the !” modulator, where circuits must remain "always on," static and

leakage power become the primary contributors to the overall power consumption. A

Dynamic Leakage Suppression (DLS)-based inverter circuit [43] is employed to address

this. This design achieves super-cuto" feedback through header and footer elements,

significantly reducing leakage power. This super-cuto" approach establishes distinct

rising and falling switching thresholds, creating hysteresis and enabling the DLS in-

verter to function e"ectively as a comparator within the !” modulator circuit, as

shown in Fig. 3-12b. However, due to the increased RC delay and larger hysteresis in

the DLS inverter, the optimal operating frequency range of the DLS-based modulator

is limited to 10-50 kHz.

The modulator circuits are implemented using the TSMC 65nm LP PDK and

simulated in Cadence Virtuoso. Power consumption analysis focuses on static and

leakage power, which dominate the modulator’s e!ciency. Although ASC encod-

ing supports sparse representation, it also requires circuits to remain continuously

active for asynchronous stream generation upon input. Fig.3-13 shows average leak-

age power savings achieved with the DLS (LP) version of the modulator, yielding
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(b)(a)

Figure 3-13: Comparison between RP and LP implementations for (a) static
+ leakage power, and (b) Total power consumption.

(b)(a)

Figure 3-14: Monte Carlo Analysis depicting temporal variations for (a) RP,
and (b) LP implementation at di!erent fc values.
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1.1–2.43x savings when Fc is in the 10–50 kHz range. Lower savings at 10 kHz result

from higher Cint values needed to maintain the natural frequency in the LP version,

leading to increased capacitive dissipation. Based on the energy scaling strategy from

Section3.1.1 and adjustments to modulator knobs, total power consumption ranges

from 3.28–10.1 nW at 10–100 kHz for the RP implementation, compared to 2.56–3.48

nW at 10–50 kHz for the LP version (see Fig. 3-13b).

From a power e!ciency perspective, the LP implementation is preferable across

all frequency ranges. However, analysis of the encoding noise generated by these

circuits reveals an impact on stream encoding precision, as detailed in Section 3.2.

Fig.3-14 shows how process and mismatch variations influence the stream’s temporal

signature (duty cycle). The DLS inverter, due to variable switching points, exhibits

higher sensitivity to fluctuations, leading to reduced encoding stability and increased

duty cycle deviations at similar natural frequencies. Additionally, pulse-to-pulse vari-

ations in the temporal evaluation of the stream are pronounced in the DLS inverter,

resulting in lower achievable precision for the DLS-based modulator circuit, as dis-

cussed in Section. 3.2. This analysis underscores a trade-o" between power e!ciency

and encoding stability in selecting an implementation.
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Chapter 4

EAS-CiM: Foundational block for

CNN models

4.1 EAS-CiM: A Unified Platform for accelerating

ML workloads

Compute-in-Memory (CiM) o"ers an orthogonal approach to the conventional

Von Neumann architecture by performing arithmetic operations directly within the

memory array, thereby mitigating the "memory wall" bottleneck. As described in

Section 2.2, in a conventional analog-based CiM tile, the input vector is applied as

an analog voltage in a parallel-read manner through simultaneous row-wise memory

access. As illustrated in Fig. 4-1a, let the synaptic weights associated with a neuron,

w1, w2, wn, be stored as conductances within memristor cells. Inputs to the neuron,

represented as analog or digital voltage values, are applied along the BitLine of each

row. According to Kirchho"’s current law, the resulting cell current is e"ectively the

product of the incoming voltage amplitude and the conductance stored in each mem-

ory cell. The accumulated current on the Select Line represents the dot product of

the input activations and synaptic weights stored within the memory array. This read

process, conducted across multiple columns, enables a high degree of parallelism and

significantly boosts throughput. In our approach, instead of directly applying analog
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Figure 4-1: Schematic representation of (a) conventional Analog CiM oper-
ation, and, (b) proposed CiM tile with ASC stream interface.
voltages, we encode the analog information into ASC streams, which are then applied

to the word line (WL) accessing all 1T1R memory cells within a row (see Fig. 4-

1b. These ASC streams serve as control vectors for reading the conductance values

programmed into each cell. Unlike traditional Analog CiM, where the generated cell

current is proportional to the amplitude of the applied voltage, our implementation

achieves a read operation in which the average cell current is proportional to the ASC

value p embedded within the stream, dictated by the stream’s e"ective duty cycle.

The accumulated cell currents, which share a common select line (SL), collectively

produce a weighted sum current. This operation can be mathematically represented

as:

Ik =
m⧸︃

i=1

(pi(t) ↓Gi,k) (4.1)

,where i and k, represent the row and column index within the array and pi(t), Gi,k

stand for the input stream vector and conductance of the 1T1R cell in the < i, k >

position within the array, respectively. The current generated within each column

represents the dot product result and is converted back into an asynchronous stream.

The stream consists of multiple pulse instances, with pulse density determined by

the stream frequency, which in turn depends on the input value. Each pulse within the

stream initiates a single read operation, creating a successive accumulation of current

on the Select Line (SL). This accumulated current is aggregated over time on the
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output capacitor of the Sigma Delta modulator, e"ectively performing repetitive dot

product operations. The repetitive nature of these operations helps average out any

random temporal variations in the devices across multiple read iterations, ensuring

robust operation. A detailed analysis of the precision of ASC streams can be found

in the analytical model described in Section 3.2.

As the incoming array of vector stream encodes information in the temporal do-

main, the resulting current in each SL of the crossbar array will encompass di"erent

frequency components that pertain to the incoming elements. To ensure a faithful

representation of the desired computation is attained, the output of each column needs

to be encoded to a frequency range that covers the span of these multiple frequencies.

The range of output frequencies must also reflect the scale of computation in terms

of the number of rows that are accessed at the same time, i.e., the matrix order. To

understand the encoding process, let us assume that any incoming vector element,

Aij ↑ [→Amin Amax] is normalized to the stochastic stream range, pin(ij) ↑ [→1 + 1]

and that would correspond to an equivalent frequency range of fin ↑ [0 f ↔
c
]. On a

similar note, to ensure that the integrity of information is maintained, an output

frequency range (fout ↑ [0 Fc]) is required at the output column ASC core such that
Fc
f ↑
c
= 𝜙, where 𝜙 is the computational scaling factor and is a design space knob.

Next, we focus on how input vector element streams will be re-encoded at the output

column once it undergoes a dot product operation with the corresponding memory

cells in the ASC-PiM tile. Let’s consider an input element, Aij applied as a control

vector to a 1T1R cell that is programmed with a conductance whose value maps to

Bij ↑ [→Bmin Bmax]. For the sake of simplicity, let us consider the equivalent conduc-

tance value Gij, such that Bij = 1 and therefore, the individual dot product would

result in Aij ↓ Bij = Aij. To understand the relation between the input vector and

computed output vector, we encode the input vector Aij as pi, wherein;

fi
f ↔
c

= (1→ p2
i
) =↔ f ↔

c
=

fi
(1→ p2

i
)

(4.2)

Based on our initial definition of 𝜙, f ↔
c

can be redefined as f ↔
c
= Fc

𝜗
and substituting
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that into eq.(4.2):

=↔ Fc =
𝜙 ↓ fi

(1→ p2
i
)

(4.3)

Now, the resulting dot product value Aij ↓ Bij, would be encoded by the output

column ASC as Pout, wherein Fout
Fc

= (1→ P 2
out

) and replacing Fc with eq. (4.3):

Fout

𝜙 ↓ fi
(1→ p2

i
)

= (1→ P 2
out

) =↔ Pout =

⎞

1→ Fout ↓ (1→ p2
i
)

𝜙 ↓ fi
(4.4)

Equation (4.4) establishes the relationship between the scaled output vector and

the corresponding encoded set of input vectors. Intuitively, the input analog signal

range wouldn’t be the same as the current generated on the SL due to the conductance

ranges, cells/column, parasitics, etc., and both these ranges are mapped to the same

p ↑ [→1 1] scale. This relationship allows us to understand the mapping irrespective

of the device, crossbar array, and input range parameters.

To evaluate the EAS-CiM implementation, Vector-Matrix Multiplications (VMM)

with order sizes ranging from 64x64 to 256x256 are simulated. To understand the

e"ect of the average frequency of the stream vector on the performance of the CiM

operation, we scale the natural frequency fc of the streams from 100 - 500 kHz.

While accelerating a 256x256 VMM operation and scaling the stream frequencies

from 500–100 kHz, the average energy savings is roughly 1.6x. This e"ect is more

pronounced for lower matrix orders (64x64), where the energy savings are over 2.1x

(Fig. 4-2a). This is because as the input frequency range scales down, the energy

contribution by the ASC components sharply reduces, but the increased read times

result in a larger memory energy cost. This results in reduced energy savings as the

overall crossbar array size increases from 64x64 to 256x256. On the other hand, these

energy savings come at the cost of a longer execution time. An alternate viewpoint

to this scaling is that given an abundance of energy reserves, the architecture will

be able to execute VMM operations at a faster rate by encoding the vectors on a
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Figure 4-2: Evaluation of stream-based CiM VMM operations.

higher stream frequency range. By scaling the stream rate from 100-500 kHz, the

architecture can accelerate the multiplication operation approximately 4.7-5.1x times

across the 3 order sizes (Fig. 4-2b). When accelerating a 64x64 MMM operation,

the best-case execution time is under 0.23 ms, whereas the average execution time is

under 1.3 ms for an order size of 256.

