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Abstract

As the integration of autonomous systems becomes increasingly common in our everyday lives, their

shortcomings and failures become more apparent. Therefore, rigorous validation to ensure their

safety and reliability is paramount. Since autonomous systems behavior is predominantly driven by

software, and software validation has achieved significant success in validating applications billions

of people use today, it seems natural to attempt to apply current software validation to autonomous

systems. Such application, however, requires overcoming two key challenges introduced by the

differences between traditional software and autonomous systems, namely the physical environment

and the systems physical semantics. Without considering these differences, traditional software

testing techniques struggle to cope with a large unbounded input space and to effectively target

areas of the software that drive the behaviors of the autonomous system. This work introduces

techniques grounded in traditional software analysis that overcome these challenges spanning the

entire testing pipeline: test generation, test execution, and test adequacy assessment.

In the area of Test Generation, I investigated techniques to produce tests based on a vehicle’s

kinematics to ensure they aligned with the physical semantics of the autonomous system, all while

using parametrizable scoring models to identify tests that stress an autonomous system. Moreover,

I leveraged a vast array of existing sensor data from real-world physical environments to identify

performance discrepancies across different versions of an autonomous system. The sensor data

that yielded discrepancies were then compared against the autonomous systems Operational Design

Domain to determine their relevance.

In Test Execution, I have devised a mixed-reality strategy that bridges the gap between simu-

iv



lation and real-world testing. Recognizing that real-world testing, while ideal, is often impractical,

hazardous, and expensive, my approach integrates virtual elements into real physical environments.

This allows for validating performance and safety while reducing both cost and time. Additionally,

I designed a haptic suit for drones, enabling us to test the physical semantics of a drone by applying

forces to the drone in the real world.

Regarding Test Coverage, I created Physical Coverage, one of the first coverage metrics for

autonomous systems, which considers both the physical environment and physical semantics of the

autonomous system. Utilizing physical reachability analysis and geometric vectorization, this metric

offers a quantifiable measure of test suite effectiveness. It has proven instrumental in identifying

missing scenarios and redundant tests in datasets such as Waymo’s Open Perception dataset.

By addressing these challenges across the entire testing pipeline, this dissertation takes a signif-

icant step toward creating safer and more reliable autonomous systems.
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Chapter 1

Introduction

Autonomous systems are increasingly being adopted into society, reflecting a significant shift toward

automation [236]. One key area of autonomous systems development is advanced driver-assistance

systems, which are now commonly sighted on our roads [369, 370, 76, 263, 84]. However, this trend

extends beyond ground transportation. In Switzerland, the national post office has experimented

with advanced unmanned aerial vehicles for delivery services [337], and in Rwanda, fixed-wing au-

tonomous aircraft play a crucial role in the distribution of blood and medical supplies throughout

the country [408]. In aquatic environments, the European Union’s INTCATCH project [157] lever-

ages autonomous surface vehicles for mapping water quality and pollution levels [330] . Meanwhile,

autonomous underwater vehicles are instrumental in creating detailed seafloor maps [229], investi-

gating aircraft crash sites [190], and conducting deep-sea research in conditions where high pressure

poses a significant risk to humans [383, 356]. The adoption rate of autonomous systems shows that

soon they will be the norm.

As these systems integrate into our everyday lives, their operation in the real world exposes com-

plex challenges. Recorded incidents across various applications have highlighted the risks associated

with these technologies operating in a highly complex and dynamic environment [198, 364]. These

incidents have resulted in the destruction of the autonomous systems, significant property damage,

and the tragic loss of life [285, 160, 47, 243, 156, 186]. It is becoming increasingly evident that as we
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move towards a future heavily reliant on autonomous systems, we need comprehensive approaches to

detect and prevent faults that are general enough to be applied across a diverse array of autonomous

systems.

Autonomous systems are composed of sophisticated hardware and cutting-edge software. On

the hardware side, there have been notable improvements in sensor technologies [10, 75], the minia-

turization of hardware [238, 234], and significant increases in computational power [250, 48]. Such

advancements have led to enhanced environment analysis capabilities, improved efficiency, and faster

processing times. Yet, the landscape of software has seen even more profound advancements, spurred

by the leaps in computational capacity. This evolution has enabled the real-time execution of ex-

tremely complex software, capable of processing vast amounts of data. Central to these software

advancements are fields such as artificial intelligence and machine learning [254, 4], cloud computing

and big data [42], advancements in algorithms and control [388, 177], and higher fidelity simula-

tions [64, 80]. These advancements have greatly enhanced the performance, and functionality of

autonomous systems, now equipped to make decisions with minimal human input. Although hard-

ware has seen its share of progress, it is the software innovations that have emerged as the pivotal

component driving the autonomous behaviors of these systems.

Given this premise, focusing on software validation emerges as a key area for detecting and pre-

venting faults in autonomous systems. Moreover, adopting such an approach can leverage advance-

ments from decades of research and development in software validation, where significant progress

has been made in foundational areas. Consider a traditional and somewhat simplified testing pipeline

that starts with test generation, executes those tests, and then performs test adequacy to determine

how well a system has been tested. Looking into each of these stages, there is already a large existing

body of work from which we could draw inspiration from or modify to better test autonomous sys-

tems. For example, in test generation, techniques have evolved to automatically create test cases that

cover a wide range of scenarios [299, 245, 17, 28], significantly reducing manual effort and increasing

the comprehensiveness of testing. In test execution, innovations have improved the efficiency and

automation of running tests [279, 77], allowing for rapid identification and rectification of faults.

Finally, test adequacy has seen advancements in metrics and methods to assess the extent and effec-
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(a) Traditional Software System. (b) Autonomous System.

Figure 1.1: Contrasting traditional software systems with autonomous systems. Dotted lines indicate
differences

tiveness of testing [389], ensuring that tests are capable of uncovering potential issues. Throughout

these areas, these techniques have demonstrated effectiveness across a diverse range of applications,

underscoring their potential value in enhancing the reliability and safety of autonomous systems.

However, the direct application of current software validation methodologies to autonomous sys-

tems is challenging [237, 197, 109], primarily due to fundamental differences between traditional

software systems and autonomous systems. To understand these differences, let us first examine a

traditional software system as depicted in Figure 1.1a. A traditional software system is typically

a transformational system accepting inputs, performing transformations on them to produce out-

puts. These systems primarily perform input/output operations, occasionally prompting a user for

additional information.

In contrast, autonomous systems are closer to sophisticated reactive systems [126], as shown in

Figure 1.1b. They operate within a physical environment that encompasses the entire system. This

environment is not only complex and dynamic but also governed by physical laws and potentially

shared with humans, amplifying the consequences of any failure. Additionally, while autonomous

systems consume input, their output is not the final step. The output is consumed by hardware

that inherently possesses physical semantics. This hardware enables the autonomous system to

perform actions that not only change its physical state but can also potentially alter the physical

environment itself. Furthermore, the autonomous system hardware generates two critical types of
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feedback: a representation of the system’s sensed physical state and a representation of its sensed

physical environment. The former potentially includes approximations for example, the system’s

position, velocity, and orientation — elements deeply intertwined with its physical semantics. The

latter might consist, for example, of visual data (like RGB values) or spatial data (such as point

clouds), offering an approximation of the surrounding physical environment. These complex feedback

loops have a critical influence on the software’s output and system actions.

However, traditional software validation methodologies were not designed to account for the

nuanced complexities of the physical environment and physical semantics inherent in autonomous

systems. As a result, direct application of these methodologies to autonomous systems might over-

look significant aspects of their operation, potentially including behaviors that could be unsafe.

To address these challenges, we propose adapting techniques from traditional software testing,

taking into account both the physical environment and physical semantics of autonomous systems.

Through this, this dissertation aims to show cost-effective ways to overcome these two challenges

and provide a set of techniques as starting points for validating autonomous systems.

1.1 Challenges of Validating Autonomous System

Building on the differences between autonomous systems and traditional software [237, 197, 109],

this section delves deeper into the unique complexities and challenges associated with the physical

environments and physical semantics of autonomous systems.

1.1.1 Physical Environments

A fundamental difference between traditional software and autonomous systems is the physical

environment, which presents two unique challenges. The first challenge is the sheer size of real

physical environments. Traditional software testing techniques often rely on the ability to effectively

abstract the input space, using models or symbolic representations to manage their complexity.

The input space for autonomous systems are sensor readings which offer an abstraction of the

environment. While the number of possible sensor readings is finite in theory, the combination
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of different sensor inputs, their possible values, and their time-dependent nature makes the space

of possible sensor readings overwhelmingly large. For example, consider trying to enumerate all

possible camera readings for a single Full HD camera at any given point in time. A Full HD camera

has a total of 1920 × 1080 = 2, 073, 600 pixels, where each RGB pixel has three channels ranging

between 0-255. That means each pixel could be one of 2563 = 16, 777, 216 values, making for a total

of 16, 777, 2162,073,600 possible image combinations, more images than there are estimated atoms in

the observable universe [282]. The size of this input space is something that traditional software

testing techniques are ill-equipped to handle.

The second challenge the environment poses is that it is governed by a set of physical laws.

Specific scenarios that might appear in a purely theoretical enumeration of sensor data are physically

infeasible. For instance, a tree cannot grow in mid-air without any contact to the ground. Despite

this, a long tail of extraordinary scenarios exists, which are rare but feasible. For example, a tree

might momentarily be airborne due to an explosion occurring beneath it. Determining the boundary

between feasible and infeasible scenarios is a non-trivial task.

This enormous space of physical environments, and the inability to determine feasible from

infeasible scenarios, make the direct application of traditional software analysis insufficient.

1.1.2 Physical Semantics

Another fundamental difference lies in the physical semantics of autonomous systems, which intro-

duce two additional challenges. The first challenge is related to the system state. In the system’s

software, this state can be represented as variable-value pairs in memory, but in autonomous systems

some of these variables are implicitly tied to physical quantities in the real world. This connection

means that these variables are subject to physical limits, temporal dynamics, interdependencies, and

specific units. For instance, while a car’s velocity and acceleration are influenced by its motor speed

and torque, a car lacks the capability to directly control its altitude. Conversely, a quadrotor’s alti-

tude is determined by its motor speed, while its velocity and acceleration are influenced by its pose.

Despite these differences, in both cases, motor speed, velocity, acceleration, and altitude are stored

as variables in the code. Each variable carries an implicit type, has implicit physical units, and is
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limited by a range that reflects the physical capabilities. The interplay between these variables and

their constraints often becomes obscured or neglected when viewed solely as software variables.

The second challenge relates to the gap between the software and physical semantics of the

system to sense and change its physical state. Abstracting these two processes for use in traditional

software validation is often difficult, considering the inherent uncertainty in these processes. Sensor

data is often noisy, meaning that the system must combine multiple sensor readings using advanced

state estimation techniques to simply understand its current state. Additionally, precise actuation

in the real world can be extremely challenging, given the myriad factors and forces dictating the final

result. For example, a quadrotor generally uses multiple sensors, such as a barometer, gyroscope,

accelerator, magnetometer, and GPS, to estimate its current pose in the physical world. Similarly, a

car wanting to stop, which may be simply setting velocity to zero in software, could result in a variety

of outcomes in the physical world, such as locking wheels and skidding, resulting in a significantly

different velocity reduction than expected by the software or its validation techniques.

Overall, the unique challenges introduced by the physical semantics of autonomous systems

make testing them significantly more complex, underscoring the need for innovative approaches that

specifically target these characteristics of the system.

1.2 Outline and Contribution

This dissertation advances the field of autonomous systems testing, significantly extending tradi-

tional software validation methods with unique insights pertinent to autonomous systems. The

guiding principle of this research has been the recognition that the behavior of autonomous systems

is intricately shaped by their physical environment and physical semantics. This realization necessi-

tated the incorporation of these critical elements into standard testing strategies, thereby enhancing

their effectiveness and relevance.

This dissertation encompasses a comprehensive view of the testing process. The work is struc-

tured around a conceptual three-stage testing pipeline. This pipeline encompasses test generation,

test execution, and test adequacy, forming a framework for autonomous system testing. In the
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Table 1.1: An overview of the completed work, proposed work, and which significant challenge it
tackles.

Section Approach Physical Environment Physical Semantics Status

Generation
Feasible and Stressful
Trajectory Generation

✓ Completed [138]

Differential Testing with
Real Data

✓
Completed

Under Review

Execution
World-in-the-Loop

Simulation
✓ Completed [135]

Mimicking Real Forces
on a Drone Through

a Haptic Suit
✓ Completed [143]

Adequacy Physical Coverage ✓ ✓ Completed [140]

test generation phase, we systematically design test cases to explore the operational space of the

autonomous system, aiming to expose potential failures under varied conditions. During test execu-

tion, these test cases are applied to the autonomous system in a controlled environment to observe

its responses and behavior under the test’s conditions. Lastly, the test adequacy phase evaluates the

thoroughness of the testing process, to assess to what extent the range of potential behaviors and

conditions have been explored.

Focusing on test generation, detailed in Chapter 3, the discussion is centered around two key

contributions. First, Feasible and Stressful Trajectory Generation [138], focuses on generating tests

which take the physical semantics of autonomous systems into account. This work employs the

kinematic and dynamic models of an autonomous system (described in Section 2.3.3) to create tra-

jectories that align with the system’s physical semantics. It utilizes parameterizable scoring models

of autonomous system stress, such as trajectory deviation, which are either defined by users or

learned through existing data, to identify the most stressful trajectories. Second, Differential Test-

ing with Real Data (portion under review, see ODD-DiLLMma below) addresses the challenge of

integrating the physical environment into test generation. At its core, this method identifies failure-

inducing test cases from the massive amounts of real-world sensor data that have previously been

recorded in actual physical environments. Our approach begins with differential testing, which com-

pares the behaviors of two or more systems expected to respond identically under the same inputs.

Specifically it uses real-world data to test multiple systems against diverse scenarios, identifying

behavior discrepancies that reveal potential failure inducing scenarios. However, as the data was
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collected independently of the autonomous systems’ operations, some scenarios identified may be

outside the systems’ operational design domain (ODD), which is the set of conditions the systems

are designed to handle [158]. To tackle this, our strategy incorporates an ODD filtering mechanism,

named ODD-diLLMma (under review), to sift out test cases falling outside the ODD. This results in

the isolation of failures that are not only pertinent but also rooted in the real physical environment

the autonomous system is designed to operate in.

Test execution, detailed in Chapter 4, features two key contributions. First, World-in-the-Loop

Simulation [135] directly tackles the difficulty of replicating complex or costly physical environments.

Specifically it addresses the simulation-reality gap, which causes differences in autonomous system

behaviors when moving from simulation to real physical environments. Our approach creates a

mixed-reality environment that merges elements of simulation with aspects of the real world. This

allows developers to vary the degree of real and simulated environment included in during the

testing execution phase, allowing developers to identify discrepancies in behaviors in safer more

cost effective settings. Second, Mimicking Real Forces on a Drone Through a Haptic Suit [143],

introduces a both a device and software system designed to apply real world forces onto a drone,

allowing developers to explore the physical semantics of a drone in the real world, while minimizing

costs, setup complexity, and space requirements. Uniquely, this device is mounted directly onto

the drone, eliminating the need for tethers or any external equipment. It is capable of generating

a diverse array of programmable forces that accurately mimic real-world scenarios, including wind

resistance, added weight, or the dynamics of a swinging pendulum. By accurately synthesizing these

environmental forces, our device not only simplifies the test execution process but also allows for a

more complete exploration of the drone’s physical semantics.

Test adequacy, in Chapter 5, introduces Physical Coverage [140], a novel approach for measuring

the adequacy of test suites for autonomous systems. This approach integrates both the physical envi-

ronment and its physical semantics into its adequacy criteria. It begins by identifying the portions of

the physical environment most relevant to the autonomous system, based on its current state. This is

done by utilizing kinematic and dynamic models to determine all possible future states of the system

over a defined time horizon. These future states allow the approach to identify portions of the envi-
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ronment that may be useful in the future, while simultaneously excluding regions the autonomous

system could never interact with. The reduced environment is then geometrically approximated,

resulting in an abstraction that represents an autonomous system’s current environment-state pair.

These abstractions serve as a basis for computing the adequacy of test suites, providing a robust

and holistic assessment of test suite effectiveness.

The methodologies developed in this dissertation effectively address key challenges posed by both

physical environments and physical semantics in the validation of autonomous systems. The suc-

cessful completion of the proposed work has resulted in a suite of innovative and effective techniques

that enhance each stage of the testing pipeline, significantly improving the validation process for

autonomous systems. This work makes substantial contributions to the field of autonomous system

testing as follows:

• Conceptual Contributions: Incorporating Physical Environments and Physical Se-

mantics into Autonomous System Validation. This work underscores the pivotal roles

of the physical environment and physical semantics in influencing autonomous systems’ be-

havior. It presents 5 innovative strategies for incorporating both of these elements into the

test generation, test execution, and test adequacy, showcasing validation across all phases of

the autonomous system testing pipeline.

• Empirical Studies: Demonstrating the Impact of Physical Semantics and Environ-

ments in Autonomous System Testing. Our research presents evidence of the advantages

of integrating physical semantics and physical environments into autonomous system valida-

tion. For example, our trajectory generation method creates a greater number of physically

feasible trajectories that were on average 55.9% more stressful than trajectories that did not

use our approach, highlighting the importance of physical semantics. Differential Testing on

existing data reveals that 9.8% of sensor readings given to three commercial autonomous driv-

ing systems resulted in steering differences of 10 degrees or more. Additionally, we demonstrate

that this approach can identify existing continuous streams of sensor readings of up to 2.5 sec-

onds, which are relevant with respect to the systems ODD, that consistently produce steering
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differences of more than 45 degrees. This emphasizes the potential value of data captured

in real physical environments. Our mixed-reality framework preemptively identifies failures

across 6 distinct scenarios before real-world execution, showcasing the advantages of integrat-

ing simulated with physical environments. Similarly, using our haptic suit for drone testing

provides a cost-effective method to explore a drone’s physical semantics, allowing the replica-

tion of 5 real-world scenarios with significantly reduced time and cost. Finally, our physical

coverage metric, accounting for both physical semantics and environments, surpasses tradi-

tional coverage metrics by producing equivalence classes that are up to 57% more consistent

than currently used metrics. Collectively, these findings highlight the critical role of both the

physical environment and physical semantics in testing autonomous systems.

• Implementation Contributions: Development of Tools and Artifacts. This research

has generated a suite of tools and artifacts to support and validate our methods, each made

publicly available to broaden their application and facilitate further study. One artifact, re-

ceived a distinguished artifact award at ISSTA 2020 [138, 139], highlighting our work’s practical

utility and significance. Hosted on publicly available platforms like GitHub and Zenodo, these

tools are not only comprehensive and easily accessible but also promote wider adoption and

research [139, 142, 136, 144, 141]. Demonstrations on real-world commercial autonomous sys-

tems, such as the Parrot Anafi Quadrotor [275], Waymo’s Autonomous Vehicle (via their Open

Perception Dataset) [333], and comma.ai’s openpilot Automatic Lane Centering (ALC) [66],

showcase our approaches applicability to real-world problems. This combination of tools and

real-world demonstrations underlines our contributions’ broader impact and relevance, bridging

academic innovation with practical application and pushing forward the field of autonomous

system validation.
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Chapter 2

Background

This section lays the groundwork for understanding this dissertation. First, to ensure clarity and

consistency in the subsequent chapters, Section 2.1 defines the nomenclature that will be used for the

remainder of this dissertation. Next, Section 2.2 provides a comprehensive overview of the current

state of the art in testing pipelines for autonomous systems. It discusses the key components, namely:

test generation in Section 2.2.1, test execution in Section 2.2.2, and test adequacy in Section 2.2.3.

Then, we delve into the mathematics underpinning the physical semantics of systems, examining

system movement and physical modeling in Section 2.3. Specifically, we discuss a system’s state

in Section 2.3.1, kinematic and dynamic (KD) models in Section 2.3.2, and the prediction and

determination of reachable sets in Section 2.3.3.

2.1 Nomenclature

This nomenclature provides an overview of the terminology used in subsequent chapters.

• W: The world, which encompasses all possible environment configurations in which an au-

tonomous system might operate.

• w: A scenario, which is one possible environment configuration from the world, w ∈ W.
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• c: An individual scene from the scenario, such that c ∈ w and w = {c1, c2, . . . , cn}.

• S: The set of all possible system states.

• s: An instance of a system state, such that s ∈ S.

• sen: A function representing sensors in the autonomous system, designed to perceive some

real-world scene and produce an approximation of it.

• csen: Is the sensed scene, such that sen(c) = c± δc, where δc quantifies the difference between

actual and sensed scene.

• ssen: Is the sensed state, produced through sen(s) = s± δs, where δs quantifies the difference

between actual and sensed state.

• a: An autonomous systems action capable of changing both c and s.

• AS: An autonomous system. They have the ability to consume sensor readings and output

actions a = AS(csen, ssen).

• b: A behavior is a sequence of autonomous systems actions b = ⟨a1, a2, . . . , am⟩.

• osen: A sequence of observed sensed and scenes state pairs osen = ⟨(csen1 , ssen1 ), (csen2 , ssen2 ), . . . ,

(csenm , ssenm )⟩ such that b = AS(osen).

• Osen: is the set of all possible observable sensed scene and state pairs osen ∈ Osen.

• B: Set of all possible behaviors of the autonomous system, b ∈ B.

• T : A test suite composed of individual tests, denoted as τ , where each τ ∈ T .

• τk = (input, oracle, context): Represents a single test, characterized by an input, an oracle,

and context.

• input: We define an input in the broadest sense possible, encompassing explicit test inputs

from a test, such as trajectories to follow, environmental factors like w, and system states s

that can affect execution and testing.
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• oracle: Takes in both an autonomous system’s input, osen, and output, b, and maps them to

a boolean, denoted as oracle : (osen, b) 7→ B. Essentially, a test oracle distinguishes between

correct and incorrect behaviors given some input of the system under test.

• context: Describes how closely the scenario w and the autonomous system AS are mocked

during execution. Essentially, it spans the range from point simulation, where both w and AS

are extremely abstract, to real-world deployment where both w and AS are fully realized.

2.2 The Testing Pipeline

Validation seeks to build confidence that the system meets defined requirements or specifications

through empirical evidence [5]. It achieves this by running a series of tests on the system under

test to either identify violations or accumulate instances of compliance with the requirements. By

addressing these violations and confirming compliance, developers build confidence that the system

will meet the requirements in its intended deployment. This is one of the ways developers can ensure

that a system will behave as expected in the real world.

Figure 2.1: A typical testing pipeline.

Another way to think about val-

idation is through a traditional and

somewhat simplified testing pipeline,

as shown in Figure 2.1. This testing

pipeline has three main components.

The first component is test genera-

tion, where each of the τ ∈ T is gen-

erated. The next component involves

executing the tests on, in our case, autonomous systems, collecting the output, and checking for

correctness. Finally, some form of test adequacy is performed; this is a quantitative method for

determining confidence in both the T and the range of outputs exposed. Using this information,

developers can either deploy the system if they have sufficient confidence in it, or generate more

tests to expose the system to previously unseen inputs or uncomputed outputs. Below we discuss
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each of the components in more detail.

2.2.1 Test Generation for Autonomous Systems

To create a test, developers need to consider three elements: the input, oracle, and context. Test

generation primarily focuses on the input and oracle, as these elements often vary for each τ ∈

T . The context is more closely aligned with test execution and is therefore discussed later, in

Section 2.2.2.

2.2.1.1 Determining a Tests Input

Generating input for tests, can generally be grouped into three categories: random input generation,

search-based generation, and model-based generation. Random input generation uses stochastic pro-

cesses to create a diverse range of inputs. It prioritizes speed and breadth over specificity. Given

the vastness of the input space, highlighted in Section 1.1, many techniques sample inputs from a

specific portion of the autonomous system input space. For instance, some focus on just the scenario,

using random procedural generation to create entire scenarios from scratch [252, 324, 21]. Others

focus on randomly varying aspects of existing scenarios such as weather and lighting [345], objects

and obstacles [93], and textures [227]. Some consider just the agents, dynamic elements in the sce-

nario such as cars, by randomly placing them in different locations [114], or by randomly generating

their trajectories [25, 350]. Random input generation techniques however are not only limited to

the scenario portion of the input. For example, some randomly sample the initial parameters of

the autonomous systems such as the velocity and acceleration [112], or randomly generating invalid

commands to ensure input validation systems are working [288] Overall, these techniques emphasize

exploring large portions of a specified input space quickly, in the hopes that they find an input which

results in a failure.

Next, search-based test generation approaches leverage heuristics and optimization algorithms for

targeted exploration of the input space [246]. These heuristics and algorithms enable the techniques

to systematically explore the input space by focusing on areas deemed important, with the aim of

discovering regions more likely to reveal failures. The idea is that these techniques can balance
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the breadth provided by random test generation with the depth achieved by thoroughly exploring

interesting areas. Examples of these include using search algorithms to find entire scenarios that

result in autonomous vehicle crashes [3], or traffic law violations [403]. Others search only parts of the

scenario, such as looking for road typologies that meet specific road curvature criteria [182], or road

networks that challenge the lane-keeping capabilities of advanced driver assistance systems [154, 106].

Beyond searching for scenario-based input, some methods use predefined scenarios and search for

autonomous system configuration files [50], system states [36], or sensor data [399], which are likely to

result in collisions. Others do not require scenarios at all and search for input validation bugs, failures

due to missing or incorrect validation checks, that result in erroneous control outputs [184]. Search-

based test generation sometimes does not yield concrete tests but rather leans towards identifying

probability distributions. For example, Scenic uses probabilistic programming languages to define

and subsequently search through a space of possible scenarios [102].

While random and search-based methods define how to explore the input space, they don’t

describe what that space is. Model-based testing distinguishes itself by employing models that

describe the input space to generate tests. While a vast array of model types exist, a common form

of model describes either the system’s expected behavior or its operating environment. For instance,

models can describe how the system under test should behave for different driving styles [82], or they

can outline expected behaviors in specific scenarios, such as on highways [18] or at intersections [97,

336]. Alternative models describe the behaviors of other systems or agents in a scenario; for example,

the expected behaviors of other road users [308] or people in a shopping mall [19]. Models have

also been applied to environmental aspects of scenarios [35], describing specific elements of the

environment, such as wind and obstacles [221], or the roads and scenery [23]. Others focus on

attributes of the scenario itself, such as its feasibility in the real world [105, 103]. Once a model is

defined, it can be used in various ways. For example, by defining conditions or behaviors that the

model should exhibit, such as reaching a particular state [266] or making a specific transition [149].

If a property is violated, the method generates a counterexample, which can be used to create a test

for the real system [278, 307]. Examples of these approaches have been applied to partial models of

systems such as the emergency braking system [88], the perception system [116], as well as to the
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whole system [91, 220].

An alternative to generating new inputs for testing is to employ test selection strategies on a

pre-existing set of test inputs. This is useful in cases where more tests can be generated than

executed, or where a set of tests already exists and developers want to prioritize them from most

to least interesting. The key to test case selection is to quantitatively measure the value of each

test case. This can be achieved through various methods, including model-driven and coverage-

based selections. Model-driven selection approaches utilize models to inform the selection process,

echoing the strategies discussed previously. These models range from those based on data from

previous executions [228], simulating which obstacles are likely to be detected by the autonomous

system [176], to models that describe the certainty of an autonomous system’s actions [362, 98].

Conversely, coverage-based selection focuses on maximizing specific coverage metrics within the test

suite [338]. This includes selecting tests based on scenarios, such as those most likely to cause the

vehicle to drive on parts of the road not yet driven [153], or based on some internal software-based

coverage metric, such as neuron coverage [281]. While many of these coverage metrics have yet to

be specifically applied to autonomous systems, many have been proposed for Deep Neural Network

(DNN) testing, a key component of many autonomous systems. Examples include extensions of

neuron coverage [281], modified condition or decision coverage [334, 386], and surprise coverage [183].

2.2.1.2 Defining a Test Oracle

For a test to be useful, developers need to know if the corresponding output produced by the

system under test is correct or not. This ability to distinguish correct from incorrect behavior,

given some input, is referred to as the “test oracle problem” [28]. A test oracle is a function or

procedure that distinguishes between correct and incorrect behaviors of a system under test [162,

27]. More specifically, it takes a system’s input and output and maps them to a Boolean value,

oracle(input, output) 7→ B. Adequately defining an oracle such that it can automatically perform

this mapping is a challenging yet vital part of the testing process. Without an automated test

oracle, a human must determine whether the observed output for a given input is correct. This

severely limits the number of tests that can be performed and, in some cases, is not even feasible
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due to the speed, complexity, or volume of the input and output being processed. For an oracle to

automatically perform this operation, it must have the ability to compare the observed output with a

known expected output. The different methods of deriving the expected output and performing the

comparison can be discussed in three broad categories: specification-based oracles, derived oracles,

and implicit oracles.

