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ABSTRACT

The Internet of Things (IoT) is growing at a rapid pace, with billions of devices expected in the
near future generating zettabytes of data. The current design of 10T is dependent on the cloud for
data storage, processing, and control decisions, which does not scale well to handle this massive
influx of data. Edge computing is viewed as a key solution to handle this, and prescribes executing
applications closer to devices rather than in the cloud, consequently reducing latency, minimizing
bandwidth, as well as improving privacy by operating on premises. The current model of edge
computing relies on server-class machines on other public edge infrastructure nearby IoT devices
to execute applications, with all control and configuration handled at the cloud. However, having
the control plane away from devices, and in the cloud, reduces scalability and reliability, incurs
considerable cost, is impractical for deployments without Internet access, and leads to limited data
privacy controls for users.

Our work moves away from a cloud-centric design to a device-centric design for edge com-
puting. We identify untapped compute potential in gateway devices present in 10T deployments
and utilize it for edge computing, rather than relying on cloud-controlled edge infrastructure. This
shift presents several key challenges: handling interoperability of IoT devices, operating on con-
strained resources, addressing user privacy, and supporting heterogeneous gateways and dynamic
workloads. To address these challenges, we first use a decentralized architecture and a thin mid-
dleware to enable multiple gateways to operate together, combining their compute capabilities to
offer more than the sum of its parts, supporting a good set of edge 10T applications. Further,
we create an IoT ecosystem in which resource-constrained IoT devices can offload tasks to more
resource-powerful devices, enabling a host of more compute-intensive realtime edge applications
to be supported. We also provide users in shared 10T spaces with better transparency and control
over their data, by utilizing our gateway-based edge computing platform to enforce user privacy
preferences to filter data from edge applications. Together, these solutions enable edge computing
which is cost-effective, scalable, general-purpose, and privacy-aware, without the drawbacks of
cloud dependency.
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CHAPTER 1
INTRODUCTION

The Internet of Things (IoT) is being widely adopted in different areas including smart cities, smart
homes, precision agriculture, and healthcare. It is expected to continue growing, with the global
market for IoT to reach a value of $1,386 billion by 2026 from $761 billion in 2020 [1]. Even with
the upsurge in popularity, the design of current IoT systems has mostly stayed simple and involves
three key pieces: the [oT device, the cloud, and a gateway to bridge communication between device
and cloud. For instance, a Philips Hue smart light setup has the bulb (device), the Hue Bridge (the
gateway), and their cloud service [2]. This IoT implementation allows users to connect to the cloud
service using a smartphone application or a cloud API to obtain data or control the 10T devices [3,
4]. Another more ad-hoc implementation of this IoT design is to deploy sensors or actuators, set up
gateways like the Raspberry Pi [5] to collect data from the devices, and send data to an application
hosted in some cloud service [6—8]. Most major cloud computing services offer IoT platforms to
support this second type of IoT implementation [9-11]. In both implementations, data storage,
data processing, and control decisions are performed at the cloud.

Although this design is useful for simple use cases, dependence on the cloud incurs high band-
width usage, applications suffer from high latency, and users may have privacy concerns with their
data in the cloud.

1.1 Edge Computing to Address Cloud Limitations

Edge computing is touted as a solution to handle these concerns with cloud dependency, which
prescribes executing applications closer to devices, consequently reducing latency, minimizing
bandwidth, and improving privacy by operating on premises [12]. Edge computing for IoT intro-
duces a new edge layer between the cloud layer and gateway layer, which consists of server-class
machines deployed within the local network that can execute applications. Due to their proximity
to IoT devices, applications can process data at very low latencies, without sending the data to the
cloud. This design also allows offloading tasks that require heavier compute to the cloud from the
edge server. The edge computing design is centered on the cloud with all control and configuration
handled at the cloud for easier management [13, 14].

However, having the control plane away from devices, and in the cloud, introduces several
issues. First, it is impractical for remote deployments without a stable Internet connection or in
secure deployments which have restricted access to the Internet. For example, applications like
precision agriculture in a remote farm field, or a smart healthcare application using sensitive pa-
tient data would benefit from edge computing but are deployments in which a cloud connection
is either unavailable or restricted. Second, it reduces reliability and incurs considerable cloud and
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bandwidth monetary costs. Third, it hinders scalability due to configuration overhead at the cloud.
For instance, most [oT edge computing platforms like Microsoft’s Azure IoT [10] require devices
and gateways in the deployment to be configured on the cloud prior to usage, which reduces scal-
ability as devices increase [15]. Fourth, current platforms provide inadequate privacy mechanisms
for users to control how edge applications use their [oT data, and existing mechanisms require
users to configure such rules from the cloud [16, 17], excluding deployments without access to the
Internet.

