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Abstract

Vision is an important function that guides behaviors. However, our understanding of the visual

system in the brain remains incomplete. In this dissertation, I combine behavioral, electrophysio-

logical, and computational approaches in two model organisms — tree shrews and mice — to study

the vision from two perspectives: visually guided behavior and its implicated neural mechanism,

and motion processing on single neuron level and its implicated computational principle. For the

former perspective, I studied visual decision-making in tree shrews; for the latter perspective, I

studied motion representation in the superior colliculus (SC) of both tree shrews and mice.

In Chapter 1, I review the historical view of vision and visually guided behavior, summarize key

anatomical and physiological properties of the SC as a subcortical visual structure, and highlight

accumulating findings that link SC activities to cognitive processes. I conclude by proposing the

tree shrew as an intermediate model for comparative vision research, lying between rodent and

primate visual systems.

Chapter 2 presents our work on establishing and characterizing visual decision-making behav-

iors in freely moving tree shrews. Using a two alternative forced choice contrast-discrimination

task with manipulations of trial-delay schemes, I demonstrate that tree shrews rely on a stimulus-

independent process to guide their choice behaviors. The comparison between two forms of racing

diffusion models fit to the choice and response time data further shows a potential mechanism for

these task-dependent non-sensory decision signals can arise from a time accumulation process.

In Chapter 3, I shift focus to the mouse SC and ask how individual neurons represent “plaids”,

a type of complex motion patterns. Using asymmetric plaid stimuli, I show that mouse SC neurons
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do not implement the classic intersection-of-constraints (IOC) rule, which is followed by primate

perception and cortex neurons to integrate the motion, but instead compute a probabilistically

constrained vector sum (VS) of component directions. By examining optokinetic reflex (OKR)

behaviors to plaids, I further demonstrate that this probabilistically constrained VS computation

directly drives reflexive eye movements. The findings raise intriguing questions about subcortical

visual motion processing and its functional significance.

Chapter 4 extends the motion-processing investigation to the tree shrew SC. Through in-vivo

electrophysiological recordings and OKR behavioral measurements, I establish that tree shrew

SC neurons are tuned to spatial frequency, temporal frequency, orientation, speed, and motion

direction in a manner comparable to mouse SC, although the exact tuning ranges exhibit a priority

on processing rapid motion stimuli. In response to symmetric and asymmetric plaids, tree shrew

SC neurons also implement a VS-like representation of pattern direction, mirroring the mouse

results. Conversely, tree shrew SC demonstrates a lower level of pattern selectivity compared to

mice, and the VS computation is not limited by the probabilistic constraints observed in mice. The

findings show both the conserved functionality and the specialized adaptation of the tree shrew SC.

Finally, Chapter 5 discusses these cross-species findings and explores their broader implica-

tions in light of the literature on other species. I first discuss the tree shrew’s exceptionally fast be-

havioral responses and the implication of the underlying neural mechanisms and drive force. Next,

I call attention to the importance of subcortical visual functions, with an emphasis on the SC. Com-

parative perspective highlights how subcortical processing supports rapid behaviors, while cortical

circuits can augment precision under the requirement of behavioral context and species needs. Fi-

nally, I briefly discuss the SC function in a broader range of behaviors including abstract cognitive

processes and urge for a integrative view on the SC.

In summary, this dissertation demonstrates a collection of my investigations of vision with a

comparative perspective. These cross-species insights illuminate how evolution potentially shapes

the trade-offs in visual processing, and they underscore the SC’s pivotal role in bridging visual

inputs with behavior.
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Chapter 1

Introduction

1.1 Vision and Behavior

Vision is a function that allows biological organisms to interact with light and form images within

the nervous system. This critical function is broadly found in different evolutionary branches

across animal kingdoms, including insects, fish, birds, and mammals. Compared to other sensa-

tions, vision enables high-resolution and long-distance information acquisition, which transcends

the physical limits of the body and hugely expands the range where the animals can interact with

their environment.

Across species, the organization and function of visual systems are remarkably conserved.

Functional convergence can be found in multiple aspects. For example, the photoreceptors in the

retina of vertebrates are nicely arranged spatially, with nearby photoreceptors representing neigh-

boring locations in the visual fields. Such topographic organization is called retinotopic map and

is preserved within the retina and in downstream visual structures (Hjorth et al., 2015; Spead et al.,

2021; Li et al., 2022b; Chandrasekaran et al., 2005; Wandell and Winawer, 2011; Adams and Hor-

ton, 2003). Another example is optokinetic reflex (OKR), a highly conserved visuomotor reflexive

behavior observed in all vertebrates studied so far (Masseck and Hoffmann, 2009). OKR presum-

ably helps stabilize images on the retina during relative motion. Subcortical structures drives the

10
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OKR in non-mammal vertebrates, while in mammals both subcortical and cortical brain areas ex-

ert control on this behavior. A further example of organizational and functional conservation is

the orientation columns in primary visual cortex (V1), which have been observed across various

higher mammals such as primates, cats, tree shrews, and ferrets, but not in rodents or squirrels

(Ho et al., 2021; Humphrey and Norton, 1980; Bonhoeffer and Grinvald, 1991; Hubel et al., 1977;

Chapman et al., 1996; Kaschube et al., 2010). Such map structure indicates the grouping of func-

tional units is a common solution for efficient visual processing in the cortex of animals with more

developed visual systems. Moreover, one of the studies has shown that despite primate species

vary widely in brain sizes, the estimated neuron numbers within an orientation hypercolumn is

only weakly correlated with the cortex size (Ho et al., 2021), suggesting the neural allocation for

orientation representation is likely optimized early in evolution, and more advanced functions are

developed and built upon this common basic computational unit. Together, these findings high-

lighted the value of studying vision as it is a foundational neural function that has the potential to

reveal general principles of brain organization.

Vision is not just a passive process of receiving information. Its most evident and direct out-

puts are visually guided behaviors such as eye movements, orienting behaviors, predation, escape,

navigation, and social interaction. Thus, by adopting a visual paradigm, one can study a complete

input-output transformation. Many of these visuomotor transformations are innate and reflexive,

enabling the study of the most naturalistic behaviors that require minimum amount of training. In

the laboratory setup, artificial stimulus on the screen has been widely shown to effectively drive

neuronal responses in various species, allowing for precise control and flexible manipulations of

the visual inputs. In addition to innate behaviors, visual information can also guide cognitive pro-

cessing such as perception, attention, decision-making and memory. Visually guided cognitive

behaviors provide a great entry point to investigate the neural mechanisms underlying cognition,

especially considering the extensive body of literature that informs our understanding of the visual

system.

In mammals, the neural substrates for vision can be devided into two pathways, the primary
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visual pathway and the secondary visual pathway. The primary visual pathway refers to the visual

information processing stream from retina, to the lateral geniculate nucleus (LGN) in the thalamus,

then to V1 and the rest of the visual cortex. The secondary visual pathway refers to a different route

starting from the retina to the superior colliculus (SC). The “primary” and “secondary” are mainly

influenced by the primate anatomy, where retinal ganglion cells (RGC) project mainly to the LGN

while only ∼10% to the SC (Perry and Cowey, 1984). However, this projection difference is

reversed in mice where the majority of the retinal output goes to the SC (Hoy and Farrow, 2025).

In this study, I focus on the visual function of the SC, a structure that remains underexplored given

its functional importance.

1.2 The Superior Colliculus as a Visual Structure

The SC, despite sometimes classified as part of the “secondary” visual pathway, is a highly con-

served midbrain structure that plays an important role in image-forming vision and visual behav-

iors. In evolution, the SC is phylogenetically older than the LGN; all vertebrates have an optic

tectum (OT, the homologous structure of the SC in non-mammal vertebrates) or a superior collicu-

lus (in mammals) (Ulinski et al., 1992). The SC receives input majorly from the retina, as well as

V1 and other cortical and subcortical areas, and also projects widely to subcortical brain structures

(Cang et al., 2024). Across species, the SC has been shown to respond to spatial locations of vi-

sual stimuli, specific visual features (on/off, motion direction, etc.), and visually guided behaviors

(orienting, saccades, etc., Hoy and Farrow, 2025; Isa et al., 2021; Sprague and Meikle, 1965).

Therefore, the SC is an essential brain structure to study for investigating the general principle of

visual processing.

1.2.1 Visual Feature Tuning

The SC is a layered structure with the superficial layers mostly representing visual information.

Just like other visual structures in the brain, the SC contains a retinotopic map to represent the
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visual spaces projected onto the 2 dimensional retina. In addition, the receptive field (RF) of the

SC neurons are smaller for central visual fields and bigger for the peripheral visual fields across

various species including mice with no fovea (Hafed et al., 2023; Drager and Hubel, 1976; Hafed

and Chen, 2016). This indicate that the SC, like other visual areas, process the visual information

with an emphasis on the central visual field in front of the animals. The SC visual neurons usually

have overlapped circular on-off RFs, meaning that they respond to both bright and dark stimulus

appearing in the same visual fields (Wang et al., 2010). This is different from the upstream RGC,

which contain a lot of on-cells and off-cells. This is also different from the V1 neurons, which are

another input source to the SC and contain many cells with gabor-like RFs. Thus, the prevalent

on-off RFs in the SC indicate a high level of non-linearity during the visual processing there.

The SC is well known to be sensitive to visual motion. Researchers have found the superficial

SC exhibits selectivity to motion direction/axis and spatial/temporal frequency, as well as performs

surround suppression and motion integration (Wang et al., 2010; Lee et al., 2020; Gale and Murphy,

2016; Cang et al., 2024; De Franceschi and Solomon, 2018; Li and Meister, 2023; Barchini et al.,

2018; DePiero et al., 2024; Li et al., 2025) . Among these properties, direction selectivity is the

most well studied feature, which is observed in all the mammalian species that has been studied

(Cang et al., 2024, 2018). Direction selective (DS) SC neurons were found to be most enriched

in the very superficial lamina of SGS (stratum griseum superficiale) in mice (Inayat et al., 2015),

while this nearly 80% DS proportion dropped to around 30% when measuring across all depth

of the SGS (Wang et al., 2010). In mice, this strong direction selectivity found in the SC has

been shown to be inherited from the retina (Shi et al., 2017). However, it should be noted that

the SC neurons also showed advanced motion processing capabilities such as motion direction

integration (DePiero et al., 2024) and direction contrast facilitation (Barchini et al., 2018) that were

not observed in the retina. This indicates that these DS neurons do not simply relay the directional

information from the retina; rather, they process motion information in a higher, more integrative

level. This is also consistent with the findings in primates that while the direction selectivity in the

retina is very limited (Kim et al., 2022), the SC still shows a substantial amount of visually DS
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neurons (Horwitz and Newsome, 2001; Cynader and Berman, 1972; Goldberg and Wurtz, 1972).

Taken together, the SC is likely a critical structure that solves visual motion processing tasks in the

subcortex.

1.2.2 Complex Visual Processing

In addition to low level feature selectivity, SC has also been found to represent higher order visual

elements. For instance, a series of studies suggest the primate superficial SC might encode the

saliency of visual scenes (White et al., 2017a,b, 2021; Heeman et al., 2025). Such saliency repre-

sentation is independent of saccadic goals, emerging earlier and more robustly than the V1 signals.

Given that V1 is the dominant input of the SC in primates, these findings suggest the SC pools and

integrates a variety of visual features to perform a higher-level processing intermediate between

purely passive sensory representation and fully top-down modulated processing.

In the past few years, more studies have revealed an interesting role of the SC in visual object

representation (Bogadhi and Hafed, 2023; Yu et al., 2024; Mekhaiel et al., 2024; Nguyen et al.,

2014). Object representation is traditionally studied in the cortex, especially the inferotemporal

(IT) cortex of primates. By contrast, in subcortical structures, object representation is typically

linked to valence or motivational significance. Researchers have found rapid preferential responses

to extrafoveal real-life objects over spectral matched control images in primate SC (Bogadhi and

Hafed, 2023). Moreover, SC neurons show a characteristic bimodal response to visual objects,

consisting of an early, strong burst followed by a late, weaker response (Yu et al., 2024; Nguyen

et al., 2014). These studies also consistently demonstrate SC neurons are sensitive to visual object

categories, with a particular preference for the face stimuli. Interestingly, this object representation

with ultra-short latency (∼ 40 - 50 ms), together with the subsequent late response, was abolished

completely by inactivating the LGN (Yu et al., 2024). LGN does not project to the SC in primates,

while V1, the downstream of LGN, is a major input of the SC. Therefore, it was proposed that the

SC signal representing visual objects depends on the LGN-VC (visual cortex) pathway.
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1.2.3 The SC is Multi-sensory

Beyond the visual information, the SC, especially its intermediate and deep layers, is also known to

represent other sensory modalities. For example, researchers have found auditory and somatosen-

sory inputs are co-represented in the SC, and can interact with visual representation to induce

enhancement and depression in neuronal responses (Meredith and Stein, 1986; Ito et al., 2021;

Wallace et al., 1996; Knudsen, 1982). In non-mammalian species, the optic tectum has also been

shown to encode other sensory modalities, including electrosensation and thermosensation (Isa

et al., 2021; Kardamakis et al., 2016; Hartline et al., 1978; Newman and Hartline, 1981) . These

multimodal representations are aligned topographically, allowing the integration of ethologically

relevant cues in the surrounding environment and thus guiding animal behaviors (Isa et al., 2021;

Jay and Sparks, 1984; Suzuki et al., 2019) . Notably, such multi-sensory organization is shown

to exist during development and provide guidance to the segregation of sensory modalities in the

cortex (Guillamón-Vivancos et al., 2022).

1.2.4 The SC is Involved in Orienting Behaviors

With the enriched representation across sensory modalities and an emphasis on visual responses,

the SC appears well positioned to compute signals relevant for behavior. Indeed, a large body of

literature has shown SC’s role in guiding a wide range of behaviors. For example, the SC guides eye

movements, especially saccades in primates (Basso and May, 2017). Neurons in the deeper layers

of the SC can generate saccades in a certain direction and distance (i.e. saccade vectors) depending

on the site of those neurons. This dependence is described as a map for eye movement in the SC,

similar to the sensory maps described above. In addition, in head restrained mice, SC stimulation

in its intermediate and deep layers can also trigger saccades (Zahler et al., 2023; Masullo et al.,

2019). Interestingly, these neurons seem to encode saccadic end points instead of vectors in mouse

SC (Zahler et al., 2023). Other than eye movements that are particularly prominent in primates, the

SC is also found linked to a range of orienting behaviors including head movements, goal-directed

arm/tongue reaching, or the reversed form of orienting - evasive responses Masullo et al. (2019);
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Zahler et al. (2023); Campagner et al. (2023); Cang et al. (2024); Hoy and Farrow (2025); Isa

et al. (2021, 2020). Predation can also be viewed as an orienting behavior, and the SC has been

shown to play a critical role in driving this behavior in mice (Hoy et al., 2016, 2019; Shang et al.,

2019). Curiously, one recent study showed narrow-field cells, a type of DS neurons in the SC

essential for normal hunting behaviors, do not require their direction selectivity to guide predation

(Krizan et al., 2024). These neurons inherit the direction selectivity from one specific type of

RGC. When eliminating this source of direction selectivity, the narrow-field cells became non-DS,

yet the hunting behavior remained unaffected. This is surprising given the direction selectivity is

a major response property in the SC, and is generally assumed to be critical for predation - an

activity that relies on rapid visual motion analysis. Therefore, how the SC and the rest of the brain

utilize the visual processing outputs of SC neurons remains an open question to explore for future

investigation.

1.3 Connecting the SC Neuronal Activity to Cognitive Behav-

ior

1.3.1 Attention

Notably, the SC is involved in the behaviors that 1. require fast processing, 2. reminiscent to

a behavioral product of attention, which guides the animal to “face” a field enriched of relevant

information. This is supported by the findings that the SC is involved in both overt and covert

attention (Ignashchenkova et al., 2004; Krauzlis et al., 2013). Researchers have shown the response

facilitation phenomenon in the SC visual neurons during saccade preparation period (Li and Basso,

2008; Wurtz and Goldberg, 1972; Wurtz and Mohler, 1976). However, in these studies, the actual

or planned saccade location is coupled with the attention target space cued by the experimenters,

making the causal attribution ambiguous. Later studies using artful designs to disentangle the

two variables illustrated the SC is really involved in the cognitive spatial attention rather than
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simply the motor preparation (Lovejoy and Krauzlis, 2010; Zénon and Krauzlis, 2012). Curiously,

inactivation of the SC neurons impairs behavioral performance requiring attention to their receptive

fields, but leaving the ’attention-related’ effect in the cortex intact (Zénon and Krauzlis, 2012).

Moreover, microstimulation of the SC facilitate the attention toward the corresponding receptive

fields without eye movements (Müller et al., 2004; Cavanaugh and Wurtz, 2004). Such facilitation

cannot be explained by the possible phosphene effect (Cavanaugh et al., 2006). Thus, the SC has a

unique role that can directly affect spatial attention behaviorally and the underlying mechanism is

independent from the cortex.

1.3.2 Perceptual Decision-making

Since the SC is involved in attention that seems to be distinct from the pure motor preparation or

sensory processing, many studies have explored whether other cognitive processes depend on the

SC as well. One prominent framework to study the SC’s cognitive function is perceptual decision-

making. Given that the SC is a sensory-motor hub, it is natural to speculate that it may encode

signals of the intermediate states between sensory and motor transformation. Perceptual decision-

making is the minimal form of such cognitive transformation, where decisions are made based on

sensory evidence.

However, studying decision-making signals in the SC is challenging due to the contamination

of co-existing sensory- and motor-related signals in SC neurons. In fact, this is a common issue

to study perceptual decision-making in almost all brain areas. Yet, the SC literature explicitly

demonstrated the prevalence of non-cognitive signals. Thus, researchers have been working on

adopting various experimental designs that can dissociate the cognitive variables of interest.

One of the early and influential attempts was to use a semi-dissociative 2 alternative forced

choice (2AFC) paradigm (so called “loose stimulus–response association task”) to separate choice

from motor (saccadic) signals in the primate SC (Horwitz et al., 2004). Monkeys can be very

effectively trained to use saccades to report their choices. However, because SC neurons directly

contribute to the initiation and targeting of saccades, and because saccadic vectors are mapped
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topographically in the SC, motor-related activity can easily contaminate neural representations of

choices deployed spatially in the behavioral task. To overcome this, the researchers randomly

presented the choice targets for 2 options at different visual field locations on each trial, while

maintaining their relative spatial arrangement. With this design, the choice saccades of the same

option could appear at different locations on the screen, decoupling from the SC motor map. This

study illustrated that the a subpopulation of SC neurons encoded the abstract choice even before

the choice targets were presented. Nevertheless, this paradigm represents only a partial dissoci-

ation, since the relative spatial arrangement of the two choice targets was still fixed during the

experiment. As a result, it is still possible that a spatial motor plan could form before the target

presentation, although being more abstract than planning the exact saccadic endpoint or vector.

Later studies advanced this dissociation with designs that used the color instead of location to in-

dicate the identity of choice targets (Crapse et al., 2018), or incorporating pure saccade tasks to

enable a subtractive design (Jun et al., 2021; Cho et al., 2021).

Subsequent studies utilizing neural manipulation such as muscimol inactivation demonstrated

that the SC plays a causal role in decision-making, particularly in generating decisions contralateral

to the inactivation site (Stine et al., 2023; Jun et al., 2021; Peysakhovich et al., 2024). This effect

has been observed not only in primates using saccade to report their choices, but also in rodents

reporting their choices with licking or nose-poking behaviors (Wang et al., 2020b; Essig et al.,

2021; Felsen and Mainen, 2008; Thomas et al., 2023). It is worth noting that these decision-

reporting approaches, while differ in modality, are still spatial and fall within the orienting behavior

categories, on which the SC neurons exert substantial influence as discussed above.

To further tease apart which step of the decision-making process the SC is involved in, the re-

searchers manipulated various aspects of behavioral tasks to segregate the latent decision variables.

For example, in signal detection theory (SDT) which is widely used to model decision behaviors,

both the sensitivity and decision criterion can induce changes in the overall decision accuracy.

Sensitivity is the distance between the signal and noise distribution, while criterion (or bias) is the

threshold on which the decision/classification is based. One study developed a carefully crafted
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Yes-No task with sensorimotor priming to independently manipulate these two variables (Crapse

et al., 2018). Specifically, instead of two symmetric sensory decisions, the animals need to report

whether or not they saw a coherent orientation structure emerging from a glass pattern. The fre-

quency of orientation occurrence was manipulated, so to induce a bias in animals’ behavior. This

bias corresponded to the decision criterion change but the visual sensitivity could be viewed as

stable throughout. This study illustrated that the SC neuronal responses, together with the behav-

iors, changed with priming. Interestingly, electrical stimulation in the SC that is intermittent on a

trial-by-trial basis generated a criterion change in the whole block, suggesting a long-lasting and

global effect of the stimulated neurons on decision-making. Other studies also found similar role

of the SC in decision criterion instead of sensitivity (Jun et al., 2021; Sridharan et al., 2017). In a

recent study, however, the researchers found SC visuomotor neurons encoded the perceptual sen-

sitivity independent from the decision criterion or motor biases (Ghosh and Maunsell, 2025). This

sensitivity encoding was related to attention modulation induced by their task instruction. In mice,

both sensitivity and criterion changes were found when inactivating SC, although the Go-Nogo

task design could not strictly isolate the two (Wang et al., 2020b).

The SDT models the choices in decision-making behaviors. Another behavioral output is re-

sponse/reaction time (RT), which is very informative for the neural mechanisms underlying de-

cisions. One type of models called sequential sampling models (SSM) has been successful in

capturing the choice-RT data observed in humans and other animals (Ratcliff, 1978). SSM family

has a lot of variants, but the shared core assumption is that evidence is accumulated through time.

This process can be realized with several key decision variables: the drift rate of the accumulators,

start point of the accumulation, and a threshold. Once the accumulated evidence crosses a thresh-

old, a decision is generated. Many brain areas such as the lateral intraparietal cortex (LIP) were

shown to have ’ramping’ neuronal activities that resembled evidence accumulators (Roitman and

Shadlen, 2002; Horwitz and Newsome, 1999; Ding and Gold, 2010; Mante et al., 2013), which

provided the neural level support of the SSMs in explaining decision-making behaviors. The SC

was suggested to have an influence on several decision variables in the SSM framework, such as
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drift rate (Ratcliff et al., 2007, 2003; Cho et al., 2021), drift rate offset (Jun et al., 2021), and

threshold (Stine et al., 2023; Zhang et al., 2021). Further investigation revealed more details of

the SC mechanisms. For example, Stine et al. (2023) found that despite the average responses of

both SC and LIP showed ramping properties during decision-making, the SC neurons on single-

trial level in fact showed bursting responses, in contrast to the LIP neurons which maintained a

characteristic ramping activity. This finding provides clue to the previous mystery of why ramping

response is so prevalent in the brain, and suggests different computations take place in the SC and

LIP. Another study also demonstrated the SC response to random dot motion patterns was similar

to accumulation, but the response to glass pattern resembled a stepping process more (Cho et al.,

2021). Further comparison with a saccade task confirmed such accumulation or stepping response

did not result from attention, reward, or motor planning.

