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Support Expansion Operator Algebras

by Joseph Eisner

The collection of bounded operators which have at most finitely many nonzero en-
tries in each row and column of their standard array forms a ∗-subalgebra of B(ℓ2) and
thus their norm closure a C∗-algebra. We generalize this construction in several di-
rections and settings, giving rise to a very general procedure for constructing concrete
support expansion C∗-algebras over a represented tracial von Neumann algebra. We go
on to give a thorough analysis of the containment poset of concrete support expansion
C∗-algebras when the von Neumann algebra is taken to be ℓ∞ ⊆ B(ℓ2) and when it
is taken to be L∞(R) ⊆ B(L2(R)). In particular we will show the containment poset
of support expansion C∗-algebras over L∞(R) ⊆ B(L2(R)) has uncountable ascending
and descending chains as well as uncountable antichains.

The C∗-algebra discussed in our first sentence is naturally realized as a uniform
Roe algebra. In the second half of this dissertation we use measurable and quantum
relations per Weaver, 2012 along with our home-baked intermediary cantankerous
relations to define measurable, cantankerous and quantum uniform Roe algebras. We
then realize the support expansion C∗-algebras we developed in the first half as uniform
Roe algebras in an appropriate sense.
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Chapter 1

Introduction and Overview

The collection of bounded operators which have at most finitely many nonzero entries
in each row and column of their standard array forms a ∗-subalgebra of B(ℓ2) and thus
their norm closure a C∗-algebra. We generalize this construction in several directions
and settings, giving rise to a very general procedure for constructing concrete support
expansion C∗-algebras over a represented tracial von Neumann algebra. We go on
to give a thorough analysis of the containment poset of concrete support expansion
C∗-algebras when the von Neumann algebra is taken to be ℓ∞ ⊆ B(ℓ2) and when it
is taken to be L∞(R) ⊆ B(L2(R)). In particular we will show the containment poset
of support expansion C∗-algebras over L∞(R) ⊆ B(L2(R)) has uncountable ascending
and descending chains as well as uncountable antichains.

The C∗-algebra discussed in our first sentence is naturally realized as a uniform
Roe algebra. In the second half of this dissertation we use measurable and quantum
relations per Weaver, 2012 along with our home-baked intermediary cantankerous
relations to define measurable, cantankerous and quantum uniform Roe algebras. We
then realize the support expansion C∗-algebras we developed in the first half as uniform
Roe algebras in an appropriate sense.

1.1 Introduction

In this section we will first discuss a motivating construction and our strategy for
generalizing it. Then we will summarize some of our major results which will be
proved later.

1.1.1 Uniformly RC Finite Operators

In this subsection we discuss the construction of a C∗-algebra explored extensively in
Manuilov, 2019 which has also been considered in the context of uniform Roe algebras.

Definition 1.1.1. We say that an operator a ∈ B(ℓ2(N)) is uniformly row and column
finite (abbreviated as uniformly RC-finite) if there exists some N ∈ N such that the
standard array a = [an,m] has at most N non-zero entries per row and per column.
We denote the set of all uniformly RC-finite operators by BRC.

Notice that if [an,m] is an N-by-N array with complex coefficients which is uniformly
row and column finite in the sense above, then [an,m] (canonically) induces a bounded
operator on ℓ2(N) if and only if there exists some C > 0 such that |an,m| < C for
every n,m ∈ N.

It is not hard to see that BRC is closed under adjoints, addition and scalar multi-
plication. In fact it is also closed under multiplication and thus forms a ∗-subalgebra
of B(ℓ2(N)). Hence the norm closure CRC = BRC

∥·∥ in B(ℓ2(N)) is a C∗-algebra.
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Manuilov, 2019 goes on to explore several interesting properties of CRC including
that it is a non-trivial proper sub-algebra of B(ℓ2(N)), that it contains the compact
operators, and that it has a unique maximal two-sided ideal which is strictly larger
than the compacts.

Reflecting on the definition of BRC, we note that the condition “at mostN non-zero
entries per column” can be expressed in terms of supports in the following way:

|supp (aδn)| ≤ N for every n ∈ N

where |·| denotes cardinality, supp (·) here is the set of non-zero entries in an ℓ2(N)
vector and δn is the n-th basis vector.

Upon further reflection, |supp (·)| is sub-additive and so there is no reason for the
basis elements to hold an elevated status over other vectors. We may as well say that

|supp (aξ)| ≤ N · |supp (ξ)| for every ξ ∈ ℓ2(N).

The condition on rows similarly can be expressed in terms of the support of the adjoint
of a. Thus we can offer an alternative definition of BRC.

Definition 1.1.2. An operator a ∈ B(ℓ2(N)) is uniformly RC-finite if there exists
some N ∈ N such that

|supp (aξ)| , |supp (a∗ξ)| ≤ N · |supp (ξ)| for every ξ ∈ ℓ2(N)

It is worth mentioning that the closure of BRC under multiplication is straightfor-
ward when using this definition.

We notice several ways that one might generalize Definition 1.1.2:

1. Replace N · x with some other family of functions, resulting in different con-
ditions. For instance, consider operators a ∈ B(ℓ2(N)) for which there exist
N,M ∈ N such that

|supp (aξ)| , |supp (a∗ξ)| ≤ N · M
√

|supp (ξ)| for every ξ ∈ ℓ2(N)

2. Replace |·| with some other measure m on N.

3. Change the underlying Hilbert space or the notion of support. For instance,
consider operators a ∈ B(L2(R)) for which there exists some N ∈ N such that

µ(supp (aξ)), µ(supp (a∗ξ)) ≤ N · µ(supp (ξ)) for every ξ ∈ L2(R)

where µ is Lebesgue measure and supp (ξ) is the support of a function represen-
tative of ξ.

Any of these generalizations can, with care taken in choosing the condition func-
tions, give rise to a class of ∗-algebras and thus, once norm closures have been taken,
a class of C∗-algebras. We will need some more sophisticated tools to differentiate
and explore the C∗-algebras that can arise from this procedure.

Much of the technical content (Chapters 2 and 3) of this dissertation is explor-
ing these cases and determining the structure of the resulting containment posets of
concrete C∗-algebras.
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1.1.2 Support and Expansion

Motivated by Definition 1.1.2 we want to introduce a function which measures how
much a given operator expands the support of vectors of various sizes. We would like
this definition to make sense in a broad context and so will need a unified notion of
support and measure.

Definition 1.1.3. Given a Hilbert space H and a von Neumann sub-algebra M ⊆
B(H) we define the M-support of a vector ξ ∈ H to be the smallest projection in M
which fixes ξ, denoted suppM (ξ) =

∧
{p ∈ Pr(M) : pξ = ξ}, where Pr(M) is the set

of projections in M.

We note that this definition of supp (·) is not literally the same as our earlier
uses in Definition 1.1.2 and the surrounding discussion – but it suitably generalizes
and unifies them into a single concept. We will measure supports with dimension
functions.

Definition 1.1.4. A dimension function on the projections of a von Neumann algebra
M is a function d : Pr(M) → [0,∞] which is monotonic, additive on orthogonal
projections and constant on Murray-von Neumann equivalence classes. Precisely for
p, q ∈ Pr(M), d satisfies:

d(p) ≤ d(q) whenever p ≤ q,

d(p+ q) = d(p) + d(q) whenever p ⊥ q and
d(p) = d(q) when p and q are Murray-von Neumann equivalent.

For the purposes of this dissertation dimension functions on a set of projection
Pr(M) can always be thought of as arising by restricting a trace on M. More generally
the codomain of a dimension function might include infinite cardinals, but we do not
explore those situations.

We now define one of the central topics of this dissertation:

Definition 1.1.5. Given a Hilbert space H, von Neumann sub-algebra M ⊆ B(H)
and a dimension function d : Pr(M) → [0,∞] the d-support expansion function1

[0,∞] → [0,∞] of an operator a ∈ B(H) is

Φda(x) = sup{d(suppM (aξ)) : d(suppM (ξ)) ≤ x}.

A few notational points: Since a is in B(H) and d is defined on projections in M,
we have suppressed H and M in the above notation, though they are important input
data. Moreover, when d is thoroughly established by context it may be omitted as
well.

We also immediately observe that for any a ∈ B(H) we have that Φda is increasing
and Φda(0) = 0.

While support expansion functions will streamline our discussion about general-
izations of CRC we also consider them an interesting topic in their own right and study
them extensively. For now we need a few elementary properties.

1Dimension functions may take infinite cardinal values in which case the domain and codomain
of support expansion functions may include these cardinals. We do not explore these cases in this
dissertation.
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Lemma 1.1.6. Fix a Hilbert space H, von Neumann sub-algebra M ⊆ B(H) and
dimension function d on Pr(M). Then for a, b ∈ B(H) and nonzero λ ∈ C:

1. Φdλa = Φda.

2. Φda+b ≤ Φda +Φdb .

3. Φdab ≤ Φda ◦ Φdb .

Proof. For (a), multiplying by nonzero λ ∈ C does not change the support of a vector,
so d(suppM (λaξ)) = d(suppM (aξ)).

For (b), it suffices to note that supremum and d(suppM (·)) are both subadditive.
As for (c), consider the inequality chain below:

Φab(x) = sup
d(suppM(ξ))≤x

d(suppM (abξ))

≤ sup
d(suppM(ξ))≤x

(
sup

d(suppM(η))≤d(suppM(bξ))
d(suppM (aη))

)
≤ sup

d(suppM(η))≤Φb(x)
d(suppM (aη))

= Φa(Φb(x)).

Support expansion functions make it straightforward to talk about operators “con-
trolled” by a function or collection of functions.

Definition 1.1.7. Fix a Hilbert space H, von Neumann sub-algebra M ⊆ B(H) and
dimension function d on Pr(M). Then given some family of functions F : [0,∞] →
[0,∞] and f ∈ F we define

Bf = {a ∈ B(H) : Φda,Φ
d
a∗ ≤ f},

BF =
⋃

{Bf : f ∈ F} and

CF = BF
∥·∥
.

The sets Bf and BF are the f -controlled and F-controlled operators respectively. C∗-
algebras of the form CF are collectively referred to as support expansion C∗-algebras
(on M).

In the above notation we have suppressed H,M and d, which will always be clearly
established from context.

A rapid corollary of Lemma 1.1.6 gives us sufficient conditions so that CF is a
C∗-algebra:

Corollary 1.1.8. Fix a Hilbert space H, von Neumann sub-algebra M ∈ B(H) and
dimension function d on Pr(M). Take f1, f2 : [0,∞] → [0,∞], a ∈ Bf1, b ∈ Bf2 and
λ ∈ C then:

1. a∗ ∈ Bf1.

2. λa ∈ Bf1 .

3. a+ b ∈ Bf1+f2.
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4. ab ∈ Bf1◦f2.

It follows that if a family of functions F : [0,∞] → [0,∞] is closed under addition
and composition then BF is a ∗-subalgebra of B(H) and thus CF is a C∗-algebra.

Proof. Straightforward.

We have now generalized the construction of CRC and have a procedure for pro-
ducing related C∗-algebras.

Example 1.1.9. Take H = ℓ2(N) and let ℓ∞(N) ∼= M ⊆ B(ℓ2(N)) be the diagonal
operators while d : Pr(ℓ∞(N)) → [0,∞] is the dimension function induced by the
standard trace on B(ℓ2(N)). Take F to be the set of lines through the origin with
positive integer slope (noting F is closed under addition and composition) then

BRC = BF .

Often we will want to start with some collection of generating functions F :
[0,∞] → [0,∞] which may not be closed under addition and composition. In these
cases we will denote by ⟨F⟩ the smallest collection of functions [0,∞] → [0,∞] closed
under addition and composition which contains F . In the case of a single function we
abbreviate ⟨f⟩ = ⟨{f}⟩.

In the following subsections we will survey some results about the poset of C∗-
algebras of the form C⟨F⟩ in various settings, proofs will be provided in subsequent
chapters.

1.1.3 Discrete Support Expansion Algebras

In this subsection let H = ℓ2(N) with ℓ∞(N) ∼= M ⊆ B(ℓ2(N)) the diagonal operators.

Theorem 2.2.5. Let d : Pr(l∞(N)) → [0,∞] be the dimension function induced by
the standard trace on B(ℓ2(N)). For any family F of maps [0,∞] → [0,∞], we have
that

C⟨F⟩ ∈
{
{0},K(ℓ2(N)), CRC,B(ℓ2(N))

}
where K(ℓ2(N)) denotes the compact operators inside of B(ℓ2(N)).

This is point 1 in the discussion following Definition 1.1.2 and we see that, besides
BRC, there are no novel C∗-algebras obtained by this generalized procedure in the
discrete setting with standard trace. Contrasting this result we obtain an extremely
rich poset of C∗-algebras if we impose a different dimension function on Pr(M), a
generalization of the RC-finite operators which corresponds to points 1 and 2 in the
discussion following Definition 1.1.2. Let u : N → Q+ be some enumeration of the
non-negative rational numbers.

Definition 2.3.5. Define the dimension function d : Pr(ℓ∞(N)) → [0,∞] by stipulat-
ing d(pn) = u(n), where pn denotes projection onto the span of the n-th basis vector
of ℓ2(N), and extend to all of Pr(ℓ∞(N)) using σ-additivity. We denote by O the set
of all C∗-subalgebras of B(ℓ2(N)) of the form C⟨F⟩ for some family F of functions
[0,∞] → [0,∞] in this context. We view O as a poset with the order being given by
the standard inclusion.

Theorem 2.3.6. The poset O has uncountable increasing chains, uncountable de-
creasing chains and uncountable antichains.
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There are many dimension functions which could be imposed on Pr(M), each
resulting in a different poset of support expansion C∗-algebras. In some sense the
two we have exhibited here are extremes, demonstrating that the poset of support
expansion C∗-algebras can range from nearly trivial to extremely rich.

1.1.4 Continuous Support Expansion Algebras

In this subsection we will explore point 3 in the discussion following Definition 1.1.2.
Let H = L2(R) with L∞(R) ∼= M ⊆ B(L2(R)) the multiplication operators and
d : Pr(M) → [0,∞] the dimension function induced by integrating against Lebesgue
measure. We will refer to C∗-algebras of the form CF in this context as continuous
support expansion C∗-algebras.

The support expansion functions of operators in B(L2(R)) have some nice prop-
erties. To explore these, we introduce several classes of functions:

Definition 3.1.4. Consider a function f : [0,∞] → [0,∞].

1. We say that f is ICOD (this acronym abbreviates “increasing and concave down”)
if f(0) = 0 and it is increasing and concave down.

2. We say that f is ISOD (this acronym abbreviates “increasing and slope-to-origin
decreasing”) if f(0) = 0 and it is increasing and f(x)

x is decreasing.

3. We say that f is SUPPEXP (this acronym abbreviates “support expansion”) if
f = Φa for some a ∈ B(L2(R)).

By abuse of notation, we also denote the subsets of all functions [0,∞] → [0,∞] which
are ICOD, ISOD, and SUPPEXP by ICOD, ISOD, and SUPPEXP, respectively.

Notice that, by definition, f(0) = 0 for all functions in either ICOD or ISOD, and
the same also holds for maps in SUPPEXP.

Theorem 3.1.6. The inclusions ICOD ⊆ SUPPEXP ⊆ ISOD hold.

Although Theorem 3.1.6 does not give us a complete characterization of support
expansion functions, it will be enough for us to completely survey the continuous
support expansion C∗-algebras:

Theorem 3.2.11. Let F be a collection of functions [0,∞] → [0,∞] then there exists
some collection F ′ ⊆ ICOD such that C⟨F⟩ = C⟨F ′ ⟩.

Definition 3.2.6. We denote by P the set of all C∗-subalgebras of B(L2(R)) of the
form C⟨F⟩ for some family F of functions [0,∞] → [0,∞]. We view P as a poset with
the order being given by inclusion.

The poset structure of P is quite rich.

Theorem 3.4.1. The poset P has uncountable increasing chains, uncountable de-
creasing chains and uncountable antichains.

P has a two-tiered structure, where C∗-algebras in the lower tier all have immediate
successors in the upper tier. Which tier C⟨F⟩ falls in depends on the behavior at infinity
of the functions in F ⊆ ICOD. In particular, if limx→∞

f(x)
x = 0 for every f ∈ F

then C⟨F⟩ will fall into the lower tier. Conversely, if limx→∞
f(x)
x > 0 for some f ∈ F

then C⟨F⟩ falls into the upper tier.
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P also has a rigid structure at the top and bottom which we understand well. It
has unique first, second, third, ultimate and penultimate elements. It has no fourth
element, two incomparable third-to-last elements and one fourth-to-last element.

The above information is summarized in the following theorem, though the names
of these elements are unmotivated without context. See Subsection 3.2.5 for a detailed
treatment of these topics and proofs.

Theorem 3.5.10. The poset P has the structure indicated in the diagram below.
B(L2(R))CICOD<∞

CICODbdd

CICOD0

CICOD0∩bdd

C⟨G⟩

C⟨F⟩

C⟨x⟩

C⟨x⟩_0

limx→∞
g(x)
x > 0

for some g ∈ G
limx→∞

f(x)
x = 0

for all f ∈ F

Figure 1.1: Elements further up and to the right are larger in the
poset P. Dotted lines indicate containment. Solid lines indicate im-

mediate successors.

1.2 Uniform Roe Algebras and Generalizations

Now that we have thoroughly surveyed our major results for support expansion C∗-
algebras, we seek to place them in a larger theory.

1.2.1 Uniform Roe Algebras

Definition 5.1.7. (Roe, 2003 Definition 2.3)2 Given a set X, we say a collection
C ⊆ P(X×X) of relations on X is a coarse structure on X if it satisfies the following:

(a) The diagonal relation ∆ ∈ C,

(b) If U ∈ C then UT ∈ C,

(c) If U, V ∈ C then U ◦ V ∈ U ,

(d) If U, V ∈ C then U ∪ V ∈ C and

(e) If U ∈ C and V ⊆ U then V ∈ C.

The pair (X, C) is a coarse space and elements of C are commonly referred to as
controlled sets or entourages.

(In the above definition UT = {(y, x) : (x, y) ∈ U}.) One may view coarse
structures as a generalization of metric spaces, as demonstrated by the following
example.

Example 5.1.8. Let (X, d) be a metric space and for each λ ∈ (0,∞) define Uλ =
{(x, y) : d(x, y) ≤ λ}. Then C = {U ⊆ X × X : U ⊆ Uλ for some λ ∈ (0,∞)} is a
coarse structure on X.

A coarse structure naturally induces a C∗-subalgebra of B(ℓ2(X)) as seen in the
definition and discussion below.

2Coarse structures were axiomatized in this way by John Roe in Roe, 2003, but these ideas
originate in earlier works in geometric group theory including those of Gromov and Mostow.
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Definition 5.1.11. (Uniform Roe Algebra) Let C be a coarse structure on a set X
then for each U ∈ C we define

DU = {a ∈ B(ℓ2(X)) : (x, y) /∈ U =⇒ ⟨aδy, δx⟩ = 0}

C∗
u[X, C] =

⋃
{DU : U ∈ C}

C∗
u(X, C) = C∗

u[X, C]
∥·∥
.

DU and C∗
u[X, C] are called the U -controlled and C-controlled operators, respectively.

Meanwhile C∗
u(X, C) is the uniform Roe algebra associated with (X, C). Occasionally

C∗
u[X, C] is also referred to as the algebraic uniform Roe algebra associated with (X, C).

The operations adjoint, addition and multiplication are closed for C∗
u[X, C] because

inverse, finite union, and composition are respectively closed for C. C∗
u[X, C] is also

closed under scalar multiples and so is a ∗-subalgebra of B(ℓ2(X)), hence C∗
u(X, C) is

a C∗-algebra. In fact it is a unital C∗-algebra since ∆ ∈ C and the identity I ∈ D∆.

Example 1.2.4. Let X = N and E be the maximal uniformly locally finite coarse
structure on X. Precisely, E ∈ E if and only if there exists some N ∈ N such that

|{n ∈ N : (n,m) ∈ E}| ≤ N and |{n ∈ N : (m,n) ∈ E}| ≤ N

for every m ∈ N. Then CRC = C∗
u(N, E). That is to say CRC is a uniform Roe algebra.

If discrete support expansion C∗-algebras can be uniform Roe algebras then we
wonder if continuous support expansion C∗-algebras might be “continuous uniform
Roe algebras” in some sense. Unfortunately no such object appears to be defined in
the literature. What tools would be necessary to define an analog to uniform Roe
algebras in, for instance, B(L2(R))?

1.2.2 Measurable Relations and Uniform Roe Algebras

We want to come up with a continuous analog of uniform Roe algebras and so we
need a continuous notion of coarse structure, further requiring a continuous notion
of relation. Luckily, a suitable notion of continuous or measurable relation has been
crafted in Weaver, 2012. In Section 4.2 we will provide a thorough treatment of these
objects with some motivating intuition. For now we merely introduce them and use
them to generalize uniform Roe algebras.

In defining measurable relations, Weaver, 2012 makes reference to a class of mea-
sure spaces which are finitely decomposable. As this may not be a well known class,
we quote his brief discussion of it from pg. 4:

To avoid pathology we assume that all measure spaces are finitely decom-
posable. This means that the space X can be partitioned into a (possibly
uncountable) family of finite measure subspaces Xλ such that a set S ⊆ X
is measurable if and only if its intersection with each Xλ is measurable, in
which case µ(S) =

∑
µ(S∩Xλ). Finite decomposability is a generalization

of σ-finiteness. Counting measure on any set is also finitely decomposable.
The spaces L∞(X,µ) with (X,µ) finitely decomposable are precisely the
abelian von Neumann algebras.

Definition 4.2.1. (Weaver, 2012 Definition 1.2 Measurable Relation) Let (X,µ) be
a finitely decomposable measure space. A measurable relation on X is a family R of
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ordered pairs of nonzero projections in L∞(X,µ) such that(∨
pλ,
∨
qκ

)
∈ R ⇔ some (pλ, qκ) ∈ R

for any pair of families of nonzero projections {pλ} and {qκ}.

Measurable relations can also be defined in terms of “image maps” and these are
often nicer to work with.

Proposition 4.2.2. (Weaver, 2012 Proposition 1.4) Let (X,µ) be a finitely decom-
posable measure space. If R is a measurable relation on X then the map

ϕR : q 7→ 1−
∨

{p : (p, q) /∈ R},

from the set of projections in L∞(X,µ) to itself, takes 0 to 0 and preserves arbitrary
joins. If ϕ is a map from the set of projections in L∞(X,µ) to itself that takes 0 to 0
and preserves arbitrary joins then

Rϕ = {(p, q) : pϕ(q) ̸= 0}

is a measurable relation on X. The two constructions are inverse to each other.

Definition 4.2.3. Let (X,µ) be a finitely decomposable measure space. We call a
map ϕ : Pr(L∞(X,µ)) → Pr(L∞(X,µ)) which takes 0 to 0 and preserves arbitrary
joins an image map for L∞(X,µ) and denote the collection of such maps by Im(X,µ).

Weaver, 2012 also defines the relevant operations we will need for “measurable
coarse structures”.

Definition 4.2.7. (Weaver, 2012 Definition 1.6) Let (X,µ) be a finitely decomposable
measure space.

(a) The diagonal measurable relation ∆ on X is defined by setting (p, q) ∈ ∆ if
pq ̸= 0.

(b) The transpose of a measurable relation R is the measurable relation RT =
{(q, p) : (p, q) ∈ R}.

(c) The product of two measurable relations R and R′ is the measurable relation

R · R′
= {(p, r) : for every q either (p, q) ∈ R or (1− q, r) ∈ R′} or equivalently

= {(p, r) : there is a q so that (p, q
′
) ∈ R and (q

′
, r) ∈ R′

for every q
′ ≤ q}.

(d) A measurable relation R on X is

(i) reflexive if ∆ ⊆ R
(ii) symmetric if RT = R
(iii) antisymmetric if R∧RT ⊆ ∆

(iv) transitive if R2 ⊆ R.

That each of the above is a relation is established in Weaver, 2012 Proposition
1.5 which also shows that any union of measurable relations is a measurable relation.
Note that in Definition 4.2.7d.iii we have made reference to the meet of two measurable
relations, which we define presently:
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Definition 4.2.6. Let (X,µ) be a finitely decomposable measure space and E a
collection of measurable relations on X

(a)
∨
E =

⋃
{R : R ∈ E}

(b)
∧
E =

⋃
{R′ measurable relation on X : R′ ≤ R for every R ∈ E}

Since any union of measurable relations is a measurable relation, we have that the
set of measurable relations ordered by inclusion forms a complete lattice under these
definitions.

We are now ready to define measurable coarse structures.

Definition 5.2.1 (cf. Definition 5.1.7). Let (X,µ) be a finitely decomposable measure
space. We say a nonempty collection C of measurable relations (Definition 4.2.1) on
X is a measurable coarse structure on X if it satisfies the following:

(a) If U ∈ C then UT ∈ C,

(b) If U, V ∈ C then U · V ∈ C,

(c) If U, V ∈ C then U ∨ V ∈ C and

(d) If U ∈ C and V ≤ U then V ∈ C.

The tuple (X,µ, C) is a measurable coarse space and elements of C may be referred to
as entourages.

Note we have dropped the hypothesis that a coarse structure must contain the
diagonal. We elaborate on this change in Section 5.1.3.

Definition 5.2.2 (cf. Definition 5.1.11). Let (X,µ, C) be a measurable coarse space
then for each U ∈ C we define

DU = {a ∈ B(L2(X,µ)) : (p, q) /∈ U =⇒ paq = 0}

C∗
u[X, C] =

⋃
{DU : U ∈ C}

C∗
u(X, C) = C∗

u[X, C]
∥·∥
.

DU and C∗
u[X, C] are called the U -controlled and C-controlled operators, respectively.

Meanwhile C∗
u(X, C) is the measurable uniform Roe algebra associated with (X, C).

Occasionally C∗
u[X, C] is also referred to as the measurable algebraic uniform Roe

algebra associated with (X, C).

Example 1.2.12. (cf. Theorems 5.3.8 and 5.3.13) Take H = L2(R) with L∞(R) ∼=
M ⊆ B(L2(R)) the multiplication operators and d : Pr(M) → [0,∞] the dimension
function induced by integrating against Lebesgue measure. Also take F ⊆ ICOD
(Definition 3.1.4) and consider C⟨F⟩ (Definition 1.1.7). For each f ∈ F we define

Imf = {ϕ ∈ Im(R) : d(ϕ(p)) ≤ f(d(p))}

Im⟨F⟩ =
⋃

{Imf : f ∈ ⟨F⟩}

E⟨F⟩ = {R : ϕR, ϕRT ∈ Im⟨F⟩}

noting that E⟨F⟩ is a measurable coarse structure. Then C∗
u(R,E⟨F⟩) = C⟨F⟩. That is

to say continuous support expansion C∗-algebras are measurable uniform Roe algebras.
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1.2.3 Cantankerous Uniform Roe Algebras

We can mirror Weaver’s framework for measurable relations but take pairs of projec-
tions in an arbitrary represented von Neumann algebra:

Definition 4.3.1. (cf. Definition 4.2.1) Let M ⊆ B(H) be a represented von Neu-
mann algebra. A cantankerous relation on M is a family R of ordered pairs of nonzero
projections in M such that(∨

pλ,
∨
qκ

)
∈ R ⇔ some (pλ, qκ) ∈ R

for any pair of families of nonzero projections {pλ} and {qκ}.

We elaborate on our choice of the adjective cantankerous in Section 4.3.
With one minor exception, the results from the previous subsection all hold in

the non-commutative setting (see Section 4.3 for details) and so we can bring all of
our definitions along replacing the adjective “measurable” with “cantankerous”. The
aforementioned exception is that we do not know if the second definition for the
product of two relations in Definition 4.2.7c is equivalent to the first, nor if it defines
a cantankerous relation. The first definition of the product of two relations is indeed
a cantankerous relation (Proposition 4.3.3) and so we use it exclusively.

Our initial motivation for exploring measurable relations was to realize support
expansion C∗-algebras as uniform Roe algebras in some appropriate sense. It turns out
that the notion of “support expansion” bifurcates as we move into the cantankerous
setting (for now we avoid the details but see Example 5.3.7) which makes our job more
difficult. But, indeed, both notions of support expansion C∗-algebras can be realized
as cantankerous uniform Roe algebras:

Theorem 1.2.14. (cf. Theorems 5.3.8 and 5.3.13) Let M ⊆ B(H) be a represented
von Neumann algebra with dimension function d and F a family of functions closed
under addition and composition. Then CF (Definition 1.1.7) is a cantankerous uni-
form Roe algebra.

1.2.4 Quantum Uniform Roe Algebras

Weaver, 2012 did not stop at defining measurable relations, he also defined “quantum
relations”, and our cantankerous relations lie somewhere between them. In Sections 4.4
and 5.4 we extend some of the tools Weaver, 2012 developed for measurable relations
into the quantum setting and note the definitions for quantum coarse spaces and
quantum uniform Roe algebras.
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Chapter 2

Discrete Support Expansion
C∗-Algebras

In this chapter we discuss the support expansion C∗-algebras (Definition 1.1.7) which
can be obtained when H = ℓ2(N) and ℓ∞(N) ∼= M ⊆ B(H) the diagonal operators,
with various dimension functions on Pr(M).

2.1 A Projection-Focused Notion of Support Expansion

Before we get into the analysis of this specific case, we will need an alternative char-
acterization of support expansion functions when supports are taken inside of a com-
mutative von Neumann algebra. This characterization will also be used extensively
in Chapter 3 and revisited in Subsection 5.3.1 of Chapter 5. Recall the definition of
support expansion functions given in the Overview:

Definition 1.1.5. Given a Hilbert space H, von Neumann sub-algebra M ⊆ B(H)
and a dimension function d : Pr(M) → [0,∞] the d-support expansion function1

[0,∞] → [0,∞] of an operator a ∈ B(H) is

Φda(x) = sup{d(suppM (aξ)) : d(suppM (ξ)) ≤ x}.

Note that Definition 1.1.5 is concerned with the support of vectors. There is a
related notion which has to do with the support of operators, which we define now.

Definition 2.1.2. [cf. Definition 1.1.3] Given a Hilbert space H and a von Neumann
sub-algebra M ⊆ B(H) we define the left M-support of an operator a ∈ B(H) to be
the smallest projection in M which fixes a, denoted sMl (a) =

∧
{p ∈ Pr(M) : pa = a},

where Pr(M) is the set of projections in M.

As with vector supports we will suppress the von Neumann algebra M when it is
established by context.

We now present a projection-focused version of the support expansion function
which turns out to coincide with it when supports are taken in a commutative von
Neumann algebra (Theorem 2.1.4).

Definition 2.1.3. (cf. Definition 1.1.5) Given a Hilbert space H, von Neumann sub-
algebra M ⊆ B(H) and a dimension function d : Pr(M) → [0,∞] the projection
d-support expansion function [0,∞] → [0,∞] of an operator a ∈ B(H) is

Φda
′
(x) = sup{d(sMl (ap)) : p ∈ Pr(M), d(p) ≤ x}.

1Dimension functions may take infinite cardinal values in which case the domain and codomain
of support expansion functions may include these cardinals. We do not explore these cases in this
dissertation.
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As with the vector version we will often suppress the dimension function d when
it is established by context.

Theorem 2.1.4. Let H be a Hilbert space. If M ⊆ B(H) is a commutative von
Neumann sub-algebra with dimension function d then Φda = Φda

′
.

Before proving Theorem 2.1.4, we need some auxiliary results.

Lemma 2.1.5. Given ξ1, ξ2 ∈ L2(R), we have supp (ξ1)∨supp (ξ2) = supp (ξ1 + λξ2)
for all but perhaps countably many λ ∈ C.

Proof. Let p = supp (ξ1)∨ supp (ξ2) and for each λ ∈ C let pλ = supp (ξ1 + λξ2)
⊥∧p.

We first notice that (pλ)λ∈C are orthogonal. Indeed, fix λ ̸= λ′ in C and let us show
that qλ,λ′

..= pλ ∧ pλ′ = 0. For that, notice that qλ,λ′ (ξ1 + λξ2) = qλ,λ′ (ξ1 + λ
′
ξ2) = 0.

So, as λ ̸= λ′, this implies that qλ,λ′ (ξ1) = qλ,λ′ (ξ2) = 0. Then, if 0 < qλ,λ′ , we have
p − qλ,λ′ < p and, as (p − qλ,λ′ )ξ1 = ξ1 and (p − qλ,λ′ )ξ2 = ξ2, this contradicts the
minimality of p. So, pλ ∧ pλ′ = 0.

