
Dynamic Tagging: Tracking Energy Usage on LLMs 
 

CS4991 Capstone Report, 2024 
 

Tu-Yen Dang 
Computer Science 

The University of Virginia 
School of Engineering and Applied Science 

Charlottesville, Virginia USA 
frk3nx@virginia.edu 

 
ABSTRACT 
With the recent uprise in AI and high-level 
computing processes, there is consequently an 
increase in energy usage. To increase user 
awareness and help determine sustainable yet 
efficient energy options, we have developed a 
program that dynamically tracks the energy 
used in each instance of a given program. 
This was done through simulating a user’s 
code on a given computing environment, 
processing its workflow, and calculating the 
energy based on the cost of the instance, 
effort needed on a task, and the time it took to 
complete the task. We chose Python as the 
primary programming language for this 
method since many machine learning (ML) 
models are available and manipulable with 
this language. The dynamic tagging was 
successfully applied to one of our larger 
projects and showed an accurate monitored 
log for energy consumption of the process. 
Though we produced a successful system, 
there are still many opportunities for the 
system to be more usable and accurate, like 
creating a more readable logging system for 
users and a smarter optimization process. 
 
1. INTRODUCTION 
Recently, there has been an uprise in finding 
and using faster, stronger, and more efficient 
computational power, especially with the rise 
of AI. In fact, the AI market size is projected 
to reach $407 billion by 2027, which is 
astronomical compared to the estimated value 
of it in 2022 ($86.9 billion) [1]. As these 

trends progress in the software industry, there 
is consequently a higher environmental 
footprint tied to it. In fact, it was found that 
training a large-scale AI model could produce 
over 600,000 pounds of carbon dioxide, 
nearly five times the lifetime emissions of an 
average US manufactured car [2]. From 
intensive computations, mass database usage, 
to complex analytical processes, it is crucial 
to keep track of the impact software programs 
have on the environment and make more 
sustainable decisions, including computing 
power, electricity, and carbon emissions. 
 
However, this can be difficult since not many 
resources are available that can compute 
energy usage and emission rates. In order to 
solve the problem at hand, a Dynamic 
Tagging system was designed with the 
intention of tracking energy usage and 
emissions of code so that programmers can 
monitor the usage rates of their workflows on 
each instance. This system will tag and track 
each task on a program, and return its 
estimated energy usage, and will suggest 
optimization solutions for companies to make 
more environmentally-conscious choices on 
running programs. 
 
2. RELATED WORKS 
Despite software energy tracking being a 
fairly recent yet important factor in 
programming, tracking energy usage is not 
new. Before software, there was still an 
economic need to track tools that relied on 

mailto:frk3nx@virginia.edu


electricity like lighting. Tracking electricity 
use would be essential for utility companies 
to charge homes appropriately for how much 
they used. Thus, Thomas Edison created an 
electric meter in 1881, which measured the 
amount of electricity used by calculating the 
difference in weight of a copper strip before 
and after a billing period; this strip had the 
current pass through an electrolytic cell, 
which would then cause a deposition in the 
copper [3]. This is similar to the current 
dynamic tagging system since it measures the 
energy usage. However it is also different 
since it focuses on the hardware, while the 
dynamic tagging system is purely for 
software purposes in the modern day, where 
in-person tracking may not be accessible. 
 
One modern-day related work is a Python 
package called codecarbon. Codecarbon 
estimates the carbon emissions a program 
uses when implementing its package into said 
program. It measures both local and cloud 
-based programs and can even split the 
program into different tasks so users can see 
which specific part of their code is most 
environmentally friendly [4]. However, the 
package relies on estimations that may not be 
fully accurate, and only records carbon 
emissions. This disregards the main point of 
tracking energy usage along with the 
emissions to offer optimal solutions for users. 
 
A tool found to handle some of codecarbon’s 
insufficiencies was AWS’s Customer Carbon 
Footprint Tool, which measures the 
emissions, provides a user friendly in-depth 
review of emission rates for programs, and 
even provides forecasting and future planning 
services [5]. Though this product seemed to 
have almost every key point desired, we still 
took a different direction with another design. 
AWS’s tool may be powerful, but it 
generalizes the emission reviews over a 
monthly span, whereas we wanted to focus on 
a program that would track the program 

dynamically. Having it do so would allow for 
recurring instances such as people querying 
an AI model to be traceable on its own. 
 