Moreover, two studies (Odegaard et al., 2018; Grimaldi et al., 2018) addressed the question

of whether SC represents the subjective confidence or the decision accuracy, which are two co-

varying variables in decision tasks. To dissociate them, they adopted a clever design previously

developed by Kiani and Shadlen (2009) where the monkeys were allowed to “opt-out” some trials

to guarantee a moderate reward, as opposed to no reward for incorrect responses. Opt-out choices

indicate low subjective confidence, but do not necessarily predict low accuracy on the task. Indeed,

the behavioral data confirmed when the difference between the evidence for two options were

similar, the decision accuracy was similar but monkeys were more prone to opt-out when the

overall sensory evidence is weaker. They found SC responses on both single neuron and population

level remained the same in this condition, thus encoding decision accuracy rather than subjective

confidence.

In addition, several studies also implicated the SC’s role in representing abstract rule or context

for decision-making (Thevarajah et al., 2009; Chu et al., 2025; Zhang et al., 2021; Peysakhovich

et al., 2024). This is conceptually consistent with an early finding illustrating different levels of

speed-accuracy tradeoff in the SC for pursuit and saccade tasks (Krauzlis and Dill, 2002), suggest-

ing the SC contribute to flexible interpretation of the sensory stimuli in a manner that is aligned
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with the animal’s current task demands.

Finally, the SC’s involvement in perceptual decision-making is not only limited to the visual

modality. Rodent studies have shown that in addition to visual decision, the SC also participates

in decision-making based on auditory, somatosensory, and olfactory stimuli, and the SC neurons

behaves similarly to that in primates (Duan et al., 2021; Chu et al., 2025; Felsen and Mainen, 2008;

Essig et al., 2021). This suggests a broader impact of the SC on cognitive functions, pointing to

its potential contribution to the integration and generalization of the task-relevant information. Re-

searchers have also taken advantage of the transgenic rodent lines and optogenetic tools to examine

cell type specific contributions to decision-making in the SC. Both excitatory and inhibitory neu-

rons were found to be involved in generating contralateral choices, while interestingly, inhibitory

neurons exihibited a reversal in lateralized preference during the late phase of the decision period

(Duan et al., 2021; Essig et al., 2021). Subsequent work highlighted the importance of a delay

epoch in the experiment design to isolate vision- and motor-related signals, which have opposite

spatial preferences in mouse SC (Thomas et al., 2023).

In summary, the SC is a great brain area to study for its broad involvement in various visual

functions including cognitive ones.

1.4 Tree Shrew As A Bridging Animal Model for Vision Study

and Cross-Species Comparison

In most vertebrates, the major output target of the retina is the SC (Sanes and Zipursky, 2010). In

mice and pigeons, nearly 85%-90% of the retinal output directly goes to the SC, while in primates

and cats, the main projection region of the retina shifts to the LGN (Hoy and Farrow, 2025). This

suggests a redistribution of the early visual processing pathways in evolution. Behind this redis-

tribution, is it merely a migration of function, or could it reflect the emergence of completely new

computations? In fact, the answer is likely at a middle point between the two extreme scenarios.

This uncertainty calls for more studies on the nature of such anatomical transition. To disentan-
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gle the general evolutionary principle from the species specific specializations, it is ideal to adopt

comparative approaches and introduce intermediate animal models.

Tree shrew, we propose, has its unique advantages when it comes to vision research. Tree

shrews (Tupaia) comprise the entire order of Scandentia, and are evolutionarily close to primates.

First of all, tree shrew are diurnal animals with good visual acuity (Petry et al., 1984; Petry and

Bickford, 2019), roughly around 2 cpd This is higher than the acuity of nocturnal animals such

as mice (∼0.5 cpd) or rats (∼ 1 cpd) (Prusky et al., 2000), but lower than primates (∼ 25 cpd)

(Ridder III et al., 2019). Notably, this visual acuity is similar to squirrels and one nocturnal primate

species called mouse lemur (Ho et al., 2021).

Second, Tree shrews exhibit a strong reliance on vision for daily tasks in their wild environment

as well as in the laboratory. These animals navigate through complex 3 dimensional space with

rapid and frequent jumps, similar to squirrels, reflecting their need for precise visuomotor coordi-

nation. One piece of evidence is that compared to mice, tree shrew V1 shows very sharp neuronal

tuning to binocular disparity (Tanabe et al., 2022). The binocular disparity is an important cue for

depth perception. In addition, this study showed that tree shrew V1 responded to disparity in both

random dot pattern and grating patterns, while mouse V1 was only responsive to grating phase dis-

parity. This generalized representation of disparity across different types of visual stimuli suggests

the tree shrew V1 might have more advantages in processing and generating depth information that

is beneficial to the visually guided navigation in complex environment.

In addition to disparity representation, tree shrew visual system also anatomical and functional

similarities to primate visual systems. For example, tree shrew LGN has been found to have 6-layer

structure which resembles that in primates (Conway and Schiller, 1983). Moreover, orientation

columns have been observed in tree shrew V1 (Humphrey and Norton, 1980), which is a feature

found in primates, cats, and ferrets, but not in mice.

Tree shrews also have some unique characteristics in their visual system. These animals are

dichromatic and have cone dominated retina, which is especially suitable for studying color vision

(Müller and Peichl, 1989; Shriver and Noback, 2008; Jacobs and Neitz, 1986). Tree shrew retina
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contains roughly 15% of direction selective retinal ganglion cells (DSGC) (Roy et al., 2024). This

proportion is less than the ∼35% in mice (Summers and Feller, 2022) but more than the ∼1.5%

in monkeys (Detwiler et al., 2019). This intermediate level of direction selectivity positions the

tree shrew as a useful model for linking retinal computations with motion processing strategies

observed across species. Interestingly, a study found that tree shrew V2 contains an unexpected

periodic retinotopic map, elucidating the general principle of visual circuit wiring under specific

cortical spatial constraints (Sedigh-Sarvestani et al., 2021).

As an animal model for laboratory studies, tree shrews can be trained to perform visually

guided detection, discrimination, and memory tasks, using a variety of visual cues such as contrast,

color, orientation, etc(Ohl et al., 1998; Casagrande and Diamond, 1974; Petry et al., 1984; Petry

and Kelly, 1991; Mustafar et al., 2018; Savier et al., 2021). In addition, the postnatal development

of brain areas such as V1 is continuous and active until adulthood (Drenhaus et al., 2006), with eye-

opening around 3 weeks postnatal (Guo et al., 2013), giving opportunities to study the formation

and fine tuning of visual functions. Finally, the tree shrew user community has also been actively

developing genetic and viral tools to support manipulations on a finer scale (Yao et al., 2024; Savier

et al., 2021).

To summarize, the tree shrew can be a promising animal model for vision or broader research

topics. Furthermore, introducing diverse animal models can accelerate our understanding of the

general and fundamental principles of vision. In my studies, I used tree shrews as my main animal

model, and mice as a comparison, to investigate the neural computation of visual motion in the SC

as well as visual decision-making.
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2.1 Abstract

Decision-making is an essential cognitive process by which we interact with the external world.

However, attempts to understand the neural mechanisms of decision-making are limited by the

current available animal models and the technologies that can be applied to them. Here, we build

on the renewed interest in using tree shrews (Tupaia Belangeri) in vision research and provide

strong support for them as a model for studying visual perceptual decision-making. Tree shrews

learned very quickly to perform a two-alternative forced choice contrast discrimination task, and

they exhibited differences in response time distributions depending on the reward and punishment

structure of the task. Specifically, they made occasional fast guesses when incorrect responses

are punished by a constant increase in the interval between trials. This behavior was suppressed

when faster incorrect responses were discouraged by longer inter-trial intervals. By fitting the

behavioral data with two variants of racing diffusion decision models, we found that the between-

trial delay affected decision-making by modulating the drift rate of a time accumulator. Our results

thus provide support for the existence of an internal process that is independent of the evidence
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accumulation in decision-making and lay a foundation for future mechanistic studies of perceptual

decision-making using tree shrews.

2.2 Introduction

Decision-making is a vital cognitive process, playing an important role in many brain functions

such as categorization, learning, memory, and reasoning. Among different forms of decision-

making, perceptual decision-making, where decisions are based on sensory stimuli, is a simple

yet informative task that is particularly amenable to experimental studies. Visual stimuli are often

used because the visual system is arguably the best studied sensory system, thus advantageous for

understanding perceptual decision-making from sensation to action.

Considering decision-making is a dynamic process with complex combinations of distinct un-

derlying variables, researchers have frequently applied Sequential Sampling Models (SSMs) to

interpret and decompose decision behaviors. These models assume that the evidence (i.e., a vari-

able depending on the sensory stimulus strength) is accumulated through time, and a corresponding

choice is made when the accumulated evidence passes a threshold. By defining these stochastic

accumulation processes, SSMs can simulate decisions and response times (RTs) with the stim-

ulus as the input. The discovery of “ramping neurons” during decisions in many brain regions

provides neural evidence for these models (Horwitz and Newsome, 1999; Roitman and Shadlen,

2002; Mante et al., 2013; Ding and Gold, 2010). Despite the models’ effectiveness in a wide range

of applications, variants of the SSM make different predictions regarding what decision variables

(bias, threshold, time perception, etc.) are involved and how they interact with each other (Ratcliff,

1978; Usher and McClelland, 2001; Brown and Heathcote, 2005; Cisek et al., 2009). More im-

portantly, the neural mechanisms of these variables and their interactions remain largely unknown,

which typically require studies in animal models.

Monkeys and rodents (mostly rats and mice) are commonly used in decision-making studies,

with respective advantages and drawbacks. Monkeys are closely related to humans, but they are
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expensive and limited in availability, thus difficult to study or control individual differences. Fur-

thermore, most modern ”circuit-busting” opto- and chemo-genetic techniques are not yet routinely

used in primates. On the other hand, recent use of rodents, especially mice, has significantly ad-

vanced our understanding of decision-making (e.g., Odoemene et al., 2018; Aguillon-Rodriguez

et al., 2021; Ashwood et al., 2022). However, mice and rats are nocturnal animals with poor eye-

sight, making them less than ideal for visual tasks. In addition, rodents often learn visual tasks

slowly (Urai et al., 2021; Aoki et al., 2017), costing both time and effort to obtain high quality

data. Here, we use a different animal model - tree shrews (Tupaia Belangeri, Fig. 2.1A) for visual

decision studies. Under the order of Scandentia, tree shrews are evolutionarily closer to primates

than rodents are (Yao, 2017). They are diurnal, have an excellent acuity, and display visual sys-

tem complexity similar to primates (Petry and Bickford, 2019). Earlier studies have shown that

they could be reliably trained to perform visual (color, orientation, spatial frequency, temporal

frequency, etc...) discrimation tasks (Casagrande and Diamond, 1974; Petry et al., 1984; Petry

and Kelly, 1991; Callahan and Petry, 2000; Mustafar et al., 2018). In addition, tree shrews are

of lower cost, smaller, and have a faster reproduction cycle than monkeys, making them more ac-

cessible. Finally, modern viral, genetic, and imaging techniques are being applied in tree shrews

with much better success than in primates (Lee et al., 2016; Sedigh-Sarvestani et al., 2021; Li

et al., 2017; Savier et al., 2021). Taken together, tree shrews have the potential to advance the un-

derstanding of neural mechanisms underlying perceptual decision-making. In this study, we seek

to establish a rigorous perceptual decision-making paradigm for tree shrews, and to characterize

the decision-making features, including both response accuracy and response time, in this animal

model quantitatively with both summary statistics and trial-level computational modeling.
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2.3 Methods

2.3.1 Contrast Discrimination Task

We trained in total of 9 (male = 7, female = 2) freely moving tree shrews to perform a two-

alternative forced choice (2AFC) contrast discrimination task (Fig. 2.1C). At the beginning of

each trial, a visual stimulus of two orthogonal overlapping alpha-transparent gabors appeared at

the screen center to indicate that the tree shrew could lick the center port to initiate the trial. After

initiation, the center stimulus disappeared, and two side gabor patches were presented immediately

on the left and right of the screen. Tree shrews needed to choose the side with a higher contrast

by licking the corresponding lick port. This self-initiation design helped to ensure that the animals

were focused from the beginning of each trial and allowed us to record accurate RTs, which were

calculated as the duration between the stimulus (2 side gabors) appearance and the side-port lick

detection. Once a choice lick was detected, the stimulus would disappear from the screen. We

adopted a free-response structure that if no choice was detected, the stimulus would be on for an

infinite amount of time.

Inter-Trial Intervals (ITIs) were randomly drawn from a truncated normal distribution with a

mean of 0.6, a standard deviation of 1, a lower bound of 0.5, and an upper bound of 0.7 (unit: sec).

For correct responses, liquid reward (50% grape juice) was given right after the animals reported

their choices. The reward volume was determined by the duration of the valve opening, which was

randomly drawn from a truncated normal distribution with a mean of 0.1, a standard deviation of

0.06, a lower bound of 0.2, and an upper bound of 0.4 (unit: sec). The speed of liquid flow was

150 µL/s. The average reward volume in one correct trial was 33 µL (0.22 s). The random ITI

and random reward duration helped the animals to stay engaged in the task.

For incorrect responses, 2 protocols were used to generate a delay as a punishment. (1) A

fixed delay of 4 s was used in the first group of tree shrews for all incorrect responses. If the

animal licked the center port during the delay (i.e. blank screen licks; detected in 0.8 s periods),

a penalty of 0.8 s was then added to the delay, with a maximum of 8 sec for the total delay. (2)
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An exponential decay function (Eq.2.1) was applied in the second group of animals to generate a

between-trial delay based on the trial-level RT:

T =
1
s

e−
RT−l

s , (2.1)

where T is the between-trial delay, RT is the response time of the current incorrect trial, and l and s

are the location and scale parameters, which shift and scale the function in the stimulus generation

code. For all animals, we used l = 0.1, s = 1.7. For the blank screen lick penalty, 1.5 s was

added for every center-port-lick, with the total delay being Max(T, tpassed + penalty), and no upper

limit. To determine the potential effect of these two delay paradigms, we calculated the reward rate

using the data of a representative animal from the first group of tree shrews (Eq.2.2): the response

accuracy of each RT bin was fitted with a sigmoid function, which was then used to calculate the

theoretical reward per unit time (pulse/s).

RR(t) =
Acc(t)

Acc(t)× t +(1−Acc(t))× (t +Delay(t))
, (2.2)

where RR(t) is the reward rate for a response time of t, Acc(t) is the response accuracy (i.e., ratio of

correct choices) under this response time t obtained from the observed data, Delay(t) is the inter-

trial delay for incorrect responses, which is 4 for the fixed-delay rule or follows the exponential

decay function defined above (Eq.2.1) for the exponential-delay rule.

2.3.2 Animal Training And Data Collection

Tree shrews were first acclimated to the behavior box for 1-2 days. For most animals (7 out of

9), water restriction started at this stage of training (stage 1). For the other two animals, water

restriction started a couple of days before acclimation. Two approaches of water restriction were

used: 1) we gradually reduced their water intake from baseline (20 - 40 mL/day) to 5-10 mL/day

by limiting the availability of drinking water; 2) we used citric acid (CA, Urai et al., 2021) water in

their home cage to reduce water intake and gradually increased its concentration from 2% to 4%.
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The progress of water restriction depended on the animals’ weight loss, water-intake baseline, and

tolerance, to make sure that they were motivated to stay focused on the task for at least 25 minutes

per day, and at the same time, not experiencing any health issue (Weight ≥ 90% × Baseline).

Depending on the animals’ acclimation and learning speed, the water restriction progress (2-7

days) could extend to stage 2 and even 3 before reaching a stable restriction level.

During stage 1, a single gabor stimulus would be shown right above the center lick port. After

the gabor appeared, the animals could lick the center port at any time to trigger a liquid reward

(grape juice diluted with water in a 1:1 ratio). Each tree shrew was left in the behavior box to

learn to use the center port for no more than 20 minutes every day for acclimation, but this stage

usually took only 1 day (∼20-40 trials per day). Having learnt to get liquid reward from the center

port, the animals progressed to the next stage. At stage 2, the contrast discrimination task was set

up with contrast pairs of 1.0 (full contrast) vs 0.0 (zero contrast), i.e., a single side stimulus was

shown. The goal of stage 2 was to train the animals to use the left and right lick ports. Liquid

reward from the center port was gradually reduced to zero within about 50 trials. Animals usually

perform 100-300 trials per day at this stage. Once they learned and had a stable correct rate of

more than 75%, they progressed to stage 3. Note that most animals learned very fast and graduated

both stages 1 and 2 within 2 days.

At stage 3, we first gave the animals an easy condition by using contrast pairs of 1.0 vs 0.1, and

gradually mixed in other pairs of smaller contrast differences, finally achieving the stimulus set we

use in the formal data collection. During this stage of training, we also adjusted the ratio of easy

(e.g., comparing the highest and lowest contrast) and difficult (same or similar contrast) trials for

each animal. By including sufficient easy trials and limiting the number of equal-contrast trials, we

were able to keep the animals motivated to keep doing the task. For equal contrast trials, the correct

answer was randomly assigned to left or right, so that the animals still had 50% chance to get a

reward in these trials. At this stage, the animals performed 500-600 trials per day. Some animals

could finish it within 30 minutes, while some of the others needed as long as 1 hour, especially

when they produced large numbers of incorrect choices (giving rise to more penalty time) or they
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started to lose patience and focus (giving rise to more idling time). To control the frustration level,

we would stop the training when the duration was over 1 hour. At this time, some animals (∼50%)

also developed biased behavior by making most choices to the same side. We discouraged this

behavior by automatically adjusting the probability of left/right trials depending on their real-time

performance. For example, we calculated the proportion of choosing rightward in the previous 10

trials, denoted as Pr. The probability of the next trial being rightward was 1−Pr. This real-time

bias correction quickly discouraged the biased behavior in the tree shrews.

After the animals achieved a stable (3-5 consecutive days) overall accuracy ≥ 60% (at this time,

the accuracy is expected to be lower because of the existence of equal contrast trials and other

difficult trials), we collected data for consecutive days (500-600 trials per day) to reach at least

100 repeats for each condition of contrast discrimination. The data were first culled by applying

a 3 standard deviation outlier removal on the Box-Cox transformed response time distribution in

preprocessing. The remaining trials were used in further analysis.

All animal procedures were performed in accordance with the University of Virginia animal

care committee’s regulations.

2.3.3 Stimulus and Apparatus

The experiment program was written in Python and the stimuli were generated and presented with

the State Machine Interface Library for Experiments (SMILE, https://github.com/compmem/

smile). The Gabor patch size was 28◦, and the spatial frequency was 0.2 cpd. The stimulus screen

had a 1280×1024 resolution and 60Hz refresh rate, and was gamma-corrected. It was set at a

distance of 15 cm from the animal. There were 6 levels of stimulus contrasts ranging from 0.08

to 0.99, which were evenly-spaced. All combinations of left and right contrasts are presented in a

randomized order.

The lick-detector circuit (adapted from: Marbach and Zador, 2017), and reward-valve control

circuit (adapted from: https://bc-robotics.com/tutorials/controlling-a-solenoid-

valve-with-arduino/) were controlled with an NI USB-6001 multifunction I/O device (https:

https://github.com/compmem/smile
https://github.com/compmem/smile
https://bc-robotics.com/tutorials/controlling-a-solenoid-valve-with-arduino/
https://bc-robotics.com/tutorials/controlling-a-solenoid-valve-with-arduino/
https://www.ni.com/en-us/support/model.usb-6001.html
https://www.ni.com/en-us/support/model.usb-6001.html
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//www.ni.com/en-us/support/model.usb-6001.html). The Plexiglass behavior box was L:

40 cm×W: 22 cm×H: 20 cm with a transparent window on the front side to allow the animals to

watch the screen.

2.3.4 Data Analysis and Models

To test the relationship between RT and contrast difference, we fitted a mixed effect linear regres-

sion model with RT as the dependent variable, the absolute contrast difference between left and

right stimuli as the independent variable, and individual animal as the group variable, using the

statsmodels library in Python.

We fitted the behavioral data with two sequential sampling decision-making models, the Timed

Racing Diffusion Model (TRDM) and the Racing Diffusion Model (RDM), and compared their

performance using a Bayesian approach. TRDM contains 3 independent accumulation processes,

namely two evidence accumulators and one time accumulator (or “timer”), whereas RDM only

has the two evidence accumulators (Fig. 2.3A& B). The probability density function ( f (t)) and

cumulative distribution function (F(t)) for each evidence or time accumulation process are defined

by the inverse Gaussian (Wald) distribution in Eq.2.3:

f (t|ρ,σ ,α, t0) =
α

σ
√

2π(t − t0)3
exp

(
− [α −ρ(t − t0)]2

2σ2(t − t0)

)
F(t|ρ,σ ,α, t0) = Φ

(
ρ(t − t0)−α

σ
√

t − t0

)
+ exp

(
2αρ

σ2

)
·Φ

(
−ρ(t − t0)+α

σ
√

t − t0

)
,

(2.3)

where t is the response time, ρ is the mean drift rate, σ is the within-trial variability of the drift

rate, α is the threshold (which was fixed to 1.0), t0 is the non-decision time, Φ is the cumulative

distribution function of a standard normal distribution(Heathcote, 2004; Hawkins and Heathcote,

2021).

The mean drift rate (ρ) of each evidence accumulator was calculated using the following equa-

https://www.ni.com/en-us/support/model.usb-6001.html
https://www.ni.com/en-us/support/model.usb-6001.html
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tion (Eq.2.4), taking into consideration both the stimulus difference and their total strength.

ρl = v0 + vd ∗ (sl − sr)+ vs ∗ (sl + sr)

ρr = v0 + vd ∗ (sr − sl)+ vs ∗ (sl + sr),

(2.4)

where ρl and ρr are the mean drift rate of the left and right evidence accumulators, v0 is the baseline

drift rate, sl and sr are the contrasts of left and right stimuli, vd is the coefficient of the contrast

difference term, vs is the coefficient of the contrast summation term (van Ravenzwaaij et al., 2020).

The accumulators race against each other. If one of the evidence accumulators first reaches

the threshold, a corresponding choice is made. If the time accumulator reaches the threshold first,

one of the options will be chosen randomly with a partial dependence on which evidence is greater

at that time point. This is done through a process controlled by a parameter γ , ranging from 0

to 1, with 1 being fully dependent on the evidence accumulated up until that point, and 0 being

completely random regardless of the accumulated evidence. Other parameters of the model include

ρt , ω and t0, as described in Table 1.

To apply Bayesian inference, we first defined the “priors” - the belief of the true parameter

values before data observation - by assigning a probability distribution for each of the param-

eters based on previous experience (Table 1; Kirkpatrick et al., 2021). We then used the ob-

served data to update the prior distributions, in order to achieve a more constrained posterior

distribution of what parameters could have generated the observed data for each model. Pos-

terior samples were generated with the differential evolution Markov chain Monte Carlo (DE-

MCMC, Ter Braak, 2006; Turner and Sederberg, 2012; Turner et al., 2013) algorithm, which

was shown to be computationally efficient. This was implemented by the RunDEMC library

(https://github.com/compmem/RunDEMC). We set 10k (k is the number of parameters) parallel

chains for 200 iterations in the burn-in stage and 500 iterations to sample the posterior.

Specifically, we apply a standard Metropolis–Hastings algorithm to accept or reject proposed

samples from the posterior. Here, a new parameter proposal is evaluated by comparing its posterior

https://github.com/compmem/RunDEMC
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probability with that of the current proposal, with the probability of accepting a new proposal:

P(accept) =
P(D|θ ′)P(θ ′)

P(D|θ)P(θ)
, (2.5)

where D represents the observed data, θ ′ is the new proposal, θ is the current proposal, P(D|θ ′)

and P(D|θ) are the likelihoods calculated with Eq.2.6, and P(θ ′) and P(θ) are the priors.