These issues highlight the need for a design that is not cloud-centric, but instead focuses on the
IoT devices and users, to realize the full potential of edge computing for IoT. In this dissertation,
we focus on utilizing unused compute power available near IoT devices to provide edge computing
for IoT which doesn’t depend on the cloud.

1.2 Utilizing Unused Compute for Providing Edge Intelligence

Edge computing for IoT uses server-class machines close to IoT devices to execute applications
that primarily require low latency processing, operate on high bandwidth data or use highly private
data. However, compute power at the edge is a scarce commodity and not all IoT deployments
have access to such an infrastructure due to high setup costs, or limited availability of third party
edge infrastructure [18, 19].

We instead explore an alternative approach to providing edge computing. IoT device deploy-
ments typically leverage gateways or distributed networking equipment that translates between the
low power wireless networks IoT devices use and more conventional IP-based networks. These
gateways are essential in [oT deployments, yet underutilized, and we utilize them to provide edge
intelligence for the IoT devices that are connected to them. Applications executing in situ on an
edge node, requiring only low/moderate amounts of compute power (CPU, GPU, memory) and
storage, and run indefinitely once deployed, are good candidates to execute on gateways.

However, creating a new paradigm of edge computing relying on edge gateways having no
cloud support, raises several key challenges: handling interoperability of loT devices, operating
on constrained resources, addressing user privacy in loT environments with interoperating de-
vices, supporting devices with heterogeneous computational capabilities, and supporting dynamic
workloads in edge computing environments.

Current IoT devices are inherently heterogeneous, coming from different manufacturers with
different sensors, energy sources, operating modes, form factors, data formats, and wireless pro-
tocols, and supporting useful edge applications must address interoperability among IoT devices.
In shared spaces like smart buildings, users have limited knowledge of how their IoT data is being
collected and used. This is exacerbated when building an edge computing platform which enables
better interoperability among devices.

Shifting away from cloud data centers or edge server machines to gateway devices limits the
available compute resources for applications. Also, applications no longer have the luxury of
utilizing the elasticity of resources like storage, CPU, GPU, etc. available on the cloud.
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Additionally, utilizing gateways for compute requires handling the heterogeneity in capabilities
that are present in gateways. loT environments are also dynamic and tasks, devices, and device
behavior could change, including new tasks being added, task QoS requirements changing, new
devices being added, or gateway loads changing.

This dissertation explores solutions to mitigate these challenges to support a cloud-independent
edge computing paradigm. The first of these solutions is to identify a feasible architecture to enable
multiple gateways to operate together, combining their compute capabilities to offer more than the
sum of its parts, and support responsive edge applications and cutting-edge [oT devices. This ar-
chitecture enables the gateways to operate without any Internet access, support heterogeneous 10T
devices, support streaming data from devices, and scale well with more devices and applications.

Our second solution is to convert a disjoint network of gateways into a cohesive platform by
building a thin middleware which can handle application load balancing, optimize latency and net-
work communication overhead, provide automatic discovery and scalability, ensure resilience to
failures, and operate autonomously without any Internet connectivity. Additionally, we design an
open-source edge computing platform, which aims to manage heterogeneity for better interoper-
ability, minimize configuration, aid in network management, and support applications, and easily
interoperate with other IoT systems. The middleware supports user devices to remotely manage
applications and devices, as well as abstracts out the underlying distributed network complexity,
providing developers a simple centralized application model to ease development. This enables
support for applications like sensing and actuating in large-scale IoT deployments, simple if-this-
then-that (IFTTT) applications, simple machine learning at the edge, and inherently distributed
applications.

The next solution enables supporting realtime IoT applications with much higher compute re-
quirements and tighter quality of service (QoS) requirements. We explore how resource-constrained
IoT devices like AR/VR headsets, smartwatches, and other low-power [oT sensors can improve the
quality of service of their applications by relying on another class of smart home and office devices
which include smart TVs, gaming consoles, and smart doorbell cameras. This second category of
IoT devices, which we refer to as gateways as well since they topologically provide services to
resource-constrained devices, have relatively better computing resources, considerable idle time,
implying computational resources to spare, and a steady source of energy, making them a candidate
to provide edge intelligence.