The pλ are a pairwise orthogonal family dominated by p ∈ Pr(L∞(R)), so by
σ-finiteness of Lebesgue measure at most countably many can be nonzero.

Corollary 2.1.6. For any collection of vectors (ξn)∞n=1 ⊆ L2(R) we can find constants
(λn)

∞
n=1 ⊆ C such that for every N ∈ N:

d
( N∨
n=1

supp (ξn)
)
= d
(
supp

(
N∑
n=1

λnξn

))
.

Proof. Apply Lemma 2.1.5 repeatedly.

Proof of Theorem 2.1.4. Fix a ∈ B(L2(R)). The inequality Φa ≤ Φ
′
a is immediate,

so we only need to show the reverse inequality holds. For each p ∈ Pr(L∞(R)), fix
an orthonormal basis (ξpn)∞n=1 of pL2(R) and, using Corollary 2.1.6, fix a sequence
(λpn)∞n=1 so that

d
( N∨
n=1

supp (aξpn)
)
= d
(
supp

(
a

N∑
i=n

λpnξ
p
n

))
.

Note that sl(ap) =
∨∞
n=1 supp (aξpn) for all p ∈ Pr(L∞(R)). Then, for each x ∈ [0,∞],

we have that

Φ
′
a(x) = sup{d(sl(ap)) : p ∈ Pr(L∞(R)); d(p) ≤ x}

= sup
{
d
( ∞∨
n=1

supp (aξpn)
)
: p ∈ Pr(L∞(R)); d(p) ≤ x

}
= sup

{
d
( N∨
n=1

supp (aξpn)
)
: p ∈ Pr(L∞(R)); d(p) ≤ x;N ∈ N

}
= sup

{
d
(
supp

(
a

N∑
i=n

λpnξ
p
n

))
: p ∈ Pr(L∞(R)); d(p) ≤ x;N ∈ N

}
≤ sup{d(supp (aξ)) : d(supp (ξ)) ≤ x}
= Φa(x).
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So, we conclude that Φ
′
a = Φa, as desired.

If the von Neumann sub-algebra M ⊆ B(H) is non-commutative then the defini-
tions for Φa and Φa

′
both still make sense but they may not coincide as we see in the

following example, courtesy of my advisor David Sherman.

Example 2.1.7. Let H = C2. Let τ1 be the standard trace on B(C2) with weight 1
and τ2 be the standard trace on B(C2) with weight 2. We denote the basis of C4 by
(δn)

4
n=1. Let I1 be the projection onto the span of δ1 and δ2 and I2 be the projection

onto the span of δ3 and δ4.
We consider the von Neumann algebra M = CI1 ⊕B(C2) ⊆ B(C2 ⊕C2) and note

that τ = τ1 ⊕ τ2 is a trace on B(C2 ⊕C2) ∼= B(C4) is a trace on M. We equip Pr(M)
with the dimension function d obtained by restricting τ to projections. Note that
I1, I2 ∈ Pr(M) and τi essentially acts on Ii for i ∈ {1, 2}.

Now consider the partial isometry a ∈ B(C2⊕C2) given by δ1 7→ δ3, δ2 7→ δ4, δ3 7→
0, δ4 7→ 0 and extended using linearity. We note that for any ξ ∈ C4: τ(supp (ξ)) = 1
if I1ξ = 0 and τ(supp (ξ)) = 2 if I1ξ ̸= 0. So Φa(1) = 1, since I1aξ = 0. But
sl (aI1) = I2 so Φa

′
(1) = 2. This demonstrates that in the non-commutative setting

Φa and Φ
′
a need not coincide.

2.2 Discrete Support Expansion C∗-Algebras with Stan-
dard Weight

Proofs in this section were developed in collaboration with David Sherman and Bruno
Braga. Throughout this section we consider support expansion C∗-subalgebras of
B(ℓ2(N)) over the von Neumann algebra M ∼= ℓ∞(N), the diagonal operators equipped
with the dimension function d obtained by restricting the standard trace on B(ℓ2(N)),
often suppressing reference to it in our notation.

The next lemma gathers a few properties satisfied by support expansion functions
of operators in this context.

Lemma 2.2.1. For any a ∈ B(ℓ2(N)), Φa (Definition 1.1.5) is an increasing function
so that

(a) Φa(x) ≤ Φa(1)x for all x ∈ [0,∞],

(b) if Φa is bounded, then a is finite rank, and

(c) if Φa(n1) = Φa(n2) for some n1 < n2 in N, then Φa(n1) = Φa(x) for all x > n1
in [0,∞]. In particular, either Φa is bounded or Φa(n) ≥ n for all n ∈ N.

Proof. The function Φa is clearly increasing and we note for every x ∈ [0,∞) that
Φa(x) = Φa(⌊x⌋) where ⌊x⌋ denotes the largest natural number less than or equal to
x, i.e. the floor of x. Item (a) follows for natural number inputs since every projection
in B(ℓ2(N)) is the SOT -convergent sum of dimension 1 projections while supports,
dimension functions and supremums are all subadditive – the result for all x ∈ [0,∞]
is a consequence.

If Φa is bounded, then there is a finite F ⊆ N so that an,m ̸= 0 implies (n,m) ∈
F × N, so a is finite rank and Item (b) follows. At last, say n1 < n2 ∈ N and
Φa(n1) = Φa(n2). Then, if ξ is so that |supp (ξ) | ≤ n1 and Φa(n1) = |supp (aξ) |, a
must have no non-zero entries in any row off the support of aξ (otherwise we could
find a vector η with |supp (η) | ≤ n2 and |supp (aη) | > Φa(n1), a contradiction) so
Φa(x) = Φa(n1) for all x > n1 which demonstrates Item (c) and finishes the proof.
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We also have a hunch that a support expansion function should grow faster at the
beginning and slower later on. After all, each projection in ℓ∞(N) can be characterized
as the join of (pn)n∈N projections onto the basis vectors (δn)n∈N so if suppℓ∞(N) (p ∨ pn)
has dramatically higher dimension than suppℓ∞(N) (p) then it seems we should be able
to exclude one of the basis vectors beneath p and include pn instead to increase the
dimension. While there is truth to this (Proposition 2.2.3), our initial intuition was
that support expansion functions were concave down. We note this is false with the
following example.
Example 2.2.2. Support expansion functions need not be concave down. Indeed, let

a =



1 0 0 1
1 0 0 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0


and, considering the canonical inclusion of the 6-by-4 matrices in B(ℓ2(N)), we view
a as an element in B(ℓ2(N)). Then Φa(1) = 3, Φa(2) = 4, and Φa(3) = 6. So Φa is
not concave down since 1

2Φa(1) +
1
2Φa(3) = 4.5 > 4 = Φa(2).

The following proposition formalizes in what manner support expansion functions
“grow faster at the beginning and slower later on” in this setting.

Proposition 2.2.3. For any a ∈ B(ℓ2(N)), Φa(m)
m ≥ Φa(n)

n whenever m ≤ n, where
m,n ∈ N are non-zero.

Proof. We fix an a ∈ B(ℓ2(N)) and proceed by induction on n. The case when n = 1 is
immediate. Now our induction hypothesis states that Φa(m)

m ≥ Φa(n)
n whenever m ≤ n,

where m,n ∈ N are non-zero. It suffices to show that Φa(n)
n ≥ Φa(n+1)

n+1 . Suppose not,
so n(Φa(n+ 1)− Φa(n)) > Φa(n), we seek a contradiction.

Find ξ ∈ ℓ2(N) with d(supp (ξ)) ≤ n+ 1 which realizes d(supp (aξ)) = Φa(n+ 1).
Note that if d(supp (ξ)) < n + 1 then Φa(n + 1) = Φa(n) and thus Φa(n)

n ≥ Φa(n+1)
n+1 ,

which contradicts our supposition. Then what remains is the case where ξ has exactly
n + 1 non-zero basis components: (δkj )

n+1
j=1 . Let pk denote the projection onto the

span of the k-th basis vector of ℓ2(N) and consider the vectors ξ(j) = p⊥kjξ obtained
by zero-ing out the j-th non-zero basis component of ξ, where 1 ≤ j ≤ n+ 1.

We note that d(supp
(
ξ(j)
)
) ≤ n and so d(supp

(
aξ(j)

)
) ≤ Φa(n). This implies

that for each 1 ≤ j ≤ n + 1 the kj-th column of a has at least Φa(n + 1) − Φa(n)
non-zero rows which are zero in the kj′ -th column for each j

′ ̸= j, 1 ≤ j
′ ≤ n + 1.

But this implies that, for instance, d(supp
(
aξ(1)

)
) ≥ n(Φa(n+ 1)− Φa(n)) > Φa(n).

But, as noted earlier, d(supp
(
aξ(1)

)
) ≤ Φa(n). This is the desired contradiction and

so finishes the proof.

Now that we have collected some properties of support expansion functions in this
setting we move on to characterizing the collection of support expansion C∗-algebras.
First we note some quick examples.
Example 2.2.4. Consider f : [0,∞] → [0,∞]. Then:

(a) If f is the zero map, then ⟨f⟩ = {f}; so C⟨f⟩ = {0}.

(b) If f is a nonzero constant function, then ⟨f⟩ = {nf : n ∈ N}; so B⟨f⟩ is the set
of operators a = [an,m] which have at most finitely many nonzero entries. Then
C⟨f⟩ = K(ℓ2(N)), the set of compact operators in B(ℓ2(N)).
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(c) If f(x) = x for every x ∈ [0,∞], then ⟨f⟩ is the set of lines through the origin
with positive integer slope, so C⟨f⟩ = CRC.

(d) If f(x) = ∞ for every x > 0, then ⟨f⟩ = {f}; so C⟨f⟩ = B⟨f⟩ = B(ℓ2(N)).

In fact, Example 2.2.4 exhausts all possible support expansion C∗-algebras we can
obtain in this setting:

Theorem 2.2.5. Let d : Pr(l∞(N)) → [0,∞] be the dimension function induced by
the standard trace on B(ℓ2(N)). For any family F of maps [0,∞] → [0,∞], we have
that

C⟨F⟩ ∈
{
{0},K(ℓ2(N)), CRC,B(ℓ2(N))

}
where K(ℓ2(N)) denotes the compact operators inside of B(ℓ2(N)).

Proof. Let F be a family of maps [0,∞] → [0,∞]. As B⟨F⟩ = B⟨{Φa:a∈B⟨F⟩}⟩ then since
each Φa is increasing with Φa(x) = Φa([x]) for all x ∈ [0,∞) and Φa(0) = 0, we can
assume without loss of generality that every f ∈ ⟨F⟩ is increasing with f(x) = f([x])
for all x ∈ [0,∞) and f(0) = 0. The following is straightforward:

(a) If f(1) = 0 for every f ∈ F , then C⟨F⟩ = {0}.

(b) If f(1) = ∞ for some f ∈ F , then C⟨F⟩ = B(ℓ2(N)).

We are left to analyze the case where f(1) < ∞ for all f ∈ F , and f0(1) > 0 for
some f0 ∈ F . Suppose F is as such. We first show that K(ℓ2(N)) ⊆ C⟨F⟩ ⊆ CRC. For
the first inclusion, let a = [an,m] ∈ B(ℓ2(N)) be so that an,m ̸= 0 for finitely many
n,m ∈ N, recalling that such operators are dense in K(ℓ2(N)). So Φa is bounded.
We have f0 ∈ F with f0(1) > 0 and since f0 is increasing there must be k ∈ N so
that Φa ≤ kf0. Hence, a ∈ Bkf0 ⊆ C⟨F⟩ and, by the arbitrariness of a, we have that
K(ℓ2(N)) ⊆ C⟨F⟩. For the second inclusion, take f ∈ ⟨F⟩ and fix a ∈ Bf . Then,
as Φa(x) ≤ Φa(1)x ≤ f(1)x for all x ∈ [0,∞] (Lemma 2.2.1 Item (a)), similarly
Φa∗(x) ≤ f(1)x and as f(1) < ∞, we have that a ∈ BRC (cf. Definition 1.1.2 and
preceding discussion). As a and f were arbitrary, we have C⟨F⟩ ⊆ CRC.

We now show that C⟨F⟩ must equal either K(ℓ2(N)) or CRC. Suppose there is
f ∈ ⟨F⟩ and a ∈ Bf so that Φa is unbounded. Then, by Lemma 2.2.1 Item (c),
we have that Φa(n) ≥ n for all n ∈ N. Hence, f(n) ≥ n for all n ∈ N and we
have that BRC ⊆ B⟨F⟩ (cf. Definition 1.1.2 and preceding discussion). This shows
that CRC ⊆ CF and, by the previous paragraph, CRC = C⟨F⟩. Suppose now that
Φa is bounded for all f ∈ ⟨F⟩ and all a ∈ Bf . Then B⟨F⟩ ⊆ K(ℓ2(N)) (Lemma
2.2.1 Item (b)) and it follows that C⟨F⟩ ⊆ K(ℓ2(N)). So, C⟨F ⟩ = K(ℓ2(N)). We have
demonstrated the desired tetrachotomy.

So in the discrete setting with standard weight on projections we see that the
poset of support expansion C∗-algebras is quite simple and, besides the motivating
example CRC, none of its elements are novel.

2.3 Discrete Support Expansion C∗-Algebras with Non-
standard Weight

In the previous section we explored one way of generalizing the uniformly RC-finite
operators – by replacing the linear bound on support expansion with some other
family of functions. This was point (1) in the discussion following Definition 1.1.2,
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and we saw that it did not result in any novel C∗-algebras besides the uniformly RC-
finite operators themselves. In this section we will explore point (1) and (2) in the
discussion following Definition 1.1.2, where we take a different weight on M ∼= ℓ∞(N),
the diagonal operators, to measure the support projections of vectors. We will see
that, in this context, varying the family of control functions gives rise to a rich poset
of concrete C∗-algebras, contrasting with the previous section.

Let pn denote the projection onto the span of the n-th standard basis vector of
ℓ2(N) and note that we can define a dimension function d : Pr(ℓ∞(N)) → [0,∞] by
stipulating its value on each of the pn and extending to higher rank projections using
σ-additivity. We pick a bijection u : N → Q+ from the naturals to the positive
rationals then construct a dimension function du by stipulating du(pn) = u(n). For
the remainder of this subsection we will refer to du merely as d and often suppress it
in our notation.

It is clear that the support expansion function Φa for any operator a ∈ B(ℓ2(N))
is increasing (this is always the case). We will not characterize the support expansion
functions completely but in the following proposition we note a useful class of functions
which can be realized as Φa for some a ∈ B(ℓ2(N)).

Proposition 2.3.1. If f : [0,∞] → [0,∞] is strictly increasing, concave up and takes
rationals to rationals with f(0) = 0 (for instance f(x) = x2) then there is some
isometry af ∈ B(ℓ2(N)) such that Φaf = f .

Proof. Define af to be the operator which sends δn 7→ δu−1(f(u(n))). We note that af
sends basis vectors to basis vectors and does so injectively since f is strictly increasing.
Thus af is an isometry (note it may not be a unitary, as f(Q+) need not be all of
Q+, consider f(x) = x2 where f(Q+) does not contain for instance 2).

We also observe that d(sl(afpn)) = f(u(n)) which establishes Φaf (u(n)) ≥ f(u(n))
for all n ∈ N and thus Φaf (q) ≥ f(q) for all q ∈ Q+. Moreover, take any p ∈ Pr(ℓ∞(N))
represented by the SOT convergent sum p =

∑∞
n=1 λnpn where each λn ∈ {0, 1} and

note that sl(afp) = sl(af
∑∞

n=1 λnpn) = sl(
∑∞

n=1 λnafpn) =
∑∞

n=1 λnpu−1(f(u(n))). So
d(sl(afp)) =

∑∞
n=1 λnf(u(n)) ≤ f(

∑∞
n=1 λnu(n)) = f(d(p)), since increasing concave

up functions which take 0 to 0 are super-additive. This establishes that Φaf (x) ≤ f(x)
for all x ∈ [0,∞].

So we have that Φaf (q) = f(q) for all q ∈ Q+ and that f(q) ≤ Φaf (x) ≤ f(x)
for every x ∈ [0,∞] and every rational q ≤ x. Since f is increasing and concave up
it is continuous and thus f(x) = sup{f(q) : q ∈ Q, q ≤ x}. This establishes that
Φaf (x) = f(x) for all x ∈ [0,∞] and we are done.

Now we will collect some results which allow us to determine how C⟨F⟩ compares
to C⟨G⟩ merely from function-theoretic properties of the elements of ⟨F⟩ and ⟨G⟩:

Proposition 2.3.2. If F ,G : [0,∞] → [0,∞] are families of increasing functions such
that for each f ∈ F there is some g ∈ ⟨G⟩ such that f ≤ g, then B⟨F⟩ ⊆ B⟨G⟩.

Proof. We observe that every f ∈ ⟨F⟩ is obtained from a finite number of additions
and compositions of elements of F , each of which is dominated by something in
⟨G⟩. Let g be defined by additions and compositions corresponding to those which
constructed f , but by replacing each element of F with a function that dominates it
in ⟨G⟩, noting that g ∈ ⟨G⟩. We have that f ≤ g since everything in sight is increasing,
and thus Bf ⊆ Bg ⊆ B⟨G⟩. Since f ∈ ⟨F⟩ was arbitrary this gives us that B⟨F⟩ ⊆ B⟨G⟩
as desired.

The above proposition is in fact entirely general and not specific to the current
setting at all.
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Theorem 2.3.3. Let F ,G be nonempty families of functions [0,∞] → [0,∞] which
are strictly increasing, concave up, take rationals to rationals and 0 to 0. Then,
C⟨F⟩ ⊈ C⟨G⟩ if and only if there exists f0 ∈ F such that for all g ∈ ⟨G⟩ there exists
some sequence (xn)

∞
n=1 such that limn→∞

f0(xn)
g(xn)

= ∞.

Proof. First we suppose that no such f0 exists, so for every f ∈ F we have some
g ∈ ⟨G⟩ and n ∈ N such that f ≤ ng ∈ ⟨G⟩. So B⟨F⟩ ⊆ B⟨G⟩ by Proposition 2.3.2 and
thus C⟨F⟩ ⊆ C⟨G⟩.

Now suppose there is some f0 ∈ F as in the theorem statement. Then take the
isometry af0 ∈ Bf0 from Proposition 2.3.1 and fix any g ∈ ⟨G⟩. By hypothesis we
have a sequence (xn)

∞
n=1 such that limn→∞

f0(xn)
g(xn)

= ∞ so in particular we can find

x ∈ (0,∞) such that f0(x)
g(x) > 1. Moreover, since both f0 and g are continuous we can

take x ∈ Q+ without loss of generality.
We know that af0δu−1(x) = δu−1(f(x)) and d(sl(δu−1(f(x)))) = f(x). So for any

b ∈ Bg we must have that bδu−1(x) is orthogonal to δu−1(f(x)), otherwise Φb(x) ≥
d(sl(bδu−1(x))) ≥ f(x) > g(x) which contradicts the definition of b. Thus ∥af0 − b∥ ≥∥∥(af0 − b)δu−1(x)

∥∥ ≥ 1 for every b ∈ Bg. Since g ∈ ⟨G⟩ was arbitrary this implies that
af0 has distance 1 from B⟨G⟩ and is therefore not contained in C⟨G⟩. But af0 ∈ C⟨F⟩
so we have that C⟨F⟩ ⊈ C⟨G⟩ as desired.

Corollary 2.3.4. Let f, g be functions [0,∞] → [0,∞] which are strictly increasing,
concave up, take rationals to rationals and satisfy f(0) = g(0) = 0. Then C⟨f⟩ ⊈ C⟨g⟩

if there exists some sequence (xn)
∞
n=1 tending to 0 such that limn→∞

f(xn)
g(xn)

= ∞.

Proof. Note that C⟨g⟩ = C⟨ng⟩ for any n ∈ N (Proposition 2.3.2) so by dividing g by
a sufficiently large integer (n ≥ g(1)) we can assume without loss of generality that
g(x) ≤ x for all x ∈ [0, 1]. Note that since g is increasing and concave up with g(0) = 0,
g(x)
x is monotone increasing and so L = limx→0

g(x)
x exists and is finite. Moreover, L

must be 0 otherwise limn→∞
f(xn)
xn

= L limn→∞
f(xn)
g(xn)

= ∞ which contradicts that f
is a strictly increasing (and thus finite-valued) concave up function.

Now fix some g0 ∈ ⟨g⟩. As an element of ⟨g⟩, g0 is constructed from a finite
number of additions and compositions of g. Since g(x) ≤ x for all x ∈ [0, 1] we have
that g(n)(x) ≤ g(x) for all x ∈ [0, 1] and n ∈ N . Also recall that limx→0

g(x)
x = 0 by

the previous paragraph and so for every n,N ∈ N we have Ng(n)(x) ≤ Ng(x) ≤ x for
sufficiently small x. We apply the above points repeatedly, and the fact that everything
in sight is increasing, to unpack g0 and conclude that there is some N ∈ N such that
g0(x) ≤ Ng(x) for sufficiently small x. Then limn→∞

f(xn)
g0(xn)

≥ 1
N limn→∞

f(xn)
g(xn)

= ∞.
As g0 was arbitrary in ⟨g⟩ Theorem 2.3.3 gives us that C⟨f⟩ ⊈ C⟨g⟩.

Definition 2.3.5. Define the dimension function d : Pr(ℓ∞(N)) → [0,∞] by stipulat-
ing d(pn) = u(n), where pn denotes projection onto the span of the n-th basis vector
of ℓ2(N), and extend to all of Pr(ℓ∞(N)) using σ-additivity. We denote by O the set
of all C∗-subalgebras of B(ℓ2(N)) of the form C⟨F⟩ for some family F of functions
[0,∞] → [0,∞] in this context. We view O as a poset with the order being given by
the standard inclusion.

Theorem 2.3.6. The poset O has uncountable increasing chains, uncountable de-
creasing chains and uncountable antichains.

Proving this theorem will be our goal for the remainder of the subsection.
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Proposition 2.3.7. The poset O has increasing and decreasing chains with the car-
dinality of the continuum.

Proof. For each y ∈ (0,∞) we define the function stepy : [0,∞] → [0,∞] which
is 0 for all x < y and ∞ for all x ≥ y. Observe that ⟨stepy⟩ = {stepy} for each
y ∈ (0,∞) (this function is idempotent with respect to addition and composition)
and so B⟨stepy⟩ = Bstepy .

We note that for positive reals y1 < y2 we have C⟨stepy2 ⟩
⊆ C⟨stepy1 ⟩

from Propo-
sition 2.3.2. Now take a rational number q ∈ (y1, y2) and consider the operator aq
which sends the basis vector δu−1(q) to itself and all other basis vectors to 0. We note
that aq is contained in Bstepy1

but has distance 1 from Bstepy2
. Indeed, if b ∈ Bstepy2

then d(sl(bδu−1(q))) ≤ Φb(q) ≤ stepy2(q) = 0 so bδu−1(q) = 0. From this we get the
proper containment C⟨stepy2 ⟩

⊊ C⟨stepy1 ⟩
.

So for every increasing (decreasing) chain of real numbers we have constructed a
corresponding decreasing (increasing) chain in O. The desired result follows immedi-
ately.

We note that the C∗-algebras produced in Proposition 2.3.7 are all isomorphic to
B(H).

The following proposition is useful for constructing antichains and the same method
will be utilized in Chapter 3 in a few instances. The proof technique is mine but I
would like to express gratitude and give credit to my collaborator Bruno Braga for
helping me write it in a comprehensible way – it is much easier to explain in person
than in writing!

Proposition 2.3.8. If (fn)n∈N is a sequence of strictly increasing, concave up func-
tions [0,∞] → [0,∞] which take rationals to rationals and such that limx→0

fn(x)
x = 0

for each n ∈ N then there is a g : [0,∞] → [0,∞] satisfying all of the same properties
such that C⟨g⟩ and C⟨fn⟩ are incomparable for all n ∈ N.

Proof. For didactic reasons, we first prove the proposition with the extra assumption
that (fn)n∈N is a constant sequence, say fn = f for all n ∈ N. As C⟨f⟩ = C⟨mf⟩ for
all m ∈ N (Proposition 2.3.2), we can assume that f(x) ≤ x for all x ∈ [0, 1]. We
now construct the desired function g. It will be useful for the reader to have in mind
that our approach will be the following: we construct g in a piece-wise manner and
in a way that we can use Corollary 2.3.4 in order to guarantee that C⟨g⟩ and C⟨f⟩ are
incomparable.

We start by setting some notation and pointing out some very elementary facts
about affine functions and their relation with f . Precisely, given x, y, h > 0, we let
ℓ(x, y, h) be the line which sends x to y and has h as its x-intercept, i.e. ℓ(x, y, h)(t) =
y

x−h t−
yh
x−h for all t ∈ R. The construction of g will be based in the following: given

x, y, h > 0,

(a) as limt→h ℓ(x, y, h)(t) = 0, we have that limt→h
f(t)

ℓ(x,y,h)(t) = ∞ and

(b) since limt→0
f(t)
t = 0, we have that limt→0

ℓ(x,y,0)(t)
f(t) = ∞.

The next two facts isolate the conclusions from points (a) and (b) which we need –
we recommend the reader to guide themselves by Figure 2.1 in the construction of g.

Fact 2.3.9. Given x, y, h,N > 0 with x > h, there is a rational x′ ∈ (h, x) so that
f(x′)

ℓ(x,y,h)(x′) > N .
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Figure 2.1: In the graph above, the smooth function represents f
and the piecewise linear function represents g. Note that the scale is
modified so that the general behavior of g with respect to f can be

represented in the graph.

Fact 2.3.10. Given x, y, h,N > 0, there are rational z′ ∈ (0, x) and h′ ∈ (0,min(h, x))

so that ℓ(x,y,h′)(z′)
f(z′) > N .

Let x0 = y0 = 1 and h0 = 1
2 . Then, alternating between Fact 2.3.9 and Fact

2.3.10 (with Fact 2.3.9 being the first we use), one can find strictly decreasing rational
number valued sequences (xn)

∞
n=1, (yn)∞n=1, (zn)∞n=1, and (hn)

∞
n=1 in [0, 1] tending to

0 so that

(a) f(xn)
ℓ(xn−1,yn−1,hn−1)(xn)

> n for all n ∈ N,

(b) yn = ℓ(xn−1, yn−1, bn−1)(xn) for all n ∈ N,

(c) xn+1 < zn < xn for all n ∈ N,

(d) 0 < hn < xn for all n ∈ N,

(e) ℓ(xn,yn,hn)(zn)
f(zn)

> n for all n ∈ N.

We define g : [0,∞] → [0,∞] by letting

g(x) =


2x− 1, if x > x1,
ℓ(xn, yn, hn)(x), if x ∈ (xn+1, xn],
0, if x = 0.

It is clear from its piecewise definition and (b) that g is continuous. By its definition,
ℓ(xn, yn, hn) has slope yn

xn−hn . However, by (b), the slope of ℓ(xn−1, yn−1, bn−1) must
equal yn

xn−hn−1
. Therefore, as hn < hn−1, the slope of ℓ(xn, yn, hn) is smaller than
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the slope of ℓ(xn−1, yn−1, hn−1). Hence g is concave up. Moreover, by (d), the slope
of each ℓ(xn, yn, bn) is positive, so g is strictly increasing. Also note that each piece-
wise component is affine with rational slope and rational x-intercept, and so g takes
rationals to rationals.

We now aim to use Corollary 2.3.4 to show that C⟨f⟩ and C⟨g⟩ are incomparable
in O. First observe that

lim
n→∞

f(xn)

g(xn)
= lim

n→∞

f(xn)

ℓ(xn, yn, hn)(xn)

= lim
n→∞

f(xn)

ℓ(xn−1, yn−1, hn−1)(xn)

≥ lim
n→∞

n = ∞,

so by Corollary 2.3.4 C⟨f⟩ ⊈ C⟨g⟩. Now observe that

lim
n→∞

g(zn)

f(zn)
= lim

n→∞

ℓ(xn, yn, hn)(zn)

f(zn)

≥ lim
n→∞

n = ∞

so by the same Corollary C⟨g⟩ ⊈ C⟨f⟩ thus they are incomparable.
To wrap up this case of a single function f it remains for us to show that limx→0

g(x)
x =

0. Indeed, g is increasing and concave up with limx→0 g(x) = limn→∞ yn = 0 so g(x)
x is

monotone increasing and thus L = limx→0
g(x)
x must exist. Suppose for the sake of con-

tradiction that L > 0, then 0 = limn→∞
f(xn)
xn

=
(
limn→∞

f(xn)
g(xn)

)
·
(
limn→∞

g(xn)
xn

)
=

∞ · 1
L = ∞. We have obtained a contradiction so L = 0 as desired.
The result for a single f is now proven, so consider (fn)n∈N as in the state-

ment of this proposition, i.e. (fn)n∈N is not necessarily constant. The proof for
this case is actually completely analogous and the only modification needed is that,
when using Facts 2.3.9 and 2.3.10 in order to find strictly decreasing sequences of
rationals (xn)

∞
n=1, (yn)

∞
n=1, (zn)

∞
n=1, and (hn)

∞
n=1 in [0, 1] tending to 0, we must

replace (a) and (e) above by the stronger statements that fk(xn)
ℓ(xn,yn,bn)(xn)

≥ n and
ℓ(xn−1,yn−1,bn−1)(zn)

fk(zn)
≥ n for all n ∈ N and all k ≤ n. Since this is not an issue, we are

done.

Corollary 2.3.11. The poset O has uncountable antichains.

Proof. Let A ⊆ O be the partially ordered set consisting of C∗-algebras of the form
C⟨f⟩ where f : [0,∞] → [0,∞] is strictly increasing, concave up, takes rationals to
rationals and such that limx→0

f(x)
x = 0, equipped with standard inclusion. We note

that A is non-empty since f(x) = x2 satisfies all of the hypotheses.
Zorn’s lemma assures us that A has a maximal antichain A. Suppose for the sake

of contradiction that A has finite or countably infinite cardinality. Then Proposition
2.3.8 produces a g : [0,∞] → [0,∞] satisfying all of the hypotheses so that C⟨g⟩ ∈ A
and is incomparable to every element of A. Then A ∪ {C⟨g⟩} is an antichain in A
strictly larger than A which contradicts its maximality. We conclude that A has
uncountably infinite cardinality. As A is a substructure of the poset O with the same
order relation, A is also an antichain for O and this completes the proof.
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Proposition 2.3.7 and Corollary 2.3.11 together prove Theorem 2.3.6. This con-
cludes our exploration of the posetO and support expansion C∗-subalgebras of B(ℓ2(N))
over ℓ∞(N) (the diagonal operators) equipped with the dimension function du on
Pr(ℓ∞(N)).

Our treatment in this section is relatively shallow and there is certainly more
that could be said. Since there are numerous dimension functions with which we
could equip Pr(ℓ∞(N)) and each of them might result in different interesting posets of
support expansion C∗-algebras, we think of this example as providing contrast to the
situation in Section 2.2 rather than a subject of interest in and of itself. As we see,
the poset of support expansion C∗-algebras can be essentially trivial (Section 2.2) or
extremely rich (Section 2.3).

In Chapter 3 we explore the poset of support expansion C∗-subalgebras of B(L2(R))
over L∞(R) ∼= M ⊆ B(L2(R)) the multiplication operators. Some of our results there
will hearken back to this section but our treatment will be substantially more thor-
ough.
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Chapter 3

Continuous Support Expansion
C∗-Algebras

In this chapter we discuss the support expansion C∗-algebras (Definition 1.1.7) which
can be obtained when H = L2(R, µ) and L∞(R, µ) ∼= M ⊆ B(H) the multiplication
operators. Here µ is taken to be the standard Lebesgue measure on R and will often
be omitted from our notation. We will equip Pr(M) with the dimension function d
induced by integrating against µ.

Our main object of interest is the poset of support expansion C∗-algebras in
B(L2(R, µ)) ordered by standard inclusion, which we refer to as P. As shown in
Theorems 2.2.5 and 2.3.6 the analogous posets of support expansion C∗-algebras in
B(ℓ2(N)) can be simple or robust depending on choice of dimension function. In the
continuous setting, P is quite rich, and we will produce results similar to those in
Section 2.3 for the poset O (Definition 2.3.5). In particular we will obtain results
comparable to Propositions 2.3.7 and 2.3.8, Corollary 2.3.11 and Theorem 2.3.6. Ad-
ditionally, P has some rigidness and we will obtain some results about immediate
successor elements in P which we did not demonstrate in O (and in fact may not hold
in O).