To calculate the likelihood P(D|θ) of observing the data D given the parameters θ , we mul-

tiply the likelihoods of observing each choice and RT as determined by the model probability

density function (PDF) defined by the parameters θ . For example, the PDF for observing a le f t

response with a decision time t is defined by the following equation (Heathcote, 2004; Hawkins

and Heathcote, 2021):

PDFle f t(t) = fE,le f t(t)
(
1−FE,right(t)

)
(1−FT (t))+PT fT (t)

(
1−FE,le f t(t)

)(
1−FE,right(t)

)
PT = γFX(0)+

1
2
(1− γ)

X ∼ N
(

ρrt −ρlt,
√

2
(
ηc
√

t
)2
)
,

(2.6)

where f (t) and F(t) are the density and distribution functions defined above, fE and FE are for

the evidence accumulators, while fT and FT are for the time accumulator. FX is the cumulative

distribution function for the random variable X , and X follows a normal distribution defined by

the difference in evidence accumulator distributions. ρl and ρr are the mean drift rate for left

and right evidence accumulators, ηc is the within-trial variability of the drift rate for the evidence

accumulators.

Finally, to compare the performance of the two models, we first calculated the Bayesian Infor-

mation Criterion (BIC) values (Eq.2.7) of each model fitting result:

BIC = kln(n)−2ln
(
L(θ̂)

)
, (2.7)
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where k is the number of parameters, n is the number of data points, L(θ̂) is the maximum likeli-

hood of the model’s fit to the data. Then we approximated the Bayes factor with BIC as in Eq.2.8

(Kass and Raftery, 1995):

BFi j ≈ exp
(
−1

2
(BICi −BIC j)

)
, (2.8)

where BICi and BIC j are BIC values for Model i (in this case the TRDM) and Model j (the RDM))

respectively. BFi, j > 1 means evidence is in favor of Model i over Model j. BFi, j > 3,20,150,

correspondingly ln(BFi, j) > 1,3,5, indicates positive, strong, very strong evidence for Model i

over Model j, respectively (Lodewyckx et al., 2011).

2.4 Results

2.4.1 Tree shrews quickly learned to perform a contrast discrimination 2AFC

task.

We trained a total of 9 (male = 7, female = 2) tree shrews to perform a 2AFC contrast discrimination

task (Fig. 2.1). The 2AFC design was chosen over other classic paradigms such as “Go/no-

Go” tasks because it eliminates the asymmetry between responses for different options. Also, we

designed the trials to be self-initiated and self-paced by the animals, in order to obtain precise

response time (RT) data for comprehensive behavioral analysis. During training, freely moving

tree shrews were first acclimated in the behavioral box with a single gabor stimulus appearing

at the center or either side of the screen (Fig. 2.1B). After the animals learned the association

between the stimulus and liquid reward, often within 1-2 days, two gabors of different contrasts

were introduced with the higher contrast one indicating the location of the reward (Fig. 2.1C).

All the tree shrews were able to learn the task and reach an accuracy greater than 75% for the

easiest condition within 1 week (Fig. 2.1D). In fact, most of them reached 75% accuracy within 2

days. It is worth noting that, once the animals reached a good performance, the overall difficulty

was increased progressively. In other words, the “easiest” condition often became more difficult
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in successive days. Yet, the animals’ performance was stably above 75%, indicating that they

had learned the rule of the task, instead of the specific stimuli, within a very short period. These

observations thus highlight the impressive learning capability of tree shrews and indicate that they

can be a promising animal model in cognitive neuroscience research.

Figure 2.1: Experimental design. A A photo of a tree shrew in the home cage. B A schematic
of the training procedure. C The contrast discrimination task. The animal needs to choose the
side that has a higher contrast gabor and report the choice by licking the corresponding port. D
Learning curve of individual animals. The y axis is the response accuracy for the easiest condition
on each day. Day 1 refers to the first day of training with two-sided gabor stimulus. Dashed gray
line: 75% accuracy. Most animals reached this level by day 2 and all by day 7.

2.4.2 Tree shrews showed different behaviors under two training schemes.

In the first group of animals (n = 5; male = 4, female = 1), a fixed trial delay of 4 seconds was used

to punish incorrect responses (Fig. 2.2A). All animals were able to learn the task. An increase

in difficulty (i.e., a decrease of contrast difference between the two stimuli) induced an expected

drop of response accuracy (Fig. 2.2B). However, task difficulty did not have a significant effect

on the response time (RT) in correct trials (mixed effect linear regression, β = .008a, p = .125,

Table 1-1), whereas the RT in incorrect trials increased with task difficulty (Fig. 2.2C, mixed

effect linear regression, β = -.075b, p <.001). This result is different from previously reported
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RT trend in humans, monkeys, and mice (Philiastides et al., 2011; Dmochowski and Norcia, 2015;

Roitman and Shadlen, 2002; Palmer et al., 2005; Jun et al., 2021; Orsolic et al., 2021), where

increasing task difficulty usually resulted in an increase in RT in correct trials. We examined the

RT distribution of individual animals and saw a bimodal-like shape in most animals (n = 4 out of

5 ) in this group (e.g., Fig. 2.2D, Fig. 2.5), instead of the more common log-normal distribution

(Ratcliff, 1978; Smith and Ratcliff, 2004). Furthermore, the first small peak of the RT distribution

contained a similar proportion of correct and incorrect trials, while the second peak had many

more correct than incorrect trials. This bimodal distribution suggested 2 possible modes in the

behavioral responses, a “fast-guessing” mode of random performance and a slower mode where an

animal was more “engaged” in the task.

Figure 2.2: Tree shrews show different behaviors under two training schemes. A A fixed
delay of 4 seconds (solid line) was used in training 1 group of animals. The dashed line shows the
theoretical reward rate under this fixed delay. B Psychometric curve of animals from this training
scheme. Contrast difference: right contrast(R) - left contrast(L). Grey dashed line: individual
animals. Black solid line: average across animals. C response time (RT) as a function of contrast
difference. Dashed line: individual animals. Solid line: average across animals. The shaded
area is 95% confidence interval. D RT density histogram from a representative animal. Correct
and incorrect trials are separately plotted. E An exponential decay delay scheme (solid line) was
applied in another group. The dashed line shows the theoretical reward rate under this scheme. F,
G, H: Same as C, D and E, but for the second group.

To discourage the animals from “fast guessing”, we employed an exponential decay trial de-

lay for incorrect responses in the second group (n = 4; male = 3, female = 1) (Fig. 2.2E). The

exponential decay delay would punish fast incorrect responses more than slow incorrect ones, at



38

a more aggressive level than the fixed trial delay procedure (Fig. 2.2A & E). All animals in this

group were again able to learn the task quickly (Fig. 2.2F & G). Notably, the overall RT was sub-

stantially slower compared to the fixed-delay group, indicating the effectiveness of the new trial

delay paradigm. Furthermore, the RTs in correct trials showed a slightly increasing trend with task

difficulty (mixed effect linear regression, β = -.021c, p = .001), while the effect on the incorrect RT

became less prominent than for the fixed-delay group (mixed effect linear regression, β = -.046d , p

= .014). When examining the RT distribution of individual animals, we saw one-peak log-normal

distributions, similar to what was reported in other species, and a clear above-chance accuracy

across the entire range (e.g., Fig. 2.2H, Fig. 2.6).These behavioral data thus demonstrate that the

tree shrews responded to the two trial delay schemes with different behaviors.

2.4.3 Non-evidence accumulation mechanism is crucial to interpreting tree

shrew behaviors.

The above behavioral data suggest the involvement of a process in addition to evidence collection

during decision-making. One possibility is a time accumulation process where the animals had

an internal time threshold on the task, and they would rush into a more or less random choice if

the time threshold was reached before accumulating enough evidence to guide the choice. This

time limit would be different under the two trial delay paradigms: shorter under fixed delay, thus

leading to many fast guesses. To test the plausibility of this explanation, we turned to cognitive

models of decision-making.

We fitted two models, Racing Diffusion Model (RDM) and Timed Racing Diffusion Model

(TRDM, Hawkins and Heathcote, 2021), to the data obtained from individual animals. In a 2AFC

task, the RDM describes 2 independent evidence accumulators racing against each other. When

one of the accumulators first reaches the threshold, a corresponding choice is made (Fig. 2.3A).The

TRDM has one additional accumulator that tracks time (Fig. 2.3B). If the time accumulator reaches

the threshold before the evidence accumulators, a decision is made based on the current accumu-

lated evidence with a certain probability γ . We fixed all the accumulation thresholds to be 1. A
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fast time accumulator was thus effectively equal to a short time limit as described above. The two

models allowed us to test if an additional timing mechanism can better explain tree shrew decision

behaviors.

Figure 2.3: Modeling results suggest that evidence accumulation combined with a timing
mechanism better fits tree shrew decision-making behavior. A and B Racing Diffusion Model
(RDM, A) and Timed Racing Diffusion Model (TRDM, B). Blue trace: the evidence accumulator
for left choice. Yellow trace: the evidence accumulator for right choice. Grey trace: the time accu-
mulator. The 2 evidence accumulation processes race against each other. In these schematics, the
accumulator for right stimuli (yellow) reaches the threshold first, resulting in a rightward choice.
C Observed (histograms) and simulated (lines) RT distribution for the representative animal from
the fixed-delay group. Top: RDM simulation. Bottom: TRDM simulation. D Observed and sim-
ulated RT distribution for the representative animal from the exponential-delay group. Top: RDM
simulation. Bottom: TRDM simulation. E Estimated log Bayes Factor comparing the two models’
performance. Positive values favor TRDM, while negative values favor RDM. Grey dots represent
the animals from the fixed-delay training, and green dots represent the exponential-delay group.
The upper and lower edges of the gray shaded area represent the lower limit for “very strong”
evidence (ln(BF) = 5).

We used a Bayesian approach for model fitting (Ter Braak, 2006; Turner and Sederberg, 2012;

Turner et al., 2013), and then simulated choice and RT data with the best fitting parameters to visu-

alize the goodness of fit. We found that the RDM captured the RT distribution of the exponential-

delay group well, but failed to fit the fixed-delay group (Fig. 2.3C & D, top panels). On the other

hand, the TRDM fitted well to both groups (Fig. 2.3C & D, bottom panels). To quantify their

performance difference, we estimated the Bayes Factor (BF) of the two models for each animal

(Fig. 2.3E). For animals in the fixed-delay group, the values of ln(BF) were extremely high, rang-

ing from 45 to 1062, providing overwhelming support for the TRDM. These values were much
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higher than 5, which is a conventional threshold for “very strong” evidence for one model over

the other in Bayesian modeling (Lodewyckx et al., 2011). For the exponential-delay group, the

evidence favored the RDM for 3 out of the 4 tree shrews, although the magnitude of evidence was

not nearly as strong (ln(BF) ranging from -6 to 1). It should be noted that Bayes Factor in our

estimation punishes complex models that have more parameters. As a result, despite the simi-

lar performance of the two models in fitting the exponential-delay group data, the RDM had the

advantage of simplicity, thus leading to the winning BF.

We then simulated choice and RT data with the best fitting parameters (Table 1-2 and 1-3) for

each animal using the winning model, to visually check the goodness of fit. Fig. 2.4 illustrates

that the TRDM fit the data of the fixed-delay group well (Fig. 2.4A), and the RDM was able

to reproduce the behavior of the exponential-delay group (Fig. 2.4D), for both the psychometric

curves and the RT-contrast relationship. Consistent with the result in Fig. 2.3, the TRDM was also

able to fit the psychometric curves and the RT-contrast relationship for the exponential-delay group

(Fig. 2.4C), similarly to the RDM, while the RDM failed to capture the RT-contrast relationship for

the fixed-delay group (Fig. 2.4B). The fact that the behavior of both groups could be explained by

the TRDM supported the involvement of the non-evidence-accumulation process during tree shrew

visual decision making, and this process can be manipulated by applying different trial delay rules.

The models allowed us to track down the generating mechanism of the simulated data, i.e.,

whether each decision was initiated by an evidence accumulator or the timer crossing the threshold.

We separated the TRDM-simulated data for each animal according to the generating mechanism,

and found the timer and evidence accumulators contributed to two separate RT peaks. Fig. 2.7

shows the comparison between simulated data and observed data for an example tree shrew from

the fixed-delay group (Fig. 2.2D). The results indicated that the fast RTs were largely generated

by the timer (Fig. 2.7A). In addition, when examining the simulated RTs for correct choices gen-

erated by evidence accumulators only, they increased with the task difficulty (Fig. 2.7D), similar

to what has been previously reported in humans, monkeys, and mice (Philiastides et al., 2011;

Dmochowski and Norcia, 2015; Roitman and Shadlen, 2002; Palmer et al., 2005; Jun et al., 2021;
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Figure 2.4: Model simulation of the psychometric curves and associated response time, and
the posterior of the timer-related parameters. A TRDM simulation for the fixed-delay group.
Left: Observed (black) and simulated (red) psychometric curves for individual animals (dotted
lines) and the group average (solid lines). The simulations were done with the best fitting parame-
ters of the TRDM. Right: Observed (dots, solid lines, and dotted lines) and simulated RT function
(“x”). Dotted lines: individual animals. Solid lines: group average. B RDM simulation for the
fixed-delay group. C TRDM simulation for the exponential-delay group. D RDM simulation for
the exponential-delay group. E Percentage of timer-induced choice calculated from the TRDM-
simulated data for each animal. F The posterior distribution of the time accumulator mean drift
rate (ρt) for individual animals from the TRDM fitting. The dot in each distribution indicates the
mean value. G Same as F, but for the drift rate variability of the time accumulator (ηt).
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Orsolic et al., 2021). These model results suggest that the tree shrews learned the visual decision-

making task, and they had similar behaviors as other animals when “engaged” in the task. More-

over, the timer-driven random choices explained the plateau of a non-perfect accuracy, even in the

easiest conditions (Fig. 2.7C).

Next, for each tree shrew, we quantified the percentage of timer-induced choices from the

TRDM-simulated data (Fig. 2.4E). As expected from the above analysis, all of the animals from

the fixed-delay group showed many timer induced choices (ranging from 30% to 66%), while the

value was near zero for every animal in the exponential-delay group. To understand what decision

variables were altered by the change of delay rule, we examined the posterior distribution of the

parameters in the TRDM. The posteriors of the timer-related parameters showed a general trend

of higher mean drift rate for the time accumulator (ρt) and higher time drift rate variability (ηt) in

the fixed-delay group than in the exponential-delay group (Fig. 2.4F & G). The two parameters

work together to determine the accumulation speed of time during decision-making, with the fixed-

delay group having faster timers. The model results therefore proposed a possible mechanism that

the exponential delay worked by slowing down the time accumulation process in the tree shrews,

which resulted in far fewer “timer-induced” fast responses with compromised accuracy, and more

correct responses guided by the evidence accumulation process.

2.5 Discussion

In this study, we aimed to and succeeded in establishing a response-time paradigm of perceptual

decision-making for tree shrews. The behavioral results showed that tree shrews are able to perform

a contrast-discrimination perceptual decision task and generate informative choice and response

time data. Model-based analyses suggest that, other than the choice-related evidence accumulation

process, additional mechanisms, presumably mechanisms that keep track of time, are involved

in the decision-making process depending on the specific design of trial delay due to incorrect

responses. This new animal model will facilitate future decision-making studies with fast learning,
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reliable behaviors, increased availability, and more modern techniques.

We carefully considered two points when designing the behavioral paradigm. First, we adopted

a 2AFC framework, where two alternative options match symmetrically with two response targets.

In other widely used tasks, there often exists asymmetry in either responses or stimulus categories,

which can be problematic when interpreting different behaviors. For example, Go/no-Go tasks

involve an action (“go”) and a suppression of action (“no-go”) as two responses, which are likely

driven by different neural circuits. Such tasks have thus become more suitable for studying impul-

sion and inhibition (Dong et al., 2010; Ding et al., 2014; Eagle et al., 2008). On the other hand,

yes/no tasks offer two asymmetric stimulus categories as options, which are likely represented dif-

ferently at the neural level (Wentura, 2000; Donner et al., 2009). In comparison, a multiple alterna-

tive forced choice framework is better in perceptual decision-making studies. Second, we designed

the task to be self-initiated and self-paced by the animals. Self-initiation ensures that the animals

are focused during the stimulus presentation, and self-pacing encourages them to respond without

delay once they reach a decision. Compared to the commonly-used design where the stimuli show

up automatically and animals can respond at any time point within a fixed response window, our

design allowed us to collect precise response times in addition to choice data. Response times are

particularly useful because they are continuous (whereas choice data are discrete) and are more

informative when characterizing decision behaviors. For example, fast correct responses have po-

tentially different mechanisms from slow correct responses, which would be impossible to study

without the RT information.

We used models under the SSM family to fit tree shrew decision behaviors on the trial level.

SSMs predict the choice and RT distribution with a mathematically defined dynamic decision-

making process controlled by cognitively meaningful parameters and offer testable hypotheses

about the underlying mechanisms. Signal detection models have also been used to explain percep-

tual decision-making behaviors (Newsome et al., 1989), but they only predict the choices made by

subjects in a decision process, ignoring the information contained in the response time. Further-

more, the choice data are usually averaged over trials, further reducing the information present in
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the raw data. By comparison, SSMs have the advantage of maximizing the efficiency of the animal

experiments and data analysis (Ratcliff et al., 2003).

Despite the RDM showing a slightly better Bayes Factor than the TRDM in the exponential-

delay group due to simplicity, the TRDM had the same ability to reproduce the observed choice

and RT pattern. Together with its overwhelmingly better performance in the fixed-delay group, the

TRDM was overall the better model for this dataset. By examining the source of the simulated data

(Fig. 2.7), we found that timer-induced random choices largely contribute to the plateau of a non-

perfect accuracy in the easiest conditions. Canonically, this non-perfect accuracy is modeled by

“lapse rate” under the Signal Detection framework (Wichmann and Hill, 2001; Aguillon-Rodriguez

et al., 2021; Wang et al., 2020a; Prins, 2012). The lapses are usually assumed to happen via

a Bernoulli process, i.e., the animals simply make guesses at some random rate independently

from trial to trial, while providing no detailed process of choice generation. In comparison, the

TRDM utilizes a time accumulator that is highly similar to evidence accumulation to generate

random choices. It offers a more integrative solution to the interaction between evidence-based

and stimulus independent mechanisms. This can be more plausible on the neuronal level than two

separate processes that involve very different calculations. In addition, the TRDM provides the

extra ability to explain why we rarely see extremely long RTs in the difficult conditions, especially

in the equal-evidence conditions. The time accumulator can limit the RT so that the decision-

makers do not waste too much time on a single decision when the evidence is obscure. Thus,

we think that the TRDM has more explanatory power than models that include a “lapse rate”.

Furthermore, a recent study showed that mice alternate between states, such as lapse or biased

decisions, during a perceptual decision-making task, and they have a higher probability to stay

in the same state for consecutive trials (Ashwood et al., 2022). Therefore, Bernoulli “lapses”

would be an oversimplified explanation of how non-perfect choices happen. In future studies, the

temporal sequence of choices and RTs should also be analyzed to further investigate the mechanism

of decision state switching.

Finally, it is intriguing that the tree shrews in this study showed a fair amount of premature



45

choices under fixed trial-delay even though this strategy was suboptimal, in that it did not maximize

the reward rate. The TRDM suggested that the animals actively applied a fast timer (or a short time

limit) on the task without being trained to perform the task speedily. Interestingly, this tendency of

rushing into choices was discouraged by the exponential trial-delay design that specifically pun-

ished fast incorrect responses more. The baseline suboptimal behavior could partly be due to 1) the

characteristics of this animal model and/or 2) the stimulus design. The tree shrews showed much

faster responses compared to humans on similar tasks (Kirkpatrick et al., 2021) . They were very

nimble and showed swift movements and reactions in various environments (behavior rig, home

cage, nature, etc...). Given their motor capabilities, fast responses could be a survival strategy to

guarantee the total amount of reward via high sampling frequency with slightly compromised ac-

curacy, and could be broadly used in most scenarios to facilitate “exploration” behaviors - unless

specifically discouraged. Additionally, in previous perceptual decision-making studies, stochastic

stimuli with motion such as random dot kinematogram were usually used (Roitman and Shadlen,

2002; Resulaj et al., 2009; Ditterich, 2006). These stimuli require temporal integration to acquire

evidence for choices. In our study, we used the static feature (contrast) as evidence. Although

studies showed support for evidence accumulation even using the static stimuli in other species

(Kirkpatrick et al., 2021), temporal integration might not be needed as strongly to generate a choice

under this situation. This could result in short response times, leading the animals to a faster RT

regime (more prone to make premature choices) and masking the effect of task difficulty on the RT

(Fig. 2.2G, minor effect, although significant). Nevertheless, the tree shrew data emphasized the

natural existence of f evidence-independent mechanisms in decision-making and offered an oppor-

tunity to examine their effects. These behavioral patterns also suggest that we should consider the

involvement of processes in addition to the evidence accumulation process in other animal/human

models when interpreting both behavioral and neural data from decision-making tasks. Here, we

included an independent time accumulator to implement this additional process in our decision-

making models (Hawkins and Heathcote, 2021). However, it should be noted that mechanisms

other than the time accumulator could also generate the fast guessing responses and our results do
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not rule out these possible mechanisms. In other words, the time accumulator was not necessar-

ily the true underlying mechanism, but rather a piece of evidence for the involvement of multiple

generative processes for decision instead of one single process. Other studies have indeed applied

alternative approaches to account for decisions not entirely based on evidence accumulation, such

as combining the decision process with a probabilistic fast-guess mode that generates a normally

distributed guessing time (Ratcliff and Kang, 2021). Future studies that incorporate neural data

will be needed to reveal exactly how response times in perceptual decision tasks are affected by

information other than the sensory strength.



47

Main Tables

Table 1: Priors of Free Parameters in Tested Models.