Fig. 4-2c assesses MMM operation accuracy by varying 𝜙 for a fixed input fre-

quency. The !” core integrates the input signal over time, yielding an averaged dot

product at the output. For 𝜙 ↗ 8, initial error rates are high due to insu!cient

integration time but stabilize over time. Conversely, with low output stream frequen-

cies (3 ⇐ 𝜙 ⇐ 7), the modulator achieves stable output with fewer cycles, indicating

latency within the operation. However, lower 𝜙 values reduce throughput, unsuitable

for high-performance applications.

4.2 Interfacing ASC with eNVM-based CiM tiles

Memristors are emerging memory devices that can store analog information as

resistance [62] and can be utilized in 2D arrays as hardware implementations of

vector-matrix multiplication (VMM), allowing for in-memory computing for machine

learning applications [52]. However, the device variations arising from random noise

sources [71, 12] pose a substantial risk of errors in implementing VMM within CiM

architectures, complicating their widespread adoption in CiM memory arrays.

We fabricated a HfO2 device with a Ta/Pt (50/25 nm) top electrode, a HfO2 (5

nm) memristive medium, and a Ti/Pt (5/30 nm) bottom electrode. The fabricated
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Figure 4-3: (a) set and reset behavior, and (b) extracted fitting curve charac-
teristics for fabricated HfO2 device. (c) contour plot depicting fabricated
device variations.

device allows us to assess experimental intrinsic variations in nonvolatile resistive

switching attributed to significant rearrangements of oxygen vacancies[52]. This ran-

dom switching during programming results in a variable set of current characteristics,

which also depend on the applied read voltage, as illustrated in Fig. 4-3a&c. To em-

bed the variations of the fabricated device into our classifier model framework, the

deviations within the 1T1R cell current values are extracted based on a fitting curve

as depicted in Fig. 4-3b.

For EAS-CiM to be compatible with existing in-memory computational frame-

works, the layout of a conventional crossbar memory array must be preserved. Criti-

cal modifications have been implemented within the memory kernel to facilitate the

asynchronous read operation over an input feature-bound memory read period. For

instance, as depicted in Fig.4-4a, we modify the conventional 1T1R cell (dashed grey

box) by swapping the conventional WLs and Bit Line’s (BLs) (dashed blue box) and

applying the ASC stream onto the access transistor. By engineering the dimensions

of the access transistor, we can control the voltage drop across the memristive de-

vice, thus minimizing the possibility of reprogramming the cell during the read, and

a similar strategy can be adopted for a 1R-based cell device as well.

To demonstrate the linear relationship between the incoming stream and the pro-

grammed conductance of a cell, the average cell current for both the High Resistance

State (HRS) and Low Resistance State (LRS) is shown in Fig. 4-4b. To account for

these variations in our framework, a comprehensive Monte Carlo analysis was per-

formed to assess deviations in cell current caused by both stream variations and device
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characteristics, as depicted in Fig. 4-4c & d. These variations are then integrated into

the EAS-CiM Python-based simulation framework.

4.3 Stimulus Awaren Computing: A Key to Energy-

E!cient and Scalable Computing

To understand the qualitative benefit of implementing a stream-driven VMM/MMM

computational architecture, we take a segment from a moving MNIST image dataset,

as shown in Fig. 4-5a. Our architecture leverages the concept of a stimulus-driven

workload execution rate to integrate incoming feature information into asynchronous

streams, governing computational operations such as MAC, activations, and pooling.

Fig. 4-5b represents the heat map of the frequencies for each pixel-encoded stream,
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Figure 4-5: Concept of stimulus-driven work rate depicted with a moving
MNIST-dataset image frame.

which is generated by a P2S converter and will be discussed in Section. 4.3.1.

Our architecture leverages the concept of a stimulus-driven workload execution

rate to integrate incoming feature information into asynchronous streams, govern-

ing computational operations such as MAC, activations, and pooling. In Fig.4-5a, a

frame-by-frame segment of the moving MNIST dataset is shown, accompanied by a

heat map of encoded stream frequencies in Fig.4-5b. Within this approach, the mag-

nitude of features between successive frames increases in value. This is to emulate

real-world conditions such as object detection, where there can be a sudden surge in

feature intensity (appearance of an object within a frame) for a brief period, with the

remainder of the time experiencing static features. Based on our encoding technique,
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high-stream frequency clusters are formed along the gray edges of the digit and rep-

resent the critical feature patterns within each frame. This aspect of the encoding

technique is observed in the highlighted blue box depicted in Fig. 4-5b, where the

highest stream rate occurs where the pixels are gray. This encoding can be modified

to enable a similar trend wherein critical features are represented with high temporal

frequencies. On a similar note, black and white pixels that stray away from the edges

of the digit are encoded at a lower rate and emphasize EAS-CiM’s ability to suppress

the work rate when the incoming feature doesn’t contain critical information. This

particular aspect is beneficial in applications such as edge detection, as our encod-

ing method allows for the suppression of non-edge-based features without having to

implement feature-specific extraction techniques to perform a similar action.

Within EAS-CiM, the featured encoded stream vectors control the rate of mem-

ory access to perform in-memory kernel computations and thus control the number of

MAC operations carried out over an inference period. For instance, the streams asso-

ciated with gray pixels, when applied as a memory read control vector onto the CiM

tile, will result in a larger number of dot product operations/second in comparison to a

black or white pixel. This allows our architecture to perform more iterative computa-

tions on critical features and carry out minimal to no computations on features that

are insignificant. From a general time-series-based data classification, where there

could be periods of sporadic activity, the stream-based access of the kernel ensures

that the rate of feature computation is directly proportional to the activity within

the time-series data. Stream frequency curves can be adjusted by varying key circuit

parameters, detailed in Section 4.3.1. The energy cost of shifting the frequency curve

depends on circuit sensitivity and operating frequency region [64]. This allows an

energy-scalable temporal architecture, contributing to a scalable performance aligned

with workload execution energy costs. To ensure that this rate of computation can

be scaled across every layer, each arithmetic and non-linear computational element is

visualized in a manner that adheres to ASC principles.
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Figure 4-6: Schematic diagram of P2S converter and temporal characteristics
at di!erent frequency ranges (bottom)

4.3.1 Event-driven Pixel to stream (P2S) converter

To allow for seamless integration with the ASC-based CiM tiles, it is necessary to

implement a continuous time-based Feature eXtractor (FeX) module that reflects the

extracted feature in a manner that can be utilized as a stream-based control vector.

In this work, a modified sigma-delta (!”) modulator circuit is utilized as a P2S con-

verter (Fig. 4-6) and encodes the incoming pixel value into an asynchronous stream,

with temporal characteristics mentioned in Section. 3.1. The modulator operates on

the di"erence between the input pixel value, which is represented as a current source,

Ipixel, and the output stream Vout. To operate on the di"erence, Vout is represented in

the current domain by a switched current source, Iref , and the di"erence is integrated

on the capacitor node, Cint. The output pulse, Vout, has a constant amplitude and an

instantaneous output frequency (f) and duty cycle (𝜀), as described in Section 3.1.

As briefly described in Section 3.1, the modulator can scale its stream rate by varying

the natural frequency (fc) and shifting the entire frequency curve. This allows us to
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scale the memory access rate and number of arithmetic operations carried out in a

second. From an applications perspective, this aspect translates into another original

contribution of our work, where we can scale performance metrics such as Tera Op-

erations/second (TOPS) or IPS. However, as we scale the frequency of the stream, it

also a"ects the energy costs associated with the generation of the stream. Therefore,

we must opt for the least energy cost path to scale the temporal characteristics, and

this is achieved through programmable elements in the form of Iref , Cint and 𝜀hys

(depicted in dashed boxes in fig. 4-6). Fig. 4-6 (bottom right) depicts a series of

temporal characteristics (M1→M4) that can be achieved by varying a combination of

these design elements. The impact of these design elements on energy costs has been

analyzed [64], enabling us to allocate specific frequency regions where each circuit

element optimally scales. A similar approach to scale the stream frequencies of all

ASC elements within EASI-CiM has been implemented and enables the entire archi-

tecture to traverse an energy-e!ciency vs performance design curve. At this juncture,

it is critical to distinguish between the stimulus-driven work rate and scalable

energy e"ciency principles. The encoding technique of ASC enables a dynamic

& natural implementation of the stimulus-driven work rate and can be visualized as

traversing a unique frequency curve (e.g., M1) on the temporal characteristic. To

scale the energy e!ciency, one must reprogram the encoding to traverse from one

frequency curve to another (e.g., M1 ⇒ M3), and in turn, a"ects the computational

performance.

4.3.2 Activation functions within EASI-CiM

The activation function forms a critical component within any neural network as it

introduces non-linearity within the network and improves the abstraction of complex

features. Activation functions designed within the framework reflect the non-linearity

in a stream-based manner, thereby facilitating truly stream-based communication

between layers. The tanh activation function modifies the ASC-SD neuron stream

output from the CiM tile into a current source that is fed into a tanh I-V converter

circuit designed to model the transfer function curve. Fig. 4-7a depicts the circuit
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Figure 4-7: (a) Circuit diagram of ReLU activation unit and (b) operational
transient characteristics.

along with the temporal characteristics of the transfer curve. As the duty cycle

maintains a linear relation with the stream value, p, it can be used to determine the

faithful representation of the activation function.