A formal specification of a system is a mathematically-based language that can be used to

describe a system in terms of its inputs and expected outputs [134]. Test oracles can then use

these specifications to check if the system’s output meets the expected output for the given input [9,

27]. The primary issue is that defining specifications that are known to be correct, complete, and

unambiguously specified is extremely challenging for autonomous systems [197]. This challenge

stems from the fact that autonomous systems have complex input types, which exhibit a long tail

of possible rare inputs, each associated with many potential correct and incorrect behaviors. While

oracles based on specifications have had success in traditional software [298, 331], their application

is limited when applied to autonomous systems. To overcome the difficulties posed by precisely

defining specifications for autonomous systems, current specification-based oracles for autonomous

systems primarily focus on using partial specifications. These are specifications that are either

weakly defined, for example using natural language where there is room for ambiguity, or defined

for only a small portion of the input or output space.

First, let us consider specifications based on natural language. While some of these specifications,

such as legal road rules, may appear complete and well-defined, they inherently rely on human

intuition and understanding. For instance, Rule 163 of the UK driving code states, “overtake only

when it is safe and legal to do so” by, for example, “not getting too close to the vehicle you intend to

overtake” [314]. This rule requires some intuitive understanding, or what is “safe”, what is “legal”,

and what is “too close”, all of which could vary from person to person. While there is work aiming

to convert these properties into checkable specifications [401], they still depend on humans to make

judgements about how to implement one of these properties, while also relying on some ground

truth information to measure their defined property. Another potential source of these types of

specifications are today’s Operational Design Domain (ODD) [196]. The ODD, as defined by the SAE
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standard J3016, represents “operating conditions under which a given driving automation system

or feature thereof is specifically designed to function, including, but not limited to, environmental,

geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic

or roadway characteristics” [1]. Techniques capable of specifying and checking small portions of

such an ODD have been developed, focusing on narrow aspects like geographic location [209] or

sensor-specific anomalies [65]. However, checking any given arbitrary specification against ODD

specifications remains an open problem, for which we present one of the first approaches to do so

later in Section 3.2. Next, let’s consider partial formal specifications defined over small portions of

the input/output space. Examples of this type of work include oracles that can check if a system’s

output velocity meets specific specifications based on sensor inputs such as obstacle distance and road

inclination [289]. Other oracles verify that input service requests, such as visiting specific locations

or avoiding certain areas, result in output plans that are efficient, avoid obstacles, and adhere to

specified tasks [58]. Some oracles check that internal communication messages between components

of a robotic system never produce outputs that result in deadlocks between modules [37] or outputs

that deviate from a specified order [94]. Additionally, oracles might monitor energy consumption to

ensure that swarms of robots behave in a way that does not deplete their energy or power sources

prematurely [194]. Some oracles ignore the input and focus solely on the output, such as checking

that the movements of a robotic arm meet certain specifications regarding the execution order and

ranges of motion [217].

Another type of oracle that uses partial specifications is found in a field known as metamorphic

testing. These oracles define metamorphic relations, which are partial specifications concerning the

system under test in relation to multiple inputs and their expected outputs [55, 313]. Specifically,

by applying a known transformation to the input and running the same system on both the original

and transformed inputs, we can detect failures by comparing the outputs to a corresponding known

transformation function. When applied to autonomous systems [404], typical transformations define

sets of changes that, when applied to the input, should not alter the system’s output. For example,

a camera image of a straight road taken during the day and at night should not affect the steering

angle of an autonomous vehicle. Ranges of these exist, from the naive, following standard data
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augmentation techniques such as affine transformations or adding noise [399, 265, 108], to more

complicated examples such as changing weather, lighting, or specific objects in the world [345, 304,

361], to advanced scenarios that take into account the world’s semantics, by being cognizant of what

individual sensor readings mean, allowing for transformations such as adding other vehicles driving

on the street [377, 61].

While efforts to formalize larger more complete sets of specifications that are unambiguous, and

correct are being discussed [196, 100, 173], defining a user-friendly, precise, mathematically-based

language capable of validating an entire autonomous system across its entire input/output domain

remains an unsolved problem.

The next category of oracles derives the expected output not from precisely defined specifications,

but from alternative artifacts. One example of this is differential testing from traditional software

engineering [244]. Here, the approach assumes that there are multiple systems implemented to meet

the same specifications. Therefore, by comparing these systems’ outputs, if there is a difference, we

potentially have found a case where one of the systems violated the specifications. This approach

has seen application across diverse autonomous systems, from comparing aviation software oper-

ations [122] to comparing autonomous vehicle behaviors with human drivers [312], and analyzing

different neural network versions trained on identical data [387]. Another form of artifact against

which an oracle can compare behavior is models of the system. For example, comparing relationships

between different parts of the system to finite state automata [396], or assessing the system’s general

real-world behavior against its internal state [233].

The third and final category is implicit test oracles. These rely on universally accepted principles

to differentiate between correct and incorrect behavior. This method is grounded in the premise

that certain outcomes are expected, such as an autonomous system should not crash [329, 107,

215], an autonomous car should not drive off a road [106], or an autonomous car should not leave

the lane [189]. While these oracles might seem trivial, they can be extended, for example, using

reachability analysis to assert that they maintain at least a minimum potential time or distance to

collision [394].

While many types of oracles have been proposed and implemented for autonomous systems, most
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papers continue to rely on basic ones. For example, when we examine the 26 papers cited in our

background from the last two years, we find a total of 22 instantiated oracles12. Of those oracles,

4 are based on formal specifications, 3 are derived, and 15 are implicit. This finding suggests that

the majority of papers still rely on implicitly set oracles based on a developer’s domain knowledge.

Furthermore, most of these oracles consider the output or behavior of the autonomous system inde-

pendent of the input or sensor data. We suspect this is partly due to the difficulty of incorporating

the physical environment and physical semantics into traditional test oracles, as described in Sec-

tion 1.1. Specifically, we found that 15 of the 22 oracles use only output independent of the input,

with the most common output being crashes (documented in 5 oracles). When oracles do consider

particular inputs, they generally rely on either the road structure or the position of environmental

obstacles. Specifically, 3 oracles compare the objects in the environment to generated trajectories,

and 5 oracles compare the road to the autonomous system’s current position. Our findings regarding

the input/output most commonly used in oracles are consistent with those from a 2021 survey by

Jahangirova et al. [162], which reviewed 238 papers on autonomous vehicle testing and found that

most oracles consider output constraints applicable to all inputs. These inputs are almost always

either velocity, position, steering, or collisions. When input is considered, it is primarily the road or

objects in the environment, such as pedestrians, other vehicles, or traffic signs. Similar to our find-

ings, input was almost exclusively compared to the position of the autonomous vehicle. In summary,

although this is a crucial research area for autonomous systems, defining oracles over particular input

remains challenging, and as a result, most oracles are relatively primitive.

2.2.2 Test Execution for Autonomous Systems

The next step in the testing pipeline is execution. This step, defined by the context of τ , the AS

is executed to generate behaviors b. These b are then evaluated for their adherence to predefined

correctness criteria, as defined through the oracle. The context encompasses the fidelity in which the

world and autonomous system is executed. This execution environment significantly influences the

1We excluded survey papers and publications not related to autonomous system testing.
2See Appendix A.
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testing process and can range from highly abstracted simulations to complex real-world scenarios.

The choice between simulation and actual environments hinges on the test objectives, resource

availability, and the level of fidelity required to validate the AS behavior.

2.2.2.1 Simulation Based Execution

The costs and potential impact of testing in the real world mean that the execution of tests produced

by test generation for autonomous systems is still primarily done in simulation. These approaches

focus on conducting extensive experiments to thoroughly explore the input space, aiming to uncover

faults within both individual components [145, 81] and the system as a whole [258, 153]. This

has resulted in many different simulation platforms for all types of autonomous systems including

autonomous robots [64], drones [89] and vehicles [178]. These platforms offer a range of fidelities,

making them a valuable tool at various stages of autonomous system development. For instance, low-

fidelity simulators employ mathematical models to approximate the world and robot states [319, 214].

They are economical and practical for early testing stages. As fidelity increases, the simulation

begins to model the world using a physics or graphics engine, enabling software-in-the-loop (SIL)

simulation. High-fidelity physics simulators, paired with low-fidelity graphics, are especially useful

for testing new robot designs and physical semantics [104, 277, 192]. High-fidelity graphics simulators

with simple kinematic models are suitable for systems with rich sensor input, such as cameras and

LiDARs [123, 397]. Some SIL simulators incorporate high-fidelity graphics and physics engines but

tend to be more expensive and limited to specific autonomous systems or domains[87, 315, 33].

Hardware-in-the-loop (HIL) simulations combine the actual hardware with simulation [259, 264].

While they can yield more accurate system outputs, they also tend to be autonomous system specific,

come with their own cost and scope limitations [208, 148]. However all simulations have a common

limitation: they all suffer from the simulation-reality gap [163, 219]. That is the discrepancy between

simulated environments and their real-world counterparts.
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2.2.2.2 Real-World Based Execution

Due to the simulation-reality gap, real-world testing remains the gold standard for validating au-

tonomous systems [368, 180]. This is evident when considering the efforts of autonomous car com-

panies; for example, Tesla claimed to collect 1 million miles of data every 10 hours as of 2015 [323],

comma.ai calimed to drive over 500,000 miles each week in 2021 [74], and Waymo claimed to have

driven over 20 million miles on public roads since 2009 [311]. However, the physical world is vast,

with an extremely long tail of rare scenarios that remain unexplored by even the largest autonomous

system fleets [195]. This is evident as there are still reports of accidents and unusual or incorrect

behaviors by these vehicles in the real world [243, 160, 198, 285, 47, 156].

However, conducting large-scale tests in the real world presents numerous challenges. These

include high operational costs, substantial time and space requirements, significant labor for setup,

and inherent risks, such as potential loss of life and damage to the system or other property [285, 160,

156, 243]. Consequently, a substantial portion of research is centered around conducting smaller-

scale field studies within highly controlled environments. These experiments, ranging from flying

drones [174, 321, 45], driving robots [251, 366, 341], to testing underwater vehicles [30, 384] in

conditions isolated from external disturbances such as wind or currents and often utilizing high

precision tracking systems like Vicon [359]. The tests yield essential insights and evidence, suggesting

the systems’ potential efficacy in the unpredictable real-world scenarios.

Despite their value, controlled field studies cannot fully mimic the real-world complexities faced

by autonomous systems, underscoring the need for innovative, broad-scale testing methodologies.

Emerging frameworks [31] show the research community’s initial attempts to bridge this gap, by

developing systems capable of efficiently switching between simulation and reality, yet they repre-

sent just the beginning of a longer journey. Fully addressing the breadth of real-world challenges

encompassing cost, safety, and logistical feasibility, remains an open research question.
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2.2.3 Test Adequacy Metrics for Autonomous Systems

Following the generation and execution of the test suite T , and the analysis of the resulting behaviors

b, the next essential step is to assess the effectiveness of T . This process involves quantifying the

comprehensiveness of the testing. Test adequacy metrics serve as a quantitative benchmark for this

purpose, providing insights into the comprehensiveness of T and pinpointing areas that may require

improvement [256, 406, 373, 374]. These metrics expose potential shortcomings within the test suite,

thereby informing subsequent testing strategies. Broadly, test adequacy can be classified into four

categories.

The first category is structural coverage [26, 131], commonly referred to as white box cover-

age [261]. Structural coverage involves examining the software’s internal structures to determine

which parts have been executed by the test suite [187]. Common instantiations of this metric in-

clude statement [257, 274], branch [376], path [168], and interprocedual path coverage [127], among

others. We have seen broad adoption of these metrics [389], where they have been used across diverse

domains and languages, including Python [14, 29], Android [300], Java [267], and C [151]. They

have also proven useful in industry, where for example, structural coverage metrics are computed

daily on over a billion lines of code at Google [159].

However, the effectiveness of these traditional metrics diminishes when applied to autonomous

systems [197]. The first major issue is that many autonomous vehicle components are inherently

statistical in nature, and thus result in non-deterministic behavior [344]. Emerging work on coverage

criteria for learned components [231, 281, 334] aims to mitigate this challenge, but such components

constitute just one of the sources of non-determinism. This can lead to identical inputs producing

varied outputs, thereby artificially inflating the structural code coverage metric due to differing

abstractions. Second, regardless of the test, many system components, such as those for control

and planning, tend to have a linear control flow [202, 115] which causes structural coverage metrics

to saturate quickly. Consequently, once an initial variety of inputs has saturated the metric, any

additional unique inputs and behaviors fail to be effectively captured by these metrics.

The second category is functional coverage [222], often referred to as black box coverage [261].
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This family of metrics concentrates on the software’s inputs, outputs, and specifications while com-

pletely ignoring the software’s internal operations. Historically, equivalence classes were employed to

conceptualize this idea [121, 262, 372]. The foundational concept is that inputs within an equivalence

class trigger similar behaviors. If this categorization is effective, the proportion of classes covered

during testing can determine how thoroughly a test suite examines the system. Newer method-

ologies introduce a variety of other input models from which to derive such classes, accounting for

system configurations [200], finite constraint sets [349], and grammars tailored for string-dependent

systems [129].

The fundamental flaw with applying functional coverage to autonomous systems lies in its failure

to determine input and output bounds. Treating data from sensors, such as camera feeds, as mere

software inputs overlooks the environmental and physical limitations intrinsic to these systems [138].

This is evident when you consider the sheer volume of possible inputs a camera might produce—an

HD camera can generate 16, 777, 2162,073,600 possible image combinations, as described earlier in

Section 1.1.1. This number is more vast than the estimated number of atoms in the observable

universe [282]. However, we know that a large portion of these images are not feasible, assuming

the sensors are functioning properly. Without careful consideration of how to define the inputs for

functional coverage, techniques inadvertently start to consider unrealistic scenarios, such as static

noise, trees floating in the sky, or instantaneous velocity changes, as potentially valid inputs within

the test coverage. Such inaccuracies distort the understanding of the system’s interaction with the

physical world, thereby affecting the perceived test adequacy. Ignoring these real-world and hardware

constraints not only skews the operational limits and capabilities of the system but also risks safety-

critical oversights, undermining the efficacy of functional coverage in ensuring the reliability and

safety of autonomous systems.

One effort to mitigate this deficiency is scenario coverage [235], which incorporates the physical

environment by building a situation graph containing the objects, their attributes, and their rela-

tionships in an environment. This approach is feasible as long as the ground truth graphs can be

precomputed, which is difficult, severely curtailing its applicability beyond limited simulation envi-

ronments. Additionally, while this approach can compute the number of scenarios covered, it has
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no feasible way to compute the total number of possible scenarios. A refinement of this approach

aims to measure the trajectory coverage within a given scenario [153], but it is limited in that it

neglects the temporal nature of trajectories, and fails to account for the broader environment. Some

alternative criteria based on both requirement coverage [158, 343, 297] and parameter coverage [207]

have emerged. These can help define critical acceptance tests but remain inadequate for capturing

the breadth of possible scenarios.

The third category is fault-based coverage [56]. Within this category, mutation coverage [211]

is the most common technique. Mutation coverage aims to determine if the test suite can detect

seeded faults of known types and generates a mutation score representing the percentage of seeded

faults found by the test suite. While this coverage method has gained substantial traction in tradi-

tional software [167, 283], its exploration within the context of autonomous systems remains limited.

The closest line of work related to autonomous systems involves the mutation of LiDAR scenarios

for test generation in autonomous vehicles [61]. The most relevant research related to mutation

coverage specifically for autonomous vehicles pertains to deep learning models that may be used in

autonomous systems [232, 367].

The final category is model-based coverage [12], which uses principles similar to model-based test

generation, as described in Section 2.2.1. Essentially, the software is represented as a model, and the

tests’ interaction with this model gauges the coverage. This method has been applied to traditional

software [62, 11, 181]. However it has several limitations. These include the resource-intensive nature

of model creation, model maintenance, and the potential for incomplete or inaccurate models, which

may result in inadequate testing and undiscovered defects. The closest line of work that focuses

purely on coverage, without including a generation component, does so for only a subset of the

autonomous systems, the electronic control unit [78].

2.3 Physical Modeling and Analysis

Understanding the concepts of physical modeling and analysis is important within this dissertation,

as they form the foundation for several validation techniques introduced [138, 140, 143]. One can
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conceptualize physical modeling and analysis in three stages, as depicted in Figure 2.2.

The process begins with identifying the AS’s current state si, which are its physical attributes

and characteristics at a given instant i, depicted as a dark dot in Figure 2.2. These attributes may

include variables such as position, velocity, and orientation. They offer a snapshot of the system’s

present condition.

Next, kinematic and dynamic (KD) models, sets of mathematical equations based on the phys-

ical attributes and capabilities of the AS, are applied to compute the AS’s next state si+1. This

computation is represented by a dashed arrow in Figure 2.2.

Figure 2.2: Visualization of a state si, future states si+1 (dark dots),
and all potential future states (shaded area or volume.)

The final stage involves

utilizing reachability anal-

ysis to compute all possi-

ble states the AS might en-

counter. This process can

be thought of as calculat-

ing all subsequent si+1, for

each potential action the

AS could undertake, using

the KD models. The re-

sulting set, depicted in red

in Figure 2.2, delineates the

spaces or volumes that encompass all potential future states of the AS. Each of these sections is

described in more detail below.

2.3.1 Autonomous System State

An autonomous system AS operates in a scenario w and can only observe a portion of it, called a

scene c. It uses its sensors, denoted as sen, to sense the scene csen, as well as its current state ssen.

This data is then consumed by the autonomous system to produce an action a = AS(csen, ssen).

However, to understand this section, we need to grasp the difference between the software and
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hardware of the system. The software of an autonomous system consumes (csen, ssen) and produces

an actuation command a′, such that a′ = ASsoft(c
sen, ssen). In essence, it acts as the brain of

the system, making decisions based on sensory input. The hardware then consumes the actuation

command to produce the action in the real world, represented as a = AShard(a
′, ssen). Essentially,

this hardware involving electro-mechanical components, executes the decisions made by the software.

This raises a question: if the autonomous system is actually composed of two components, then

what precisely is its “state”? The answer changes depending on whether we’re approaching it from

a software perspective, a robotics perspective, or a holistic perspective.

From a software perspective, discussing the state typically refers to ASsoft, the software com-

ponent of the autonomous system. It consists of the information about the underlying software

system, focusing on aspects such as variable values, the current execution point, and stored data.

Essentially, this perspective views the state as an instantaneous abstraction of the software system,

capturing all crucial information about the computational process at a given instant in time [147].

Conversely, within robotics, state typically refers to AShard, denoting the hardware aspect of the

autonomous system. From this view the state is defined by its physical attributes, such as position,

velocity, acceleration, alongside measurable properties like temperature, electrical currents, and

mechanical stress [294, 355]. These attributes quantify the system’s real-world conditions, reflecting

both its own state and its interaction with the surrounding environment.

While these two definitions of state are often viewed as independent, it is crucial to recognize the

existence of a holistic view, where there is interplay between them, culminating in the comprehensive

AS state. The constraints and limitations inherent in the state of ASsoft directly impact the physical

state of AShard, and vice versa. This dynamic interplay is fundamental to the development, testing,

and operation of AS. The software state, with its own set of limitations and constraints, manifests as

artificial limitations in the physical domain. For instance, if the software’s thrust variable is a float

constrained between 0 and 10 newtons, this range becomes an artificial limit on the physical system’s

produced thrust, regardless of the hardware’s actual capabilities. Conversely, physical constraints

and limitations of the hardware system, such as a maximum steering of ±360 degrees, inherently

limit the feasible current steering angle variable in the software state. This reciprocal shaping of
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constraints between the software and hardware states underscores the intertwined nature of their

limitations and the critical need for their integrated consideration in the design and operation of

autonomous systems, as demonstrated in some of my previous work [137].

For the purposes of clarity in this dissertation, unless specified otherwise, the term state s will

primarily denote the physical state of the system as governed by AShard. For instance, a simplified

car state is represented by a 4th order state vector s = [x, y, vf , ψ]T , which represents the position (x,

y) in 2-dimensional space, forward velocity (vf ), and heading (ψ) [294, 193, 287]. Conversely, more

dynamic AS necessitate a more comprehensive description of their state. For example, a quadrotor’s

state can be described using a 12th order state vector s = [x, y, z, ϕ, θ, ψ, vx, vy, vz, ωϕ, ωθ, ωψ]T ,

encapsulating the position (x, y, z), attitude (roll ϕ, pitch θ, yaw ψ), linear velocities (vx, vy, vz),

and angular velocities (ωϕ, ωθ, ωψ) in three-dimensional space [355, 395].

2.3.2 Kinematic and Dynamic Models

Kinematic and dynamic (KD) models are sets of mathematical equations that predict the motion

of an object given some initial state, and input. These models have proven particularly useful in

robotics and autonomous systems [34, 332], as they enable predictions and insights into how the

physical hardware component AShard of the autonomous system will behave.

Kinematic models are primarily concerned with the geometric aspects of motion, focusing on

parameters such as position, velocity, and acceleration, without addressing the forces responsible for

these states of motion [199]. This perspective allows for a simplified analysis of movement, essential

for initial stages of design and understanding system capabilities in a controlled environment. Dy-

namic models, on the other hand, explore the causative forces behind motion, incorporating both

internal mechanics and external factors into their calculations [110]. By analyzing these forces,

dynamic models offer a comprehensive view of how and why an object moves, making them indis-

pensable for predicting interactions with unpredictable environments.

The synergy between kinematic and dynamic models enables the accurate prediction of future

states from an arbitrary current state si and input ui at any given instant i. Similar to how

the physical hardware of an autonomous system updates s using the actions a produced by a =
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AShard(a
′, ssen), KD models can predict how s would change, represented as si+1 = KD(ui, si).

Such a mechanism is vital for the understanding, and designing of these systems, allowing insight

into how the physical system will behave in a wide range of s for a wide range of u.

As introduced in Section 2.3.1, we examined state representations using both car and quadro-

tor examples. Moving forward, both this section and the subsequent one will concentrate on the

more complex quadrotor example. The simpler car kinematics, while foundational, are based on

similar principles and can be independently explored for further understanding [294, 193, 287]. To

compute the quadrotors si+1, we start with calculating control inputs u1−4 based on the the four

motor speeds w1−4, and physical attributes of the quadrotor, as shown in Equation 2.1. In this

equation, u1 represents the total upward thrust F generated by the rotors, u2 and u3 denote the

differential thrust affecting roll Mx and pitch My, respectively, while u4 captures the torque vari-

ance between clockwise and counterclockwise rotors, influencing yaw Mz. These calculations are

based on the physical attributes of the autonomous system, specifically quadrotors arm length d and

proportionality constants for thrust kf and moments km.
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The values of u2, u3, and u4 are used to compute the change in quadrotors angular velocity

ω using Equations 2.2, where the I terms correspond to the inertial properties unique to each

quadrotor.
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 (2.2)

The quadrotor’s angular velocity ω is then used to compute the change in the attitude of the

quadrotor using Equations 2.3.
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ϕ̇

θ̇

ψ̇

 =


1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)

0 cos(ϕ) −sin(ϕ)

0 sin(ϕ)sec(θ) cos(ϕ)sec(θ)



ωϕ

ωθ

ωψ

 (2.3)

Finally, the change in velocity is computed using Equations 2.4. The new velocity is used to

update the position of the quadrotor.


v̇x

v̇y

v̇z

 =


0

0

−g

 +
1

m


cos(ϕ)cos(ψ)sin(θ) + sin(ϕ)sin(ψ)

cos(ϕ)sin(θ)sin(ψ) + cos(ψ)sin(ϕ)

sin(θ)sin(ϕ)

u1 (2.4)

The versatility and efficacy of KD models have led to their adoption across various fields, beyond

the immediate scope of robotics and autonomous systems. These models have proven instrumental

in mechanical engineering [90], astrophysics [392], biomechanics [327], and even in creating realistic

physics simulations within video games [242].

2.3.3 Reachability Analysis for Autonomous Systems

Reachability analysis is a method used to calculate the reachable set r for anAS. This set r represents

the collection of all possible future states the AS can achieve within a specified time horizon h, given

the system’s physical capabilities [57, 13, 164]. We note that similar to the distinction between

software states and physical states, we are focusing on physical reachability analysis rather than

software reachability analysis, the latter of which centers around determining the portions of code,

functions, or software states, which will be executed given a set of input [43]. Utilizing KD models,

physical reachability analysis employs the current system state si, a defined time horizon h, and

all possible inputs U to compute the reachable set. It can be intuitively understood as shown in

Equation 2.5, where given si, it computes all possible future states over h using the KD and all

inputs U . Each of these future states is geometrically combined which we donate with ⊕, to produce

ri.
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ri = si ⊕
∫ i+h

i

KD(si,U)dt (2.5)

The resultant ri defines the spatial or volumetric limits the AS can explore within the given h at

an instant i in time. Areas outside ri remain unreachable for the given h, irrespective of the inputs

U applied to the AS given its current state si. An illustrative example is provided in Figure 2.3,

showcasing a quadrotor (dark blue dot) reachable set depicted (red shaded cone).

Figure 2.3: A quadrotor’s (dark dot) reachable set (shaded
area) illustrates the range of potential movements.

This visualizes all positions of si+h

attainable by the quadrotor, contin-

gent upon its initial state si and all

inputs ui ∈ U . Specifically in this

example we see that the quadrotor is

stationary 20m above the origin. If all

motors were switched off, it would fall

precisely 9.81m from 20m to 10.2m

over a 1-second time horizon due to

gravity. This is represented by the

lowest point of the red shaded cone

in Figure 2.3. Conversely, if all mo-

tors were activated, based on the mo-

tor RPM and quadrotor dynamics, it

would raise 8m from 20m to 28m. This is represented as the apex of the curve of the red shaded

dome. The other areas represent all other possible positions the quadrotor could reach in the same

1-second time horizon, given U .

Despite its invaluable insights, the computation of reachable sets is recognized for its computa-

tional intensity, prompting significant research into optimizing this calculation process [54, 118, 155,

204, 249, 225]. Various methodologies have been proposed to address these challenges, generally

trading accuracy for computational complexity.
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Chapter 3

Test Generation

Test generation serves as the initial step in the validation process. Creating a test τ requires

developers to account for three critical components, namely the input, oracle and context. This

Chapter presents two approaches for creating the input and oracle, deferring the discussion of

context to Chapter 4 which focuses on test execution.

Our first approach described in Section 3.1, builds upon stress testing in traditional software [39,

255], which aims to determine the robustness of software applications and systems under extreme

conditions. Determining what constitutes extreme conditions for autonomous systems is particularly

challenging, as the concept of “extreme” is intrinsically linked to the physical semantics of each

autonomous vehicle. For instance, what is considered a stressful amount of acceleration or braking

for an autonomous Formula 1 race car vastly differs from that for an autonomous passenger vehicle.

By integrating the physical semantics directly into the development of a test’s input, we can tailor

it specifically for the autonomous vehicle being tested. However, while doing this ensures that an

input is feasible for a given autonomous system, developers must also identify which inputs are likely

to stress the system. To address this, we introduce a test oracle, termed a parameterizable scoring

model, which leverages either domain knowledge or machine learning to predict stress. This oracle

enables us to ascertain the success or failure of tests, given insights from developers or sufficient

data, and can predict which tests are most likely to reveal stress in a system. The result is a set of
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τ which are physically feasible and stressful for any given autonomous system.

Our second approach, in Section 3.2, explores input and oracle through the lens of differential

testing from traditional software [244, 213]. Differential testing involves applying the same inputs

across similar systems, or different implementations/versions of the same system to detect discrep-

ancies in output behavior. The application of differential testing to autonomous systems encounters

two challenges. First, this approach requires some input, which for an autonomous systems includes

sensor data. Generating a vast and diverse amount of sensor data that accurately captures the

physical environment an autonomous system is designed to handle is both costly and complex. We

address this by leveraging the vast amount of existing real-world environmental sensor data that is

readily available, transforming it as necessary to meet the requirements of each autonomous system.

We then apply a filtering stage to remove input which the autonomous system was not designed to

handle. Second, developing an oracle for autonomous systems presents a significant challenge be-

cause there are often multiple correct and incorrect behaviors in a given scenario, and determining

the most desirable outcome is complex [162]. This complexity arises from the vast range of possi-

ble input under which these systems operate, making it difficult to define universally appropriate

behaviors. To overcome this we employ a differential testing framework, which compares multiple

versions of an autonomous systems behavior to identify discrepancies and potential failing behavior

among the systems for any given input. To address this challenge, we utilize a differential testing

framework that employs these systems as cross-referencing oracles. By comparing the behaviors of

these autonomous systems when exposed to the same input, we can identify discrepancies. Any di-

vergence in responses to the same input is flagged as a potential fault. The result is a set of potential

failure-inducing test cases τ which can be used as future for improving autonomous systems.