Parameter Description Prior

ω Bias IL(0,1.4)
t0,c Non-decision time of choice IL(0,1.4)
v0,vs,vd Drift rate coefficients of choice LN(1.56,1.5)
ρ∗

t Mean drift rate of timer LN(1.56,1.5)
ηc,η

∗
t Within-trial variability LN(1.56,1.5)

γ∗ Mixture between random and evidence-
based timer-induced decision

IL(−1,1.0)

IL inverse logit distribution
LN log normal distribution
∗ parameters only exist in TRDM

The best fitting parameters of the two models for each animal is shown in Table 1-2
and 1-3. We also tested the relationship between RT and contrast difference using
non-model statistics described in Table 1-1.
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Extended Data

Tables

Table 1-1: Statistical Table

Line Data Structure Type of Test Power

a Non-parametric Mixed effect linear regression (-.002, .019)
b Non-parametric Mixed effect linear regression (-.103, -.046)
c Non-parametric Mixed effect linear regression (-.034, -.009)
d Non-parametric Mixed effect linear regression (-.084, -.009)

Table 1-2: TRDM Best Fitting Parameters of Each Animal

Animal v0 vd vs ρt ηc ηt γ ω t0,c Log likelihood

085 3.388 1.524 0.254 2.306 0.600 1.358 0.194 0.516 0.048 3541.048
087 2.825 2.532 0.809 4.672 0.753 1.486 0.343 0.562 0.049 5162.741
101 3.037 1.768 0.636 2.154 0.603 1.362 0.374 0.519 0.055 5363.755
123 2.383 1.556 0.162 0.100 0.703 1.702 0.459 0.501 0.047 943.074
125 2.253 3.933 0.948 3.394 1.074 0.422 0.978 0.573 0.110 7309.722
130 2.790 2.633 0.185 1.155 0.946 0.042 0.577 0.513 0.195 3070.600
131 2.856 3.476 0.806 1.485 1.161 0.053 0.611 0.505 0.125 3782.443
137 1.612 2.608 0.465 1.572 0.865 0.440 0.969 0.528 0.167 2445.965
138 2.327 4.142 0.979 1.155 1.294 0.043 0.223 0.518 0.151 3190.957
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Table 1-3: RDM Best Fitting Parameters of Each Animal

Animal v0 vd vs ηc ω t0,c Log likelihood

085 3.122 1.243 0.161 0.904 0.498 0.000 2668.097
087 3.724 1.577 0.352 1.235 0.485 0.001 4494.682
101 2.877 1.436 0.329 0.865 0.540 0.000 4287.514
123 2.041 1.713 0.160 1.054 0.515 0.000 137.629
125 4.362 2.969 0.333 0.893 0.543 0.098 7251.003
130 2.730 2.602 0.228 0.924 0.511 0.192 3063.955
131 2.820 3.370 0.812 1.133 0.505 0.123 3773.603
137 2.114 2.196 0.330 0.759 0.523 0.149 2431.973
138 2.398 4.043 0.946 1.282 0.518 0.150 3183.084

Figures

Figure 2.5: Response time distributions of the individual animals from the fixed-delay group.
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Figure 2.6: Response time distributions of the individual animals from the exponential-delay
group.
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Figure 2.7: Decomposition of an example animal’s simulated RT distribution by the TRDM.A
The simulated RTs for one example animal (TS085) from the first group are divided into four
groups: evidence accumulator generated RT for correct (blue) and incorrect (pink) responses, and
time accumulator generated RT for correct (green) and incorrect (yellow) choices. Compared with
the observed data (B), the plots show that the TRDM interprets the first peak (fast RT) in the RT
distribution as generated by the time accumulator. C Simulated psychometric curves generated by
the evidence accumulators and the time accumulator. D Evidence accumulator simulated RT as a
function of contrast difference.
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3.1 Abstract

Visual motion is a crucial cue for the brain to track objects and take appropriate actions, enabling

effective interactions with the environment. Here, we study how the superior colliculus (SC) in-

tegrates motion information using asymmetric plaids composed of drifting gratings of different

directions and speeds. With both in vivo electrophysiology and two-photon calcium imaging, we

find that mouse SC neurons integrate motion direction by performing vector summation of the

component gratings. The computation is constrained probabilistically by the possible physical

motions consistent with each grating. Excitatory and inhibitory SC neurons respond similarly to

the plaid stimuli. Finally, the probabilistically constrained vector summation also guides optoki-

netic eye movements. Such a computation is fundamentally different from that in the visual cortex

where motion integration follows the intersection of the constraints. Our studies thus demonstrate

a novel neural computation in motion processing and raise intriguing questions regarding its neu-

ronal implementation and functional significance.

3.2 Introduction

How the nervous system processes visual motion information in the environment is critical for the

animal’s survival, such as in capturing running prey and escaping from looming predators. Using

simple stimuli such as bars, dots, and gratings, past studies have discovered that many neurons

in the early visual system respond selectively to motion stimuli, especially to motion direction.

In natural scenes, processing motion can be challenging because the signals are numerous and

complex across the visual field. Proper integration of the motion signals is necessary for effectively
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interpreting visual stimuli and taking corresponding actions.

Researchers have used the so-called “plaids” to study motion integration, where two gratings

of different orientations are superimposed and drifting along their respective axis. Perceptually,

human subjects usually see such stimuli as a rigid plaid pattern with a coherent motion, instead of

gratings sliding through each other, especially when two gratings are close in their contrasts and

spatial frequencies (Adelson and Movshon, 1982). Physiological studies showed that plaids are

represented in a hierarchical manner in the primate visual cortex, with V1 neurons first decompos-

ing the plaids into grating components and the downstream area MT subsequently integrating V1

input to encode pattern motion (Movshon, 1985). Consistent with perception, the integration of

motion direction of MT neurons was found to follow the intersection of constraints (IOC) (Khawaja

et al., 2013; Wallisch and Movshon, 2019), where all the possible motions given a component grat-

ing’s motion form a constraint line (Figure 3.1A-C, green dashed lines), and the intersection of the

constraints becomes the pattern motion of the plaid (Figure 3.1A-C, yellow arrows).

In addition to perception, which guides our understanding and interpretation of the world, mo-

tion processing is also important for “action” – the motor output that allows animals to interact

with the environment (Goodale, 2011, 2014; Goodale and Wolf, 2009; Goodale and Milner, 1992;

Milner and Goodale, 2008). The dynamic environment that is constantly changing requires an

enormous amount of real-time processing that gets updated based on the relationship between the

organism and its surroundings. The question is then whether visual processing for perception and

action shares the same principle. On the one hand, consistent perception and action would be

beneficial for a coordinated biological system. On the other hand, the two functions have differ-

ent focuses, and a dissociation has been found between them (Dewar and Carey, 2006; Goodale

et al., 1986; Schenk, 2006). Specifically, certain illusory visual stimuli were shown to only affect

subjects’ perception but not their motor action in response to those stimuli (Aglioti et al., 1995;

Zivotofsky, 2005; Platkiewicz and Hayward, 2014; Grandy and Westwood, 2006; Flanagan and

Beltzner, 2000; Buckingham and Goodale, 2010; Ganel et al., 2008).

The superior colliculus (SC) is an evolutionarily conserved midbrain structure critical for ac-



55

Figure 3.1: SC performs vector sum for 45° and 20° asymmetric plaids. (A) Schematic of a
symmetric plaid with a 45° cross angle. The two component gratings (C1 and C2, light and dark
blue respectively) have the same drifting speed (indicated by the length of the vector). Intersection
of constraints (IOC, yellow arrow; intersection of the green dashed lines) and vector sum (VS,
purple arrow) have the same direction. (B) Schematic of an asymmetric plaid with a 45° cross
angle. C1 and C2 have a speed ratio of 1:4 and C2 is 45° counter-clockwise to C1. IOC predicts
an integrated motion towards the yellow arrow (77.9° counter-clockwise to C1), while VS predicts
an integrated motion towards the purple arrow (36.5° counter-clockwise to C1). (C) Same as (B)
but the cross angle is 20°. The IOC direction is 83.6° counter-clockwise to C1. The VS direction
is 16.0° counter-clockwise to C1. (D) An example neuron’s tuning to drifting grating (dark blue
curve, with preferred direction of 93.1°). Purple and yellow dashed lines are the VS and IOC
prediction of the preferred direction to the 45° asymmetric plaid when the tuning curve is plotted
in reference to C1’s direction. This example neuron’s tuning to 45° plaid follows VS (red curve,
with preferred direction of 55.0°). (E) The preferred direction to grating (x axis) versus to 45°
plaid (y axis) of all recorded clusters (n=1941, including both single- and multi-units). Purple
and yellow dashed lines are the VS and IOC prediction. (F) Difference of the preferred direction
between responses to grating and 45° plaid (grating - plaid) for highly selective clusters (gDSI >
0.2 for both grating and plaid responses). Purple and yellow dashed lines are the VS and IOC
prediction. The distribution has a mean of 35.6° and a standard deviation of 42.6°. (G-I) same as
(D-F), but for the 20° asymmetric plaid. The example neuron is the same as in (D). The mean of
the distribution in panel (I) is 17.9° with a standard deviation of 40.7°. See also Figure 3.6
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tion generation (Cang et al., 2024; Basso and May, 2017; Basso et al., 2021). The SC contains

visual neurons that are motion direction selective across various mammalian species, and it plays

important roles in guiding eye and head movements (Cang et al., 2024; Dorris et al., 1997; Munoz

and Wurtz, 1995; Zahler et al., 2021), as well as innate behaviors such as orienting, escaping, and

predatory hunting (Isa et al., 2020; Hoy et al., 2019; Yilmaz and Meister, 2013; Huang et al., 2021;

Shang et al., 2019). Recently, direction selective neurons in the mouse SC were found to respond

to the pattern motion rather than component motion of symmetric plaids (DePiero et al., 2024).

However, this result is consistent with multiple interpretations. For example, other than IOC, vec-

tor sum (VS), which is simply the summation of two component motion vectors, predicts the same

integrated direction (Figure 3.1A, purple arrow).

In the current study, we aim to investigate the rule of motion integration in the SC by studying

its response to asymmetric plaids with unequal component motion strength (e.g. Figure 3.1B, right

panel). The IOC and VS lead to contrasting predictions when asymmetric plaids are used, thus

providing an opportunity to test which computation the SC performs. Surprisingly, we find a clear

VS representation in the mouse SC, which is strikingly different from the integration rule in the

primate visual cortex. Interestingly, the VS computation in the SC is constrained probabilistically

by the possible physical motions consistent with each individual grating. Further, we show that the

excitatory and inhibitory SC neurons respond similarly to the plaid stimuli. Finally, by examining

optokinetic reflex (OKR), a behavior guided by subcortical circuits, we show that the optokinetic

eye movement follows the probabilistically constrained VS computation in response to asymmetric

plaids. Therefore, this computation is likely a general principle of motion integration that is shared

across visual action pathways.
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3.3 Results

3.3.1 SC neurons perform vector sum in response to asymmetric plaids

We recorded visual responses from the superficial layers of the SC in awake mice (n=8) with 64-

channel silicon microprobes. Many neurons showed direction selective responses to single drifting

gratings (e.g. Figure 3.6), as previously reported (DePiero et al., 2024; Cang et al., 2018; Wang

et al., 2010; Inayat et al., 2015). To investigate how SC neurons integrate visual motion, we studied

their responses to asymmetric plaids. We set the speed of the two component gratings (C1 and C2)

to be 6.25 and 25 deg/s, respectively (i.e., ratio of 1:4), and displayed the tuning curves relative to

the direction of C1. When C1 and C2 have a cross angle of 45°, their vector sum is 36.5° away

from C1’s direction (counter-clockwise in Figure 3.1B), whereas the IOC direction is 77.9° from

C1 (Figure 3.1B). For the example neuron, which prefers direction of 93.1° to gratings (Figure S1

and 3.1D, dark blue trace), it would prefer 56.6° (i.e., 93.1°-36.5°) direction in response to the 45°

cross angle asymmetric plaid if it follows the VS rule to integrate plaid motion; and 15.2° (i.e.,

93.1°-77.9°) if it follows the IOC rule. Amazingly, this neuron’s preferred direction to the 45°

plaid became 55.0°, almost perfectly aligned to the VS (Figure 3.6 and 3.1D, red trace). The same

finding was seen at the population level, including both single units and multi-unit clusters (Figure

3.1E). We then calculated the difference between the preferred direction to gratings and plaids for

all the highly direction selective units (gDSI > 0.2). The distribution (mean = 35.6°, std = 42.6°, n

= 185, Figure 3.1F) centered at the VS prediction (i.e., 36.5°), instead of IOC (i.e., 77.9°).

We next used asymmetric plaid with a 20° cross angle, where VS prediction would have a shift

of 16.0° and IOC a shift of 83.6° (Figure 3.1C). The VS and IOC predictions are more separated for

the 20° plaid than for 45° plaid, providing an even clearer test of how SC neurons integrate motion.

The example neuron was tuned to the VS direction of the 20° plaid rather than IOC (Figure 3.1G,

a shift of preference from 93.1° to 73.5°, i.e., a 19.6° difference), and the same observation was

seen at the population level (Figure 3.1H). The distribution of preferred direction difference for

gratings and plaids for highly selective units was again found to be centered at the VS prediction
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(Figure 3.1I, mean = 17.9°, std = 40.7°, n = 174). These results thus demonstrate that SC neurons

perform VS computation, rather than IOC, in response to the asymmetric plaids with 20° and 45°

cross angles.

3.3.2 SC neurons represent motion direction as joint probability function in

response to asymmetric plaids

The plaids with 20° and 45° cross angles fall into the category of “type II” plaids, where both

component directions are at the same side of the IOC direction. We next expanded the cross angle

to 135°, which no longer meets the “type II” definition, but still has different VS (shift of 122.9°)

and IOC (shift of 81.5°) predictions (Figure 2A). The spatial pattern of a 135° plaid is a mirrored

version of 45° plaid (see stimulus video in Supplemental Information). Surprisingly, in response to

the 135° plaid, the same example neuron preferred a direction closer to the IOC prediction than VS

(Figure 2B, a shift of preferred direction from 93.1° to 359.8°, i.e., a 93.3° difference). This was

also true for the population data (Figure 2C). For highly direction selective units, the distribution

of preferred direction difference between grating and plaids was centered near the IOC prediction

(mean = 86.7°, std = 53.1°, n = 132) and showed a wider spread than the distribution for 20° and

45° plaids (Figure 2D).

To understand this puzzling result, we note an important difference between 135° plaid and the

other plaids we tested: the VS direction of 135° plaids exceeds the ±90° range of C1 direction

(Figure 3.2A & E). The ±90° range is critical because it is the limit of possible directions of 1-

dimensional motion stimuli such as drifting gratings. In other words, a grating drifting along its

perpendicular direction could have a “true” motion direction anywhere within the ±90° range, but

not beyond, because any motion parallel to the grating is invisible when shown in a limited patch

(Figure 3.2E, yellow shade and grey arrows).
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Figure 3.2: SC response deviates from VS for 135° plaids and can be explained by a proba-
bilistically constrained vector sum computation. (A) Schematic of the 135° asymmetric plaid.
IOC predicts an integrated motion towards the yellow arrow (81.5° counter-clockwise to C1), while
VS predicts an integrated motion towards the purple arrow (122.9° counter-clockwise to C1). (B)
The tuning curve of the same example neuron as in Figure 3.1D&G to grating (dark blue curve)
and the 135° plaid (red curve). Purple and yellow dashed lines are the VS and IOC predictions,
respectively. The neuron’s preferred direction to the plaid (359.8°) is closer to IOC than to VS. (C)
The preferred direction to grating versus to 135° plaid of all recorded clusters (n=1941). Purple
and yellow dashed lines are the VS and IOC predictions, respectively. (D) Difference of the pre-
ferred direction between responses to grating and 135° plaid for highly selective clusters (gDSI ¿
0.2). The distribution has a mean of 86.7° and standard deviation of 53.1°. (E) Top, given the mo-
tion of a single grating, the possible true motion lies within its ±90° range (yellow shades). Grey
arrows indicate some example motion vectors that are compatible with the grating. The possible
true motion of each grating is modeled as a probability density function (pdf) as illustrated by the
light and dark blue dashed lines, respectively. The normalized product of the two functions is the
joint prediction function (black dashed line). Bottom, vector summation (VS) is modeled with a
likelihood distribution (von Mises function) centered at the VS direction (purple line). Multiplica-
tion of the joint prediction and the likelihood function returns the final joint probability function
(orange). Purple and yellow arrows are the VS and IOC predicted motion direction for the 45°
plaid.
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(F) Same as the joint probability density function as in (E) but for 20° plaid. (G) Same as (F)
but for 135° plaid. In contrast to the 45° and 20° plaids, the peak of the likelihood distribution
(purple curve) for the 135° plaid falls near the prediction decay region (cliff of the black dashed
line). The VS peak is attenuated after multiplication with the prediction distribution, resulting in a
joint pdf peak away from VS but closer to IOC (orange curve, peak closer to the yellow arrow than
purple). (H) Same as (F) but the prediction of SC response for 160° plaid. The likelihood (purple
curve) of 160° plaid falls completely out of the prediction transition region. The resulting joint pdf
(orange) maintains its peak at the VS direction (purple arrow). Due to the multiplication with low
prediction values, the likelihood turns into a joint pdf distribution with a much lower amplitude.
See also Figure 3.7

Given this property of 1-dimensional motion stimuli, we hypothesized the following computa-

tional process. When integrating two gratings of a plaid, the ±90° constraints from each compo-

nent are also combined, thus forming a joint prediction of the shared motion direction in the form

of a probability distribution (Figure 3.2E-H, “joint prediction”, see Methods for detailed explana-

tion for the shape of the curve). At the same time, vector summation of the two components results

in a likelihood distribution centered at the VS direction (Figure 3.2E-H, “likelihood by VS”). The

joint prediction and likelihood distribution are then multiplied to achieve an unnormalized joint

probability density distribution of the stimulus direction (Figure 3.2E-H, “joint pdf”). We propose

that SC neurons’ direction tuning in response to plaids are generated following a stochastic pro-

cess, probabilistically sampling from this joint pdf distribution. When the cross angles are smaller

than 90°, the multiplication only has a scaling effect on the direction representation (Figure 3.2E-F

& 3.7B). For the 135° plaid, however, the peak of the likelihood falls outside of the range of high

prediction probability (Figure 3.2G & 3.7C). The peak is hence attenuated, while the likelihood

within the high prediction region is amplified, resulting in the joint pdf peak away from the VS and

closer to the IOC.

Such a multiplicative operation of pdfs makes a specific prediction: if the cross angle is ex-

panded further, to 160° for example, where the likelihood by VS falls in the low but flat prediction

region, the SC responses would again become closer to the VS prediction, but weaker in strength

(Figure 3.2H & 3.7D). We tested this prediction by investigating SC responses to 160° plaids,

where VS predicts a shift of 153.6° and IOC predicts a shift of 86.0°. Indeed, in response to these
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plaids, the direction representation was closer to the VS than IOC (Figure 3.3A-D, example neu-

ron tuning shifted 147.0°; Figure 3.3D: mean = 139.7°, std = 71.3°, n = 110). We next compared

responses of the same units that were highly selective across all 4 plaid conditions. Their response

shifted from VS for 20° and 45° plaids, to IOC-like for 135° plaids, then back to VS for 160°

plaids (Figure 3.3E). Remarkably, as predicted by the joint pdf, fewer units showed highly selec-

tive response for plaids with larger cross angles (n = 174, 185, 132, and 110, for 20°, 45°, 135°,

160° plaids, gDSI > 0.2). Consistently, the direction selectivity across population also became

weaker with increasing cross angles (Figure 3.3F, n = 261, gDSI > 0.2 to gratings). Moreover,

the preferred direction estimated from each repeat of stimuli showed a higher variability for plaids

with larger cross angles (Figure 3.3G), also consistent with the probabilistically constrained vector

sum model.

3.3.3 Excitatory and inhibitory SC neurons respond similarly to asymmet-

ric plaids

We next performed 2-photon calcium imaging to target direction selective neurons that are en-

riched in the superficial SC (Inayat et al., 2015; Barchini et al., 2018), which also allowed us

to study specific neuron types (Figure 3.4A-B). First, we injected AAV to express GCaMP6s in

both excitatory and inhibitory neurons in similar locations as in the electrophysiological recording

experiments (n=3 mice). Overlaying cortical tissues were removed to expose the SC surface for

imaging (DePiero et al., 2024). In response to the same 4 types of plaid stimuli, the imaged neu-

rons shifted their direction preference exactly like what was observed with electrophysiology – VS

for 20°, 45°, and 160° plaids and closer to IOC for 135° plaid (Figure 3.4C-D). The same results

held true for neurons that were highly selective across all 4 plaid conditions (n = 191, Figure 3.4E).

Next, we injected AAV to express Cre-dependent GCaMP6s in Vgat-Cre mice, resulting in

GCaMP6s expression only in inhibitory neurons (n=3 mice). A VS representation was again ob-

served for 20°, 45°, and 160° plaids, whereas IOC-like representation was seen for 135° plaids,

suggesting that inhibitory and excitatory neurons respond similarly to these plaids (Figure 3.4F).
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Figure 3.3: SC performs probabilistically constrained vector sum to represent the direction
of asymmetric plaids. (A) Schematic of the 160° asymmetric plaid. IOC predicts an integrated
motion towards the yellow arrow (86.0° counter-clockwise to C1), while VS predicts towards the
purple arrow (153.6° counter-clockwise to C1). (B) The tuning curve of the same example neuron
as in Figure 3.1D&G & Figure 3.2B to grating (dark blue curve) and the 160° plaid (red curve).
The neuron’s preferred direction to the 160° plaid (306.1°) is closer to VS (purple dashed line) than
to IOC (yellow dashed lines). (C) The preferred direction to the grating versus to 160° plaid of all
recorded clusters (n=1941). Purple and yellow dashed lines are the VS and IOC prediction. (D)
Difference of the preferred direction between responses to the grating and 160° plaid for highly
selective clusters (gDSI ¿ 0.2). Purple and yellow dashed lines are the VS and IOC prediction. The
distribution has a mean of 139.7° and standard deviation of 71.3°. (E) Difference of the preferred
direction between responses to the grating and plaids for clusters that are highly selective (gDSI
¿ 0.2) for all 4 plaid conditions (n=61). Gray dashed lines connect responses of individual units.
Purple and yellow lines are the VS and IOC prediction. (F) The gDSI of clusters that are highly
direction selective (gDSI > 0.2) to grating (n = 261) under all 5 stimulus conditions. (Friedman
test, p ¡ 0.001. Post-hoc Wilcoxon tests are performed between adjacent plaid conditions, p =
0.76 for 20° and 45° plaids, p ¡ 0.001 for 45° and 135° plaids and for 135° and 160° plaids).
The connected points represent median. The thick vertical bars within each column represent
the range from the first to the third quartiles. The whiskers represent the data range excluding
the outliers. (G) The standard deviation of the preferred direction estimation across 10 stimulus
repeats for individual neurons. In response to the 20° (std median = 13.80°) and 45° (std median =
12.81°) plaids, the preferred direction estimate are comparably reliable as to gratings (std median
= 10.49°). For plaids with larger cross angles, the variability increases (std median = 38.86° for
135° plaid; std median = 25.77° for 160° plaid). The horizontal lines in each box represent median.
The boxes represent the range from the first to the third quartiles. The whiskers represent the data
range excluding the outliers. The diamond points are outliers.
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Figure 3.4: Excitatory and inhibitory SC neurons respond similarly to asymmetric plaids.
(A) Schematic of two-photon imaging experiment. Head fixed mice were allowed to freely run on
a wheel while passively viewing the visual stimulus. (B) An example field of view imaged from
the anterior SC. Both excitatory and inhibitory neurons were included. Green marks an example
neuron. (C) The example neuron’s tuning curve to grating and plaids of 4 different cross angles.
This neuron’s preferred direction was 2.2° for grating; and 339.7°, 327.9°, 273.6°, and 216.2° for
20°, 45°, 135°, and 160° plaids, respectively (i.e., a shift of 22.5°, 34.3°, 88.6°, and 146.0°). (D)
Distributions of the difference between preferred directions of responses to the grating and plaids
for all direction selective (DS, gDSI > 0.2) neurons imaged from the anterior SC. (E) The preferred
direction difference between responses to the grating and plaids for all direction selective neurons
imaged from the anterior SC (gDSI > 0.2). Gray dashed lines connect individual neurons. Purple
and yellow solid lines are VS and IOC predictions respectively. (F) Same as (E), but for inhibitory
neurons only. (G) Same as (E), but for DS neurons imaged from the posterior SC. See also Figure
3.8
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Finally, to determine if this newly discovered response property displayed any regional speci-

ficity, we imaged the posterior and medial corner of the SC that has receptive fields more lateral

and dorsal in visual field (n=2 mice). Notably, no tissue was lesioned in this experiment, leaving

cortical input intact (Savier et al., 2019). The same response pattern to plaids was also observed

for direction selective neurons in this region of the SC (Figure 3.4G). Additionally, in all three

sets of imaging experiments, the direction selectivity showed a decreasing trend with larger cross

angles of plaids (Figure 3.8), which further confirmed the findings obtained with electrophysiology

(Figure 3.3F).