3.1 Support Expansion Functions for Operators on L2(R)

In this section, we thoroughly explore the support expansion functions which arise in
this setting. The results of this section will be used in the following ones in order to
analyze the poset P of support expansion C∗-algebras in B(L2(R)).

3.1.1 Basic Properties of Support Expansion Functions

Since we will work extensively with support expansion functions in this section we
restate Definition 1.1.5 for the reader’s convenience:

Definition 1.1.5. Given a Hilbert space H, von Neumann sub-algebra M ⊆ B(H)
and a dimension function d : Pr(M) → [0,∞] the d-support expansion function1

[0,∞] → [0,∞] of an operator a ∈ B(H) is

Φda(x) = sup{d(suppM (aξ)) : d(suppM (ξ)) ≤ x}.

Recall our present setting in the definition above: H = L2(R), L∞(R) ∼= M
the multiplication operators and Pr(M) is equipped with the dimension function d
induced by integrating against µ, standard Lebesgue measure.

1Dimension functions may take infinite cardinal values in which case the domain and codomain
of support expansion functions may include these cardinals. We do not explore these cases in this
dissertation.
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Also recall Lemma 1.1.6:

Lemma 1.1.6. Fix a Hilbert space H, von Neumann sub-algebra M ⊆ B(H) and
dimension function d on Pr(M). Then for a, b ∈ B(H) and nonzero λ ∈ C:

(a) Φdλa = Φda.

(b) Φda+b ≤ Φda +Φdb .

(c) Φdab ≤ Φda ◦ Φdb .

To the above we can add the following lower semi-continuity property of support
expansion functions in the current setting:

Lemma 3.1.3. Let (an)∞n=1 ⊆ B(L2(R)) be a sequence converging SOT to an operator
a. Then Φa ≤ lim infnΦan.

Proof. The following is a standard exercise in measure theory and we omit its proof:
if (ξn)n is a sequence in L2(R) converging to ξ ∈ L2(R) in norm, then d(supp (ξ)) ≤
lim infn d(supp (ξn)). Fix x ∈ [0,∞] and ξ ∈ L2(R) with supp (ξ) ≤ x. Then, as aξ =
limn anξ, we have d(supp (aξ)) ≤ lim infn d(supp (anξ)). If we take the supremum
on both sides over all such ξ we get Φa(x) ≤ supsupp(ξ)≤x lim infn d(supp (anξ)) ≤
lim infn supsupp(ξ)≤x d(supp (anξ)) = lim infnΦan(x) as desired.

3.1.2 A Tale of Three Families

The goal of this subsection is to understand which functions can arise as support
expansion functions in this context. More precisely, the plan is to understand the
properties satisfied by functions [0,∞] → [0,∞] of the form Φa, for a ∈ B(L2(R)), as
well as to understand which properties imposed on a function f : [0,∞] → [0,∞] are
enough to assure that f = Φa for an appropriate a ∈ B(L2(R)). This culminates in
Theorem 3.1.6.

For any function f : [0,∞] → [0,∞], we let f : [0,∞] → [0,∞] denote the map

f(x) =


f(x)
x , if x ̸= 0,

∞, if x = 0,
0, if x = ∞.

Definition 3.1.4. Consider a function f : [0,∞] → [0,∞].

(a) We say that f is ICOD (this acronym abbreviates “increasing and concave down”)
if f(0) = 0 and it is increasing and concave down.

(b) We say that f is ISOD (this acronym abbreviates “increasing and slope-to-origin
decreasing”) if f(0) = 0 and it is increasing and f(x)

x is decreasing.

(c) We say that f is SUPPEXP (this acronym abbreviates “support expansion”) if
f = Φa for some a ∈ B(L2(R)).

By abuse of notation, we also denote the subsets of all functions [0,∞] → [0,∞] which
are ICOD, ISOD, and SUPPEXP by ICOD, ISOD, and SUPPEXP, respectively.

Notice that, by definition, f(0) = 0 for all functions in either ICOD or ISOD, and
the same also holds for maps in SUPPEXP. We point out that the condition for ISOD
is reminiscent of Proposition 2.2.3 from the discrete setting with standard weight. The
following proposition gathers some other simple properties of the collections ICOD and
ISOD.
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Proposition 3.1.5. The following holds.

(a) Both sets ICOD and ISOD are closed under addition and composition.

(b) The proper inclusion ICOD ⊊ ISOD holds.

(c) For all f ∈ ISOD, either f(x) <∞ for all x <∞ or f(x) = ∞ for all x > 0.

(d) For all f ∈ ISOD \ {0}, we have that limx→0
f(x)
x > 0.

Proof. (a) Closedness under addition and composition of ICOD and ISOD are more
or less routine to verify.

(b) For the inclusion ICOD ⊆ ISOD, take f ∈ ICOD and fix x0 ∈ [0,∞). Draw
a line to the origin and note that for any x ∈ [0, x0] we have f(x) ≥ f(x0)

x0
· x since

f is concave down and f(0) = 0. Now divide both sides by x and the result is clear.
To see the inclusion is proper, consider the pointwise supremum of the two functions
f(x) = x and g(x) = 2x · χ[0,1](x).

(c) Suppose there is x < ∞ for which f(x) = ∞. Then, as f is increasing,
f(y) = ∞ for all y > x, and as f̄ is decreasing f(y) ≥ yf(x)/x = ∞ for all y ∈ (0, x).

(d) Take f ∈ ISOD. If f(x) = ∞ for all x > 0, the result is clear, so assume
f(x) <∞ for all x <∞. As f is nonzero and f̄ is decreasing, we have that f(1) > 0.
Therefore, using that f̄ is decreasing again, we have that f(x)/x ≥ f(1) for all x ≤ 1,
so limx→0

f(x)
x ≥ f(1) > 0.

The remainder of this subsection is dedicated to the proof of the following result.

Theorem 3.1.6. The inclusions ICOD ⊆ SUPPEXP ⊆ ISOD hold.

Although Theorem 3.1.6 does not give us a complete characterization of support
expansion functions, it is enough to completely understand the support expansion
C∗-algebras inside of B(L2(R)), which we will see later (Theorem 3.2.11).

We start by showing the first inclusion of Theorem 3.1.6. The construction in this
proposition will also be essential in the sections to come.

Proposition 3.1.7. Let f ∈ ICOD and r ∈ [0,∞], and assume that f is strictly
increasing on [0, r]. Then define

(af,rξ)(x) =

{√
(f−1)

′
(x)ξ(f−1(x)) x ∈ [limt→0 f(t), f(r)]

0 otherwise

for all ξ ∈ L2(R) and all x ∈ R. This defines a bounded operator on L2(R). More-
over, if f is constant on [r,∞] and limx→0 f(x) = 0, then Φaf,r = f .

Proof. Since f : (0, r) → (limx→0 f(x), f(r)) is a strictly increasing concave down
function, f−1 : (limx→0 f(x), f(r)) → (0, r) is a well defined strictly increasing concave
up function. This allows us to use a standard change of variables in order to obtain
that ∥af,rξ∥ ≤ ∥ξ∥ for all ξ ∈ L2(R).2 So, af,r is a well defined bounded operator.

Suppose now that f is constant on [r,∞] and limx→0 f(x) = 0. Since f is concave
down it can be shown that this operator witnesses maximum expansion on vectors of
the form ξ = χ[0,x], i.e.,

Φaf,r(x) = d(supp
(
af,rχ[0,x]

)
)

2The reader can see the details for that in many standard measure theory books. For instance,
see Rudin, 1987, Chapter 7 for change of variables and Roberts and Varberg, 1973, Theorem A for
the fact that concave functions on (a, b) are absolutely continuous.
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for all x ∈ [0,∞]. Note that when x ≤ r, we have supp
(
af,rχ[0,x]

)
= χ[0,f(x)], while

when x ≥ r, we have supp
(
af,rχ[0,x]

)
= χ[0,f(r)] = χ[0,f(x)] since f is constant on

[r,∞]. This gives us that Φaf,r = f .

Corollary 3.1.8. Every ICOD function f : [0,∞] → [0,∞] can be realized as a
support expansion function.

Proof. If f(x) = ∞ for all x ∈ (0,∞) then let a be the projection onto a vector with
infinite support, then Φa(x) = ∞ = f(x) for every x ∈ (0,∞] and Φa(0) = 0 = f(0).

If f(x) < ∞ for every x ∈ (0,∞), let g(x) = f(x) − limt→0 f(t), noting that
since g ∈ ICOD there exists an r ∈ [0,∞] for which g is strictly increasing on [0, r]
and constant on [r,∞]. Then take ag,r as in Proposition 3.1.7, which gives us that
Φag,r = g. Let b ∈ B(L2(R)) be given by

bξ = ag,rξ + ⟨ξ, χ[−1,0]⟩χ[− limx→0 f(x),0]

and note that Φb = f by evaluating on χ[0,x] + η where η is a vector with arbitrarily
small norm supported on [−1, 0].

In order to finish the proof of Theorem 3.1.6, we are left to show the inclusion
SUPPEXP ⊆ ISOD. For that, we need some preliminary results. The following
standard facts about commuting projections will be used for the next proposition.

Fact 3.1.9. Given p, q, q1, q2 ∈ Pr(L∞(R)) with q1 ≤ q2, we have

(1) p+ q = p ∨ q + p ∧ q;

(2) d(p ∨ q1)− d(q1) ≥ d(p ∨ q2)− d(q2);

(3) sl(a(p ∨ q)) = sl(ap) ∨ sl(aq) for any a ∈ B(L2(R)). (This item is true for
non-commuting projections as well.)

Proposition 3.1.10. Let a ∈ B(L2(R)), x ∈ (0,∞), and n ∈ N. Then, if y = n+1
n x,

we have Φa(x) ≥ Φa(y).

Proof. Throughout this proof we will use the projection focused definition of Φa:
Φa(x) = sup{d(sMl (ap)) : p ∈ Pr(M), d(p) ≤ x} (see Definition 2.1.3 and Theorem
2.1.4).

Suppose for the sake of contradiction that Φa(y) > Φa(x). Then

Φa(y) = Φa(y) · y > Φa(x) · y

and we can pick a projection p ∈ Pr(L∞(R)) such that d(p) ≤ y and d(sl(ap)) >
Φa(x) · y.

Write p =
∑n+1

k=1 pk for some orthogonal sequence (pk)
n+1
k=1 ⊆ Pr(L∞(R)) all of

which have dimension exactly d(p)
n+1 (so any n of them combined have dimension ≤ x).

Then, if I ⊆ {1, . . . , n+ 1} does not contain k, we have that

d
(∨
i∈I

sl(api)
)
= d
(
sl
(
a
∨
i∈I

pi
))

≤ Φa(x)
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(see Fact 3.1.9.3). Therefore, for any such I, we have that

d
(
sl(apk) ∨

∨
i∈I

sl(api)
)
− d
(∨
i∈I

sl(api)
)
≥ d
( n+1∨
i=1

sl(api)
)
− d
( ∨
i ̸=k

sl(api)
)

= d(sl(ap))− d
( ∨
i ̸=k

sl(api)
)

> Φa(x) · y − Φa(x).

(see Facts 3.1.9.2 and 3.1.9.3). Apply this inequality repeatedly, starting from the
empty set and adding in p1 for k = 1 then p2 for k = 2 and so on until we have

d(
n∨
k=1

sl(apk)) > n
(
Φa(x) · y − Φa(x)

)
.

Then we get that:

Φa(x) ≥ d
( n∨
k=1

sl(apk)
)

> n
(
Φa(x) · y − Φa(x)

)
= n(Φ(x)(y − x))

= Φa(x) (recall that y = x(n+ 1)/n).

So, Φa(x) > Φa(x); contradiction.

Corollary 3.1.11. Let a ∈ B(L2(R)), x ∈ (0,∞), and q ∈ Q with q ≥ 1. Then we
have Φa(x) ≥ Φa(qx).

Proof. Apply Proposition 3.1.10 repeatedly.

The “slope-to-origin” non-decreasing property in Corollary 3.1.11 implies that the
function Φa must be continuous (except perhaps at {0,∞}):

Proposition 3.1.12. Let f : [0,∞] → [0,∞] be increasing and satisfy that f(x) ≥
f(qx) for all x ∈ [0,∞] and all q ∈ Q with q ≥ 1. Then f is continuous on (0,∞).

Proof. Suppose f is not left semi-continuous at some x ∈ (0,∞). Then there is
ε > 0 such that f(x) − f(x − δ) > ε for every δ ∈ (0, x]. Pick a positive rational
q < min(ε/f(x), 1). Since 1

1−q > 1, we have by hypothesis that 0 ≥ f( 1
1−q (1− q)x)−

f((1− q)x) = f(x)− f(x− qx). Then we have

0 > f(x)−f(x−qx) = f(x)

x
−f(x− qx)

x− qx
=
f(x)− f(x− qx)− qf(x)

(1− q)x
>
ε− qf(x)

(1− q)x
> 0.

This gives us a contradiction; so f is left semi-continuous. Right semi-continuity
follows similarly.

Corollary 3.1.11 and Proposition 3.1.12 immediately give us the following:

Corollary 3.1.13. Let a ∈ B(L2(R)). Then Φa is continuous on (0,∞).

Proof of Theorem 3.1.6. By Corollary 3.1.8, it remains to show that SUPPEXP ⊆
ISOD. Fix a ∈ B(L2(R)). As Φa is increasing by inspection, we only need to show
that Φa is decreasing. For that, fix x, y ∈ [0,∞] with x ≤ y. If either x = 0 or
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y = ∞, it is clear that Φa(y) ≤ Φa(x), so we assume that x, y ∈ (0,∞). Let (qn)
∞
n=1

be sequence of rational numbers in [1,∞) so that y = limn qnx. Then, by Corollary
3.1.11 and Proposition 3.1.12, we have

Φa(y) = lim
n→∞

Φa(qnx) ≤ lim
n→∞

Φa(x) = Φa(x).

This finishes the proof.

We finish this section with an application of the results above to self-adjoint opera-
tors which will find use in the following sections. It says that if the support expansion
function of a self adjoint operator ever falls below the y = x line then it will be be
constant from then on.

Proposition 3.1.14. Let a ∈ B(L2(R)) be self-adjoint and set r = inf{x : Φa(x) <
x}. Then Φa(x) = r for x ∈ [r,∞].

Proof. Seeking a contradiction, we suppose that there is some p ∈ Pr(L∞(R)) with
d(p) <∞ and d(sl(ap)) > r. Let q = p ∨ sl(ap) and note that:

sl(qaq)ap = sl(qaq)qap = sl(qaq)qaqp = qaqp = qap = ap

From this we conclude that sl(qaq) ≥ sl(ap) and thus d(sl(qaq)) > r. As Φa is
decreasing (Theorem 3.1.6), the definition of r gives us that Φa(x) < x for all finite
x > r. So, Φa(d(sl(qaq))) < d(sl(qaq)).

Now we derive a couple of technical facts we will need: Since a is self-adjoint,
qaqsl(qaq) = (sl(qaq)qaq)

∗ = (qaq)∗ = qaq; so sl(qaqsl(qaq)) = sl(qaq). Also note
that sl(asl(qaq))qaqsl(qaq) = qsl(asl(qaq))asl(qaq)q = qasl(qaq)q = qaqsl(qaq) so
sl(asl(qaq)) ≥ sl(qaqsl(qaq)) = sl(qaq).

Therefore,

d(sl(qaq)) ≤ d(sl(asl(qaq))) ≤ Φa(d(sl(qaq))) < d(sl(qaq));

contradiction.
So d(sl(ap)) ≤ r for every finite dimension projection p ∈ Pr(L∞(R)), and thus

also for infinite dimension projections by the normality of d. Then Φa(x) ≤ r for all
x ∈ [0,∞]. Since Φa is increasing and Φa(r) = r (continuity of Φa, Cor 3.1.13) we
have that Φa(x) = r for all x ∈ [r,∞] which was to be shown.

3.1.3 Relation Between ICOD and ISOD

Theorem 3.1.6 motivates a deeper study of ICOD and ISOD in order to better under-
stand SUPPEXP. This subsection is dedicated to this task. In particular, we show
that, although the inclusion ICOD ⊆ ISOD is a strict inclusion, the following two
results hold: (1) every element in ISOD is the pointwise supremum of elements in
ICOD (Proposition 3.1.17) and (2) given f ∈ ISOD, there is a standard procedure to
obtain g ∈ ICOD so that f ≤ g ≤ 2f (see Definition 3.1.18 and Proposition 3.1.19).

It is well known that concave down functions, and thus ICOD functions, are con-
tinuous except perhaps at endpoints and we have shown in Proposition 3.1.12 that
the same holds for ISOD functions:

Corollary 3.1.15. If f : [0,∞] → [0,∞] is ISOD, then it is continuous on (0,∞).

Proof. This follows immediately from Proposition 3.1.12.

The next proposition isolates some trivial facts about ICOD and ISOD functions:
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Proposition 3.1.16. Let (fi)i∈I be a family of functions [0,∞] → [0,∞]. Then

(a) If (fi)i∈I ⊆ ICOD, then the pointwise infimum of (fi)i∈I belongs to ICOD.

(b) If (fi)i∈I ⊆ ISOD, then both the pointwise infimum and the pointwise supremum
of (fi)i∈I belongs to ISOD.

Proof. This is routine.

Although ICOD is not closed under pointwise supremum, the inclusion ICOD ⊆
ISOD gives us that such pointwise supremum belongs to ISOD. In fact, this charac-
terizes the ISOD functions:

Proposition 3.1.17. Every ISOD function is the pointwise supremum of a sequence
of ICOD functions.

Proof. Take f ∈ ISOD and, for each q ∈ Q+, let fq : [0,∞] → [0,∞] be given by

fq(x) =
f(q)

q
x · χ[0,q](x) + f(q) · χ(q,∞](x)

for all x ∈ [0,∞]. Note that each fq is in ICOD. Moreover, fq(q) = f(q) and, as f is
decreasing, f ≥ fq for all q ∈ Q+.

Let g be the pointwise supremum of (fq)q∈Q+ , so g is ISOD by Proposition 3.1.16.
Therefore, f and g are both ISOD and agree on all rational points. By Corollary
3.1.15, we have that f and g are continuous and so f = g.

We now present the promised procedure which, given f ∈ ISOD, finds g ∈ ICOD
so that f ≤ g ≤ 2f . For that, we introduce the concave conjugate:

Definition 3.1.18. Given f : [0,∞] → [0,∞], we define the concave conjugate of f ,
as the map f∗ : [0,∞] → [−∞,∞] given by3

f∗(λ) = inf
x∈[0,∞]

(λx− f(x)), for all λ ∈ [0,∞].

Given any f : [0,∞] → [0,∞], f∗ is increasing and concave down since it is the
pointwise infimum of positive slope lines.

Proposition 3.1.19. If f : [0,∞] → [0,∞] is an ISOD function, then f ≤ f∗∗ ≤ 2f .

Proof. First, notice that, unfolding definitions, we have

f∗∗(x) = inf
λ∈[0,∞]

(
xλ+ sup

y∈[0,∞]
(f(y)− λy)

)
for all x ∈ [0,∞]. Hence, letting y = x above, we have f∗∗(x) ≥ f(x). On the other
hand, letting λ = f(x)/x above, we have

f∗∗(x) ≤ f(x) + sup
y∈[0,∞]

(f(y)− yf(x)/x) = f(x) + sup
y∈[0,∞]

y(f(y)/y − f(x)/x).

Since f is decreasing, the supremum above only needs to consider y ∈ [0, x]. Therefore,
using that f is increasing, we have that

f∗∗(x) ≤ f(x) + sup
0≤y≤x

y(f(y)/y − f(x)/x) ≤ f(x) + sup
0≤y≤x

f(y) = 2f(x).

3The concave conjugate is related to the more well studied convex conjugate or Fenchel-Legendre
Transform.
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This finishes the proof.

3.2 C∗-Algebras from Controlled Expansion and the poset
P

This section starts the investigation of one of the central objects of this dissertation,
the poset of continuous support expansion C∗-algebras P (Definition 3.2.6). This
section culminates with Theorem 3.2.20.

3.2.1 Sets of Controlled Operators

For the reader’s convenience we recall the definition and basic properties of controlled
operators.

Definition 1.1.7. Fix a Hilbert space H, von Neumann sub-algebra M ⊆ B(H) and
dimension function d on Pr(M). Then given some family of functions F : [0,∞] →
[0,∞] and f ∈ F we define

Bf = {a ∈ B(H) : Φda,Φ
d
a∗ ≤ f},

BF =
⋃

{Bf : f ∈ F} and

CF = BF
∥·∥
.

The sets Bf and BF are the f -controlled and F-controlled operators respectively. C∗-
algebras of the form CF are collectively referred to as support expansion C∗-algebras
(on M).

Corollary 1.1.8. Fix a Hilbert space H, von Neumann sub-algebra M ∈ B(H) and
dimension function d on Pr(M). Take f1, f2 : [0,∞] → [0,∞], a ∈ Bf1, b ∈ Bf2 and
λ ∈ C then:

(a) a∗ ∈ Bf1.

(b) λa ∈ Bf1 .

(c) a+ b ∈ Bf1+f2 .

(d) ab ∈ Bf1◦f2.

It follows that if a family of functions F : [0,∞] → [0,∞] is closed under addition
and composition then BF is a ∗-subalgebra of B(H) and thus CF is a C∗-algebra.

Different functions may generate the same set of controlled operators. Therefore, it
is useful to have methods which, given a map f : [0,∞] → [0,∞], produce g : [0,∞] →
[0,∞] with “better” properties and so that Bf = Bg. The next two results provide
such methods. We start by showing that one can always assume that f ∈ ISOD. For
that, we need a definition:

Definition 3.2.3. For any f : [0,∞] → [0,∞], we define the ISOD lower-envelope of
f by

f̃(x) ..= sup{g(x) : g ∈ ISOD, g ≤ f} for all x ∈ [0,∞].

Clearly, f̃ ≤ f and, by Proposition 3.1.16, it follows that f̃ ∈ ISOD.

Proposition 3.2.4. For any function f : [0,∞] → [0,∞], we have Bf = Bf̃ .
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Proof. Since f̃ ≤ f , we have Bf̃ ⊆ Bf . For the reverse inclusion, let a ∈ Bf and recall
that Φa and Φa∗ are ISOD by Theorem 3.1.6. Therefore, as both Φa and Φa∗ are at
most f , they are also at most f̃ . This gives us that a ∈ Bf̃ .

The next lemma shows that if f grows slowly enough Bf can be generated by a
bounded function.

Lemma 3.2.5. Let f ∈ ISOD and r = inf{x : f(x) < 1
2x}. Then Bf = Bmin(f,2r).

Proof. It is immediate that Bmin(f,2r) ⊆ Bf . For the other inclusion, let a ∈ Bf and
note that Re(a) and Im(a) are self adjoint operators such that ΦRe(a)(x),ΦIm(a)(x) ≤
Φa(x) + Φa∗(x) < x for x ∈ (r,∞] (this uses Corollary 1.1.8(b) and (c)). Then
Proposition 3.1.14 tells us that ΦRe(a) and ΦIm(a) are constant on [r,∞] with value
less than or equal to r.

So Φa(x),Φa∗(x) ≤ ΦRe(a)(x) + ΦIm(a)(x) ≤ 2r for x ∈ [r,∞]. Thus Φa,Φa∗ ≤
min(f, 2r) and therefore a ∈ Bmin(f,2r). In conclusion, Bf ⊆ Bmin(f,2r) and we are
done.

3.2.2 Algebras of Controlled Operators and the Poset P

For the remainder of this chapter, our goal is to understand the algebras C⟨F⟩ for F
a collection of functions. More precisely, we want to understand how distinct families
of functions [0,∞] → [0,∞] can generate different C∗-algebras. For that, our plan is
to develop methods for a deep study of the poset of all such operator algebras:

Definition 3.2.6. We denote by P the set of all C∗-subalgebras of B(L2(R)) of the
form C⟨F⟩ for some family F of functions [0,∞] → [0,∞]. We view P as a poset with
the order being given by inclusion.

Elements of P are of the form C⟨F⟩ for some arbitrary family of functions F . In
order to have a better grasp of them, we now show that, without loss of generality,
we can always assume that F ⊆ ICOD (Theorem 3.2.11). For that, we we need two
preliminary results.

Proposition 3.2.7. Functions in ISOD are sub-additive.

Proof. Fix f ∈ ISOD. Then, for x, y ∈ (0,∞), we have that

f(x) + f(y) = xf(x) + yf(y) ≥ xf(x+ y) + yf(x+ y) = (x+ y)f(x+ y) = f(x+ y).

Sub-additivity when either summand is 0 or ∞ is straightforward.

The next proposition will be heavily used in the remainder of the chapter.

Proposition 3.2.8. (cf. Proposition 2.3.2) If F ,G ⊆ ISOD are so that for each
f ∈ F there is some g ∈ ⟨G⟩ such that f ≤ g, then B⟨F⟩ ⊆ B⟨G⟩.

We start with a claim.

Claim 3.2.9. Each element in ⟨F⟩ is dominated by some finite linear combination
with natural number coefficients of compositions of members of F .

Proof. Note that each element in ⟨F⟩ is constructed from composing and adding
elements of F a finite number of times. Moreover, every element of ⟨F⟩ is in ISOD
and, therefore, every such element is sub-additive (see Propositions 3.1.5 and 3.2.7).
We then apply sub-additivity repeatedly to prove the claim.
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Proof of Proposition 3.2.8. Let a ∈ B⟨F⟩ and pick f ∈ ⟨F⟩ such that Φa,Φa∗ ≤ f .
By the claim above, f is dominated by some linear combination with natural number
coefficients of compositions of members in F , each of which is dominated by an element
of ⟨G⟩ by hypothesis. Since ⟨G⟩ is closed under addition we have some g ∈ ⟨G⟩ such
that f ≤ g. Then a ∈ Bg ⊆ B⟨G⟩. As a was arbitrary, the result follows.

We now show that the families F can be taken to be in ICOD in the analysis of
P. For that, we introduce the following notation: given a family F of maps [0,∞] →
[0,∞], we let

F∗∗ = {f∗∗ : f ∈ F}. (cf. Definition 3.1.18)

Proposition 3.2.10. If F ⊆ ISOD, then B⟨F⟩ = B⟨F∗∗⟩.

Proof. Proposition 3.1.19 gives us that f ≤ f∗∗ ≤ 2f for each f ∈ F . So it follows
from Proposition 3.2.8 that B⟨F⟩ = B⟨F∗∗⟩.

Theorem 3.2.11. Let F be a collection of functions [0,∞] → [0,∞] then there exists
some collection F ′ ⊆ ICOD such that C⟨F⟩ = C⟨F ′ ⟩.

We start with a claim.

Claim 3.2.12. Given a family F of maps [0,∞] → [0,∞], there is a family F ′ ⊆ ISOD
so that C⟨F⟩ = C⟨F ′ ⟩.

Proof. Let F be a set of functions [0,∞] → [0,∞]. Then Proposition 3.2.4 gives us
that

B⟨F⟩ =
⋃

g∈⟨F⟩

Bg =
⋃

g∈⟨F⟩

Bg̃ ⊆ B⟨g̃:g∈⟨F⟩⟩ ⊆ B⟨F⟩,

where the final inclusion follows since any map in ⟨g̃ : g ∈ ⟨F⟩⟩ is dominated by
something in ⟨F⟩. Indeed, this is the case since g̃1 + g̃2 ≤ g1 + g2 and g̃1(g̃2(x)) ≤
g1(g2(x)) for all functions g1, g2 : [0,∞] → [0,∞]. So we have that B⟨F⟩ = B⟨g̃:g∈⟨F⟩⟩
and thus C⟨F⟩ = C⟨g̃:g∈⟨F⟩⟩. Recall that g̃ ∈ ISOD for each g ∈ ⟨F⟩ (Def 3.2.3) so
{g̃ : g ∈ ⟨F⟩} ⊆ ISOD which completes the proof of the claim.

Proof of Theorem 3.2.11. Given an arbitrary family of maps F , let F ′ ⊆ ISOD be given
by the previous claim, so C⟨F⟩ = C⟨F ′ ⟩. The result then follows since ⟨F ′

∗∗⟩ ⊆ ICOD
and by Proposition 3.2.10 we have that C⟨F ′ ⟩ = C⟨F∗∗⟩.

3.2.3 The Truncation and the Interpolate of a Function

We now present two additional methods of replacing a given family of maps F by a
simpler family G for which, under mild assumptions on F , we still have B⟨F⟩ = B⟨G⟩.
Precisely, Propositions 3.2.13 and 3.2.14 show that there are only two behaviors at
infinity that one must deal with: one can always assume that either (1) the functions
are eventually constant or (2) eventually linear.

We start with the truncation procedure: Given f ∈ ISOD, we let f_ : [0,∞] →
[0,∞] be the function given by

f_(x) = min(f(x), f(1))

for all x ∈ [0,∞]. We call f_ the truncation of f . Notice that f_ ∈ ISOD (Proposition
3.1.16). Given a family F ⊆ ISOD, we let

F_ = {f_ : f ∈ F}.
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Proposition 3.2.13. Let F ⊆ ISOD be so that limx→∞
f(x)
x = 0 for every f ∈ F .

Then B⟨F⟩ = B⟨F_⟩.

Proof. The inclusion B⟨F_⟩ ⊆ B⟨F⟩ is trivial since f_ ≤ f for each f ∈ F (Proposition
3.2.8). For the other direction, pick a ∈ B⟨F⟩ and f0 ∈ ⟨F⟩ so that Φa,Φa∗ ≤ f0.
As f0 is formed from a finite number of additions and compositions of the functions
in F , we have limx→∞

f0(x)
x = 0. In particular, f0(x) is eventually less than 1

2x. So
Lemma 3.2.5 gives us that Bf0 = Bmin(f0,2r) where r = inf{x : f0(x) <

1
2x} < ∞. In

particular, a ∈ Bmin(f0,2r) which gives that Φa and Φa∗ are bounded.
Now we will have two cases depending on the behavior near zero of functions in F :

Suppose there is h ∈ F for which limx→0 h(x) > 0. Then there are δ > 0 and m ∈ N
so that f0(x) ≤ mh_(x) for x ∈ [0, δ]. As Φa(x) and Φa∗ are bounded, there is n ∈ N
so that Φa(x),Φa∗(x) ≤ nh_(x) for x ∈ [δ,∞]. Therefore, a ∈ B(n+m)h_ ⊆ B⟨F_⟩.

Suppose no such h ∈ F exists. The function f0 is built out of a finite number of ad-
ditions and compositions of elements of F , so we can define g0 to be the function built
out of the corresponding additions and compositions of the corresponding elements of
F_; in particular, g0 ∈ ⟨F_⟩. As limx→0 f(x) = 0 for every f ∈ F , there is δ > 0 so
that f0(x) = g0(x) for all x ∈ [0, δ].4 Therefore, Φa(x),Φa∗(x) ≤ g0(x) for all x ∈ [0, δ]
and, as Φa and Φa∗ are bounded, there is n ∈ N so that Φa(x),Φa∗(x) ≤ ng0(x) on
[δ,∞]. Then a ∈ Bng0 ⊆ B⟨F_⟩.

We now introduce the second procedure: Given f ∈ ISOD, we define f/(x); [0,∞] →
[0,∞] as the function given by

f/(x) =

{
f(x), if x ∈ [0, 1],
f(1)x, if x ∈ (1,∞].

We call f/ the interpolate of f . Clearly, f/ ∈ ISOD. Given F ⊆ ISOD, we let

F/ = {f/ : f ∈ F}.

Proposition 3.2.14. Let F ⊆ ISOD be such that limx→∞
f(x)
x > 0 for some f ∈ F .

Then B⟨F⟩ = B⟨F/⟩. In particular, B⟨x⟩ ⊆ B⟨F⟩.