3.1 Feasible and Stressful Trajectory Generation

Many autonomous systems need to traverse their physical environments to achieve their goals. To do

this, an autonomous system must compute and perform a combination of translation and rotation

within the physical environment. The types of translations and rotations are dependent on the
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physical semantics of the autonomous systems. A common method for developers to request such

traversal is through waypoints. Waypoint traversal is a staple of autonomous system navigation and

is found in almost all types of autonomous systems, including wheeled robots [316], advanced driver-

assistance systems [125], autonomous fixed-wing aircraft [185], autonomous multirotor aircraft [306],

and autonomous marine vehicles [22]. For more complex physical environments, or goals, waypoint

navigation alone is sometimes not enough. For example, consider the case where an autonomous

system needs to navigate around an object directly along the line of translation. A common solution

in such cases is to follow a series of waypoints, known as a trajectory. This approach allows the

autonomous agent to navigate around the obstacle by placing waypoints in a manner that avoids

any need for translation through the obstacle.

To ensure that these types of systems behave correctly and to identify any potential failures,

many test generation techniques aim to create trajectories that mirror potential real-world opera-

tions [87, 315]. For instance, in the context of advanced driver-assistance systems, trajectories can

be devised over existing road maps with typical traffic loads [340], over synthetic maps that meet

road-design and traffic constraints [182], or over scenarios developed following certain probability

distributions [101]. A similar approach is adopted for autonomous multirotor aircraft testing, with

adjustments made to account for the extra dimension of space [315].

While exploring typical trajectories is necessary to validate the behavior of autonomous vehi-

cles, it may overlook faults that arise in the presence of “stressful” trajectories, trajectories that

accentuate a particular behavior of the particular autonomous vehicle. In this context, stress is

determined by a combination of the tests input, which in this case is a trajectory, and the vehicle’s

physical semantics. For example, the intricate maneuvers required for a micro-drone to navigate a

narrow tunnel serve as a good illustration of this principle. The trajectory depicted in Figure 3.1a is

relatively straightforward and presents a much less demanding test compared to that of Figure 3.1b.

This latter trajectory introduces sharp turns that place significant stress on every aspect of the sys-

tem, from its perception components to motor capabilities. However, applying the same trajectory

from Figure 3.1c to a different kind of autonomous system, such as the advanced driver-assistance

systems in an autonomous car, drastically alters the scenario. What constituted a stressful trajectory
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(a) A quadrotor navigating in a
straight corridor.

(b) A quadrotor navigating a more
difficult trajectory through a wind-
ing corridor.

(c) A car unable to navigate the
more difficult trajectory through a
winding corridor.

Figure 3.1: Top half shows the autonomous vehicle from behind, while the lower half shows a birds
eye view of the scenario. The dashed lines convey location across views, solid arrows show optimal
behavior, while dotted arrows show unforeseen behavior leading to a collision.

for the autonomous drone becomes infeasible for the autonomous car, due to its inability to execute

such tight maneuvers. This example underscores the importance of crafting input trajectories that

not only push the boundaries of the autonomous system but also consider its physical semantics,

ensuring that the input remains challenging yet achievable given the system’s capabilities.

This work aims to develop a method for automatically generating such feasible and stressful

trajectories for any given autonomous vehicle. This involves addressing three main challenges:

1) determining the physical feasibility of a trajectory given the physical semantics of the vehicle, 2)

efficiently finding trajectories that induce stress, and 3) ensuring the method’s applicability across

various types of autonomous vehicles and stress measurements.

To tackle the first challenge, we leverage the understanding that the physical semantics of au-

tonomous vehicles are often represented through KD models. Our method employs these KD models

to calculate all potential states within the vehicle’s reachable set. States outside this set are deemed

physically unfeasible. For the second challenge, we utilize reachability analysis and KD models to

effectively sample the valid physical space. This includes a scoring model that evaluates the stress
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level of each trajectory during its generation. Additionally, a beam search strategy is implemented to

methodically explore the trajectory space, aiming to identify and prioritize those that are most likely

to impose significant stress on the system. Addressing the final challenge, our approach’s generality

is ensured by building on models that are accessible or can be easily estimated for most autonomous

vehicles. This is complemented by a high level of abstraction and parameterization in the trajec-

tory search process, along with employing the Robot Operating System (ROS) for standardizing the

messaging formats [328] as part of our implementation framework.

3.1.1 Approach

The goal of the approach is the systematic and efficient generation of both feasible and stressful

trajectories for autonomous systems. To define a trajectory, we first need to define a waypoint. We

define a waypoint as a position pos and orientation ori pair; this is also known as a pose wyn =

(posn, orin). Following this definition, a trajectory can then be defined as a sequence of waypoints,

traj = ⟨wy0, . . . , wyn⟩. We note that, while trajectories can also include timing information, ours

do not; they only require that waypoints be visited in the defined order. In the following sections,

we provide an overview of the approach, a detailed description of how our approach identifies both

feasible and stressful trajectories, a running example of the approach, and a description of the

implementation.

3.1.1.1 Overview

A high-level overview of the approach is presented in Figure 3.2. It is structured into three phases.

Initially, a large set of potential trajectories is generated between start and end waypoints, denoted

by wy0 and wyn respectively, as shown in Figure 3.2a. This is followed by a filtering phase in

Figure 3.2b, where traj not aligning with the autonomous system’s reachable set R are removed,

ensuring all remaining traj are physically feasible. Finally, from these feasible trajectories, the most

stressful ones are selected based on a scoring model, as shown in Figure 3.2c. This model either

relies on expert input or machine learning techniques to identify the set of trajectories that maximize

stress.
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(a) Potential Trajectories. (b) Infeasible Trajectories. (c) Stressful Trajectories.

Figure 3.2: An overview of our approach, a) from the set of potential trajectories, b) remove all
physically infeasible, and then c) select the stressful ones.

To achieve this, our approach consists of two main algorithms. Algorithm 1 manages the search

for trajectories through the use of an exploration frontier function. The frontier consists of all the

trajectories which are currently under consideration. Algorithm 1 expands the frontier through calls

to “explore frontier” which is described in Algorithm 2. Algorithm 2 controls how the frontier is

explored by only checking trajectories that are both feasible and stressful.

3.1.1.2 Trajectory Generation

Algorithm 1 manages the search for feasible stressful traj inside w. To keep the approach general,

Algorithm 1 takes in ten parameters: (1) w: a scenario defining the physical volume in which

trajectories will be executed, (2-3) wy0 and wyn: the start and ending waypoints for the returned

trajectories, (4) nwy: The number of waypoints to be explored in w, (5) ntraj : the required length

of a trajectory, (6) t: the total computation time allowed, (7) res: resolution of samples used to

compute the reachable set, (8) width: the number of trajectories explored and expanded during each

loop of the algorithm, and (9) KD: the KD model of the autonomous system, (10) SM : a Scoring

Model used to select the most promising trajectories to be further explored.

The goal of Algorithm 1 is to generate trajectories of length ntraj , that start and end at user-

defined waypoints wy0 and wyn. It does this by representing w as a graph gw, where the vertices are
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Algorithm 1: Trajectory Generation Manager

Input : w, wy0, wyn, nwy, ntraj , t, res, width, KD, SM
Output: Trajs

1 Trajs = ∅
2 while Execution Time < t do
3 Wy = generate random waypoints(w, nwy)
4 gw = create graph(wy0, wyn, Wy)
5 traj0 = {wy0}
6 Frontier = {(traj0; 0)}
7 Trajc = ∅
8 while Trajc == ∅ and |Frontier| > 0 do
9 Frontier′, Trajc = explore frontier(gw, wyn, ntraj , Frontier, res, width, KD, SM)

10 Frontier = Frontier ∪ Frontier′
11 end
12 Trajs = Trajs ∪ Trajc
13 end
14 return Trajs

waypoints. Each vertex is connected to all other vertices by the shortest straight line between them,

creating a complete graph. An edge represents the optimal path an autonomous system should follow

to traverse between any two waypoints. A path is created by combining sequences of vertices and

following the edges between them. All paths through the gw represent all the possible trajectories

in w.

It starts by initializing the set of stressful trajectories Trajs to an empty set in line 1. Algorithm 1

repeatedly generates trajectories until it exceeds a computation time of t and then returns the

generated Trajs in line 14. The Trajs are computed in lines 2-12 as follows. First, in line 3, a set of

random waypoints are generated Wy. Line 4 creates the graph gw. The graph’s vertices consist of

nwy randomly sampled waypoints as well as the user-defined wy0 and wyn waypoints. This approach,

of creating gw, consisting of nwy random waypoints, is inspired by probabilistic roadmap planners

(PRM) [179]. Lines 5-7, initialize a search Frontier. The Frontier is a set of trajectories and

trajectory score pairs. The Frontier is used to track the explored trajectories and is incrementally

expanded in the “explore frontier” algorithm. It is initialized with traj0, a trajectory containing

the user defined wy0, and a score of 0. A trajectory score represents an estimation of the trajectory

induced stress on the autonomous system. The stress is estimated using a SM described later
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in Section 3.1.1.6. The algorithm repeatedly invokes “explore frontier” in line 9 to incrementally

expand the Frontier and search for complete trajectories Trajc; trajectories which start at wy0,

end at wyn, and are length ntraj . Algorithm 2 describes “explore frontier”, which returns the newly

explored frontier Frontier′ and complete trajectories Trajc from each iteration.

3.1.1.3 Efficiently Exploring the Frontier

Algorithm 2 describes “explore frontier” which can be broken down into four stages. First, Algo-

rithm 2 selects trajectories from the Frontier based on trajectory scores. Second, Algorithm 2

computes the physical space reachable by the autonomous system given the current autonomous

system state. Third, Algorithm 2 expands the Frontier by building a new set of trajectories by

estimating the autonomous systems future state at each waypoint within the reachable space, and

then using the estimated state to build new trajectories. Finally, the “assign scores” algorithm gives

a score to each of the new trajectories in the Frontier.

More precisely, Algorithm 2 starts by sorting the current Frontier based on each trajectory

score. The top width trajectories are selected for further processing. The larger the width, the

more trajectories are explored per invocation of the “explore frontier” algorithm, and the more

computationally expensive the operation is. However, the larger the width, the more likely the

algorithm will find a trajectory that ends at wyn, while also inducing large amounts of stress.

Selecting from the Frontier, in line 6-10, consists of removing the ith most promising trajectory

and checking if it meets the requirements to be a complete trajectory. If so it is added to the set of

complete trajectories Trajc in line 9. In lines 11-19, if the selected trajectory is shorter than ntraj ,

the search continues by expanding the selected trajectory and adding it to Frontier′.

Before the selected trajectory is expanded and Frontier′ computed, a reachable set R needs to

be computed. R defines the physical space the autonomous system can achieve in a time step given

its current state. Thus all wy inside both gw and R are feasible for the autonomous system. More

specifically, the reachable set is computed using the autonomous systems last known state slast,

the autonomous systems KD model, and a sample resolution res. Computing R is described in

Section 3.1.1.4.
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Algorithm 2: Explore Frontier

1 Function explore frontier(gw, wyn, ntraj, Frontier, res, width, KD, SM)
2 Trajc = ∅
3 Frontier′ = ∅
4 Sortedfrontier = sort(Frontier.scores)
5 for i = 0; i < width; i+ + do

// Select From Frontier

6 traj = Sortedfrontier[i].traj
7 Frontier = Frontier ∩ not traj
8 if |traj| == ntraj, and traj[ntraj ].position == wyn then
9 Trajc = Trajc ∪ traj

10 end
11 if |traj| < ntraj then

// Calculate Reachable Set

12 slast = traj[last].s
13 R = calculate reach set(slast, res, KD)
14 for wy in (gw ∩R)) do
15 snew = estimate state(slast, wy.position)
16 trajnew = traj ∪ {wy.position, snew}

// Expand Frontier

17 Frontier′ = Frontier′ ∪ (trajnew, ∅)

18 end

19 end
// Assign Scores

20 Frontier′ = assign scores(Frontier′, SM)

21 end
22 return Frontier′, Trajc
23

Once all the feasible waypoints for the autonomous system are known, the algorithm expands

the Frontier. Each new trajectory is then added to the frontier and scores assigned to them before

being returned.

3.1.1.4 Reachability Analysis to Explore the Feasible Frontier

The computed reachable set R allows the “explore frontier” function, described in Algorithm 2, to

precisely identify which wy ∈ gw are achievable given the autonomous systems KD model and slast.

Thus trajectories that the autonomous system could not physically achieve can be rejected during

trajectory generation, as opposed to during trajectory execution.
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In this work, we explore two techniques to compute reachable sets and later compare them to a

baseline technique that sets the entire space as reachable. The first approach over-estimates R, by

setting it to a sphere around the wy position, whose radius is equal to the maximum velocity the

autonomous system can travel in 1 second.

The second approach leverages the full KD model to compute the reachable set. Computing

such reachable sets is an active area of research and described in more detail in Section 2.3.3. For

simplicity, we implement a brute force technique to compute it. Given slast, we generate a set of

input samples and apply the KD model to produce a set of potential reachable states. The convex

hull of this state set is computed, offering a more precise approximation of R compared to our

previous approach that utilized a simple sphere. This approach requires resx evaluations of the

forward KD model equations, where x is the number of input variables for the KD model equation,

and res is the number of input samples taken [60]. For example, in the case of a quadrotor, which

we later study, there are 4 input variables, one for each of the motors on each arm. If permutations

of 5 linearly sampled inputs are taken, the approach would need to perform 54 = 625 computations

resulting in 625 achievable future states.

3.1.1.5 Estimating Autonomous System State for Trajectory Building

The autonomous systems state at a new waypoint, labeled snew, is estimated, on line 15 in al-

gorithm 2, based on the autonomous systems previous state slast and the current waypoint wy.

Approaches to state estimation can vary in cost and precision. At two extremes of this spectrum

are estimators that 1) assume the autonomous system is at rest when reaching a waypoint, and 2)

solve the inverse of the KD model equations. The first is inexpensive, but imprecise and the second

is precise, but expensive.

We implement a hybrid approach that utilizes only specific segments of the KD model equations

to estimate the state, while the remaining state variables are set to their resting values. This selective

reset of state variables is configurable. For instance, in the case of the quadrotor we examine later,

our method calculates the expected velocity at each waypoint by dividing the Euclidean distance

between waypoints by the time allocated between them. Meanwhile, it resets the attitude and
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angular velocity to 0 at each waypoint. This implies that we assume the quadrotor enters each

waypoint in a level orientation.

3.1.1.6 Assigning Scores to Select Next Trajectory

Scores are assigned to each trajectory in the Frontier using a scoring model SM , as described in

Algorithm 3. For each traj in the Frontier we start with an initial score of 0. The algorithm

iterates through each pair of waypoints in the trajectory and assigns a score to the pair. The final

trajectory score is then computed by accumulating the scores for that trajectory.

The scores are assigned by an SM and are calculated based on an estimate of the stress that the

autonomous system will incur. A good SM will accurately estimate this stress, using a scalar metric,

given two autonomous waypoints. Depending on the application of the autonomous systems, stress

can be measured using different stress metrics. For example, three possible metrics are maximum

deviation from the expected trajectory, maximum acceleration, or total time. The only requirement

is for the selected stress metric to be measurable during autonomous systems execution. The main

stress metric we use in our study is maximum deviation from the expected trajectory, which is

illustrated in Figure 3.3. The maximum deviation, a standard measure associated with navigation

safety, is a measure of the largest error between the expected position of an autonomous system and

its actual position. In this work, we explored two classes of scoring models that we later compare

to a baseline scoring model that randomly selects a score.

Algorithm 3: Assign Scores

1 Function assign scores(Frontier, SM)
2 for traj in Frontier do
3 score = 0
4 for i = 0 to len(traj) − 1 do
5 wyi = traj[i]
6 wyi+1 = traj[i+ 1]
7 score += SM(wyi, wyi+1)

8 end
9 traj.score = score

10 end
11 return Frontier
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Figure 3.3: Trajectory attributes and the stress
metric maximum deviation. The solid line is the
expected trajectory while the dotted line is the
true behavior.

The first scoring model leverages a user’s do-

main knowledge to create rules likely to maxi-

mize some goal, for instance in our case, maxi-

mizing deviation. In our evaluation, for exam-

ple, we identified the trajectories velocity vin,

vout, and the trajectory angle Θ, as shown in

Figure 3.3, as attributes likely to be correlated

to maximum deviation. For example, a large vin

and Θ correspond with the intuition that enter-

ing a waypoint with high velocity might result

in a significant deviation if the autonomous system is also required to take a sharp turn. In general,

the effectiveness of such a model will depend on a domain expert’s ability to identify the attributes

as well as how closely the attributes align with the autonomous systems behavior, which depends

on the autonomous systems planner, controller, sensing, and actuation capabilities.

The second scoring model learns from previous data. It consists of using a collection of trajecto-

ries generated using a random scoring model and subsequently identifying the factors that lead to

particularly stressful trajectories. This knowledge can then be used to score future trajectories on

their ability to cause stress. As an example, assume that there is a series of generated trajectories.

The autonomous system could then execute the trajectories to render an actual maximum deviation.

The traversed trajectories could then be broken down into pairs of waypoints (wyi, wyi+1) like that

of Figure 3.3. The maximum deviation max dev associated with each (wyi, wyi+1) and a set of

attributes that may be associated with that deviation (e.g., vin, vout, Θ) could be used as training

data. Then a learning technique can be used to produce a SM that, given a pair of waypoint

attributes, can estimate the expected maximum deviation.

In our evaluation, we generated a SM using a polynomial regression model where the loss function

is the linear least-squares function, and regularization is given by the ℓ2-norm [113]. We determined

the best polynomial degree using 10-fold cross-validation. If the resulting model provides a good fit

(i.e., strong correlation and low cross-validation loss), then it can be used to assign predictive scores
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to future trajectories without executing them. This approach incurs the cost of trajectory execution

to generate the data to train the model. Thus its applicability depends in part on the cost of such

execution. In many cases, such costs can be mitigated, for example through simulation, and overall

it is beneficial in that it does not rely on the user’s expertise.

3.1.1.7 Example Trajectory Generation

We provide a step-by-step illustration of our approach in Figure 3.4. In this example, we show 6

random waypoints, we explore 2 trajectories at a time, and we are looking for trajectories with 4

waypoints. More specifically, gw is generated with nwy set to 6, we set width to 2, and ntraj to

4. After the gw’s construction using a modified version of PRM, we select from the frontier, which

after the initialization in Algorithm 1, is a single trajectory that contains wy0. We calculated the

R for the last and only waypoint (wy0) in the trajectory as described in Section 3.1.1.4. We then

expanded the Frontier using each of the waypoints inside gw and R. Specifically we create 3 new

trajectories ⟨wy0, wy1⟩, ⟨wy0, wy2⟩, and ⟨wy0, wy3⟩ by estimating the state snew at each wy.position

and adding them to the Frontier as described in Section 3.1.1.5. Scores are assigned to each of the

new trajectories based on a SM as described in Section 3.1.1.6.

On the second iteration, due to the width of 2, the two highest-scoring trajectories, ⟨wy0, wy2⟩

and ⟨wy0, wy3⟩, are selected from the frontier (filled circle). For each of the selected trajectories

last waypoints, an R is calculated. The Frontier is expanded using the waypoints in each R.

This results in 4 new trajectories. It is important to note that a single waypoint may feature in

multiple trajectories, demonstrating our approach’s versatility. For example, the centrally positioned

waypoint wy2 is also referred to as wy4 in a different trajectory. This naming variation emphasizes

that each waypoint encapsulates a pose, or both position and state In particular, while wy2 and

wy4 occupy the same position, they are differentiated by their states. Specifically, wy2 is consistent

in state across the trajectories ⟨wy0, wy2, wy6⟩ and ⟨wy0, wy2, wy7⟩. Conversely, in the trajectory

⟨wy0, wy3, wy4⟩, the waypoint is represented as wy4 to signify a different state, despite sharing its

position with wy2. This distinction highlights the flexibility of our approach to create many different

trajectories through both variations in position and state. Following this, scores are assigned to each

44



Figure 3.4: Our approach illustrated with waypoints (circles), trajectories (solid lines), and reachable
sets (dotted lines). The example considers a 2D world with 6 random waypoints, a beam width of
2, and a trajectory length of 4. The autonomous system in this example, starts with 0 velocity and
is facing directly upward (small triangle).

trajectory, and selections are made from the frontier based on these scores.

On the third iteration, we notice that the trajectory ⟨wy0, wy3, wy5⟩ produces an R with no

further waypoints inside. Thus that particular trajectory is removed from the frontier. After this

iteration two trajectories ⟨wy0, wy3, wy4, wy8⟩ and ⟨wy0, wy2, wy6⟩, are chosen based on their scores

of 16, and 12 respectively. The first trajectory meets the criteria of starting at wy0, ending at wy8

which shares a position with wyn, while also being of length 4. This trajectory is added to the trajc,

and the algorithm repeated with a new gw. Although this is a hypothetical example, the approach

still selects a stressful trajectory. The final trajectory requests the autonomous system to take an

immediate ≈70 degree right turn, followed by a ≈45 degree left turn before moving to wyn.

3.1.2 Study

The goal of the study is to assess the proposed approach and determine what benefits the intro-

duction of the KD model and scoring models has on stressful trajectory generation for autonomous
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systems. More specifically, we aim to answer the following research questions for automated trajec-

tory generation:

RQ1) Does the introduction of a KD model improve the ability to generate feasible and valid

trajectories with respect to the physical semantics of the autonomous system?

RQ2) Does the introduction of a scoring model improve the ability to generate stressful trajectories?

3.1.2.1 Setup

The study w is set to a 30m× 30m× 30m area with 250 randomly placed waypoints. This selection

matches the volume (27000m3) and size of a typical outdoor aerial testing facility [203, 260, 360].

The systems we used are listed in Table 3.1. The first is an autonomous racing quadrotor executed

in the publicly available FlightGoggles simulator [123]. The quadrotor has a weight of 1kg, and a

body length of 0.45m [309]. Its maximum velocity in simulation is 18m/s [239].

The FlightGoggles quadrotor comes with a built-in angular rate controller to manage roll, pitch,

and yaw. To evaluate the wide variety of trajectory following techniques exhibited by today’s

quadrotors, we implement four commonly used quadrotor controllers [355] into the FlightGoggles

simulator. Two controllers are of a waypoint control type, using a cascade of three PID controllers;

the first controls the angle of the quadrotor, the second controls the velocity of the quadrotor

using the angle controller, the third sets the velocity of the quadrotor based on the distance to

a waypoint. The first implementation, “Unstable Waypoint Controller”, replicates poorly written

controllers that overshoot and oscillate around waypoints. The second implementation, “Stable

Waypoint Controller”, mimics tuned controllers that are stable and converge to the waypoint. The

next instantiated controller was the “Fixed Velocity Controller”. This controller assigns a shared

Table 3.1: Autonomous systems configurations

Hardware Software Controller Execution

Flightgoggles Quadrotor [123]

Unstable Waypoint [355] Simulation
Stable Waypoint [355] Simulation

Fixed Velocity Simulation
Minimum Snap [248] Simulation

Parrot Anafi Quadrotor [275] Waypoint [276] Simulation and Real World
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proportion of a fixed velocity over each the x, y, and z direction based on the location of the next

waypoint. We set the controller to maintain a velocity of 2m/s, allowing the quadrotor to maneuver

easily. The final controller, “Minimum Snap Controller”, computes a minimum snap trajectory

and follows it using the waypoint PID controller. It was fundamentally different in that it builds

a new trajectory through the waypoints that minimize snap, the 4th derivative of position [248],

which means that it does not adhere to the assumption of the expected behavior being the shortest

straight line between consecutive waypoints.

A second quadrotor, the Parrot Anafi [275], is studied later in Section 3.1.3. This is a commercial

quadrotor, with a weight of 0.5kg, maximum horizontal velocity of 15m/s, and an arm length of

0.1m. The Anafi has an autonomous flight mode, which can follow a series of waypoints. These

waypoints are sent using Anafi’s proprietary API [276], which changes the quadrotors pose using

a controller that is not publicly available. However, Parrot has released the simulator, Parrot-

Sphinx [277], used by their engineers during the development of this drone. This allowed us to run

trajectories on the Anafi Parrot in simulation and the real-world.

3.1.2.2 Implementation

The implementation consists of 4 main software modules [139], as seen in Figure 3.5. The first

module, trajectory generation, implements the approach as described in Section 3.1.1, while the

next three modules run the experiments and are used for collecting the data used in the study.

The first module consists of both the trajectory generation and result processing toolchain. The

trajectory generation uses the trajectory manager to explore the frontier using the reachable set and

scoring model. The resultant trajectories are then processed and converted into data files that can

be accessed by both the Anafi and FlightGoggles control software. The majority of this module is

implemented using Python. The module consists of 36 python scripts with a total of approximately

7,000 SLOC. For certain functions, such as computing the convex hull, it was more convenient to use

MATLAB, and so the approach calls these functions through the MATLAB API for Python [240].
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Figure 3.5: An overview of the implementation. Existing
software is highlighted in a darker shade.

The second module implements

the integration with the Anafi quadro-

tor in both simulation [277] and

the real-world through the Anafi

API [276]. The module consists of

software used to convert the trajec-

tory into waypoints that are read-

able by the Anafi API. The Anafi

API sends the waypoints to the Anafi

quadrotor and records the returned

GPS data through either a virtual

network or real Wi-Fi connection.

The final two modules contain the

control and simulator code to fly the

FlightGoggles quadrotor. The FlightGoggles simulator has two parts. The first part emulates the

dynamics and control of the quadrotor, while the second part simulates the quadrotors sensor data

and collision information. At the time of writing, the FlightGoggles simulation uses proprietary

graphics assets. Thus we only use the part of FlightGoggles that emulates the quadrotor dynamics,

and we re-engineer the FlightGoggles simulation tool in Unity based on the available documentation.

The control code uses the Robotic Operating System (ROS) [328] and is written in C++. The

implementation of the 4 custom quadrotors is integrated into the original code base using 11 Python

classes consisting of approximately 2150 SLOC. The portions of the FlightGoggles simulator that

were redeveloped in Unity are written in C#. The new simulator integrates with the base ROS code

using the original TCP link in FlightGoggles. The new simulator uses assets that are freely available

from the Unity Asset Store [351].

48



3.1.2.3 RQ1: Trajectory Generation with KD Models

To answer RQ1, we need to assess the cost and benefit of incorporating a KD model into the trajec-

tory generation technique. At the time the work was published, there were no automated approaches

or tools available for the automated generation of stressful target trajectories for autonomous sys-

tems. The state-of-the-practice consists of handcrafted stress tests built by experts, which tend to be

effective but limited in the scale of exploration. Thus, to identify the benefits explicitly introduced

by the KD models, we adapted how the reachable set in line 13 of Algorithm 2 is computed using

3 different techniques. The first approach, No KD, returns all waypoints in the world, without

considering any form of a KD model. The second approach weakly approximates the reachable set,

Approx KD, by computing a sphere whose radius is the distance the quadrotor could travel at

maximum velocity in ∆t = 1s. The final approach, Full KD, uses a full KD model as described

in Section 3.1.1.4. While expensive [118], this guarantees that all explored trajectories are valid by

construction. Each technique was given 2 hours to generate and execute trajectories. Algorithm 2

was set to have a beamwidth of 5 and trajectory length between 3 and 50.

Varying trajectory length allows us to assess the efficiency of techniques as the problem scales in

complexity. For example, the number of possible trajectories of length 3 in a world with 250 possible

waypoints is 1.5 × 107 and that increases to 4.1 × 10117 for trajectories of length 50.

For each technique, trajectories returned in line 22 of Algorithm 2 were checked for validity using

the autonomous systems full KD model. For each valid trajectory, we model its execution time in

Figure 3.6: Valid trajectories generated of varying length.
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proportion to its length and decrement the total experiment time. The number of physically valid

trajectories returned by each technique within the 2 hour limit is shown in Figure 3.6.

Figure 3.6 shows that for simpler trajectories of length 3 for No KD and trajectories of length 5

for Approx KD the computationally cheaper approach produces more valid trajectories as opposed

to our Full KD approach. This is because generating short, physically valid trajectories is easier, as

only a few valid waypoints need to be selected. However, we can see that as the trajectories become

longer and more complex, it becomes beneficial to use the computationally more expensive Full KD

model. Figure 3.6 shows that Full KD start to outperform both No KD and Approx KD for

trajectories of length 4 and 6 respectively, in terms of the number of physically valid trajectories

produced. In fact, for trajectories of length 8 both No KD and Approx KD are unable to

produce any valid trajectories in the given amount of time, while the Full KD can produce 85 valid

trajectories. Even for trajectories of length 50, Full KD can still find 1 valid trajectory in the

given time. This is because the Full KD approach provides information to Algorithm 2 on which

waypoints in the world lead to invalid trajectories. This information, although expensive to generate,

allows the search technique to reject invalid trajectories during trajectory generation as opposed to

trajectory execution. This is especially important since the number of possible trajectories grows

exponentially with their length – making pruning invalid paths cost-effective.