Together, the robustness of our findings, seen with both physiology and imaging and across

SC regions and cell types, indicates that the probabilistically constrained vector summation is a

fundamental computation performed by the mouse SC when integrating motion information.

3.3.4 Probabilistically constrained VS computation guides optokinetic eye

movement

Our results demonstrate that the motion integration principle in the SC is strikingly different from

that in the cortical pathway. Given the SC’s role in reflexive behavior and controlling eye move-

ments, we tested whether there is any behavioral relevance of the subcortical VS representation

of motion direction. We turned to optokinetic reflex (OKR). OKR is an important subcortical re-

flexive behavior where the eye movements follow the stimulus involuntarily and presumably helps

stabilize images on the retina. Although the SC is not directly involved in generating the slow

and smooth movement in OKR37, we aimed to test whether the VS computation is utilized in this

subcortical behavior, without implicating a driving role of the SC.

Full-field drifting gratings (9.375 deg/s with spatial frequency of 0.16 cyc/deg and temporal

frequency of 1.5 Hz) and plaids (approximately 8 deg/s in VS direction, see STAR Methods) were

shown on a 3-screen setup surrounding the animal (n=7, Figure 3.5A). We recorded the right eye

through the reflection by a dichroic mirror and measured the speed of its movement along the

horizontal axis. As expected, horizontally drifting gratings elicited the largest horizontal OKR
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response (Figure 3.5B, top panel), with 0° grating (drifting leftward) and 180° grating (rightward)

evoking eye movements in the corresponding directions (quantified as negative and positive OKR

gain, respectively).

We then investigated OKR in response to asymmetric plaids of the 4 cross angles tested in

physiological and imaging experiments. If OKR follows the VS direction of the plaid, the stimulus

that evokes the largest rightward eye movements (i.e. the peak of the tuning curve) would shift from

near-180° to the VS prediction line (Figure 3.5B, purple dashed lines); whereas if it follows the IOC

direction of the plaid, the peak would shift to the IOC prediction line (Figure 3.4B, yellow dashed

lines). Remarkably, the OKR was closer to the VS prediction for 20°, 45° and 160° plaids, but to

the IOC prediction for 135° plaid (Figure 3.5B & C), just like the SC responses. In addition, the

strength of OKR responses (OKR gain) became weaker for the 135° and 160° plaids (Figure 3.5D),

consistent with the finding at the neuronal level (Figure 3.3F & 3.8B, D, & F). These results thus

suggest that the probabilistically constrained vector summation is an essential motion processing

computation used in the mouse brain to guide behavior.

3.4 Discussion

In this study, we found that neurons in the mouse SC integrate plaid motion by computing the

vector sum of the component gratings. This representation is probabilistically constrained by pre-

dictions based on individual components of the plaid. These findings reveal a novel computation

of motion transformation that is fundamentally different from what has been found in the primate

cortical pathway, where a computation that generates IOC-like results is the dominant principle

(Khawaja et al., 2013; Wallisch and Movshon, 2019).

Plaids have been used to study motion integration along visual pathways. Perceptually, plaids

are coherently moving “blobs”. On the neuronal level, studies have found V1 represents moving

plaids as a linear summation of two gratings (i.e., responding to individual components), while

the downstream MT area represents plaids as single patterns in motion (Movshon, 1985). In other
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Figure 3.5: Probabilistically constrained VS computation guides optokinetic eye movement.
(A) A schematic of the full field stimulus delivered by a 3-screen setup. (B) Optokinetic response
(OKR) to grating and all 4 plaids of an example mouse. The x axis is the grating direction (top
panels) or component 1 direction in plaids. Gray dashed lines are individual repeats (15 total for
each condition) of the stimulus. Yellow and purple dashed lines in the plaid panels are IOC and VS
prediction based on the OKR tuning to grating.(C) The difference between preferred directions to
grating and plaids for all animals (n = 7). Gray dashed lines connect data from individual animals.
Purple and yellow solid lines are VS and IOC predictions, respectively. (D) The OKR gain range,
calculated as the difference of maximum and minimum OKR gain, for grating and all 4 plaid
conditions.
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words, the MT signals resemble more of the perceptual end product. Moreover, using unikinetic

plaids (a type of asymmetric plaids with one of the components being static), researchers found

that the motion represented by MT neurons followed the IOC direction (Khawaja et al., 2013;

Wallisch and Movshon, 2019), which is also consistent with perception (Adelson and Movshon,

1982; Movshon, 1985; Kreyenmeier et al., 2024; Barthélemy et al., 2010; Pattadkal et al., 2023).

Interestingly, behavioral responses along the VS direction have also been reported in response to

certain asymmetric plaids in humans and nonhuman primates, which was sometimes characterized

as “misperception”39,41–45. For example, in a direction matching task where human subjects

reported the plaid direction with a pointer, the perceived direction was found to depend on the

duration of the asymmetric plaids (Yo and Wilson, 1992a). A response along the VS direction

was more likely to happen if the plaids were presented for a short duration (60 ms). With longer

durations, the perception (measured by direction matching or eye tracking) were found to change

from the VS back to IOC (Barthélemy et al., 2010; Yo and Wilson, 1992b; Masson et al., 2000).

In addition, it was found that pigeons followed the VS direction when performing a direction

discrimination task in response to asymmetric plaids, measured by pecking between two choices

(Hataji et al., 2020). Here we show, for the first time, a VS computation at the neuronal level in

response to asymmetric plaids. The VS responses of SC direction selective neurons may be the

neural basis underlying the VS guided behavioral responses in the direction discrimination tasks.

The potential role of the SC in such perceptual responses is supported by its short response latency

(Yu et al., 2024; Boehnke and Munoz, 2008) and involvement in many cognitive functions (Basso

and May, 2017; Basso et al., 2021; Jun et al., 2021; Stine et al., 2023; Peysakhovich et al., 2024).

Importantly, our data further demonstrate that not only does the SC represent the VS direction

of plaid patterns, but also the optokinetic eye movement follows the VS direction. Together, these

suggest that VS may be a behaviorally relevant computational principle shared across multiple

subcortical areas, and it may be used for tasks that are fundamental to these areas. The SC is

known for its role in driving actions like head and eye movements across species (Cang et al.,

2024; Dorris et al., 1997; Munoz and Wurtz, 1995; Zahler et al., 2021). When presented with
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two possible visual targets, eye movements typically follow a vector average of the stimuli, before

the winner-take-all selection of a single target (Becker and Jürgens, 1979; Coren and Hoenig,

1972; Ottes et al., 1984; Findlay, 1982; Coëffé and O’regan, 1987; Chou et al., 1999). The SC was

shown to contribute to both phases of eye movements (Vokoun et al., 2014; Nummela and Krauzlis,

2011; Glimcher and Sparks, 1993; van Opstal and van Gisbergen, 1990; Edelman and Keller,

1998). This vector averaging, which is a form of weighted VS, shares a very similar computation

as VS, and it is beneficial for bringing the subject’s view to the most information-dense area in

the visual space. In addition, recent studies in monkeys and mice indicate that the SC is also

involved in spatial attention (Zénon and Krauzlis, 2012; Wang et al., 2022). Together with its

role in driving eye and head movements, the SC must compute signals to guide fast orienting

behaviors to maximize information gain. This process is closely related to action generation rather

than visual perception; thus it requires a high speed but can tolerate a low precision, which may

benefit from a simple operation like VS. Interestingly, previous studies in humans showed that

unikinetic plaids elicited ocular following (the open-loop phase of OKR in primates), with the

direction shifting from component direction (the same as VS direction in this case) in ultra-short

latency to the 2D pattern direction (consistent with IOC direction) later in time (Masson and Castet,

2002). Another study compared human closed-loop phase OKR with that of cats in response

to plaids, and showed that both species follow a direction between the component and pattern

directions, but human OKR is biased toward the pattern direction while cat OKR is biased toward

the component direction (Harris et al., 1993). In the current study, we found that mouse OKR is

also not perfectly VS, but deviates slightly towards the IOC direction. These results thus suggest

that OKR is likely mediated by the competing signals of component (likely a VS) and pattern

representations. The relative contribution of the two signals varies on a spectrum across species.

OKR is largely controlled by subcortical circuits for afoveate animals, while the control shifts to

the cortex in foveate animals (Harris et al., 1993; Cahill and Nathans, 2008; Ambrad Giovannetti

and Rancz, 2024). Thus, the position of each species on such component-pattern spectrum might

be determined by the subcortical-cortical balance involved in the behavior.
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In this study, we also show that the VS computation in the SC is under an additional constraint.

VS by itself is a straightforward linear operation that does not depend on any assumptions or

constraints. Yet, the constraint as illustrated in our model (joint prediction, Figure 3.2 & 3.7)

relies on two assumptions that are closely related to IOC and the perception of object motion.

First, to generate the predictions based on individual gratings (Figure 3.2E, yellow shades and

“predictions”), an underlying assumption must be met, which is that a 1D grating pattern is a

part of a larger moving pattern viewed through an aperture. Without additional information, the

computation does not reject other possible motion directions that are compatible with this 1D

moving pattern. On top of that, the combination of the two predictions from component gratings

(i.e. the joint prediction) indicates a second assumption, which is that the two gratings come from

the same rigid, coherently moving pattern. Only under this assumption does it matter to search

for a shared motion that is compatible with both constraints. These two assumptions are the same

ones behind IOC, which are also consistent with the perception of plaids. These assumptions

suggest an existing knowledge (“prior” in the Bayesian framework) about motion information in

the brain. More specifically, the underlying neural network must have mechanisms to deal with

the information ambiguity caused by spatially limited receptive fields. Further, the network seems

to prioritize processing visual information superimposed spatially as coming from the same entity

with locally rigid motion, rather than independent transparent motion.

What neuronal mechanism can give rise to this newly discovered computation in the SC? We

recently showed that mouse SC neurons display pattern motion selective responses to symmetric

plaids and such responses can arise from a nonlinear transformation of converging retinal inputs,

which are more diverse in their pattern versus component motion selectivity (DePiero et al., 2024).

How retinal ganglion cells respond to asymmetric plaids as we used here needs to be studied. A

VS computation, and maybe even the constraint, may already exist in the retina, which is then fur-

ther transformed in the retinocollicular convergence. Additionally, or alternatively, local circuits

in the SC may perform VS computation or direction-specific constraint through weighted connec-

tions among cells with different preferred directions. For example, to represent the probable and
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improbable motions given a single grating, direction selective neurons may form stronger excita-

tory connections with similarly tuned neurons, and weak excitatory connections (and/or stronger

inhibitory connections) with oppositely tuned neurons. It should be noted that the constraint rep-

resentation should only depend on the stimulus direction, not the motion speed, while VS com-

putation needs to take the speed into account. Consequently, to implement this computation may

require the multiplication of two separate streams of stimulus representation. Future studies are

needed to understand the underlying circuitry for plaid motion integration in the SC.

Finally, we did not test how changes of other stimulus parameters, such as spatial frequency and

contrast, could influence the neural and behavioral response, and whether the influence could be

explained by the model. In addition, we focused on predicting the direction selective responses of

SC neurons, without considering their tuning to speeds. Thus, our model cannot distinguish vector

sum and vector average, since they predict the exact same direction. Further studies to address

this issue will benefit especially from studying neuron populations that have well-characterized

speed tuning function. It is important to note that vector average and vector sum are not mutually

exclusive, as vector average is a special form of weighted vector sum. A generalized investigation

to measure the weights of VS will be ideal in the future.

3.5 Methods

3.5.1 Experimental Model and Study Participant Details

We used 8 adult wild type C57BL/6 mice for electrophysiology recording of SC visual responses

(female=4, male=4, 4-7 months old. The Jackson Laboratory, RRIC, IMSR JAX:000664). For

two-photon calcium imaging, 8 adult Vgat-Cre mice (all male, 5-7 months old. The Jackson

Laboratory, stock #028862, RRID, IMSR JAX:028862) were used. For OKR behavior test, 7

adult C57BL/6 mice (female=5, male=2, 3-4 months old for 3 females and all males, 9 months old

for 2 females. The Jackson Laboratory, RRIC, IMSR JAX:000664) were used. All experimental

procedures in this and following sections were approved by the University of Virginia Institutional
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Animal Care and Use Committee and in conformance with the National Institutes of Health Guide

for the Care and Use of Laboratory Animals and the Public Health Service Policy.

3.5.2 Method Details

Electrophysiology

Animals were first prepared for head plate implantation and craniotomy. A 2mm diameter cranial

window was made 1mm lateral (right side) and 0.5mm anterior to the lambda point. We used

2.5% agarose and Kwik-Cast sealant to cover and seal the craniotomy. A titanium head plate

was cemented with C&B Metabond onto the skull. Isoflurane was used for anesthesia during the

surgery (2-3%), and carprofen (5mg/kg) was given as analgesic. Eye ointment was applied to the

eyes for protection during surgery.

1-4 days after the surgery, electrical signals from the SC of head-fixed awake mice were

recorded using 64 channel silicon microprobes (Yang et al., 2020) via a multichannel amplifier

from Intan Technologies at 20 kHz. The mice were allowed to freely run on a cylindrical wheel.

The receptive field location of each recording session was estimated using flashing dark squares

(5° ×5°) across the screen. The grating and plaid stimuli were then centered on the approximate

receptive field location. Spikes were bandpass filtered with 300–6000 Hz range. Spike waveforms

were sorted offline into single- and multi-units using MountainSort (Chung et al., 2017).

Visual stimuli were generated by customized script in MATLAB based on Psychtoolbox-3 and

shown on an LCD monitor (59.7 × 33.6 cm, 60 Hz refresh rate, gamma corrected). Gratings

and plaids (100% contrast) were shown within a circular patch (diameter = 40°) against a grey

background. The screen was placed 25 cm away from the eye contralateral to the recording site.

The grating had 0.08 cpd spatial frequency (SF) and 2 Hz temporal frequency (TF), thus resulting

in a speed of 25 deg/s. We used 24 directions evenly spaced from 0° to 345° with a 15° increment.

The 0° direction represents leftward motion of vertically oriented grating. For plaid, both grating

components had a SF of 0.08 cpd. Component 1 (C1) was always the slower component with a TF

of 0.5 Hz (speed of 6.25 deg/sec), while component 2 (C2)’s TF was 2 Hz (25 deg/s). We varied
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C1’s direction across 24 directions evenly spaced from 0° to 345°. C2 direction was always C1

direction plus cross angle. Four different cross angles were tested: 20°, 45°, 135°, and 160°. The

stimulus was presented for 2s with a 0.5s inter-stimulus grey screen. Each condition was repeated

10 times in a pseudorandom order. Movies of the example visual stimuli are provided in Video S1.

Two-photon Calcium Imaging

The surgical and imaging procedures were as described in the previous studies (DePiero et al.,

2024; Savier et al., 2019). To image the anterior portion of the SC, a 3.2 mm craniotomy was made

on the left hemisphere centered 1.5-2 mm lateral and anterior to the lambda point. The cortex

above the SC was aspirated to expose the SC. To image the posterior SC, a 2.5 mm craniotomy

was centered over the lambda point. The dura over the colliculus was cut with a sharp needle

(30 gauge) to expose the SC surface without lesioning the cortex or the overlaying blood vessels.

∼50 nL of AAV solution was pressure injected via a glass pipette fitted to an injector (Drummond

Scientific Nanoject II) at 500 µm and 250 µm below the pia surface of SC.

AAV1-hsyn-GCaMP6s (Addgene #10084372) was injected for imaging all neurons (i.e. ex-

citatory and inhibitory; n=2 mice for anterior SC and n=2 for posterior SC). In another mouse,

AAV.PHP.eB-hsyn-RiboL1-jGCaMP8s (gift from Kristian Lensjø Lab (Grødem et al., 2023)) was

used for imaging the anterior SC. No significant difference was seen in direction selectivity be-

tween using the two viruses (Mann-Whitney U test, Z = -1.19, p = 0.23 for grating; Z = -1.16, p =

0.24 for 20° plaids; Z = 0.86, p = 0.39 for 45° plaids; Z = 0.41, p = 0.68 for 135° plaids; Z = -0.89,

p = 0.37 for 160° plaids). We thus combined them in further analysis (i.e. n=3 for recording all

neurons from the anterior SC). For imaging specifically the inhibitory neurons in the anterior SC,

AAV9-hsyn-Flex-GCAMP6s (Addgene #10084572) was injected (n=3).

Mice were imaged 15-21 days post-surgery with a two-photon scanning microscope (Ultima

Investigator or Ultima 2Pplus, Bruker Nano Surface Division) with a Ti:sapphire laser (Chameleon

Discovery with TPC, Coherent) tuned to a wavelength of 920 nm through a 16×, 0.8 NA Nikon

objective. Imaging data were acquired at 30Hz rate with the PrairieView software 5.4 with a
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resonant scanner at 2.25× optical zoom, resulting in a 412.2 × 412.2 µm field of view (at 512 ×

512 pixel resolution). Images averaged over 4 frames were then used for later analysis.

Regions of interest (ROIs) were manually drawn on the motion-corrected average image of

a population of neurons over the collected time-series. The raw Ca2+ signal of each ROI was

calculated by averaging all pixels within that ROI in each frame. Neuronal response was calculated

as ∆F/F0 = (F −F0)/F0, where F0 was the mean of the baseline signal over 0.8s period before

stimulus onset, and F was the average fluorescence signal over the 2s stimulus presentation. The

mean value of ∆F/F0 for each stimulus condition was then used for subsequent data analysis for

all the neurons.

The visual stimulus used for imaging was similar as in electrophysiology, except for a longer

inter-stimulus interval of 3s due to the slow Ca2+ dynamics. In addition, 12 directions (0-330º

with 30º spacing) were used for each type of stimulus and each condition was repeated 5 times in

a pseudorandom order.

Optokinetic reflex (OKR)

Mice were first implanted with titanium head plates cemented with C&B Metabond onto the skull.

Isoflurane was used for anesthesia, and carprofen was given as analgesic. Each animal was head-

fixed during the OKR test and allowed to run freely on a wheel.

Three computer screens (52.1 × 29.2 cm for each) were aligned vertically in portrait mode

surrounding the animal. The angle between two neighboring screens was ∼120°. The distance

between the eyes of the animal and the center of the screens was 25 cm. We recorded the mice in

the dark with an infrared light source. A dichroic mirror was placed in front of the right eye, and

a video camera captured the eye from the back of the animal through the reflection in the mirror,

thus minimizing visual occlusion. The camera was model FL3-U3-13Y3M-C (FLIR), combined

with an Edmund VZM 200i zoom imaging lens. Videos were recorded at 60Hz rate. We used

Facemap (Syeda et al., 2024) to track the pupil location with the centroids coordinates. Only

horizontal coordinates were used in our analysis to avoid the issue of direction-dependent gain
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difference in OKR behavior. Saccade-like eye movements were detected by their rapid speed and

replaced by linear interpolation so that only slow eye movements were used to quantify OKR (Liu

et al., 2023a). We represented eye movements towards the left of the animal as negative speed, and

rightward movements as positive.

Full field drifting gratings were shown on the 3-screen setup. To effectively elicit OKR in

mice, we used a slightly different set of parameters for drifting gratings and plaids. Specifically,

for gratings, we used SF = 0.16 cpd and TF = 1.5Hz. For 45° and 20° plaids, we used SF = 0.16

cpd, TF1 = 0.3 Hz, TF2 = 1.2 Hz for component gratings. For 135° and 160° plaids, we used the

same SF = 0.16 cpd, TF1 = 0.4 Hz, TF2 = 1.6 Hz for component gratings. These parameters made

the VS motion speed for plaid and grating stimulus to be close, with 9.28, 8.92, 8.42, 7.70, 9.38

deg/s for 20°, 45°, 135°,160° plaids and single gratings, respectively. Each stimulus was presented

for 10 seconds with a 3s inter-stimulus-interval and repeated for 15 times in a pseudorandom order.

3.5.3 Quantification and Statistical Analysis

Direction selectivity. We quantified the direction selectivity for each neuron/multi-unit cluster with

global direction selectivity index (gDSI) as gDSI = |ΣRθ eiθ
ΣRθ

|, where Rθ is the response magnitude

to stimulus direction θ in radians. The preferred direction was calculated as the angle of the vector

summation (i.e., θpre f = arg(ΣRθ eiθ)).

OKR gain. Because the stimulus speed was different across gratings and plaids, we calculated

the OKR gain to compare between the responses to different stimuli, OKR Gain= speedeye/speedstim,V S.

Here, we used the stimulus speed at the VS direction as the denominator because we observed that

the OKR direction was generally consistent with the VS direction. The preferred direction of OKR

was calculated as the angle of the vector summation of the OKR Gain tuning curve. OKR gain

range was calculated by the maximum OKR gain minus the minimum.

Probabilistically Constrained Vector Sum Model. The individual grating’s prediction function

was a probability density function (pdf, w(x)) approximated as a normalized product of two func-
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tions as follows:

v(x) = t · tanh
( s·sec2(x)
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(3.1)

where x is the direction; v(x) applies a soft threshold on the sec2(x) function, with s controlling

the softness and t being the threshold; sec2(x) is the squared secant function; u(x) is a mollified

uniform distribution (Weiß, 2024), where a and b are the lower and upper bounds of the probable

direction range given a single grating (i.e. 0°+δ and 180°-δ for a grating moving towards 90°

direction, δ being a small offset of two bounds); c is the parameter controlling the slope of the

transition between high and low values; α controls the height of the mollified uniform distribution.

g(x) is defined as: g(x) = x−a
b−a . The normalization is done so that the function properly represents

probability. The joint prediction was also a pdf obtained by normalizing the product of two pdfs of

individual gratings so that its area-under-curve is 1.

We chose the above functions to estimate the joint prediction for the following reasons. First,

given a drifting grating, one half of the full range of directions (covering 180° of the full 360°

cycle) is compatible while the other half is not (Figure 3.2E, yellow shades). Thus, mollified

uniform distribution was used to approximate it so that the joint prediction is of high probability

for half of the directions but low for the other half. Second, the end point of all the compatible

motion vectors of a drifting grating can be represented by its constraint line as in IOC (Figure

3.7A). In theory, every motion along the constraint line is equally probable (Figure 3.2E, grey

arrows; Figure 3.7A). If one randomly samples on the constraint line and finds the corresponding

motion directions, directions that are away from the grating direction are more likely to be sampled.

This relationship between motion directions (x) and their corresponding positions on the constraint

line (y) can be described by y = c · tan(x), where c is the speed of the grating (Figure 3.7A). The
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probability of each direction can be approximated by the derivative of y, which is a squared secant

function as in v(x). The squared secant function is further applied a soft threshold so that the

probability does not go to infinite. This v(x) function contributes to the ‘M’ shape in the prediction

curves (Figure 3.2E & 3.7). Note that our main conclusions do not depend on the ‘M’ shape in

the function. If v(x) is substituted with a constant (i.e. making the ‘M’ flat), the model generates

similar predictions that can still explain our data. Here, we use the full form of the function for

theoretical accuracy.

The likelihood by VS is modeled with von Mises distribution:

L(x) =
exp(κ · cos(x−µV S)

2πI0(κ)
(3.2)

where x is the direction; κ is the shape parameter; µV S is the VS direction; I0 is the modified Bessel

function of order zero.