The mathematical operation that occurs within a ReLU function is the comparison

operation between the incoming vector and a bias value. A comparison operation

is mathematically equivalent to a negated addition and observing if the output is

> 0 or ⇐ 0. This operation is implemented through a CMOS-based charge pump

circuit, where the switched current sources are controlled by the incoming vector and

bias vector, and the resulting charge accumulation is utilized to drive a rail-to-rail

comparator element. The resulting comparison acts as a select line control signal

for a MUX, which allows for the transmission of the incoming stream, or p= bias,

depending upon the comparison result, as illustrated in Fig. 4-7a. It should be noted

that the working principles also apply when a non-zero bias needs to be applied.
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APo/p

Figure 4-8: Implemented schematic diagram of pooling kernel with average
error rate).

Fig. 4-7b, reflects the transient operational characteristics under multiple conditions

wherein, the incoming i/p vector < bias and vice-versa. The comparator output

C0 drives the selector signal for the MUX and transmits either the input stream or

"zero"-equivalent vector to the next neuron layer.

4.3.3 Pooling Layers within EASI-CiM

Pooling layers are implemented to minimize the sensitivity of feature maps and

generate condensed feature maps across layers within a CNN. Stream-based pooling

kernels translate the aggregating streams to compress information along with desensi-

tizing the pooled vector due to the multiple occurrences of the stream across a period.

In our NN model, we implement an average pooling layer, with the first step being the

translation of incoming streams into a cumulative single analog value that represents

the summation operation. We utilize an array of voltage-controlled current sources

(VCCS) in the form of switched cascode current mirrors. The cascode configuration

ensures a higher input impedance and minimizes the switching e"ects caused by the

multiple input streams. The number of VCCS elements depends on the kernel size of

the pooling layer, where each input stream is mapped to a unique VCCS element. To

implement the averaging part of the operation, a modified !” modulator core with
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a scaled adder circuit is utilized. The scaling factor of the adder is attributed to the

current integration principle, and the scaling aspect is reflected by the ratio of the

max current generated by an individual VCCS element to the reference current (Iref )

within the modulator. Fig. 4-8 represents the circuit implementation of an average

pooling kernel along with an error graph that depicts the simulated average error for

di"erent kernel configurations. We opt for integrating an average pooling kernel due

to its compatibility with our operational schema based on simple circuit laws like

Kirchho"’s Current Law (KCL).

4.4 Benchmarking Edge ML models with EAS-CiM

4.4.1 Scalable Emulation Platform for EAS-CiM

At the foundational tier, ASC-based elements are designed and extensively tested

using a commercial 65nm PDK technology. These elements are rigorously simulated

within the Cadence Virtuoso environment to characterize the behavior of individual

computational components and to capture the dynamics with corner and silicon vari-

ations captured through Monte Carlo analyses. As detailed in Section 4.2, extensive

experimental evaluations focused on variations within the fabricated HfO2 device

were conducted to understand its behavior under real-world conditions. The simula-

tions focus on accurately modeling both the core functionality and the performance

deviations introduced by physical variations in the CMOS circuits and fabricated

HfO2 device. Through exhaustive simulation, the low tier provides detailed insights

into the electrical properties and limits of each ASC-based circuit component, ensur-

ing that the behavior and limitations observed in hardware are faithfully represented

in higher tiers. This tier establishes a robust foundation for accurately modeling the

EAS-CiM architecture at all subsequent levels.

The mid-tier of the framework is dedicated to capturing and analyzing network-

level non-idealities that arise when scaling the ASC-based design, specifically address-

ing critical issues such as IR drop and RC delay. In this tier, we examine the e"ects of
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Figure 4-9: Process & design flow overview for EAS-CiM framework.

IR drop, a voltage reduction that occurs along the select lines (SL) due to inherent line

resistance. This phenomenon can lead to diminished signal strength and variability

in the voltages received by cells further along the line, resulting in uneven current dis-

tributions and impacting the overall accuracy of read operations. Another significant

non-ideality considered at this level is RC delay, which manifests as a result of com-

bined resistance and capacitance along the word lines (WL) during the read process.

RC delay introduces timing skew, causing variations in the arrival times of signals

across di"erent parts of the network. This mismatch a"ects the temporal alignment

of ASC streams at di"erent stages, potentially leading to inconsistencies, which can

be quantified as the source of noise/jitter in the encoding process as mentioned in

Section. 3.2, that represents the computational outcome.

By incorporating these non-idealities into the model, the mid-tier enables a de-

tailed evaluation of how they impact the fidelity of ASC streams and their result-

ing duty cycles. Understanding these e"ects allows for refined configuration of tile

dimensions, and routing strategies to mitigate IR drop and RC delay as much as
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possible. Ultimately, this tier provides a critical bridge between device-level behavior

and network-level performance, ensuring that the cumulative impact of non-idealities

is well accounted for as the design scales in complexity.

At the highest tier of the EAS-CiM framework, we developed a custom Python-

based environment that models the architecture’s complex transient and event-driven

behavior, providing a high-fidelity emulation of the EAS-CiM tile. This Python frame-

work encapsulates the transient behaviors and non-idealities of each computational

element described in previous sections, o"ering functions that accurately reflect the

variations, delays, and non-linearities present in the physical circuits. By abstracting

these characteristics, the framework delivers a realistic representation of the circuit-

level dynamics of the ASC-based architecture. Communication within the framework

is designed around asynchronous packets, which carry critical parameters such as the

duty cycle and frequency of each pulse within a stream. This approach captures

the temporal signature of each pulse without storing or transmitting large arrays of

transient voltage values for each stream, significantly reducing memory and compu-

tational overhead. As a result, the framework remains lightweight and scalable, even

for complex models, while preserving the integrity of the ASC-based computations.

The overall process and design flow of the framework is depicted in Fig. 4-9.

To enhance flexibility and scalability, the Python framework is designed with a

modular, “plug-and-play” architecture. Users can easily select and integrate specific

computational elements within the framework, allowing for customizable configura-

tions that can be adapted to a variety of network topologies and operational require-

ments. This modularity supports dynamic adjustments in network depth, width,

average stream frequency, 1T1R memory cell types, activation functions, and more,

enabling seamless adaptation to di"erent model configurations. Additionally, this

Python environment integrates with ML training frameworks like PyTorch, which al-

lows mapping CNN model architectures, layer dimensions, and computational tasks

to equivalent implementations within the EAS-CiM framework. This end-to-end em-

ulation provides an e!cient and versatile tool for analyzing, optimizing, and scaling

ASC-based computations for diverse ML tasks.
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Figure 4-10: Implemented CNN model for MNIST digit classification.

4.4.2 EASI-CiM: Event-driven Image Classifier with EAS-CiM

Fig. 4-10 represents the CNN topology to implement an MNIST image classifier,

where a 28x28 input image feature map is streamed into a 3x3 convolution kernel

that comprises 8 channels, resulting in a 26x26 filter output. A Rectified Linear

Unit (ReLU) function is employed as the activation function on the filter output.

The convolution layer is followed by an average pooling layer with a 3x3 kernel size to

compress the feature map to 9x9 across 8 channels. In the second layer of the network,

the 8 input channels are split into 12 output channels after pushing them through a

3x3 convolution kernel. The final average pooling kernel size is 2x2 and is fed into

the final Fully Connected (FC) Layer that maps to the output labels. A softmax

function is utilized to distribute the classification probabilities across the di"erent

labels. The optimal height and width for the CiM tile are determined, based on non-

linearities that incur within the tile, as discussed in Section 4.4.1. The convolution

kernel is reorganized and mapped onto the CiM PE tile, to carry out the required

MAC operations. An array of activation and pooling kernels are present within each

PE tile, to map subsequent layers of the network. Tiles are positioned to enable

spatial processing of data, as the stream-like nature of ASC prevents the temporary

storage of intermediary output and requires feature vectors from one layer stream

onto the next layer, and so forth.

The CNN model, trained on PyTorch, uses the MNIST dataset [40], with 60k

images for training and 10k for testing. Training and backpropagation are performed

using the Adadelta algorithm from the Keras optimizer package, with a learning rate

of 0.003, essentially a stochastic gradient descent method. The architecture’s in-
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Figure 4-11: Evaluation of the EASI-CiM image classifier based on the
MNIST handwritten image dataset.

ference operations are simulated within the aforementioned custom Python design

environment, completing the design loop of the EAS-CiM framework. As mentioned

earlier, another key aspect of our work is the ability to shift the entire stream fre-

quency characteristics and scale the energy e!ciency of the computation. To analyze

this aspect from a performance perspective, we shift/scale the stream frequency of

the entire architecture to four distinct (fc) ranges, which mimic varying levels of

real-world energy reserve conditions.