We provide this edge intelligence using a task offloading ecosystem which utilizes heteroge-
neous edge gateways to support realtime requirements of diverse edge tasks. We design a scalable
realtime task scheduler which eliminates the need for a priori task profile data by profiling tasks on
the go, to satisfy task QoS while minimizing overall energy of the ecosystem. This opportunistic
approach enables us to support dynamic IoT workloads which include short realtime tasks with
high compute requirements and tight QoS requirements. It enables combining compute power
from multiple heterogeneous gateways to provide a form of elasticity of resources on the edge,
reducing the need for a dedicated cloud-dependent edge infrastructure.

Our final solution aims at providing users in shared IoT spaces with better transparency and
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control over their data. We collect privacy preferences from users on how applications should
use their sensor data and use the edge intelligence on the gateways to enforce these preferences.
Gateways in our edge paradigm already act as routers that route sensor data from IoT devices
to edge applications, and we extend this design to enforce privacy policies on streaming sensor
data. This solution provides an alternative to the inadequate privacy mechanisms in current edge
computing systems, which unnecessarily exclude deployments without Internet access.

We present real-world deployments of these solutions, and these solutions together enable our
vision for an edge computing paradigm which does not require dedicated edge infrastructure, and
is untangled from a control plane from the cloud.

1.3 Thesis Statement

Requiring cloud support for edge computing moves the control plane away from loT devices, hin-
ders scalability and reliability, is impractical for remote deployments, and incurs considerable
cost. A cloudless system that utilizes inexpensive IoT gateways for compute, scales up seamlessly
across multiple gateways, exploits their diverse special-purpose capabilities to replace cloud elas-
ticity, provides an always-on “front desk” infrastructure on the edge to replace cloud’s centrality,
and empowers users to control which applications can use their data through privacy policies, en-
ables edge computing which is cost-effective, scalable, general-purpose, and privacy-aware with-
out the drawbacks of cloud dependency.

1.4 Contributions of This Dissertation

This dissertation focuses on building a gateway-based privacy-aware edge computing platform
which operates independent of the cloud, and makes the following contributions.

First is a qualitative analysis of the state of the art to identify different edge computing ar-
chitectures which can support [oT use cases. We compare the architectures on their suitability
for supporting edge computing on IoT gateways. We identify a decentralized architecture which
enables gateways to operate without any Internet access, support heterogeneous [oT devices, and
scale up with devices and applications.

For the decentralized architecture identified by our analysis, we develop a middleware that
enables disjoint gateways to coordinate together to execute edge computing applications. This
work is a novel approach to demonstrate the feasibility of using IoT gateways to build a cohesive
platform that can execute edge computing applications. We also develop an open-source, cloud-
independent, resilient, edge computing platform, which can handle device heterogeneity and access
control of data, and interoperates with other edge computing platforms. This work was done
in collaboration with Victor Sobral, Li-Pang Huang, and Bradford Campbell, and presented at
ACM/IEEE Symposium on Edge Computing (SEC) ’22 [20].

We then develop an IoT device ecosystem in which resource-constrained devices offload edge
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tasks to more resource-powerful devices, in lieu of requiring a dedicated edge computing infras-
tructure. We design a realtime task scheduler for this ecosystem which can meet the offloaded
task’s QoS requirements without requiring a priori task profiling, making it scalable, heterogeneity-
aware, and well-suited for the dynamic nature of IoT. This work was done in collaboration with
Marshall Clyburn, Md Fazlay Rabbi Masum Billah, Victor Sobral, Dong Chen, Jiechao Gao,
Fateme Nikseresht, and Bradford Campbell, and is under preparation.

We then design a user-centric privacy enforcement mechanism for users in shared IoT spaces
to have better transparency and control over their data. This enables user privacy preferences to be
enforced one hop from the devices rather than aggregating data in the cloud and applying filtering
at a later stage.

We also extensively compare the privacy approach in our work to the one employed by, Mat-
ter [21], an emerging unifying standard for smart home IoT devices. We compare between the
device-centric approach of Matter and the application-centric approach of our work, and explore
how privacy controls in one approach can be represented in the other.

We also present multiple real world applications which are supported by the edge computing
platform, including actively supporting sensor data collection in the Link Lab. Additionally, we
present a case study of the design and implementation of a robot offloading a realtime room classi-
fication task to our edge infrastructure. These applications highlight the scalability, usability, and
cost-effectiveness of our platform.