Proof. The inclusion B⟨F⟩ ⊆ B⟨F/⟩ is clear since f ≤ f/ for each f ∈ F (Proposition
3.2.8). For the other direction, fix a ∈ B⟨F/⟩ and f0 ∈ ⟨F/⟩ so that Φa,Φa∗ ≤ f0. As
f0 is formed from a finite number of additions and compositions of the elements in
F/, there are some δ, λ > 0 so that f0(x) = λx for x ∈ [δ,∞]. Then, taking f ∈ F
such that limx→∞

f(x)
x > 0 (as in the statement of the proposition), there is n ∈ N

such that f0(x) ≤ nf(x) for x ∈ [δ,∞].
Now we will have two cases depending on the behavior near zero of function in

F : Suppose there is some h ∈ F so that limx→0 h(x) > 0. Then we can find m ∈ N
so that f0(x) ≤ mh(x) for x ∈ [0, δ] and thus we have that f0 ≤ mh + nf . So,
a ∈ Bmh+nf ⊆ B⟨F⟩.

Suppose no such h ∈ F exists. The function f0 is built out of a finite number of
additions and compositions of elements of F/, so we can define g0 to be the function
built out of the corresponding additions and compositions of the respective elements
of F . As limx→0 f(x) = 0 for every f ∈ F , f0(x) = g0(x) for all x in a sufficiently
small interval around 0. That is, f0(x) ≤ g0(x) for all x ∈ [0, δ

′
]. Since it is possible

that δ > δ
′ we may not have that f0 ≤ g0+nf , but we can certainly find some m ∈ N

so that f0 ≤ mg0 + nf . Thus a ∈ Bmg0+nf ⊆ B⟨F⟩.

4Notice that, since we take compositions of the members of F_, we are not allowed to take δ = 1.
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Since f ∈ ISOD, it is clear that there is k ∈ N so that x ≤ kf/(x) for all x ∈ [0,∞].
So, the last statement follows from Proposition 3.2.8.

Propositions 3.2.13 and 3.2.14 imply that, given any F ⊂ ISOD, either C⟨F⟩ =
C⟨F_⟩ or C⟨F⟩ = C⟨F/⟩. As we see later (Corollary 3.3.5), this actually establishes a
dichotomy for nonempty families F , since only one of those can happen.

3.2.4 The Top and the Bottom of P

The simplest examples of elements in P are C⟨0⟩ = {0} and CICOD = C⟨∞⟩ = B(L2(R)),
which are the first and last elements of P, respectively. Moreover, the poset P also
has unique second and penultimate elements, which we demonstrate presently.

For the next result, let x_ denote the map f : [0,∞] → [0,∞] so that f(x) = x
for all x ∈ [0, 1] and f(x) = 1 for all x > 1.

Proposition 3.2.15. If F ⊆ ICOD contains a nonzero map, then C⟨x_⟩ ⊆ C⟨F⟩. In
particular, C⟨x_⟩ is the unique immediate successor of 0 in P.

Proof. Let f ∈ F be nonzero. Then, as f(0) = 0 and f is concave down, there is
n ∈ N so that x ≤ nf(x) for all x ∈ [0, 1]. So, C⟨x_⟩ ⊆ C⟨F⟩ (Proposition 3.2.8). For
the second statement, notice that, since it is enough to consider families in ICOD in
order to analyse P (Theorem 3.2.11), it follows that C⟨x_⟩ ⊆ C⟨G⟩ for any arbitrary
family of maps G so that {0} = C{0} ⊊ C⟨G⟩. Therefore, we only need to notice
that {0} ⊊ C⟨x_⟩. This follows since the operator a defined by aξ = ξχ[0,1], for all
ξ ∈ L2(R), belongs to C⟨x_⟩.

For the next proposition, consider ICOD<∞ = {f ∈ ICOD : f(x) <∞ for all x <
∞}. Notice that, given f ∈ ICOD, either f(x) = ∞ for all x > 0 or f ∈ ICOD<∞.
Also we will refer to the function f(0) = 0 and f(x) = x + 1 for all x > 0 merely
as “x + 1” to simplify notation. (This is something of a pedantic point which arises
because we defined ICOD functions to be zero at zero, but that simplifies things
elsewhere.)

Proposition 3.2.16. If F ⊆ ICOD<∞, then C⟨F⟩ ⊆ C⟨x+1⟩. In particular, C⟨x+1⟩ =
CICOD<∞. Moreover, it is the unique immediate predecessor of B(L2(R)).

Proof. Let f ∈ F . Since f is concave down and f(x) < ∞ for all x < ∞, there is
n ∈ N so that f ≤ n(x + 1). So, C⟨F⟩ ⊆ C⟨x+1⟩ (Proposition 3.2.8), but of course
x+1 ∈ ICOD<∞ so CICOD<∞ = C⟨x+1⟩. For the second statement, notice that, since
it is enough to consider families in ICOD in order to analyse P (Theorem 3.2.11), it
follows that C⟨F⟩ ⊆ C⟨x+1⟩ for all C⟨F⟩ ⊊ B(L2(R)).

We are left to notice that C⟨x+1⟩ ⊊ B(L2(R)). For that, consider the operator
a ∈ B(L2(R)) given by

aξ =

∞∑
n=0

1√
2n

⟨ξ, χ[n,n+1]⟩χ[2n,2n+1] for all ξ ∈ L2(R).

Given any f ∈ BICOD<∞ and any b ∈ Bf , we have that d(supp
(
bχ[n,n+1]

)
) ≤ f(1) for

all n ∈ N, hence, it follows that

∥a− b∥2 ≥
∥∥aχ[n,n+1] − bχ[n,n+1]

∥∥2 = ∥∥∥∥ 1√
2n
χ[2n,2n+1] − bχ[n,n+1]

∥∥∥∥2 ≥ 2n − f(1)

2n
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for every n ∈ N, since at worst bχ[n,n+1] could exactly cancel f(1) of the support
of χ[2n,2n+1]. As f(1) < ∞ and we can take n arbitrarily large, we conclude that
d(a,Bf ) ≥ 1. By the arbitrariness of f , we have d(a,BICOD<∞) ≥ 1 and so a /∈
CICOD<∞ = C⟨x+1⟩. This completes the proof.

3.2.5 Ultimate Elements of P

We now study some elements of P generated by a few large (and natural) subsets of
ICOD. The largeness of those subsets will imply (Theorem 3.2.20) that they lie at
“the end” of P (see Subsection 3.5.1 for elements at “the beginning” of P). Precisely,
we study the following sets in this subsection:

Definition 3.2.17. We define the following families of functions in ICOD<∞ = {f ∈
ICOD : f(x) <∞ for all x <∞}.

(a) ICODbdd = {f ∈ ICOD : f is bounded}

(b) ICOD0 = {f ∈ ICOD : limx→0 f(x) = 0}

(c) ICOD0∩bdd = ICODbdd ∩ ICOD0

Note that ⟨F⟩ = F for F being any of the families above.

Proposition 3.2.18. CICOD0 and CICODbdd
are incomparable.

Proof. We first show that CICOD0 ⊈ CICODbdd
. For that, notice that, since ΦI(x) = x

for all x ∈ [0,∞], we have that I ∈ CICOD0 . Now take f ∈ ICODbdd and a ∈ Bf .
Then d(sl(a)) < ∞ and we must have that sl(a) < I. Therefore, if ξ ∈ L2(R) is a
unit vector supported on I − sl(a), we have that

∥I − a∥ ≥ ∥ξ − aξ∥ ≥ ∥(I − sl(a))(ξ − aξ)∥ = ∥ξ∥ = 1.

So, d(I,Bf ) = 1 and, by the arbitrariness of f , this shows that I /∈ CICODbdd
.

We now show that CICODbdd
⊈ CICOD0 . For this, let (ηn)∞n=0 be the standard Haar

system, i.e., η0 = χ(0,1) and then recursively define ηn+1(x) = ηn(2x)− ηn(2x− 1). In
other words, for each n ∈ N, we have

ηn(x) =


1, if x ∈

⋃2n−1−1
k=0 ( 2k2n ,

2k+1
2n ),

−1, if x ∈
⋃2n−1−1
k=0 (2k+1

2n , 2k+2
2n ),

0, otherwise.

So, (ηn)∞n=0 is an orthonormal basis for L2(0, 1) and sl(ηn) = χ[0,1] for each n ≥ 0.
Define an operator a ∈ B(L2(R)) by letting

aξ =
∞∑
n=1

√
2n⟨ξ, χ[ 2

n−2
2n

, 2
n−1
2n

]⟩ηn for all ξ ∈ L2(R).

By the Cauchy–Schwarz inequality, it is clear that a is bounded. Moreover, since
aξ ∈ L2(0, 1) for all ξ ∈ L2(R), it follows that Φa ≤ 1. Also, as

a∗ξ =
∞∑
n=1

√
2n⟨ξ, ηn⟩χ[ 2

n−2
2n

, 2
n−1
2n

] for all ξ ∈ L2(R),

it similarly follows that Φa∗ ≤ 1 and thus a ∈ BICODbdd
. On the other hand, say

f ∈ ICOD0 and ε > 0, then pick δ > 0 and k ∈ N so that f(x) < ε for every x ∈ (0, δ)
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and 1
2k
< δ. Then, if ξ =

√
2kχ

[ 2
k−2

2k
, 2

k−1

2k
]
and b ∈ B⟨f⟩, we have that

∥a− b∥2 ≥ ∥(a− b)ξ∥2

=

∫ ∞

−∞

(
ηk(x)− (bξ)(x)

)2
dx

≥ 1− ε.

By the arbitrariness of f , b, and ε, this shows that a /∈ CICOD0 .

We now present a dichotomy for families F ⊆ ICOD<∞ containing an element f
with limx→0 f(x) > 0.

Proposition 3.2.19. Let F ⊆ ICOD<∞ be a collection of functions such that limx→0 f0(x) >
0 for some f0 ∈ F .

(a) If limx→∞
f(x)
x = 0 for every f ∈ F , then C⟨F⟩ = C⟨F_⟩ = CICODbdd

(b) If there is f ∈ F so that limx→∞
f(x)
x > 0, then C⟨F⟩ = C⟨F/⟩ = CICOD<∞.

In particular, CICODbdd
⊆ C⟨F⟩.

Proof. (a) By Proposition 3.2.13, we have C⟨F⟩ = C⟨F_⟩. Hence, as ⟨F_⟩ ⊆ ICODbdd,
it follows that C⟨F⟩ ⊆ CICODbdd

. On the other hand, if g ∈ ICODbdd, then there is
n ∈ N so that g ≤ n · f0. So, CICODbdd

⊆ C⟨F⟩ (Proposition 3.2.8).
(b) As ⟨F⟩ ⊆ ICOD<∞, it follows that C⟨F⟩ ⊆ CICOD<∞ . Fix f ∈ F so that

limx→∞
f(x)
x > 0. Then for any g ∈ ICOD<∞ there are m,n ∈ N such that g ≤

m · f0 + n · f . So, CICOD<∞ ⊆ C⟨F⟩ (Proposition 3.2.8). The equality C⟨F⟩ = C⟨F/⟩
follows from Proposition 3.2.14.

Theorem 3.2.20. The strict inclusions in the diagram below hold and there are no
intermediate elements in each of those inclusions.

CICODbdd

CICOD0∩bdd
CICOD<∞ CICOD = B(L2(R))

CICOD0

⊊ ⊊
⊊ ⊊

⊊

Proof. The algebra inclusions in the diagram are immediate since their defining func-
tion sets satisfy the same inclusions. Moreover, Propositions 3.2.16 and 3.2.18 give us
that those inclusions are strict inclusions. So we only need to show that there are no
C⟨F⟩ strictly between any of the inclusions above. Firstly, notice that, by Theorem
3.2.11, we only need to consider families F of functions in ICOD. Also, by Proposition
3.2.16, we already have that CICOD is an immediate successor of CICOD<∞ .

Let F be a family of functions with C⟨F⟩ ⊆ CICOD<∞ . If limx→0 f(x) = 0 for
all f ∈ F , then ⟨F⟩ ⊆ ICOD0. So, C⟨F⟩ ⊆ CICOD0 and, by Proposition 3.2.18,
CICODbdd

⊈ C⟨F⟩. If limx→0 f0(x) > 0 for some f ∈ F , then Proposition 3.2.19
gives that either C⟨F⟩ = CICODbdd

or C⟨F⟩ = CICOD<∞ . If CICOD0 ⊆ C⟨F⟩, then
C⟨F⟩ = CICODbdd

cannot happen by Proposition 3.2.18. Those arguments show that
CICOD<∞ is an immediate successor of both CICOD0 and CISODbdd

.
Let F be a family of functions with CICOD0∩bdd

⊊ C⟨F⟩. So there must be some f ∈
F which is not in ICOD0∩bdd. So there is some f ∈ F such that either limx→0 f(x) > 0
or f is unbounded. In fact, by Proposition 3.2.13, in the latter case f is not merely
unbounded, but we also would have limx→∞

f(x)
x > 0.
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If limx→0 f(x) > 0 we have that CICODbdd
⊆ C⟨F⟩ and, if limx→∞

f(x)
x > 0, we have

CICOD0 ⊆ C⟨F⟩ (Proposition 3.2.8). This shows there are no intermediates between
either CICOD0 or CICODbdd

and CICOD0∩bdd
.

3.3 A Function (Almost) Characterization of the Order
in P

This section gives a characterization of the containment C⟨F⟩ ⊆ C⟨G⟩ for families of
maps [0,∞] → [0,∞] so that limx→0 f(x) = 0 for all f ∈ F (this restriction justifies
the “almost” in this section’s title). This will be essential in our proofs in Sections 3.4
and 3.5. Precisely, this entire section is dedicated to the proof of the following result:

Theorem 3.3.1. Let F ,G ⊆ ISOD be nonempty and assume that limx→0 f(x) = 0
for each f ∈ F . Then, C⟨F⟩ ⊈ C⟨G⟩ if and only if there exists f0 ∈ F such that either

(a) limx→∞
f0(x)
x > 0 and limx→∞

g(x)
x = 0 for every g ∈ G or

(b) for all g ∈ ⟨G⟩ there is (xn)∞n=1 ⊆ (0,∞) tending to 0 so that limn→∞
f0(xn)
g(xn)

= ∞
(where here we use the convention that 1/0 = ∞).

We need several technical results before we can prove Theorem 3.3.1.

Proposition 3.3.2. Let r ∈ (0,∞], g ∈ ISOD, and f ∈ ICOD be so that f is strictly
increasing on [0, r] and limx→0 f(x) = 0. Then, for af,r given by Proposition 3.1.7:

(af,rξ)(x) =

{√
(f−1)

′
(x)ξ(f−1(x)) x ∈ [0, f(r)]

0 otherwise

we have that
d(af,r, Bg)

2 ≥ 1− g(x0)

f(x0)

for every x0 ∈ (0, r], where d is the distance induced by the operator norm.

Proof. Fix x0 ∈ (0, r]. As limx→0 f(x) = 0, the vector given by ξ(x) =
√
f ′ (x)√
f(x0)

χ[0,x0](x),

for all x ∈ R, has norm 1 and (af,rξ)(x) =
1√
f(x0)

χ[0,f(x0)](x). Fix b ∈ Bg, so bξ has

support of size at most g(x0). Therefore, we have that

∥af,r − b∥2 ≥ ∥(af,r − b)ξ∥2

=

∫ ∞

−∞

( 1

f(x0)
χ[0,f(x0)](x)− (bξ)(x)

)2
dx

≥ 1

f(x0)
(f(x0)− g(x0))

= 1− g(x0)

f(x0)

Since this is true for arbitrary b ∈ Bg, we have the result.

Proposition 3.3.3. Take r0 ∈ [0,∞] and let f ∈ ICOD be strictly increasing on
[0, r0] and so that limx→0 f(x) = 0. For r ∈ [0, r0], let af,r be as in Propositions 3.1.7
and 3.3.2.
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(a) If r <∞, then af,r ∈ B⟨f⟩.

(b) If r = r0 = ∞ and limx→∞
f(x)
x > 0, then af,∞ ∈ B⟨f⟩.

Proof. Fix r ∈ [0, r0]. By Proposition 3.1.7, we have that

Φaf,r(x) = f(x) · χ[0,r](x) + f(r) · χ[r,∞](x)

for all x ≥ 0. In particular, Φaf,r ≤ f . We now estimate Φa∗f,r . For that, note that
a∗f,r is the operator given by

(a∗f,rξ)(x) =
√
f ′(x)ξ(f(x))χ[0,r](x) for all ξ ∈ L2(R) and all x ∈ R.

(a) Say r <∞. Since f−1 is concave up, a∗f,r witnesses maximum support expan-
sion on vectors of the form ξ = χ[f(r)−x,f(r)], i.e.,

Φa∗f,r(x) =

{
d(supp

(
a∗f,rχ[f(r)−x,f(r)]

)
), for x ∈ [0, f(r)],

r, for x > f(r).

Note that supp
(
a∗f,rχ[f(r)−x,f(r)]

)
= χ[f−1(f(r)−x),r] for x ∈ [0, f(r)]. So,

lim
x→0

Φa∗f,r(x)

x
= lim

x→0+

f−1(f(r))− f−1(f(r)− x)

x
,

which we recognize as the left derivative (f−1)
′
(f(r)) = 1

f ′ (r)
. Since f is strictly

increasing on [0, r0], this implies that limx→0Φa∗f,r(x)/x <∞. Therefore, since Φa∗f,r is

bounded and limx→0
f(x)
x > 0 (Proposition 3.1.5), there is n ∈ N such that Φa∗f,r ≤ nf .

So, af,r ∈ B⟨f⟩.

(b) Say r = ∞ and let λ = limx→∞
f(x)
x > 0. Then, limx→∞

f−1(x)
x = 1

λ . As f−1 is
concave up, a∗f,∞ witnesses larger support expansion on intervals further to the right.
Therefore, given x > 0, we have that

Φa∗f,r(x) = lim
t→∞

(
f−1(t+ x)− f−1(t)

)
=

1

λ
x.

So Φa∗f,r can be dominated by an appropriate integer multiple of f , since in this case

we have the hypothesis that limx→∞
f(x)
x > 0. This shows that af,∞ ∈ B⟨f⟩.

Proposition 3.3.4. Let F ,G ⊆ ICOD be nonempty and assume that limx→0 f(x) = 0
for each f ∈ F . Then, C⟨F/⟩ ⊈ C⟨G_⟩. In particular, C⟨F_⟩ ⊊ C⟨F/⟩.

Proof. Fix some f ∈ F . By Proposition 3.3.3, af/,∞ ∈ B⟨f/⟩ ⊆ C⟨F/⟩ and, by Propo-
sition 3.3.2, af/,∞ has distance 1 from B⟨G_⟩. So, af/,∞ /∈ C⟨G_⟩. The inclusion
C⟨F_⟩ ⊆ C⟨F/⟩ is immediate (Proposition 3.2.8).

Corollary 3.3.5. If F ⊆ ICOD is nonempty, then either C⟨F⟩ = C⟨F_⟩ or C⟨F⟩ =
C⟨F/⟩ but not both.

Proof. By Propositions 3.2.13 and 3.2.14, either C⟨F⟩ = C⟨F_⟩ or C⟨F⟩ = C⟨F/⟩, so we
are left to show that only one of those can happen. If limx→0 f(x) = 0 for every f ∈ F ,
then C⟨F_⟩ ̸= C⟨F/⟩ by Proposition 3.3.4. If not, Proposition 3.2.19 implies that that
C⟨F/⟩ = CICOD<∞ . Therefore, as C⟨F_⟩ ⊆ CICODbdd

, we have that C⟨F_⟩ ̸= C⟨F/⟩
(Theorem 3.2.20).
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We will now consider behavior of control functions near 0 and how this affects the
resulting C∗-algebras:

Proposition 3.3.6. Let F ,G ⊆ ICOD be nonempty and assume that limx→0 f(x) = 0
for each f ∈ F . Suppose there is f0 ∈ F so that for every g ∈ ⟨G⟩ there is a sequence
(xn)

∞
n=1 ⊆ [0,∞) tending to 0 such that limn→∞

f0(xn)
g(xn)

= ∞. Then C⟨F⟩ ⊈ C⟨G⟩.

Proof. Since f0 ̸= 0, pick r0 ∈ (0,∞] so that f0 is strictly increasing on [0, r0] and fix
some r ∈ (0, r0). By Proposition 3.3.2, af0,r has distance 1 from Bg for any g ∈ ⟨G⟩.
So, af0,r /∈ C⟨G⟩. On the other hand, by Proposition 3.3.3, af0,r ∈ C⟨F⟩.

For support expansion C∗-algebras generated from a single control function, Propo-
sition 3.3.6 holds under weaker conditions:

Corollary 3.3.7. Let f, g ∈ ICOD and suppose limx→0 f(x) = 0. If for every N ∈ N
there is a sequence (xn)

∞
n=1 ⊆ [0,∞) tending to 0 such that limn→∞

f(xn)

g(N)(xn)
= ∞,

then C⟨f⟩ ⊈ C⟨g⟩.

Proof. If limx→0
g(x)
x ≤ 1 then g dominates g(N) near 0. On the other hand, if

limx→0
g(x)
x > 1 then g(N+1) dominates g(N) near 0 for each N ∈ N. In either case, it

follows that there is (xn)
∞
n=1 ⊆ [0,∞) tending to 0 so that limn→∞

f(xn)

g(N)(xn)
= ∞ for

every N ∈ N.
Fix g0 ∈ ⟨g⟩. By Claim 3.2.9, g0 is dominated by some linear combination of the

g(N), and so limn→∞
f(xn)
g0(xn)

= ∞. The result then follows from Proposition 3.3.6.

Proof of Theorem 3.3.1. Theorem 3.2.11 tells us that C⟨F⟩ = C⟨F∗∗⟩ and C⟨G⟩ =
C⟨G∗∗⟩. Recall from Proposition 3.1.19 that for any f ∈ ISOD, f ≤ f∗∗ ≤ 2f , so
we note that the hypotheses of Theorem 3.3.1 hold for F and G if and only if they
hold for F∗∗ and G∗∗, reducing to the case where F ,G ⊆ ICOD, which we assume for
the remainder of the proof.

( ⇐= ): If the second item holds, the result follows from Proposition 3.3.6. Suppose
the first item holds. Then it follows from Propositions 3.2.13 and 3.2.14 that C⟨F⟩ =
C⟨F/⟩ and C⟨G⟩ = C⟨G_⟩. Then, by Proposition 3.3.4, we have that C⟨F/⟩ ⊈ C⟨G_⟩.

( =⇒ ): Suppose both items fail for all f ∈ F . First we consider the case where
limx→∞

f(x)
x = 0 for every f ∈ F . Then C⟨F⟩ = C⟨F_⟩ by Proposition 3.2.13. So there

is no loss of generality to assume that each f ∈ F is bounded. Fix f0 ∈ F . Then, as
the second item does not hold for f0 ∈ F , there is g ∈ ⟨G⟩, δ > 0, and n ∈ N such
that f0(x) ≤ ng(x) for all x ∈ [0, δ]. Therefore, as f0 is bounded, by replacing n by a
larger natural if necessary, we can assume that f0 ≤ ng. Since f0 ∈ F was arbitrary,
Proposition 3.2.8 implies that C⟨F⟩ ⊆ C⟨G⟩.

Now consider the case where there exists f ∈ F such that limx→∞
f(x)
x > 0. Then,

as the first item fails, there is g ∈ G such that limx→∞
g(x)
x > 0. Hence, by Proposition

3.2.14, we have that C⟨G⟩ = C⟨G/⟩. So there is no loss of generality to assume that
each element of G is eventually linear. Fix some f0 ∈ F . As the second item does not
hold for f0 ∈ F , we can find g ∈ ⟨G⟩, δ > 0, and n ∈ N such that f0(x) ≤ ng(x) for
all x ∈ [0, δ]. As f0(x)

x is decreasing, f0 is at most asymptotically linear, so, replacing
n by a larger n if necessary, we can assume that f0 ≤ ng. Since f0 ∈ F was arbitrary,
Proposition 3.2.8 implies that C⟨F⟩ ⊆ C⟨G⟩.

Theorem 3.3.1 can be reduced to the following in the case of F and G being
singletons.
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Corollary 3.3.8. Let f, g ∈ ISOD be such that limx→0 f(x) = 0. Then, C⟨f⟩ ⊈ C⟨g⟩
if and only if either

(a) limx→∞
f(x)
x > 0 and limx→∞

g(x)
x = 0 or

(b) for all N ∈ N there is (xn)
∞
n=1 ⊆ [0,∞) tending to 0 so that limn→∞

f(xn)

g(N)(xn)
=

∞ (where here we use the convention that 1/0 = ∞).

Proof. If limx→0
g(x)
x ≤ 1, then g dominates each g(N) near 0. On the other hand, if

limx→0
g(x)
x > 1 then g(N+1) dominates g(N) near 0 for each N ∈ N. In either case,

it follows that there is a universal sequence (xn)
∞
n=1 ⊆ [0,∞) tending to 0 so that

limn→∞
f(x)

g(N)(xn)
= ∞ for every N ∈ N.

Now for any g0 ∈ ⟨g⟩ we have from Claim 3.2.9 that g0 is dominated by some linear
combination of compositions of g, and so limn→∞

f(xn)
g0(xn)

= ∞. Then apply Theorem
3.3.1 to obtain the result.

3.4 Order Structure of Large Subsets of P

In this section, we present methods to obtain uncountable subsets of P with well
understood order structure. Precisely, the following is the main result of this section:

Theorem 3.4.1. The poset P has uncountable increasing chains, uncountable de-
creasing chains and uncountable antichains.

Theorem 3.3.1 and Corollary 3.3.8 (almost) reduce the question of whether two
elements in P are comparable to a function-theoretic question. We will now work
primarily with functions and then use Theorem 3.3.1 and Corollary 3.3.8 in order to
determine properties of P.

The following proposition is inspired by a construction in LittlePeng9, 2017.

Proposition 3.4.2. Let f0 : [0, 1] → [0, 1] be so that

(a) f0 is increasing,

(b) f0 is concave down,

(c) x < f0(x) < 1 for all 0 < x < 1,

(d) limx→0 f0(x) = 0, and

(e) limx→0
f
(n)
0 (x)

f
(m)
0 (x)

= ∞ for all n > m ≥ 0 .

Then, for each countable ordinal α, there is fα : [0, 1] → [0, 1] satisfying the same
properties above and so that limx→0

fβ(x)

f
(n)
α (x)

= ∞ for all n ∈ N and all β > α.

Proof. We define (fα)α<ω1 by transfinite induction. Suppose β < ω1 and that (fα)α<β
has been defined. Then, if β is a successor ordinal, say β = γ + 1, we define

fβ(x) ..=

∞∑
n=1

1

2n
f (n)γ (x) for all x ∈ [0,∞].
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If β is a limit ordinal, then its cofinality must be ω, so pick an increasing sequence of
ordinals (α[n])n so that β = supn α[n] and let

fβ(x) ..=
∞∑
n=1

1

2n
fα[n](x) for all x ∈ [0,∞].

We now show that (fα)α<ω1 satisfies the desired properties. Items (a), (b), (c),
and (d) follow straightforwardly. Let us show that (fα)α<ω1 satisfies (e). We proceed
by transfinite induction. Suppose β < ω1 and that (e) holds for all α < β. If β is a
successor ordinal and let β = γ + 1. Then for any N ∈ N there is δ > 0 such that
fγ(x)
x > 2N for all 0 < x < δ (since fγ satisfies (e)). Therefore, fβ(x)

x >
fγ(x)
2x > N for

all 0 < x < δ and, as N is arbitrary, we have that limx→0
fβ(x)
x = ∞. An analogous

argument gives that limx→0
fβ(x)
x = ∞ if β is a limit ordinal. Since limx→0

f
(m+1)
β (x)

f
(m)
β (x)

=

limx→0
fβ(x)
x for all m ∈ N and

f
(n)
β (x)

f
(m)
β (x)

=
f
(n)
β (x)

f
(n−1)
β (x)

· . . . ·
f
(m+1)
β (x)

f
(m)
β (x)

,

(e) follows.
Finally, we need to show that limx→0

fβ(x)

f
(n)
α (x)

= ∞ for all α < β < ω1 and all n ∈ N.

We proceed by induction on β. Fix β < ω1. Say β = α+ 1. Then, if n ∈ N, we have

that fβ > 1
2n+1 f

(n+1)
α and thus we have that limx→0

fβ(x)

f
(n)
α (x)

≥ limx→0
f
(n+1)
α (x)

2n+1f
(n)
α (x)

= ∞
by (e). Now suppose that α + 1 < β and the induction hypothesis holds for all
γ ∈ (α, β). Then, regardless if β is a successor or a limit ordinal, there is γ ∈ (α, β)

so that fβ > 1
2m fγ for some m ∈ N and limx→0

fγ(x)

f
(n)
α (x)

= ∞ for all n ∈ N. Thus by

the induction hypothesis we have that limx→0
fβ(x)

f
(n)
α (x)

≥ limx→0
fγ(x)

2mf
(n)
α (x)

= ∞ for all
n ∈ N and this completes the proof.

Corollary 3.4.3. The partially ordered set P has uncountable increasing chains.

Proof. Let f0(x) ..=
√
x · χ[0,1](x) and note that this fulfills all of the hypotheses of

Proposition 3.4.2. Let (fα)α<ω1 be the family given by Proposition 3.4.2. By abuse
of notation, we extend each of those functions to the whole [0,∞] by letting fα(x) =
fα(1) = 1 (by hypothesis (c) of Proposition 3.4.2) for any x > 1 and any α < ω1.
Notice that (fα)α<ω1 satisfies the following: limx→0 fα(x) = 0, limx→∞

fα(x)
x = 0,

and limx→0
fβ(x)

f
(N)
α (x)

= ∞ for all α < β < ω1 and all N ∈ N. The containment

characterization given by Corollary 3.3.8 gives us that C⟨fα⟩ ⊊ C⟨fβ⟩ for all α < β <
ω1. Since ω1 is uncountable, the result follows.

The poset P also has uncountable decreasing chains. To show this we first need to
introduce a transformation on ISOD functions [0,∞] → [0,∞]. Given f ∈ ISOD, we
define T f : [0,∞] → [0,∞] by letting

(T f)(x) =


0, if f(x) = 0
x

f(x) , if x <∞ and f(x) ̸= 0,

∞, if x = ∞.

It is straightforward to check that f also belongs to ISOD.



44 Chapter 3. Continuous Support Expansion C∗-Algebras

Proposition 3.4.4. Suppose f, g ∈ ISOD satisfy limx→0 f(x) = 0 = limx→0 g(x).
Suppose furthermore that limx→0

f(x)

g(N)(x)
= ∞ for all N ∈ N and g(x) ≥

√
x for

sufficiently small x. Then C⟨x⟩ ⊊ C⟨T f⟩ ⊊ C⟨T g⟩.

Proof. As limx→0
f(x)
g(x) = ∞ and g(x) ≥

√
x near 0, it follows that limx→0(T f)(x) =

limx→0
x

f(x) ≤ limx→0

√
x

f(x) ≤ limx→0
g(x)
f(x) = 0. Hence, as limx→0

(T f)(x)
x = limx→0

1
f(x) =

∞, Corollary 3.3.8 implies that C⟨T f⟩ ⊈ C⟨x⟩. On the other hand, as limx→0
x

(T f)(x) =

limx→0 f(x) = 0, it also follows that C⟨x⟩ ⊆ C⟨T f⟩ (Corollary 3.3.8)
We are left to show that C⟨T f⟩ ⊊ C⟨T g⟩. We start by showing that limx→0

f(x)n

g(x) =

∞ for all n ∈ N. Indeed, fix n ∈ N and note that, as g(x) ≥
√
x for sufficiently small

x, then g(n)(x) ≥ 2n
√
x for sufficiently small x. Therefore, we must have that

lim
x→0

f(x)
n
√
g(x)

≥ lim
x→0

f(x)
2n
√
g(x)

≥ lim
x→0

f(x)

g(n)(x)
= ∞

So, by the continuity of xn, limx→0
f(x)n

g(x) = ∞.
A simple induction gives that

(T f)(n)(x) = x∏n−1
k=0 f((T f)(k)(x))

for all x ∈ [0,∞].

Also, as limx→0 f(x) = 0, we have (T f)(x) = x
f(x) > x for sufficiently small x, which

implies that, for each n ∈ N, (T f)(n)(x) > x for sufficiently small x. Therefore, as
f is increasing,

∏n−1
k=0 f((T f)(k)(x)) ≥ f(x)n for sufficiently small x. Then, using the

result of the previous paragraph, we have that

lim
x→0

(T g)(x)
(T f)(n)(x)

= lim
x→0

∏n−1
k=0 f((T f)(k)(x))

g(x)
≥ lim

x→0

f(x)n

g(x)
= ∞.