Inference Accuracy: Fig. 4-11a, exhibits the simulated inference accuracy re-

sults of the network. The fabricated HfO2 device is programmed with floating pre-

cision weight values, as these devices exhibit reliable analog programming of conduc-

tances [52]. We also implemented an instance of the well-known theoretical VTEAM-

based Pt/HfO2/Ti RRAM model and retrained the network with quantized 4-bit

precision weights based on the stable conductance levels derived from the fitting

characteristics [38]. Our simulations show minimal degradation in accuracy as we

scale to di"erent frequency operating regions. The maximum deviation between the

software (SW) testing accuracy and simulated inference accuracy across the frequency

ranges for both implementations of the CiM tile is ⇐ 0.34%. On a similar note, the

robustness of the network against the di"erent flavors of the memristive device is also

evaluated across the di"erent operating regions. The variance between the simulated

inference accuracy in comparison to the SW test accuracy is approximately 0.41%.
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Temporal Pipelining: One aspect of the framework that limits the overall

performance of the accelerator is the inability to store intermediary results between

layers due to the stream-like nature of the information. This hinders the possibility

of implementing performance improvement techniques such as pipe lining within the

architecture. However, the inherent latency within the architecture owing to the

internal delay generated by the ASC components can be repurposed as a temporal

bu!er period between stages. This bu"er period can be visualized as a temporal

pipeline stage where the bu"er period lies between any two computational layers

within the network. It allows us to feed new feature vectors into the network as the

current inference workload cycles itself through these bu"er periods across the layers.

The internal delay for the ASC computational units has an inverse relation to the

natural frequency of the modulator and depends on the magnitude of the input itself

to a certain extent. However, to analyze the extent to which the temporal pipelining

can be inserted into the network, we need to normalize the internal delay to the natural

time period of the modulator. In our evaluation, we observe that the normalized delay

reduces drastically as the average stream frequency of the architecture increases. As

we scale from 10 kHz to 1 MHz, this delay reduces by approximately 46.5% and

represents a diminishing return to the temporal pipelining benefit as we scale the

frequency. To better understand the benefits of temporal pipelining, we utilize TOPS

as the quantitative metric, as depicted in Fig. 4-11b. When the natural frequency

of the architecture is 10 kHz, a 3.05x improvement in TOPS is observed with the

temporal pipelining technique. However, this benefit is reduced to 1.4x when the

frequency is 1 MHz, with the performance peaking at approximately 13.21 TOPS.

Scalable Energy E"ciency: As mentioned in previous sections, our archi-

tecture can scale the overall stream frequency and attain a variable performance.

However, in the case of edge accelerators, executing a workload at the lowest en-

ergy cost often takes precedence over performance. With the MNIST image classifier

model, we calculate the IPS performance for EASI-CiM as it scales across the four

operating regions. As each inference translates to a single-frame classification, the

following evaluations are measured in terms of Frames/second (FPS). Fig. 4-11c rep-
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resents the scalable FPS performance achieved by the architecture and its associated

energy e!ciency, which is measured in terms of TOPS per Watt (TOPS/W), where

the orange dashed plot represents the performance without temporal pipelining, and

the blue dashed line represents performance with pipelining. For a lower stream rate,

EASI-CiM can achieve an e!ciency of 245 TOPS/W and can process approximately

35 FPS. In comparison with other classifiers (A)[41] and (B)[42] that provide similar

performance, our architecture roughly outperforms by an order of 10. As we increase

the stream rate to scale the performance of the accelerator, the energy e!ciency drops

due to the associated ASC computational units and memory peripheral costs. For

instance, as we scale the stream rate from 10 kHz to 100 kHz, the overall increase in

FPS is 3.6x, at the cost of a drop in energy e!ciency by 48.3%. If we further scale

the stream rate, we see a slight improvement in e!ciency because the performance

improvement outweighs the energy costs. At the highest operating region, the ac-

celerator is capable of performing 248 FPS and at par with other image classifiers

(C)[9] from a performance perspective. A critical contribution of our work is the

ability to traverse an energy e!ciency vs performance curve, which can be impactful

for edge accelerators. From an application perspective, an image classifier such as

an object detection camera will benefit from EASI-CiM due to its scalable e!ciency.

For instance, when the camera needs to operate under strict energy constraints due

to a drop in energy reserve/battery levels, it can scale down its performance. This

enables the accelerator to still perform meaningful classifications such as edge de-

tection, which requires around 50 FPS, and operate at a higher energy e!ciency.

When the energy reserves are back to normal levels, the accelerator can perform

high-feature classifications such as multi-face image recognition that would demand

a higher performance of ≃ 200-300 FPS. This allows the accelerator to navigate the

steep variations within an energy cycle and adapt its performance accordingly. This

would be in stark contrast to conventional accelerators that freeze their workload

execution when the energy reserves cross below a critical level.

EASI-CiM Area Metrics: Fig. 4-11d describes the area contributions made

by the di"erent components within the architecture. The evaluated area for the
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accelerator is 142.28mm2, with approximately 83.65% occupied by the CiM tile and

memory peripherals. The area for an individual 1T1R cell within the CiM tile is

evaluated based on the fabricated HfO2 device area and is measured to be 26.14µm2.

Within the ASC computational units, the ReLU and softmax activation units account

for 51.3% of the total 21.36mm2. The primary reason behind this increased area

penalty is due to the need for an additional !” core per activation unit to generate the

required bias. If the network topology can account for this overhead and reorganize

the bias values such that a majority of neurons share a similar bias (p=0), it would

significantly reduce the area overhead. One benefit of the EASI-CiM architecture is

the ability to directly apply the P2S converter-generated streams onto the CiM tile as

control vectors. This eliminates the need for additional conversion units and accounts

for less than 5.2% of the ASC computational units area.

Stimulus-driven Execution: To visualize the e"ects of the stimulus-driven

work rate within the accelerator, it’s essential to analyze the relationship between

the input "stimulus" feature vector and the rate of operations across network layers.

Fig.4-12 displays a heatmap representing data flow and the corresponding arithmetic

operational rate across the convolutional layers. The incoming array of pixel density

values is transformed into an asynchronous stream vector array, where the stream

frequency is proportional to the encoding described in Section4.3.1. These streams

drive read operations on the CiM tile, programmed with convolution kernel weights.

From the figure, we observe that the highest read operations required to generate the

filter output in the first convolution layer correspond to stream vectors containing

critical information, such as edge pixels, in the input image. Each read operation

translates to a dot product within the convolution layer, indicating that the stimulus

intensity directly impacts workload execution.

Similarly, the number of averaging operations per second is closely correlated to

the intensity of filter outputs from preceding convolution operations, as higher inten-

sities require increased processing. However, as one traverses through the layers, this

correlation becomes less evident due to the progressive abstraction of features and

the increasing number of channels. In deeper layers, critical features are distributed
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Figure 4-12: Evaluation of stimulus-driven work-rate during MNIST classi-
fication.
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across multiple channels, and intermediary activations become less directly linked to

specific input pixel values. This results in reduced determinism in layer-wise activa-

tions, as the criticality of individual neurons is governed more by hierarchical feature

representations learned through the model rather than by stimulus intensity alone.

4.4.3 Word2Vector Mapping Engine based on EAS-CiM with

Scalable Precision

Fixed-precision accelerators are ine!cient for lower-priority workloads typical of

edge ML applications, and using low precision during critical workloads can a"ect

computational accuracy. This underscores the need for variable precision accelerators,

and recent works have exhibited a balance between hardware complexity and precision

scaling [7, 45, 61]. Most of these approaches rely on reconfigurable hardware fabric,

which often results in an increased silicon footprint and leakage power, reducing

energy e!ciency. Unlike traditional approaches that rely on additional hardware,

we scale the encoding precision through a latency vs precision design approach (as

mentioned in Section. 3.2), enabling high precision during peak workloads and energy

savings during lighter tasks. To evaluate this aspect, a CiM-based precision-scalable

architecture is implemented and is optimized for Word2Vector algorithms, enhancing

edge NLP tasks with e!ciency measured in TOPS/W.

To assess the precision scaling of the CiM tile architecture and its computational

e!ciency, we accelerated the Word2Vec algorithm [11][57], widely used in NLP for

learning word embeddings—dense vectors that capture semantic relationships. The

algorithm encodes words into high-dimensional vectors (Fig. 4-13a), and during infer-

ence, this vector is compared to trained embeddings to determine semantic relations.

The precision of these embeddings is critical for accuracy, and scaling it during infer-

ence is key to optimizing Word2Vec models [75] for edge deployment. To evaluate this

algorithm, we utilized the Text8 dataset [1], which is a preprocessed version of the

first 100 million Wikipedia characters and is widely used to provide a large, real-world

corpus that helps capture meaningful semantic relationships. We train the Word2Vec
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model using the Text8 dataset, then scale and quantize a 200-word long subset of the

embeddings to INT4/8/12/16 formats.

In our framework, we achieve scalable input data precision by extending the op-

eration period, To. Since training and encoding reference vectors is a one-time cost,

dynamically adjusting the precision of these reference vectors is impractical. There-

fore, we program the reference vectors in 16-bit integer (INT16) format as conduc-

tance values in the crossbar array. This high-precision INT16 embedding is split into

separate positive and negative arrays and mapped accordingly to distinct instances

of our Python-emulated CiM tiles. By keeping reference vector precision fixed and

scaling only the precision of the input vectors, we strike a balance between compu-

tational e!ciency and model performance. During testing, we similarly split INT4,

INT8, and INT12 input test vectors into positive and negative embeddings, which

are then applied as ASC streams to compute the dot product similarity with the pre-

encoded reference embeddings. Extending the observation period To increases the

aggregation of redundant pulses, e"ectively enhancing stream precision. This scaling

approach allows us to evaluate semantic relations between mapped words through the

dot product operation with varying input precision.