The final joint pdf, which we propose is what SC neurons represents, is the product of the joint

prediction and the likelihood. We kept the joint pdf unnormalized because we found weaker SC

responses to plaids with larger cross angles (Figure 3.2-3.4, example neurons). For these plaids

where the VS falls far outside the “likely” range given by the joint prediction, neuronal responses

may resemble those elicited by non-directional stimuli.

Extended Data

Figures
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Figure 3.6: An example neuron’s response to grating and 45° asymmetric plaid. (A-C) In
response to a drifting grating (A), an example neuron’s spike raster plot at different directions
(B), and the resulting tuning curve (C). Yellow shade in is the window of stimulus presentation (2
seconds). Its preferred direction is 93.1°. (D-F) Same as (C), but for the 45° asymmetric plaid.
The preferred direction is 55.0°, thus a shift of 38.1° compared to the grating tuning.
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Figure 3.7: Schematics of the probabilistically constrained VS computation. (A) A diagram
of the prediction function approximation. A drifting grating’s motion is represented by the thick
arrow. Its constraint is represented by the black dashed line. Every dot on the constraint line rep-
resents a possible motion vector’s end point, and is equally probable. However, the relationship
between motion direction and end point position is not linear. For example, y1 and y2 are of equal
length on the constraint, but represent different ranges of directions θ1 and θ2. If one randomly
samples points on the constraint, directions away from the grating direction are more likely to se-
lected. Thus we used the “M”-shaped function (squared secant function) as in B-D to approximate
such relationship. Note that our main conclusions do not depend on this specific shape of predic-
tion curves. As long as the prediction functions have the cliff (approximated here with a uniform
function), the conclusions hold. (B) The predictions (top) and joint pdfs (bottom) for the 20° plaid.
(C) Same as (B), but for the 135° plaid. (D) Same as (B), but for the 160° plaid.
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Figure 3.8: Additional quantification of direction selectivity of neurons recorded by two-
photon calcium imaging. (A) The distribution of the difference between preferred directions to
grating and all 4 conditions of plaids for direction selective neurons (gDSI > 0.2) imaged from the
anterior SC. The mean ± std of the distributions are 21.3 ± 22.7° (n = 280, 20° plaid), 40.5 ± 23.7°
(n = 255, 45° plaid), 92.6 ± 29.7° (n = 235, 135° plaid), and 144.9 ± 27.9° (n = 233, 160° plaid).
(B) The gDSI of neurons imaged from the anterior SC that are highly selective to grating (gDSI
> 0.2 for grating). Friedman test, p < 0.001. Post-hoc Wilcoxon tests are performed between
adjacent plaid conditions, p < 0.001 for 20° and 45° plaids and for 45° and 135° plaids, p = 1.00
for 135° and 160° plaids. (C-D) same as (A-B), but for inhibitory DS neurons only. The mean ±
std of the distributions in (C) are 18.7 ± 19.2° (n = 286, 20° plaid), 39.4 ± 19.0° (n = 265, 45°
plaid), 97.5 ± 27.9° (n = 244, 135° plaid), and 141.1 ± 31.3° (n = 254, 160° plaid). (D) Friedman
test, p < 0.001. Post-hoc Wilcoxon tests are performed between adjacent plaid conditions, p <
0.001 for 20° and 45° plaids and for 45° and 135° plaids, p = 1.00 for 135° and 160° plaids. (E-F)
same as (A-B), but for DS neurons from the posterior SC. (E) The mean ± std of the distributions
are 22.6 ± 36.9° (n = 92, 20° plaid), 41.6 ± 16.1° (n = 81, 45° plaid), 99.8 ± 37.0° (n = 79, 135°
plaid), and 126.1 ± 34.5° (n = 71, 160° plaid). (F) Friedman test, p < 0.001. Post-hoc Wilcoxon
tests are performed between adjacent plaid conditions, p < 0.001 for 20° and 45° plaids, p = 0.94
for 45° and 135° plaids, p < 0.001 for 135° and 160° plaids.



Chapter 4

Visual Motion Processing in The Tree

Shrew Superior Colliculus.

4.1 Abstract

Over the past few decades, research has established that the superior colliculus (SC) plays a key

role in visual motion processing and visually guided behaviors. However, detailed functional dif-

ferences across mainstream animal models have made it difficult to integrate findings to form a

general model of the SC. Here we used tree shrew - a species evolutionarily intermediate between

rodents and primates - as an animal model to help bridge our understanding of this highly con-

served brain structure. In this study, we recorded visual motion responses from the tree shrew

SC neurons in vivo using a set of motion stimuli, including drifting gratings, random dots kine-

matograms, symmetric and asymmetric plaids. We were able to characterize a series of response

properties from the tuning to motion direction, spatiotemporal frequency, and speed, to motion

integration and its underlying rules. Our study thus provides fundamental insights into the visual

motion representation in the tree shrew SC and establishes a basis for future studies on comparative

studies on SC visual processing.

80
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4.2 Introduction

Visual motion processing is a fundamental function of visual systems that supports survival-critical

behaviors such as prey capture and predator avoidance. Accurate and rapid perception, as well as

effective motor coordination, depends on how visual motion is represented in the brain.

The superior colliculus (SC, or optic tectum in non-mammals) is a highly conserved midbrain

structure that is known to preferentially represent visual motion in various species (Basso et al.,

2021; Cang et al., 2024; Isa et al., 2021; Lu et al., 2024; Duchemin et al., 2022; Huang et al., 2022).

For example, neurons that are selective to motion directions were found in fish (Damjanović et al.,

2023), hamsters (Mooney et al., 1985), mice (Cang et al., 2024; Gale and Murphy, 2014; Wang

et al., 2010), and primates (Hafed et al., 2023). As a sensory-motion integration hub, the SC was

also found to integrate vision with other sensory modalities in its deeper layers, as well as to guide

eye and head movements (Isa et al., 2021; Basso and May, 2017; Cang et al., 2024). In mice, the

SC’s role is broadly studied in mediating innate behaviors such as hunting and escaping (Huang

et al., 2021; Shang et al., 2019; Isa et al., 2020; Yilmaz and Meister, 2013; Hoy et al., 2019).

Recently, studies using plaids have shown a motion integration taking place in the mouse SC,

which was traditionally attributed to primate cortex (DePiero et al., 2024; Li et al., 2025). Taken

together, these findings highlight that the SC plays an important role in visual motion processing,

influencing fast behaviors essential for environmental interactions.

However, despite the overall evolutionary conservation, the function of the visual SC also

shows divergence across species. For example, the superficial visual layer of the mouse SC was

found to contain large proportions of direction selective neurons (Inayat et al., 2015), whereas in

primates these neurons are much less prevalent (Hafed et al., 2023). In addition, more than 80% of

the retinal output directly innervate with the SC in mice and pigeons, yet only 10% was reported

in primates (Hoy and Farrow, 2025). A transition and specialization of the SC seems to happen

evolutionarily at a point between rodents and primates. Thus, to gain a better understanding of

the function of this ancient subcortical structure, we turned to tree shrew models to facilitate the

cross-species comparison. Tree shrews (Tupaia), constituting the entire order of Scandentia, are
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primitive higher mammals close to primates. They are diurnal animals with excellent visual acuity,

and display visual system complexity comparable to primates (Petry and Bickford, 2019; Savier

et al., 2021; Sedigh-Sarvestani et al., 2021). These animals can be readily trained to utilize various

visual cues for cognitive tasks (Lam et al., 2025; Li et al., 2022a; Petry et al., 1984; Petry and

Kelly, 1991; Callahan and Petry, 2000; Mustafar et al., 2018; Li et al., 2023; Pan et al., 2022).

In this study, we used a series of motion stimuli including drifting gratings, random dot kine-

matogram, symmetric and asymmetric plaids to characterize the response properties of tree shrew

SC neurons to various stimulus features, with an emphasis on motion direction. Drifting gratings

are conventionally used for characterizing direction and orientation tuning in the mouse SC (Inayat

et al., 2015; Liu et al., 2023b; Relota et al., 2025). Random dots are another type of traditional

motion stimuli that are more often used in the primate SC and middle temporal cortex (MT) to

characterize the direction tuning properties and sometimes cognitive variable representation in the

neurons (Snowden et al., 1992; Odegaard et al., 2018; Horwitz and Newsome, 2001; Chaplin et al.,

2017). Drifting gratings approximate visual stimuli containing a single dominant spatiotemporal

Fourier component, corresponding to one direction and spatial frequency. In contrast, random

dot kinematograms have a broader range of spatial frequencies and orientations. Therefore, we

measured neuronal responses to both stimuli to compare their motion representation under 2 dis-

tinct types of spatial texture composition. Additionally, we also measured neuronal responses to

symmetric and asymmetric plaids, aiming to study motion integration and make direct comparison

with the recent findings in the mouse SC (DePiero et al., 2024; Li et al., 2025). Our results will

provide a foundation for investigating visual processing in the tree shrew SC and will facilitate

future studies on SC function and cross-species comparison.
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4.3 Results

4.3.1 SC neurons are tuned to the spatial frequency, temporal frequency,

and direction of drifting gratings.

We recorded the visual responses from superficial and intermediate layers of the SC in awake

head-fixed tree shrews (n=3) with 64-channel silicon microprobes while the animals were passively

viewing the stimulus on the screen. Firstly, we characterized the spatial and temporal frequency

(SF and TF) preferences of the SC neuron population, as they are two major features of the drifting

grating stimulus. We tested 6 SFs × 6 TFs × 4 cardinal directions. Out of 380 single units

recorded, 185 neurons were visually responsive to this grating stimulus with a responsive rate of

48.68%). After min-max normalization, we averaged the responses across all responsive neurons

(Fig. 4.1A). As a population, the neurons responded stronger to a medium level of TF tested and

very low SF in all 4 directions. The SF and TF tuning curves obtained by averaging across the

other two variables further showed SC neurons prefer an SF of 0.03 cpd and a TF of 8 Hz (Fig.

4.1B).

To characterize more detailed SF preference and direction selectivity in the SC neurons, we

fixed the TF to 8 Hz and measured the neuronal responses to 6 SFs and 12 directions of the drifting

gratings. Here, we maintained the lowest SF tested to be 0.03 cpd to ensure the 40◦ stimulus

patch contained more than one cycle of the spatial pattern. 39.20% (205 out of 523) single units

were responsive to the new grating stimulus. The normalized average response showed an overall

preference to low SFs, consistent with the previous grating stimulus (Fig. 4.1C). Interestingly,

the SF responses showed clear bimodal distribution in the neural population for the highest and

lowest SFs tested (Fig. 4.1D). To classify neurons based on their SF response profiles, we applied

K-means clustering to the normalized response curves across SFs (Fig. 4.1E). Using K-means

clustering (k=2, average silhouette score = 0.55) on normalized SF tuning curves, neurons were

divided into two groups. The first group showed decreasing responses with SF (Fig. 4.1E, blue),

while the second group responded strongest to high SF (Fig. 4.1E, red). This can also be illustrated
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Figure 4.1: Spatiotemporal frequency tuning of SC neurons to drifting gratings. (A) The
spatiotemporal frequency tuning map to drifting gratings moving in 4 directions (0°, 90°, 180°,
270°). Responses are normalized to a range from 0 to 1. Only single, responsive units were
included in this and the following analysis unless otherwise specified. n = 185. (B) Normalized
tuning curves to SFs averaged across all directions and TFs (left) and to TFs averaged across all
directions and SFs (right). Blue solid lines: population average. Gray dotted lines: tuning curves of
individual neurons. X axis was plotted on log scale.(C) Normalized tuning curves to SFs averaged
across all 12 directions of a new grating stimulus. n= 192 (93.65%, out of all 205 single responsive
neurons. Neurons with purely suppressive responses to all conditions were excluded). Black solid
line: population average. Gray dotted lines: tuning curves of individual neurons. (D) Normalized
responses distribution to 5 SFs showed bimodal shape to high and low SFs. Solid line: median.
n = 192. (E) Normalized tuning curves of 2 clusters found by K-means method (k = 2, average
silhouette score = 0.55). Blue: average of the first cluster showing a preference to lower SFs (n =
135). Red: average of the second cluster showing a high SF preference (n = 57). Light blue and
red: tuning curves of individual neurons. (F) The distribution of the preferred SF across the single
and responsive neuron population. n = 205.
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by the histogram of the preferred SF in the population - more neurons preferred either the lowest

or the highest SF, but fewer neurons preferred the SFs between them.

Next, we investigated the motion direction and orientation selectivity of the SC neurons. Fig.

4.2A showed an example direction selective (DS) neuron. This neuron exhibited consistent direc-

tion preference across different SFs, with a preference of high SF. Fig. 4.2B showed an example

orientation selective (OS) neuron exhibiting consistent orientation preference across different SFs,

with a preference of intermediate SF. In the responsive neuron population, direction response pro-

files were on average positively correlated across different SFs, with higher correlation in adjacent

SFs (Fig. 4.2C), suggesting the direction tuning was stable across SFs. Therefore in the follow-

ing analysis, we quantified the direction tuning of each neuron based on the responses under its

preferred SF. We measured the direction and orientation selectivity by global direction/orientation

selectivity index (gDSI and gOSI respectively, see Methods). We defined highly selective neurons

as having an index value greater than 0.2. 30.24% of all responsive neurons were highly DS, and

27.31% were highly OS in response to drifting gratings (Fig. 4.2D). For highly DS neurons, the

population showed a preference of vertical upward motion (Fig. 4.2E). On the other hand, the

highly OS neurons showed a population preference of horizontal and vertical orientations (Fig.

4.2F). Notably, when examining the Z-score normalized responses, highly and weakly DS neurons

showed similar tuning width and magnitude to directions, with slightly flatter and more OS-like

tuning curves for weakly DS neurons (Fig. 4.2G). Similarly, highly and weakly OS neurons also

had similar levels of tuning, only with flatter and more DS-like tuning curves for weakly OS neu-

rons (Fig. 4.2H). The observation held true when more radical thresholding was applied (Fig.

4.6). This suggested DS and OS response property were more pervasive in the SC neurons than

the selectivity index threshold indicated. Highly DS neurons showed a population preference of

the lowest and highest SFs, while the highly OS neurons preferred the lowest SF (Fig. 4.2I&J).

gDSI and gOSI showed a moderate correlation within the responsive neuron population (Fig. 4.2K,

Spearman’s ρ = 0.32, p < 10−5).
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Figure 4.2: Direction and orientation tuning to drifting gratings. (A) Firing rate (baseline
subtracted) of an example direction selective (DS) neuron. This neuron was tuned to 293.99°
direction with a gDSI of 0.66 (calculated based on the response to the preferred SF, i.e. 0.25 cpd).
(B) Firing rate (baseline subtracted) of an example orientation selective (OS) neuron. This neuron
was tuned to two directions that were 180° apart, which corresponded to the grating orientation
of 29.65° with a gOSI of 0.54 (based on the responses to SF = 0.09 cpd). (C) Pearson correlation
coefficient between the direction tuning curves to each SF, averaged across the neuron population.
Red and blue indicates positive and negative correlations. n = 205. (D) The distribution of gDSI
and gOSI across the population (n = 205). Blue: gDSI. Yellow: gOSI. Vertical dashed line: the
0.2 cutoff used in this study to determine highly selective neurons. Inset: the proportion of highly
DS (n = 62, 30.24%) and OS (n = 56, 27.31%) neurons. (E-F) The distribution of preferred
direction of highly DS neurons (n = 62) and preferred orientation of highly OS neurons (n = 56).
(G) Tuning curves of highly (gDSI > 0.2) and weakly (gDSI ≤ 0.2) DS neurons aligned to their
preferred directions. Thick lines: population average. Thin lines: individual neurons. (H) Same as
G, but for highly and weakly OS neurons. (I-J) The distribution of preferred SF in the highly DS (I)
and OS (J) population. (K) The gDSI and gOSI relationship of the same neurons. Gray: neurons
that were neither highly DS or OS. Green: neurons that were highly DS or OS. Spearman’s ρ =
0.32, p < 10−5.
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4.3.2 Motion direction and speed tuning of random dot kinematogram.

Next, we examined SC neuronal responses to another widely used motion stimulus: random dot

kinematogram (RDK). We varied 100% coherence random dot pattern in 5 speeds and 12 direc-

tions. 47.20% (270 out of 572) single units were responsive to RDK stimulus. Neurons responded

with a preference to the highest speed tested on average (Fig. 4.3A). Similarly to the population

SF tuning to the grating stimulus, RDK with high and low speeds also elicited bimodal response

magnitude in neurons (Fig. 4.3B). K-means clustering method found 2 clusters (average silhou-

ette score = 0.51), with the first cluster showed high speed preference (Fig. 4.3C, blue), while the

second group showed low speed preference (Fig. 4.3C, red). It is worth noting that in drifting

gratings, the preference of lower SF with fixed TF also means higher speed. Thus we observed a

consistency that SC neurons prefer lower SF of gratings as well as higher speed of random dots.

We also examined the motion direction preference to RDK stimulus. Overall, the direction tun-

ing curves were correlated across speeds, with higher correlation value between adjacent speeds

(Fig. 4.3E). Hence, the following analysis was based on the direction tuning profile under the

preferred speed of each neuron. In RDK stimulus, there is no orientation. As a result, neurons

tuned to 2 opposite directions were defined as ’axis selective’ (AS, see Methods). Fig. 4.3F

showed the direction tuning curve of an example DS neuron. Its direction preference was con-

sistent across speeds, with stronger response to lower speeds. Fig. 4.3G showed an example

AS neurons preferring lower speeds. Notably, the AS responses were noisier compared to OS

responses to gratings (Fig. 4.2B). Indeed, 18.52% of the neurons were DS in response to RDK

stimulus, and only 10.74% were AS (Fig. 4.3H), both are much lower compared to the DS and OS

rate to gratings. This suggested that despite a similar or larger number of neurons were respon-

sive to RDK than drifting gratings, the RDK was not very effective in driving direction selective

responses. Chi-square test and post-hoc Z-test confirmed that DS and AS proportion to RDK were

both significantly lower than DS and OS to gratings (χ2 = 36.68, p < 10−7. two-proportion Z-test,

p = .006 for DSgrating and DSRDK; p < 10−5 for OSgrating and ASRDK , Benjamini-Hochberg FDR

corrected). Moreover, the AS proportion was significantly lower than DS in RDK but such dif-
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Figure 4.3: Direction, axis, and speed tuning to random dot motion. (A) Normalized response
to speeds averaged across 12 directions tested (n = 234). Black solid line: population average.
Gray dotted lines: responses of individual neurons. Neurons with suppressive responses to all
conditions were excluded. (B) Normalized responses distribution to 5 speeds showed bimodal
shape to high and low speeds. Solid line: median. n = 234. (C) Normalized tuning curves of
2 clusters found by K-means method (k = 2, average silhouette score = 0.51). Blue: average
of the first cluster showing a preference to high speeds (n = 146). Red: average of the second
cluster showing a low speed preference (n = 88). Light blue and red: tuning curves of individual
neurons. (D) The distribution of the preferred speed across the neuron population (n = 270, all
single, responsive neurons)(E) Pearson correlation coefficient between the direction tuning curves
to each speed, averaged across the neuron population. Red and blue indicates positive and negative
correlations. n = 270.(F) Firing rate (baseline subtracted) of an example direction selective (DS)
neuron. This neuron was tuned to 64.71° direction with a gDSI of 0.48 (calculated based on the
response to the preferred speed, i.e. 20 deg/s).(G) Firing rate (baseline subtracted) of an example
axis selective (AS) neuron. This neuron was tuned to two directions that were 180° apart, which
corresponded to the motion axis of 103.22° with a gASI of 0.50 (based on the responses to speed =
20 deg/s). (H) gDSI and gASI distribution of the population (n = 270). Blue: gDSI. Yellow: gASI.
Vertical dashed line: the 0.2 cutoff for highly selective neurons. Inset: the proportion of highly
DS (n = 50, 18.52%) and AS (n = 29, 10.74%) neurons. (I) Tuning curves of highly (gDSI > 0.2)
and weakly (gDSI ≤ 0.2) DS neurons aligned to their preferred directions. Thick lines: population
average. Thin lines: individual neurons. (J) Same as G, but for highly and weakly AS neurons.
(K-L) The distribution of preferred direction of highly DS neurons (n = 50) and preferred motion
axis of highly AS neurons (n = 29). (M) The gDSI and gASI relationship of the same neurons.
Gray: neurons that were neither highly DS or AS. Green: neurons that were highly DS or AS.
Spearman’s ρ = 0.44, p < 10−13.
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ference was absent between DS and OS proportions in gratings (two-proportion Z-test, p = .016

for DSRDK and ASRDK; p = .513 for DSgrating and OSgrating, Benjamini-Hochberg FDR corrected).

These results indicate that OS measured by drifting gratings is likely resulted from an interaction

between spatial pattern (i.e. orientation) and motion axis preference. Similar to the findings in

gratings, the z-score normalized responses showed similar level of direction selectivity between

highly and weakly selective population (Fig. 4.3I&J). Highly DS neurons preferred upward mo-

tion direction as a population, and highly AS neurons preferred vertical and horizontal motion axis

(Fig. 4.3K&L). Finally, gDSI and gASI showed a moderate correlation (Fig. 4.3M, Spearman’s

ρ = 0.44, p < 10−13), consistent with the observation of grating responses. Taken together, the

results indicate with gratings and RDK, we probed the same DS response properties in the SC.

4.3.3 Motion integration of symmetric plaids

Visual neurons in the SC was previously found to integrate motion direction of plaid patterns

in mice (DePiero et al., 2024). Plaids are patterns created by overlapping two drifting gratings

on each other. Studies have shown the neural representation of plaid motion direction follows a

component to pattern transformation from the V1 (component dominant) to higher visual areas

(e.g. MT and MST, pattern emerging) in primates (Adelson and Movshon, 1982; Movshon, 1985;

Wallisch and Movshon, 2019; Khawaja et al., 2013). This motion integration function has thus

long been studied in the cortical structures. However, a component-pattern transformation was

recently observed in the mouse retina - SC pathway (DePiero et al., 2024), suggesting subcortical

structures also integrate motion, potentially in a more conserved and widespread manner across

species. In this study, we investigated the neural responses to plaids in the tree shrew SC. To

make the results comparable to previous mouse studies (DePiero et al., 2024; Palagina et al., 2017;

Muir et al., 2015; Juavinett and Callaway, 2015), we adopted a similar stimulus namely symmetric

plaids (or so called “type I” plaids). In symmetric plaids, the two grating components have the same

spatial and temporal frequencies, but only differ in their motion direction. Thus the pattern motion

direction lies exactly at the average of the two component directions. Here, we used symmetric
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plaids with SF = 0.1 cpd and TF = 8 Hz. We varied the cross angle between the two gratings (60◦,

90◦, 120◦) and compared the neurons’ preferred direction of plaids and gratings.