As g(x) ≥
√
x near zero, we have that limx→0(T g)(x) = 0, and thus Corollary 3.3.8

implies that C⟨T g⟩ ⊈ C⟨T f⟩. Finally, since limx→0
(T f)(x)
(T g)(x) = limx→0

g(x)
f(x) = 0, Corollary

3.3.8 also gives that C⟨T f⟩ ⊆ C⟨T g⟩.

Corollary 3.4.5. The partially ordered set P has an uncountable decreasing chain.

Proof. Let f0(x) ..=
√
x · χ[0,1](x) and let (fα)α<ω1 be given by Proposition 3.4.2. By

abuse of notation, we extend each of those functions to the whole [0,∞] by letting
fα(x) = fα(1) = 1 (by hypothesis (c) of Proposition 3.4.2) for any x > 1 and any
α < ω1. Note that, for any α < ω1, we have limx→0 fα(x) = 0 and that fα(x) ≥

√
x

for sufficiently small x. Furthermore, if α < β < ω1, then limx→0
fβ(x)

f
(N)
α (x)

= ∞ for
every N ∈ N. Therefore, by Proposition 3.4.4, we have that C⟨x⟩ ⊊ C⟨T fβ⟩ ⊊ C⟨T fα⟩
for all α < β < ω1.

We will now show that P has an uncountable antichain. To show this we need a
couple of technical results.

Lemma 3.4.6. If F ⊆ ISOD is such that C⟨F⟩ ⊈ C⟨x_⟩ and limx→0 f(x) = 0 for every

f ∈ F , then there is some f0 ∈ ⟨F⟩ such that limx→0
f0(x)
x = ∞. As a consequence,

limx→0
f
(n)
0 (x)

f
(m)
0 (x)

= ∞ for n,m ∈ N with n > m.
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Proof. Using Theorem 3.3.1, C⟨F⟩ ⊈ C⟨x_⟩ gives us an f0 ∈ ⟨F⟩ and a sequence

(xn)
∞
n=1 decreasing to 0 such that f0(xn)

xn
≥ n. As f0(x)

x is decreasing (since f0 ∈ ISOD),
this implies that that limx→0

f0(x)
x = ∞ as desired.

Proposition 3.4.7. (cf. Proposition 2.3.8) If (fn)n∈N ⊆ ICOD is so that C⟨fn⟩ ⊈ C⟨x⟩
and limx→0 fn(x) = 0 for all n ∈ N, then there is g ∈ ICOD with limx→0 g(x) = 0 so
that C⟨g⟩ ⊈ C⟨x⟩, and so that C⟨g⟩ and C⟨fn⟩ are incomparable for all n ∈ N.

Proof. For didactic reasons, we first prove the proposition with the extra assumption
that (fn)n∈N is a constant sequence, say f = fn for all n ∈ N. As C⟨f⟩ = C⟨nf⟩ for
all n ∈ N (Proposition 3.2.8), we can assume that f(x) ≥ x for all x ∈ [0, 1]. We
now construct the desired function g. It will be useful for the reader to have in mind
that our approach will be the following: we construct g in a piecewise manner and in
a way that we can use the second item of Corollary 3.3.8 in order to guarantee that
C⟨g⟩ and C⟨f⟩ are incomparable.

We start by setting some notation and pointing out some very elementary facts
about affine functions and their relation with f . Precisely, given x, y, b > 0, we let
ℓ[x, y, b] be the line which sends x to y and has b as y-intercept, i.e., ℓ[x, y, b](t) =
y−b
x t + b for all t ∈ R. The construction of g will be based in the following: given
x, y, b > 0,

(a) as limt→0 f(t) = 0, we have that limt→0
ℓ[x,y,b](t)

f (n)(t)
= ∞ for all n ∈ N and

(b) since limt→0
f(t)
t = ∞ (Lemma 3.4.6), we have that limt→0

f(t)

ℓ[x,y,0](n)(t)
= ∞ for

all n ∈ N.

The next two facts isolate the conclusions from points (a) and (b) which we need —
we recommend the readers guide themselves by Figure 3.1 in the construction of g.

x1

y1

x2 z1

y2

x3 z2

y3

Figure 3.1: In the graph above, the smooth function represents f
and the piecewise linear function represents g. Note that the scale is
modified so that the general behavior of g with respect to f can be
represented in the graph. Also, due to obvious physical restrictions,

the graph only depicts the case n = 1 in Facts 3.4.8 and 3.4.9.

Fact 3.4.8. Given x, y, b, k, n > 0, there is x′ ∈ (0, x) so that ℓ[x,y,b](x′)
f (n)(x′)

> k.
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Fact 3.4.9. Given x, y, b, k, n > 0, there are z′ ∈ (0, x) and b′ ∈ (0,min{b, y}) so that
f(z′)

ℓ[x,y,b′](n)(z′)
> k.

Let x0 = y0 = b0 = 1. Then, alternating between Fact 3.4.8 and Fact 3.4.9 (with
Fact 3.4.8 being the first we use), one can find strictly decreasing sequences (xn)

∞
n=1,

(yn)
∞
n=1, (zn)∞n=1, and (bn)

∞
n=1 in [0, 1] tending to 0 so that

(a) ℓ[xn−1,yn−1,bn−1](xn)

f (n)(xn)
> n for all n ∈ N,

(b) yn = ℓ[xn−1, yn−1, bn−1](xn) for all n ∈ N,

(c) xn+1 < zn < xn for all n ∈ N,

(d) bn < yn for all n ∈ N,

(e) f(zn)

l[xn,yn,bn](n)(zn)
> n for all n ∈ N.

We define g : [0,∞] → [0,∞] by letting

g(x) =


1, if x ≥ x1,
ℓ[xn, yn, bn](x), if x ∈ (xn+1, xn],
0, if x = 0.

It is clear from its piecewise definition and (b) that g is continuous. By its very defi-
nition, ℓ[xn, yn, bn] has slope yn−bn

xn
. However, by (b), the slope of ℓ[xn−1, yn−1, bn−1]

must equal yn−bn−1

xn
. Therefore, as bn < bn−1, the slope of ℓ[xn, yn, bn] is greater than

the one of ℓ[xn−1, yn−1, bn−1]. Hence, g is concave down. Moreover, by (d), the slope
of each ℓ[xn, yn, bn] is positive, so g is increasing.

We now use Corollary 3.3.8 in order to conclude. For that, fix N ∈ N. Since
f(x) ≥ x for all x ∈ [0, 1], we have that f (N)(x) ≤ f (n)(x) for all x ∈ [0, 1] and all
n ≥ N . Therefore, (a) and (b) imply that

lim
n→∞

g(xn)

f (N)(xn)
≥ lim

n→∞

g(xn)

f (n)(xn)
≥ lim

n→∞

ℓ[xn−1, yn−1, bn−1](xn)

f (n)(xn)
≥ lim

n→∞
n = ∞.

On the other hand, since g(1) = 1 and g is concave down, we have that g(x) ≥ x for all
x ∈ [0, 1], which gives us that g(N)(x) ≤ g(n)(x) for all x ∈ [0, 1] and all n ≥ N . Also,
it is clear from its definition that g ≤ l[xn, yn, bn] for all n ∈ N, so g(n) ≤ l[xn, yn, bn]

(n)

for all n ∈ N. Therefore, (e) gives us that

lim
n→∞

f(zn)

g(N)(zn)
≥ lim

n→∞

f(zn)

g(n)(zn)
≥ lim

n→∞

f(zn)

ℓ[xn, yn, bn](n)(zn)
≥ lim

n→∞
n = ∞.

By Corollary 3.3.8, this implies that C⟨f⟩ and C⟨g⟩ are incomparable.
Now note that for x ∈ (0, xn) we have g(x) ≤ ℓ[xn, yn, bn](x) ≤ yn with yn → 0,

so limx→0 g(x) = 0. Suppose for the sake of contradiction that C⟨g⟩ ⊆ C⟨x⟩. Then, by
Corollary 3.3.8, there exists some m ∈ N such that g(x) ≤ mx and thus limx→0

f(x)
g(x) ≥

limx→0
f(x)
mx = ∞ which contradicts our result that limn→∞

g(xn)
f(xn)

= ∞. So C⟨g⟩ ⊈ C⟨x⟩.
The result for a single f is now proven, so consider (fn)n as in the statement,

i.e., (fn)n is not necessarily constant. The proof for this case is actually completely
analogous and the only modification needed is that, when using Facts 3.4.8 and 3.4.9
in order to find strictly decreasing sequence (xn)

∞
n=1, (yn)∞n=1, (zn)∞n=1, and (bn)

∞
n=1 in
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[0, 1] tending to 0, we must replace (a) and (e) above by the stronger statements that
l[xn−1,yn−1,bn−1](xn)

f
(n)
k (xn)

≥ n and fk(zn)

l[xn,yn,bn](n)(zn)
≥ n for all n ∈ N and all k ≤ n. Since this

is not an issue, we are done.

Corollary 3.4.10. The partially ordered set P has an uncountable antichain.

Proof. Let S be the subset of P consisting of all C⟨f⟩ with f ∈ ICOD, so that C⟨f⟩ ⊈
C⟨x⟩ and limx→0 f(x) = 0. By Corollary 3.3.8, we have that C⟨

√
x⟩ ⊈ C⟨x⟩. So,

C⟨
√
x⟩ ∈ S. Since S is nonempty, Zorn’s lemma implies that S contains a maximal

antichain, say A. If A is countable, Proposition 3.4.7 gives us g ∈ ICOD satisfying
C⟨g⟩ ⊈ C⟨x⟩, limx→0 g(x) = 0 and so that C⟨g⟩ is pairwise incomparable to everything in
A. Then A∪{C⟨g⟩} is an antichain strictly larger than A, contradicting the maximality
of A. So A must be uncountable. As A is also an antichain of P we are done.

Proof of Theorem 3.4.1. We have collected all of the necessary results in Corollaries
3.4.3, 3.4.5, and 3.4.10.

3.5 Existence and Nonexistence of Successor Elements in
P

In Subsections 3.2.4 and 3.2.5, we provided some examples of successor elements in P.
The examples therein are very specific and allow no generalizations. In this section,
we provide fairly general criteria for when a successor exists (Proposition 3.5.1) and
when it does not (Proposition 3.5.2).

Proposition 3.5.1. Let F ⊆ ICOD be nonempty and so that limx→0 f(x) = 0 for
each f ∈ F . Then C⟨F/⟩ is an immediate successor of C⟨F_⟩ in P.

As we see below (Corollary 3.5.9), if F is a singleton, then C⟨F/⟩ is actually the
unique immediate successor of C⟨F_⟩.

Proof of Proposition 3.5.1. By Proposition 3.3.4, we have C⟨F_⟩ ⊊ C⟨F/⟩. Suppose
for a contradiction that there exists some family G so that C⟨F_⟩ ⊊ C⟨G⟩ ⊊ C⟨F/⟩.
By Theorem 3.2.11, we can assume that G ⊆ ICOD. Moreover, we must have that
limx→0 g(x) = 0 for every g ∈ G. Indeed, if this were not the case, then CICODbdd

⊆
C⟨G⟩ (Proposition 3.2.19) and then, as C⟨F/⟩ ⊆ CICOD0 , we have that CICODbdd

⊆
CICOD0 . This contradicts Proposition 3.2.18.

Since C⟨G⟩ ⊈ C⟨F_⟩, one of the items in Theorem 3.3.1 must hold for some g0 ∈ G.
If the second item holds, then for every f ∈ ⟨F_⟩ we can find some sequence (xn)

∞
n=1

tending to 0 such that limn→∞
g0(xn)
f(xn)

= ∞. As for any f0 ∈ ⟨F/⟩ we can find some
f ∈ ⟨F_⟩ such that f and f0 agree near 0, Theorem 3.3.1 tells us that C⟨G⟩ ⊈ C⟨F/⟩,
contradicting our initial supposition.

Suppose now that the first item of Theorem 3.3.1 holds for g0, i.e. limx→∞
g0(x)
x >

0. Since C⟨F/⟩ ⊈ C⟨G⟩, one of the items of Theorem 3.3.1 must hold for some f0 ∈ F/.
Our assumption on g0 prevents the first one from holding, so its must be the second
which holds for f0. So, for every g ∈ ⟨G⟩ there exists a sequence (xn)

∞
n=1 tending to

0 such that limn→∞
f0(xn)
g(xn)

= ∞. However, since f0_ and f0 agree near 0, Theorem
3.3.1 gives that C⟨F_⟩ ⊈ C⟨G⟩; contradiction.

Proposition 3.5.2. Let f ∈ ICOD be so that limx→0 f(x) = 0 and limx→0
f(x)
x = ∞.

(a) If limx→∞
f(x)
x > 0, then C⟨f⟩ has no immediate successor in P.
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(b) If limx→∞
f(x)
x = 0, then C⟨f⟩ has no immediate successor of the form C⟨G_⟩ in

P.

Proof. First of all, notice that, as limx→0 f(x) = 0, we have f ∈ ICOD<∞.
(a): As limx→∞

f(x)
x > 0, there is n ∈ N large enough so that x ≤ nf(x) for all

x ∈ [0,∞]. So, since C⟨f⟩ = C⟨nf⟩, we assume that x ≤ f(x) for all x ∈ [0,∞]. As a
consequence, we have that f (N) ≥ f (M) whenever N ≥M .

Suppose for the sake of contradiction that there exists a family G so that C⟨G⟩ is
the immediate successor of C⟨f⟩. By Theorem 3.2.11, we can assume that G ⊆ ICOD.

Claim 3.5.3. C⟨G⟩ = C⟨G/⟩ and limx→0 g(x) = 0 for every g ∈ G.

Proof. To show that C⟨G⟩ = C⟨G/⟩, it is enough to show that limx→∞
g0(x)
x > 0 for

some g0 ∈ G (Proposition 3.2.14). Suppose no such g0 exists. Then Proposition 3.2.13
gives that C⟨G⟩ = C⟨G_⟩ and then, as C⟨f⟩ = C⟨f/⟩ (Proposition 3.2.14), Proposition
3.3.4 gives that C⟨f⟩ ⊈ C⟨G⟩; contradiction.

We now show that limx→0 g(x) = 0 for every g ∈ G. Indeed, if not, then, as C⟨G⟩ =

C⟨G/⟩, we must have CICOD<∞ ⊆ C⟨G⟩ (Proposition 3.2.19). Notice that f
f(1) satisfies

the hypothesis of Proposition 3.4.2 and let f1, f2 ∈ ICOD0 be the first two maps
given by it. We extend f1 and f2 to the whole [1,∞] by letting f1(x) = f1(1)x and
f2(x) = f2(1)x for all x > 1. The properties of f1 and f2 together with and Corollary
3.3.8 give that C⟨f⟩ = C⟨ f

f(1)
⟩ ⊊ C⟨f1⟩ ⊊ C⟨f2⟩ ⊆ CICOD<∞ . As CICOD<∞ ⊆ C⟨G⟩, this

contradicts our choice of C⟨G⟩ as an immediate successor of C⟨f⟩.

As C⟨G⟩ ⊈ C⟨f⟩, the previous claim gives that one of the items of Theorem 3.3.1

must hold for some g0 ∈ G. Since limx→∞
f(x)
x > 0, it must be the second item. As

C⟨G⟩ = C⟨G/⟩, we can assume without loss of generality that g0 = g0/. So, for every f0 ∈
⟨f⟩ there is a positive sequence (xn)

∞
n=1 tending to 0 such that limn→∞

g0(xn)
f0(xn)

= ∞.
In fact, this sequence can be chosen independent of f0, i.e., there is strictly decreasing
sequence (xn)

∞
n=1 tending to 0 such that limn→∞

g0(xn)
f0(xn)

= ∞ for all f0 ∈ ⟨f⟩ (see the
first paragraph of the proof of Corollary 3.3.8 for details). Going to a subsequence if
necessary, we assume furthermore that g0(xn)

f (n
2)(xn)

≥ n for every n ∈ N.

Define a map h̃ : [0,∞] → [0,∞] by letting, for each x ∈ R,

h̃(x) ..= sup
n∈N

(
f (n)(x) ·

n∏
k=1

f (k−1)(xk)

f (k)(xk)
· χ[0,xn](x)

)
.

Since f(0) = 0 and limn xn = 0, the supremum above is actually a maximum, so h̃ is
well defined. Moreover, if x ∈ (xn+1, xn], then h̃(x) = f (n)(x)·

∏n
k=1

f (k−1)(xk)

f (k)(xk)
: Indeed,

as f ∈ ISOD, f is increasing and f(x)
x is decreasing, so, as x ≤ xk for k ≤ n, it follows

that f (k)(xk)

f (k−1)(xk)
≤ f (k)(x)

f (k−1)(x)
. Hence, f (k−1)(x) ≤ f (k−1)(xk)

f (k)(xk)
f (k)(x) for all k ≤ n; so the

formula for h̃ holds. In particular, as f (k−1)

f (k)
< 1, this implies that h̃(x) ≤ f (n)(x) for

all n ∈ N and all xn+1 < x ≤ xn.
Notice that h̃ is ISOD (Proposition 3.1.16) on [0, x1]. Define h : [0,∞] → [0,∞]

by letting

h(x) =

{
inf(h̃(x), g0(x)), x ∈ [0, x1],

inf(h̃(x1), g0(x1))x, x ∈ (x1,∞].
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Notice that h is also ISOD and limx→0 h(x) ≤ limx→0 g0(x) = 0 (Claim 3.5.3), which
will be needed in order to invoke Corollary 3.3.8 to show C⟨h⟩ ⊈ C⟨f⟩ below.

Claim 3.5.4. C⟨f⟩ ⊊ C⟨h⟩ ⊊ C⟨g0⟩.

Proof. The inclusion C⟨h⟩ ⊆ C⟨g0⟩ follows since h ≤ g0 (Proposition 3.2.8). Let us show
this is a strict inclusion. Fix N ∈ N and recall that h(x) ≤ f (n)(xn) for x ∈ (xn+1, xn]
and h is increasing. Therefore,

g0(xn)

h(N)(xn)
≥ g0(xn)

f (nN)(xn)
≥ g0(xn)

f (n2)(xn)
≥ n

for n ∈ N large enough. Since (xn)n tends to 0 and h ∈ ISOD, Corollary 3.3.8 gives
that C⟨g0⟩ ⊈ C⟨h⟩ as desired.

As h̃(x) ≥ x1
f(x1)

f(x) for x ≤ x1, limx→0
g0(x)
f(x) = ∞ and f(x1)

x1
≥ 1, we have that

f(x1)
x1

h(x) ≥ f(x) for all x sufficiently small. Then, since limx→∞
h(x)
x > 0, there is an

n ∈ N such that nh ≥ f . So C⟨f⟩ ⊆ C⟨h⟩ (Proposition 3.2.8).
We are left to show that C⟨h⟩ ⊈ C⟨f⟩. For that, fix N ∈ N. By the hypotheses on

f , limx→0
f (n)(x)

f (m)(x)
= ∞ for n > m. Hence, there is a sequence (yn)

∞
n=1 decreasing to 0

so that f (N+1)(x) ≥ nf (N)(x) for all x ∈ [0, yn]. Take (xjn)
∞
n=1 a subsequence of (xn)

such that xjn ≤ yn for all n ∈ N.
By our choice of (xjn)∞n=1 and as f (k−1)

f (k)
≤ 1, we have that

g0(xjn) ≥ jnf
(jn2)(xjn) ≥ nf (N)(xjn)

N+1∏
k=1

f (k−1)(xk)

f (k)(xk)

for n > N . Also, we have

h̃(xjn) ≥ f (N+1)(xjn)

N+1∏
k=1

f (k−1)(zk)

f (k)(zk)
≥ nf (N)(xjn)

N+1∏
k=1

f (k−1)(xk)

f (k)(xk)

for all n > N . Together these inequalities imply that h(xjn )

f (N)(xjn )
≥ n

∏N+1
k=1

f (k−1)(xk)

f (k)(xk)

for all n > N . So,

lim
n→∞

h(xjn)

f (N)(xjn)
= ∞.

By Corollary 3.3.8, C⟨h⟩ ⊈ C⟨f⟩ and we are done with the proof of the claim.

Since C⟨g0⟩ ⊆ C⟨G⟩, the claim above contradicts that C⟨G⟩ is an immediate successor
of C⟨f⟩. This finishes the proof of (a).

(b): Since f ∈ ICOD, replacing f by f/f(1) if necessary, we can assume that
x ≤ f(x) ≤ 1 for all x ∈ [0, 1]. Suppose there is a family G of maps so that C⟨G_⟩ is
an immediate successor of C⟨f⟩. By Theorem 3.2.11, we can assume that G ⊆ ICOD.

Claim 3.5.5. (cf. Claim 3.5.3) limx→0 g(x) = 0 for every g ∈ G.

Proof. If not, then CICODbdd
⊆ C⟨G⟩ (Proposition 3.2.19). Notice that f satisfies the

hypothesis of Proposition 3.4.2 and let f1, f2 ∈ ICOD0 be given the first two maps
given by it. We extend f1 and f2 to the whole [1,∞] by letting f1(x) = f1(1) and
f2(x) = f2(1) for all x > 1. The properties of f1 and f2 together with Corollary 3.3.8
give that C⟨f⟩ ⊊ C⟨f1⟩ ⊊ C⟨f1⟩ ⊆ CICODbdd

. As CICODbdd
⊆ C⟨G⟩, this contradicts our

choice of C⟨G⟩ as an immediate successor of C⟨f⟩.
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The proof now follows completely analogously to the previous item, so we omit
the details.

3.5.1 Initial Elements of P

By Proposition 3.2.15, we have that C⟨x_⟩ is the second element of P, i.e., C⟨x_⟩ is the
unique immediate successor of C⟨0⟩ = {0}. Also, by Proposition 3.5.1, we have that
C⟨x⟩ is a third element of P. We will strengthen this in Corollary 3.5.9, showing that
it is the unique third element. In this subsection we will also fill in the gap left by
Proposition 3.5.2, showing that C⟨x⟩ has no immediate successor in P and C⟨x_⟩ has
no immediate successor of the form C⟨G_⟩.

Proposition 3.5.6. C⟨x⟩ has no immediate successors.

Proof. Suppose there is a collection of functions G such that C⟨G⟩ is an immediate
successor of C⟨x⟩; without loss of generality we can take G ⊆ ICOD<∞ (Theorem
3.2.11 and Theorem 3.2.20). As I ̸∈ CICODbdd

(see the proof of Proposition 3.2.18), it
follows that C⟨x⟩ ⊈ CICODbdd

. Therefore, limx→0 g(x) = 0 for every g ∈ G: Indeed, if
not, then Proposition 3.2.19 implies that either CICODbdd

= C⟨G⟩ or CICOD<∞ = C⟨G⟩.
The former is ruled out since C⟨x⟩ ⊈ CICODbdd

and the latter since C⟨x⟩ ⊊ C⟨
√
x⟩ ⊆

CICOD0 ⊊ CICOD<∞ = C⟨G⟩ (Corollary 3.3.8 and Theorem 3.2.20), contradicting our
assumption that C⟨G⟩ is an immediate successor of C⟨x⟩.

As C⟨G⟩ ⊈ C⟨x⟩, Lemma 3.4.6 gives us g0 ∈ ⟨G⟩ such that limx→0
g0(x)
x = ∞. As

C⟨x⟩ ⊈ CICODbdd
, Corollary 3.3.5 gives that C⟨G⟩ = C⟨G/⟩, so we can assume that

g0 = g0/. We now follow a strategy similar to that in Proposition 3.4.7 to construct
a function h ∈ ICOD, with h = h/ ≤ g0, and positive sequences (xn)

∞
n=1 and (zn)

∞
n=1

converging to 0 such that limn→∞
h(zn)
zn

= ∞ and limn→∞
g0(xn)

h(N)(xn)
= ∞ for every

N ∈ N. Once we have constructed such an h, Corollary 3.3.8 and Proposition 3.2.8
establish C⟨x⟩ ⊊ C⟨h⟩ ⊊ C⟨g0⟩ ⊆ CG , which contradicts the definition of G and thus
completes the proof.

As in the proof of Proposition 3.4.7, given x, y, b > 0, we let ℓ[x, y, b] be the line
which sends x to y and has b as y-intercept, i.e., ℓ[x, y, b](t) = y−b

x t+ b for all t ∈ R.
The construction of h will be based in the following elementary fact, which holds since
limt→0

g0(t)

ℓ[x,y,0](n)(t)
= ∞ — we recommend the readers guide themselves from Figure

3.2 in the construction of h.

Fact 3.5.7. Given x, y, b, n, k > 0, there are x′ ∈ (0, x) and b′ ∈ (0, b) so that g0(x′)
ℓ[x,y,b′](n)(x′)

>

k for all n ∈ N.

Let x0 = z0 = b0 = 1. By the previous claim, we can pick strictly decreasing
sequences (xn)

∞
n=0, (zn)∞n=0, and (bn)

∞
n=0 so that

(a) limn xn = lim bn = 0,

(b) g0(xn)

ℓ[zn−1,g0(zn−1),bn](n)(xn)
> n for all n ∈ N, and

(c) g0(zn) = ℓ[zn−1, g(zn−1), bn](zn).

Notice that each equation g0(x) = ℓ[zn−1, g(zn−1), bn](x) has only two solutions, zn−1

and zn. Therefore, ℓ[zn−1, g0(zn−1), bn](x) is at most g0(x), for x ∈ [zn, zn−1], and it is
strictly greater than g0(x) otherwise. Hence, zn < xn < zn−1 for all n ∈ N. Therefore,
as the sequence (xn)

∞
n=1 tends to 0, so does (zn)

∞
n=1.
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z0 = 1

b1

z1 x1

b2

z2 x2

Figure 3.2: In the graph above, the smooth function represents g0
and the piecewise linear function represents h. Note that the scale is
modified so that the general behavior of h with respect to g0 can be

represented in the graph.

Now define h : [0,∞] → [0,∞] by letting

h(x) =


ℓ[1, g0(1), b1](x), if x ≥ 1,
ℓ[zn−1, g0(zn−1), bn](x), if x ∈ (zn, zn−1],
0, if x = 0.

It is clear that h = h/ ≤ g0/ = g0. Let us notice that h ∈ ICOD. It is clear from its
piecewise definition that h is continuous. Moreover, each ℓ[zn, g0(zn), bn+1] has slope
g0(zn)−bn+1

zn
and, by the construction of (zn)∞n=1, the slope of each ℓ[zn−1, g0(zn−1), bn]

must equal g0(zn)−bn
zn

. Therefore, as bn+1 < bn, the slope of each ℓ[zn, g0(zn), bn+1] is
greater than the one of ℓ[zn−1, g0(zn−1), bn]. Hence, h is concave down. Moreover,
since bn < g0(zn−1) the slope of each ℓ[zn−1, g0(zn−1), bn] is positive, so h is increasing
and thus h ∈ ICOD.

We are left to notice that limn→∞
h(zn)
zn

= ∞ and limn→∞
g0(xn)

h(N)(xn)
= ∞ for every

N ∈ N. Since xn ∈ (zn, zn−1) for all n ∈ N, it follows from our choice of (xn)n that

lim
n→∞

g0(xn)

h(N)(xn)
≥ lim

n→∞

g0(xn)

ℓ[zn−1, g0(zn−1), bn](N)(xn)

≥ lim
n→∞

g0(xn)

ℓ[zn−1, g0(zn−1), bn](n)(xn)

= ∞

for every N ∈ N. At last, since limx→0
g0(x)
x = ∞ and zn → 0 we can conclude

limn→∞
h(zn)
zn

= limn→∞
g0(zn)
zn

= ∞. This completes the proof.

Although C⟨x⟩ is an immediate successor of C⟨x_⟩ in P (Proposition 3.5.1), the
argument of Proposition 3.5.6 can be easily adapted to show that C⟨x_⟩ has no im-
mediate successor given by a family of bounded functions. Precisely:

Corollary 3.5.8. C⟨x_⟩ has no immediate successors of the form C⟨G_⟩.
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Proof. Suppose there is a family of maps G so that C⟨G_⟩ is the immediate successor
of C⟨x_⟩; without loss of generality we can take G ⊆ ICOD<∞ (Theorem 3.2.11 and
Theorem 3.2.20). Notice that limx→0 g(x) = 0 for every g ∈ G. Indeed, if not,
then Proposition 3.2.19 implies that CICODbdd

= C⟨G_⟩. However, this contradicts our
assumptions on G_ since C⟨x_⟩ ⊊ C⟨

√
x_⟩ ⊆ CICOD0∩bdd

⊊ CICODbdd
(see Theorem

3.2.20).
As C⟨G_⟩ ⊈ C⟨x_⟩, Lemma 3.4.6 gives us g0 ∈ ⟨G_⟩ such that limx→0

g0(x)
x = ∞.

From now on, the proof follows exactly the one of Proposition 3.5.6. Precisely, we
construct a function h ∈ ICOD, with x ≤ h(x) ≤ g0(x) for all x ∈ [0, 1], and positive
sequences (xn)

∞
n=1 and (zn)

∞
n=1 converging to 0 such that limn→∞

g0(xn)

h(N)(xn)
= ∞ for

every N ∈ N while limn→∞
h(zn)
zn

= ∞. By Corollary 3.3.8 and Proposition 3.2.8, this
implies that C⟨x_⟩ ⊊ C⟨h⟩ ⊊ C⟨g0⟩ ⊆ C⟨G_⟩ contradiction. We leave the details to the
reader.

We now present a strengthening of Proposition 3.5.1.

Corollary 3.5.9. Let f ∈ ICOD be so that limx→0 f(x) = 0. Then C⟨f/⟩ is the unique
immediate successor of C⟨f_⟩ in P.

Proof. Proposition 3.5.1 establishes that C⟨f/⟩ is an immediate successor. Suppose
G is a collection of functions such that C⟨G⟩ is an immediate successor of C⟨f_⟩ a
priori perhaps distinct from C⟨f/⟩. Without loss of generality we can suppose that
G ⊆ ICOD (Theorem 3.2.11).

We know from Proposition 3.5.2 and Corollary 3.5.8 that C⟨G_⟩ is not an immediate
successor of C⟨f_⟩ and thus C⟨G_⟩ ̸= C⟨G⟩. Hence, by Corollary 3.3.5, C⟨G/⟩ = C⟨G⟩
(this also follows from Propositions 3.2.13 and 3.2.14). Notice that limx→0 g(x) = 0 for
every g ∈ G. Indeed, if not, then Proposition 3.2.19 implies that CICOD<∞ = C⟨G/⟩ =
C⟨G⟩. However, this contradicts our assumptions on G since C⟨f_⟩ ⊆ CICOD0∩bdd

⊊
CICODbdd

⊊ CICOD<∞ = C⟨G⟩ (see Theorem 3.2.20).
We have C⟨f_⟩ ⊆ C⟨G⟩ and thus by Theorem 3.3.1 there must exist some g1 ∈ ⟨G⟩

such that limx→0
f_(x)

g1(x)
< n < ∞ for some n ∈ N. The function g1 is built out of

a finite number of additions and compositions of elements of G, so we can define g2
to be the function built out of the corresponding additions and compositions of the
corresponding elements of G/. As limx→0 g(x) = 0 for every g ∈ G, there is δ > 0
so that g1(x) = g2(x) for all x ∈ [0, δ]. In fact, taking a perhaps smaller δ > 0, we
have that f/(x) = f_(x) ≤ ng1(x) = ng2(x) for all x ∈ [0, δ]. Now as f/ is ISOD
and limx→∞

g2(x)
x > 0, we can find m ∈ N, perhaps m > n, so that f/ ≤ mg2 and

thus C⟨f_⟩ ⊊ C⟨f/⟩ ⊆ C⟨mg2⟩ ⊆ C⟨G/⟩ = C⟨G⟩. As C⟨G⟩ was defined as an immediate
successor of C⟨f_⟩, we have that C⟨G⟩ = C⟨f/⟩ and are done.

An immediate consequence of Corollary 3.5.9 is that C⟨x⟩ is the only immediate
successor of C⟨x_⟩ and thus the unique third element of P. Proposition 3.5.6 assures
us that there is no fourth element in P.

We round out this chapter with a summarizing Theorem which captures most of
the interesting results about successors in P:

Theorem 3.5.10. The poset P has the structure indicated in the diagram below.
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B(L2(R))CICOD<∞

CICODbdd

CICOD0

CICOD0∩bdd

C⟨G⟩

C⟨F⟩

C⟨x⟩

C⟨x⟩_0

limx→∞
g(x)
x > 0

for some g ∈ G
limx→∞

f(x)
x = 0

for all f ∈ F

Figure 3.3: Elements further up and to the right are larger in the
poset P. Dotted lines indicate containment. Solid lines indicate im-

mediate successors.
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Chapter 4

Relations and Their
Generalizations

In this Chapter we will expand upon the construction of measurable and quantum
relations as introduced in the Overview Section 1.2. Most of this content finds origin
in Weaver, 2012, though we have tried to provide some additional intuition and a few
original results, which we will indicate as they arise.