3. SYSTEM DESIGN 
The Dynamic Tagging tracker system was 
intended to be used with Python programs 
and was specifically created for the User 
Hospitality Services (UHS) team at Leidos, 
who were building a large language model 
(LLM) to process user lookups and find 
credible and desired databases. Though it is 
projected to integrate with UHS, it was also 
proposed to function alongside many other 
projects. 
 
3.1 Modeling a Workflow 
To conform with each project’s needs, this 
system follows a simulated version of a given 
program. In this program, a function is 
represented by a Task object, which contains 
how much effort is needed for the task to be 
completed, and the time it took to complete 
(rate). What the task is being run on is 
represented by the Compute Instance object, 
which has a Resource property that stores the 
costs of using that specific instance and the 
capacity of how much it can perform. 
 
The Compute Environment represents a 
group of instances that can all be used to 
perform tasks. This environment can perform 
tasks in many two ways: monitoring and 
optimizing. Monitoring will simply run the 
simulation assuming each task is ordered; 
while optimizing works around the premise of 
determining which compute instance would 
be best to use first before moving on to more 
energy-demanding ones. Finally, two objects 
are responsible for processing the workflow, 
and logging it: the Workflow and Data 
Product class. A Workflow is able to process 
a list of tasks that is associated with it in an 
environment, and each Data Product is able to 
follow one or more tasks and record its 
history of performance and can then record it 

 



in a log file when desired. Figure 1 and 
Figure 2 go in depth with each component of 
the system and how they interact with one 
another. 
 

Figure 1. Description of each class in 
dynamic tagger 

 
Figure 2. Representation of Class Interaction 
 
3.2 Calculating Performed Energy Rates 
To calculate energy usage, four computer 
specifications are being monitored in the 
simulation: CPU, GPU, RAM, and Storage. 
The Task object describes how much effort 
each specification requires in order to fully 
execute, and each Compute Instance object 
has resource properties that list each 
specification’s capacity (maximum amount of 
usage), and cost (cost of running the task on 
said instance). The program intends to 
measure energy values of these specifications 
in rates per unit effort, and the energy “effort” 
of some program being performed is 
represented by the combination of the rate of 
time the resources were needed for, and how 
hard the work being done will be. 
 
To calculate energy usage of a task, we used 
the following equation to represent a task 
being performed: Rate of task being done * 
instance’s capacity used * cost of using 
instance’s resource. While the task is being 
performed, the compute instance’s capacity 

values will update with it, and the task effort 
required to run will, as well. 
 
3.4 Running the Program 
With its current implementation, the tagging 
system requires some user pre-emptive 
information to work. Initially, only one 
version was to be created: running with a 
decorator. However, when testing its 
compatibility with another project, we ran 
into an issue regarding the structure. So, a 
second method was formed to run the 
Dynamic Tagging program. The first method 
is with a decorator on functions. This method 
would require the user to attach the 
tag_tracker() decorator into the functions (or 
Tasks) of their programs, and an external 
JSON file with a list of compute instances 
would be needed. For the CCH team, one was 
provided. In the future, the decorating 
function should additionally read in values to 
build a task while the function is running. At 
the moment, the decorator is intended to be 
used to identify the function’s name and 
correlate it to a list with its values to create a 
representative Task object. To process the 
workflow, users should then run the execute 
tracking() function at the very end of their 
code. Figure 3 depicts how using the 
decorator would work for further explanation. 
 

 
Figure 3. Running Dynamic Tagging with a 

Decorator 
 
The second method to use the program is 
fully separate from the user’s program, and 
only requires given files. Now what is needed 
from the users is an ordered list of what tasks 
will run, and the compute instance JSON file. 

 



To process the workflow, users should then 
run the execute_tracking() function; nothing 
else is needed to run. Figure 4 provides 
further clarification on the steps. 

 
Figure 4. Running Dynamic Tagging with 

Pre-Emptive Information 
 
4. RESULTS 
The dynamic tagging tracker system was used 
for internal Leidos projects. It was seen to be 
completely and seamlessly compatible with 
the CCH team’s vza-cold-product workflow, a 
project related to tracking night lights data 
depending on the day. Originally, this system 
also had the intention to work with the UHS 
team’s LLM database lookup process, as well. 
However, because the LLM was not 
completed or testable at the time, it cannot be 
fully seen as successful yet. Both projects 
revolve around having an efficient but 
minimally power-consuming workflow. So, 
this tagging system was used in conjunction 
to record each instance the program would be 
run and record the values needed. 
 