Out of 621 single units, 242 neurons (38.97%) were responsive. 46.69% of these responsive

neurons (113 out of 242) were highly DS to gratings. Compared to grating elicited responses,

plaids evoked significantly higher maximum responses (Fig. 4.4A-C, Wilcoxon signed rank test,

p < 10−4 for 60◦ plaid, p < .001 for 90◦ plaid, p < 10−5 for 120◦ plaid), yet significantly lower

gDSI (Fig. D-F, Wilcoxon test, p < 10−9 for 60◦ plaid, p < 10−10 for 90◦ plaid, p < 10−12 for

120◦ plaid). The preferred direction to grating and plaids closely correlated with each other, indi-

cating the direction tuning is shared between the two stimulus types (Fig. G-H, circular correlation,

ρ = 0.76 for grating and 60° plaid; ρ = 0.51 for grating and 90° plaid; ρ = 0.56 for grating and

120° plaid). Predictions of pattern and component selective responses were made based on the di-

rection tuning curves to gratings (see Methods). By comparing the observed plaid responses to the

predictions, neurons were classified to 3 types: pattern-motion selective (PM), component-motion

selective (CM), and unclassified. Most of the neurons were unclassified (Fig. 4.4J-L, 67.26% for

60◦ plaid, 69.91% for 90◦ plaid, 76.99% for 120◦ plaid). We observed a comparable proportion

of pattern selective (17.70%, 17.70%, 10.62% for 60°, 90°, 120°plaids, respectively) and compo-

nent selective (15.04%, 12.39%, 12.39% for 60°, 90°, 120°plaids) neurons in all three cross angles

tested (Fig. 4.4J-L). Hence, the pattern selectivity was less striking in the tree shrew SC neurons

compared to the mouse SC (DePiero et al., 2024). However, the exhibited component-pattern se-

lectivity balance resembled what was reported in primate and cat extrastriate visual cortical areas,

as well as higher visual areas in mouse cortex (Smith et al., 2005; Juavinett and Callaway, 2015;

Palagina et al., 2017).

4.3.4 Tree shrew SC neurons adopt vector sum to represent the direction of

asymmetric plaids

The previous results indicate motion integration is already taking place in the tree shrew SC. Our

recent study has shown that instead of representing a plaid pattern in the direction that are con-
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Figure 4.4: A mixture of pattern and component selectivity to symmetric plaids in the tree
shrew SC. (A-C) The max response evoked by grating and plaids. Wilcoxon signed rank test,
W = 1910, p < 10−4 for 60° plaid (A), W = 2019, p < .001 for 90° plaid (B), W = 1656, p <
10−5 for 120° plaid (C). Only single, responsive neurons that were highly DS for grating were
included (n =113). (D-F) gDSI for grating and plaids. Yellow dots: neurons highly DS for grating.
Wilcoxon signed rank test, W = 19071, p < 10−4 for 60° plaid (D), W = 18872, p < 10−4 for 90°
plaid (E), W = 21570, p < 10−9 for 120° plaid (F). All single, responsive neurons were included
in the statistical test (n =242). (G-I) The preferred directions to grating and plaids. Circular
correlation coefficient ρ = 0.76 for 60° plaid (G), ρ = 0.51 for 90° plaid (H), ρ = 0.56 for 120°
plaid (I). Only single, responsive neurons that were highly DS for grating were included (n =113).
(J-L) ZP and ZC scores for 3 plaids tested (n =113). Blue: pattern-motion (PM) selective neurons.
Magenta: component-motion (CM) selective neurons. Black: unclassified neurons. We report the
number of neurons in each category as well as their proportion.
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sistent with human and non-human primate perception, the mouse SC follows a probabilistically

constrained vector sum (VS) computation of the two grating component directions (Li et al., 2025).

Thus, we next sought to determine what computational rule the tree shrew SC employs. In order

to distinguish between possible computations, we used asymmetric plaids as used in the previous

studies (Li et al., 2025; Wallisch and Movshon, 2019; Khawaja et al., 2013). Here, we generate

the asymmetric plaids with two grating components of different TFs (Fig. 4.5A). We kept the SF

= 0.1 cpd as in the symmetric plaid stimulus, but changed TFs so that TF1 = 2 Hz, TF2 = 8 Hz (i.e.

speed1= 20 deg/s, speed2 = 80 deg/s, with a speed ratio of 1:4). Because it was unknown which

direction of the plaid pattern would be represented by the SC neurons, the direction of component

1 (C1, the slower component) was used to define the direction of asymmetric plaids. We varied

the cross angle between two grating components in 4 levels (20°, 45°, 135°, 160°). The motion

direction consistent with primate perception and cortical neural representation can be calculated

by intersection-of-constraint (IOC) method, in contrast to the VS method used by mouse SC and

subcortical driven optokinetic reflex (OKR). In order to make direct comparison with the previ-

ous mouse study, we included both single units and multi-unit clusters in our analysis. We first

extracted the direction tuning curves for grating stimulus for each neuron (Fig. 4.5B, example neu-

ron, dark blue line). If a neuron follows VS rule, its tuning curve to plaids would shift to the VS

prediction (Fig. 4.5B, purple dashed line), whereas if a neuron follows IOC rule, the plaid tuning

curve would shift to the IOC prediction (Fig. 4.5B, yellow dashed line). In the example neuron, the

plaid tuning curves were always centered around the VS direction of each cross angle condition.

We calculated the difference between the preferred directions for grating and asymmetric plaids

for each unit. For each plaid condition, we only include units that are highly DS for that condition

and the grating stimulus in the following results. As it turned out, in all 4 cross angles tested, the

preferred direction difference distributions were centered around the VS prediction rather than IOC

(Fig. 4.5C). For 20°, 45°, 135°, and 160° plaids, the preferred direction differences were 12.66° ±

57.51°, 38.92° ± 58.32°, 124.30° ± 68.53°, and 152.95° ± 70.76° respectively. We next selected

the responses of the same units that were highly DS in response to all 4 plaid conditions and the
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gratings. Their responses closely followed the VS prediction (Fig. 4.5D, n = 137). In addition,

the number of highly DS units decreased with larger cross angles (Fig. 4.5C, n = 290, 278, 251,

and 245 for 20°, 45°, 135°, and 160° plaids), suggesting a weaker representation of the stimulus

direction for plaids with larger cross angles. This was further supported by lower gDSI values with

increasing cross angles (Fig. 4.5E, n = 420, gDSI > 0.2 to gratings).

Previous study reported that the mouse optokinetic eye movement (i.e. OKR), although not

directly driven by the SC, follows a very similar computation to integrate motion of asymmetric

plaids as the SC neurons (Li et al., 2025). To determine whether VS computation found above also

guided the OKR in tree shrews, we measured animals’ eye movements when viewing full-field

gratings and asymmetric plaids (see Methods). Right eye pupil was tracked with Facemap (Syeda

et al., 2024) and converted to horizontal movement speed. We calculated the difference between

the grating and plaid directions that elicited the largest horizontal eye movements. The OKR

was overall close to the VS prediction, except for 45° plaids (Fig. 4.5F & 4.8B). Gratings elicited

stronger OKR than all plaids (Fig. 4.8C). Taken together, the results suggest an overall consistency

of using VS rule for motion integration in the SC as well as in the OKR behavior. However, details

also indicate the computation underlying OKR is different from what was employed by the SC

neurons, thus implicating a separate neural substrate driving OKR in tree shrews.

4.4 Discussion

In this study, we characterized the visual motion response properties of tree shrew superficial SC

neurons with multiple motion stimuli. These motion stimuli are widely used in various contexts

and probe different aspects of motion processing. With renewed interest in using tree shrews as

an animal model for vision research, and evolving techniques of viral and genetic tools tailored to

these animals (Savier et al., 2021; Yao et al., 2024; Liu et al., 2025), there is a growing need for

more systematic functional characterization studies. Therefore, we for the first time performed in

vivo electrophysiology in the SC of awake tree shrews to study its visual function.
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Figure 4.5: Tree shrew SC performs vector sum for asymmetric plaids. (A) We used asym-
metric plaids comprising 2 gratings moving in different directions and temporal frequencies. The
speed ratio of component 1 (C1, light blue) and component 2 (C2, dark blue) is 1:4. The vector sum
(VS) of the two component motion vectors is indicated by purple arrow. Intersection-of-constraint
(IOC, yellow arrow) is generated by the intersection of two constraint lines (green dashed lines).
Schematic adapted from Li et al. (2025). (B) An example neuron’s tuning curves to grating (dark
blue) and plaids. Blue and red vertical lines: preferred direction calculated for grating and plaids.
Purple and yellow dashed lines: VS and IOC prediction. This neuron preferred 53.30°, 31.12°,
11.43°, 294.67°, 264.59° for grating, 20°, 45°, 135°, and 160° plaids respectively. Thus, the pre-
ferred direction differences between grating and plaids were 22.18°, 41.87°, 118.63°, and 148.71°
for 4 plaid cross angles. The VS predictions of the preferred direction difference are 16.04°, 36.46°,
122.88°, and 153.62°, while the IOC predictions are 83.62°, 77.88°, 81.46°, and 86.04°. (C) The
distribution of the preferred direction difference between grating and plaids across the highly DS
population. VS and IOC predictions were indicated by the purple and yellow dashed lines. For
20°, 45°, 135°, and 160° plaids, the preferred direction differences were 12.66° ± 57.51°, 38.92°
± 58.32°, 124.30° ± 68.53°, and 152.95° ± 70.76° respectively. (D) The preferred direction dif-
ference between grating and plaids of the neurons that were highly DS for all 4 plaid cross angles.
VS and IOC predictions indicated by the purple and yellow dashed lines. Individual neurons were
plotted in gray dotted lines. (E) The gDSI distribution of the neurons that were highly DS to grat-
ing. The distributions were significantly different among the 4 plaid cross angles (Friedman test,
χ2(3) = 90.70, p < 10−18. Post-hoc Wilcoxon singed rank test, W = 35812, p = .005 for 20° and
45° plaids, W = 33105, p < 10−4 for 45° and 135° plaids, W = 41209, p = .686 for 135° and
160° plaids. (F) Optokinetic response of 3 animals also followed the VS prediction. Gray: OKR
of individual animals. Purple and yellow: VS and IOC predictions.
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Tree shrews are diurnal animals with high visual acuity. In both natural and laboratory envi-

ronments, they exhibit agility to during navigation and appear to be very sensitive to fast moving

objects. This is partly supported by the SC neurons’ high temporal frequency tuning (8 Hz) and

fast speed tuning (≥ 160 deg/s). For reference, mouse SC neurons have a TF tuning around 2 Hz

and speed tuning around 30 deg/s (Wang et al., 2010; De Franceschi and Solomon, 2018; Relota

et al., 2025). The prevalence of high TF and high speed tuned neurons allows for capturing the

rapid motion information in the visual stimulus for tree shrews, which better suits their ethological

needs. In contrast, the tuned spatial frequency of tree shrew SC is comparable to, or even lower

than, that of mice (∼ 0.08 cpd, Wang et al. (2010)), suggesting a similar level of spatial resolution

in the SC. This was at first surprising to us because tree shrews have much higher visual acuity

than mice. However, high spatial resolution is generally advantageous for the representation of

object details, but not necessarily for visual motion. Given the tuning to fast motion found in the

neuron population, SC likely prioritizes motion processing, potentially trading off spatial details

for processing efficiency.

In response to both drifting grating and RDK, we observed a population of highly DS neu-

rons. The proportion of DS neurons to gratings was similar to what was reported in the mouse SC

(Wang et al., 2010; Chen et al., 2021). Interestingly, when examining the z-score normalized tun-

ing curves, even the weakly DS neurons showed clear tuned responses to motion directions, though

with a more prominent two-peak shape. Additionally, highly OS neurons also exhibited response

magnitude differences between the two directions corresponding to the same tuned orientation,

suggesting they were also DS to some degrees. These results together indicate that direction selec-

tivity is likely a fundamental response property in tree shrew SC neurons. Similarly, in a previous

study characterizing mouse SC neuronal responses to plaids, researchers have found the preferred

direction for gratings and plaids were highly correlated across the whole population, meaning even

the ’non-DS’ neurons (defined by the subthreshold gDSI values) retained some level of direction

selectivity (Li et al., 2025). Our tree shrew data are thus consistent with the observations in mice.

The brain has been found to decompose moving plaids to its components and later integrate
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them into a single coherent motion (Adelson and Movshon, 1982; Movshon, 1985; Smith et al.,

2005). In this study, we found tree shrew SC neurons exhibited a mixture of component and pattern

selective responses when presented with symmetric plaids. This contrasts with the recent findings

in the mouse SC, where pattern selective neurons predominate in the population (DePiero et al.,

2024). In other species, brain areas known for being pattern selective, including MT and MST

in monkeys, area 18 in cats, higher visual areas (and arguably V1) in mice, all contain a mix of

component and pattern selective neurons (Smith et al., 2005; Juavinett and Callaway, 2015; Palag-

ina et al., 2017; Khawaja et al., 2009). The overwhelming representation of pattern motion as

observed in the mouse SC is very rare. Our data in the tree shrew SC therefore resembled more

the cortical representations found in other species. The cross-species similarity, along with the

contrast to the mouse SC, could suggest several possibilities. One of them is that the component

and pattern representation within the same brain structure might have functional advantages. In-

stead of representing highly integrated motion information, the mixture could allow for flexible

coding for different needs. For example, pattern selective neurons can be used to inform the global

motion direction and energy, while the component selective neurons can further assist with object

segmenting and local processing. Another possibility is that the high prevalence of pattern selec-

tivity in mice correlates with strong component representation in the retina (DePiero et al., 2024).

Mouse retina is known to have DS ganglion cells like rabbits (Weng et al., 2005; Barlow and Hill,

1963; Wei et al., 2011). However in primates, despite the recent discovery of DS ganglion cells

and amacrine cells, the retinal direction selectivity is far less prominent compared to non-primate

mammals (Kim et al., 2022). Given that the SC receives direct input from the retina and responds

rapidly to visual stimuli, it is likely that the mouse SC is optimized for extracting global motion

representation, potentially at the expense of the capability of component motion analysis. More

studies on the direction selectivity and the complex motion pattern representation of tree shrew

retina may offer insights about the source of species-specific differences in SC motion integration.

Here, using asymmetric plaids, we found the tree shrew SC neurons integrate plaid component

motion in a way consistent with VS. One potential concern is whether this apparent VS could be
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a byproduct of linear summation by component-selective neurons, especially given a substantial

amount of component cells in the tree shrew SC. We argue this is unlikely. If the observed VS

direction tuning was due to linear summation by component cells, their responses to the individual

component directions would need to scale proportionally with the TFs of those components (i.e.

in a 1:4 ratio for the 2 and 8 Hz gratings in our plaids). However, based on the grating responses

(Fig. 4.1B, right panel), the SC response magnitudes to 8 and 2 Hz differed by less than a factor of

2. Therefore, the VS computation we found arises from a non-linear integration of motion signals.

It should be noted that the VS is inconsistent with human perception or primate cortical represen-

tation of asymmetric plaids (Movshon, 1985; Khawaja et al., 2013; Wallisch and Movshon, 2019).

However, on both behavioral and neural level in primates, responses similar to VS have been re-

ported to emerge during the ultra-fast processing stage (Barthélemy et al., 2010; Bowns, 1996; Yo

and Wilson, 1992b; Ferrera and Wilson, 1990; Masson et al., 2000). Our observation is largely

consistent with the recent mouse findings with minute distinction (Li et al., 2025). In the mouse

SC, the visual neurons were found to follow the “probabilistically constrained VS” when repre-

senting the plaid stimulus. This additional probabilistic constraint on VS was thought to reflect two

computations serving distinct purposes. VS itself is a simple and powerful linear operation, likely

useful for indicating the visual space with dense motion information. The constraint, on the other

hand, implements essential components of another computation - IOC, which is advantageous for

tracking objects. The mouse SC likely balances both computations to maximize the efficiency of

coarse motion direction encoding with IOC-like processing for speedy object tracking. In contrast,

our data suggest tree shrew SC relies more purely on VS, with minimal evidence of a probabilistic

constraint. Although the population responses for 135° plaids showed slight bimodal distribution

with a peak near the theoretical constraint boundary, this effect was weak and resembled the mouse

SC only marginally (Fig. 4.5C&D). This indicates that the tree shrew SC might be more special-

ized for the VS computation and its relevant function. The IOC-like computation, presumably

supporting object tracking, could occur in separate brain areas (likely cortical structures). Surpris-

ingly, the OKR to 45° plaids showed an unexpected shift of direction representation from VS to
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IOC. This could suggest a different constraint on VS in the neural circuit driving the OKR.

Finally, in this study, we were not able to cover the whole SF range in gratings and speed range

in RDK. The lower bound of the SF was limited by our selection of stimulus patch size, and the

upper bound of the speed was selected to avoid potential motion streak effect. A more systematic

measurement would be ideal in the future.

4.5 Methods

We used 3 adult tree shrews (Tupaia Belangeri, female=2, male=1, 5-8 months old) for electro-

physiology recording and OKR behavior test. All experimental procedures in this and following

sections were approved by the University of Virginia Institutional Animal Care and Use Com-

mittee and in conformance with the National Institutes of Health Guide for the Care and Use of

Laboratory Animals and the Public Health Service Policy.

4.5.1 Surgery

Animals were first prepared for head plate implantation and craniotomy. A circular 4mm diameter

cranial window was made 3mm lateral (right side) to the lambda point. A glass window, made of a

stack of three 4mm and one 8mm thin cover glasses (0.2 mm thick), was used to cover and protect

the brain. This glass window was secured within a circular titanium chamber with a retaining ring.

The whole chamber was cemented with C&B Metabond onto the skull. Kwik-Cast sealant was

applied over the window for additional coverage and sealing of the craniotomy. A titanium head

plate was cemented with C&B Metabond onto the skull anterior to the craniotomy, with its front

edge aligned with the midpoint between the two eyes. The exposed skull around was also covered

with C&B Metabond.

The animal was fasted (with free access to water) for 3 hours prior to the surgery. We used

4-5% Isoflurane for anesthesia induction. Midazolam (5 mg/kg), Atropine (0.3 mg/kg), and Dex-

amethasone (1mg/kg) were then injected. The hair over the scalp was shaved, after which the
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animal was connected to EKG equipment to monitor the heart rate and was intubated. The endo-

tracheal tube was connected to a CO2 sensor. Isoflurane was delivered through intubation tubes

for anesthesia during the surgery (1-4%, varied across animals). The animal was placed on the

stereotaxic frame with earbar and toothbar fixing the head position. Skin flap resection was per-

formed around the head plate and cranial chamber and secured with 3M Vetbond at the edge of

the Metabond. Buprenorphine (0.05 mg/kg) was given as analgesic. Enrofloxacin (5 mg/kg) was

given as antibiotic. Eye ointment was applied to the eyes for protection during surgery. Following

recovery from anesthesia on a heating blanket under close monitoring, animals were monitored

daily for 5 consecutive days.

4.5.2 Electrophysiology

5 days after the surgery, electrical signals from the SC of head-fixed awake tree shrews were

recorded using 64 channel silicon microprobes (64ML) via a multichannel amplifier from Intan

Technologies at 20 kHz. The tree shrews were restrained in a transparent acrylic box with their

necks secured by a neckplate. In each recording, the retaining ring and the window were removed,

and excessive tissue regrowth over the craniotomy was carefully cleaned. A small hole in the dura

was made using a needle at the desired recording site. The probe was dropped through the hole to

penetrate the cortex and reach the SC.

The location of the probe is estimated with full-screen luminance reversing checkerboard stim-

ulus. We recorded mostly from the superficial layer of the SC, with part of the intermediate layer

included. The receptive field location of each recording session was estimated using flashing dark

squares (5◦×5◦) across the screen. The grating, random dot kinematogram (RDK), and plaid stim-

uli were then centered on the approximate receptive field location. Spikes were bandpass filtered

with 300–6000 Hz range. Spike waveforms were sorted offline into single- and multi-units using

MountainSort.

Visual stimuli were generated by customized script in MATLAB based on Psychtoolbox-3 and

shown on an LCD monitor (59.7 × 33.6 cm, 60 Hz refresh rate, gamma corrected). Gratings,
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plaids, and RDK were shown within a 40◦ circular patch against a grey background. The screen

was placed 25 cm away from the eye contralateral to the recording site. To get an estimation of the

preferred spatial and temporal frequency (SF and TF) of the grating stimulus, we used 6 SFs (0.03-

1 cpd, logarithmically spaced), 6 TFs (1-22 Hz, logarithmically spaced), and 4 motion directions

(0◦, 90◦, 180◦, 270◦) (Fig. 4.1A). After this estimation, we fixed the TF to 8 Hz for the following

grating and symmetric plaid stimulus presentation. To further characterize the SF tuning within the

low SF range and the direction tuning responses of the SC neurons, we presented drifting gratings

in 12 motion directions (0−330◦, linearly spaced) and 6 SFs (0.03-1 cpd, logarithmically spaced).

All the gratings were presented for 2s with 0.5s inter-stimulus grey screen. Each condition was

repeated for 8 times in a pseudorandom order. RDK (100% coherence, black and white dots, dot

size = 2◦, dot number = 80) was presented in 12 motion directions (0− 330◦, linearly spaced)

and 5 speeds (10-160 deg/s, logarithmically spaced). RDK stimuli were presented for 1.5s with

0.5s ISI. Each condition was repeated for 10 times in a pseudorandom order. Symmetric plaids

comprised 2 grating components with 0.1 cpd SF and 8 Hz TF overlapped. Here, we chose an

SF slightly higher than the population’s preferred value because a 40◦ stimulus patch contained a

more reasonable number of cycles (4 cycles) at 0.1 cpd compared to ultra-low SFs. We varied the

cross angle between the directions of the two gratings (60◦, 90◦, 120◦), as well as the direction of

the first component (C1), which ranged from 0 to 330◦ in 12 linearly spaced steps, as comparable

to previous mouse study (DePiero et al., 2024). The direction of the second component (C2) was

always defined as C1 direction plus cross angle. Asymmetric plaids differed from the symmetric

plaids in that C1 had a TF of 2 Hz, while C2 maintained a TF of 8 Hz. The cross angle between

C1 and C2 varied across 4 levels: 20◦, 45◦, 135◦, 180◦, as comparable to previous mouse study (Li

et al., 2025). Both Symmetric and asymmetric plaid blocks were mixed with 12-direction single

grating conditions with SF = 0.1 cpd and TF = 8 Hz. The stimuli were presented for 2s with 0.5s

ISI. Each condition was repeated for 10 times in a pseudorandom order. Room lights were turned

off during the whole recording.

To control the length of the recording, we randomly chose a subset of stimuli to present in each
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recording session. Each animal was record for 20-30 days (one session per day).

4.5.3 Optokinetic reflex (OKR)

Animals used in the electrophysiology experiment underwent OKR test with their head fixed.

Three computer screens (52.1 × 29.2 cm for each) were aligned vertically in portrait mode sur-

rounding the animal. The angle between two neighboring screens was 120◦. The distance between

the eyes of the animal and the center of the screens was 25 cm. We recorded the tree shrews in

the dark with an infrared light source. A dichroic mirror was placed in front of the right eye, and

a video camera captured the eye from the back of the animal through the reflection in the mirror,

thus minimizing visual occlusion. The camera was model FL3-U3-13Y3M-C (FLIR). Videos were

recorded at 60Hz rate. We used Facemap (Syeda et al., 2024) to track the pupil location with the

centroids coordinates. Only horizontal coordinates were used in our analysis to avoid the issue

of direction-dependent gain difference in OKR behavior. Saccade-like eye movements were de-

tected by the rapid coordinate change in eye movement trace and were removed so that only slow

eye movements were used to quantify OKR. Eye movements towards the left of the animal were

defined as having negative speeds, and rightward movements as positive.

Full field drifting gratings were shown on the 3-screen setup. To effectively elicit OKR in tree

shrews, we increased the SF of grating and plaid components to 0.4 cpd. In addition, we used a

slightly different set of TFs for gratings and plaids. Specifically, for gratings, we used TF = 8 Hz.

