
Cloud Migration and GraphQL Implementation to Improve Cost Measures

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Shriman Selvamani

Fall 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Aaron Bloomfield, Department of Computer Science

Cloud Migration and GraphQL Implementation to Improve
Cost Measures

CS4991 Capstone Report, 2023

Shriman Selvamani
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
ss5qt@virginia.edu

ABSTRACT
The existing data infrastructure that ran on-
premises systems at CoStar Group posed
substantial challenges in terms of cost,
maintenance, and scalability. Additionally,
the middleware layer, acting as the Backend
for Frontend, suffered from network latency
issues due to an excess of information being
carried in API requests. To address these
concerns during my internship, I implemented
a comprehensive solution that involved
migrating all data to the cloud on AWS and
transitioning the middleware to GraphQL. I
executed data migration using PowerShell
scripts and conducted in the development,
test, and production environments. The
project enabled significant cost savings
through cloud utilization, and substantial
improvements in network latency due to the
more efficient API load. Future work may
encompass extending the migration process to
other components of the CoStar Group
website, thereby maximizing the benefits of a
cloud-based infrastructure throughout the
product.

1. INTRODUCTION
In the rapidly evolving landscape of data
management and infrastructure, organizations
are constantly seeking ways to enhance
efficiency, reduce operational costs, and
improve the reliability of their systems.
Traditional on-premise data centers have long
been a staple for organizations, but their

limitations in terms of scalability,
maintenance costs, and susceptibility to single
points of failure have become increasingly
apparent. One solution is Amazon Web
Services (AWS) DynamoDB database,
offering organizations a user-friendly, highly
scalable, and fully managed database
platform that simplifies data storage,
retrieval, and management while upholding
standards of reliability and security. This shift
in data management has compelled various
industries, including the commercial real
estate sector, to explore and implement cloud-
based alternatives.

My project dealt with data infrastructure.
Specifically, it explored a migration process
undertaken at CoStar Group, a prominent
player in the commercial real estate sector, as
they transitioned from on-premise data
centers to the AWS cloud. A critical aspect of
this migration involved leveraging the
Modify Table Layout feature on the CoStar
Suite website, which is a comprehensive real
estate software and data service. This feature
allows users to customize the properties of
commercial listings for viewing in a table
format, helping users see only what they want
to see.

2. RELATED WORKS
The migration performed at CoStar is not new
to the technology industry. Ever since cloud
computing was launched, the popularity of

leveraging the cloud was very high.
Companies such as Capital One and Ocado
Technology adopted and migrated to
DynamoDB to reap its benefits.

The adoption of Amazon Web Services
DynamoDB by Capital One was a strategic
move driven by the need for a highly resilient
and low-maintenance database solution.
DynamoDB stood out to Capital One for its
cross-region active-active capabilities and
high performance, even though it sacrificed
some of the data access flexibility inherent in
SQL-based databases. The migration to
DynamoDB yielded substantial benefits for
Capital One, with a remarkable 99%
reduction in application failover time. The
elimination of regional failovers and AWS's
data replication capabilities played a crucial
role in achieving this. Additionally, the query
performance remained on par or improved,
despite some initial database design
optimizations. While the migration presented
a few challenges, the overall outcome
justified the effort, significantly enhancing
failover speed and simplifying the complexity
of the system. This experience underscores
the advantages of leveraging managed
database services like DynamoDB to
streamline operations and improve system
resilience (Brown, 2021).

Much like Capital One's experience, Ocado
Technology highlights the importance of
understanding application access patterns and
effectively utilizing DynamoDB's features,
including partition and index overloading, to
optimize database performance. While this
approach may lead to tables that resemble
computer language more than human-
readable RDBMS tables and might reduce ad-
hoc querying flexibility, it aligns with the
trade-off between flexibility and the
exceptional characteristics of DynamoDB,
including speed, reliability, consistency, and

its ability to scale seamlessly to handle any
workload (Muc, 2022).

3. PROJECT DESIGN
The project at CoStar Group encompassed
two critical components: the migration of the
database to Amazon Web Services (AWS)
and the transition of the middleware layer to
GraphQL.

3.1 System Architecture Changes
To restate, there were two requirements of
this project: 1) Changing the middleware
layer from the current backend for frontend
(BFF) layer to GraphQL; and 2) Moving the
backend SQL Server database called PDS,
which was hosted on premises, to the AWS
Cloud Dynamo DB to a database called CUE
(Central User Entity) service. These proposed
changes can be seen in the design plan as
shown in Figure 1.

Figure 1. Proposed Architecture Plan

Implementation and design of this solution
required a multifaceted approach, with data
migration and middleware transformation
happening concurrently. This process was
carefully designed so the changes would be
more efficient and still allow the features to
function effectively.

3.2 Data Migration
Data migration required all the data to be
moved from the on-premises database to the
cloud flawlessly, with no data lost or
destroyed in the process. Transformation of
data to fit the new database was done during
migration. The migration was conducted
using SQL scripts to access the specific
databases located on Premises, which was an

SQL server database named PDS. The
migration was conducted in order of dev, test,
and production environments. To validate that
the actions were expected and that there were
no issues prior to handling vital production
data.