Finally, we identify multiple open problems that arise from this work, creating further op-
portunities for research to further improve the performance of our gateway-based cloudless edge
computing infrastructure, as well as assist in improving other emerging IoT standards.
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CHAPTER 2
BACKGROUND AND RELATED WORK

2.1 Edge Computing

Edge computing refers to offloading computation from the cloud closer to end devices. There are
three major implementations of edge computing, namely Mobile Edge Computing [22], Cloudlet
Computing [12], and Fog Computing [13]. Mobile edge computing provides storage and process-
ing capabilities at base stations in a Radio Area Network (RAN) to enable cloud computing ser-
vices for mobile subscribers. Cloudlet computing uses micro data centers called “cloudlets” near
to mobile users to reduce the latency of applications without requiring round trips to the cloud.
Fog computing utilizes a hierarchical set of IoT gateways, routers, and edge servers to provide
a computing and storage layer between end devices and the cloud. Recent works [23-25] have
tried to disambiguate between these types based on factors like the type of edge nodes used, their
location, mechanisms to access end devices etc. Using the decision tree in [25], our work can be
classified under fog computing, since IoT gateways are considered fog nodes, and we use them to
directly connect with sensors and actuators.

2.2 Edge Computing Platforms

Cloud platforms like Amazon Web Services and Microsoft Azure provide edge computing solu-
tions (AWS IoT Greengrass [26], Azure [oT Edge [27]) to execute applications in the edge network.
We identify four shortcomings of these platforms. First, they assume a rather simple centralized
deployment architecture in which all device data is available at a central edge node and applica-
tions execute only on this node. Second, there is no access control of device data to applications,
and they expose all available data to all applications. Third, they require a cloud connection for
configuration and application deployment, which restricts use cases with unreliable Internet con-
nectivity. Finally, the development experience is deterred by configuration overhead and lack of
simple application abstractions. Deploying an application that interact with even tens of devices
requires substantial configuration [15]. Developers need to set up data flow between apps, devices,
and gateways, which is intractable at scale.

2.3 Collaborating Edge Gateways

There are a few papers which study cooperation among IoT gateways. Clemente et al. present
a framework where gateways form a mesh network to cooperate or provide services to each
other [28]. Their work does not describe the interface between devices and the platform, or applica-
tions and devices, which are key components. Ooi et al. present an architecture in which gateways
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coordinate to provide additional routes from devices to the cloud to improve reliability [29]. This
leverages multiple gateways, but applications are all executed on the cloud, and gateways only
cooperate to reliably deliver data to the cloud.

2.3.1 Tiered Wireless Sensor Networks

The Tenet Architecture support 2-tier networks, with multiple decentralized master nodes (equiva-
lent to IoT gateways) in one tier, and motes in the lower tier [30]. The architecture allows multiple
applications to execute concurrently on the master nodes. However, in their architecture they as-
sume motes can execute tasks, which are delivered to them by the master nodes by splitting the
application. This assumption does not hold for IoT devices as they are not programmable. Also,
the motes they consider are very homogeneous, unlike 10T devices which are very heterogeneous.

2.4 Device Heterogeneity on The Edge

IoT devices come with a wide range of wireless radios, network protocols, and data formats, which
complicate application development. SemloTic [31] maps semantic user commands to device ac-
tions by abstracting the underlying device heterogeneity with a DeX API that provides support
for protocols including CoAP, MQTT, and XMPP. However, this excludes resource-constrained
devices which cannot support these application protocols. TinyLink 2.0 [15] is a programming
language for IoT which automatically generates programs and configuration for the cloud, device,
and mobile layers. However, they require devices to be programmable to support specific func-
tions which is not always feasible, and is difficult to scale as the device API varies based on the
underlying device.

24.1 Task Offloading in Edge Computing

To improve the quality of experience (QoE) of applications running on mobile devices, Satya-
narayanan et al. [32] introduced the concept of Cloudlets, edge servers that provide to mobile
devices the task offloading benefits of cloud computing without suffering from its fundamental
limitations in terms of latency and bandwidth-induced delays. Their work considers mobile de-
vices as thin clients with one-hop and high bandwidth wireless access to Cloudlets, which run
loosely coupled soft-state applications. The benefits of computation offloading were demonstrated
in the following works, which aimed to save battery power for mobile devices [33] and increase
the computational capabilities of wearable devices [34]. Lin et al. conducted a comprehensive
literature review on edge computing in 2019 [35], and more recently, in 2021, Luo et al. presented
the latest research trends in edge computing [36].
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2.4.2 Real-time Task Scheduling at the Edge

Many real-time schedulers have been introduced during the last few years to minimize the energy
consumption of the executors and meet the QoS requirements of the offload tasks. Zhang et al. [37]
developed a game-theoretic task allocation framework called CoGTA to allocate real-time social
sensing tasks to cooperative edge computing nodes. Their evaluation results show that their sys-
tem satisfies tasks’ QoS requirements. On the other hand, HeteroEdge [38] proposes a resource
management framework that addresses the heterogeneity issue of the edge devices by providing a
uniform interface to conceptualize the device details. Kim et al. [39] also propose a collaborative
task scheduling scheme for edge devices to offload their tasks among idle IoT devices according
to the tasks’ execution time and energy consumption.