We assess the impact of quantization on semantic distortion and vector ranking

mismatch using two primary metrics: average Euclidean distance and Rank Biased

Overlap (RBO), both measured against 16-bit precision embeddings as the baseline.

Figure 4-13b demonstrates a significant 42.16% reduction in the average Euclidean

distance as stream precision increases from 4 to 12 bits. This improvement in Eu-

clidean distance reflects a closer alignment of lower-precision embeddings with the

high-precision reference, thus enhancing semantic similarity. Additionally, the re-

duction in Euclidean distance is accompanied by a 1.27x decrease in the standard

deviation of embedding mismatches, indicating a more consistent and reliable simi-

larity computation across the tested embeddings. This notable reduction in variance

further underscores the stability and robustness of higher-precision streams in pre-

serving semantic meaning. However, these improvements in accuracy are achieved at

a cost: increasing precision from 4 to 12 bits leads to a substantial 16.7x increase in
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Figure 4-13: (a) Mapping Word2Vec to EAS-CiM, bit precision vs (b) Eu-
clidean score ,(c) RBO score, and (d) TOPS/W

the observation period To and incurs a 5x rise in frequency scaling costs.

The e"ects of quantization reduction extend beyond semantic accuracy and di-

rectly impact the ranking of word vectors, as indicated by our analysis of RBO scores.

Quantization reduces the rank stability of word embeddings, causing a reordering in

the similarity-based ranking of words—a direct consequence of lowered precision. Fig-

ure 4-13c illustrates a 53.45% decline in the RBO score as input precision is reduced

from 12 to 4 bits, highlighting a significant degradation in ranking consistency. This

loss in ranking fidelity indicates that lower-precision embeddings fail to capture finer

semantic distinctions, which are crucial for applications where ranking is critical.

The drop in RBO score as precision decreases reinforces the importance of encoding

precision for applications requiring accurate similarity assessments between words.

From a computational e!ciency standpoint, the gains in semantic accuracy and

ranking fidelity at higher precision come at a steep cost. Increasing precision results
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in a 43.23x reduction in computational e!ciency, as shown in Figure 4-13d. This

e!ciency drop arises from the increased observation period required to accumulate

additional pulses and improve stream precision. While higher precision enhances se-

mantic accuracy and stabilizes rankings, it imposes considerable costs in terms of

computational time and frequency scaling, emphasizing the trade-o" between preci-

sion and e!ciency. This trade-o" is significant, as it enables flexibility in balancing

precision requirements with e!ciency goals based on the specific workload.

Overall, the results underscore the architecture’s ability to scale computation pre-

cision by dynamically adjusting the aggregation time of encoded streams, allowing for

flexible design choices that cater to varying levels of precision and e!ciency. Higher

precision significantly enhances semantic accuracy and ranking performance, making

it suitable for tasks with stringent accuracy requirements. However, the correspond-

ing drop in computational e!ciency indicates that for tasks where e!ciency is a

priority, lower precision may be preferable. This balance between precision and e!-

ciency highlights the versatility of the EAS-CiM architecture in adapting to diverse

workload demands and illustrates its potential for optimizing performance in edge

computing applications where resource constraints are paramount.
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Chapter 5

!”! Neuron: Noise-Resilient Spiking

Neural Encoding

5.1 Sigma-Delta and Sigma-Delta-Sigma Neuron: A

Comparative Analysis

In accordance with Section 2.4, recent years have witnessed the emergence of

advanced spiking neural encoding techniques tailored for specific applications. Our

research contributes to this landscape by closely aligning our encoding technique

with temporal-based neural encoding, emphasizing the encoding of features within

the temporal signature of an asynchronous stream.

The evolving landscape of temporal encoding techniques exhibits a significant

divergence, marked by methodologies relying on the di"erential amplitude between

consecutive feature samples in a time series format. This paradigm shift is exempli-

fied in notable instances such as the implementation of spiking neural encoding-based

Dynamic Vision Sensor (DVS) cameras [74] and audio cochlear feature extractors [35],

both incorporating spiking networks with Asynchronous Delta Modulation (ADM).

Building upon this foundation (depicted in Fig. 5-1a), researchers have introduced

the asynchronous Sigma Delta (SD) encoding technique, characterized by partition-

ing neural encoding into two distinct phases: Sigma decoding and Delta encoding.
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(b)

(a)

Figure 5-1: (a) Symbolic representation of fundamental building blocks for
di!erential encoding (b) Neural Encoding representation for ”, !” and
proposed !”! neurons.

The versatility of the SD encoding technique is highlighted through its successful ap-

plication in video processing applications [63], showcasing substantial enhancements

in energy e!ciency. This progression signifies a significant stride in the temporal

encoding landscape, reflecting a dynamic evolution with promising implications for

diverse applications. From an encoding standpoint, a defining feature that distin-

guishes these neural encoding techniques from existing methods is how activations

become increasingly sparse as information traverses successive layers of neurons. This

phenomenon is driven by the encoding techniques’ mechanism, where a post-neural

spike occurs when the incoming feature/activation surpasses a predefined ” threshold

or deviates from its previous activation value by a certain ” ( as shown in Fig. 5-1b).

We extend the capabilities of delta-modulated neurons by introducing a novel

evolution in this encoding approach termed Sigma-Delta-Sigma (!”!/SDS) neural

encoding. Our proposed encoding method stands out for its adeptness in filtering

out noise-like components from critical features, achieved through a unique feedback

mechanism and intrinsic delay within the encoding technique. Our inspiration for

developing this schema stems from observations of noise-invariant neurons found in

specific bird species [47] and resonant frequency selective traits observed in primate

auditory systems [10]. Our research aims to emulate and enhance these functionalities

using our proposed scheme, aiming to construct noise-robust spiking models capable
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of feature extraction even in the presence of noisy input stimuli.

From an applications perspective, it is imperative to understand the motivation

for developing a noise-invariant neural encoding schema. In Machine Learning (ML)

models, noise is often introduced into training features to prevent over-fitting and

to ensure robust inferences when faced with non-deterministic variations within test

features. However, injecting an inaccurate noise profile during training can result

in under-fitting and distorted feature representations, ultimately undermining model

performance [18]. Through our proposed neural encoding schema, we aim to train

models on ideal feature sets without the need for noise injection, while still being able

to perform feature extraction with distorted, low-quality data. During testing, the

neural connections prioritize the transmission of significant features while attenuating

noise components. By implementing this neural encoding approach, our objective is

to develop noise-resilient spiking neural network models capable of performing classi-

fication tasks even with lower-quality incoming features. Through these innovations,

we contribute to advancing the field by bridging the gap between neural encoding

techniques and practical neural computing applications.

5.2 !”! neuron: Noise-robust Encoding schema

In this work, we draw upon the aforementioned encoding techniques and propose

our novel SDS neural encoding (Fig. 5-1d). At this juncture, it is important to under-

stand how the SDS neuron is an evolution in the class of delta-modulated neurons.

To begin with, the SD neuron is essentially a ” modulated neuron with a ! decod-

ing block that integrates dendrite connections from multiple pre-synaptic neurons.

Our proposed SDS neuron is essentially a ”! modulated neuron with a similar pre-

synaptic ! decoding block. Another critical di"erence within our encoding technique

is the internal ” operation block. Within the previously mentioned Delta and SD

neuron classes, the delta operation is essentially performed on the current input and a

delayed version of the input feature. However, within the SDS neuron, this delta op-

eration performs a negated addition between the input feature and the output spike.
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(a) (b)

Figure 5-2: Schematic representation of (a) Time domain signal, and (b)
z-transform diagram for the encoding scheme.

From an encoding perspective, the SDS neural encoding stands out from its prede-

cessors due to two distinct signal processing features. Firstly, a portion of the soma

output from the comparator element is subtracted from the input stimuli at the den-

drite terminal. This introduces a negative feedback mechanism, represented by the

” operation block within the encoding scheme. Secondly, an additional integration

phase is embedded within the encoding process which accumulates the aforemen-

tioned ” operation over multiple time steps. These elements e"ectively impart two

di"erent filtering characteristics to the incoming stimuli and noise-like features.

To examine the filtering properties of the neural encoding scheme, we construct

the time-domain representation and the equivalent discrete Z-transform signal flow

diagram, as depicted in Fig. 5-2. By analyzing the signal flow, we can derive the

output Q[n] as follows:

Q[n] = X[n→ 1] +Q[n]→ U [n]→Q[n→ 1] + U [n→ 1]

= X[n→ 1] + e[n]→ e[n→ 1]

, where X[n], U[n], and e[n] represent the discrete input stimuli, integrator input, and

error vector, respectively. The z-transform for the designated output Y(z) is:

Y (z) = X(z)z→1 + E(z)(1→ z→1) =↔
Y (z)

X(z)
= z→1 (5.1)

=↔
E(z)

X(z)
= 1→ z→1 (5.2)

, where Eq. 5.1 and Eq. 5.2 represent the deduced signal and noise transfer function,

respectively. As evident from these equations, the input signal features undergo a low-
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Figure 5-3: Internal feature transformation and transient operative charac-
teristics of the proposed SDS encoding schema.

pass filtering operation while the noise features are shifted towards higher frequency

regions and attenuated at the lower end of the spectrum. This mechanism allows us to

diminish noisy components from critical features, provided these elements lie beyond

the corner frequency of the low-pass filter and are modulated by the feedback strength

and integration period of the neuron. It is noteworthy that, to maintain a similar

sparse feature density profile to its predecessors, each SDS neuron is linked with a

delta encoding block depicted in Fig. 5-3, showcasing the internal transformation

occurring to an incoming feature at each encoding step within the neuron.