4.1 Classical Relations

In this section we will recall the basic theory of relations as is common in any un-
dergraduate math curriculum. Following that we will discuss an alternative view of
relations which “de-atomizes” them, a natural intermediate step to generalizing them
to the measurable setting.

Definition 4.1.1 (Relation). Given a set X, a relation or classical relation on X is
a subset R ⊆ X ×X.

Relations can also be defined between two sets X and Y , as subsets of X × Y .
We note that our definition above is just as general, since any relation X → Y can be
identified with a relation on X × Y .

We now recall the definitions of some important operations on relations and various
properties that relations can have.

Definition 4.1.2. Let X be a set.

(a) The diagonal relation on X is defined by ∆ = {(x, x) : x ∈ X}.

(b) The transpose or inverse of a relation R is the relation RT = {(y, x) : (x, y) ∈ R}.

(c) The product or composition of two relations R,R
′
is the relation

R · R′
= {(x, z) : there exists a y with (x, y) ∈ R and (y, z) ∈ R

′}.

(d) A relation R on X is

(i) reflexive if ∆ ⊆ R

(ii) symmetric if RT = R

(iii) antisymmetric if R ∩ RT ⊆ ∆

(iv) transitive if R · R ⊆ R.

Now we recall common sub-classes of relations.
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Definition 4.1.3. Let R be a relation on a set X.

(a) If |{y : (x, y) ∈ R}| = 1 for every x ∈ X then R is a function.

(b) If R is a function and |{y : (y, x) ∈ R}| = 1 for every x ∈ X then R is injective.

(c) If R is a function and {y : there exists x ∈ X such that (x, y) ∈ R} = X then
R is surjective.

(d) G = (X,R) is a directed graph. X is called the set of vertices of G and R the set
of edges.

(e) If G = (X,R) is a directed graph and R is symmetric then G is an undirected
graph or merely a graph.

It seems that any attempt to generalize the notion of relation to a continu-
ous/measurable setting will find difficulty as Definition 4.1.1 is concerned with atomic
objects, the individual elements of X, which have no generic measure-theoretic analog.
We need to “de-atomize” relations. That is, define them in such a way that singletons
do not hold an elevated status over other sets.

An element of a relation R on a set X is an ordered pair (x, y) with x, y ∈ X. We
note that (x, y) is the sole element of the Cartesian product {x} × {y}. In fact the
set {{x} × {y} : (x, y) ∈ R} contains essentially the same information as R, just with
some extra brackets. Framed this way, we see that ordered pairs are essentially just
distinguished rectangles in X ×X. We would like to define a notion of relation which
deals with generic rectangles S × T for S, T ⊆ X.

Figure 4.1: On the left is a relation R on R. On the right we see
R again with several rectangles in R × R overlaid. If the rectangles

intersect R they are colored blue and if not they are colored red.

Given a relation R on a set X we could consider several classes of rectangles:

(a) Rectangles that intersect R.

(b) Rectangles that do not intersect R.

(c) Rectangles which are entirely contained in R.

The original relation R could be recovered from any of these. In the case of (a) and
(c) you can recover R by merely restricting your attention to products of singletons.
In the case of (b) note that rectangles in this class and those in class (a) are a partition
of all the rectangles and then reduce to the previous sentence.

We will focus in on case (a), rectangles which intersect R. Given a relation R on
a set X we define the meta-relation associated with R as RR = {(S, T ) ∈ P(X) ×
P(X) : (S × T ) ∩ R ̸= ∅}.
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Note that RR is essentially (though not literally) the set of rectangles which in-
tersect R. As observed before we can recover the original relation by R = {(x, y) ∈
X×X : ({x}, {y}) ∈ RR}, so meta-relations are a “de-atomized” object in an obvious
one-to-one correspondence with relations. Rectangles are much more readily general-
ized to a measurable setting than atomic points, so this is a good candidate to lead
us to measurable relations.

But our definition of meta-relation already starts with a relation. What we still
need is a way to identify which collections of rectangles are meta-relations associated
to a relation without starting with a classical relation first.

Proposition 4.1.4. (cf. Weaver, 2012 Proposition 1.3) Let E ⊆ P(X) × P(X) be
a collection of pairs of nonempty subsets of X. Then E = RR for some relation R on
X if and only if (⋃

Sλ,
⋃
Tκ

)
∈ E ⇔ some (Sλ, Tκ) ∈ E

for any pair of families of non-empty subsets of X, {Sλ}, {Tκ} ⊆ P(X).

Proof. Essentially as found in Weaver, 2012 Proposition 1.3.

We can now define meta-relations in their own right without reference to classical
relations: Given a set X, a meta-relation on X is a subset R ⊆ P(X) × P(X)
satisfying (⋃

Sλ,
⋃
Tκ

)
∈ R ⇔ some (Sλ, Tκ) ∈ R

for any pair of families of non-empty subsets of X, {Sλ}, {Tκ} ⊆ P(X).
We say RR = {(x, y) ∈ X×X : ({x}, {y}) ∈ R} is the classical relation associated

with R. Compare with Weaver, 2012 Definition 1.2.
The constructions for RR and RR are inverse to each other.
We can recast Definition 4.1.2 for meta-relations. The definitions below are com-

patible with the corresponding definitions for classical relations.

Definition 4.1.5 (cf. Weaver, 2012 Definition 1.6). Let X be a set.

(a) The diagonal meta-relation on X is defined by ∆ = {(S, T ) ∈ P(X)× P(X) :
S ∩ T ̸= ∅}.

(b) The transpose of a meta-relation R is the relation RT = {(T, S) : (S, T ) ∈ R}.

(c) The product of two meta-relations R,R′ is the meta-relation

R · R′
= {(S,U) : for every T either (S, T ) ∈ R or (X − T,U) ∈ R′} or equivalently

= {(S,U) : there is a T so that (S, T
′
) ∈ R and (T

′
, U) ∈ R′

for every T
′ ≤ T}.

Meta-relations are somewhat harder to work with and parse than classical rela-
tions. Below we introduce useful maps P(X) → P(X) which simplify much of the
analysis of meta-relations.

Definition 4.1.6 (cf. Weaver, 2012 Proposition 1.4). Let R be a meta-relation on a
set X then for each S ⊆ X we define

(a) the right image of S, ψR(S) = X −
⋃
{T : (S, T ) /∈ R} and

(b) the left image of S, ϕR(S) = X −
⋃
{T : (T, S) /∈ R}.
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We refer to any function ϕ : P(X) → P(X) which can be realized as ϕR for some
meta-relation on X as an image map for X and denote the collection of image maps
for a set X by Im(X).

Note that for a set S ⊆ X and meta-relation R on X

ψR(S) = {y ∈ X : there exists some x ∈ S such that (x, y) ∈ RR} and
ϕR(S) = {x ∈ X : there exists some y ∈ S such that (x, y) ∈ RR}.

justifying the names right image and left image respectively. Of course we did not
define image maps this way because we would like to generalize them to the measurable
setting and so do not want to reference singletons in their definition.

Proposition 4.1.7 (cf. Weaver, 2012 Proposition 1.4). Let X be a set and ϕ :
P(X) → P(X). Then ϕ ∈ Im(X) if and only if ϕ takes the empty set to the empty
set and preserves arbitrary unions.

Furthermore if ϕ ∈ Im(X) then Rψ = {(S, T ) ∈ P(X) × P(X) : S ∩ ϕ(T ) ̸= ∅}
is a meta-relation and this construction is inverse to the one in Definition 4.1.6.

We are now prepared to discuss measurable relations.

4.2 Measurable Relations

The fundamental theory here runs parallel to that of meta-relations from the previous
section, so we will present the initial definitions and propositions here without much
exposition.

Definition 4.2.1. (Weaver, 2012 Definition 1.2 Measurable Relation) Let (X,µ) be
a finitely decomposable measure space. A measurable relation on X is a family R of
ordered pairs of nonzero projections in L∞(X,µ) such that(∨

pλ,
∨
qκ

)
∈ R ⇔ some (pλ, qκ) ∈ R

for any pair of families of nonzero projections {pλ} and {qκ}.

Proposition 4.2.2. (Weaver, 2012 Proposition 1.4) Let (X,µ) be a finitely decom-
posable measure space. If R is a measurable relation on X then the map

ϕR : q 7→ 1−
∨

{p : (p, q) /∈ R},

from the set of projections in L∞(X,µ) to itself, takes 0 to 0 and preserves arbitrary
joins. If ϕ is a map from the set of projections in L∞(X,µ) to itself that takes 0 to 0
and preserves arbitrary joins then

Rϕ = {(p, q) : pϕ(q) ̸= 0}

is a measurable relation on X. The two constructions are inverse to each other.

We observe that the constructions in Proposition 4.2.2 are monotonic, i.e. ϕ ≤ ϕ
′ if

and only if Rϕ ≤ Rϕ′ , where the order on image maps is the pointwise order inherited
from projections and the order on measurable relations is standard containment.

Definition 4.2.3. Let (X,µ) be a finitely decomposable measure space. We call a
map ϕ : Pr(L∞(X,µ)) → Pr(L∞(X,µ)) which takes 0 to 0 and preserves arbitrary
joins an image map for L∞(X,µ) and denote the collection of such maps by Im(X,µ).
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We have already seen an important class of image maps in Chapter 3:
Example 4.2.4. If a ∈ B(L2(R)) then q 7→ sMl (aq) is an image map for L∞(X,µ).

Proof. It is clear that sMl (a · 0) = 0.
For joins we note that sMl (a(

∨
qλ))aqλ0 = sMl (a(

∨
qλ))a(

∨
qλ)qλ0 = a(

∨
qλ)qλ0 =

aqλ0 so sMl (a(
∨
qλ)) ≥ sMl (aqλ0) for any λ0 and thus sMl (a(

∨
qλ)) ≥

∨
sMl (aqλ). On

the other hand it is clear that
∨
sMl (aqλ) ≥ sMl (aqλ0) for any λ0 and since

∨
qλ is

the projection onto the closed linear span of the subspaces corresponding to the qλ
we must have that

∨
sMl (aqλ)a(

∨
qλ) = a(

∨
qλ) so

∨
sMl (aqλ) ≥ sMl (a(

∨
qλ)) and

we are done.

Proposition 4.2.5 (Weaver, 2012 Proposition 1.5a-d). Let (X,µ) be a finitely de-
composable measure space.

(a) The set of pairs of projections p and q in L∞(X,µ) such that pq ̸= 0 is a
measurable relation on X.

(b) If R is a measurable relation on X then so is {(q, p) : (p, q) ∈ R}.

(c) If R and R′ are measurable relations on X then a pair of nonzero projections
(p, r) satisfies

for every projection q, either (p, q) ∈ R or (1− q, r) ∈ R′

if and only if it satisfies

there exists a nonzero projection q such that (p, q
′
) ∈ R and (q

′
, r) ∈

R′
for every nonzero q

′ ≤ q

and the set of all pairs satisfying these conditions constitutes a measurable rela-
tion.

(d) Any union of measurable relations on X is a measurable relation on X.

Definition 4.2.6. Let (X,µ) be a finitely decomposable measure space and E a
collection of measurable relations on X

(a)
∨

E =
⋃
{R : R ∈ E}

(b)
∧

E =
⋃
{R′ measurable relation on X : R′ ≤ R for every R ∈ E}

Note that the set of measurable relations on X partially ordered by inclusion forms
a complete lattice under these definitions by Proposition 4.2.5d.

Definition 4.2.7. (Weaver, 2012 Definition 1.6) Let (X,µ) be a finitely decomposable
measure space.

(a) The diagonal measurable relation ∆ on X is defined by setting (p, q) ∈ ∆ if
pq ̸= 0.

(b) The transpose of a measurable relation R is the measurable relation RT =
{(q, p) : (p, q) ∈ R}.

(c) The product of two measurable relations R and R′ is the measurable relation

R · R′
= {(p, r) : for every q either (p, q) ∈ R or (1− q, r) ∈ R′} or equivalently

= {(p, r) : there is a q so that (p, q
′
) ∈ R and (q

′
, r) ∈ R′

for every q
′ ≤ q}.
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(d) A measurable relation R on X is

(i) reflexive if ∆ ⊆ R
(ii) symmetric if RT = R
(iii) antisymmetric if R∧RT ⊆ ∆

(iv) transitive if R2 ⊆ R.

We also offer some original (though intuitive) results making the correspondence
between measurable relations and image maps more robust:

Proposition 4.2.8. Let (X,µ) be a finitely decomposable measure space. If R and
R′ are measurable relations on X then

(a) ϕR∨R′ = ϕR ∨ ϕR′ ,

(b) ϕR∧R′ = ϕR ∧ ϕR′ and

(c) ϕR·R′ = ϕR ◦ ϕR′ .

Proof. The first and second claims follow from the monotonicity of the inverse con-
structions in Proposition 4.2.2.

For the third claim fix a projection r in L∞(X,µ). Consider the projections

u =
∨

{p : (p, r) /∈ R · R′}

=
∨

{p : there exists some q such that (p, q) /∈ R and (1− q, r) /∈ R′}

and

v =
∨

{p : (p, ϕR′ (r)) /∈ R}.

We see that (1− ϕR′ (r), r) /∈ R′ and so it is clear that v ≤ u since ϕR′ (r) can act as
q for every projection p ≤ v.

Note that for any q such that (1− q, r) /∈ R′ we have that q ≥ ϕR′ (r) and so for
every p for which there exists a q such that (p, q) /∈ R and (1− q, r) /∈ R′ , it is more
specifically true that (p, ϕR′ (r)) /∈ R. From this we conclude that u ≤ v and thus
u = v. Now just note that ϕR·R′ (r) = 1−u and (ϕR ◦ϕR′ )(r) = 1− v and recall that
r was arbitrary to obtain the result.

4.3 Cantankerous Relations

Weaver, 2012 generalizes measurable relations to quantum relations and we will discuss
these in the next section. For now we would like to explore an intermediate notion:
a direct translation of the measurable relation language but taking projections in a
not necessarily commutative von Neumann algebra. The contents of this section are
original, though clearly heavily inspired by Weaver, 2012.

A brief aside about the adjective “cantankerous”: It turns out that, for our
purposes, a lot of interesting things happen when we move from M being commutative
to it being non-commutative. The (intrinsic) quantum relations from Weaver, 2012
consist of pairs of nonzero projections in M⊗B(ℓ2) and this amplification brings with
it a lot of additional notation. Also, we have been able to find some examples of new
behavior for non-commutative “measurable” relations but finding analogous examples
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for quantum relations has proved difficult. Because of this we would like to explore
the measurable relations of Weaver, 2012 over a not-necessarily commutative von
Neumann algebra M while not jumping straight to quantum relations.

Typically we would indicate a non-commutative analog by the adjective “quantum”
but this is of course out, since quantum relations are defined. Then perhaps “non-
commutative” would be our fallback, but this presents an issue when we generate
“non-commutative” uniform Roe algebras from “non-commutative” relations – since
uniform Roe algebras can already be non-commutative. It seems we need some new
adjective.

Choosing the proper adjective can be challenging. It should be sensible, morally
indicating its effect via its literal meaning. There is also an aesthetic concern –
it should be easy and fun to say. We land on the word “cantankerous” from two
directions.

Firstly, we look to the antonym of our meaning: Taking a not-necessarily com-
mutative object and considering only the abelian versions. We want, somehow, the
opposite of “abelian”. Well, one asks, who was the opposite of Abel? And by way of
pun we conclude it must be the biblical Cain. So we begin a search for words which
invoke “Cain”: “cainish”, “canine”, “canonical” and so forth. While these may satisfy
our desire for aesthetics, none of them properly indicate the desired meaning by their
literal interpretation.

But “cantankerous”, while slightly off in pronunciation, works quite well by its
literal meaning. A cantankerous person is difficult, standoffish, and so one might
picture the cantankerous elements m,n ∈ M unable to cross paths. We cannot
conclude that mn = nm in general because these creatures are prone to strife and
conflict, they will not typically switch positions without protestation. They refuse to
commute. And so we settle on this adjective “cantankerous” to mean “not-necessarily
commutative”. It could be adopted in any situation to indicate a non-commutative
analog of a traditionally commutative object. End of aside.

Definition 4.3.1. (cf. Definition 4.2.1) Let M ⊆ B(H) be a represented von Neu-
mann algebra. A cantankerous relation on M is a family R of ordered pairs of nonzero
projections in M such that(∨

pλ,
∨
qκ

)
∈ R ⇔ some (pλ, qκ) ∈ R

for any pair of families of nonzero projections {pλ} and {qκ}.

Proposition 4.3.2. (cf. Proposition 4.2.2) Let M ⊆ B(H) be a represented von
Neumann algebra. If R is a cantankerous relation on M then the map

ϕR : q 7→ 1−
∨

{p : (p, q) /∈ R},

from the set of projections in M to itself, takes 0 to 0 and preserves arbitrary joins.
If ϕ is a map from the set of projections in M to itself that takes 0 to 0 and preserves
arbitrary joins then

Rϕ = {(p, q) : pϕ(q) ̸= 0}

is a cantankerous relation on X. The two constructions are inverse to each other and
order preserving (where the order on cantankerous relations is containment and the
order on the ϕ maps is inherited pointwise from the order on projections).

Proof. First let R be a cantankerous relation on M. Notice that ϕR(q) ≤ p if and
only if (1− p, q) /∈ R, we will use this repeatedly and implicitly below.
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It is clear that ϕR(0) = 0. Take {qκ} ⊆ Pr(M) and note that if (p,
∨
qκ) /∈ R then

(p, qκ) /∈ R for every κ (Definition 4.3.1) so ϕR(qκ) ≤ ϕR(
∨
qκ) for each κ and thus∨

ϕR(qκ) ≤ ϕR(
∨
qκ). If ϕR(

∨
qκ) ≰

∨
ϕR(qκ) then (1−

∨
ϕR(qκ),

∨
qκ) ∈ R which

implies that (1 −
∨
ϕR(qκ), qκ0) ∈ R for some κ0 thus ϕR(qκ0) ≰

∨
ϕR(qκ) which is

absurd. So we have ϕR(
∨
qκ) =

∨
ϕR(qκ) for any family {qκ} ⊆ Pr(M).

Now let ϕ be a map from Pr(M) to itself which satisfies the hypotheses, we will
show that Rϕ is a cantankerous relation on M. It is clear that (0, I), (I, 0) /∈ Rϕ

which along with the join property (proved next) gives us that all pairs in Rϕ are
nonzero. If {pλ}, {qκ} ⊆ Pr(M) then (

∨
pλ)(ϕ(

∨
qκ)) = (

∨
pλ)(

∨
ϕ(qκ)) = 0 if and

only if pλϕ(qκ) = 0 for every λ and κ, so we have that (
∨
pλ,
∨
qκ) ∈ Rϕ if and only

if some (pλ, qκ) ∈ Rϕ.
Checking that the constructions are inverse to each other and order preserving is

routine – we omit the proof.

Proposition 4.3.3. (cf. Proposition 4.2.5) Let M ⊆ B(H) be a represented von
Neumann algebra.

(a) The set of pairs of projections p and q in Pr(M) such that pq ̸= 0 is a cantan-
kerous relation on M.

(b) If R is a cantankerous relation on M then so is {(q, p) : (p, q) ∈ R}.

(c) If R and R′ are cantankerous relations on M then the set of pairs of nonzero
projections (p, r) satisfying

for every projection q, either (p, q) ∈ R or (1− q, r) ∈ R′

is a cantankerous relation on M.

(d) Any union of cantankerous relations on M is a cantankerous relation on M.

Proof. Parts (a), (b), and (d) are easy. For part (c) the proof is identical to Weaver,
2012 Proposition 1.5c, since he does not use the commutativity of projections in
L∞(X,µ).

If you reference Weaver, 2012 Proposition 1.5c (or 4.2.5 in this paper) you will see
that there was a second characterization of the product of two measurable relations
(part (c) above): the set of (p, r) ∈ L∞(X,µ)2 such that there exists a nonzero
projection q such that (p, q

′
) ∈ R and (q

′
, r) ∈ R′ for every nonzero q

′ ≤ q. The
commutativity of the projections in L∞(X,µ) is leveraged in the proof that these two
definitions are equivalent and we have not been able to find a replacement proof in
the noncommutative setting, nor a proof that this alternative definition fulfills the
axioms of a cantankerous relation.

Question 4.3.4. Let M be a von Neumann algebra with cantankerous relations
R,R′ . Define

R ⋄R′
= {(p, r) ∈ Pr(M)2 : there is some nonzero q ∈ Pr(M) such that

(p, q
′
) ∈ R and (q

′
, r) ∈ R′

for every nonzero q
′ ≤ q}.

Is R ⋄R′ a cantankerous relation on M? Can we conclude that R ⋄R′
= R · R′?

The remaining terminology from Section 4.2 (diagonal, product, meet and join,
etc.) can be ported over without issue. Note that the proof of Proposition 4.2.8
does not use the commutativity of L∞(X,µ) and for the product therein we use the
definition which ports to cantankerous relations.
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4.3.1 Operating in Pairs

In this sub-section we want to explore another route that leads to nearly the same
framework and maybe provides new insight. It is also closely connected to the way
Weaver, 2012 defines quantum relations.

First we review a general mathematical principle: Take two sets S, T and a pairing
relation R ⊆ S × T . For any subsets S ⊆ S, T ⊆ T we can define S♯ = {t ∈ T :
sRt for all s ∈ S} and T ♭ = {s ∈ S : sRt for all t ∈ T}. After some inspection we
note the following:

Fact 4.3.5. Given (S, T ,R) with subsets S, S1, S2 ⊆ S and T, T1, T2 ⊆ T we have the
following:

(a) S1 ⊆ S2 =⇒ S♯2 ⊆ S♯1,

(b) T1 ⊆ T2 =⇒ T ♭2 ⊆ T ♭1 ,

(c) S ⊆ (S♯)♭,

(d) T ⊆ (T ♭)♯.

We say a subset S ⊆ S is a dual object if there is some T ⊆ T such that S = T ♭

and a stable object if S = (S♯)♭. We will speak similarly about subsets of T .

Corollary 4.3.6. Given (S, T ,R), a subset S ⊆ S is dual if and only if it is stable.
Likewise for T ⊆ T .

Proof. We will argue for S ⊆ S, the proof for T ⊆ T is identical.
It is immediate from the definition that a stable subset is dual. Now suppose

S ⊆ S is dual, so we can find some T ⊆ T such that S = T ♭. We have from Fact 4.3.5
that T ⊆ (T ♭)♯ = S♯ and so (S♯)

♭ ⊆ T ♭ = S since the operation flat is order reversing
(also Fact 4.3.5). But we have S ⊆ (S♯)♭ from Fact 4.3.5 as well. Combining these we
get that S = (S♯)♭ and thus S is stable. This completes the proof.

Studying which subsets are stable (aka dual) is often fruitful. Let M ⊆ B(H) be a
represented von Neumann algebra and consider the pairing (B(H),Pr(M)2,R) where
(a, (p, q)) ∈ R whenever paq = 0.

Proposition 4.3.7. (cf. Weaver, 2012 Definition 2.1) Let M ⊆ B(H) be a rep-
resented von Neumann algebra and consider the pairing (B(H),Pr(M)2,R) where
(a, (p, q)) ∈ R whenever paq = 0. Every dual subset of B(H) is a weak∗ closed subspace
S ⊆ B(H) satisfying M′

SM′ ⊆ S.

Proof. Suppose S is a dual subset of B(H), so there is some T ⊆ Pr(M)2 such that
S = T ♭. That is, S = {a ∈ B(H) : paq = 0 for every (p, q) ∈ T}.

If a, b ∈ S and λ ∈ C then p(a + b)q = paq + pbq = 0 and pλaq = λpaq = 0 for
every (p, q) ∈ T so S is a linear subspace of B(H).

Since every element of T is a pair of projections in M we note that if n,m ∈ M′ ,
the commutant of M, then pnamq = npaqm = 0 for every a ∈ S and (p, q) ∈ T , so
nam ∈ S. Thus M′

SM′ ⊆ S.
It remains to show that S is weak∗ closed. In fact it is closed in the (less fine)

weak operator topology: Suppose (aα) is a net in S such that aα
WOT−−−→ a then for

any vectors ξ, η ∈ B(H) and (p, q) ∈ T we have that |⟨paqξ, η⟩| = |⟨p(a− aα)qξ, η⟩| =
|⟨(a−aα)qξ, pη⟩| which can be made arbitrarily small by selecting appropriate aα. So
|⟨paqξ, η⟩| = 0 for every ξ, η ∈ B(H) and thus paq = 0. Since (p, q) ∈ T was arbitrary
we have a ∈ S which completes the proof.
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Proposition 4.3.8. Let M ⊆ B(H) be a represented von Neumann algebra and
consider the pairing (B(H),Pr(M)2,R) where (a, (p, q)) ∈ R whenever paq = 0. Every
dual subset T of Pr(M)2 satisfies:

(a) (0, p), (p, 0) ∈ T for every p ∈ Pr(M) and

(b) (
∨
pλ,
∨
qκ) ∈ T ⇔ all (pλ, qκ) ∈ T

for any pair of families of projections {pλ}, {qκ}.

Proof. Suppose T is a dual subset of Pr(M)2, so there is some S ⊆ B(H) such that
T = S♯. That is, T = {(p, q) ∈ Pr(M)2 : paq = 0 for every a ∈ S}.

If p ∈ Pr(M) it is immediate that 0ap = 0 = pa0 for every a ∈ S so (0, p), (p, 0) ∈
T .

Now if {pλ}, {qκ} ⊆ Pr(M) are families of projections we note that (
∨
pλ)a(

∨
qκ) =

0 =⇒ pλaqκ = 0 is immediate. The reverse implication follows as well: Suppose
aqκ = 0 for every κ then for any ξ ∈ span(qκH : κ) we have aξ = 0 and thus
a(
∨
qκ) = 0. We could argue the same in the adjoint to get that pλa = 0 for every λ

implies (
∨
pλ)a = 0. Since this works for arbitrary a ∈ B(H) we obtain the result.

We note that the properties given in Proposition 4.3.8 characterize the subsets of
Pr(M)2 which are the complements of cantankerous relations.

In both Propositions 4.3.7 and 4.3.8 we have given some important properties that
stable subsets must have in this setup, but we have not characterized them yet. In fact
general characterizations are difficult, though in the case of stable subsets of B(H)
they correspond to something well studied.

Definition 4.3.9. (Weaver, 2012 Definition 2.14 and Proposition 2.15) Let M ⊆
B(H) be a represented von Neumann algebra. A subset V ⊆ B(H) satisfying M′VM′ ⊆
V is operator reflexive if

V = {a ∈ B(H) : pVq = 0 =⇒ paq = 0}

with p and q ranging over projections in M.

It becomes clear by inspecting this definition that any subset V ⊂ B(H) satisfying
M′VM′ ⊆ V is operator reflexive if and only if it is a stable subset of B(H) in the
pairing we have been discussing. And since Proposition 4.3.7 says all stable subsets
satisfy this condition we conclude the following:

Theorem 4.3.10. Let M ⊆ B(H) be a represented von Neumann algebra and consider
the pairing (B(H),Pr(M)2,R) where (a, (p, q)) ∈ R whenever paq = 0. The stable
subsets of B(H) are precisely the operator reflexive weak∗ closed subspaces V ⊆ B(H)
which satisfy M′VM′ ⊆ V.

We can characterize the stable subsets of Pr(M)2 in a similar way: A subset
T ⊆ Pr(M)2 is stable if

T = {(p, q) : t1at2 = 0 for all (t1, t2) ∈ T =⇒ paq = 0}.

This property is in some sense dual to operator reflexivity and is difficult to char-
acterize just in the language of Pr(M)2. For some time we thought it might reduce
to a topological condition, that T ⊆ Pr(M)2 would be stable precisely when it was
closed in the restriction of the product weak operator topology. It turns out that this
condition is necessary (Proposition 4.3.11) but not sufficient (Example 4.3.13).
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Proposition 4.3.11. Let M ⊆ B(H) be a represented von Neumann algebra and
consider the pairing (B(H),Pr(M)2,R) where (a, (p, q)) ∈ R whenever paq = 0. A
stable subset of Pr(M)2 is the complement of a cantankerous relation which is open
in the restriction of the product weak operator topology.

Proof. Suppose that T ⊆ Pr(M)2 is a stable subset. We have from Proposition 4.3.8
that TC is a cantankerous relation and now must show that it is open – in fact we
will show that T is SOT closed, which implies the result. Take (pα, qα)α ⊆ T , a net
converging SOT to (p0, q0) ∈ Pr(M)2. Our goal is to show that (p0, q0) ∈ T . Fix
some a ∈ B(H) such that pαaqα = 0 for every α. Since multiplication is jointly SOT
continuous on bounded sets we have that p0aq0 = limα pαaqα = 0.

So if a ∈ T ♭ then p0aq0 = 0 and since T is stable this implies that (p0, q0) ∈ T ,
which completes the proof that stable implies closed as desired.

The following example of a cantankerous relation which is not open shows that
Proposition 4.3.11 is not devoid of content.

Example 4.3.12. Let M2 denote the set of 2 × 2 matrices, which we identify with
B(C2). We denote the projection onto the first basis element by p1. Now consider
the diagonal relation ∆ = {(p, q) : pq ̸= 0} and add to it the single pair (p1, 1 − p1),
forming the set R ⊆ Pr(M2)

2. We note that R is a cantankerous relation (the join
condition is no problem, since p1 and 1− p1 are rank 1 projections) however it is not
open.

To see this take some net of projections (pα)α, none of whom equal p1, converging
WOT to p1 and note that (pα, 1− pα) ∈ RC for every α but their limit (p1, 1− p1) /∈
RC . Thus RC is not closed and we are done.

And the following example shows that not all open cantankerous relations are the
complements of stable objects (in the pairing we have been discussing).

Example 4.3.13. Let M2 denote the set of 2 × 2 matrices, which we identify with
B(C2). Let p1 denote projection onto the span of the first basis vector, p2 projection
onto the span of [0.5, 0.5] and p3 projection onto the span of [.75, 1]. Explicitly:

p1 =

[
1 0
0 0

]
p2 =

[
.5 .5
.5 .5

]
p3 =

[
.36 .48
.48 .64

]
Now let T ⊆ Pr(M)2 be collection of all (p, q) such that either p = 0 or q = 0 along
with (p1, p1), (p2, p2) and (p3, p3). It is not hard to verify that T is the complement
of an open cantankerous relation. However T is not stable.

To see this consider an operator a ∈ M2 which is annihilated by any pair in T .
We have that p1ap1 = 0, p2ap2 = 0 and p3ap3 = 0. This will produce a system of
three independent equations and a has four unknowns. Then a must be some multiple

of
[
0 1
−1 0

]
(it suffices for the reader to verify that this satisfies the three equations,

which is routine). Without loss of generality we suppose a is precisely this matrix.
Now, were T stable, we would have that any pair of projections (p, q) ∈ Pr(M)2

which satisfies pbq = 0 for every b ∈M2 annihilated by all of T would have to be in T .
Since the operators annihilated by T are all multiples of a this reduces to: if paq = 0
then (p, q) ∈ T . If p4 denotes projection onto the second basis vector we observe that
p4ap4 = 0 however (p4, p4) /∈ T so T is not stable.

So we know that stable objects are all complements of open cantankerous relations,
but the reverse inclusion does not generally hold.
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In the next section we will discuss the quantum relations of Weaver, 2012, which he
defines as weak∗ closed subspaces V ⊆ B(H) satisfying M′VM′ ⊆ V – not necessarily
operator reflexive. He pairs these with projections in the amplification of M and
obtains a correspondence. One might similarly wonder if there is a way to realize all
cantankerous relations (or their complements) as the dual object of operators in some
larger space? We conclude this section with some open questions about cantankerous
relations:

Question 4.3.14. Let M ⊆ B(H) be a represented von Neumann algebra and con-
sider the pairing (B(H),Pr(M)2,R) where (a, (p, q)) ∈ R whenever paq = 0. Is there
a characterization of the stable subsets of Pr(M)2 which does not refer to this pairing?
That is, a characterization that does not reference the representation M ⊆ B(H)?