We then computed several performance metrics for valid trajectories of length 10. We ran each of

the valid trajectories from the Full KD approach using the FlightGoggles simulator with the stable

waypoint controller. Figure 3.7 shows the distribution of 3 performance metrics, namely: maximum

deviation (m) from the optimal trajectory, the maximum acceleration (m/s2) of the autonomous

system, and total execution time (s). We chose these because they are diverse in that deviation

captures the potential for the autonomous systems to operate unsafely, acceleration captures the

stress placed on the autonomous system hardware, and total time reflects the autonomous systems

ability to operate effectively.

Figure 3.7 shows that for each of the metrics, the quadrotor exhibits a broad range of possible
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Figure 3.7: The distribution of performance metrics ob-
tained by executing the FlightGoggles quadrotor in simu-
lation.

values and that each of the distribu-

tions is positively skewed, with longer

tails to the right (more stress). The

fact that the distribution has longer

tails to the right shows that even

though most trajectories produce lit-

tle stress, there are trajectories which

significantly stress the autonomous

system and lie outside the normal op-

erating profile. Figure 3.7 shows that

not only do the valid trajectories with

no scoring model result in a range of

behavior but that we are also able to measure multiple performance metrics on them.

RQ1 Findings: Although it is computationally more expensive to use a KD model, incorporat-

ing it into trajectory generation is critical for efficiently generating valid trajectories, especially

as the trajectory length increases. We also found that, independent of the chosen measure, the

stress induced by valid generated trajectories exhibited high variability. This highlights that,

without a scoring metric, there is no guarantee that a valid trajectory will also be stressful.

3.1.2.4 RQ2: Incorporating a Scoring Model

To answer RQ2, we need to determine whether computing and including a scoring model, line 20 of

Algorithm 2, leads to the generation of more stressful trajectories. We explore 4 different scoring

models as described in Table 3.2. The first 3 scoring models are designed to represent scoring models

designed by experts. Intuition tells us that for a quadrotor, the higher an autonomous system’s

velocity, the more deviation we can expect given a turn. Using this intuition, three handcrafted

scoring metrics were created. The first assigned higher scores to High Velocity trajectories without

consideration to turns. The second assigned higher scores to trajectories that had both high velocity

and waypoints that resulted in 90 degree turns (High Velocity + 90 Deg). The last handcrafted
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Table 3.2: The different scoring models and their descriptions.

High Velocity Prefers high-velocity trajectories.

High Velocity + 90 Deg Prefers high-velocity trajectories with 90-degree turns.

High Velocity + 180 Deg Prefers high-velocity trajectories with 180-degree turns.

Learned Learns based on past trajectory performance.

scoring model was similar to the second, except it placed a high score on 180 degree turns (High

Velocity + 180 Deg).

These three approaches require domain knowledge, which is not always readily available. We thus

tried a final scoring model, as suggested in Section 3.1.1.5, which Learned a scoring model based

on the maximum deviation of each controller on the initial trajectories in RQ1. The learned scoring

model uses 10-fold cross-validation to determine the polynomial degree used in a ridge regression

model implemented using Python’s Scikit-Learn library [280]. For each of the software controllers

tested in RQ2, we extract attributes from their initial execution. The input and output velocity,

the angle between the waypoints, and the actual maximum deviation is extracted, as shown in

Figure 3.3. Using this as training data, we produced four independent scoring models that, given a

pair of waypoints, predict the maximum deviation for the respective software controller.

For each new scoring model, we generated a new set of trajectories using a total time of 1 hour,

a beamwidth of 5, and a trajectory length 10. That is half of the time given in the RQ1 study

to determine if the scoring model could produce more stressful resultant trajectories and do so in

less time. For comparison, we also generated a baseline where each of the FlightGoggles software

controllers was executed on the trajectory set generated using a Full KD model and no scoring

model as per RQ1 with trajectories of length 10 and 2 hours of generation.

The resulting trajectories were run on each of the autonomous systems controllers, and the

maximum deviation recorded. The choice of maximum deviation was made since it relates to safety

– the further an autonomous system (quadrotor in our case) is away from the expected trajectory,

the more significant the safety risk. To determine whether the introduction of a scoring model was

beneficial, we divided each of the resultant maximum deviations with the mean maximum deviation

from the baseline trajectory set. Thus any test that induced more stress and had a maximum
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Figure 3.8: The ratio of maximum deviation with a scoring model to maximum deviation without
one. Here the initial trajectory set with no scoring model would have a mean value of 1. Any
trajectory set that produced more stress than the initial trajectory set would have values greater
than 1. The medians (central line) and mean (triangle and number) are shown.

deviation greater than the initial test set with no scoring model from RQ1, would result in a value

greater than 1. Similarly, a test with a value of less than 1 means that it induced less stress than

the average test in RQ1.

The results are shown in Figure 3.8. When considering only the handcrafted scoring models,

Figure 3.8 shows that for each of the controllers, at least 1 of the 3 handcrafted scoring models

results in a more stressful test set. For both waypoint controllers, including a scoring model that

favors trajectories of high velocity results in test sets that are 70% and 76% more stressful. For the

fixed velocity controller, a scoring model that favors 180 degree turns resulted in a test set that is

10% more stressful. The low increase in stress is attributed to the controller’s slow constant speed,

however, we note that our approach still finds test cases that are ≈40% more stressful than the

given random test set. For the minimum snap controller a scoring model that favored 90-degree

turns induces on average 69% more stress. These findings are consistent with the operation of

these controllers. Moreover, taking the mean of the best scoring models shows that, on average,

having a handcrafted scoring model results in a 55.9% increase in maximum deviation on

the stressful trajectories. These findings show that handcrafted scoring models are beneficial when

domain knowledge is available.

Figure 3.8 also shows that for all controllers, it is possible to learn scoring models that can
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generate stressful trajectories for a specific quadrotor. This is useful, especially when there is no

domain knowledge available, for instance, when testing a new autonomous system. Moreover, the

quality of learned models is high, since for each controller we found the learned model produced a

distribution of performance metrics similar to the best handcrafted scoring model. Taking the mean

of all scoring models showed that on average a learned scoring model increased the maximum

deviation by 41.3%.

Recall that the experimental setup for RQ2 used half of the time compared to RQ1, so the

observed improvements in the performance metrics were also significantly less costly to produce.

RQ2 Findings: Introducing both handcrafted and learned scoring model into trajectory gen-

eration produces test that on average are 55.9% and 41.3% more stressful than trajectories

without a scoring model respectively. Moreover, learned scoring models can be generated with-

out any prior domain knowledge.

3.1.3 Real-World Field Study

We performed a preliminary study to explore the application of the proposed approach to a com-

mercial drone operating in an outdoor flying cage of 30m×30m×30m, and analyzed the differences

between executing the trajectories in simulation versus the real-world. As described in Section 3.1.2.1

we selected the popular Parrot’s Anafi quadrotor [275].

As we are not certain about the particular controller used by the Anafi, we learned a scoring

model from an initial set of trajectories that we executed sending waypoints to Anafi’s API. To

reduce the cost of collecting the training set of trajectories, we executed those initial set of random

trajectories in the Parrot-Sphinx [277] simulator. We bound the initial generation to 2 hours, a

beamwidth of 5, and a trajectory length of 10, and the learning was meant to generate a model

that increases the maximum deviation in a trajectory. We then used the learned scoring model to

generate stress-inducing trajectories using a total time of 1 hour, a beamwidth of 5, and a trajectory

length of 10.
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Figure 3.9: Maximum deviation for simulation and
outdoors trajectories normalized by the mean of
the trajectory set with no scoring model.

Figure 3.9 shows the findings in the form of a

boxplot. The first pair of boxes show the results

from the execution of trajectories in simulation,

while the second pair of boxes show the results

from executing the drone in the real world. Each

pair represents the deviation of the initial tra-

jectory set and the stress-inducing trajectory

set, respectively. Each box is normalized by the

mean maximum deviation of the corresponding

initial trajectory set. As mentioned earlier, the

initial trajectory set was generated without a

scoring model, and it shows similar means and

variation in simulation and in the real world.

As shown by the second box, the scoring model learned in simulation allows our approach to

generate trajectories that, when executed in simulation, cause on average a 26% increase maximum

deviation in a trajectory. More interesting, however, is that when the same generated trajectories

are executed in the real-world, they also cause a similar degree of additional deviations, albeit with

greater variation (whiskers of the fourth box) introduced by external environmental factors such as

GPS-localization noise and wind. This confirms that it is possible to mitigate the cost of learning

a scoring model through simulation and apply trajectories generated with that model in real-world

contexts.

From a testing point of view, one might be interested in trajectories (test inputs) that violated

certain specifications. For example, might specify that the maximum deviation from the expected

trajectory cannot exceed some threshold. Figure 3.10 shows the percentage of automatically gener-

ated tests that violate a given maximum distance specification. The results indicate that, regardless

of the specified maximum deviation, using a scoring model produces a larger percentage of tests that

violate the specification. For example, given a specified maximum deviation of 4m, Figure 3.10 shows

that with no scoring model, only 30% of tests generated would violate that constraint. However, our
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Figure 3.11: Anafi’s position in the real-world and simulation as it traverses one of the stress-inducing
trajectories. The expected behavior is marked as dots. The simulated data is marked with dashes.
The real-world data is a solid line.

Figure 3.10: The percentage of outdoor tests
which violated the specified maximum deviation

approach using a scoring model would generate

a test set with approximately 70% of tests that

violate the same specification. Additionally,

these results show that using a scoring model

not only generates a higher percentage of tests

that violate the constraints, but also generates

the test with the largest maximum deviation.

The maximum deviation we observed outdoors

with the generated trajectories was 6.2m, with

the average being 4.5m. This highlights how

the approach can generate stressful trajectories

that push the drone to deviations that go way beyond the expected deviation for this kind of drone.

Developers can also use these trajectories to further investigate the behaviors which led to these

violations. For example, using the Anafi quadrotor, we plotted the test that produced the largest

maximum deviation. Figure 3.11 shows the generated test trajectory (dotted line) of the drone in

both simulation (dashed line) and real-world (solid line). From the top view, it appears that the

Anafi follows the expected trajectory precisely. However, from a side view, it seems like the Anafi

follows the expected trajectory in all cases except when large changes in all x,y, and z-directions

are requested, for instance, when flying from waypoint 2 to 3. The 3rd waypoint is the position

(19.0, 27.0, 29.9). In simulation, although it did not follow the expected short line trajectory, it flew
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to a height of 29.9m as expected. In the real world, the Anafi similarly did not follow the expected

trajectory, however it flew to a height of 31.34m high, 1.34m over the designated flying altitude of

30m, even though all waypoints are within the flying volume. A pilot flying this quadrotor who was

not aware of the distinct behavior shown through this trajectory would at best be surprised and, at

worst, experience a collision.

3.1.4 Summary

We have introduced a novel approach for the automatic generation of feasible and stressful trajecto-

ries for autonomous systems. This approach is unique in that it combines kinematics and dynamics

to generate trajectories to incorporate an autonomous system’s physical semantics. It leverages

algorithms from robotics planning and graph exploration for more efficient input space search and

incorporates a highly parameterizable scoring model to guide the generation of trajectories that

induce high stress on the system. The approach successfully generated valid trajectories, resulting

in a mean increase of maximum deviations by 55.9% and 41.3% in the two systems we studied.

However, this approach requires executing many trajectories each time, which can be costly. Ad-

ditionally, many trajectories might already be executed daily by, for example, a fleet of autonomous

vehicles deployed worldwide. Therefore, our next work will focus on selecting tests from a pool of

scenarios that have already been executed in the physical environment of the autonomous system.

3.2 Differential Testing on Existing Real Data

As of 2021, 80 companies had registered to test autonomous vehicles on public roads [188]. Each of

these companies is producing vehicles that operate on our roads today, collecting real-world sensor

data. As described in Section 2.2.2.2, these vehicles produce massive amounts of data (millions of

miles worth). However, the physical world is vast, with an extremely long tail of rare scenarios that

remain unexplored by even the largest fleets of autonomous systems [195]. This is evident as there

are still accidents and reports of strange or incorrect behaviors by users when these vehicles operate

in the real world [243, 160, 198, 285, 47, 156].
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Current techniques generally consider using sensor data from one source, such as from the specific

autonomous vehicle they are testing, or try to create sensor data from scratch through simulation

or real-world execution. However, this limits the range of these long tail scenarios one can explore,

constrained by the limitations of their own fleet of vehicles or the expense of running simulations

and isolated real-world tests. This presents an opportunity: why not consider leveraging data from

multiple sources of already existing data, including all the sensor data which has already been

collected by all other existing autonomous systems operating in the real-world today? A technique

capable of using any sensor data effectively could explore a much wider range of the long tail

scenarios, much more cheaply, as it has already been collected. However, using all this data to

test arbitrary autonomous systems raises some challenges: How do we determine if the autonomous

system’s behavior is correct in response to any given input, and how do we ascertain if a scenario

is valid with respect to an autonomous system, especially if it was potentially collected by another

source?

The challenge of effectively using any arbitrary sensor data presents two main difficulties. First,

precisely defining and efficiently determining what behavior should be exhibited remains an open

question [162]. This difficulty arises because a range of behaviors might be acceptable in any given

scenario. Distinguishing between those that are indicative of normal functioning and those that

point to potential issues is challenging due to the lack of a precise oracle, Therefore, we first need

to devise an oracle, a method or function, capable of both efficiently and effectively distinguishing

between correct and incorrect behaviors.

The second challenge relates to the specific conditions under which these vehicles are designed

to operate, known as the Operational Design Domain (ODD). The ODD, as defined by SAE J3016,

includes “operating conditions under which a given driving automation system or feature thereof

is specifically designed to function, including, but not limited to, environmental, geographical, and

time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway char-

acteristics” [1]. Consequently, although massive volumes of real-world sensor data can be collected,

an unknown portion may fall outside the ODD of any specific vehicle, where behavior is undefined.

Therefore, we also need a method for filtering out data outside the ODD to concentrate on scenarios
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Figure 3.12: Overview diagram of our approach, which contains both a differential testing component
and ODD filtering component.
∗ODD filtering component was equal contributions from Carl Hildebrandt and Trey Woodlief.

where autonomous vehicle behavior is both defined and relevant.

3.2.1 Approach

An autonomous system navigates scenarios using onboard sensors sen, which generate sensed scene-

state pairs (csen, ssen). Each pair (csen, ssen) is processed by the autonomous system AS, resulting

in an action a = AS(csen, ssen). This action is capable of altering the system’s current state s and

the scene c in which it stands. Over time, as the autonomous system operates within a scenario,

it observes a sequence of sensed scene-state pairs osen = ⟨(csen1 , ssen1 ), (csen2 , ssen2 ), . . . , (csenm , ssenm )⟩.

Applying this sequence osen to an autonomous system results in a sequence of actions, known as a

behavior b = ⟨a1, a2, . . . , am⟩.

All autonomous systems operating globally today produce massive amounts of arbitrary ob-

served sensed data, denoted as Osen = {osen1 , osen2 , . . . }. Testers can access portions of this sensor

data, Osen ⊆ Osen, whether from their own datasets, by combining datasets, or using external
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data collected by an unknown autonomous system. However, much of the data in Osen is unin-

teresting to testers because it generates behaviors B = {b1, b2, . . . } that are either correct, outside

the autonomous system’s ODD, or both. Therefore, the goal of this work is to identify a subset

of failure-inducing sensor data that is also relevant to a specific autonomous system’s ODD,

denoted Osenfr ⊆ Osen.

To achieve this, we propose the approach depicted in Figure 3.12. This approach consists of

two components. The first component is the differential testing component, which aims to identify

the failure-inducing sensor data, Osenf ⊆ Osen. Here, each sequence of sensor data osenf ∈ Osenf

is known to result in a failure. The second component is the ODD filtering component.1 This

component further refines Osenf to include only data relevant to the autonomous systems’ ODD,

resulting in a subset of failure-inducing and relevant sensor data, Osenfr ⊆ Osenf . Consequently, given

a large pool of arbitrary sensor data, our approach identifies a subset of this data that is useful to

testers as it both produces failures in, and is relevant to, the autonomous system. Specifically, this

process narrows the sensor dataset such that Osenfr ⊆ Osenf ⊆ Osen.

3.2.1.1 Differential Testing Component

The first component of the framework is differential testing. This component processes a sensor

dataset Osen, where each sequence of sensed scene-state pairs osen ∈ Osen has a length of m. It

also takes a set of n autonomous systems ASprovided = {AS1, AS2, . . . , ASn} that share the same

functionality, a behavioral threshold bt, and a failure frequency threshold ft. The component then

outputs Osenf ⊆ Osen, a subset of the data known to induce failures in at least one autonomous

system ASi ∈ ASprovided.

As the main objective of this component is to identify Osenf ⊆ Osen, we need to start by un-

derstanding exactly what constitutes a failure in autonomous systems. One way to determine if

a system’s output is incorrect is through the use of oracles. A test oracle is a mechanism used

to determine whether a system’s output is correct with respect to some specification, given some

input [27, 162]. Defining test oracles for autonomous systems is challenging for two reasons. First,

1Developed in collaboration with Trey Woodlief
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specifications for autonomous systems are often not provided, or they stem from sources intended

for human consumption. This means that when they are present, they may be either too high-level

or imprecisely defined for actionable implementation. Examples include vague specifications such

as “must comply with road rule” [38] or “should be comfortable for passengers” [24]. Second, there

is no general way for an oracle to have access to ground truth. For example, consider the challenge

of ensuring that an autonomous car always stops at a red traffic light. One could define an oracle

that checks whether the car’s velocity is zero when a red light is detected. However, if the oracle’s

definition of the traffic light’s state is tied to the autonomous vehicle’s perception, and the vehicle

misclassified the color of the light from red to green, the oracle will incorrectly flag this as correct

behavior. Alternatively, one can provide the oracle with some ground truth by specifically setting

up a test in which one knows the light will be red, or by creating a separate device capable of

determining the traffic light’s state. However, this approach would either require significantly more

effort to establish controlled tests and environments where the state of each entity, such as the traffic

lights, is known prior to testing, or it would necessitate substantial investment in installing dedicated

systems capable of detecting the state of each entity (which may still yield incorrect state readings).

While both formalizing specifications and monitoring an autonomous system with respect to them

is ongoing work, current approaches are still limited and costly [400, 335, 378].

To overcome these challenges, we propose using a concept known as a pseudo-oracle [79]. Pseudo-

oracles work on the assumption that even if a system under test lacks explicit specifications, it must

have been designed and implemented to meet some implicit specifications. A good example of

this is autonomous vehicles, whose implicit specifications are to comply with road rules while being

comfortable for passengers. In such cases, if we have access to two or more instances of such systems,

they can be compared to each other, and when differences occur, we have potentially found a case

where one violated the implicit specifications. This idea can be linked with differential testing

from traditional software engineering [244]. In our differential testing component, each autonomous

system in ASprovided acts as a pseudo-oracle for the others. When discrepancies in behaviors accross

those systems occur, they suggest potential failures, assuming at least one of the implementations

is correct. This method does not rely on a single authoritative source for the correct output but
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rather uses the agreement among multiple sources as an approximation for correctness.

However, creating this differential testing component for autonomous systems is non-trivial.

First, we need a way to apply any arbitrary sensor data osen ∈ Osen to any given autonomous system.

For example, autonomous systems, including different versions of the same system, often require

inputs in diverse formats, with variations in data rates, resolutions, and data types. Additionally,

many of these systems receive inputs from multiple sensors of differing numbers and types, such as

cameras, LiDAR, radar, GPS, and odometry. Consequently, the first stage of our differential testing

component is dedicated to synchronizing and transforming the sensor data to meet these varied

input requirements.

Second, we need a way to run multiple autonomous systems concurrently. Given their complex-

ity, these systems demand access to specialized hardware, such as high-speed networking, GPUs, and

extensive memory. This complexity generally necessitates isolated operation. For instance, these

systems often use hardcoded network ports for communication, leading to conflicts when multiple

versions operate concurrently on the same platform. Moreover, autonomous systems have stringent

GPU latency requirements to process real-time data efficiently, which can cause performance bottle-

necks when several systems compete for the same GPU resources. Additionally, the high throughput

of sensor data on internal buses may exceed the data handling capacities of a single platform when

multiple systems are running. These challenges highlight the difficulties of enabling multiple versions

of an autonomous system to run concurrently without interfering with each other. This process is

managed by the execution environment stage of the approach.

Finally, we need a way to create the oracle capable of detecting behavioral differences in au-

tonomous systems. This task is challenging for two reasons. First, unlike traditional software, which

typically produces discrete outputs, autonomous systems generate results that have continuity con-

straints. This characteristic can make subtle behavioral discrepancies over time more significant,

while also potentially making massive instantaneous differences less impactful. For instance, con-

sider an autonomous vehicle that produces both steering angle and velocity commands. A minor,

momentary change in steering may be inconsequential for a slow-moving autonomous truck but could

precipitate a disastrous collision in the context of a high-speed autonomous racing car. Conversely,
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continuous minor steering adjustments that might destabilize a truck driving in a straight line for

extended periods could be considered normal, even necessary, for a racing car adeptly maneuvering

around a bending track. Second, like traditional software, autonomous systems can produce multi-

ple outputs. However, unlike traditional software, these outputs have physical units and real-world

meanings associated with them. This integration with the physical world means that while each

output may appear isolated, they collectively influence the system’s behavior in significant ways.

For example, a car turning right at a set steering angle and low velocity will behave very differently

from another car turning at the same angle but with high velocity. This complexity underscores the

challenge of validating outputs in autonomous systems, as they cannot be assessed in isolation or

in small groups without considering their combined effects on real-world behavior. This serves to

highlight that our approach needs ways to parameterize how differences are detected. Not only must

the approach account for varied numbers and potentially vastly different outputs, but it must also

recognize that what constitutes a failure for one set of autonomous systems may not for another.

The subsequent sections describe each of these stages in more detail. We note while each stage

is discussed in the approach and implementation, the first two stages, “synchronize and transform

input” and the “Execution Environment”, are more engineering-intensive and therefore are pri-

marily discussed in the implementation section, while the final stage, being more of a conceptual

contribution, is discussed primarily in the approach section.

3.2.1.2 Synchronize and Transform Input

Differential testing relies on providing n systems with the same input. The goal of this stage is

precisely that: to provide each of the n autonomous systems, despite their different input require-

ments, with identical input. Specifically it aims to supply each autonomous system, denoted as

ASi ∈ ASprovided, with the same osen.

To fully understand how this process works, let’s first start by considering how this would work

if we had access to each of the physical autonomous systems in a physical scenario. In such a case,

we could place each of the n autonomous systems ASi into the same real scene c within the scenario

along with setting the ASi’s state s. This scene-state pair (c, s) would be processed by the sensors
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Figure 3.13: Synchronization and transforming each scene-state pair in osenx to provide the au-
tonomous systems with the same input.

seni of each autonomous system. As each ASi may be equipped with different sensors seni, they

would therefore produce slightly different representations (cseni , sseni) that all stem from the same

original input (c, s).

In this work, the approach does not have access to the original (c, s), as shown in Figure 3.13.

Instead, it is given osenx = ⟨(csenx
1 , ssenx

1 ), (csenx
2 , ssenx

2 ), . . . ,

(csenx
m , ssenx

m )⟩, which is sensor data collected from some arbitrary autonomous system sensors senx.

Here, we need a way to convert it so that it can be consumed by each of the ASi ∈ ASprovided. To

achieve this, our approach defines a function transform synchronize that takes in the sensor input

requirements and (csenx , ssenx) to produce (cseny , sseny ), such that (cseny , sseny ) = seny(c, s).

The transform synchronize function performs two main operations. First, it modifies (csenx ,

ssenx) such that the transformed (cseny , sseny ) meet the specific sensor modalities and types of seny.

Second, it ensures that (cseny , sseny ) is synchronized with the expected functioning of ASy if it were

operating in (c, s). We will describe how this transformation function can be implemented in more

detail later in Section 3.2.2.1.2. As the goal was to provide each ASi ∈ ASprovided with the same

input, we will simply refer to the input for all autonomous systems as osen.

3.2.1.3 Execution Environment

The goal of the execution environment is to run n autonomous systems ASprovided concurrently on

the same input (after the proper transformation) and to collect the output Bprovided. We showcase

this process in Figure 3.14. It starts by taking in a single input osen, which consists of m sensed
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Figure 3.14: Synchronization and transforming each scene-state pair in osenx to provide the au-
tonomous systems with the same input.

scene-state pairs. This is then fed into each of the n autonomous systems, which subsequently

produce n behaviors Bprovided = {b1, b2, . . . , bn}. Recall that, each of these behaviors b is actually a

sequence of actions b = ⟨a1, a2, . . . , am⟩, corresponding to each of the sensed scene-state pairs from

osen.

3.2.1.3.1 Identifying Behavioral Differences

Now that we can provide all autonomous systems ASprovided with the same input osen, and collect the

output Bprovided, we need a way to determine if any of the behaviors bi ∈ Bprovided are failures. To

do this, we define an oracle. As described in Section 2.2.1.2, is a test oracle is a function or procedure

that distinguishes between the correct and incorrect behaviors of a system under test [162, 28, 27].

Using the terminology from Barr et al. [28], an oracle is defined as using Equation 3.1. Here the

oracle is a partial function D that maps from a test activity sequence Ta to true or false, representing

whether it accepts the test activity or not. Under their definition, a test activity sequence Ta is a

sequence of stimulus-response pairs produced by a system under test.

D : Ta 7→ B (3.1)

Building on Equation 3.1, we can define an oracle for a single autonomous system using Equa-

tion 3.2.
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oracle : (osen, b) 7→ B (3.2)

In Equation 3.2, our “stimulus” is the sequence of sensed scene-state pairs osen, and the “re-

sponse” is a behavior b. The question then becomes how to define the mapping function? In

traditional software testing, the mapping function can take the form of a predicate, which is a spe-

cific condition or set of conditions that can be evaluated as true or false. The predicate can be

derived from several sources of information. For example, from specifications, including state-based

specifications [353, 352, 206, 161], which define the predicates as preconditions and postconditions,

or model-based specifications [325, 128, 44, 99], which define predicates close to the implementation

languages programmers use. However, as described earlier these approaches cannot be used due to

the lack of explicit specifications for autonomous systems.

Therefore, as mentioned before we build upon a pseudo-oracle [79]. Pseudo-oracles address the

so-called non-testable programs problem and build upon the fact that if specifications cannot be

derived for a program, we can simply replace them with alternative programs implemented to share

the same implicit specifications. More specifically, if we use the fact that all AS ∈ ASprovided

share the same implicit specifications, such as safely navigating real-world road conditions while

adhering to road rules, we can use each as oracles for the others. To do this, we provide each of the

ASprovided = {AS1, AS2, . . . , ASn} with the same single input osen and then compare the collection

of outputs Bprovided = {b1, b2, . . . , bn} to determine if any differ. Therefore, our oracle for a single

autonomous system in Equation 3.2, is simply updated to take in all behaviors Bprovided, rather

than a single behavior as shown in Equation 3.3.

oracle : (osen, Bprovided) 7→ B (3.3)

Now that we have all the behaviors Bprovided, the mapping function can be defined as one that

compares all the behaviors to each other and looks for differences, as described in Equation 3.4.

mapping(osen, Bprovided) : [∀i, j ∈ [1..n], i ̸= j|∆(bi, bj , bt) ≥ ft] (3.4)
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This mapping function takes in the input osen and the set of outputs Bprovided, and compares

them to the user-defined behavioral threshold bt and failure frequency threshold ft. It does this by

passing all combinations of bi ∈ Bprovided and bj ∈ Bprovided, where i ̸= j, to a function ∆, along

with the behavioral threshold bt. The ∆ function computes the differences between the behaviors

and compares these to bt. Specifically, in our instantiation of this function in the study, we perform a

pairwise comparison between each of the actions in the two behaviors. Each comparison is evaluated

against bt, and the function returns a count representing how many actions exceeded bt. For example,

if two behaviors consisted of five actions each (i.e. m = 5), and three of these actions differed by

more than bt, ∆ would output 3. Finally, this count is compared to the failure count threshold ft,

which determines if the two behaviors differ enough for the oracle to accept that the behaviors are

sufficiently similar or not. This double threshold allows us to overcome the challenge introduced

in Section 3.2.1.1, which highlighted the need for an oracle capable of detecting both magnitude

differences and variations over different frequency counts.