At the moment, the log specifies which 
instance is performing a task and the usage 
values for each compute specification, 
allowing for users to monitor each value, if 
needed. However, if there were a use case 
that required a different log format, the 
program is incredibly flexible with output.  
 
When using the monitoring versus 
optimization options, monitoring will go 
through the instance list in its given order, 
while optimization will sort the list in a 
cost-order before running the tasks. In return, 
optimization will prioritize initial tasks with 
the least costing instances, leaving the more 

energy-costing instances for the end. Though 
other methods may yield other outcomes, this 
one is proven to optimize workflows where 
tasks do not require all instances to work. 
 
5. CONCLUSION 
The Dynamic Tagging system offers a 
significant advancement in the monitorization 
and optimization of energy usage for software 
processes, particularly in the context of 
machine learning and large language models. 
By providing real-time tracking of hardware 
consumption, the system allows users to 
make more informed and sustainable 
decisions regarding their computational 
workflows. Its flexibility with different 
simulation modes allows it to be used with 
various project needs. Ultimately, this project 
is an important step toward increasing 
awareness in computational energy 
consumption, offering a tool for those looking 
to minimize their environmental impact while 
maintaining high levels of computational 
performance. 
 
6. FUTURE WORK 
Despite having a fully functional application, 
there were many next steps that could further 
the potential for this program. One would be 
to work with Codecarbon, mentioned in 
related works. This application was missing 
components we were looking for, but if 
incorporated into the current tagging system, 
energy efficiency and emissions rates could 
be further tested against one another. Another 
improvement would be to output something 
more readable for users. The current 
application simply outputs a log of every 
instance performed and lacks summary skills 
to make it easier for users to understand what 
they are reading. Having a system after the 
logging to review and summarize findings 
may be helpful for others interested in this 
product. Finally, one other possible expansion 
would be to use some level of ML to 
determine optimal energy rates. A very 

 



simple decision-making algorithm but using 
ML to determine optimal choices can be more 
accurate and reliable. 
 
7. ACKNOWLEDGMENTS 
I would like to thank my manager and team 
member Ian Paynter and Peter Boucher for 
their guidance, support, and contributions 
throughout this project. I would also like to 
thank Leidos and the User Hospitality Team 
for giving me the opportunity to work on this 
project and for providing the resources and 
environment to complete this work. 
 
REFERENCES 
[1] Katherine Haan. Forbes. 2024. 24 Top AI 
Statistics and Trends In 2024. (June 2024). 
Retrieved September 25, 2024 from 
https://www.forbes.com/advisor/business/ai-st
atistics/  
[2] Karen Hao. MIT Technology Review. 
2019. Training a Single AI Model can Emit as 
Much Carbon as Five Cars in Their Lifetimes. 
(June 2019). Retrieved September 25, 2024 
from 
https://www.technologyreview.com/2019/06/
06/239031/training-a-single-ai-model-can-em
it-as-much-carbon-as-five-cars-in-their-lifeti
mes/ 
[3] Smart Energy International. 2006. The 
History of the Electricity Meter. (June 2006). 
Retrieved September 25, 2024 from 
https://www.smart-energy.com/features-analy
sis/the-history-of-the-electricity-meter/#:~:tex
t=Thomas Alva Edison  
[4] CodeCarbon. 2021. CodeCarbon: Track 
and Reduce CO2 Emissions from your 
Computing. Retrieved September 25, 2024 
from https://codecarbon.io/ 
[5] Amazon Web Services. 2024. 
Understanding the Customer Carbon 
Footprint Tool. Retrieved September 25, 2024 
from 
https://docs.aws.amazon.com/awsaccountbilli
ng/latest/aboutv2/ccft-overview.html 
 

 

https://www.forbes.com/advisor/business/ai-statistics/
https://www.forbes.com/advisor/business/ai-statistics/
https://www.forbes.com/advisor/business/ai-statistics/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.smart-energy.com/features-analysis/the-history-of-the-electricity-meter/#:~:text=Thomas%20Alva%20Edison%20
https://www.smart-energy.com/features-analysis/the-history-of-the-electricity-meter/#:~:text=Thomas%20Alva%20Edison%20
https://www.smart-energy.com/features-analysis/the-history-of-the-electricity-meter/#:~:text=Thomas%20Alva%20Edison%20
https://www.smart-energy.com/features-analysis/the-history-of-the-electricity-meter/#:~:text=Thomas%20Alva%20Edison%20
https://codecarbon.io/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ccft-overview.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ccft-overview.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ccft-overview.html