Question 4.3.15. Is there a related pairing for which the stable objects are all
the complements of cantankerous relations? This would be in some sense dual to
Weaver’s quantum relations (defined in the next section), where he pulls projections
from the amplification of M so that all weak∗ closed subspaces V ⊆ B(H) which
satisfy M′VM′ ⊆ V are dual objects – not just operator reflexive ones.

4.3.2 Measuring the “Dilation” of a Cantankerous Relation

In this subsection we will introduce a way of measuring how much a cantankerous
relation dilates or expands the “size” of projections. This will help us build to a
suitable generalization of the support expansion C∗-algebras explored in Chapter 3.
Of course we first need an appropriate notion of “size” for projections, so recall this
definition (Definition 1.1.4):

Definition 1.1.4. A dimension function on the projections of a von Neumann algebra
M is a function d : Pr(M) → [0,∞] which is monotonic, additive on orthogonal
projections and constant on Murray-von Neumann equivalence classes. Precisely for
p, q ∈ Pr(M), d satisfies:

d(p) ≤ d(q) whenever p ≤ q,

d(p+ q) = d(p) + d(q) whenever p ⊥ q and
d(p) = d(q) when p and q are Murray-von Neumann equivalent.

Definition 4.3.17. Let M ⊆ B(H) be a von Neumann algebra and suppose d :
Pr(M) → [0,∞] is a dimension function. We say a map ϕ : Pr(M) → Pr(M) has
f -controlled d-dilation if d(ϕ(q)) ≤ f(d(q)) for all q ∈ Pr(M). Also, a cantankerous
relation R on M has f -controlled d-dilation if ϕR does.

If F is a collection of functions [0,∞] → [0,∞] then we say maps Pr(M) → [0,∞]
have F-controlled d-dilation if they have f -controlled d-dilation for some f ∈ F . A
cantankerous relation R has F-controlled d-dilation if ϕR does.

Proposition 4.3.18. Let M ⊆ B(H) be a von Neumann algebra and consider ϕ, ϕ′
:

Pr(M) → [0,∞] with f -controlled and g-controlled d-dilation respectively then

(a) ϕ ∨ ϕ′ has f + g-controlled d-dilation and

(b) ϕ ◦ ϕ′ has f ◦ g-controlled d-dilation if f is increasing.

Proof. For the first item, take arbitrary q ∈ Pr(M) and note that (ϕ ∨ ϕ
′
)(q) =

ϕ(q)∨ϕ′
(q). Then by Kaplansky’s formula we have that ϕ(q)∨ϕ′

(q)−ϕ(q) is Murray
von Neumann equivalent to ϕ′

(q)−ϕ(q)∧ϕ′
(q). Since dimension functions are constant
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on Murray von Neumann equivalence classes we get that d(ϕ(q) ∨ ϕ
′
(q) − ϕ(q)) =

d(ϕ
′
(q)− ϕ(q) ∧ ϕ′

(q)). We also have that d is additive on orthogonal projections so
d(ϕ(q) ∨ ϕ′

(q) − ϕ(q)) + d(ϕ(q)) = d(ϕ(q) ∨ ϕ′
(q)). It follows that d(ϕ(q) ∨ ϕ′

(q)) =
d(ϕ(q))+d(ϕ

′
(q)−ϕ(q)∧ϕ′

(q)) ≤ d(ϕ(q))+d(ϕ
′
(q)) since d is monotonic. The result

follows.
Verifying the second item is routine and we omit the proof.

You can see that if we choose a family of increasing functions F which is closed un-
der addition and composition then the cantankerous relations which are F-controlled
will be closed under join and product (composition). This is going to lead us, in a
natural way, to defining a canonical C∗-subalgebra of B(H) associated with F , which
we will consider the generalization of a support expansion C∗-algebras. We will also
realize these generalized support expansion C∗-algebras as generalized uniform Roe
algebras, but since we have not yet developed the appropriate machinery for this let
us put a pin here and revisit the topic in the next chapter.

4.4 Quantum Relations

4.4.1 Explicit and Intrinsic Quantum Relations

Weaver, 2012 defines quantum relations as so (we have made slight alterations in
parentheses):

Definition 4.4.1 (Weaver, 2012 Definition 2.1). A(n) (explicit) quantum relation on
a von Neumann algebra M ⊆ B(H) is a W∗-bimodule over its commutant M′ , i.e.,
it is a weak∗ closed subspace V ⊆ B(H) satisfying M′VM′ ⊆ V

At a glance this seems quite distant from the notion of measurable relation in
Definition 4.2.1 but should at least seem reasonable given the discussion in Section
4.3. Weaver, 2012 also gives an intrinsic characterization of quantum relations as a
collection of pairs of projections:

Definition 4.4.2 (Weaver, 2012 Definition 2.24). Let M be a von Neumann algebra
and let P be the set of projections in M⊗B(ℓ2), equipped with the restriction of
the weak operator topology. An intrinsic quantum relation on M is an open subset
R ⊆ P × P satisfying

(i) (0, 0) /∈ R

(ii) (
∨
Pλ,

∨
Qκ) ∈ R ⇔ some (Pλ, Qκ) ∈ R

(iii) (P, [BQ]) ∈ R ⇔ ([B∗P ], Q) ∈ R (here [·] represents projection onto the closure
of the image)

for all projections P,Q, Pλ, Qκ ∈ P and all B ∈ I ⊗ B(ℓ2). We denote the set of all
intrinsic quantum relations on M by IQR(M).

Still, some notable differences from Definition 4.2.1. First and most significant is
that for measurable and cantankerous relations the projections were taken to be in a
von Neumann sub-algebra of B(H), whereas here we take the projections in the am-
plification M⊗B(ℓ2), introducing matrix levels. Hypothesis (iii) gives a compatibility
criteria for the resulting tensors. Hypothesis (i) is just a stylistic adjustment since it
(along with the other hypotheses) ensures that the projections in a pair are nonzero,
which we required for measurable and cantankerous relations as well. Finally, note
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that a quantum relation has to be open in an appropriate sense while there were
no topological concerns for measurable and cantankerous relations. The openness of
quantum relations should also not be so surprising, given the discussion in Section 4.3,
as Weaver, 2012 is working towards a 1-1 correspondence between Definitions 4.4.1
and 4.4.2:

Theorem 4.4.3 (Weaver, 2012 Theorem 2.32). Let M ⊆ B(H) be a von Neumann
algebra and let P be the set of projections in M⊗B(ℓ2). If V is a quantum relation
on M then

RV = {(P,Q) ∈ P2 : P (A⊗ I)Q ̸= 0 for some A ∈ V}

is an intrinsic quantum relation on M; conversely, if R is an intrinsic quantum
relation on M then

VR = {A ∈ B(H) : (P,Q) /∈ R =⇒ P (A⊗ I)Q = 0}

is a quantum relation on M. The two constructions are inverse to each other.

The extra structure of Definition 4.4.2 is required for this correspondence to work.
If one were to work merely with pairs of projections in M then in the above theorem
(with appropriate adjustments to notation) we would have R = RVR but V ⊆ VRV

with proper containment a possibility. For more on this see the discussion following
Theorem 2.9 of Weaver, 2012 where it is explained that a measurable relation induces
a quantum relation in a canonical way but there may be more than one quantum
relation V with the same associated measurable relation {(p, q) ∈ Pr(L∞(X,µ))2 :
paq ̸= 0 for some a ∈ V}.

For our purposes we are primarily interested in intrinsic quantum relations and so
we will provide some original results which extend the machinery Weaver, 2012 built
for measurable relations to the quantum setting.

Proposition 4.4.4 (cf. Proposition 4.2.5). Let M ⊆ B(H) be a von Neumann algebra
and let P be the set of projections in M⊗B(ℓ2), equipped with the restriction of the
weak operator topology.

(a) The set of pairs of projections P and Q in P such that PQ ̸= 0 is an intrinsic
quantum relation on M.

(b) If R is an intrinsic quantum relation on M then so is {(Q,P ) : (P,Q) ∈ R}.

(c) Any union of intrinsic quantum relations on M is an intrinsic quantum relation
on M.

Proof. Straightforward.

Conjecture 4.4.5. Let M ⊆ B(H) be a von Neumann algebra and let P be the
set of projections in M⊗B(ℓ2), equipped with the restriction of the weak operator
topology. If R and R′ are intrinsic quantum relations on M then consider the set
R · R′ of all pairs of nonzero projections (P,R) that satisfy

for every projection Q, either (P,Q) ∈ R or (1−Q,R) ∈ R′
.

We conjecture that the interior Int(R · R′
) in P is an intrinsic quantum relation on

M. Moreover, we expect VInt(R·R′ ) = VR · VR′
w∗

.
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Some justification for Conjecture 4.4.5. We can argue that the set R·R′ (before tak-
ing the interior) satisfies most of the properties of an intrinsic quantum relation:

That the collection of all such (P,R) satisfies Items (i) and (ii) of Definition 4.4.2 is
a purely set theoretic question and the proof is identical to Weaver, 2012 Proposition
1.5c, since he does not use the commutativity of projections in L∞(X,µ) for these
properties.

For Item (iii) of Definition 4.4.2, suppose we have P,R ∈ P so that for every
Q ∈ P and B ∈ I ⊗ B(ℓ2) either (P,Q) ∈ R or (1 − Q, [BR]) ∈ R′ . Then in
particular we know that for every Q either (P, [BQ]) ∈ R or (1− [BQ], [BR]) ∈ R′ . If
(P, [BQ]) ∈ R then ([B∗P ], Q) ∈ R. Otherwise we must have (1− [BQ], [BR]) ∈ R′

and thus ([B∗(1− [BQ])], R) ∈ R′ . As

[B∗(1− [BQ])] = ker((B − [BQ]B))⊥ and BQ− [BQ]BQ = 0

it follows that [B∗(1− [BQ])] ≤ 1−Q. So we have (1−Q,R) ∈ R′ . So we have for
any Q either ([B∗P ], Q) ∈ R or (1−Q,R) ∈ R′ . We have shown that if (P, [BR]) is
in R · R′ then so is ([B∗P ], R). The reverse direction follows analogously.

If our goal were to realize R · R′ as an intrinsic quantum relation then it would
remain to show that it is open in P which we have had difficulty doing and suspect may
not be true in general. Hence we think taking the interior is probably necessary.

Definition 4.4.6 (cf. Definition 4.2.6). Let M ⊆ B(H) be a von Neumann algebra
and E a collection of intrinsic quantum relations on M.

(a)
∨

E =
⋃
{R : R ∈ E}

(b)
∧

E =
⋃
{R′ intrinsic quantum relation on M : R′ ≤ R for every R ∈ E}

Note that the set of intrinsic quantum relations on M partially ordered by inclusion
forms a complete lattice under these definitions by Proposition 4.4.4d.

Definition 4.4.7 (cf. Definition 4.2.7). Let M ⊆ B(H) be a von Neumann algebra.

(a) The diagonal intrinsic quantum relation ∆ on M is defined by setting (P,Q) ∈ ∆
if PQ ̸= 0.

(b) The transpose of an intrinsic quantum relation R is the intrinsic quantum rela-
tion RT = {(Q,P ) : (P,Q) ∈ R}.

(c) An intrinsic quantum relation R on M is

(i) reflexive if ∆ ⊆ R
(ii) symmetric if RT = R
(iii) antisymmetric if R∧RT ⊆ ∆

Weaver, 2012 defines explicit quantum relation analogs to each of the items in
Definition 4.4.7:

Definition 4.4.8 (Weaver, 2012 Definition 2.4). Let M ∈ B(H) be a von Neumann
alegrba.

(a) The diagonal quantum relation on M is the relation V = M′ .

(b) The transpose of a quantum relation V on M is the quantum relation V∗.

(c) The product of two quantum relations V and W is the weak∗ closure of their
algebraic product.
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(d) A quantum relation V on M is

(i) reflexive if M′ ⊆ V
(ii) symmetric if V∗ = V
(iii) antisymmetric if V ∩ V∗ ⊆ M′

(iv) transitive if V2 ⊆ V.

We of course want Definitions 4.4.7 and 4.4.8 to agree, which we establish in the
following proposition.

Proposition 4.4.9 (cf. Weaver, 2012 Theorem 2.9). Let M ⊆ B(H) be a von Neu-
mann algebra and R,R′ implicit quantum relations on M. Let VR be the explicit
quantum relation associated with R as in Theorem 4.4.3. The following hold:

(a) V∆ = M′

(b) VRT = V∗
R

(c) VR is

(i) reflexive if and only if R is reflexive

(ii) symmetric if and only if R is symmetric

(iii) antisymmetric if and only if R is antisymmetric

Proof. For Item (a) it is clear that M′ ⊆ V∆. For the other direction take a ∈ V∆

and p ∈ Pr(M), denoting A = a ⊗ I and P = p ⊗ I. We note that PA(1 − P ) = 0
and thus PA = PAP . By similar reasoning we get AP = PAP so PA = AP and
thus pa = ap. Since a ∈ V∆ and p ∈ Pr(M) were arbitrary this gives us V∆ ⊆ M′

(since M is a von Neumann algebra, it is the SOT closed span of its projections).
For Item (b) take a ∈ VRT and P,Q ∈ Pr(M⊗B(ℓ2)) such that (P,Q) /∈ R. Then

(Q,P ) /∈ RT and so Q(a ⊗ I)P = 0 and thus P (a∗ ⊗ I)Q = 0. Since P and Q were
arbitrary such that (P,Q) /∈ R we have that a∗ ∈ VR or a ∈ V∗

R. So we have that
VRT ⊆ V∗

R. The reverse direction runs similarly.
Finally Item (c) follows quickly from the previous items and Theorem 4.4.3.

In some sense Proposition 4.4.9 renders Proposition 4.4.4 superfluous by way of
Theorem 4.4.3, since Weaver, 2012 Proposition 2.3 already asserted that the relevant
objects were explicit quantum relations. However this would leave intrinsic quantum
relations contingent upon the explicit definition, whereas we view them as the more
fundamental object. Hence the inclusion of Proposition 4.4.4 and Conjecture 4.4.5.

4.4.2 Quantum Image Maps

Weaver, 2012 does not define the left image map (cf. Proposition 4.2.3) for quantum
relations but it is very natural to work with this map when dealing with support
expansion, so we introduce the proper notion and provide an original proof establishing
correspondence between intrinsic quantum relations and image maps. First we need to
introduce a relevant property for functions on P, the set of projections in M⊗B(ℓ2).

Definition 4.4.10. Let M ⊆ B(H) be a von Neumann algebra and let P be the
set of projections in M⊗B(ℓ2), equipped with the restriction of the weak operator
topology. We say a map ϕ : P → P is subcontinuous if whenever a net (Pα, Qα) ∈ P2

converges, say to (P0, Q0), and satisfies Pα ≤ ϕ(Qα) for every α we have P0 ≤ ϕ(Q0).
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Proposition 4.4.11. (cf. Proposition 4.3.2) Let M ⊆ B(H) be a von Neumann
algebra and let P be the set of projections in M⊗B(ℓ2), equipped with the restriction
of the weak operator topology. If R is an intrinsic quantum relation on M then the
map

ϕR : Q 7→ 1−
∨

{P : (P,Q) /∈ R},

from P to itself is subcontinuous, takes 0 to 0, preserves arbitrary joins and satisfies
ϕR([BQ]) = [BϕR(Q)] for all B ∈ I ⊗ B(ℓ2). If ϕ is a map from P to itself that is
subcontinuous, takes 0 to 0, preserves arbitrary joins and satisfies ϕ([BQ]) = [Bϕ(Q)]
for all B ∈ I ⊗ B(ℓ2) then

Rϕ = {(P,Q) : Pϕ(Q) ̸= 0}

is an intrinsic quantum relation on M. The two constructions are inverse to each
other and order preserving.

Proof. First let R be an intrinsic quantum relation on M. Notice that ϕR(Q) ≤ P if
and only if (1− P,Q) /∈ R. We will use this repeatedly.

It is clear that ϕR(0) = 0. Take {Qκ} ⊆ P and note that if (P,
∨
Qκ) /∈ R

then (P,Qκ) /∈ R for every κ (Definition 4.4.2 Item (ii)) so ϕR(Qκ) ≤ ϕR(
∨
Qκ)

for each κ and thus
∨
ϕR(Qκ) ≤ ϕR(

∨
Qκ). If ϕR(

∨
Qκ) ≰

∨
ϕR(Qκ) then (1 −∨

ϕR(Qκ),
∨
Qκ) ∈ R which implies that (1−

∨
ϕR(Qκ), Qκ0) ∈ R for some κ0 thus

ϕR(Qκ0) ≰
∨
ϕR(Qκ) which is absurd. So we have ϕR(

∨
Qκ) =

∨
ϕR(Qκ) for any

family {Qκ} ⊆ P.
Take B ∈ I ⊗ B(ℓ2) and note that ϕR([BQ]) ≤ 1 − P if and only if (P, [BQ]) /∈

R which is true precisely when ([B∗P ], Q) /∈ R (Definition 4.4.2 Item (iii)) which
holds if and only if ϕR(Q) ≤ 1 − [B∗P ] = ker(PB). This is true if and only if
(1 − P )BϕR(Q) = BϕR(Q) and thus is equivalent to (1 − P )[BϕR(Q)] = [BϕR(Q)]
which is is the same as [BϕR(Q)] ≤ 1− P . We have argued that ϕR([BQ]) ≤ 1− P
if and only if [BϕR(Q)] ≤ 1 − P , in particular [BϕR(Q)] = ϕR([BQ]) for all Q ∈ P
and B ∈ I ⊗ B(ℓ2).

It remains to show that ϕR is subcontinuous. Suppose ((Pα, Qα)) is a net in P2

converging to (P0, Q0) such that Pα ≥ ϕR(Qα) for every α. Thus (1 − Pα, Qα) /∈ R
for each α. We have that RC is closed and so (1 − P0, Q0) /∈ R which implies that
P0 ≥ ϕR(Q0) and therefore ϕR is subcontinuous indeed.

Now let ϕ be a map from P to itself which satisfies the hypotheses, we will
show that Rϕ is an intrinsic quantum relation on M. It is clear that (0, 0) /∈ Rϕ.
If {Pλ}, {Qκ} ⊆ P then (

∨
Pλ)(ϕ(

∨
Qκ)) = (

∨
Pλ)(

∨
ϕ(Qκ)) = 0 if and only if

Pλϕ(Qκ) = 0 for every λ, κ, so we have that (
∨
Pλ,

∨
Qκ) ∈ Rϕ if and only if some

(Pλ, Qκ) ∈ Rϕ.
Take B ∈ I ⊗ B(ℓ2) and note that Pϕ([BQ]) = 0 is equivalent to P [Bϕ(Q)] = 0

by hypothesis. This happens precisely when PBϕ(Q) = 0 which is the same as
ϕ(Q)B∗P = 0, by taking the adjoint of both sides, which is true if and only if
ϕ(Q)[B∗P ] = 0 and thus equivalent to [B∗P ]ϕ(Q) = 0. So (P, [BQ]) ∈ Rϕ if and
only if ([B∗P ], Q) ∈ Rϕ for every B ∈ I ⊗ B(ℓ2) and P,Q ∈ P.

It remains to show that Rϕ is an open subset of P2 or, equivalently, that RC
ϕ is

closed. Take some net ((Pα, Qα)) in RC
ϕ converging to a point (P0, Q0). We have

that Pαϕ(Qα) = 0 and thus 1 − Pα ≥ ϕ(Qα). Since ϕ is subcontinuous this gives us
1−P0 ≥ ϕ(Q0) which implies P0ϕ(Q0) = 0 and thus (P0, Q0) ∈ RC

ϕ . So RC
ϕ is closed.

Checking that the constructions are inverse to each other and order preserving is
routine – we omit the proof.
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Definition 4.4.12. Let M ⊆ B(H) be a von Neumann algebra and let P be the
set of projections in M⊗B(ℓ2), equipped with the restriction of the weak operator
topology. We say ϕ : P → P is a quantum image map for M if

(a) ϕ(0) = 0,

(b) ϕ(
∨
Qλ) =

∨
ϕ(Qλ) for any (Qλ)λ ⊆ P,

(c) ϕ([BQ]) = [Bϕ(Q)] for all Q ∈ P, B ∈ I ⊗ B(ℓ2) and

(d) ϕ is subcontinuous.

If R is an intrinsic quantum relation on M we call ϕR (Proposition 4.4.11) the
left image of R.

Some of the basic operations one can perform on image maps are perfectly com-
patible with the corresponding operations on intrinsic quantum relations:

Proposition 4.4.13 (cf. Proposition 4.2.8). Let M ⊆ B(H) be a von Neumann
algebra and let P be the set of projections in M⊗B(ℓ2). If R and R′ are intrinsic
quantum relations on M then

(a) ϕR∨R′ = ϕR ∨ ϕR′ ,

(b) ϕR∧R′ = ϕR ∧ ϕR′ and

(c) ϕR·R′ = ϕR◦ϕR′ (cf. Conjecture 4.4.5: It is not clear that R·R′ is a quantum
relation and, correspondingly, that ϕR ◦ ϕR′ is an image map).

Proof. Argument essentially as found in the proof of Proposition 4.2.8.

Proposition 4.4.14. Let M ⊆ B(H) be a von Neumann algebra and let P be the set
of projections in M⊗B(ℓ2), equipped with the restriction of the weak operator topology.

(a) The map from P to itself given by Q 7→ Q is an image map for M.

(b) If ϕ is an image map for M then so is the function ϕ∗ : P → P given by
ϕ∗(P ) = 1−

∨
{Q : ϕ(Q) ≤ 1− P}. Also ϕ∗∗ = ϕ.

(c) If ϕ and ϕ′ are image maps for M then so is their point-wise join ϕ ∨ ϕ′.

Proof. Parts (a) and (c) are easy.
For part (b) we first observe that ϕ∗(P ) ≤ 1−Q if and only if ϕ(Q) ≤ 1−P which

establishes that ϕ∗∗ = ϕ but also is a fact we will use repeatedly below.
Note ϕ∗(0) ≤ 1 − Q if and only if ϕ(Q) ≤ 1 − 0, which is true for all Q ∈ P so

ϕ∗(0) = 0.
Now take a collection {Pλ} ⊆ P and observe ϕ∗(

∨
Pλ) ≤ 1 − Q ⇔ ϕ(Q) ≤

1 −
∨
Pλ =

∧
1 − Pλ which is true if and only if ϕ(Q) ≤ 1 − Pλ for every λ, which

is same as ϕ∗(Pλ) ≤ 1 − Q for every λ or, equivalently,
∨
ϕ∗(Pλ) ≤ 1 − Q. So

ϕ∗(
∨
Pλ) =

∨
ϕ∗(Pλ).

Fix B ∈ I ⊗ B(ℓ2) then ϕ∗([BP ]) ≤ 1−Q⇔ ϕ(Q) ≤ 1− [BP ] which is the same
as ϕ(Q)BP = 0 or PB∗ϕ(Q) = 0, precisely when ϕ([B∗Q]) = [B∗ϕ(Q)] ≤ 1 − P
which is to say ϕ∗(P ) ≤ 1 − [B∗Q] which happens if and only if ϕ∗(P )B∗Q = 0 or
QBϕ∗(P ) = 0 or equivalently [Bϕ∗(P )] ≤ 1−Q. So ϕ∗([BP ]) = [Bϕ∗(P )].

It remains to show ϕ∗ is subcontinuous. Suppose (Pα, Qα)α ⊆ P2 is a net converg-
ing to (P0, Q0) and that ϕ∗(Pα) ≤ 1−Qα for each α. Then ϕ(Qα) ≤ 1− Pα for each
α and so ϕ(Q0) ≤ 1 − P0 which is equivalent to ϕ∗(P0) ≤ 1 − Q0 which establishes
subcontinuity.
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Definition 4.4.15. Let M be a von Neumann algebra and let P be the set of pro-
jections in M⊗B(ℓ2), equipped with the restriction of the weak operator topology.

(a) The diagonal image map ϕ∆ for M is given by ϕ∆(Q) = Q.

(b) The conjugate of an image map ϕ for M is the image map ϕ∗(P ) = 1−
∨
{Q :

ϕ(Q) ≤ 1− P}.

(c) An image map ϕ for M is

(i) reflexive if ϕ∆ ≤ ϕ

(ii) symmetric if ϕ = ϕ∗

(iii) antisymmetric if ϕ ∧ ϕ∗ ≤ ϕ∆

Proposition 4.4.16. Let M ⊆ B(H) be a von Neumann algebra and R,R′ implicit
quantum relations on M. Let VR be the explicit quantum relation associated with R
as in Theorem 4.4.3. The following hold:

(a) Rϕ∆ = ∆

(b) RT
ϕ = Rϕ∗

(c) Rϕ is

(i) reflexive if and only if ϕ is reflexive

(ii) symmetric if and only if ϕ is symmetric

(iii) antisymmetric if and only if ϕ is antisymmetric

Proof. Note that (P,Q) ∈ Rϕ∆ if and only if PQ = Pϕ∆(Q) ̸= 0, which is exactly
when (P,Q) ∈ ∆.

Suppose (Q,P ) /∈ RT
ϕ so (P,Q) /∈ Rϕ and thus Pϕ(Q) = 0 or ϕ(Q) ≤ 1 − P .

This implies that ϕ∗(P ) ≤ 1 − Q and thus Qϕ∗(P ) = 0 which means (Q,P ) /∈ Rϕ∗ .
We have shown that Rϕ∗ ≤ RT

ϕ but a symmetric argument would show the reverse
inequality so we have Rϕ∗ = RT

ϕ .
All the parts of (d) follow straightforwardly from parts (a) and (b) along with

Propositions 4.4.11 and 4.4.13.

That is to say Definitions 4.4.7, 4.4.8 and 4.4.15 are all compatible up to a Con-
jecture 4.4.5 shaped hole.

We can consider a dimension function (Definition 1.1.4) on M⊗B(ℓ2) and speak
of the d-dilation of an explicit quantum relation (where products are defined), passing
to intrinsic quantum relations and then to image maps.
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Chapter 5

Uniform Roe Algebras and Their
Generalizations

In this final chapter we will motivate and very briefly introduce the theory of coarse
structures and uniform Roe algebras. Then we will use the tools laid out in Chapter
4 to define measurable, cantankerous and quantum coarse structures and uniform
Roe algebras. Finally we will realize support expansion C∗-algebras as cantankerous
uniform Roe algebras – placing them nicely in a larger (mostly unexplored as of this
writing) theory.

5.1 Information in Metric Spaces

In this section we will examine metric spaces and how various types of analysis focus on
different kinds of information provided by the metric, while disregarding other kinds
of information. By isolating and distilling the relevant information in each context we
can generalize metrics in several different ways.

Definition 5.1.1. Let X be a set and d : (X×X) → [0,∞] a function which satisfies
the following for all x, y, z ∈ X:

(a) d(x, y) = 0 ⇔ x = y,

(b) d(x, y) = d(y, x),

(c) d(x, z) ≤ d(x, y) + d(y, z)

then (X, d) is a metric space and d is called a metric on X.

A metric gives the distance between any two points in X. This is quite a bit of
information – far more than necessary for many applications.

5.1.1 Continuity

Let f : X → Y be a function between metric spaces (X, d1) and (Y, d2). Recall that
f is continuous at a point x0 ∈ X if for every ε > 0 there exists some δ > 0 such that
d1(x, x0) < δ implies d2(f(x), f(x0)) < ε for every x ∈ X.

Note that we could replace d1 with min(d1, 1) and d2 with min(d2, 1) without
affecting the continuity of any functions. Moreover we could “truncate” the metrics in
this way at any non-zero value without issue, not just 1. We could also dramatically
distort the metric, changing the relative distance between pairs of points, and still
continuity would not be affected.

That is to say continuity is a local property and uses a very small amount of the
information contained in the metric. As is well known, the theory of a topology is
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a generalization of metric spaces which strips away much of this excess information
while giving a more general notion of limits and continuity. Any two metrics which
result in the same topology will yield exactly the same set of continuity points for
every function.

5.1.2 Uniformity

Let f : X → Y be a function between metric spaces (X, d1) and (Y, d2). Recall
that f is uniformly continuous if for every ε > 0 there exists some δ > 0 such that
d1(x1, x2) < δ implies d2(f(x1), f(x2)) < ε for every x1, x2 ∈ X.

In contrast to point-wise continuity, uniform continuity is a global property and
so we will need to retain some additional information about the metric to capture
it. In topology it makes sense to talk about “getting close” to a fixed point x0: Any
neighborhood of x0 can be viewed as some “closeness” condition, and said neighbor-
hoods can be made a poset by reverse set inclusion, with “both U close and V close”
a more refined “closeness” condition given by U ∩ V . This gives rise to the definition
of convergence of sequences. But topologies have no means of determining whether
one pair of points are “as close to” each other as some other pair of points. For that
we would need a conception of “closeness” that made sense everywhere at the same
time – a global property.

In case you are prone to optimism, the inability of topology to capture uniform
continuity is hard coded: Indeed, different metrics can give rise to the same topolo-
gies but have distinct sets of uniformly continuous functions. To talk about uniform
continuity we can still discard much of the information in the metric, but we need to
retain some global notion of “closeness” which makes sense for all pairs of points at
once. A uniform structure proves to be the correct framework for this.

Definition 5.1.2. (cf. Kelley, 1975 p. 176)1 Given a set X, we say a nonempty
collection U ⊆ P(X ×X) of relations on X is a uniformity or uniform structure on
X if it satisfies the following:

(a) The diagonal relation ∆ is a subset of every element U ∈ U ,

(b) If U ∈ U then UT ∈ U ,

(c) If U ∈ U then there exists some V ∈ U such that V ◦ V ⊆ U ,

(d) If U, V ∈ U then U ∩ V ∈ U and

(e) If U ∈ U and U ⊆ V ⊆ X ×X then V ∈ U .

The pair (X,U) is a uniform space and elements of U are commonly referred to as
controlled sets or entourages.

Entourages should be thought of as qualitative global notions of “closeness” and
the hypotheses might be thought of intuitively as follows: Item (a) guarantees that
every point is “close” to itself. Item (b) that if one point is “close” to a second point
then the second is also “close” to the first. Item (c) allows us to always refine a given
“closeness” condition to find one which is more precise, while Item (d) ensures us that
“simultaneously U -close and V -close” is itself a notion of “closeness”. Finally, Item (e)
allows us to weaken any notion of “closeness” to include more points.

1Uniform spaces were first defined by Andrew Weil in 1937, and this definition in terms of en-
tourages finds origin with Nicolas Bourbaki in his 1940 book General Topology.
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Uniform structures do not just lie between metric spaces and topologies on an
intuitive level: this can be formalized. Every metric space (X, d) induces a uniform
structure by defining Uλ = {(x, y) : d(x, y) ≤ λ} and then U = {V ⊆ X ×X : Uλ ⊆
V for some λ ∈ (0,∞)}. On the other hand every uniform structure U on X induces
a natural topology:

Definition 5.1.3 (Kelley, 1975 p. 178). Let U be a uniform structure on X then
the uniform topology TU induced by U is given by saying a set T ⊆ X is open if for
each x ∈ T there exists some U ∈ U such that ψU (x) ⊆ T , where ψU (x) = {y ∈ X :
(x, y) ∈ U} (cf. 4.1.6).

If one takes a metric space (X, d) and induces a uniformity U from it as described
above, then TU is the standard metric-induced topology on (X, d), as one would expect.

We note that for a fixed X there is a unique uniformity Ud on X such that the
diagonal relation ∆ ∈ Ud. Indeed, by 5.1.2 (e), any such uniformity must contain every
superset of ∆, which forms the maximal uniform structure on X. Further observe that
the uniform topology for this maximal uniformity TUd

is the discrete topology on X.
This motivates the following convention:

Definition 5.1.4. A uniformity U on a set X is called the discrete uniformity on X
if ∆ ∈ U .

Now for the promised generalization of uniform continuity:

Definition 5.1.5 (Kelley, 1975 p. 180). Suppose f : X → Y is a function between
uniform spaces (X,U) and (Y,V) then we say f is uniformly continuous if for each
V ∈ V the set {(x, y) : (f(x), f(y)) ∈ V } is a member of U .

If you squint this should resemble the “pre-image of an open set is open” topological
definition of continuity. As expected, this definition is equivalent to the metric defini-
tion of uniform continuity when U and V are induced by metrics on their respective
spaces. Many of the other basic definitions in uniform theory, such as uniform iso-
morphism and equivalence, proceed as one would anticipate in parallel with topology.
Thus we abridge our exploration of those basic topics.