For example, consider n = 3 autonomous cars, such that Bprovided = {b1, b2, b3}, where each

b ∈ Bprovided represents the throttle percentage used to control the cars acceleration. If your

execution environment was set to process osen of length m = 4, you could get the following output

shown in Equation 3.5:

Bprovided = {b1, b2, b3} = {⟨25, 30, 35, 40⟩, ⟨25, 25, 70, 70⟩, ⟨10, 35, 75, 100⟩} (3.5)

The mapping function in Equation 3.4 would then be instantiated, with each b ∈ Bprovided being

passed into the ∆ function along with bt. Let’s assume for this example that bt = 10, i.e., a developer

wanted to identify throttle differences of more than 10 percent. If the ∆ function returns a count

representing how many items in the sequence differed by more than bt, you would get what is shown

in Equation 3.6.

mapping(osen, Bprovided) : [∆(b1, b2, 10) ≥ ft,∆(b1, b3, 10) ≥ ft,∆(b2, b3, 10) ≥ ft]

: [2 ≥ ft, 3 ≥ ft, 3 ≥ ft]

(3.6)
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In such a case, unless ft = 4, one of these would evaluate to True, indicating a difference, of

greater than 10 percentage occurred more than ft times, between at least one pair of autonomous

systems.

However, in order to get this result, this mapping function needs to compare all combinations of n

behaviors, it will result in
(
n
2

)
true or false values, describing which combinations of behaviors violated

and did not violate the thresholds. This could be an issue, as it requires
(
n
2

)
calls to the ∆ function,

which is expensive. This is especially a concern as our approach aims to process large amounts of

Osen. For example, in the study, we process 4.6 million scene-state pairs (csen, ssen) ∈ osen over

n = 3 autonomous systems, which would require 13.8 million comparisons. We, therefore, propose

two alternative mapping functions, both aimed at reducing the cost of this process.

The first alternative mapping function assumes that a developer only cares if one of the au-

tonomous systems fails. This could be because the developers obtained ASprovided by including

multiple versions of the same underlying autonomous system, and therefore only cares about the

latest, ASnth version. Alternatively, it could be because the developer has n − 1 competitors’ au-

tonomous systems and wants to improve only their own autonomous system, ASn. In such cases,

the mapping function could be simplified to require only n− 1 calls to the ∆ function, and is shown

in Equation 3.7.

mapping(osen, Bprovided) : [i ∈ [1..(n− 1)]|∆(bi, bn, bt) ≥ ft] (3.7)

This mapping function is very similar to the ones used in regression testing, which would only

compare the latest version to a single previous version. However, in our mapping function, we

compare the latest version to all other n − 1 versions. This is done to keep the mapping function

broad and applicable to both of the scenarios described above.

The second alternative mapping function does not make this assumption that developers only

care about one of the autonomous systems and instead focuses on detecting failures in any of the

autonomous systems, albeit at a lower computational cost. In such a case, at the expense of not

knowing which AS ∈ ASprovided causes the failure, the mapping function can be defined as:
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mapping(osen, Bprovided) : ∆(max(Bprovided),min(Bprovided), bt) ≥ ft (3.8)

This mapping function computes the extremes of all behaviors and compares them. By doing

this, the function can guarantee that if a difference occurs, it will be detected while reducing the

number of calls to the ∆ function to just one. However, this does require that the extremes are

calculated using the max and min functions, but this can be reduced to a time complexity of just

m operations.

Once the developer has decided on the parameters of a mapping function, the final step is to use

that mapping function in the oracle. Assuming that the mapping outputs true values when a failure

occurs, and the approach wants the oracle to output true when a failure occurs, the oracle can then

be defined as shown in Equation 3.9.

oracle :
∨
mapping (3.9)

This process takes all the true and false values from the mapping function and ORs each of them

together. More specifically, if there was a failure during any of the behavioral comparisons, that will

cause the oracle to output that a failure was detected.

The final consideration to make is that behaviors bi may contain different outputs, such as

steering or throttle values. In such cases, developers might want to define unique bt and ft for each

behavior’s output. To accommodate this, a developer could instantiate multiple oracles, one for each

behavior’s output. Then, they could detect failures across all outputs using Equation 3.10 shown

below:

oracle :
∨

i∈outputs
oraclei (3.10)

In this case, the oracles only accept the behavior if each oraclei for all potential behavior outputs

accepts it.
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Figure 3.15: Visual depiction of ODD-diLLMma’s filtering process: inputting sensor data and natu-
ral language ODD specifications, and outputting a compliance vector indicating adherence to ODD.

3.2.1.4 ODD Filtering

The second major component in the framework is the ODD filtering component. The goal of the

ODD filtering component is to process each (csenf , ssenf ) ∈ Osenf produced by differential testing

component and exclude all data that fails to comply with the vehicle’s ODD criteria, producing

a set of relevant in-ODD failures Osenfr ⊆ Osenf . As presented in this dissertation, this is the first

automated ODD filtering mechanism designed for verifying sensor data with arbitrary ODD’s.

Figure 3.15 illustrates an instance of the ODD filtering system, which is called ODD-diLLMma.

This system processes failure inducing sensor data (csenf , ssenf ), in conjunction with a set of ODD

specifications expressed in natural language. The output is a compliance vector that evaluates the

congruence of (csenf , ssenf ) with the ODD specifications for the autonomous system.

ODD-diLLMma’s encompasses converting each semantic dimension outlined in the ODD speci-

fications into a series of boolean queries via the ODD converter component. These queries, together

with (csenf , ssenf ), are then fed into a multimodal LLM within the ODD checker component. The

output from the LLM is analyzed to formulate the compliance vector, which indicates whether the

data adheres to each specified semantic dimension of the ODD. Below we first give some background

on LLM, and then describe each component of the ODD-filtering section in more detail.
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3.2.1.4.1 Background on LLM

LLMs are advanced artificial neural networks designed for processing, understanding, and generating

human-like natural language [402]. LLM’s take as input a context and a prompt and then provide

as output a response to the prompt. Recent advancements have extended LLMs capabilities to

multimodal forms [169]. Multimodal LLMs can process a wide array of data types, including text,

images, and videos, enabling them to understand and generate responses based on a richer set of

context. Prominent examples include OpenAI’s GPT series [268, 269, 270], Google’s Bard [284], and

Meta’s Llama language models [347, 348, 405].

LLMs and their multimodal variants stand out from traditional neural networks because they use

the transformer architecture. Unlike traditional models that use serial processing, transformers use

parallel processing [357]. This design not only reduces training time but also addresses performance

issues associated with long dependencies that earlier models like recurrent neural networks [247] and

long short-term memory models [146] faced.

LLMs have shown remarkable versatility across various sectors. For instance, in the service

industry, they are increasingly used in sectors like law [205], education [393, 2], finance [382], health-

care [201, 398], content generation [6, 303] and language translation [391, 7]. The field of software en-

gineering has also benefited from LLMs in areas like debugging [170, 218], security analysis [223, 83],

testing [363, 216], and documentation [95, 150].

In autonomous robotics, LLMs are starting to play a crucial role in enhancing robots’ abilities for

interacting with humans using natural language. Projects like SayCan demonstrate LLMs guiding

mobile manipulator robots in performing a variety of tasks inspired by everyday activities, such

as in kitchen settings [8]. TidyBot, another LLM-powered agent, personalized cleaning processes

by learning user preferences through textual interactions [380]. This is not limited to single robot

systems; Smart-LLM introduced a framework using LLMs for controlling multiple robots [175].

The growing availability of open-source libraries for LLM-based solutions further emphasizes their

expanding role in practical applications [381, 291].

Another interesting area LLM are starting to be used in is autonomous driving. Traditional
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autonomous driving systems have typically adopted a modular approach, which segments tasks

into distinct units responsible for perception [230, 224], prediction [322, 166], and planning [51,

371]. While this approach facilitates a clearer understanding of decision-making processes, it also

has inherent limitations, such as loss of key information and redundant computations during the

transition between modules [52, 390]. Multimodal LLMs offer a promising avenue developing end-

to-end solutions which may overcome these inherent limitations of the more traditional modular

approach [210, 339, 191, 63, 41, 385].

3.2.1.4.2 ODD Converter

The ODD converter takes a set of ODD specifications written in natural language. Publicly available

ODDs are written in natural language [342, 119, 69], often in the form of lists describing the ODD

semantic dimensions. For our approach, we must convert the specifications into a structured format

so the LLM Checker’s responses can be unambiguously matched with the semantic dimensions. We

transform the list of semantic dimensions into a series of yes-no questions due to prior demonstrated

success in LLMs responding to this paradigm [295, 407]. This conversion is a one-time task that can

be accomplished either manually or automatically, e.g. by an LLM-based Converter.

For example, a typical ODD specification might state: “Many factors can impact the performance

of openpilot ALC and openpilot LDW, causing them to be unable to function as intended. These

include, but are not limited to: Poor visibility (heavy rain, snow, fog, etc.) or weather conditions

that may interfere with sensor operation...” [66]. This statement would be reformulated into a

question like: “Yes or no, does the image exhibit poor visibility conditions such as heavy rain, snow,

fog, or other weather conditions that may interfere with sensor operation?” By translating ODD

specifications into this question format, we streamline the process for the LLM Checker to analyze

sensor data in the context of these specifications while providing a specific and consistent interface

for collecting data, enhancing the efficiency and effectiveness of our approach.
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3.2.1.4.3 ODD Checker

The ODD checker takes a set of ODD converted ODD specifications formatted as as series of “yes”

and “no” questions, and a failure inducing sensor dataset of sensor readings (e.g., images, point

clouds) that serve as context for the LLM Checker. Our approach uses these inputs to compute

a single compliance vector describing how the sensor input complies with the ODD. Each of the n

ODD semantic dimension questions are passed to the LLM Checker with the sensor input as context

as shown in Figure 3.15.

The LLM Checker is prompted to output either “yes” or “no”, which is then converted to

“Inside ODD” (0), “Outside ODD” (1), or “Undefined” (-1). Given the inherent unpredictability

of LLM outputs [120], we cannot guarantee that the LLM Checker will output explicitly and solely

“yes” or “no”. As such, we use a multi-method parsing strategy to interpret and validate the

response. Strategies include looking directly for “yes” or “no”, applying regular expressions to

identify numbering patterns, and filtering out parts of the response based on context clues. Each

compliance vector can then be checked to see if the data is compliant and included in as part of the

relevant failure dataset, or removed.

3.2.1.5 Limitations

The approach has several limitations. Before looking at the limitations of each component, we

first note a primary limitation of the entire approach. Our approach first passes sensor data to

several autonomous systems before assessing ODD compliance. This means that there is a chance

an autonomous system will be asked to operate outside its ODD. However, this is necessary because

autonomous vehicles require a continuous stream of sensor data to function properly, and by removing

all non-ODD compliant data, we would effectively create a discretized set of sensor data. This

imposes an overhead a limitation as it requires all autonomous systems to process all sensor data,

which is resource-intensive. Secondly, this means that the autonomous systems may be exposed

to non-ODD compliant data just before entering a scenario within the ODD. Therefore, failures

identified in ODD may be attributed to a sequence of inputs outside the ODD just prior to the
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observed failure. As autonomous systems become more advanced and their ODD expands, this

limitation will become less relevant. Next, we will examine the limitations of each component in

isolation.

Differential Testing: Our approach is capable of detecting differences in multiple autonomous

systems that share the same specifications. However, it does have a few limitations. First, our

approach assumes that sensor data is readily available and that it is a superset of the data consumed

by the autonomous systems. Second, it assumes the availability of multiple autonomous systems

that share the same specifications. Both of these assumptions are becoming less of a limitation as

more vehicles, from various companies capable of generating these sensor datasets, begin to operate

on our roads.

Finally, we recognize several limitations of the pseudo oracle. The first limitation occurs when

all autonomous systems violate the same specification; our oracle would mistakenly classify this as

correct behavior. This is a core limitation of differential testing, and can be minimized through the

use of more and varied autonomous systems. The second limitation involves improperly setting of

the threshold values. If set too high, the oracle might overlook differences indicative of a failure,

whereas a threshold set too low could lead to numerous false positives. The third limitation arises

when differences in behaviors, though within specifications, are incorrectly identified as failures.

An example is a fork in the road where both choices, turning left or right, could be equally valid

according to the specifications. This limitation could be overcome through our oracle taking into

account the input osen. Through this, over time, the oracle could learn to recognize and potentially

disregard such scenarios.

ODD Filtering: While our approach is the first to provide an automated way for checking arbitrary

sensor data with respect to an ODD written in natural language, there are several limitations. First,

our approach is expensive. Generally, the inference of deep neural networks is a relatively cheap

operation. However, with LLMs, even inference can be expensive due to the size of the models

being used [53, 96]. This is particularly challenging for the amount of data we need to process. For

example, a 10 minute video at 60FPS would require 10× 60× 60 = 36, 000 inference calls to process

the entire data-stream.
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The next issue is that these LLMs are trained to be general, and while this is beneficial in the

sense that it allows for a wide range of ODD specifications to be checked, it means we potentially

lose accuracy on certain semantic dimensions which are important to us. While we could fine-tune

these models to improve accuracy on the semantic dimensions we care about, this runs into the same

issue as above, where it is an expensive operation, but also requires large amounts of labeled data

which does not yet exist for ODD checking.

The final limitation is with the ODD itself. Publicly available ODDs often lack detail and

therefore can be interpreted in many different ways. For example, consider the example above about

poor visibility. What exactly constitutes poor visibility for openpilot is not defined well enough

to validate if our ODD Checker is correct or not. One LLM, or human for that matter, may find

something to have poor visibility, while another may not. Both may be correct and have arguments

as to why they are correct, and this will remain true until more information is provided in the ODD.

This is discussed later in the study in Section 3.2.2.3.

3.2.2 Study

This study evaluates the effectiveness of our approach for detecting failures in autonomous vehi-

cle behavior. To do this, we address three key questions over three datasets executed through

three versions of a commercial-grade autonomous system, filtered using two LLMs with two distinct

prompting strategies. Each component of our methodology is detailed below. Specifically, we explore

the following questions:

RQ1) How effective is the differential testing component at finding failures?

RQ2) How accurate is the filtering component at classifying data within or outside the ODD?

RQ3) How effective is the entire framework at selecting failure inducing tests within the ODD from

large sets of existing sensor data?

3.2.2.1 Setup

We explore our approach using 3 versions of comma.ai’s openpilot as our autonomous system. Open-

pilot is a commercial, open-source, road-deployed autonomous system that is capable of Automatic
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Lane Centering (ALC). We selected openpilot as it uses camera-based inputs to determine its be-

havior, allowing us to leverage existing camera-based sensor datasets. Additionally, openpilot is

compatible with over 250 vehicle models [73] and has driven over 50 million miles while deployed [68]

indicating the maturity of the system.

3.2.2.1.1 Datasets

We selected two datasets provided by comma.ai to illustrate the existence of viable test cases within

datasets currently in use by the same company that produced the autonomous vehicle. The chosen

datasets are comma.ai’s 2016 dataset [305], which consists of 11 videos totaling 7 hours, and the

comma.ai 2019 dataset [310], containing 2035 videos and extending to 34 hours. These selections

were based on the premise that, coming from the same source as the autonomous driving system,

the data would likely adhere with the system’s ODD and exhibit few, yet hopefully some, failures.

Furthermore, to demonstrate our method’s ability to uncover test cases from alternative sources

of existing real-world sensor data, we examined the most recent 50 videos, totalling to 43 hours,

from the External JUtah dashcam video collection [172], which is unaffiliated with comma.ai. This

collection has thousands of dash cam recordings, showcasing the extensive range of sensor data

already gathered that is publicly accessible. This choice allowed us to explore our approach’s ability

in identifying real-world test cases from existing data pools. Due to its lack of affiliation with

comma.ai, we anticipated this dataset would yield a higher incidence of failures and a wider variety

of data that deviates from the specified ODD.

Each of these videos represents an osen ∈ Osen, however, as these are just videos, they lack

state information. More specifically, for an autonomous system to compute behavior, it requires

the input pair (csen, ssen) ∈ osen. The datasets provided by comma.ai, as well as the alternative

sources, only contain sequences of csen. To overcome this, we pair each csen with a hardcoded ssen.

Specifically, openpilot requires a velocity reading, which we set to 30 mph. This speed was chosen as

it is feasible, though slightly slow, for highway driving and reasonably, though slightly fast, for main

roads in cities and suburbs. We leave the exploration of alternative approaches to setting state, as

well as how state affects our approach for future work.
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3.2.2.1.2 Synchronizing and Transforming Data

An arbitrary sensor dataset Osen may use various combinations of sensor modalities. The goal of

this initial stage is to define a transform synchronize function that can convert sensor readings

into formats that meet the input specifications of an autonomous system’s sensors. To achieve this,

the transformation phase must identify the necessary sensor specifications. Although this process

could theoretically be automated by examining metadata from sensor messages or through static

analysis of the code, we implemented it manually by analyzing the code, its execution, and associated

documentation.

Once the specifications were identified, the next step is to remove any sensor data not utilized by

the autonomous systems. For example, some sensor data may include LiDAR information, whereas

the autonomous system under test may not consume LiDAR. In our case, one of the datasets included

the approximate geographic location where the sensor data was recorded, which was removed as it

was not consumed by the autonomous systems’ sensors.

The next step is to transform and synchronize the remaining sensor readings to match the

identified input specifications. Several different transformations may occur, such as reducing or

increasing sensor fidelity, changing the frequency of the data, or altering the reference frame of

the sensor data. In our study, the resolution of both the comma.ai 2k19 and 2016 datasets was

increased to meet the 1928 × 1208 resolution required by openpilot, whereas the resolution of the

External Utah dataset was reduced. Additionally, each video was synchronized by setting each to a

standardized 15 FPS, aligning with the frequency at which openpilot outputs steering angle data.

These modifications were performed using FFmpeg [346], an open-source and commonly utilized

multimedia framework for processing video files in various formats. The post-transformed data was

then manually inspected to ensure that it yielded reasonable data.

The final stage is to approximate or generate any missing sensor data. This stage is the most

challenging and, in some cases, cannot be achieved. However, with recent advancements in generative

AI [212, 15, 293], this task should become much more achievable in the future. In our case, the

velocity information for the system’s state was not included. As mentioned earlier, we approximated
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this to be 30 mph. This speed was chosen because it is feasible, albeit slightly slow, for highway

driving and reasonably, albeit slightly fast, for main roads in cities and suburbs.

This transformation and synchronization process generated approximately 4.6 million frames in

total, highlighting the number of potential tests that can be found from 3 datasets alone. To further

facilitate subsequent synchronization during the next stage, each frame was assigned a unique frame

ID. This ID would be used by the autonomous systems to record the steering angle associated with

each specific frame, allowing each of the steering angles to be precisely matched up post execution.

3.2.2.1.3 Executing Multiple Autonomous Systems

An autonomous system takes in sensor readings csen and a sensed system state ssen as input and

produces a behavior b, such that b = AS(csen, ssen). This process is known as executing the au-

tonomous system. The objective of this step is to execute multiple autonomous systems concurrently.

Specifically, we aim to execute n autonomous systems, where n ≥ 2. Therefore, given the set of

autonomous systems ASprovided = {AS1, AS2, . . . , ASn}, our goal is to produce a set of behaviors

Bprovided = {b1, b2, . . . , bn}, for each input.

The process of generating Bprovided requires considering two dimensions. First the ratio of

computation required by ASprovided to the computation available in the execution environment.

Second the implementation of the ASprovided, specifically concerning mutual interference.

In our study, we used three versions of openpilot’s ALC from April 2022 [67], March 2023 [72],

and June 2023 [71]. Each of these systems required independent access to a GPU and had hard-

coded network interfaces. Therefore, to ensure each autonomous system had access to a GPU, each

was executed independently on separate PCs, each with a clean installation of Ubuntu 20.04 and

NVIDIA’s latest graphics drivers 535. This setup also overcame the challenge of hard-coded network

interfaces by providing physical separation of the autonomous systems.

3.2.2.1.4 Identifying Differences

The output of each autonomous system, Bprovided, contained only steering information. Since we

were interested in identifying failures in any autonomous system, we used the mapping function
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described in Equation 3.8, replacing Bprovided with the sequences of steering angle data from each

of the three autonomous systems, Θ = {θ1, θ2, θ3}. The implementation of this equation is shown

below in Equation 3.11.

mapping(osen,Θ) : ∆(max(Θ),min(Θ), bt) ≥ ft (3.11)

Here, the mapping function computed the extreme behaviors over Θ, and then compared them to

the behavior threshold bt. Finally, in our approach, we described the failure frequency threshold ft as

a threshold determining how many actions in a behavior need to be violated before the oracle outputs

a failure. In our study we were interested in stricter sequential sequences of failures, as opposed to

just failure frequency. Therefore we modified our implementation to only look for sequential failures.

Specifically, it would only output a failure if a sequential sequence of actions in a behavior violated

the behavior threshold bt for a duration meeting the failure frequency threshold ft. The values for

both bt and ft were varied in the study.

To ensure that the oracle aired on the conservative side when flagging failures, we implemented

a preprocessing phase that clipped each of the steering angles in Θ. Specifically, we clipped each

of the steering angles in θ ∈ Θ to ±90 degrees. This effectively removed any failures that were

solely due to the magnitude of the steering angle. For instance, without this preprocessing, two

steering angles indicating a sharp right turn might be flagged as inconsistent simply because of a

difference in magnitude, even though both were logically performing the same action. While some

developers might want to detect these differences, our goal was not to flag differences based solely

on the magnitude. Rather, we aimed to identify failures that were clearly impactful, as they were

caused by differences in logical actions. By limiting θ ∈ Θ to ±90 degrees, we essentially restrict the

range of behaviors, making it more likely to identify failures that are caused by significant differences

in logical behaviors. For example, one AS turning left +45 degrees and the other turning right −45

degrees represent a significant difference of 90 degrees. This contrasts with both angles turning in

the same direction, such as one at 180 degrees and another at 270 degrees, which also differ by 90

degrees but are less likely to reflect impactful differences in driving logic.
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3.2.2.1.5 ODD Converter

The initial phase of this task required manually converting the ODD of comma.ai’s openpilot ALC

system from its natural language description, presented as a bullet list on their website [70], into

a structured format. Each of the points from the website are presented in the first column of

Table 3.3. The researchers identified various semantic dimensions from each of these bullet points.

For instance, a bullet point mentioning “When in sharp curves, like on-off ramps, intersections, etc,

...” was interpreted to encompass three distinct semantic dimensions: sharp curves, on-off ramps,

and intersections, all of which are detailed in the second column of Table 3.3. Subsequently, each

of these 11 semantic dimensions was translated into a series of binary “yes” or “no” questions,

maintaining as much of the original ODD wording as possible. These questions are displayed in the

third column of Table 3.3 and were used as part of the prompts for ChatGPT-4V(ision) [270] and

Vicuna [59] in the subsequent ODD Checker phase.

3.2.2.1.6 ODD Checker

In the development of the ODD checker, we explored two readily available LLMs. The first utilizes

the MiniGPT-4 framework, which integrates the open-source Vicuna V0, a 13 billion parameter

model [59], through a projection layer. This integration allows for the processing of visual inputs.

The second LLM we assessed was OpenAI’s proprietary ChatGPT-4V(ision) [270], which we accessed

via their API. This model offers potentially more advanced, industry-grade capabilities but incurs

a cost of approximately $0.02 per image-prompt pair.

3.2.2.1.7 Prompt Fine-tuning

Prompt fine-tuning has been shown to potentially enhance the performance of LLMs, leading to

the generation of a second set of prompts. Utilizing 10 recognized prompting strategies [375] and

ChatGPT-4, we developed 10 alternative question sets. By combining these strategies and ques-

tions, we created 100 unique prompts, which were then evaluated against 150 sample images whose

ground truth compliance vectors had been determined by three independent researchers. The eval-
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Table 3.3: The natural language ODD, the identified semantic dimensions, and the converted ques-
tions

Natural Language ODD
Semantic
Dimension

Converted Question

Poor visibility (heavy rain, snow, fog, etc.)
or weather conditions that may interfere
with sensor operation.

Poor
Visibility

Does this image have poor visibility (heavy rain,
snow, fog, etc.) or weather conditions that may
interfere with sensor operation? - [YES/NO]

The road facing camera is obstructed,
covered or damaged by mud, ice, snow, etc.

Image
Obstructed

Was the camera that took this image obstructed
including by excessive paint or adhesive products
(such as wraps, stickers, rubber coating, etc.),
covered or damaged by mud, ice, snow,
etc? - [YES/NO]

Obstruction caused by applying excessive
paint or adhesive products (such as wraps,
stickers, rubber coating, etc.) onto the
vehicle.
The device is mounted incorrectly. NA NA

When in sharp curves, like on-off ramps,
intersections etc; openpilot is designed
to be limited in the amount of steering
torque it can produce.

Sharp
Curve

Is the road we are driving on a sharp
curve? - [YES/NO]

On-Off
Ramp

Is the road we are driving on an on-off
ramp? - [YES/NO]

Intersection
Is the road we are driving on an
intersection? - [YES/NO]

In the presence of restricted lanes or
construction zones.

Restricted
Lane

Does the road in this image have
restricted lanes? - [YES/NO]

Construction
Does the road in this image have
construction zones? - [YES/NO]

When driving on highly banked roads
or in presence of strong cross-wind.

Banked Road
Is the road we are driving on highly
banked?- [YES/NO]

Extremely hot or cold temperatures. NA NA

Bright light (due to oncoming headlights,
direct sunlight, etc.).

Bright Light
Does this image have bright light (due to
oncoming headlights, direct
sunlight, etc.)? - [YES/NO]

Driving on hills, narrow, or winding roads.
Narrow Road

Is the road we are driving on narrow
or winding? - [YES/NO]

Hilly Road
Is the road we are driving on a
hill? - [YES/NO]

uation aimed to find the prompt that resulted in LLM responses most closely aligning with human

annotations, as determined by the F1-score [365]. This refined prompting method, named Vicuna+,

was not applicable to ChatGPT-4V due to its daily usage constraints [271], which at the time lim-

ited the number of requests to 100 images prompt pairs a day. Although prompt fine-tuning can

further harness the potential of LLMs, it necessitates extra LLM queries and the availability of

human-annotated dataset segments to ascertain the most effective prompt.

3.2.2.2 RQ1: Identifying failure effectiveness

To evaluate the efficacy of our differential testing component in identifying failures within real-world

sensor data, we processed three datasets using this component. We began by analysing osen with
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(a) Number of failures found. (b) Percentage of failures found.

Figure 3.16: Single frame input which produce varying steering differences.

ft = 1. In this scenario we varied bt from 0 to 180 degrees. This is the equivalent of looking for

single frame failures, whose difference in steering were between 0 and 180 depending on bt. The

results are presented in Figure 3.16 as raw counts in Figure 3.16a and as a percentage of the total

dataset in Figure 3.16b.

In these figures, a behavioral threshold of bt degrees represents the number of sensor readings

in Osen, which resulted in behaviors whose maximum and minimum steering angle difference was

greater than bt degrees. When bt = 0 degrees, our approach, as expected, classified all 4.6 million

sensor readings from the datasets as input which results in failures. Increasing the threshold, results

in reduction in the number of identified failures. For example, at a bt = 10 degree steering difference,

we detected 296,513 failures in the External Jutah dataset, 92,332 in the comma.ai 2016 dataset, and

56,750 in the comma.ai 2k19 dataset, amounting to 445,595 sensor readings or 445595
4.6×106 = 9.8% of all

the data. This pattern of diminishing failure rates continued with higher steering angle thresholds.

However, notably, a significant number of behavioral differences were still discovered along this

distribution’s tail. This means there was a significant number of sensor readings in Osen which

produced large behavioral differences. Specifically, at a 100 degree steering difference (bt = 100),

a threshold indicative of severe failures, our analysis revealed 8,279 inputs that result in such a

behavioral differences in the External Jutah dataset, 2,846 in the comma.ai 2016 dataset, and 644

in the comma.ai 2k19 dataset. These findings not only represent a substantial number of potential
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interesting inputs which can be used as test cases but also underscore the utility of leveraging large

volumes of existing real-world data for test generation. If comma.ai were to only use their dataset

for testing, they would identify 3,490 test cases which produce steering differences greater than 100

degrees in 3 versions of their autonomous system. Incorporating other datasets, for example the

publicly available sensor data from the Jutah dataset, increases this number to 11,769 failures, a

11769−3490
3490 = 237% enhancement in real-world test cases for comma.ai.

When examining the percentage of each dataset causing a failure, as shown in Figure 3.16b, we

find that failure rates in External Jutah are intermediate between those of the comma.ai datasets.

This suggests that although the most failures were found in External Jutah, the comma.ai 2016

dataset still contains a relatively higher number of identifiable failures. This indicates a greater

need for data exploration in External Jutah compared to comma.ai 2016 to uncover these failures.

Nonetheless, since this process is less costly than creating new test cases from scratch and the data

is readily available, it proves to be an effective method for testing autonomous vehicles.