5.2.1 !”! performance against noise profiles

The analytical model shows that the discrete implementation of the !”! (SDS)

neural encoding exhibits a low-pass filtering characteristic. For practical ML appli-

cations, it’s crucial to understand how this proposed encoding responds to di"erent

noise profiles, as real-world data is rarely noise-free. The two most common noise

profiles used to simulate real-world conditions in ML models, especially for audio and

sensory time-series data, are Gaussian and Pink noise. Gaussian noise, or white noise,
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has a flat spectral density, meaning it a"ects all frequencies equally, making it ideal

for testing a model’s robustness to random, high-frequency disturbances. Pink noise,

in contrast, has a spectral density that decreases with frequency, closely resembling

many natural and biological processes. This makes Pink noise particularly relevant

for audio and sensing applications, where lower frequencies are prominent.

Incorporating these noise profiles into the evaluation of ML models is essential for

simulating real-life conditions. Thus, understanding how the SDS encoding performs

under these noise profiles is necessary before deploying it in practical ML scenarios. To

this end, we use a fully connected (FC) neural population, where a single-tone signal

is fed into the population’s input, and the spiking activity at the output is measured.

The weights in this layer are randomized with a set seed to ensure that no pre-

trained noise filtering characteristics are imparted to the layer. The baseline spiking

activity is recorded with an ideal (noise-free) input signal, serving as a reference for

comparison. When noise is added to the input at varying SNR levels, deviations in the

spiking activity from the baseline indicate potential encoding degradation, reflecting

the filtering capability of the proposed neural encoding schema.

To quantify the encoding and filtering performance of the SDS neuron under these

conditions, the Kullback-Leibler (KL) divergence is used. KL divergence measures

how one probability distribution diverges from a reference distribution, making it

useful for assessing noise impact on neural encoding fidelity. When noise alters the

input signal, the resulting spiking patterns may deviate from the expected, noise-free

distribution, which ideally represents the true information content. Higher KL diver-

gence values indicate greater divergence between the noisy and baseline distributions,

suggesting that noise has degraded the encoding fidelity.

To evaluate the performance of the SDS encoding against other spiking encoding

techniques, a similar fully connected (FC) layer was simulated using a LIF spiking

model and !” neural encoding. Fig. 5-4 presents the KL divergence scores for the

three encoding schemas across three FC layer sizes (10, 50, and 100 neurons) under

varying SNR levels, where the input signal was injected with AWGN and Pink noise.

This evaluation reveals four key findings relevant to encoding fidelity.
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Figure 5-4: KL divergence heatmap across varying SNR values and ensemble
sizes for AWGN profile with (a) LIF, (b) !”, and (c) !”! encoding, and
for Pink Noise profile with (d) LIF, (e) !”, and (f) !”! encoding.

Firstly, as anticipated, spiking activity degrades (indicated by higher KL scores)

as SNR decreases, regardless of the encoding type, noise profile, or neural population

size. However, this degradation diminishes with larger neuron populations, suggesting

that increased layer sizes introduce redundancy, which helps mitigate information loss

caused by noise. Secondly, from the perspective of SDS encoding, neural encoding is

more robust to a flatter noise profile, such as AWGN, compared to a low-frequency

dominant pink noise profile. This trend aligns with our analytical model: in the

case of pink noise, the SDS encoding encounters more "in-band" noise due to its

low-pass filtering characteristics. This e"ect becomes evident when comparing KL

scores across similar neural population sizes and SNR conditions for SDS encoding.

For example, under the worst conditions (smallest neural population of 10 and lowest

SNR of 1 dB), the network experiences approximately an 18.67x relative degradation

in encoding quality.

Thirdly, compared to other encoding mechanisms, SDS shows superior noise re-

jection. When injected with pink noise and using a layer size of 10 neurons, the

SDS-based implementation exhibits a 2.13x relative degradation, whereas the SD
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and LIF implementations experience higher degradations of 4.62x and 4.27x, respec-

tively. This emphasizes the inherent noise-filtering capacity of SDS encoding, even in

an untrained model. Finally, increasing the neural population size further amplifies

these advantages. As shown in Fig. 5-4c, SDS encoding maintains spiking activity

deviation under 1.21x with larger populations, compared to 3.21x and 3.87x degra-

dations in LIF and SD encodings, respectively. This underscores the robustness and

e"ectiveness of SDS encoding under noisy conditions.

5.2.2 E"ect of signal parameters on !”! neural encoding

In the previous section, we introduced a proxy measure for the filtering character-

istics of the !”! (SDS) neuron and examined the impact of additive white Gaussian

noise (AWGN) on its ability to retain encoded information. Due to the inherent ”

characteristics, applications involving audio and time-series data align particularly

well with the spiking behavior of our proposed encoding schema. However, to thor-

oughly assess the suitability of this encoding schema for audio-based applications, it’s

essential to expand the evaluation to include additional parameters critical for audio

fidelity, such as loudness (inversely related to the distance of the source) and pitch se-

lectiveness (related to signal frequency). These parameters are vital for understanding

the encoding schema’s robustness across varying audio signal characteristics.

Accurately evaluating the fidelity of this neural encoding schema to these pa-

rameters requires more than a single spiking neuron. Thus, we employ an ensemble

model—a group of interconnected spiking neurons that work in concert to process

and encode information. Each neuron within the ensemble responds to distinct as-

pects of the input signal by generating spikes that reflect specific signal features. The

performance of this ensemble can be quantitatively assessed through metrics such as

spike rate and normalized mean square error (NMSE), which provide direct measures

of how accurately information is reconstructed from spike-based signals. In this con-

text, loudness is defined as an amplitude ratio, normalized to the maximum amplitude

encountered during training, which establishes a consistent baseline for comparison.

In Fig. 5-5a, we illustrate how loudness impacts the reconstructive ability of the
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Figure 5-5: E!ect of (a)Loudness of signal on NMSE (b) Pitch selectiveness
on information encoding quality.

neural ensemble, quantified through NMSE. This analysis reveals two key findings.

First, with smaller neuron populations, NMSE sharply increases as amplitude de-

creases, highlighting a significant drop in reconstruction capability under low-loudness

conditions. Specifically, the evaluation shows a 4% increase in NMSE when the en-

semble size is limited to 10 neurons, suggesting that even in the absence of noise, the

SDS model struggles to accurately reconstruct low-amplitude signals with a minimal

neuron count. However, as we scale up the neural population (N ↗ 50), the relation-

ship between amplitude and reconstruction becomes more linear, indicating a more

predictable and stable performance. This outcome is particularly beneficial for two

reasons. First, a linear relationship enables the introduction of a gain or "boost"

at the front end of the accelerator, allowing the input signal to reach an amplitude

that provides the precise feature encoding required by the application. Second, for

applications where the expected signal attenuation is known, scaling the neural pop-

ulation from the point where linearity begins serves as an e"ective design parameter.

This dual approach—boosting the input amplitude or adjusting the neural population

size—provides flexibility in configuring the model to achieve accurate encoding based

on the application’s specific requirements.

To examine the filtering e"ects and scalability of the SDS neural encoding schema,

we experimented with analogous to amplitude scaling, but instead of adjusting the in-

put amplitude of the signal, we varied its frequency. The low-pass frequency response
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of the neuron was modulated by altering the delay within its feedback loop. This

was achieved by increasing the integration period—or summation window—in the

Sigma block, emulating the integration process within a digital asynchronous envi-

ronment like Lava. The integration period here can be roughly defined as the number

of samples accumulated within a sliding summation window. This adaptable sum-

mation window showcases inherent flexibility in SDS neurons, allowing control over

frequency sensitivity, which is beneficial for applications such as audio processing.

In Fig.5-5b, we illustrate the results of this analysis, using the normalized spiking

rate of the ensemble as an indicator to approximate the filtering behavior. A key

finding is that, instead of observing a simple low-pass filtering e"ect, we see a band-

pass filtering response. This result highlights an aspect not fully captured in the

initial analytical model: the input signal undergoes a ” encoding operation before

entering the SDS ensemble (as detailed in Section 5.2). This ” operation introduces

a high-pass filtering e"ect that combines with the SDS neuron’s low-pass behavior,

resulting in an overall band-pass response.

By reducing the neuron’s summation period, we decrease the delay within the

feedback loop, enabling higher spiking activity in response to high-frequency signals.

Conversely, increasing this period shifts the peak spiking activity towards lower fre-

quencies, as indicated by the leftward shift in peak activity in Fig. 5-5b.