Another feature of metric spaces which topology fails to capture is completeness.
Topology can talk about whether a sequence converges, but it has no way of determin-
ing whether a sequence ought to converge. This is because identifying a sequence as
Cauchy involves comparing the relative closeness of every pair of points in a tail of the
sequence which is a non-local property. Indeed, different metrics can give the same
topology but disagree about whether a sequence is Cauchy. However uniformities
retain sufficient information to capture Cauchy nets and completeness.

Definition 5.1.6 (Kelley, 1975 pp. 190, 192). Let D be some directed set and
(xα)α∈D ⊆ X a net in the uniform space (X,U). We say that (xα)α∈D is a Cauchy
net if for each U ∈ U there is some γ ∈ D such that (xα, xβ) ∈ U whenever α, β ≥ γ.

If every Cauchy net in (X,U) converges to a point in X in the uniform topology
then we say (X,U) is complete.

Moreover if a uniformity U is not complete it can be mapped by uniform isomor-
phism to a dense subspace of a complete uniform space. This mapping may not be
unique in general but if U is Hausdorff then it has a unique Hausdorff completion up
to uniform equivalence (Kelley, 1975 pp. 195-197).

Our goal in this subsection was to present the value of uniformities as a compromise
between metric spaces and topologies. Some important properties of metric spaces
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which topology fails to capture can be recovered by instead studying uniformities. But
the actual object of interest when constructing uniform Roe algebras is not uniform
structure, but the dual notion: coarse structure.

5.1.3 Coarseness

If we revisit the properties of a uniformity in Definition 5.1.2 we notice that Items (c)
and (d) allow us to refine entourages and get more precise notions of “close” while Item
(e) lets us build weaker notions, corresponding to larger subsets of X ×X. We note
that the latter hypothesis is very blunt, allowing literally any superset of an element
of U , while the former hypotheses are more nuanced. The effect of this is that at
the large scale, every uniform structure looks the same. Uniform structures capture
many important properties of metrics at small scales in a uniform manner but they
completely wash out the large scale properties of metric spaces.

Large scale properties include notions of boundedness of sets or functions. A
function being bornologous (cf. Definition 5.1.10b) is a large scale property while a
function being Lipschitz involves both small and large scale information. All of these
things are washed out by uniform structures. Indeed, for a given set X the metrics
d and max(d, 1) induce the same uniformity but clearly can have different bounded
sets, functions, etc.

What if we reversed the focus of uniform structures and paid more attention to
the large scale notions of “closeness”, while giving up resolution at the small scale?

Definition 5.1.7. (Roe, 2003 Definition 2.3)2 Given a set X, we say a collection
C ⊆ P(X×X) of relations on X is a coarse structure on X if it satisfies the following:

(a) The diagonal relation ∆ ∈ C,

(b) If U ∈ C then UT ∈ C,

(c) If U, V ∈ C then U ◦ V ∈ U ,

(d) If U, V ∈ C then U ∪ V ∈ C and

(e) If U ∈ C and V ⊆ U then V ∈ C.

The pair (X, C) is a coarse space and elements of C are commonly referred to as
controlled sets or entourages.

We note this overloads the definitions for controlled sets and entourages but con-
text should prevent confusion between uniform and coarse controlled sets. If ever we
are discussing both concepts at once we will distinguish them with the the adjectives
“uniform” and “coarse”.

Comparing Definitions 5.1.2 and 5.1.7 we see that the hypotheses for uniform and
coarse spaces are dual. While a uniform entourage U tells you that points x and y
are U -close if (x, y) ∈ U , a coarse entourage should be thought of as giving some
notion of boundedness. Coarse structures successfully capture much of the large scale
information from a metric space.

As was the case with uniformities, a metric space (X, d) canonically induces a
coarse structure:

2Coarse structures were axiomatized in this way by John Roe in Roe, 2003, but these ideas
originate in earlier works in geometric group theory including those of Gromov and Mostow.
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Example 5.1.8. Let (X, d) be a metric space and for each λ ∈ (0,∞) define Uλ =
{(x, y) : d(x, y) ≤ λ}. Then C = {U ⊆ X × X : U ⊆ Uλ for some λ ∈ (0,∞)} is a
coarse structure on X.

As we mentioned earlier, coarse structures capture the notion of a set being
bounded :

Definition 5.1.9 (Roe, 2003 Proposition 2.16). Let (X, C) be a coarse space, we say
a set B ⊆ X is bounded if B ×B ∈ C.

This is a generalization since the bounded sets in the coarse structure induced by
a metric are precisely the bounded sets in that metric space. Now we will introduce
some properties of maps that coarse structures isolate, and a notion of equivalence
between coarse spaces.

Definition 5.1.10. (Roe, 2003 Definitions 2.14 and 2.21) Let (X, C) and (Y,D) be
coarse spaces and let f, g : X → Y be maps.

(a) The map f is proper if the inverse image, under f , of each bounded subset of Y
is a bounded subset of X.

(b) The map f is bornologous if for each controlled subset U ∈ C the set {(f(x), f(y)) :
(x, y) ∈ U} is a controlled subset of Y .

(c) The map f is coarse if it is proper and bornologous.

(d) The maps f and g are close if the set {(f(x), g(x)) : x ∈ X} ⊆ Y × Y is
controlled.

(e) The spacesX and Y are coarsely equivalent if there exist coarse maps f : X → Y
and g : Y → X such that f ◦ g and g ◦ f are close to the identity maps on Y
and X respectively.

The property bornologous should be viewed as dual to uniformly continuous. This
duality is perhaps made more plain by seeing the ε − δ definition of bornologous for
metric spaces: A function f : X → Y between metric spaces (X, d1) and (Y, d2) is
bornologous if for every δ > 0 there exists some ε > 0 such that d1(x, y) < δ implies
d2(f(x), f(y)) < ε.

Moving forward we are going to make a deviation from Roe, 2003 (and indeed
most theory involving coarse structures) and omit the first hypothesis of Definition
5.1.7. That is, we will not require a coarse structure to include the diagonal
relation. The real motivation for this is that we will use coarse structures to build
C∗-algebras and requiring the diagonal relation forces all of the constructed algebras
to be unital – making the theory less interesting.

A more philosophical motivation for this weakening is that, in our opinion, requir-
ing the diagonal relation be included is somewhat unnatural. Consider the following
example: Take a measure space (X,µ) such that every subset of X is measurable (for
instance X could be discrete) and suppose we want to say a subset of X is “bounded”
if it has finite measure (a reasonable notion of boundedness) – if we have any infinite
point masses they would be considered unbounded. Definition 5.1.9 defines a set B
to be bounded if B × B is a controlled set. This implies that all points are bounded,
since the diagonal relation is necessarily in any coarse structure and coarse structures
are closed under subsets. We would have to conclude that our notion of “bounded”
meaning finite measure cannot be modelled by a coarse structure!
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But this is purely an artifact of requiring the diagonal. We could generate a
coarse structure sans diagonal by looking at rectangles with finite area in X ×X and
then closing under finite unions and subsets – we get compositions for free. And this
coarse structure’s notion of boundedness would be precisely “sets with finite measure”.
Perhaps the diagonal relation is important in some aspects of coarse geometry, but
hopefully this example demonstrates to the reader that there is some value in consid-
ering this weakening, where we allow for coarse structures sans diagonal – hereafter
referred to merely as coarse structures.

5.1.4 Uniform Roe Algebras

A coarse structure naturally induces a C∗-subalgebra of B(ℓ2(X)) as seen in the defi-
nition and discussion below.

Definition 5.1.11. (Uniform Roe Algebra) Let C be a coarse structure on a set X
then for each U ∈ C we define

DU = {a ∈ B(ℓ2(X)) : (x, y) /∈ U =⇒ ⟨aδy, δx⟩ = 0}

C∗
u[X, C] =

⋃
{DU : U ∈ C}

C∗
u(X, C) = C∗

u[X, C]
∥·∥
.

DU and C∗
u[X, C] are called the U -controlled and C-controlled operators, respectively.

Meanwhile C∗
u(X, C) is the uniform Roe algebra associated with (X, C). Occasionally

C∗
u[X, C] is also referred to as the algebraic uniform Roe algebra associated with (X, C).

The operations adjoint, addition and multiplication are closed for C∗
u[X, C] because

inverse, finite union, and composition are respectively closed for C. C∗
u[X, C] is also

closed under scalar multiples and so is a ∗-subalgebra of B(ℓ2(X)), hence C∗
u(X, C) is

a C∗-algebra.
Uniform Roe algebras are named after John Roe, who introduced them in Roe,

1988 and studied them extensively in Roe, 2003.

5.2 Measurable Coarse Structures and Uniform Roe Al-
gebras

Definition 5.2.1. [cf. Definition 5.1.7] Let (X,µ) be a finitely decomposable measure
space. We say a nonempty collection C of measurable relations (Definition 4.2.1) on
X is a measurable coarse structure on X if it satisfies the following:

(a) If U ∈ C then UT ∈ C,

(b) If U, V ∈ C then U · V ∈ C,

(c) If U, V ∈ C then U ∨ V ∈ C and

(d) If U ∈ C and V ≤ U then V ∈ C.

The tuple (X,µ, C) is a measurable coarse space and elements of C may be referred to
as entourages.

Note that if µ is counting measure, this recovers classical coarse structures (sans
the diagonal axiom as discussed earlier).
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Definition 5.2.2. [cf. Definition 5.1.11] Let (X,µ, C) be a measurable coarse space
then for each U ∈ C we define

DU = {a ∈ B(L2(X,µ)) : (p, q) /∈ U =⇒ paq = 0}

C∗
u[X, C] =

⋃
{DU : U ∈ C}

C∗
u(X, C) = C∗

u[X, C]
∥·∥
.

DU and C∗
u[X, C] are called the U -controlled and C-controlled operators, respectively.

Meanwhile C∗
u(X, C) is the measurable uniform Roe algebra associated with (X, C).

Occasionally C∗
u[X, C] is also referred to as the measurable algebraic uniform Roe

algebra associated with (X, C).

5.3 Cantankerous Coarse Structures and Uniform Roe Al-
gebras

As above so below: we can further generalize coarse structures by using cantankerous
relations over a not necessarily commutative von Neumann algebra. The initial def-
initions are straightforward translations but we will see that the notion of “support
expansion” bifurcates which leads to some interesting math.

Definition 5.3.1 (cf. Definition 5.2.1). Let M ⊆ B(H) be a von Neumann algebra.
We say a nonempty collection C of cantankerous relations (Definition 4.3.1) on M is
a cantankerous coarse structure on M if it satisfies the following:

(a) If U ∈ C then UT ∈ C,

(b) If U, V ∈ C then U · V ∈ C,

(c) If U, V ∈ C then U ∨ V ∈ C and

(d) If U ∈ C and V ≤ U then V ∈ C.

The tuple (H,M, C) is a cantankerous coarse space and elements of C may be referred
to as entourages.

Note that if M = L∞(X,µ) for some finitely decomposable measure space then
we recover measurable coarse structures.

Definition 5.3.2 (cf. Definition 5.2.2). Let (H,M, C) be a cantankerous coarse space
then for each U ∈ C we define

DU = {a ∈ B(H) : (p, q) /∈ U =⇒ p(a⊗ I)q = 0}

C∗
u[M, C] =

⋃
{DU : U ∈ C}

C∗
u(M, C) = C∗

u[M, C]∥·∥.

DU and C∗
u[M, C] are called the U -controlled and C-controlled operators, respectively.

Meanwhile C∗
u(M, C) is the cantankerous uniform Roe algebra or cura associated with

the cantankerous coarse space (H,M, C). Occasionally C∗
u[M, C] is also referred to as

the cantankerous algebraic uniform Roe algebra associated with (H,M, C).
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5.3.1 Support Expansion Curas

Picking up the discussion from where we left it in Section 4.3.2, we will demonstrate
that support expansion C∗-algebras (Definition 1.1.7) are curas.

First we recall that there are two notions of support expansion functions, which
we restate here for convenience:

Definition 1.1.5. Given a Hilbert space H, von Neumann sub-algebra M ⊆ B(H)
and a dimension function d : Pr(M) → [0,∞] the d-support expansion function3

[0,∞] → [0,∞] of an operator a ∈ B(H) is

Φda(x) = sup{d(suppM (aξ)) : d(suppM (ξ)) ≤ x}.

Definition 2.1.3. (cf. Definition 1.1.5) Given a Hilbert space H, von Neumann sub-
algebra M ⊆ B(H) and a dimension function d : Pr(M) → [0,∞] the projection
d-support expansion function [0,∞] → [0,∞] of an operator a ∈ B(H) is

Φda
′
(x) = sup{d(sMl (ap)) : p ∈ Pr(M), d(p) ≤ x}.

We showed that for commutative von Neumann algebras these notions coincide
(Theorem 2.1.4) but in the non-commutative case they might disagree (Example
2.1.7).

This leads to a bifurcation in our notion of support expansion C∗-algebra in the
cantankerous setting:

Definition 5.3.5. (cf. Definition 1.1.7) Fix a Hilbert space H, represented von Neu-
mann algebra M ⊆ B(H) and dimension function d on Pr(M). Then given some
family of functions F : [0,∞] → [0,∞] and f ∈ F we define

Bf = {a ∈ B(H) : Φda,Φ
d
a∗ ≤ f},

BF =
⋃

{Bf : f ∈ F} and

CF = BF
∥·∥
.

The sets Bf and BF are the vector f -controlled and vector F-controlled operators
respectively. C∗-algebras of the form CF are collectively referred to as cantankerous
v-support expansion C∗-algebras (on M).

Definition 5.3.6. Fix a Hilbert space H, represented von Neumann algebra M ⊆
B(H) and dimension function d on Pr(M). Then given some family of functions
F : [0,∞] → [0,∞] and f ∈ F we define

B
′
f = {a ∈ B(H) : Φda

′
,Φda∗

′
≤ f},

B
′
F =

⋃
{B′

f : f ∈ F} and

C
′
F = B

′
F
∥·∥
.

The sets B′
f and B′

F are the projection f -controlled and projection F-controlled oper-
ators respectively. C∗-algebras of the form C

′
F are collectively referred to as cantan-

kerous p-support expansion C∗-algebras (on M).
3Dimension functions may take infinite cardinal values in which case the domain and codomain

of support expansion functions may include these cardinals. We do not explore these cases in this
dissertation.
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While an operator a ∈ B(H) may have two distinct “support expansion functions”,
one focused on the expansion of vectors and the other on the expansion of projections
in M, it is conceivable that the distinction might collapse when passing through the
construction in Definitions 5.3.5 and 5.3.6 – resulting in a unique canonical “support
expansion C∗-algebra” CF = C

′
F associated to a given family of functions F (closed

under addition and composition). This is not generally the case, however, which we
demonstrate in the example below, developed in collaboration with my advisor David
Sherman.
Example 5.3.7. Let H = ℓ2 ⊕ ℓ2 and consider the represented von Neumann algebra
M = C ⊕ B(ℓ2) ⊆ B(H) acting as follows: if λ ∈ C, a ∈ B(H) and ξ1, ξ2 ∈ ℓ2 then
(λ, a)(ξ1, ξ2) = (λξ1, aξ2). We will measure projections in M with the trace (which
restricts to a dimension function on Pr(M)) τ which evaluates (λ, a) 7→ λ + τ0(a),
where τ0 is the standard trace on B(ℓ2). As our final bit of notation, let F be the
collection of functions [0,∞] → [0,∞] which consists of lines through the origin with
natural number slope.

Now consider the partial isometry a ∈ B(H) given by a(ξ1, ξ2) = (0, ξ1). We will
show that a has distance 1 from B

′
F and thus a /∈ C

′
F . Suppose b ∈ B

′
F and so there

exists some n ∈ N such that Φ′
b(x) < nx for all x ∈ [0,∞]. In particular, if p ∈ Pr(M)

has finite trace then so does sMl (bp). Then we can find a unit vector (0, η) ∈ H
orthogonal to sMl (b(I, 0))H (recall (0, I) has infinite trace) and consider ∥a− b∥2 ≥
∥aa∗(0, η)− ba∗(0, η)∥2 = ∥(0, η)− ba∗(0, η)∥2 = ∥(0, η)∥2 + ∥ba∗(0, η)∥ ≥ 1.

On the other hand we observe that any vector (ξ1, ξ2) ∈ H has support of
the form (p, [ξ2]) where p is either 0 or identically 1 on the first coordinate, so
τ(suppM (ξ1, ξ2)) ∈ {0, 1, 2}, with 0 only for the 0 vector. From here it is easy to
see that every operator a ∈ B(H) satisfies Φa(x) ≤ 2x for all x ∈ [0,∞] and thus
BF = B(H) – in particular a ∈ BF ⊆ CF .

Example 5.3.7 establishes that in the cantankerous setting there are two distinct
notions of support expansion C∗-algebra associated to a given family of functions F .
We will realize them both in a natural way as curas. It is relatively easy to see how
the projection-focused notion of support expansion (Definitions 2.1.3 and 5.3.6) gives
rise to a natural cura and so we demonstrate this first:

Theorem 5.3.8. Let M ⊆ B(H) be a represented von Neumann algebra with dimen-
sion function d. If F is a family of weakly increasing functions [0,∞] → [0,∞] which is
closed under addition and composition then C(F) = {R a cantankerous relation on M :
ϕR and ϕ∗R have F-controlled d-dilation} is a cantankerous coarse structure on M
and thus C∗

u(M, C(F)) is a cura on M. Moreover C∗
u(M, C(F)) = C

′
F (Definition

5.3.6).

Proof. It is straightforward to verify C(F) satisfies the items of Definition 5.4.1 (and
is thus a cantankerous coarse structure on M) by recalling the following facts: ϕRT =
ϕ∗R, ϕR·R′ = ϕR ◦ ϕR′ , ϕR∨R′ = ϕR ∨ ϕR′ , and R ≤ R′ if and only if ϕR ≤ ϕR′ (see
Propositions 4.4.11, 4.4.13, and 4.4.16) along with d(p ∨ q) ≤ d(p) + d(q).

We will now demonstrate that C∗
u[M, C(F)] = B

′
F from which the final result

follows. First suppose a ∈ C∗
u[M, C(F)], so there exists some U ∈ C(F) such that

a ∈ DU and, since U ∈ C(F), some f ∈ F such that ϕU and ϕ∗U have f -controlled
d-dilation (a priori they may have distinct f and g controlled d-dilation respectively,
but then we can just take the sum f + g ∈ F). Recall that 1 − ϕU (q) is the largest
projection in Pr(M) such that (1 − ϕU (q), q) /∈ U and thus (1 − ϕU (q))aq = 0. This
implies that ϕU (q)aq = aq and thus ϕU (q) ≥ sMl (aq). Since ϕU has f -controlled
d-dilation, it is easy to see that Φa ≤ f and the argument for Φa∗ runs similarly so
a ∈ B

′
F . This establishes that C∗

u[M, C(F)] ⊆ B
′
F .
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For the other direction, suppose a ∈ B
′
F so there is some f ∈ F such that Φa,Φa∗ ≤

f . Note that this implies ϕa(·) = sMl (a·) defines a cantankerous image map with f -
controlled d-dilation and if (p, q) /∈ Rϕa then p ≤ 1−ϕa(q) so paq = 0. Thus a ∈ DRϕa

.
We note that ϕ∗Rϕa

(·) = ϕ∗a(·) = sl(a
∗·) (we omit a brief argument here, the key insight

to which is ϕ∗a(q) ≤ 1 − p ⇔ ϕa(p) ≤ 1 − q) is also a cantankerous image map with
f -controlled d-dilation. So Rϕa ∈ C(F) and thus a ∈ C∗

u[M, C(F)]. Along with the
previous paragraph this gives us C∗

u[M, C(F)] = B
′
F and we are done.

Theorem 5.3.8 establishes that the projection-focused notion of a support expan-
sion C∗-algebra is naturally a cura. As for the vector-focused notion: We cannot get
around the fact that cantankerous coarse structures are families of cantankerous rela-
tions and thus fundamentally have to do with projections. While the correspondence
Φa = Φa

′
established in Theorem 2.1.4 fails in the non-commutative setting, we can

in fact rephrase Φa in terms of projection expansion – but we need a different notion
for the size of a projection.

Definition 5.3.9. Let M ⊆ B(H) be a von Neumann algebra. We say a projection
p ∈ Pr(M) is cyclic if p = suppM (ξ) for some ξ ∈ H. If P denotes a family of
projections in M then cyc(P) ⊆ P denotes the collection of cyclic projections in P.

Definition 5.3.10. If d : Pr(M) → [0,∞] is a dimension function on the von Neu-
mann algebra M ⊆ B(H) then we define the associated cyclic diameter function
dc : Pr(M) → [0,∞] by dc(p) = sup{d(q) : q ≤ p, q ∈ cyc(Pr(M))}.

We observe that in general the cyclic diameter is not itself a dimension function
(it is not always additive on orthogonal projections, consider B(H)), but it does have
some nice properties, proved in collaboration with my advisor David Sherman:

Lemma 5.3.11. Let M ⊆ B(H) be a von Neumann algebra and p, q ∈ Pr(M). If d
is a dimension function on M then dc satisfies the following:

(a) dc(p) ≤ d(p) with equality if p is cyclic,

(b) p ≤ q implies dc(p) ≤ dc(q),

(c) dc(p ∨ q) ≤ dc(p) + dc(q).

Proof. Items (a) and (b) are straightforward. For (c) we consider a vector ξ ∈ (p∨q)H,
the closed span of pH and qH, so we can find sequences (ηn)n∈N ⊆ pH, (ζn)n∈N ⊆ qH
of vectors so that ηn+ζn → ξ in norm. Consider the projections rn = [M′

ηn]∨[M
′
ζn].

By Kaplansky’s formula we have that d(rn) ≤ d([M′
ηn])+d([M

′
ζn]) ≤ dc(p)+dc(q).

Now take some limit point r ∈ M of (rn), necessarily positive, and note that for
any m ∈ M′ we have that rmξ = mrξ = m(r− rn)ξ+mrnξ = m(r− rn)ξ+mrn(ξ−
ηn+ ζn)+mrn(ηn+ ζn) = m(r− rn)ξ+mrn(ξ− ηn+ ζn)+m(ηn+ ζn) which tends to
mξ in norm along some subsequence of (rn)n∈N. So rmξ = mξ and thus r is a positive
operator lying above [M′

ξ]. Thus, by the weak∗ lower semi-continuity of d we have
that d([M′

ξ]) ≤ lim inf d(rn) ≤ dc(p) + dc(q). Since this is true for ξ ∈ (p ∨ q)H it is
also true for the supremum over such ξ and so we have dc(p ∨ q) ≤ dc(p) + dc(q) as
desired.

Proposition 5.3.12. Let M ⊆ B(H) be a represented von Neumann algebra. Then
for any operator a ∈ B(H) we have that Φa(x) = sup{dc(sl(aq)) : dc(q) ≤ x} (cf.
Definitions 1.1.5 and 2.1.3).
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Proof.

Φa(x) = sup{d(suppM (aξ)) : d(suppM (ξ)) ≤ x}
= sup{d(suppM (aξ)) : ξ ∈ qH; dc(q) ≤ x}

= sup{d([M′
aξ]) : ξ ∈ qH; dc(q) ≤ x}

= sup{d([M′
η]) : η ∈ [M′

aq]H; dc(q) ≤ x}
= sup{d(p) : p ≤ sMl (aq) ; p ∈ cyc(Pr(M)); dc(q) ≤ x}
= sup{dc(sMl (aq)) : dc(q) ≤ x}

Now we have what we need to realize CF as a cura when F is a family of weakly
increasing functions closed under addition and composition.

Theorem 5.3.13. Let M ⊆ B(H) be a represented von Neumann algebra with dimen-
sion function d. If F is a family of weakly increasing functions [0,∞] → [0,∞] which is
closed under addition and composition then C(F) = {R a cantankerous relation on M :
there exists f ∈ F such that dc(ϕR(q)), dc(ϕ∗R(q)) ≤ f(dc(q)) for every q ∈ Pr(M)}

is a cantankerous coarse structure on M and thus C∗
u(M, C(F)) is a cura on M.

Moreover C∗
u(M, C(F)) = CF (Definition 1.1.7).

Proof. It is straightforward to verify C(F) satisfies the items of Definition 5.3.1 (and
is thus a cantankerous coarse structure on M) by recalling the following facts: ϕRT =
ϕ∗R, ϕR·R′ = ϕR ◦ ϕR′ , ϕR∨R′ = ϕR ∨ ϕR′ , and R ≤ R′ if and only if ϕR ≤ ϕR′

(see Propositions 4.4.11, 4.4.13, and 4.4.16) along with dc(p ∨ q) ≤ dc(p) + dc(q)
(Proposition 5.3.11).

We will now demonstrate that C∗
u[M, C(F)] = BF from which the final result

follows. First suppose a ∈ C∗
u[M, C(F)], so there exists some U ∈ C(F) such that

a ∈ DU and, since U ∈ C(F), some f ∈ F such that dc(ϕU (·)) and dc(ϕ
∗
U (·)) are

dominated by f(dc(·)). Recall that 1− ϕU (q) is the largest projection in Pr(M) such
that (1− ϕU (q), q) /∈ U and thus (1− ϕU (q))aq = 0. This implies that ϕU (q)aq = aq
and thus ϕU (q) ≥ sMl (aq). Since dc(ϕU (·)) ≤ f(dc(·)) and dc is monotonic (Lemma
5.3.11) we have that dc(sMl (a·)) ≤ f(dc(·)). Note that sup{dc(sMl (aq)) : dc(q) ≤
x} ≤ f(x). By Proposition 5.3.12 we have that Φa ≤ f and the argument for Φa∗

runs similarly, so a ∈ BF . This establishes that C∗
u[M, C(F)] ⊆ BF .

For the other direction, suppose a ∈ BF so there is some f ∈ F such that Φa,Φa∗ ≤
f . Note that this implies ϕa(·) = sMl (a·) defines a cantankerous image map with
dc(ϕa(·)) ≤ f(dc(·)) (cf. Proposition 5.3.12) and if (p, q) /∈ Rϕa then p ≤ 1− ϕa(q) so
paq = 0. Thus a ∈ DRϕa

. The argument runs similarly for ϕ∗Rϕa
(·) = ϕ∗a(·) = sMl (a∗·)

so Rϕa ∈ C(F) and thus a ∈ C∗
u[M, C(F)]. Along with the previous paragraph this

gives us C∗
u[M, C(F)] = BF and we are done.

5.4 Quantum Coarse Structures and Uniform Roe Alge-
bras

Definition 5.4.1 (cf. Definition 5.2.1). Let M ⊆ B(H) be a represented von Neu-
mann algebra. We say a collection C of intrinsic quantum relations (Definition 4.4.2)
on M is a quantum coarse structure on M if it satisfies the following:

(a) If U ∈ C then UT ∈ C,
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(b) If U, V ∈ C then U · V ∈ C,

(c) If U, V ∈ C then U ∨ V ∈ C and

(d) If U ∈ C and V ≤ U then V ∈ C.

The tuple (H,M, C) is a quantum coarse space and elements of C may be referred to
as entourages.

Definition 5.4.2 (cf. Definition 5.2.2). Let (H,M, C) be a quantum coarse space
then for each U ∈ C we define

DU = {a ∈ B(H) : (P,Q) /∈ U =⇒ P (a⊗ I)Q = 0}

C∗
u[M, C] =

⋃
{DU : U ∈ C}

C∗
u(M, C) = C∗

u[M, C]∥·∥.

DU and C∗
u[M, C] are called the U -controlled and C-controlled operators, respectively.

Meanwhile C∗
u(M, C) is the quantum uniform Roe algebra or qura associated with the

quantum coarse space (H,M, C). Occasionally C∗
u[M, C] is also referred to as the

quantum algebraic uniform Roe algebra associated with (H,M, C).

This is a natural object to define and every cura is a qura, which can be seen by
associating a projection p ∈ Pr(M) with p⊗ I ∈ Pr(M⊗B(ℓ2)). We have not studied
proper quras enough to meaningfully say much besides this.

We would also like to point out that Kuperberg and Weaver, 2012 defines quantum
uniformities, a natural dual object to quantum coarse structures, in their 5th chapter.
There the language is in terms of explicit quantum relations but there is a natural
definition in terms of intrinsic quantum relations which would be an obvious extension
of Definition 5.1.2.
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Chapter 6

Recap and Closing Remarks

We would like to briefly summarize the content of this dissertation and indicate a few
directions the project might be advanced, as well as some interests of mine which do
not immediately follow from the results here.

In Chapter 1 we studied CRC, the C∗-algebra generated by taking the norm-
closure of uniformly row and column finite operators in B(ℓ2(N)). We rephrased
the construction of this C∗-algebra in terms of support expansion, introduced support
expansion functions, and provided a general framework to construct support expansion
C∗-algebras given the following input data: M ⊆ B(H) a represented von Neumann
algebra, d : Pr(M) → [0,∞] a dimension function, and F a collection of functions
[0,∞] → [0,∞] closed under addition and composition (or, if not closed in this sense,
one can always take the closure).

In Chapters 2 and 3 we fixed a particular represented von Neumann algebra M ⊆
B(H) and dimension function d : Pr(M) → [0,∞] then explored the poset of support
expansion C∗-algebras as we ranged over different collections F of functions [0,∞] →
[0,∞]. We saw that the resulting posets could get quite rich. Here we find some of
our first open problems which should be pursued to push this project forward:

Question 6.0.1. If L∞(R) ∼= M ⊆ B(L2(R)), the multiplication operators and d :
Pr(M) → [0,∞] is given by integration against Lebesgue measure then do we have
K ⊆ CICOD0 , where K are the compact operators on L2(R)? If so, what about
K ⊆ C⟨x⟩? More generally, is the answer to these questions affirmative as we range
over various M and d? If not, what are necessary and sufficient conditions?

Question 6.0.2. We have given some necessary and sufficient conditions for a function
[0,∞] → [0,∞] such that it can be realized as the support expansion function for
some operator. These conditions were different depending on our choice of M and
d. Is there a theory of support expansion functions which is not so specific? Can we
give some meaningful properties of dimension functions if d takes on arbitrarily large
values? Small? If the range of d is dense? In summary, what more can we say about
support expansion functions in terms of properties of M and d? Also, much more
specific, in the setting of Chapter 3 we showed that ICOD ⊆ SUPPEXP ⊆ ISOD. At
least one of these must be a proper containment. Are they both? Or is one of them
equality?

Question 6.0.3. There are plenty more specific situations to explore. Of most im-
mediate interest: What does the containment poset of support expansion C∗-algebras
look like when M is a hyperfinite type II factor?

Question 6.0.4. What can we say regarding isomorphism and non-isomorphism of
support expansion C∗-algebras as we range over various M, d, F?

In Chapter 4 we reviewed the theory of classical relations as well as the measurable
and quantum relations of Weaver, 2012. We also introduced cantankerous relations,
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a direct non-commutative analog of measurable relations. This is where much of my
current interest lies.

Question 6.0.5. Our intuition is that measurable relations on R correspond to “nice”
subsets of R2. It seems this may be a different, perhaps non-comparable notion of
“nice” than “measurable” (cf. discussion in Weaver, 2012 Section 1.3). We also have
from the standard library that projections are the quantum stand-in for sets. So is
there a way to equip the measurable relations with appropriate structure and realize
them as projections in some von Neumann algebra? Could we define integration over
measurable relations and appropriately reproduce Fubini-Tonelli? Are measurable re-
lations the “correct” object for defining product measures? Can we make a compelling
case? (cf. the product of complete measures may not be complete; projection maps
applied to measurable sets may not produce measurable sets, etc.)

There are natural cantankerous and quantum extensions to the above questions.
Finally in Chapter 5 we briefly introduce the theories of uniform and coarse struc-

tures, including uniform Roe algebras. We extend these in the obvious way to the
measurable, cantankerous and quantum settings, ultimately realizing our support ex-
pansion algebras as cantankerous uniform Roe algebras – though of two distinct types
depending on if one defines expansion in terms of vectors or projections.

The theory of uniform Roe algebras is still active, with many recently solved and
pending problems. Phrasing these problems in the new settings seems like it will
produce interesting questions. This is not my area of expertise and so I will not list
said questions but my co-author Bruna Braga, who has the background and interest,
has already started tackling some of these in an upcoming paper with myself and
David Sherman.

Thank you for reading!
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