Next, we investigate the effects of varying the length of ft. Remember, in our implementation,

we have a stricter definition of ft: the behavior must contain more failures than ft and must also be

sequential. Intuitively, this can be thought of as looking for failures of varying duration. As such,

we present these findings in seconds rather than the number of frames, using a simple conversion

based on the frame rate of openpilot, which is 15 frames per second. Using this, we can convert

a length of ft = 1 to 1
15 = 0.066 seconds. By examining failures over longer periods, we aim to

enhance the relevance and practicality of our findings, identifying test cases with a longer impact on

vehicle behavior. Figure 3.17a presents these findings, emphasizing test cases of varying lengths with

a difference threshold of bt = 45 degrees. This threshold was chosen for its significance in marking

a clear distinction between maintaining a straight path and initiating a turn.

We find that the already existing, real-world data in External Jutah not only captures the highest

number of failures but also produces failures that last for the longest period of time. For example,

developers seeking to find test cases that would result in the autonomous vehicles producing a

steering error over a span of 10 seconds (ft = 150) would find limited instances within their own

datasets: 13 in comma.ai 2016 and 3 in comma.ai 2k19. However, leveraging the publicly available
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(a) Number of failures found. (b) Percentage of failures found.

Figure 3.17: Varying duration of input which produced a continuous steering difference of 45 degrees.

External Jutah dataset reveals a substantially higher count of 107 test cases, illustrating an increase

in potential test scenarios of 107−16
16 = 569%.

Furthermore, Figure 3.17a highlights that the External Jutah dataset not only finds the largest

number of test cases but also the longest test cases. Within the comma.ai datasets, the longest

recorded failure durations were 15.1 seconds for comma.ai 2016 and 12.9 seconds for comma.ai 2k19.

In contrast, the Jutah dataset presents a failure lasting 18.6 seconds, marking a 18.6−15.1
15.1 = 23%

increase over the longest duration found in their own datasets. This comparison not only highlights

the ability of publicly available real-world data to enrich the pool of significant test cases but also

demonstrates the differential testing components’ capacity to uncover them.

RQ1 Finding: Our study demonstrates the effectiveness of the differential testing component

in uncovering a significant number of potential failures within autonomous vehicle systems using

real-world sensor data. Specifically, we find that 9.8% of all data tested produces a steering

angle difference of 10 degrees across three versions of the same autonomous system. Given our

dataset, this would provide developers with 445, 595 inputs to enhance testing and training.

Furthermore, we find a long tail of inputs that result in significant behavioral differences. More

specifically, we find 11, 769 inputs that result in behavioral differences greater than 100 degrees.

We also find that these failures can occur continuously for long durations. Specifically, we find

123 failures that produce a steering behavior difference of greater than 45 degrees for over 10
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seconds, or 150 sensed scene-state pairs. Finally, we show how this component allows testers to

use external data to find significantly more failures. We observed a substantial increase in test

case volume, with 237% more single-frame input which results in a 100 degree steering difference

and 569% more input that produce continuous failures of at least 10 seconds. Additionally,

our approach can identify longer-duration failures, up to 23% longer, using publicly available

data, underscoring the value of both our approach and diverse already-existing data sources in

enhancing autonomous vehicle safety and testing comprehensiveness.

3.2.2.3 RQ2: Filtering based on ODD effectiveness

Next, we examine the accuracy of the ODD filtering component in isolation. This study requires

a dataset with ground truth compliance vectors for comparison. As none of the selected datasets,

nor any known dataset, had corresponding ODD compliance vectors, we needed to create one from

scratch. Additionally, since none of the datasets used included state information, we only considered

sensed scenes csen, which took the form of camera images. To create the ground truth compliance

vector image dataset, we needed to perform three steps. First, we required a method to fairly and

accurately annotate the images with corresponding compliance vectors. Second, we needed to decide

how many images to annotate, as annotating all 4.6 million images with ground truth compliance

vectors was not feasible, regardless of the annotation method selected. Finally, following on from

above, we would need to determine an appropriate sampling method to create the subset of data to

be annotated.

To reduce bias and ensure accuracy, we decided to have three independent researchers, Trey

Woodlief, Sebastian Elbaum, and Carl Hildebrandt, review each of the selected images and annotate

them with a compliance vector. This vector consists of 11 semantic dimensions from openpilot’s

ODD, as detailed in Table 3.3. Following their individual assessments, the researchers convened to

resolve any discrepancies in their evaluations, reaching consensus on images where compliance was

challenging to ascertain.

Our selected method for annotation attempted to reduce the chance of bias; however, it came at

the cost of requiring three times the number of annotations, as each of the three reviewers had to
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annotate the same image. This resulted in the researchers only being able to annotate 500 images

from each of the datasets, leading to a total of 1500 images being annotated by each researcher. As

each image required answers to 11 different questions, each researcher independently had to answer

16,500 Boolean questions. This serves to highlight that while 1500 images may not seem like a large

number, significant effort went into creating this dataset, and it is the first of its kind with no other

datasets annotated with ODD compliance vectors.

Finally, to select the 1,500 images, we created two oracles. The first oracle looked for single-

frame failures using ft = 1, with a behavioral threshold difference set to bt = 45. This threshold,

similar to the second half of RQ1, was chosen for its significance in marking a clear distinction

between maintaining a straight path and initiating a turn. Using this oracle, we created a subset

of 92, 139 images, or roughly 2% of all the data, which we knew to be failing-inducing sensor data.

To mitigate any bias stemming from an imbalanced ground truth dataset, potentially skewed by an

over-representation of failures, which may disproportionately fall outside the ODD, we also identified

a set of passing images. To accomplish this, we created the second oracle to look for single-frame

failures using ft = 1, with a behavioral threshold difference set to bt = 1. Then, instead of using

it to find failure-inducing input, we simply examined the inverse, which identified input that passed

or had a behavioral difference of less than 1. This produced a subset of passing sensor data with

a total of 599, 230 images, or roughly 13% of all the sensor data, whose steering difference was less

than 1 degree. From both of these sets, we randomly selected 250 passing and 250 failing images,

equally distributing random choices across all videos, to create three subsets of 500 images.

Using this subset of data, we then analyzed the ODD-filtering accuracy using different LLM

Checkers across several dimensions with two metrics. The first metric, in-ODD accuracy, measures

whether the LLM Checker correctly identified the in/out of ODD status per image, with results

shown in Figure 3.18a. This evaluates the true and false positive rates for in/out-ODD labeling.

The second metric, semantic accuracy, assesses accuracy over the compliance vector’s semantic

dimensions, illustrating the LLM Checker’s overall accuracy; results are presented in Figure 3.18b.

In Figure 3.18a, “In-ODD Match” indicates a true positive in-ODD, and “Out-ODD Missed”

indicates a false positive in-ODD, i.e., the LLM Checker mislabeled an out-of-ODD image as in-
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(a) ODD-Filtering in-ODD Accuracy (b) ODD-Filtering Semantic Accuracy

Figure 3.18: ODD filtering accuracy per LLM Checker

ODD. ChatGPT-4V appears conservative in its labeling of items as in-ODD, achieving by far the

lowest false positive in-ODD count and rate, while Vicuna and Vicuna+ are much less conservative,

labeling many images as in-ODD.

Figure 3.19: ODD-Filtering Accuracy per Seman-
tic Dimension

These results can be thought of in terms of

in-ODD precision, i.e looking at the in-ODD

true positive to false positive ratio. We find

that ChatGPT-4V has a high in-ODD precision

of 294
(294+104) = 73.9%, meaning that in 73.9% of

cases where ChatGPT-4V says an image is in-

ODD, it is correct. By comparison, Vicuna has

a precision of 573
(573+650) = 46.9%, and Vicuna+

has a precision of 656
(656+514) = 56.1%. Despite

ChatGPT-4V achieving the highest precision,

Figure 3.18b shows that Vicuna and Vicuna+

achieve slightly higher aggregate semantic ac-

curacy with 84.4%, 92.6%, and 94.2% respec-

tively. This performance difference is largely

due to ChatGPT-4V’s high number of “Undefined” answers, due to cases where the model would

say it was unsure; prompt refinements to encourage the model to take a stance may render fur-
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ther improvements. Overall, the performance of ODD-filtering rendered encouraging results at the

semantic level.

Figure 3.19 further drills into this accuracy, showing the performance of each LLM Checker

per semantic dimension. Across all configurations, ODD-filtering achieves an average accuracy of

90.3%, with a maximum of 99.7% accuracy for Vicuna on the “Highly Banked” dimension. From

this, it appears that Vicuna and Vicuna+ are more accurate than ChatGPT-4V; this is again largely

due to the high number of “Undefined” answers, which are marked as inaccuracies here. We also

note that prompt fine-tuning improved Vicuna’s accuracy, moving from an average of 92.3% to

94.2%, with particularly strong gains in the “Bright Light” and, to a lesser degree, “Intersection”

dimensions. This may point to possible future improvements for the LLM Checkers in the ODD-

filtering component.

RQ2 Findings: ODD-filtering achieves high aggregate semantic accuracy of up to 94.2%.

Further analysis shows accuracy is high across all semantic dimensions, achieving a maximum

accuracy of 99.7%. Additionally, ODD-filtering demonstrates high precision for determining if

an input is in-ODD, with a maximum precision of 73.9%.

3.2.2.4 RQ3: Full framework effectiveness

To answer the final research question about the effectiveness of the proposed approach, we examine

the pipeline from both a quantitative and qualitative viewpoint. Firstly, we consider it from a

qualitative perspective. We showcase some of the failure-inducing sensor images that produced

steering angle differences greater than 45 degrees for one frame, across each of the datasets, sampled

from a set of 1500 images. These examples demonstrate where both the differential testing identified

a failure, and the ODD checker correctly highlighted that they were in-ODD. Figure 3.20 showcases

9 of the sampled images, with the horizontal axis representing each of the 3 different datasets, and

the vertical axis representing each of the LLMs used in the ODD Checker. Each image also has the

steering angle of the three different openpilot versions overlaid onto the image to aid in post-analysis.

While each of the images shows concerning failures, there are a few that we want to highlight

as particularly troubling. For example, consider the image highlighted by Vicuna+ in the comma.ai
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Figure 3.20: Camera images that produced a steering difference of more than 45 degrees, for at least
1 frame, that were in-ODD, identified by our approach.

2016 dataset (left middle row), where a car navigates a road with a slight curve to the left. Here,

while the oldest and latest versions of openpilot are following the road, the intermediate version

makes a hard right turn off the road, clearly heading into the embankment. A similar scenario is

observed in the image found by Vicuna in the External Utah dataset (right bottom row). The car

is navigating a straight multi-lane road, and the intermediate openpilot version is making a hard

left turn off the road, potentially entering another lane or, in the worst case, colliding with the road

railings. Another interesting finding is that the intermediate version is not always the culprit. In

the image identified by Vicuna in the comma.ai 2016 dataset (left bottom row), the older version

appears to be at fault, while in the image found by Vicuna in the comma.ai 2019 dataset (center

bottom row), it appears to be the latest version. This highlights that failures can occur with each

version, in each dataset, and with each LLM tested.
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(a) Time 0s (b) Time 0.5s (c) Time 1s

(d) Time 1.5s (e) Time 2s (f) Time 2.5s

Figure 3.21: A sequence of camera images that produced a steering difference of more than 45
degrees, for at least 38 frames (approximately 2.5 seconds), that were in-ODD, identified by our
approach.

Each of the failure-inducing inputs in Figure 3.20 was found when the oracle’s was looking for

single frame failure ft = 1, i.e. only one frame needed to exhibit a steering difference of 45 degrees

or more. While we argue that these are significant, as this is a safety-critical system, there is room

to argue that this might not cause an issue, as there is ample time for the autonomous system to

correct itself. To account for this, and to determine if such failures only occur briefly, we examined

all failures that lasted 2.5 seconds, a duration during which, at speeds typical on traditional roads,

a steering difference of 45 degrees could cause significant behavioral changes. Figure 3.21 showcases

six frames, each 0.5 seconds apart, for one such case found within ODD. In this sequence, the car

is seen driving down a straight, well-lit road at night, in the center lane. Interestingly, throughout

this sequence, the latest version of openpilot attempts to make a sharp left turn out of the center

lane, while the previous two versions continue to drive straight to varying degrees. There is a much

higher chance that this sequence of images would result in significant consequences, potentially even

a crash, due to the severity and total duration of this difference.

Next, we examined the pipeline quantitatively, focusing specifically on its efficiency in automating
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the process. Consider a developer tasked with generating test cases. Our approach is the first to

automate this process by selecting failure-inducing images that are most likely in-ODD for the

developer to review. Our approach provides the developer with a list of images judged to be in-

ODD, which the developer then reviews to confirm. Therefore, to determine efficiency, we compare

the percentage of true in-ODD inputs found versus the percentage of inputs the developer reviewed.

Figure 3.22 illustrates the efficiency gains achieved by automating the review process. The red

dashed line represents the human annotation approach baseline, where each input image is manually

reviewed. As the human examines a greater portion of the input set, it is assumed that they would

discover a proportionate amount of failure-inducing inputs that are within the ODD, reaching 100%

when all images are inspected. Techniques that yield scores above this line are more efficient as

they enable humans to identify more in-ODD failure-inducing inputs in the same amount of time.

Techniques below this line are less efficient, requiring humans to spend more time analyzing failure-

inducing inputs to find the same number within ODD.

Figure 3.22: The efficiency improvements of our approach
compared to a human baseline.

We observe several interesting pat-

terns. First, ChatGPT-4V, across

all datasets, is more efficient than

the human annotation approach. At

its peak on the comma.ai 2016

dataset, ChatGPT-4V correctly iden-

tifies 24.7% of all in-ODD failure-

inducing inputs while requiring the

human to review only 10.0% of im-

ages: 24.7%
10.0% = 2.47× or 147% im-

provement in efficiency. By contrast,

Vicuna consistently labels almost all

inputs as in-ODD, leading to effi-

ciency on par or slightly below the

baseline. However, Vicuna+ is able to improve upon this performance, showing efficiency over
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the baseline on all datasets. Vicuna+ achieves peak efficiency on comma.ai 2019 by finding 80.3%

of failure-inducing inputs while only requiring the developer to review 62.4% of the dataset—an im-

provement of 80.3
62.4 = 28.7%. While a lesser gain in efficiency compared with ChatGPT-4V, Vicuna+

is able to identify a much larger quantity of in-ODD inputs.

The out-of-the-box success of the commercial ChatGPT-4V and the improvements shown by

simple prompt fine-tuning on open-source models demonstrate the potential for our approach to

provide utility in automating ODD compliance checking. Furthermore, while our approach is the

first capable of identifying such failure-inducing inputs at a rate more efficient than humans, it is

quite conservative by design. In order for a failure-inducing input to be marked in-ODD, every

semantic dimension must be compliant; this constraint could be relaxed to consider only partial

ODD compliance. Additionally, we note that the LLMs currently used have had no additional

training for this problem domain, and we assume that further improvements could be made through

these methods.

RQ3 Finding: Our approach is capable of identifying safety-critical failures, which can occur

for up to 2.5 seconds in length. It is also automatically capable of identifying when failures

are in-ODD, achieving up to 147% improvement in efficiency when compared to purely manual

analysis. This could, for example, enable a developer to find 24.7% of failures while only

analyzing 10.0% of the dataset.

3.2.3 Summary

This work highlights the inconsistencies in one of today’s commercial autonomous cars. It demon-

strates how our approach enables us to find a large number of potential failures. It also shows the

potential to identify failure-inducing sensor input within existing datasets, drastically reducing the

cost of test generation. Furthermore, we illustrate the untapped potential of compliant data that

remains unused or wasted due to the lack of automated compliance checks. We then showcase our

entire approach and find several compelling cases. These cases come from a variety of scenarios and

span a range of durations. Overall, we show how our approach is capable of identifying inputs that

could potentially lead to fatal accidents without the need for expensive data collection or precise
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definitions of what the output of any given input should be.

3.3 Conclusion

This chapter highlights two approaches for generating tests, specifically focusing on a test’s inputs

and a test’s oracle. The first approach looks at how to generate inputs using insights from an

autonomous vehicle’s physical semantics. Specifically it presents a way to construct test inputs

that are both physically feasible and stressful. We found that incorporating physical semantics,

through kinematic and dynamic models, although computationally more expensive, is crucial for

efficiently generating valid tests. Furthermore, our approach was able to generate tests that were,

on average, between 41.3% and 55.9% more stressful compared to tests constructed without our

approach. Additionally, we demonstrated this approach using a commercially available quadrotor,

which successfully produced tests that resulted in deviations from the anticipated flight trajectory

by up to 6.2 meters—nearly 20% of the testing environment’s total length. This underscores the

approach’s capability to maximize stress even in commercial systems.

The second part of this chapter argues that a vast amount of inputs, in the form of sensor

data from the real-world physical environment, already exists. Therefore, this work focuses on how

to identify inputs that result in inconsistent and potentially incorrect behaviors in an arbitrary

autonomous system. Specifically, we describe how this can be achieved using an oracle capable

of efficiently identifying behavioral differences across multiple autonomous systems given the same

input. Our approach also introduces a novel technique for filtering arbitrary sensor data with

respect to an autonomous system’s ODD. We then present a study showcasing our approach on

three real-world commercial autonomous vehicles. We highlight our approach’s ability to detect a

large number of inputs in already existing sensor data that result in inconsistent behaviors in three

autonomous systems. Specifically, we find that 445,595 inputs, or 9.8% of the data tested, produce

steering differences of more than 10 degrees in the three commercial systems. We further highlight,

11,769 instances where the three systems differ by more than 100 degrees and showcase how existing

external sensor data can be used to significantly increase the number of failures detected in these
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systems, with our study showing an increase in failures by up to 569%. The study then examines

our novel filtering technique, demonstrating the approach’s ability to correctly identify semantic

dimensions of arbitrary sensor input with accuracies of up to 94.2%. To achieve this, we also created

the first dataset annotated with ground truth ODD semantic compliance data. Finally, we conclude

this work by showcasing several examples of cases in which the autonomous system failed, both on

diverse single-instance sensor data and on continuous input sequences lasting up to 2.5 seconds.

Generating inputs, however, is not enough. Tests need to be executed or have already been

executed in either simulation or the real world in order to judge their outcome. In the next chapter,

we will explore ways in which these tests can be executed more efficiently with respect to their

physical environments and physical semantics.
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Chapter 4

Test Execution

In the previous chapters, we discussed the first step of the testing pipeline, test generation, and

focused on the first two components of a test: the input and oracle. In this chapter, we discuss the

second step in the testing pipeline, test execution. Additionally, we introduce the final component

of a test, which has not yet been discussed: the test’s context. The context is essential as it defines

the backdrop against which all tests are executed. Specifically, it refers to how closely the scenario w

and the autonomous system’s AS state s are mocked. Two common forms of context, are simulation

and the real world. If it is in simulation, what type of simulation is used? A simple point simulator

or a highly complex simulator capable of replicating both the scenarios and physics of the real world?

If it is in the real world, is it conducted in a controlled lab environment or in the uncontrolled real

world?

To understand how to answer these questions, let’s first examine what constitutes an effective

test execution strategy. An effective test execution strategy should strive for a balance between cost

and realism. By “cost,” we mean that the testing environment should aim to minimize the expenses

associated with executing tests, thereby enabling a larger volume of tests to be conducted. The

lower the cost, the more extensive the testing that can be performed, and a broader range of system

behaviors can be observed, providing developers with increased data points. These data points do

not conclusively confirm that the system operates as expected; rather, they enhance the likelihood
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of detecting any potential failures. By “realism,” we mean that the testing scenario should aim to

replicate the physical environment and the physical semantics of the system’s future deployment

scenarios and the system itself as closely as possible. This ensures that the results of the testing

process closely match what would be observed during actual operation.

Using these metrics, we can now answer the above questions about simulation versus real world

execution. Simulation provides a cost-effective way to execute tests, allowing developers to run

many tests quickly. However, simulation can never fully replicate the real physical environment or

its physical semantics. This discrepancy between simulation and reality is known as the simulation-

reality gap [163]. This gap means that simulation only provides an approximation of the physical

environment and physical semantics for the autonomous system. So while developers can use sim-

ulation to explore a wide range of possible scenarios cheaply, the resulting behaviors may not fully

represent what will be observed when the system operates in the real world, potentially overlooking

critical failures.

On the other hand, real-world execution is generally expensive and limited in the scope of possi-

ble tests. Running experiments in controlled conditions requires personnel, safety measures, physical

hardware, a testing space, and substantial preparation. Furthermore, fully exploring both the physi-

cal environment and the system’s physical semantics is not always possible. Consider the substantial

effort required to determine if an autonomous system can safely stop for a pedestrian running into

the street. Testers would need to vary the physical environment so that the pedestrian appears from

behind several different obstacles, on various road types, under many different lighting conditions,

and with diverse body types. They would also need to alter the physical semantics by using dif-

ferent tires, road conditions, and varying speeds and system states. This is before even considering

how to safely and realistically position a pedestrian in front of a moving vehicle. In this case, the

number of tests that can be run is limited due to the costly and hazardous nature of such testing. In

contrast, conducting experiments in uncontrolled real-world settings, such as in a city, might seem

less expensive initially due to the absence of setup costs and could potentially offer a wider range

of scenarios. However, the potential cost of failure is exponentially higher due to the risks posed

to innocent bystanders. Moreover, this approach shifts the goal from a systematic exploration of
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physical environments and semantics to one that follows the probabilities of the real world. Consider

wanting to determine how an autonomous package delivery drone handles different packages under

varying wind conditions to validate the vehicle’s physical semantics. A package delivery company

would need to start delivering packages, merely hoping that the wind conditions and the packages of

that day match those intended for testing. In this case, exploring all corner cases, or even identifying

which corner cases to anticipate, become much harder to do.

In this chapter, we examine the shortcomings, and provide alternatives to both execution strate-

gies. First, in Section 4.1, we explore ways to reduce the simulation-reality gap and how it manifests

in an autonomous systems physical environment. Specifically, we introduce a mixed-reality test

environment that is constructed by combining real physical environments with simulation. This

enables the mixed-reality testing environment to maintain the cost-effectiveness of simulation, while

providing the ability to vary the realism of the test.

The second approach, presented in Section 4.2, focuses on the physical semantics and the com-

plexities of executing tests in real-world scenarios. In particular, this section focuses on reducing

the cost of testing autonomous systems, such as drones, under various real-world conditions. Our

approach involves developing a haptic suit designed to replicate and apply various external forces to

an autonomous system in a cost-effective way. This enables us to observe a wide range of potential

behaviors based on the system’s physical semantics in different real-world conditions.

4.1 World-In-the-Loop Simulation

A fundamental limitation for simulations today is the inability to create perfect replicas of the real

physical environment or physical semantics of an autonomous system. This discrepancy leads to

what is known as the simulation-reality gap. The discrepancy, due to the physical environment,

results in differences in sensed scene readings of an AS operating in the same scenario in simulation

and reality; it can be defined as gapc = diff(csenr , csenv ). Similarly, the discrepancy due to the

physical semantics results in differences in sensed state readings in that same scenario in simulation

and reality; it can be defined as gaps = diff(ssenr , ssenv ). The simulation-reality gap is a result of
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both of these discrepancies, defined as gap = gapc+gaps. The objective of this work is to reduce this

gap and facilitate a more seamless transition for developers from simulated to real-world scenarios.

(a) Simulation (csenv , ssenv ). (b) Real-world (csenr , ssenr ).

(c) World-In-the-Loop (csenm , ssenr ).

Figure 4.1: The camera image sensed from a grounded drone
operating in simulation (a), the real-world (b), and the
mixed-reality created by our approach World-In-the-Loop
by integrating both (c).

To achieve this, we introduce the

concept of World-In-the-Loop simu-

lation. This approach reduces the

simulation-reality gap by running two

autonomous systems simultaneously:

one in the simulation and one in the

real world. It starts by overwriting

the sensed state of the simulated au-

tonomous system, ssenv , with the real-

world’s sensed state, ssenr . This ef-

fectively eliminates gaps, the gap in-

troduced by the physical semantics

Thus, for the remainder of this chap-

ter, we will primarily focus on this

approach’s ability to tackle gapc, the

gap introduced by the physical envi-

ronment. World-In-the-Loop simula-

tion tackles the issues introduced by gapc, by merging sensed scene data from both the virtual csenv

and the real-world csenr to form a mixed-reality scene csenm . Since csenm is created from a combination

of both csenv and csenr , our approach allows us to vary the proportion of simulated to real-world data

used in the sensed scene. This in effect allows the approach to vary gapc, the gap introduced by

the physical environment. Once both the state is overwritten, and the mixed reality sense scene is

created, both are fed back into the autonomous systems, allowing the AS’s to execute effectively.

An illustrative example of World-In-the-Loop simulation is shown in Figure 4.1. Here, the gate

sensed by the autonomous system during the simulation (Figure 4.1a) and the autonomous system

sensed reality (Figure 4.1b), are integrated to form a sensed mixed-reality (Figure 4.1c).
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The mixed-reality created through World-In-the-Loop simulation aligns more closely with the

real-world environment than a purely simulated one. This alignment is demonstrated in two ways.

First, by replacing the simulated state with the real one, we completely remove any discrepancies

due to the simulated state. This is evidenced by the fact that both the simulated and real cameras

assume the same pose in the scenario. Second, by comparing the mixed-reality sensed scene data

with that of the simulation, for example, by comparing the textures, shapes, and lighting, we can

see that the mixed-reality scene more closely resembles the real world.

Another benefit of World-In-the-Loop simulation is that it reduces the cost during execution.

For instance, it eliminates the need for a physical gate during testing, thereby reducing setup and

execution costs. Furthermore, in scenarios where a drone collides with the virtual gate in the mixed-

reality, there is no actual damage to the drone, thus reducing the risks and costs associated with

failure.

4.1.1 Approach

Given a scenario w and a goal g, the autonomous system builds an understanding of its current

scene in the scenario c ∈ w and state s ∈ S through sensors sen, and acts on the sensor data

(csen, ssen) through a sequence of actions a to create a behavior b = ⟨a0, a1, a2, . . . ⟩. Due to the

simulation-reality gap, defined as gap = gapc + gaps = diff(csenr , csenv ) + diff(ssenr , ssenv ), for some

input, tests executed in simulation can result in the generation of simulated behaviors bv /∈ B, which

may not belong to the set of all possible behaviors found in the real world.

The goal of World-In-the-Loop is to narrow the simulation-reality gap. It achieves this by creating

a new mixed reality that combines elements from csenr and csenv to generate csenm . By creating csenm ,

the approach is essentially capable of varying gapc by adjusting the proportions of real and simulated

csen used. Additionally, it replaces ssenv with ssenr , completely overcoming gaps. Thus, by varying

gapc and removing gaps, our approach should produce behaviors such that diff(br, bm) < (br, bv).
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4.1.1.1 Overview

Figure 4.2: An overview of our approach.

An overview of World-In-the-Loop

simulation is depicted in Figure 4.2.

Given goal g, the approach simul-

taneously runs two instances of the

autonomous system, one in simula-

tion wv and one in the real-world wr.

To ensure that both autonomous sys-

tems’ are synchronized, the real-world

sensed state ssenr from ASr overwrites

the virtual sensed state ssenv in ASv.

After each synchronization step, sen-

sor readings csenr from the real world

and csenv from the simulation are col-

lected by sensor callback functions.

These readings are combined using a Transform, Filter, and Merge (TFM) module to generate

a mixed sensor value set csenm , which is then fed back to both instances of the autonomous systems.

Algorithm 4: World-In-the-Loop Overview

1 Given AS, ASv, wr, wv, g, recipe

2 subscribe(AS, ASv)

3 start(ASv, wv, g)

4 start(AS, wr, g)

5 Function sensor callback(csenr , csenv , ssenr )

6 csent = transform(csenr , csenv , recipe)

7 csenf = filter(csenr , csenv , csent , recipe)

8 csenm = merge(csenr , csenv , csenf , recipe)

9 publish(csenm , ssenr )

Algorithm 4 summarizes this pro-

cess. The inputs include both a simu-

lated autonomous system ASv and a

real autonomous system ASr, a simu-

lated scenario wv and a real scenario

wr, a goal g, and a recipe file that

describes how the mixing of csen is

done. First, in line 2, World-In-the-

Loop simulation subscribes to all sen-

sor data from both autonomous sys-
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tems. The subscriber directs all sensor readings to the sensor callback function, as described in

line 5. In lines 3 and 4, the simulated and real autonomous systems are given the goal. The

sensor callback function receives sensor data csenr and ssenr from ASr and csenv from ASv. It then

calls a transform, a filter, and a merge function to produce csenm , the mixed-reality sensor data. Fi-

nally, in line 9, csenm and the real state ssenr are published and used as inputs to both ASv and ASr.

We now describe each of the transform, filter, and merge functions used to generate csenm , along with

the definition of a recipe file, in more detail below.