For 45◦ and 20◦ plaids, we used TF1 = 1.5 Hz, TF2 = 6 Hz for component gratings. For 135◦ and

160◦ plaids, we used TF1 = 2.5 Hz, TF2 = 10 Hz for component gratings. These parameters made

the VS motion speed for plaid and grating stimulus to be close, with 17, 17, 19, 19, 20 deg/s for

20◦, 45◦, 135◦, 160◦ plaids and single gratings, respectively. Each stimulus was presented for 10

seconds with a 3s inter-stimulus-interval and repeated for 10 times in a pseudorandom order.
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4.5.4 Quantification and statistical analysis

Responsiveness test

We consider a unit responsive to a stimulus when it fulfill 2 criteria: 1. its baseline subtracted

response is larger than 2 spikes/s for at least one stimulus condition; 2. its response to at least

one condition is significantly different from the blank condition tested by independent t-test with

Benjamini-Hochberg FDR correction.

Direction selectivity

Direction selectivity were quantified with global direction selectivity index (gDSI) as gDSI =

|ΣRθ eiθ

ΣRθ
|, where Rθ is the response magnitude to stimulus direction θ in radians. If there were

negative responses, the whole tuning curve was shifted so that the minimum response was 0. The

preferred direction was calculated as the angle of the vector summation: θpre f = arg(ΣRθ eiθ ).

Orientation/axis selectivity were calculated similarly: gOSI = |ΣRθ e2iθ

ΣRθ
|. The preferred orientation

was defined as: Oripre f =
1
2arg(ΣRθ e2iθ )+ π

2 , while the preferred motion axis was: Axispre f =

1
2arg(ΣRθ e2iθ ).

Component-pattern selectivity

We followed previous studies to quantify the component and pattern selectivity of neurons in re-

sponse to symmetric plaids (DePiero et al., 2024; Smith et al., 2005; Palagina et al., 2017; Juavinett

and Callaway, 2015). Briefly, based on each neuron’s grating response, we generated the predicted

component and pattern tuning curves to plaids. Pearson correlation coefficients were then cal-

culated between the observed response and predicted pattern (P) and component (C) responses

respectively, as well as between the predicted pattern and component responses themselves (PC).
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Adjusted partial correlation coefficient for pattern (RP) and component (RC) were as follows:

RP =
P−C×PC√

(1−C2)(1−PC2)

RC =
C−P×PC√

(1−P2)(1−PC2)

Next, RP and RC were transformed into ZP and ZC with Fisher z-score transformation:

ZP = 1.5× ln(
1+RP
1−RP

)

ZC = 1.5× ln(
1+RC
1−RC

)

1.5 was the number of freedom calculated by 0.5×
√

n−3 where n is the number of stimulus

directions (n = 12). A 95% confidence interval (z-score threshold = 1.645) was adopted to classify

neurons into pattern, component, and unclassified.

OKR gain

We calculated the OKR gain as described in Li et al. (2025). In short, OKR gain is defined as the

ratio of the eye movement speed and the stimulus speed in its vector sum direction: OKRGain =

speedeye
speedstim,V S

. The preferred direction of OKR was calculated as the angle of the vector summation of

the OKR Gain tuning curve. OKR gain range was calculated by the maximum OKR gain minus

the minimum.

4.6 Extended Data

4.6.1 Figure

4.7 Figure Legend
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Figure 4.6: Aligned z-score normalized tuning curves with more strict cutoff. (A) We selected
neurons with gDSI in the top and bottom 10% of the distribution and plotted their tuning curves
aligned to their preferred directions. (B) Same as (A) but for gOSI.

Figure 4.7: Example pattern and component neurons to symmetric plaids. (A-B) An example
pattern neuron. (A) Left: its tuning curve to grating. Right: the component-selective (magenta)
and pattern-selective (blue) response prediction to 90° plaid based on the grating tuning curve. (B)
Left: the tuning curve to 90° plaid of this neuron. Right: prediction and observed tuning curves
overlaid for comparison (the two predicted curves were scaled to match the observed response).
(C-D) Same as (A-B) but for an example component neuron.
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Figure 4.8: Tree shrew OKR. (A) The OKR gain to 12 directions of grating of an example
tree shrew. Horizontal grating directions (blue vertical dashed line, close to 180°) elicited the
largest horizontal eye movement. Blue solid line: trial-averaged response. Gray solid line: OKR
responses of individual trials. (B) The OKR gain to 12 directions for 4 plaid cross angles tested.
Data are from the same example tree shrew. VS and IOC predictions of the peak OKR response
are indicated by purple and yellow vertical dashed lines. The peak OKR follows VS prediction
except for 45° plaids. (C) The OKR strength for grating and plaids, quantified by OKR gain range
- the difference between the peak and trough OKR gain in the tuning curves as in (A-B). OKR gain
range is higher for grating than all the plaids, indicating a stronger OKR to grating. OKR gain
range showed more variability to 45° plaid across animals, which is consistent with the preferred
direction difference for 45° plaid being between VS and IOC predictions in Fig. 4.5F.



Chapter 5

Discussion

In the 3 chapters of studies I presented above, I explored the visual function of animals from visual

behaviors such as decision-making and OKR to single neuron level representation of artificial

visual stimuli in the SC. Using both tree shrews and mice as animal models allowed me to compare

and find fundamental neural and behavioral principles across species, as well as to discover unique

properties to species-specific ecological niche. Animals’ neural activities and behaviors cannot

be viewed as stand-alone functions, isolated from their “context”. I will further discuss in the

following content.

5.1 The “Impatient” Tree Shrews

In chapter 2, I showed an interesting speed and accuracy trade-off that naturally emerged in the tree

shrew visual decision-making behaviors. In the training scheme, we rewarded the correct choices

of the tree shrews with a constant amount of juice, and punished their incorrect choices with a

constant timeout. We found that despite the best behavior to maximize the juice reward was to

focus and increase the accuracy as much as possible (and most of the trials were not difficult at all

for these animals), tree shrews still chose to respond prematurely in some trials, leading to a “lapse”

in their psychometric curve, which corresponded to an imperfect plateau of the best accuracy that

they can achieve. This lapse was seen in various animals (but mostly in mice) and tasks, and

106
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were viewed as a decision-independent property such as animals’ inadequate ability to perform the

sensory, motor, or cognitive aspects of the task, or viewed as an active task-irrelevant exploratory

behavior (Ashwood et al., 2022). However, our study showed by simply changing the timeout

function in relation to the animals’ RT, the fast, low accuracy responses could be discouraged and

eliminated almost completely. This new timeout scheme resulted in longer delays if the animals

perform fast and incorrect choices, and shorter delays for slow, incorrect choices. Essentially, it

discourages the impulsive guessing behaviors in the animals. The fact that tree shrews can have

very low lapse rate under this new trial-delay scheme, when performing the same visual task with

the same amount of training time as the “high lapse” group, ruled out the possibility of inadequate

training or ability to distinguish the options. Rather, it suggested the animals’ behaviors were

optimized with additional factors taken into account.

The “low lapse” group’s choice-RT behavior was captured with a Timed Racing Diffusion

Model (TRDM), where an additional accumulator for time competed with the evidence accumu-

lator. This model provides one of the potential mechanisms of a stimulus-independent process

underlying tree shrew decision-making behavior. There are also other models such as Mixture

model that can (Ratcliff and Kang, 2021) model the behavioral data in this study as well, but all

of them require a mechanism that is independent of sensory evidence accumulation and dependent

on the task structure in order to explain the tree shrew behaviors we saw in the study. This flexible

mixture of multiple mechanisms we observed in the 2 groups of tree shrews likely stems from the

physical properties of the animals. Tree shrews naturally move very fast. This is also true in the

laboratory setup, which can be reflected by their fast RT for the contrast discrimination task. Their

motor capabilities could promote a behavior pattern that uses high frequency sampling strategy

to maximize the reward in natural environment with compromised accuracy. High accuracy can

easily exhaust brain resources and energy in fast cognitive processing. The exhibited impulsive be-

haviors could indicate an intentional deployment of the most efficient strategy for the tree shrews.

This deployment can be changed with specific trial delay schemes during learning, suggesting it

is a flexible strategy that relies on the animals’ understanding of the reward and cost function.
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More specifically, our exponential-decay delay found and broke the balance between the effort

they put in and the reward they got in the task, forcing the animals to find a new optimal strategy

to re-gain the balance. In comparison, primates with well developed vision are relatively slow

on similar visual decision tasks (Kirkpatrick et al., 2021; Jun et al., 2021). An advanced visual

system arguably reflects an evolutionary emphasis on functions involving long-range exchange of

information. Such organisms may prioritize high-precision information processing over frequent,

close-range embodied interaction. Therefore, researchers usually observe high accuracy and low

lapse rate in primates, but the reversal in mice and tree shrews. Interestingly, a study showed that

the same neuron population in the monkey SC contains the information about whether the ani-

mal decides to make saccades, which emphasizes accuracy, or perform pursuit, which emphasizes

speed (Krauzlis and Dill, 2002). This indicates that the speed-accuracy trade-off was adaptive to

context, and such cognitive control could be implemented at least partly within subcortical circuits.

More studies are needed to investigate the neural correlates of the stimulus-independent process.

Further research on the interaction between the stimulus-independent process and evidence accu-

mulation process, such as the attempt in the study of Ashwood et al. (2022), can shed light on the

executive control and context representation during the decision-making behavior.

5.2 The Powerful Visual Subcortex

Our study on motion processing in mouse and tree shrew SC underscores the importance of sub-

cortical visual functions. Traditionally, studies of visual functions have a predominant focus on

cortical areas. There are good reasons for this emphasis. First, from an evolutionary standpoint, the

primate cortex is well developed and constitutes the majority of the brain, with an expansion of vi-

sual functions compared to early mammals (Herculano-Houzel et al., 2007; Kaas, 2006). Second,

our extensive, although still growing, understanding of V1, including basic response properties,

anatomical organizations, and neural motifs, provides a strong foundation for vision research both

within V1 and in its downstream areas (Hubel and Wiesel, 1962, 1998). Third, the visual cortex is



109

relatively accessible surgically and experimentally in multiple species, allowing advanced record-

ing techniques such as imaging and high-density linear probes, and neural manipulation to be

carried out conveniently in the cortex. Fourth, the genetic and molecular tools are widely tested in

the cortex, enabling precise cell-type-specific control over functions of interest. However, it is not

negligible that many visual functions have been found to be related to the subcortical areas. One

famous example is the Sprague effect (Sprague and Meikle, 1965; Sprague, 1966; Valero-Cabré

et al., 2020). Unilateral lesion of the visual cortex can result in severe contralateral hemianopia, a

blindness to half of the visual field, expressed by both visual neglect in contralateral fields and mo-

tor bias towards ipsilateral sides. Notably, a unilateral lesion of the superior colliculus also results

in such deficits. However, if a unilateral cortical lesion is followed by a contralateral SC lesion, the

hemianopia will be rescued. This surprising observation suggests a strong interaction between cor-

tical and subcortical areas during visually guided behaviors. Another example is blindsight (also

called residual vision). Unilateral V1 damage can lead to loss of visual awareness in contralateral

visual field in primates. However, these patients/experimental monkeys can still respond to visual

stimulus in various tasks requiring the processing of visual motion or even emotional face stimuli.

Studies have shown that subcortical areas such as the SC and dLGN, is necessary for the blindsight

phenomenon (Kinoshita et al., 2019; Schmid et al., 2010). The exact contributions of these sub-

cortical structures depend on the task used to assess the residual vision. Similar observations have

also been reported in rodent models. For example, a transgenic mouse line that is born without the

majority of the cortex (including the entire visual cortex) can still perform visual behaviors such

as Pavlovian fear conditioning and cued Morris water maze tasks (Shanks et al., 2016; Cang et al.,

2018). Moreover, the SC was found to drive visually guided prey capture in mice (Hoy et al., 2016,

2019), as well as a series of other visual orienting behaviors (Hoy and Farrow, 2025; Cang et al.,

2024). In tree shrews, studies also found they have the capacity to discriminate visual patterns in

the absence of striate cortex (Ware et al., 1974, 1972).

Considering evolutionary history, vision is a function broadly found across a vast array of

species, many of which lack a neocortex. Even within mammals, core visual functions such as
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motion processing, spatial navigation, and basic object recognition are shared across species with

markedly different degrees of cortical development (Northcutt and Kaas, 1995). For most of the

species, vision requires a non-cortical solution, either co-existing with the visual cortex or serving

as the sole visual system. In zebrafish larvae, the optic tectum (homolog of the SC in mammals)

mediates prey capture behaviors, just as in mammals (Gahtan et al., 2005). Ablation of the nucleus

isthmi in frogs also stops their prey capture or threat avoidance behaviors (Caine and Gruberg,

1985). On the other hand, different species represent the visual information in similar ways, as

many visual response properties are shared between mammals and non-mammals. For example,

fish tectum prefers small spot of luminance change, has circular receptive fields, and shows direc-

tion selectivity, color related signals, binocular innervation, and pattern processing (Northmore,

2011). In addition, fish nucleus isthmi responds strongly to looming stimuli (Northmore, 2011).

Furthermore, bird tectal neurons also prefer small spot with motion contrast to background, and

center-surround RFs, and drive orienting movements (Wylie et al., 2009). Bird nucleus isthmi is

involved in the orientation discrimination (Isa et al., 2021). Such conservation of structures and/or

functions implies that these canonical computations arise early in evolution, and are implemented

in similar ways neurally. Comparing and contrasting visual functions in different animals provides

us insights on the relative importance of functions, as well as fundamental computational principles

and species-specific adaptations.

5.2.1 Functional Implications of Plaid Motion Studies

In chapter 3 and 4, I showed the vector sum (VS) computation for plaid motion direction integration

shared in mouse and tree shrew SC, as well as in their OKR behaviors. It is the first neural evidence

of VS for plaid motion representation. Plaids are considered as 2 dimensional patterns containing

two grating components. Gratings have been proven to effectively elicit stable responses in early

visual areas such as SC and V1 (Wang et al., 2010; Relota et al., 2025; Liu et al., 2023b; DePiero

et al., 2024; Ringach et al., 2002). Two gratings drifting towards different directions overlap to

form a moving plaid pattern, which is usually perceived by humans as a rigid, coherent pattern in a
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certain direction instead of two gratings sliding through each other, except for special cases when

the two component contrasts or spatial frequencies differ too much from each other (Adelson and

Movshon, 1982). Moreover, the perceived pattern direction follows the mathematical prediction

of the intersection-of-constraint (IOC). Such coherent motion perception was also found in non-

human primates (Movshon, 1985; Kreyenmeier et al., 2024; Barthélemy et al., 2010; Pattadkal

et al., 2023). However, both human and non-human primate studies have shown this perception is

susceptible for distortion in various conditions using asymmetric plaids. For example, when the

stimulus is presented for a very short duration (Bowns, 1996; Yo and Wilson, 1992b), or when type

II plaids (a subset of asymmetric plaids) are used (Ferrera and Wilson, 1990), or when specific

combinations of SF, TF, and contrast are used (Alais et al., 1997; Yo and Wilson, 1992a), the

perceived motion direction deviates from the IOC prediction and towards the VS direction of the

two components. Later, electrophysiological studies have found the neural correlates for an IOC-

like perception in areas such as MT and MST (Khawaja et al., 2013; Wallisch and Movshon,

2019), but to date no neural substrate has been shown to implement the VS computation itself

in any species. In our studies, we showed the first evidence that both mouse and tree shrew SC

represent asymmetric plaids in their VS directions. Additionally, similar VS computations are used

directly to guide reflexive OKR behavior. These findings suggest that a potential source of VS

signal observed in primates might come from the subcortical visual structures. This is indirectly

supported by previous studies in pigeons, who showed a perception of VS direction of plaids in a

motion direction discrimination task (Hataji et al., 2020, 2019). Birds’ visual processing depends

majorly on optic tectum (Cook et al., 2015). For example, avian tectums are relatively larger and

more complex compared to that in reptiles. Additionally, lesion of visual Wulst (a potential avian

homolog of primary visual cortex in mammals) has very little impact on the visual behaviors.

With a tectum dominated visual system, the perception of the pigeons becomes purely VS, which

is very consistent with our findings in mouse and tree shrew SC and reflexive eye movements

majorly driven by subcortical structures. These observations in different animal models suggest a

possible evolutionary development of complex motion processing strategies: VS is a general, early
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rule to integrate motion, while IOC-like computation serves specific purposes.

Indeed, many studies have shown that the SC, even in primates, are involved in a VS computa-

tion during “saccade averaging” phenomenon. When facing two visual targets in the visual field,

primate eye movement first follow a vector average of the stimuli before performing a winner-take-

all saccade, and the SC contributes to both phases (Ottes et al., 1984; Nummela and Krauzlis, 2011;

Glimcher and Sparks, 1993; van Opstal and van Gisbergen, 1990; Edelman and Keller, 1998). Vec-

tor averaging is simply a special form of weighted VS, presumably help to bring the eyes to the

visual space with more information. Therefore, the subcortical VS computation likely serves a

more general function of maximizing the information gain. This computation is largely linear and

straightforward, facilitating a fast visual representation with the tolerance of low precision (another

speed-accuracy trade-off phenomenon here), and benefiting animals in various survival-critical be-

haviors such as predation and predator avoidance.

However, we also observed that the mouse SC and OKR behavior clearly showed an IOC-like

response pattern to 135° plaids. This can be explained by a probabilistically constrained VS model

that is discussed in more details in Chapter 3. I want to emphasize again that the “probabilistic

constraint” is independent of the VS computation, but share the same assumptions with the IOC or

any computation that is underlying primates’ coherent perception of plaid pattern motion. The two

assumptions are 1. the grating patterns are parts of a larger moving pattern that exceeds the scope

of the observing window; 2. the two overlapping gratings are from the same rigid, coherently

moving pattern. This is very essential in understanding the function of this IOC-like computation.

The first assumption is set to deal with the motion ambiguity brought by limited spatial receptive

fields. Information outside the receptive fields is considered lost for individual processing units,

no matter whether this unit is a single neuron, a brain structure, or an animal. To achieve a more

accurate interpretation of the visual information, one approach is to sample larger visual fields,

by pooling neurons together or by moving the “sensors” around. However, a far more efficient

strategy is to program an internal “prior” on which stimuli and configurations are more likely to

occur. Natural scenes contain highly correlated, and structured patterns, unlike noise stimuli. By
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exploiting this statistical regularity, a single processing unit can effectively “regularize” its inputs

to produce a more accurate estimate despite the missing information. Given that all visual neurons

have limited spatio-temporal RFs, I expect similar regularizations/priors are implemented along

the visual pathway, but becoming most evident if the system is challenged with artificial stimuli

that lack natural scene statistics. The second assumption highlights another important aspect of our

perception of pattern motion - the brain prioritize the possibility that two gratings are from a single

object. Object recognition and tracking demand precise, high-resolution processing, functions

traditionally ascribed to the visual cortex (Serre et al., 2005). Therefore, the IOC-like motion

representation, which precisely tracks the object motion under the two assumptions mentioned

above, is more likely to be found in the cortex and expressed as stable perception. In contrast,

subcortex is better suit for a coarse, speedy processing with a VS computation. In specific scenarios

such as a very brief presentation of the stimulus, the brain may not have time for further processing,

leading to a VS-like perception in primates extracted from subcortical circuits. Notably, the IOC-

like perception was only observed for plaids consisting of 2 overlapping Fourier gratings. As

long as a non-Fourier component is introduced, the perception becomes VS instead of IOC, even

though the component motion is still considered 1-dimensional and ambiguous locally (Wilson

and Kim, 1994). This suggests that the IOC-like computations only integrate first-order Fourier

motion signals, whereas VS operates more broadly under a wide range of stimulus conditions.

Interestingly, we did not see a probabilistic constraint in tree shrew SC data. Rather, the tree

shrew SC followed VS for all the plaid conditions tested. This likely points to a functional special-

ization between cortical and subcortical structures. In mice, the SC and other subcortical visual

structures are highly involved in visual functions and process the majority of visual inputs. There-

fore, a mixture of functional emphases might co-exist in the subcortex, allowing the animals to

flexibly deal with different needs. The constraints we deduced from the data could reflect the

boundary of a functional domain. In more visual animals like tree shrews, specialization might

drive the subcortex to only perform the VS computation, and the cortex to perform other compu-

tations such as IOC. One hint from our data is that tree shrew OKR shows a IOC-like response to
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45° plaids. This suggests two points: 1. the OKR-driving circuit does not use the same compu-

tation as the SC, and 2. a different motion integration rule similar to IOC exists in the brain and

interact with the VS signals to drive OKR. Previous studies have suggested the cortex exerts more

influence on the OKR behavior in highly visual animals (Harris et al., 1993; Cahill and Nathans,

2008; Ambrad Giovannetti and Rancz, 2024). Moreover, a study comparing human and cat OKR

found a bias in humans towards the IOC direction but a bias in cats towards the component (likely

a VS) direction (Harris et al., 1993). Taken together, the findings indicate the tree shrew OKR

responses are potentially mediated by both subcortical and cortical pathways, placing tree shrews

as an intermediate animal model on the continuum of subcortical-cortical contributions to OKR.

5.2.2 Rethinking Superior Colliculus Function

The SC’s role in orienting behaviors is well established in various species (Hoy and Farrow, 2025).

Because the SC is an integrative hub for rapid sensory-motor transformation such as saccades, head

orienting, escape and predation, it is plausible that the SC is also involved in the execution of well-

learned skills. Studies showed that the cortical areas such as posterior parietal cortex (PPC) and

motor cortex are not required for task performance after learning (Kawai et al., 2015; Zhong et al.,

2019). Reinhold et al. (2025) further studied a reward learning process with a focus on subcortical

areas. They used optogenetic activation of striatum-projecting visual cortical neurons as a cue

for mice to reach for a food pallet. They found that optogenetic inhibition of striatum prevented

learning, but not improvement of skills already learned. However, muscimol inhibition of the

SC disrupted the cued reaching behavior. Importantly, SC inhibition did not affect spontaneous

reachings in those mice, suggesting a learned skill rather than motor capability was mediated by

the SC. More studies are needed to examine the SC’s contribution to the automatization of skilled

actions.

In addition to orienting actions, accumulating evidence also implicates the SC’s involvement in

higher-order functions. For example, primate SC is found to encode visual saliency (White et al.,

2021, 2017b,a; Heeman et al., 2025). Additionally, SC is involved in attention and decision-making
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(Basso et al., 2021). Yet, it is worth noting that attention is closely related to orienting behaviors

with blurred boundaries. Likewise, decision-related signals in the SC can also be correlated with

the automatization of actions due to the extensive task training in laboratory settings. Strikingly,

a recent human fMRI study showed that the SC orchestrates whole-brain dynamics during the

unconscious sudden insight, the so called “eureka” moment (Murata et al., 2025), suggesting a

role in large-scale, high-level cognitive processing. In summary, these findings point to a multi-

functional SC that can benefit from further investigations for insights on its role in different stages

and levels of functions, from the basic sensory representation and motor generation, ultimately to

abstract cognition.
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(2023). An updated suite of viral vectors for in vivo calcium imaging using intracerebral and

retro-orbital injections in male mice. Nature Communications 2023 14:1, 14(1):1–13.

Guillamón-Vivancos, T., Anı́bal-Martı́nez, M., Puche-Aroca, L., Moreno-Bravo, J. A., Valdeolmil-
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