5.3 Incorporating stochastic devices within !”!

Replicating characteristics of spiking neurons, such as stochastic variations in fir-

ing threshold [5], is challenging with conventional silicon devices. Extensive research

has explored the use of emerging device technologies to emulate these characteristics

within spiking neuron models. For example, Maruan Al-Shedivat et al. [6] proposed a

memristor-based stochastically spiking neuron. In their approach, a memristor model

captured intrinsic stochastic behavior consistent with experimentally observed phe-

nomena. They implemented a stochastic Spike Response Model (SRM)–based neural

soma circuit, leveraging memristive non-determinism for e!cient spike generation.
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Figure 5-6: (a)Double MTJ-based BSN module, (b) power and 𝜔 trade-o!
for varying spike rates, and (c) hysteresis of BSN module for di!erent
values of 𝜔.

Their results demonstrated the feasibility of using such neurons for probabilistic sam-

pling and adaptive pattern recognition, contributing to scalable neuromorphic sys-

tems. To that extent, we propose a novel double magnetic tunnel junction (MTJ)

based spiking neuron that leverages low barrier magnets (LBM) stochasticity to emu-

late the firing threshold variability. Our research replaces the comparator unit within

the previously mentioned SDS neuron with a stochastic-threshold-based comparator

element.

5.3.1 BSN inspired SDS Neuron Modeling

To develop an MTJ-based stochastic comparator, we build upon the previously

designed Binary Stochastic Neuron (BSN)[28]. Integrating the BSN as a stochastic
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threshold comparator within the SDS neuron requires controlling the BSN’s switch-

ing frequency to manage the delay in the feedback loop of neural encoding, thereby

influencing the filtering characteristics of the spiking neuron. This ensures minimal

signal degradation within the SDS neuron’s internal feedback loop. Using SPICE-

based LLG solvers, we found that incorporating a second MTJ into the BSN (see

Fig.5-6a) results in four possible resistance combinations based on the alignment of

low barrier magnets (LBM) with the fixed layer (FM): RP →RP →RP for HIGH volt-

age, RAP →RP →RAP for LOW voltage, and two intermediate states: RAP →RP →RP

and RP → RP → RAP . These intermediate states prompt the NOT gate to adjust

them, resulting in a ’sparser’ firing rate, which can be used as a tuning mechanism to

control the neuron’s stochasticity, and its electrical behavior can be formulated as;

VOUT(t)BSN =
VDD

2
(tanh [b · {VIN(t) + VIN(t→ 1)}] + a · Vrnd(t)) (5.3)

To manipulate the stochastic behavior of the BSN-based SDS neuron (BSN-SDS), we
vary the Gilbert damping coe!cient (𝜔) of the LLG equations [28], which alters the

switching frequency of the LBM. By adjusting the 𝜔 values, we can modify the aver-

age firing rate, but this also impacts the associated power consumption, as depicted

in Fig. 5-6b. To implement the BSN-SDS neuron in a spiking model, we convert the

device behavior into an analytical model based on the BSN [28] and the SDS model.

To ensure the accuracy of this analytical model, we calibrate it against SPICE simula-

tions and measure the hysteresis (𝜀hys) of the BSN-SDS neuron for di"erent 𝜔 values,

as shown in Fig. 5-6c. This calibration controls the internal delay within the neuron

and subsequently a"ects the rate of change of VIN(t) to the BSN.
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5.4 Benchmarking !”! Neural Encoding & Results

5.4.1 Noise-Robust Information Encoding & Decoding with

Ensemble model

To evaluate the noise-filtering capabilities of our proposed encoding, we utilize

an ensemble-based signal regenerative model. This ensemble model serves the dual

purpose of assessing feature preservation and noise filtering simultaneously while ex-

tracting features from the incoming signal. By employing the ensemble model, we

aim to replicate real-world scenarios where the nature of noise during inference is

uncertain necessitating training with idealized features and subsequent fine-tuning

for non-deterministic noise conditions. However, using our proposed neural encoding,

models trained with idealistic features still demonstrate robust noise performance

during testing, obviating the need for fine-tuning. In Fig. 5-7a, we illustrate the pair

of ensemble models employed to validate our hypothesis. Ref. Ensemble 1 processes

the incoming time-series feature through a fully connected layer of neurons, generat-

ing a spike train. They are then fed into the second ensemble with a similar structure,

which, under ideal conditions, reconstructs the original signal from the incoming spike

activations. By implementing the ensemble model, we ensure that the SDS neuron

can faithfully encode information in the spiking domain and decode the spike train

to retrieve the original signal.

During the training phase, the first reference ensemble model weights are updated

using idealistic features with an SNR value ↗ 100dB. The weights for the second en-

semble model are obtained from the first ensemble through a transpose operation and

a scaling factor gij. In the subsequent testing phase, Reference Ensemble I encounters

degraded signal features through the injection of artificial noise profiles and is char-

acterized by their respective SNR values. The signal output regenerated by Ensemble

II is then assessed for its fidelity against the ideal signal, measured by the normalized

mean square error (NMSE). The ensemble model is trained using the Nengo PyTorch-

Spiking package, which facilitates the emulation of spiking neuron models based on
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Figure 5-7: (a)Implemented Ensemble model with transient feature trans-
formation and (b) Robustness (NMSE variation) of ensemble model
against SNR degradation.

the !” neural encoding scheme. To evaluate the performance of the neural encoding,

we compare our results with a baseline ensemble model featuring !” neuron banks.

Additionally, we vary the ensemble size to assess the network’s performance as more

features are extracted from a larger neuron bank. Fig. 5-7b demonstrates the net-

work’s performance across di"erent test cases, with the reconstruction error (NMSE)

calculated for input features spanning a range of SNR values. The critical findings

within this simulation can be summarized as follows:

In a controlled setup where the ensemble size remains constant, the SDS neuron-

based ensemble model demonstrates a remarkable ability to outperform the SD base-

line model. Specifically, at an SNR of 1 dB for the input features, the SDS ensemble

achieves an average performance improvement of approximately 6.2× over the base-

line. This result underscores the resilience of the SDS-based neural encoding, which

is adept at filtering out noise-like artifacts even when the spectral power of the noise

closely approximates that of the signal. The enhanced noise suppression capabilities

of the SDS neurons allow the ensemble to reliably process and retain information,

thereby elevating the model’s robustness in noisy environments. For an ensemble

with a fixed neuron count, specifically N=50, the performance degradation as the

SNR is reduced from 20 dB to 1 dB is markedly lower in the SDS-encoded model

compared to the baseline. When using SDS encoding, the performance degradation

rate is approximately 1.482×, in stark contrast to the 57.56× degradation observed

with the baseline model. This observation confirms the capability of the SDS neuron-
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Figure 5-8: Block level representation of a LSM model

based encoding scheme to uphold stable, regenerative performance across varying

noise conditions. Such consistency reflects the SDS ensemble’s e!ciency in dealing

with low-quality input data, even though the model was initially trained on higher-

quality, ideal data. The reduced sensitivity to SNR variations indicates that the

neural encoding scheme is well-suited for applications where the data quality may

fluctuate, maintaining reliable feature representation and model output.

In examining the e"ect of ensemble size on feature extraction capabilities, it be-

comes evident that increasing the neuron bank size enhances performance. When the

number of neurons per layer(N) is raised from 10 to 100, there is a notable improve-

ment in the average Normalized Mean Square Error (NMSE) by a factor of 1.418.

Comparatively, for the baseline model, the NMSE reduction is around 1.425×. These

values suggest that the SDS encoding scheme supports e"ective feature extraction

even as the ensemble size scales. This consistency implies that SDS neurons con-

tinue to e"ectively filter noise while isolating meaningful signal features, enhancing

the overall robustness of the ensemble model’s feature extraction mechanism. This

scalability in feature extraction with increasing neuron count demonstrates the SDS

ensemble’s capability to retain performance while handling larger neuron populations,

an essential trait for processing complex data or operating under inferior conditions.
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(a) (b) (c)

Figure 5-9: Performance of LSM with various neural encoding schema
against SNR degradation for (a) 10x10 (b) 20x20 (c) 50x50 reservoir sizes.

5.5 Liquid State Machine and interfacing with emerg-

ing device models

To assess our proposed neural encoding in a complex learning model, we develop a

Liquid State Machine (LSM) based on the Echo State Network (ESN) model outlined

in [48]. The LSM model is structured with three layers: the input layer, which maps

incoming time-series features to a collection of recurrently connected neurons forming

the "reservoir" layer of the network and the output layer. Both the input and reser-

voir layers have randomized weights distributed according to an initial seed matrix.

Connections from the reservoir layer extend to the output layer, where weights are

trained using a pseudo-inverse approach and optimized to minimize the least squares

fitting (LSQ) error.