4.1.1.2 Transforming Sensor Readings

The transformation function removes structural discrepancies between the sensor readings obtained

in csenv and csenr . Our built-in support focuses on dimensions-units, shape, and frame-of-reference,

which we have identified as common sources of dissonance among execution environments. In terms

of units and dimensions, we found that it is common to describe the same quantity in different

ways. For example, when working with GPS, some systems sensors will use the full GPS data while

others return positions in terms of a local frame using X, Y, and Z. When referring to rotations, we

encounter quaternions, radians, and Euler angles [272]. Even when the units are comparable, they

might not use the same frame-of-reference [302]. For example, one might work using a North East

Down (NED) frame and another in an East North Up (ENU) frame. In terms of shape dissonance,

it is common to find simulation environments that use a different resolution to build on an existing

dated component or use a lower resolution to improve performance. The transformation function

enables us to overcome such discrepancies in sensor data.

For example, to produce Figure 4.1, the sensor data was transformed in multiple ways. First, the

quadrotor’s simulated position was transformed from a local frame to a global frame that used GPS

coordinates. Second, the quadrotor orientation in simulation was transformed using an offset so that

the quadrotors heading in the real-world matched those in simulation. Third, the simulated camera

image needed to be reshaped to match the real-world camera’s resolution. Finally, both cameras’

sensor publishing rates needed to be matched, which we achieved by storing the latest sensor data
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from both simulation and reality, allowing the merge function to access the latest data regardless of

rate.

4.1.1.3 Filtering Sensor Readings

Filtering aims to retain the sensor readings or parts of readings that will be integrated by the merge

function. It can include diverse filters, from dropping a range of values or noise from the LiDAR, to

removing sets of colors from an image, similar to the techniques used when using a greenscreen. Other

examples use DNN’s that perform object detection and isolation [296], or background subtraction

techniques to remove camera images’ backgrounds. Other sensors, such as microphones, could

have bandpass filters applied to isolate a range of frequencies, for example, those typical to human

speech. Thus, filtering functions for the sensed values enables World-In-the-Loop to isolate parts of

the sensor data required for merging while discarding data to reduce excess throughput and later

speed up merging.

As an example, to produce Figure 4.1c, the camera data from the simulation was passed through

a color isolation function that identified the color orange. This removed all parts of the image except

for the gate which was orange.

4.1.1.4 Merging Sensor Readings

The merge function creates a mixed-reality sensor reading cRm. For example, given simulated and

real-world camera data, a simulated obstacle can be overlayed over the real camera data, giving the

AS the impression that an obstacle exists in the real-world (as per Figure 4.1c). The function starts

by creating an empty mixed-reality sensor reading csenm that is then populated with the mixed-

reality readings by applying the corresponding combination function to each sensor. The sensor

data can be combined using a number of general mechanisms, including: 1) sensor prioritization,

where sensor data from csenv and csenr is layered according to some predefined priority, 2) sensor

replacement, where sensor data is replaced according to some rule, for example, the source world,

and 3) sensor aggregation, where the sensor data is combined by performing some operation like

average, minimum, or maximum sensor reading.
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Going back to the example in Figure 4.1, we note how some of the real-world camera pixels are

replaced by the virtual gate pixels, allowing the AS to perceive both virtual and real obstacles.

4.1.1.5 Recipe Files

Listing 4.1: An example recipe file

<recipe file>

<AS sensors>

<Camera id="camera1"/>

<Camera id="camera2"/>

<LiDAR id="LiDAR1"/>

<.../>

</AS sensors>

<combine id="camera1">

<transform> transform_definition_1 </transform>

<filter> filter_definition_1 </filter>

<merge> merge_defintion_1</merge>

</combine>

...

<combine id="LiDAR1">

...

</combine>

</recipe file>

A recipe file offers a mechanism

for users to define and link various

transform, filter, and merge functions

to each of the autonomous systems’

sensors. There are several ways this

could be instantiated; however, we

provide a brief example of how one

such instantiation might work. Con-

sider Listing 4.1, which resembles a

traditional XML file which includes

distinct tags. The first tag, AS sen-

sors, lists all the sensors of the au-

tonomous system. Each sensor listed

could then be assigned a unique ID.

This ID would enable World-In-the-

Loop to differentiate between two sen-

sors of the same type, for example, two cameras. Another significant tag could be the combine tag,

which links a sensor reading to a specific function using the unique ID from the AS sensors tag.

The combine tag would specify which function should be applied at each stage of the approach for

a given sensor. For example, Listing 4.1 shows that the ‘filter definition 1’ function performs the

filtering for camera1. This general approach would allow developers to implement and quickly switch

between different functions, creating various mixed-reality scenarios for the autonomous system.
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4.1.1.6 Implementation

Our implementation provides support for the collection and distribution of sensor values, which

is built on top of ROS publish and subscribe architecture [328]. To be integrated with existing

simulators and systems, World-In-the-Loop only requires the completion of a plugin to set the

pipelines to distribute AS sensor values through specific message types underlying the pub-sub

model. By building on ROS we also leverage its standard message types that already support a

wide range of sensors such as cameras, LiDARs, or IMU’s [301]. Our approach also took advantage

of ROS launch files to quickly activate or deactivate the appropriate subsystems to easily switch

between simulation, mixed-reality, and reality.

The final piece of the implementation worth mentioning is the support for processing recipe

files. Instead of creating an XML parsing and function linking system from scratch, we prototyped

each function as a ROS node, setting each subscriber and publisher based on the sensors they were

meant to process. These were then instantiated using standard ROS launch files. Each node was

defined in Python files, making them easily replaceable or modifiable for various use cases. The

implementation has been made publicly available [135].

4.1.1.7 Limitations

World-In-the-Loop makes a few assumptions that may limit its applicability and efficacy. First,

it assumes that it is possible to match sensor specifications between simulation and reality. For

example, a camera has a resolution, field of view, dynamic range, color depth, and readout speeds

to name a few. In recent years, simulation technology has become more sophisticated and robust,

making this a reasonable assumption for many scenarios. In our implementation, we used the

Sphinx simulator [277] created by the drone developers, so the sensors were closely matched. Second,

World-In-the-Loop assumes that the latency introduced through sensor data manipulation does not

affect the test results. Our implementation mitigates this risk by using low-latency communication

channels combined with optimized data manipulation libraries. For example, our implementation

generates mixed-reality sensor readings at 17Hz. Although this is slower than the drone’s 60Hz
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camera [275], it is faster than the perception layer’s control loop, which operates between 5-15Hz.

Third, it assumes access to precise real-world autonomous system state information. Inaccurate

state information could lead to a misalignment of the autonomous system in simulation and reality,

resulting in mismatched sensor information. Our implementation addresses this risk through the

use of Vicon [359], an industry-grade motion capture system with millimeter accuracy. The final

limitation is that the implementation is a prototype closely designed to support the subsequent

study. Its generalization for other systems would benefit from its reconstruction as a more generic

API that allows, for example, determining when and where simulation and reality are mixed.

4.1.2 Study

The goal of the study is to assess our approach World-In-the-Loop’s ability to reduce the simulation-

reality gap. More specifically, we aim to answer the following two research questions:

RQ1) Does World-In-the-Loop reduce the simulation reality gap?

RQ2) Does World-In-the-Loop reduce the cost of execution and failures in the real-world?

4.1.2.1 Setup

For the evaluation, we are using the Parrot Anafi quadrotor [275], which weighs 0.5kg, has a width

of 0.3m, and is equipped with a stabilized front-facing camera.

We use two simulation platforms. The first one is Sphinx [277], a simulator developed and

maintained by Parrot and built upon Gazebo [111]. Since it was developed by Parrot’s engineers, it

serves as a good baseline to characterize the simulation-reality gap. However, Sphinx does not enable

read/write access to the whole sensor space, a requirement to integrate it with World-In-the-Loop.

So as a second platform, we use a simulator built on the Unity framework [92], which has already

been used for drones in the past [123], focusing mainly on the graphical aspects such as the camera

readings given a drone’s pose. This second simulator’s data is mixed with real sensor data.

We designed three distinct scenarios and goals for the Parrot to achieve. The real-world tests

were run in an indoor flight cage of 6m × 6m × 2.5m instrumented with a Vicon infrared motion

capture system [359] that allowed precise tracking of the drone to obtain further data for some of
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Figure 4.3: The camera sensor data that is fed into the AS software during simulation, mixed-reality,
and reality for all three test scenarios. The final column shows an external camera with the drone
highlighted in dashed lines.

the scenarios. A description of each scenario is given below.

Scenario 1: The first scenario had the drone fly through a gate [171], as seen in the top row

of Figure 4.3. To do this, we built a subsystem that uses visual cues from the camera to navigate

through the gate before stopping [133]. The subsystem works by identifying the gate and navigates

the quadrotor towards the center of the gate’s mass using a PID controller. Orange gates with a

diameter of 1m, and 0.5m were selected to allow for both an easy and challenging scenario. In the

challenging scenario, the quadrotor has only 10cm between the propellers and the gate’s sides if it

is centered correctly. The gate is placed in front of the quadrotor 3m away. A failure occurs if the

quadrotor touches any part of the gate at any time.

Scenario 2: The second scenario was person following [320], as seen in the second row of

Figure 4.3. We built another subsystem that used object detection based on the camera to track

and follow the person. An existing object tracking algorithm, YOLO [296], generated a bounding

box around the person object. The subsystem uses the bounding box’s center to align the quadrotor

with the person while using the bounding box’s area to keep the person a set distance away. In this

scenario, a person started 3.5m away from the drone and either walked or ran between the starting
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point and another point perpendicular to the quadrotor 1.5m away. When the drone moves outside

a predefined area while attempting to follow the person, we assert a failure as it risks colliding with

external obstacles or the person. The area was set such that the quadrotor was allowed to overshoot

by at most 1m horizontally and needed to maintain between 2.25m and 4.25m away from the person

at all times.

Scenario 3: The final scenario was obstacle avoidance [379], shown in the final row of Figure 4.3.

We developed a third subsystem using camera based object detection to avoid incoming obstacles.

We extended the object tracking implementation from the previous scenario and measured the

bounding boxes of objects to judge whether an item was moving towards the quadrotor. If that

is the case, the quadrotor will attempt to avoid it by moving upwards. In our scenario, we placed

two drones 2.5m apart. The first drone’s goal was to avoid the incoming drone. The second drone

would take off after a set time, and once at the same height as the first drone, fly towards it. We

developed two test cases. The first had the incoming drone reach a velocity of 0.5m/s. The second

had a velocity of 1m/s. For this scenario, we considered the two drones colliding a failure.

Each scenario was developed so that the quadrotor could reliably complete each of the tasks

in simulation. This represents a typical development process where an autonomous system is first

perfected in simulation before real-world tests begin. After the quadrotor passed each simulation

scenario, it was run in mixed-reality and then in the real-world (when feasible).

4.1.2.2 RQ1: Reducing the simulation reality gap

Table 4.1 summarizes the results across the three scenarios. Overall, 5 tests were run for each of the

2 variants of the 3 scenarios, resulting in a total of 30 tests. The number of passing (P) test cases and

failing (F) test cases were recorded for each scenario. Table 4.1 shows that although all tests pass

in simulation, World-In-the-Loop found failing test cases. Moreover, if World-In-the-Loop found a

failing test case, there was always a failed test case in reality. Similarly, if World-In-the-Loop found

no failing test cases, there were no failed tests in reality.
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Table 4.1: Results from each scenario

Scenario
Test

Case
Simulation WIL Reality

Gate

Navigation

Large

Small

Person

Following

Walk

Run

Obstacle

Avoidance

Slow

Fast Too Costly

When considering each sce-

nario in isolation, for example,

gate navigation, we notice that

the drone can always navigate

through the gates without any

failures in simulation. Using

World-In-the-Loop, we find that

the drone can successfully nav-

igate through the large gate.

However, for the small gate, the

drone crashes 80% of the time.

To further assert that the mixed-

reality results represented how

the drone would behave in re-

ality, the tests were repeated in

the real-world. We can see that

for the large gate, the drone can

successfully navigate through it

without failure. However, when

running the drone through a small gate in reality, it successfully passed once and then failed on the

next attempt. After the failed test, testing was stopped due to the cost of damaging the drone.

The person following scenario produces results similar to that of the gate navigation. Moving

from simulation to mixed-reality and then reality, we notice cases where the drone fails. We also

observe that there are more failure cases in reality than in mixed-reality. We believe this is partly

due to the person’s movement’s variation not being modeled accurately in simulation. Consider the

velocity of the person while walking. The average standard deviation in the velocity of the walking

person in simulation was 1.51m/s, in mixed-reality it was 1.32m/s, and in reality it was 2.27m/s.

This additional variation caused the quadrotor to move outside the stipulated area to track the
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person in reality. Regardless of this variation, World-In-the-Loop still identified at least one failing

instance in mixed-reality, reducing the simulation-reality gap.

The obstacle avoidance scenario shows similar trends. Failure cases start to appear in the fast

drone scenario during mixed-reality. However, due to the expense of failure in the real-world, where

a failure would likely destroy two drones, the fast test case was never attempted in the real-world.

RQ1 Finding: We found that the quadrotor’s simulated behavior does not always reflect its

real behavior due to the simulation-reality gap, but World-In-the-Loop can reduce that gap

producing results more closely aligned with that of tests performed in the real-world.

4.1.2.3 RQ2: Reducing the cost of executing in the real-world

The second research question explores the potential of World-In-the-Loop to reduce execution costs

and field failures compared to traditional real-world testing. To answer this, we perform a qualitative

analysis. Specifically, when considering the gate scenario, tasks such as adjusting the gate’s position,

altering its size, maintaining vertical alignment, and resetting it post-collision are significantly faster,

cheaper, and more precise in a mixed-reality environment than in a real-world setting. For example,

in mixed-reality, these tasks require only the modification of a set of variables in code. In the

real world, however, they involve constructing a gate, taking precise measurements of its size and

placement, securing the gate to ensure it remains stable against the quadrotor’s downdraft produced

by the propellers, and repairing both the drone and the gate after any incidents.

Similar observations were noted in other scenarios. For instance, the person-following scenario

in a real-world setting necessitates an additional human participant, whereas in mixed-reality, this

requirement is fulfilled through simulation. Implementing the drone avoidance scenario in the real

world would require two drones equipped for communication and processing. The communication

must be implemented in such a way as to ensure that there is no interference. Additionally, it

requires twice the preparation effort, as twice as many batteries and preflight checks need to be

performed. Finally, it also requires an additional backup pilot, a common practice when flying

autonomous drones in confined spaces. In contrast, mixed-reality allows for one physical drone, with

the other being virtually simulated.
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(a) Mixed reality (b) Real-world.

Figure 4.4: Gate navigation failure in mixed-reality and reality.

The final consideration is the reduction of failure costs. Real-world failures in the tested scenarios

could lead to damaged drones or harm to humans. In a mixed-reality context, such failures involve

interactions with simulated entities. Consider the small gate navigation scenario: during World-In-

the-Loop testing, collisions are recognized through data overlay from the Unity simulator, marking

failures as Boolean flags. This avoids harm to the drone operating in an unoccupied real-world space,

as illustrated in Figure 4.4a. This figure displays three frames showing views from both onboard and

external cameras, where the drone navigates through the virtual gate and collides without real-world

repercussions. Conversely, a failure in a real-world test, depicted in Figure 4.4b, results in physical

contact with the gate, causing damage to both the drone and the gate.

Parallel conclusions are drawn from other scenarios. The person-following scenario, when con-

ducted in reality, incorporates conservative measures to safeguard humans, a constraint that is

relaxed in the World-In-the-Loop setting. Likewise, the incoming drone avoidance scenario in a

real-world setup risks damage to two drones, a risk that is mitigated through World-In-the-Loop

testing.
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RQ2 Finding: The study showcases examples of cost reductions in both execution and failure

across three tested scenarios within a mixed-reality environment. These reductions are evident

in terms of execution efficiency and minimized risk of damage or harm to humans.

4.1.3 Summary

We have introduced a novel approach, World-In-the-Loop simulation, to narrow the simulation-

reality gap by integrating sensor data from both the simulation and the real world. This method

provides a framework for validation in a mixed-reality environment, where the balance between

simulated and real elements can be adjusted according to the tester’s needs. Our study demonstrates

how this approach can reveal behaviors more closely aligned with those observed during real-world

testing, while reducing both the cost of execution and failures.

Finally, although World-In-the-Loop facilitates the injection of simulated objects into physical

environments, fully exploring the physical semantics of the autonomous system remains costly. Con-

sider, for example, the challenge of replicating a drone flying through a gate under varying wind

conditions. World-In-the-Loop could reduce the cost of using elements associated with the physical

environment, such as the gate; however, the wind would still need to be simulated manually in the

real world. In subsequent work, we aim to explore methods to reduce the costs associated with

further examining the physical semantics of the system, specifically through the application of real

forces to an autonomous system during real-world testing.

4.2 Mimicking Forces on a Quadrotor Through a Haptic Suit

Autonomous systems need to be tested under various scenarios and conditions to ensure their safe

operation. In these scenarios, autonomous systems will be exposed to numerous forces, each with

an impact that can vary depending on the physical semantics of the given autonomous system.

Validating that an autonomous system can handle such external forces is crucial, as these forces

can significantly alter the behavior of a system. For instance, consider how you have to counteract

strong gusts while driving on a highway on a windy day, whereas on a calm day, the car travels
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smoothly.

While validating external forces is important for all autonomous systems, it is particularly critical

for systems whose physical semantics are inherently unstable. A stable system will naturally return

to a safe and stable state after an external force is applied, with no additional input from a user or

the autonomous agent. Examples of such systems include fixed-wing passenger aircraft, which are

designed to level out when given no command. Another example is a car, whose wheels will always

try to return to the straight position while driving. These systems, while needing to handle external

forces, will naturally return to a safe state if the autonomous agent fails and provides no commands.

However, this is not the case with unstable systems. These systems must constantly make

adjustments and perform some level of control to maintain a safe state. Specifically, it is the

responsibility of the autonomous system to maneuver into a safe state after an external force is

applied. There is no inherent safety designed into the system, without appropriate responses, the

system will naturally tend toward instability and potentially crash. Legged robots [40], for example,

need to take a step back to counteract someone pushing them from the front, or they risk failure

and potential damage from falling over. Quadrotors [124] also need to make micro-adjustments to

remain airborne; a strong wind or an impact from an object will result in a crash if the control

mechanisms and motors cannot overcome the force.

In this section, we will take a closer look at drone systems, such as quadrotors, whose physical

semantics need to be thoroughly validated before they can be used in real-world conditions. These

multi-rotor aircraft exemplify advanced developments in robotics and automation. Their natural

instability allows them to be both versatile and agile under a variety of conditions. This allows

them to perform complex, precise, and lightning-quick maneuvers, making them ideal for a myriad

of applications. These applications include carrying sensors and objects [273, 32]; balancing inverted

pendulums [46, 130]; juggling balls [86, 253]; manipulating objects [326, 317]; and even launching

from aquatic environments [16].

In these applications, given the system’s physical semantics, external forces significantly impact

the drone’s behavior. For instance, carrying objects introduces a downward force; balancing pendu-

lums induce a swinging motion; interacting with balls results in intermittent impacts; manipulating
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objects leads to combined downward and rotational forces; and launching underwater involves over-

coming resistance, which dissipates once airborne. For this reason, we need to be able to effectively

validate them under a variety of external forces.

However, test execution for drones in the real world presents notable challenges. Consider a

drone that must maintain its position while delivering cargo. First, precisely validating the effects

of external forces, such as wind, would require specialized mechanisms like wind tunnels. Second,

validating the range of behaviors the drone could exhibit would entail testing various cargo config-

urations (e.g., weight, shape); this process can be laborious, as testers often need to set up each

scenario manually. Third, some forces are extremely difficult to replicate, such as those arising

from the subtle interplay between gusts of wind and cargo configuration. These challenges make

validating drone behavior in the real world resource-intensive, complex, and sometimes impractical.

4.2.1 Approach

Figure 4.5: Overview of the Framework

This section introduces a framework designed

to address these challenges. Drawing inspira-

tion from haptic feedback systems in interactive

technology that simulate force interactions for

user immersion [132, 165], our framework simu-

lates real-world forces on the drone during the

test execution phase. The framework aims to

mimic the forces a drone may experience dur-

ing flight, enabling engineers to validate their

drones physical semantics under various scenar-

ios more efficiently, quickly, and easily.

4.2.1.1 Overview

Figure 4.5 presents the framework’s structure, which includes three primary components: 1) an

electro-mechanical attachment for the drone, equipped with directional propellers capable of pro-
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ducing a range of forces and torques; 2) a synthesizer that converts specified force F[x,y,z] and torque

T[x,y,z] into target motor velocities ui and angles θi for each motor i, utilizing the inverse kinematic

equations of the attachment; and 3) controllers that monitor the attachment and drone states,

employing ui and θi as setpoints to activate the attachment propellers to achieve these targets.

4.2.1.2 Haptic Suit Device

The following requirements guided the haptic suit design. First, the device needed to generate forces

with a wide range of magnitudes and directions to support many scenarios. Second, the device needed

to mount on the host drone without any point of contact with other external entities in order to

reduce flying constraints or interference. Third, the device needed to minimize the disturbance to

the drone’s normal behavior to avoid failures that the introduction of the suit may cause.

Figure 4.6: Quadrotor, Haptic-Suit, and Haptic-Suit integrated
with Quadrotor (grey circles represent quadrotor propellers).

The suit design follows from

those requirements. Conceptu-

ally, the suit is elegant in its sim-

plicity in that it adopts the host-

drone structural design. With-

out loss of generality and to facil-

itate the explanation, we exem-

plify the integration of the hap-

tic suit to a quadrotor as shown

in Figure 4.6. For a quadrotor,

shown in Figure 4.6-A, the suit

device consists of four arms, each

one with a rotor at its end, as

shown in Figure 4.6-B, reflecting the design of the drone. In the suit, each of the i (i = 4 for

quadrotor) rotor’s thrust Fi and torque values Ti can be independently controlled by varying the

motor speed ui. However, unlike a typical drone where Fi is always perpendicular to the drone, the

suit can independently rotate each arm by θi through additional motors at the base of each arm.
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To allow for precise control, each arm is fitted with an IMU reporting its attitude. This allows us to

vary the magnitude of Fi and Ti by varying ui, as well as vary the direction by varying θi, to create

a wide range of forces on the drone regardless of the drone’s current pose.

The integration of the haptic suit and drone is shown in Figure 4.6-C. The haptic suit is mounted

onto the drone with a shift of 45 degrees. This integration meets our requirements in the following

ways. First, as each arm has a motor that can independently rotate, it can generate a wide range

of forces, allowing for the simulation of a wide range of scenarios. Second, the suit is not attached

to anything but the drone, thus not limiting the drone to any specific environment. Third, the

suit is symmetrical, lightweight, and has arms that protrude out further than the drone’s arms.

This minimizes the changes in both the total and center of mass of the drone while also minimizing

interference among airflow through propellers. These design choices reduce the chance that the suit

will affect the normal behavior of the drone.

The conceptual design simplicity offers a rich space of trade-offs that will determine the mag-

nitude of the forces that the suit can generate. For example, more powerful motors can generate

greater forces. However, their weight, the weight of the arms required to support them, and the

battery requirements may undermine some of the forces they can generate and the preciseness of

the overall force manipulation. The arms’ length and rotational speed can also affect the type and

magnitude of forces that can be applied. This also indirectly affects the airflow of the other drone’s

rotors. The profile of all these elements can affect the dynamics of the drone, from adding weight to

changing the drag coefficients. We will discuss the particular choices we made for one instantiation

of the framework under Section 4.2.1.7.

4.2.1.3 Force to Control Set Points

Given a haptic suit device, the framework must convert a set of user-defined forces F[x,y,z] and

torques T[x,y,z] into a set of motor speeds u[1,4] and rotations θ[1,4].

For example, if a user wants to simulate carrying a package, which is equivalent to applying

negative force in the Z direction (−Fz), we would need all motors to spin at equal speeds (u1 =

u2 = ...) such that they generate a force of the correct magnitude (Fz). Furthermore, each of the
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motors would also need to be pointing directly downwards (θ[1,4] = 180), so that the direction of

the force is in the same direction as gravity (−Fz) to exert the same force as a package. Similarly,

if a user wants to mimic a horizontal wind with a force Fy, whose magnitude is the same as that

of the first example, then motors 2 and 3 would need to create forces in the Fy plane by rotating

(θ[3,4] = 90), and each would need to operate at double the speed of the first example to compensate

for the lack of motors 1 and 2.

To perform such conversion computations, we define a set of kinematic equations for the haptic

suit. Consider motor 1 in Figure 4.6-B, with target speed u1 and rotation θ1. The force F1 and

torque T1 generated by that motor are F1 = kf × u1 and T1 = km × u1 where kf and km are the

proportionality constants for thrust and moments respectively [354]. Since the capability to rotate

the motor affects the forces and torques direction, we must decompose F1 and T1 into (Fx1, Fy1, Fz1)

and (Tx1, Ty1, Tz1). Equations 4.1 showcase the decomposition of F , with similar equations holding

for T .

Fx1 = −F1 × sin(θ1)

Fy1 = 0 (4.1)

Fz1 = F1 × cos(θ1)

We can now generalize these equations to a full suit as per Equations 4.2, for the first two motors

Fxi = −Fi × sin(θi)

Fyi = 0 (4.2)

Fzi = Fi × cos(θi) for i ∈ [1, 2]

A similar set of equations can then be used for the next two motors as shown in Equations 4.3.
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Fxi = 0

Fyi = −Fi × sin(θi) (4.3)

Fzi = Fi × cos(θi) for i ∈ [3, 4]

These equations are derived from Equation 4.1 and thus Fyi = 0 for motors 1 and 2, while Fxi = 0

for motors 3 and 4, as these motors are incapable of rotating in the Y and X planes respectively.

To compute torque we use a similar derivation except that since motors on opposite sides of an arm

rotate opposite each other, their torque cancels out, so the terms for T2 and T4 are negated. The

final step is to compute the total force Fx, Fy, Fz as per Equation 4.4.

F[x,y,z] =

4∑
i=1

F[x,y,z]i (4.4)

Computing the torques Tx, Ty, Tz must take into consideration the additional torque placed on

the system by any unbalanced forces in any given directions as shown in Equation 4.5. For example,

a torque around the X axis can be created by an imbalance of the forces in the Z direction between

motors 1 and 2.

Tx =

4∑
i=1

Txi + (Fz1 − Fz2)

Ty =

4∑
i=1

Tyi + (Fz3 − Fz4)

Tz =

4∑
i=1

Tzi + ((Fx1 − Fx2) + (Fy3 − Fy4))

(4.5)

To obtain the speed ui and rotations θi needed to generate a given force F and torque T , we

compute the inverse kinematics. Given the complexity of the equations and the fact that the number

of degrees of freedom is different from the number of variables, we approximate the inverse using
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numerical methods described in more detail in the implementation.

4.2.1.4 Controller

The final step is to actuate each of the suit’s motors and arms into the correct configuration. The

framework uses two traditional PID closed-loop controllers per arm. The first controls the motor

speed, using the current motor speed as feedback, while the second uses the IMU attitude information

as feedback. Note that having an IMU on each arm allows the framework to control the haptic suit

independently of the drone’s pose and behavior, which allows users to define forces in the world

frame while ignoring the drone’s pose. The set points are given by u[1,4] and θ[1,4] produced by the

previous framework component.

4.2.1.5 Generality

As defined, the framework can be directly instantiated to support multiple drone configurations

under two conditions: 1) the device placement can coincide with the drone’s center of mass, and 2) a

symmetrical distribution of suit motors is a good fit for the drone structure and the intended forces

and torques. As part of the framework presentation we introduced a 4-motor-suit configuration that

fits, for example, common quadcopters and octocopters, in the following study we use a 2-motor-suit

configuration that suffices to explore the target scenarios on a quadcopter, and extensions to more

motors should be trivial to instantiate reusing a similar suit structure (with different motors and

arms’ length), body of kinematic equations, and controllers.

4.2.1.6 Limitations

The haptic framework’s range of forces is constrained by three factors. The first results from the

suit design, which mimics a typical drone. Drones control yaw by varying the speeds of motors that

spin in opposite directions. A speed imbalance will produce a non-zero overall torque, resulting in

a yaw. Three things occur when our suit rotates an arm, as seen in Equation 4.5. First, as the arm

rotates, the force component in the Fz direction will decrease, resulting in a roll or pitch. Second,

the arms rotation will induce a Fx, or Fy component, resulting in additional yaw. Third, the torque
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generated by the motor’s spin will also become imbalanced, adding additional roll, pitch, or yaw

depending on the rotation. Therefore while we can generate a force in any direction, some forces

may result in rolls, pitches, or yaws that can be modeled and should be monitored.

The second results from mounting the suit onto the drone. The drone’s design and capabilities

(e.g., weight, footprint, lift, controller) and its tolerance for the unintended perturbations caused

by the suit (e.g., interference with airflow, additional weight) directly affect the design of the suit

(e.g., the motors it can carry, the propellers dimension, power supply, the arms’ length) and thus

the magnitude of the forces our haptic suit can produce.