The main drawback of these real-time task schedulers is that they require a priori task profiling;
they need to know the execution time and energy usage of each task on the executing devices in
advance. However, 10T environments are heterogeneous consisting of a variety of tasks as well
as executor devices, and profiling every task-device combination can get intractable at scale. It is
also not practical to assume that such profiling data is available for all user environments. Second,
changes to tasks or executor devices could require re-profiling tasks and updating the scheduler.
However, [oT environments are dynamic and tasks, devices, and device behavior could change.
For instance, changes like new tasks being added, task QoS requirement changing, new devices
being added, or device loads changing are all events which can happen in IoT environments. Re-
profiling of tasks and updating of the scheduler for such changes results in poor adaptability of the
scheduler.

2.5 Privacy Controls for Users in Shared Spaces

Prior works like Pappachan et al. [40] outline a framework to design privacy-aware smart build-
ings and build a machine-readable policy language to specify privacy policy rules, but do not detail
how privacy policies are actually enforced. Ghayyur et al. [41] show how to filter data streams
based on rules from a privacy policy and apply certain Privacy Enhancing Technologies (PET)
on the streams, but do not discuss the infrastructure to implement such a design. Das et al. [42]
solves the problem of collecting privacy policy rules from users and how they can be made aware
of data sensing in their environment, but they expecting IoT devices to provide an opt-in/opt-out
API to enforce such policy rules. However, this is impractical for most IoT sensors as they do
not host RESTful APIs, and highlights the usefulness of having gateways enforce privacy policies.
Al-Hasnawi et al. [43] demonstrate enforcing privacy policy rules on Edge Fog Nodes (similar to
gateways) to provide access control of [oT data to locally running edge applications. But their poli-
cies do not operate on streaming data, and only enforces privacy policies when edge applications
make requests for previously stored data at the gateway.
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CHAPTER 3
MOTIVATING APPLICATIONS

In this chapter, we set the scope for our work by enumerating five classes of applications which
would benefit from using a cloudless gateway-based edge computing system. These applications
fall at the intersection of edge computing and IoT, and benefit from executing at proximity to 1oT
devices without depending on the cloud. For each application class, we provide specific application
examples from literature, and reason why this class fits our edge computing model. Table 3.1
indexes which chapters of this dissertation covers the various motivating application types listed in
this chapter.

3.1 Low-Latency Applications

These are applications that require [oT data but also need to operate at low latencies. For instance,
an augmented reality (AR) application that helps visualize hot and cold areas in a large hall, using
data from multiple temperature sensors [44]. Or an AR application which can control non-smart
appliances with embedded IoT devices [45]. Even though the devices may not be producing data at
high data rates, it is essential that the data is received at the AR application fast for the visualization
to be seamless and without stutter.

3.2 Applications Using High Bandwidth Sensors

This includes applications that need streaming [oT data particularly from sensors with a high data
rate, like cameras, Doppler radar, etc. These devices usually have large data packets, large sam-
pling requirements, or both. Examples of applications using such devices include an edge ap-
plication that receives images of license plates from several cameras and performs license plate
detection on them [46], or an application which monitors heart rate using a Doppler radar sen-
sor [47]. For such applications, it is beneficial to execute the applications as close to the sensors as
possible, to reduce network traffic and sensor latency, due to the high bandwidth of the sensors.

3.3 Applications Operating on Highly Private Data

These include classes of applications that operate on IoT data but prefer no data or limited data
to be sent to the cloud. For instance, an edge application at a hospital which obtains data from
wearable sensors or other bedside sensors to alert for events like patient falls [48]. Or an Industrial
Internet of Things (IIoT) application which constantly monitors equipment health and performs
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anomaly detection [49]. Relying on an edge platform which doesn’t depend on the cloud can
reduce privacy breaches (eg: HIIPA violations [50]), or improve regulatory compliance [51, 52].

3.4 Applications in Remote IoT Deployments

These are applications that operate on IoT da