3.3 GraphQL
Following the successful data migration,
client implementation had to be done to
define the new GraphQL API and how the
API would be presenting information from
the new cloud database server. For this stage,
we loaded columns from CUE database on
AWS Cloud on page load and integrated them
with existing data flow. We then saved the
modify table layout modal into CUE as each
grid should have its own saved layout. We
also had a feature toggle flag, used during
development to enable testing of the new and
old functionalities.

Next, we designed the API, as shown in
Figure 2. The design process began with
creating the API architecture, which was later
integrated GraphQL to interact seamlessly
with React Hooks. We created the API
architecture by combining two existing
endpoints, one for serving most grids in
CoStar Suite and the other for public records.
We then analyzed the needs of the product to
determine the features, so one endpoint could
store Column ID, layoutID, type, and Search
by product, grid, and country.

Figure 2. API Design

GraphQL in Suite uses React Hooks, which
can only be used with functional components.
Because many of the grid components are
class components, the solution was to create a

custom React Hook that handles all the
implementation details, and create a helper
component for each product grid. Each grid
has custom actions to transform the data once
fetched.

4. RESULTS
The Modify Table Layout feature data
migration and middleware change improved
performance, cost, complexity, modernization
and efficiency; and these were very valuable
improvements brought to CoStar Suite.
Specifically, with the data migrated from the
on-premises data center to Amazon Web
Services DynamoDB, we were able to receive
benefits of the cloud such as scalability, cost
saving, and utilization of a fully-managed
service. Similarly, the GraphQL
implementation helps improve efficiency by
utilizing a single endpoint that improves
speed and reduces the number of requests to
endpoints required.

5. CONCLUSION
The project carried out at CoStar Group
focused on two essential elements:
transitioning the database to Amazon Web
Services (AWS) and shifting the middleware
to a GraphQL-based system. The need for
migrating to AWS came from the limitations
of the existing on-premises data
infrastructure. These challenges included high
costs, intensive maintenance requirements,
and scalability issues. I executed this
migration using PowerShell scripts across
different environments - development, test,
and production. This move to AWS,
particularly to DynamoDB, allowed us to
benefit from the cloud's scalability, cost
efficiency, and enhanced maintenance
capabilities.

Simultaneously, I addressed the inefficiencies
in our existing API setup by transitioning our
middleware from a Backend for Frontend
(BFF) layer to GraphQL. This change was

aimed at overcoming network latency issues
and improving API efficiency. The
implementation of GraphQL involved
designing a new API that was integrated with
our AWS cloud database and ensuring its
seamless operation.

The results of these implementations were
significant. The migration to AWS
DynamoDB provided us with improved
scalability, efficiency, and cost savings, while
the adoption of GraphQL led to better
network latency and enhanced API load
efficiency. This project at CoStar Group
shows how cloud migration and middleware
optimization can substantially improve the
performance, cost-effectiveness and
scalability of data infrastructure in large
organizations. The successful deployment of
AWS and GraphQL not only resolved the
existing challenges but also laid a strong
foundation for future technological
enhancements and potential expansions in
CoStar Groups digital infrastructure.

6. FUTURE WORK
Several avenues can be explored to further
enhance and expand upon the current
project's achievements. First, a
comprehensive evaluation of the long-term
performance and cost benefits of the AWS
and GraphQL implementations in different
operational scenarios at CoStar Group is
essential. This would involve monitoring the
system under varying loads and use cases to
identify areas for optimization and to ensure
that the infrastructure scales effectively with
the company's growth. Additionally,
exploring the integration of advanced AWS
services like AWS Lambda and Amazon
Elastic Container Service (ECS) could
provide further improvements in efficiency
and scalability.

Another promising area for future
development is the extension of GraphQL

capabilities. Implementing advanced
GraphQL features like subscriptions for real-
time data updates and incorporating more
sophisticated query optimization techniques
could significantly enhance the API's
performance and usability. Furthermore, the
successful migration and middleware
transition at CoStar Group opens possibilities
for replicating this model in other divisions of
the company or even in different sub-
organizations facing similar challenges.
Sharing the learnings and methodologies
from this project could provide valuable
insights for others looking to undertake
similar digital transformation initiatives.

REFERENCES
Muc, T. (2022, January 18). Using Amazon

DynamoDB to store data at scale.
Medium.
Retrieved September 28, 2023, from
https://medium.com/ocadotechnology/u
sing-amazon-dynamodb-to-store-data-
at-scale-1496895b9945

Brown, K. J. (2021, February 10). Moving to
DynamoDB to increase application
resiliency. Capital One.
Retrieved September 28, 2023, from
https://www.capitalone.com/tech/softw
are-engineering/comparing-dynamodb-
and-aurora-global-database-and-aurora-
multi-master/