Fig. 5-8, represents the LSM model, and in our simulation, we test out the model

with di!erent reservoir sizes of 10,20 and 50. To evaluate the dual capabilities of

our neural encoding, we train the output layer based on an ideal feature set (SNR

> 50 dB) for a training period that constitutes roughly 75% of the entire feature set

available for both training and testing. During the testing phase, artificially corrupted

features are fed to the predictive model based on a pre-determined SNR value. We

evaluated the model against three di!erent neural encoding schemas; the BSN model

based on which the original ESN model is generated, our proposed BSN-!”! neuron,

and conventional !”! neuron. Our simulations, illustrated in Fig. 5-9a-c, represent

the robustness of the network for various reservoir sizes as the SNR is varied from 55
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(clean signal) to 1 dB, with the following observations being made:

• Encoding variations minimize as reservoir size increases: For smaller

reservoirs (N=10), the conventional !”! neuron outperforms the BSN adapta-

tion of our proposed encoding scheme by an average factor of 1.26x. However,

this disparity diminishes as the reservoir size increases (N=50). With larger

reservoirs, both encoding schemes demonstrate similar NMSE values and ro-

bustness to SNR degradation (% increase in NMSE). This suggests that while

the increased stochasticity within the BSN comparator may initially lead to

losses when the model is small, these e!ects are minimized as the model be-

comes capable of extracting more features from the reservoir. As a result, the

true noise-filtering capabilities of the encoding scheme become more prominent.

• Resilience to noise degradation has diminishing returns: At a given

reservoir size and SNR value, the proposed encoding scheme outperforms the

baseline (BSN) version by an average of 1.14 - 1.52x, showcasing its robustness

under specific noise conditions. When evaluating the model’s robustness within

a fixed reservoir size as noise injection increases, we observe greater benefits

with smaller reservoirs (N=10,20). Here, the average increase in NMSE is >

11.15x smaller than the corresponding change in the baseline implementations.

However, for a larger reservoir (N=50), this advantage diminishes to 2.16x. This

underscores the model’s capability to learn from inferior features regardless of

the encoding scheme.
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Chapter 6

Conclusions and Future Work

6.1 Summary

There is a critical need for innovative computational architectures tailored to

accelerate edge machine learning under the constraints of high-dimensional feature

vectors and substantial memory demands. This work was motivated by the persistent

"memory-wall" issue, where the performance gap between computational power and

memory bandwidth challenges e"cient operation in edge environments, especially

those with limited power and intermittent energy availability.

To tackle these challenges, we proposed a shift from the traditional balance of

energy e"ciency versus accuracy toward a model that prioritizes energy e"ciency

and performance scalability. This reimagined balance is essential for next-generation

ultra-edge applications that demand flexible, adaptive architectures. Additionally, by

exploring compatibility with spiking neural models and temporal encoding schemes,

we demonstrated the potential of bio-inspired computational frameworks to enhance

energy e"ciency and achieve sparse data representation.

Central to our approach was the development of an event-driven Compute-in-

Memory (CiM) architecture, integrated with Asynchronous Stream Computing (ASC)

principles, introducing a "stimulus-driven workload execution" model. This model al-

lows computational rates to adapt dynamically to the amplitude and temporal charac-

teristics of incoming data, thereby enabling energy-e"cient operations and real-time
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responsiveness even in energy-variable scenarios.

A primary contribution of this work was the presentation of a systematic approach

and analytical model for optimizing the asynchronous stream generation module,

focused on energy e"ciency and scalable precision. This scalability was achieved by

identifying critical design parameters within the design space and optimizing them

using sensitivity balancing and Pareto optimization techniques. Although not all

design knobs can scale universally, this work provided insights into the impact of

each parameter based on application requirements, facilitating a more targeted design

strategy. Furthermore, we analyzed the e!ects of jitter as a noise source within the

encoding process, demonstrating how precision could be scaled through specific design

knobs.

Building upon this scalable foundation, we developed a novel asynchronous stimulus-

driven workload execution technique that enables our architecture to execute arith-

metic operations at a rate proportional to both the intensity and rate of change of

events. In the context of this work, we applied this approach to an MNIST image

classification task, where computational units implemented with ASC principles dy-

namically adjusted performance based on energy demands. Our evaluations demon-

strated an energy e"ciency range of 81.54 - 247.08 TOPS/W with a performance

range of 11 - 248 FPS, illustrating the flexibility of our architecture to traverse an

energy-e"ciency versus performance curve and its potential impact on edge devices.

Additionally, we incorporated a latency vs. precision trade-o!, formalizing key design

parameters such as average observation period and stream frequency, which allowed

for precision scaling without additional circuitry. This approach, when applied to a

Word2Vec algorithm for encoding word embeddings, achieved a 47.81% improvement

in semantic accuracy as precision increased from 4 to 12 bits, providing a computa-

tional e"ciency trade-o! without the usual hardware overhead.

Leveraging the similarities between ASC streams and spiking models, we devised a

novel !”! encoding scheme aimed at developing noise-resilient spiking neurons. This

approach significantly enhanced the neurons’ ability to encode and decode features

amidst high noise, especially within an ensemble model framework. To validate the
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robustness of this neural encoding scheme, we tested it against various noise profiles,

including AWGN and pink noise. For practical application, we implemented a time-

series prediction model based on a Liquid State Machine (LSM), that exhibited a

1.86x improvement in prediction accuracy for moderate noise levels. These models

demonstrated enhanced noise resilience and reliable performance for smaller network

sizes, even under heavily corrupted signal conditions—an advantage critical for real-

world applications.

6.2 Impact

The work presented in this dissertation has been disseminated widely among aca-

demic and industry audiences through multiple publications at workshops and confer-

ences and showcased at an annual research review meeting. The originality and im-

pact of our research have also catalyzed a three-year industry-academia collaboration

funded by the Semiconductor Research Corporation (SRC) under the SRC-TxACE

program. Recognitions from the academic community underscore the contributions of

this work: we received the Best Paper Award at ISQED’24 for our EAS-CiM research,

and our SDS spiking neural work presented at MWSCAS’24 earned an invitation to

submit an extended version to the IEEE Open Journal of Circuits and Systems.

6.2.1 EAS-CiM framework

Several research projects have begun to utilize our emulation framework and spik-

ing neural encoding schema including a current research project which utilizes our

framework to implement a scalable precision architecture based on skyrmionic-based

racetrack memory and utilizes a temporal encoding method that bears similarity with

ASC streams [56].
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6.2.2 Industry Penetration

Our research has led to a three-year funded collaboration under the SRC-TxACE

program, bringing us into partnership with industry researchers from Intel Research

Labs, MediaTek, and IBM. Notably, there is strong industry interest in our EAS-CiM

research, highlighting its potential for advancing edge computing architectures.

6.3 Future Architecture Research

This dissertation introduces a novel computational paradigm, that enabled the

development of novel edge-based architectures capable of accelerating ML workloads,

both CNN and SNN-based implementations. There are a few future directions this

research could target and continue in. One direction could be to explore additional

architectures and models that would benefit from the ASC computational paradigm.

6.3.1 FPGA inspired Distributed ASC computing

Our approach centers on implementing Compute-in-Memory (CiM)-based ma-

chine learning architectures to e"ciently map Convolutional Neural Network (CNN)

models, addressing memory bottlenecks by interfacing Asynchronous Stream Com-

puting (ASC) streams with CiM tiles. This integration alleviates memory bandwidth

constraints, significantly reducing data movement costs and enhancing energy e"-

ciency. However, to fully unlock the potential of this architecture, advancements in

reliable, high-yield multi-bit precision embedded non-volatile memory (eNVM) de-

vices are essential. While substantial progress has been made in eNVM technology,

challenges remain that limit the widespread adoption of these devices in mainstream

industry applications.

An alternative approach involves the development of distributed computing cells,

where computational logic and memory blocks are co-located within a single com-

putational unit. Unlike CiM, where operations occur directly in the memory array,

this approach uses memory as a conventional storage element but minimizes data
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movement due to the physical proximity of memory and logic within each cell. This

strategy enables the use of conventional memory technologies, such as floating-gate

devices, which are more compatible with existing CMOS fabrication processes. Addi-

tionally, by organizing these computational cells into a 2D grid, this design supports a

scalable and reconfigurable architecture reminiscent of FPGA architectures, o!ering

the flexibility to adapt to various applications.

6.3.2 Benchmarking !”! and EAS-CiM on Complex Models

In Chapter 4 and Chapter 5, we demonstrated the advantages of event-driven

computation and the noise robustness of the proposed !”! (SDS) encoding, quanti-

fying its performance on edge ML models. For future research, an exciting direction

would be to accelerate models such as Echo State Networks (ESNs) and deeper CNNs

tailored for edge machine learning tasks, including Keyword Spotting (KWS) and pre-

dictive maintenance for rotary machinery. This could be achieved by extending the

stimulus-driven workload execution approach introduced in this work.

Another potential direction is to benchmark the SDS encoding within continuous

audio-based digit recognition models using a Liquid State Machine (LSM) network.

Prior reservoir models have achieved a Word Error Rate (WER) of 3% or lower

with fewer than 30,000 parameters [33, 58]. However, these implementations often

experience performance degradation of 10% or more when signal quality declines by

15 dB. It would be valuable to explore whether our SDS encoding technique could

reduce this degradation under noisy conditions, enhancing the robustness of edge

applications in challenging environments.

6.3.3 Exploring Additional Machine Learning Models

We believe that the ASC computational approach presented here has the potential

to accelerate models beyond CNNs and SNNs. Future research could explore the ap-

plication of these techniques to other architectures, including Long Short-Term Mem-

ory (LSTM) networks and Recurrent Neural Networks (RNNs), potentially expanding
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the scope of ASC in enhancing energy e"ciency and performance for a broader range

of machine learning models.
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