Finally the haptic suit is limited in that it requires a controller to function. Additionally, each

time the haptic suit design changes, for example by adding or removing additional arms, the con-

troller too needs to be redesigned. This could be minimized through learning the controller function,

although that is not something explored in this work, and we leave that for future work.

4.2.1.7 Implementation

Figure 4.7: Two-arm haptic suit prototype
(marked using dashed lines) mounted on a DJI
Flamewheel F450 drone [85].

Our implementation, which is publicly avail-

able [144], uses a DJI F450 [85] with a Pixhawk

controller [286] governed by the Freyja mission

controller [318]. The experiments only required

operation in the XY -plane and thus only re-

quired a suit with 2 arms. Since the drone’s

arms are 25cm, to minimize airflow interaction,

we used 5mm-diameter and 29cm length carbon

fiber tubes. Each arm connects to a DC mo-

tor for rotation driven by a dual-motor driver

(Adafruit TB6612). Each arm also has an IMU

(SparkFun BNO080) to determine its current rotation angle. 3D-printed components were used to

firmly attach the suit to the drone.

The Flamewheel can carry up to 1kg of payload with limited noticeable behavioral changes,
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which drove the selection of components. We used two tri-blade propellers (length: 5 inch, pitch: 4

inch) and two brushless motors (GARTT ML2204S 2300KV) that are driven by two electronic speed

controllers (HGLRC 30A) to generate thrusts. The brushless motors are connected to two UXCELL

GA12-N20 DC motors with reduction gears (6V, 70 RPM). Each motor was connected to the end of

the carbon fiber tube. The DC and brushless motors were controlled using an Adafruit Feather M0,

to which the user could send commands over WiFi. We equipped the suit with its own battery to

avoid affecting the drones’ behavior by sharing a power source. The suit, including battery, weighed

under 800 grams to minimize the effects on the drone’s behavior.

The remaining components are implemented on top of the ROS [328] as nodes developed in

Python. The suit PID controllers are implemented on the Adafruit Feather M0. The numerical

solver used to compute the inverse kinematics in Matlab [241] was the vpasolver.

4.2.2 Study

The goal of this study is to evaluate the potential of the haptic suit framework in facilitating the

testing of physical semantics of a drone during the test execution phase. Specifically, the study seeks

to address the following research question:

RQ1) How effective is the haptic suit framework in mimicking real-world forces on a drone?

RQ2) Does the haptic suit reduce the cost of executing tests in the real-world?

4.2.2.1 Setup

To answer this research question we build the suit, as well as developed 5 scenarios, each described

below:

4.2.2.2 Suit

To assess the haptic suit framework capabilities, we used the prototype described in Section 4.2.1.7

with the suit shown in Figure 4.7. Through a set of empirical calibrations, we set the kf = 2 and

km = 3 of the kinematic model, as introduced in Section 4.2.1. The synthesizer that transforms
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forces and torches to motor velocities and rotation angles was executed offline, while the controller

was executed online as the scenarios were running.

4.2.2.3 Scenarios

Table 4.2: Each of the scenarios along with associated forces and
torques.

Scenario Force and Torque (Newtons)

Weight (Indoor) Fz = −3

Steady Wind (Indoor) Fy = 1

Gusting Wind (Indoor) Fy = f1([0.5, 1]), T[x,y,z] = f2([0.1, 0.5])

Pendulum (Indoor) Fy = f3(p), Fz = f4(p)

Drop Weight (Outdoor) Fz = f(t) =


−5 if 0 < t ≤ 30

0 if t > 30

We flew the drone under a se-

ries of scenarios, listed in Ta-

ble 4.2, designed to expose dif-

ferent types of forces. The

weight scenario produces a con-

stant force that points in the Z

direction. The wind scenarios

produce either a constant force

in the Y direction, or in the case

of the gusting wind a force in the

Y direction and torques in the

X,Y, and Z direction sampled from a set interval.

The pendulum scenario produces a force in the Z and Y direction that varies based on the

position of the drone p. The scenarios were performed indoors using a motion capture system,

Vicon [359], that is capable of measuring the vehicle’s pose at 200Hz with a 5mm accuracy. The

outdoor drop-weight experiment follows a piecewise function based on the time t, and measurements

were taken based on the commands generated by Ardupilot [20].

For each scenario, we compare the drone’s behavior under the real external forces versus the

forces induced by the haptic suit framework. The scenarios with real forces used physical weights,

wind generated by fans, and attached pendulums to create a baseline.

For the weight scenario, we selected a 100g, 200g, and 300g cargo. For the wind experiments,

we used an industrial fan capable of generating gusts of winds up to 4m/s. To create the pendulum

scenario, we attached a hinge allowing a unidirectional motion to a carbon fiber rod that carried

weights of 100g, 200g, and 300g. For the outdoor drop-weight scenarios, we used 500g cargo that
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was dropped after a set time interval using a rope connected to a pin which, when pulled, released

the weight.

4.2.2.4 RQ1: Effectiveness of replicating real-world forces

Figure 4.8: Average thrust at different real weights and
weights induced by the haptic suit.

Below we look at how effective the

haptic suit was at replicating real-

world forces for each of the different

scenarios.

Weight Scenario: In this sce-

nario, the drone was set to hover

at 1m while carrying a set weight.

Each of the experiments was run

5 times for 1 minute. We assess

the drone’s behavior in terms of the

thrust commands sent by the con-

troller Freyja [318] and the drone’s altitude while carrying different weights.

Figure 4.8 shows the thrust commands sent to the drone by the controller in newtons (N).

Figure 4.9: Average altitude induced using different real
weights and weights induced by the haptic suit.

Solid lines represent thrust readings

using real weights, while dashed lines

represent thrust using the haptic suit.

As expected, the more weight that

is added, the higher the thrust com-

mand sent to the drone to maintain al-

titude. More interestingly, the thrust

command’s average and standard de-

viation are almost identical when us-

ing the haptic suit to replicate the real

weights. This suggests that, from the
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drone’s perspective, the suit is exercising almost the same external forces.

Figure 4.9 shows the altitude of the drone as measured by Vicon. The average and standard

deviations on altitude are almost identical when comparing the real and the replicated scenarios

using the haptic suit. Even the slow decline in altitude at 300g observed in reality, likely caused by

an erroneous drone configuration parameter, is replicated when using the haptic suit.

Figure 4.10: Average pitch reported at different constant
wind velocities induced by the haptic suit

Wind Scenario: We first wanted

to explore how the drone would be-

have under a constant wind force.

Testing this often requires an elabo-

rate environment to produce steady

wind flows. It is not difficult to

conjecture, however, how the drone

should behave under a steady wind.

We expect that the drone should lean

against the wind to maintain its po-

sition. Thus, for this first wind sce-

nario, rather than testing our drone against a real constant wind, we validated our hypothesis using

the haptic suit to replicate the drone operating under steady winds.

The test involved increasing the magnitude of the force in the Fy direction using 3 constant values.

These correlated with suit throttle values (ω) of 5%, 10%, and 15%. Each of these configurations

was run 5 times, and the average and standard deviation of the drone’s pitch is shown in Figure 4.10.

The pitch adjustments of the drone match our conjecture.

When the haptic suit’s motors were set to 5%, the pitch was not significantly different from the

baseline. However, as the horizontal force placed on the drone grew, the drone made more drastic

pitch adjustments to counteract this force. At 15% throttle, which generates a wind equivalent of

1N of force, the drone must almost continuously perform corrections of up to five degrees.

For the varied wind scenario, we rely on industrial fans to mimic wind forces on drones. The

airflow in the area where the drone is to hover was recorded between 2.9m/s and 4.1m/s, reflecting
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the noisy airflow produced. To recreate this scenario using the haptic suit, we randomly varied both

Fy and T[x,y,z] inside set intervals.

Figure 4.11: Average pitch induced by real fans and haptic
suit.

Each random sample was selected

from a normal distribution to mimic

the real wind gusts. The pitch of the

drone was then recorded over 5 runs

when exposed to the fans and 5 runs

when using the haptic suit forces. As

shown in Figure 4.11, the recorded

pitch values show a greater amplitude

than with the steady wind, as the

drone must continuously adjust to dif-

ferent forces to maintain its position.

We find that the behaviors are similar when comparing the real wind gusts and the haptic suit-

induced ones. However, the haptic suit, on average, produces slightly more pitch than the wind

gusts. This is possibly due to slight variations in the drone’s altitude, which would take it in and

out of the airflow produced by the fans. This difference points to the limitations of employing such

current devices compared with the haptic suit.

Oscillating Pendulum Scenario: For this scenario, the drone flies at an altitude of 1m along

the x-axis starting at -1m and traversing to 1m before aggressively turning back until it gets to the

start point, where it would wait 20 seconds before repeating the process.

To define the forces induced by the pendulum that would serve as inputs to the haptic suit, we

modified OpenAI’s cartpole simulation [49] to match our scenario (our pendulum is facing down, has

a range from 0-180 degrees). We modified the simulation to include friction and a PID controller

that moved the base of the pendulum to a given setpoint p corresponding to the pose of the drone.

Thus, the simulation pendulum angle would be updated as the drone moved. The magnitude and

direction of the transformed force of the simulator were then sent to the force to control module,

which forwarded the correct ω[1,2] and θ[1,2] to the haptic suit.

124



Figure 4.12: Average pitch induced by a pendulum with
different weights and haptic suit.

Figure 4.12 shows the drone’s

pitch. We were specifically interested

in the 6-second mark when the drone

tries to become leveled but is affected

by the swinging pendulum. We no-

tice how well the haptic suit mimics

the real-world forces, with a maxi-

mum average difference of 3 degrees

at 6s. We conjecture the slight dif-

ferences observed can be attributed

to the simplistic simulation model we

used (oversimplified friction approximation) or communication delays (the suit was controlled from

a wireless station). Overall, we find it promising that this rather complex scenario can be modeled

so accurately using the haptic suit.

Drop-Weight Scenario: In this outdoor scenario we manually flew the drone to roughly 2m

above the ground while using Ardupilot’s altitude hold mode to maintain the drone’s current altitude

without any pilot feedback. For the scenario we took off with a payload of 500g attached. After

roughly 30 seconds, the payload is released. We expect that as the weight is released there is a

sudden change in altitude accompanied by a change in thrust to recover the altitude.

Figure 4.13a showcases the average thrust (a unitless value reported by Ardupilot) when using

the real weight and the haptic suit approximation, with time 0 corresponding to the weight being

dropped.

In both cases, when the weight is dropped, there is a spike in thrust. Figure 4.13b showcases

the average altitude changes from the original altitude at the time of dropping weight. As before,

when the weight is dropped, there is a sudden increase in altitude when using both the real weight

and haptic suit. We notice that when using the real weight, there is a larger increase in altitude

likely caused by the friction in the weight release mechanism that was not accounted for in the force

functions. This point again highlights one of the advantages of the haptic suit to overcome the
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(a) Average thrust (b) Average altitude

Figure 4.13: Thrust and altitude when dropping real weights and using the haptic suit. Time 0s
corresponds to time of weight being dropped.

limitations of existing practices that would have required a setup that includes a more sophisticated

release mechanism to validate the drone’s stability to changes in weights while flying.

RQ1 Finding: The study shows that in each of the five scenarios, the haptic suit is capable of

replicating real-world forces. Specifically, we found that the drone’s thrust, attitude, pose, and

behavior under both real and haptic suit-induced forces appear to be very similar. Furthermore,

the study demonstrated that when a failure was detected in a real-world test, the same failure

was also detected using the haptic suit. This provides evidence that the haptic suit can detect

real-world failures without the costs, limitations, and safety precautions required for real-world

testing.

4.2.2.5 Impact of Haptic Suit on Test Execution Costs

Due to the complexities involved in obtaining precise quantitative data, we adopt a qualitative

approach to analyze the impact of the haptic suit on reducing test execution costs.

Weight Scenario: In the traditional testing approach, each change of payload weight neces-
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sitated a meticulous process: selecting the appropriate weight, accurately weighing it, securely

attaching it to the drone, and ensuring stability before flight. This method was time-consuming and

prone to errors, often requiring frequent interruptions to adjust or replace the weights. In contrast,

the haptic suit streamlined this process remarkably. By simply inputting a command, the desired

force could be accurately and consistently applied to the drone, eliminating the need for manual

weight adjustments. This not only accelerated the testing procedure but also significantly reduced

the potential for errors, demonstrating the haptic suit’s efficiency in simulating varied payload sce-

narios.

Wind Scenarios: Testing the drone under wind conditions typically requires specialized and

expensive equipment like wind tunnels, which are not readily accessible. To replicate wind effects,

we initially used industrial fans, but this approach had significant limitations. Precisely controlling

the wind strength and direction was challenging: it involved measuring the air velocity, carefully

angling the fans, adjusting their location for optimal distance, and ensuring a consistent power

supply. Moreover, this setup was confined to a controlled lab environment, making real-world

replication far more complex due to unpredictable natural wind conditions.

In stark contrast, the haptic suit offered a more practical and controlled solution. By simply

setting the suit to simulate equivalent wind forces, we could efficiently create consistent and repeat-

able wind conditions. This method not only bypassed the logistical hurdles of using fans but also

provided a more scalable and realistic way to test the drone’s response to varied wind intensities

and directions, both in lab and real-world scenarios.

Oscillating Pendulum Scenario: In the traditional approach to simulate an oscillating pen-

dulum effect on the drone, we faced a series of intricate challenges. First, it necessitated the de-

velopment of a custom pendulum that could swing unidirectionally. This process involved some

understanding of material science to ensure the use of materials that were both lightweight and

sufficiently strong to support the swinging weight. Additionally, significant 3D design work was

required to devise the hinge mechanism and to print it accurately.

Another major practical challenge encountered during real-world testing was during drone land-

ing. The attached pendulum caused the drone to tip over upon landing, as it would land on the
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pendulum, causing the drone to hinge and tip. This issue led to the creation of a specialized landing

platform, designed to allow the pendulum to hang freely while providing adequate support to the

drone’s legs.

Conversely, replicating the pendulum forces with the haptic suit and simulation proved to be a

less cumbersome task, albeit not as straightforward as the previous scenarios. We adapted an existing

pendulum physics simulation, modifying the pendulum’s base to correspond to the drone’s position.

The simulation handled the complex physics of pendulum movement, enabling us to directly apply

the calculated forces and directions to the drone. This method significantly reduced the need for

specialized mechanical design and material science expertise. Moreover, it simplified the replication

process, eliminated the need for a specialized landing platform, and required less skill from the drone

pilot, making the overall testing procedure more efficient and practical.

Drop-Weight Scenario: The drop-weight scenario, involving the release of a weight once the

drone achieved stable hover, presented unique challenges in real-world replication. Initially, we

developed a timed device that would automatically drop the weight after a preset duration. While

this mechanism functioned adequately for lighter weights, it proved unreliable with heavier loads,

often releasing them prematurely. Additionally, the timed nature of this device imposed undue

pressure on test engineers to expedite pre-flight safety checks, risking procedural thoroughness. Any

disruptions during these checks necessitated a complete reset of the process: de-powering the drone

for safety, resetting the weight-dropping device, and then resuming the pre-flight protocols.

To overcome these issues, we shifted to a manual weight-dropping mechanism, which, while more

reliable, introduced its own set of complications. This system required two operators — one to fly

the drone and another to release the weight using a long string. Significant engineering effort was

also needed to minimize friction in the release mechanism, ensuring that the act of pulling the string

did not inadvertently apply additional force to the drone.

In contrast, the haptic suit streamlined this process significantly. It enabled us to simulate the

effect of a weight being dropped by simply issuing a single command to cease the application of

force. This approach eliminated the need for mechanical devices, reduced manpower requirements,

and offered precise control over the timing and magnitude of the simulated weight release. The
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haptic suit’s capability to mimic real-world scenarios with such ease and accuracy underscored its

value in efficiently conducting complex drone tests.

RQ2 Finding: Our findings indicate that the haptic suit increased testing efficiency and

reduced both the cost and complexity of executing tests across all five scenarios, compared to

a purely real-world test. Additionally, we found that the haptic suit enhances the reliability of

certain tests, such as the wind scenario, where it enables more precise replication of conditions

that are challenging to reproduce without the suit.

4.2.3 Summary

In this study, we introduced a haptic suit framework designed to apply various forces on a drone

for validation purposes. Our findings indicate that the drone’s thrust, attitude, pose, and behavior

are consistently similar when subjected to both real-world and haptic suit-induced forces. This

similarity suggests that the haptic suit effectively replicates real-world forces on the drone. We

also observed that the suit successfully mimics unexpected behaviors seen under real forces, such as

altitude loss in heavy-weight scenarios, reinforcing its utility as a complement to real-world testing.

Additionally, we found that reproducing specific real forces, ranging from constant wind to complex

nonlinear functions that vary with the drone’s state, can be prohibitively expensive and challenging

in a lab setting. However, our haptic suit can approximate these forces with minimal effort, offering

a less resource-intensive method for validating drone behavior and testing the physical semantics of

autonomous systems in realistic conditions.

4.3 Conclusion

This chapter explored two approaches to support test execution of autonomous systems. The first

aimed to reduce the simulation-reality gap, which occurs due to simulations’ inability to perfectly

replicate the real-world physical environment. We created a mixed-reality environment constructed

from sensor readings obtained both in simulation and in reality. Through this approach, we are able

to reduce the simulation-reality gap by only simulating portions of the physical environment that
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are too costly to actually include in the real-world. We subsequently demonstrated this approach

using a commercially available quadrotor under three different scenarios, each with two variations,

totaling six unique physical environments. In each case, we highlighted how using our approach,

World-In-the-Loop simulation, we were able to detect failures that were not apparent in simulation

before they appeared in reality.

The second approach aimed to reduce the cost and enable testing of an autonomous system’s

physical semantics under various real-world external forces. Specifically, we looked at how we could

replicate external forces on a quadrotor from five different scenarios. Our approach involved devel-

oping a novel haptic suit capable of applying real-world forces to the drone, using a system that

attached directly to the drone without external tethers or ground-based attachments. This system

minimized the disturbance to the drone’s nominal behavior, while allowing highly customized forces

to be applied to the drone. We found that this device was capable of replicating all five real-world

forces, and in some cases, was more reliable than traditional approaches.
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Chapter 5

Test Adequacy Metrics

In software testing, test adequacy is used in the testing pipeline, after test execution to judge its

effectiveness. This concept is best understood in terms of two critical sets: β, which represents

all possible values of a adequacy metric, and α ⊆ β , the subset of these values that are actually

observed during testing. One of the goals of test adequacy is to compute both α and β, enabling

developers to determine what is called the coverage of their test suites by evaluating the ratio of α

to β. Traditionally, for software systems, both α and β are determined through abstractions of the

input space. These abstractions allow developers to organize the input space into what are known

as equivalent classes. The underlying principle is that inputs within a single equivalent class are

expected to elicit the same system behavior. A test suite that covers more equivalent classes is

considered more comprehensive, as it exposes a greater range of the system’s potential behaviors.

This ratio provides a quantitative measure of the extent to which potential system behaviors have

been explored and tested.

However the manner and granularity in which these abstractions are computed significantly

influences the scope of both α and β, as it changes the size of these equivalent classes. Applying this

traditional approach to test adequacy encounters significant challenges when it comes to autonomous

systems. The behavior of these systems is profoundly influenced by a dual set of factors: the system’s

state s, and its current physical environment c. These factors such as the vehicle’s pose, speed,
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acceleration, the topology of the road, surrounding traffic, signage, and other environmental objects

collectively shape the vehicle’s actions and subsequent behavior. Incorporating both s and c into a

effective abstraction for computing α and β poses multiple challenges. Firstly, the vehicle’s state is

complex and can be represented in numerous ways, complicating the task of creating a generalized

abstraction. Secondly, the real world presents a nearly infinite array of environmental scenarios,

making the identification of equivalent classes within and the estimation of the total number of

such environments challenging. Thirdly, the intricate and often subtle interactions between s and c

significantly affect its behavior. This complexity necessitates that any abstraction must account for

these dimensions in a combined and integrated manner.

The result is an intricate combination of system states s intertwined with the nearly boundless

variations of the physical world c. This combination of factors leads to an extensive and diverse range

of possible input pairs, far exceeding the capabilities of traditional software-focused abstractions.

Consequently, this scenario necessitates a reevaluation and redesign of test adequacy measures, ones

that are tailored to account for both the system’s state and its physical environment.

5.1 Physical Coverage

We address the deficiencies of existing coverage criteria and the above challenges by introducing

a complementary abstraction, RRS (Reduced Reachability Set), that identifies the most relevant

areas of the environment to the autonomous system. It builds on two basic principles. First, an

autonomous system’s behavior can only be influenced by what it can perceive, and therefore the

sensed environment csen and state ssen of the vehicle are likely valuable and should be retained.

Second, the physical space of these inputs can be geometrically approximated, and inputs with the

same approximations constitute an equivalence class. From a technical perspective, those insights are

leveraged by 1) incorporating the current state ssen to compute the reachable set of the autonomous

system to prune regions of the sensed input space that the vehicle cannot reach in a time horizon,

2) performing a geometric vectorization on the remaining input set to approximate its shape, and

3) parameterizing the RSS abstraction to trade approximation precision (resolution of the equivalence
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Figure 5.1: Overview - The approach starts with an initial test suite, and an autonomous system.
It then executes the test suite on the autonomous system and passes the state and sensor data to
the RRS abstraction pipeline. This creates RRS signatures which can compute PhysCov.

classes) for computational cost.

5.1.1 Approach

The goal of the approach is to approximate α
β , the number of environment-state pairs seen in a given

test suite (α), over the possible environment-state pairs (β). Figure 5.1 presents an overview of the

RRS abstraction pipeline to compute that approximation.

5.1.1.1 Overview

The approach starts with a test suite composed of k tests, denoted as τk ∈ T . Each test is executed

on the autonomous system, during which, at every time step t, the system records two key pieces

of information: the environment as it is sensed by the system’s sensors csent , and the system’s own

sensed state ssent . This process of recording occurs continuously throughout the test. As a result,

for each test of the in the suite, we accumulate a sequence of environment-state pairs, represented

as osenk = ⟨(csen1 , ssen1 ), (csen2 , ssen2 ), . . . , (csent , ssent )⟩k.

This information is then fed into the pipeline, which has three stages. The first stage “Reduction

to Reachable Set”, defines the region around the autonomous systems most relevant based on the

autonomous systems state. To do this, the RRS pipeline uses the autonomous systems state ssent at

each timestep t, to compute the autonomous systems’s physical reachable set rt at that time step,

that is, the area or volume that the vehicle can reach given its current state. This step incorporates

the internal state of the autonomous systems into the abstraction, as the reachable set requires both

the dynamic and kinematic model and the autonomous systems’s internal state ssent (e.g., position,

velocity, acceleration). We assume that the reachable set is the essential part of the sensed area, as
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any object inside the reachable set is an obstacle that has the potential for collision, while any static

object outside can not be hit regardless of the autonomous vehicle’s behavior.

The second stage “Reduction to Sensed Reachable Set”, identifies the parts of the environment

most relevant to the current behavior of the autonomous systems. The approach assumes the

vehicle’s sensors capture csent , the portions of the environment that drive its behavior. Next, it

computes rsent = csent ∩ rt. Thus rsent only contains sensor readings from the physical world inside

the area or volume defined by the reachable set, which we argue is the region most important to the

autonomous systems’ decision at time t. By removing all portions of the environment that are not

likely to affect the autonomous systems’s decision-making, the approach reduces the environment

such that size(rsent ) << size(csent ) << size(c). Here, size() is conceptualized as “environmental

complexity and extent” quantifying both the detail of the environment and the spatial dimensions

under consideration.

The third stage “Sensed Reachable Set Vectorization”, takes in rsent , which is already signifi-

cantly smaller than the physical environment but has a complex geometry and is represented as an

innumerable continuous space. This stage provides a method to characterize this identified region

so that it can be easily compared with others and quantified. The approach employs geometric

vectorization to approximate rsent using an array of vectors originating from the autonomous ve-

hicle. The unique array of vector magnitudes is called an RRS signature. This process is object-

and sensor-agnostic and can account for unexpected sensor readings, which might be experienced

when operating in a new and unforeseen environment. The output of this final step is a sequence of

RRS signatures. More specifically, for each environment-state pair (csent , ssent ) ∈ osen, the approach

can compute an RRSt signature. Therefore, by supplying the pipeline with k sequences osenk , each

of length t, the approach can compute ⟨RRSt⟩k, a set of k sequences of t abstract signatures that

represent the autonomous systems’ sensed physical environments as perceived by their states during

the execution of each of the k tests τk.

The approach then passes the ⟨RRSt⟩k sequence through a function f to convert it into a coverage

vector Ψk. This function’s semantics can vary depending on the user’s needs. For example, in our

study, f computes the coverage vector by reducing the ⟨RRSt⟩k into the set of RRS signatures
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{RRSt}k. This represents all unique RRS and thus environment-state pairs seen during testing.

Alternatively, a more advanced function could count the number of times each RRS abstraction was

seen, thus representing a count of the environment-state pairs seen during testing. Another f could,

for example, account for the transitions between consecutive signatures.

When Ψk represents the set of RRS signatures, the approach can compute PhysCov, an ap-

proximation of α
β . PhysCov represents the percentage of environment-state pairs experienced by

the autonomous systems over all possible environment-state pairs. The approach computes α =

|{Ψ1 ∪ Ψ2 ∪ · · · ∪ Ψk}|, where Ψk = {RRSt}k. The approach can then compute β as the total

number of possible RRS signatures. Computing β is possible as the approach knows the parameters

to the pipeline, such as the maximum length of the RRS signatures and the total number of vectors

used in the RRS signatures.

While the approach overcomes the problems defined in the problem statement, it also creates

a metric whose properties provide additional benefits. First, this approach is general, with the

reachable set accounting for any possible internal state and the geometric approximation accounting

for any possible physical environment. Second, tests with the same RRS signature are grouped into

equivalence classes. For a test to have the same RRS signature, it needs to have a similar reachable

set and internal state, as well as similar sensed environments. When this happens, the autonomous

vehicles would likely behave similarly, and thus we can maintain equivalence class consistency. Third,

the approximation can be scaled to increase or decrease the approximation’s fidelity by adjusting

the number of vectors used. Fourth, the metric is finite; we can compute the denominator β prior

to testing. Finally, our metric has a linear cost with respect to the number of vectors used in the

geometric vectorization. The other significant computation is the generation of the reachable set,

which is the target of much recent work as described in Section 2.3.3.

5.1.1.2 RRS Signature Generation

Given osenk produced by test τk, the objective of the RRS pipeline is to generate a sequence of

signatures ⟨RRSt⟩k. We will use the scenario in Figure 5.2 as a running example to show the three

stages to compute such an RSS signature.
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Figure 5.2: Given an autonomous systems and a scenario. The reachable set is computed to identify
the regions more likely to affect the autonomous systems behavior given its state within a time
horizon. The resultant reachable set is then constrained using the sensed environment. Last, the
reduced reachable set is approximated using geometric vectorization, and the RRS signature is
produced.

5.1.1.2.1 Reduction to Reachable Set

The reachability analysis component aims to identify which parts of csent may affect the autonomous

systems’s future actions. This is important as most systems perceive large portions of the envi-

ronment that are unlikely to influence their behavior given the system’s current state. Consider a

case where csent is generated using a LiDAR. The LiDARs used on today’s self-driving cars operate

using a 360-degree field of view and can detect objects up to 300m away from the vehicle’s current

position [358]. This would result in an environment cLiDARt that covers an area of 282743m2, most

of which is not actively relevant to the autonomous systems. For example, suppose the autonomous

system is moving forward at 70mph. In that case, the space behind the autonomous systems is likely

irrelevant, while the space ahead of the vehicle is more likely to affect its behavior.

To identify the most relevant area, this component performs physical reachability analysis de-

scribed in Section 2.3.2 and 2.3.3. An illustration of the reachable set of a ground vehicle is shown

in Figure 5.2b (the cone-shaped region). The reachability set computation complexity depends on

the system model’s complexity. A car’s model uses dynamics and kinematics where the state of the

car can be described using s = [x, y, v, ψ]T , which describes the x and y position, the velocity v, and

the orientation ψ [193, 294]. The input to the system is u = [a, δ], which describes the acceleration

a and the front wheel steering angle δ.

The output of this component is illustrated in Figure 5.2-b. A reachable set extends from the
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autonomous vehicle in a conical area in front of it, and it includes the fire hydrant, the truck, and

the trailer, as these items are within the potential area the vehicle can visit through a sequence of

actions. The parked cars and groups of people are not reachable within the specified state and time

horizon and thus lie outside of the reachable set.

5.1.1.2.2 Reduction to the Sensed Reduced Reachable Set

The autonomous system continually captures and processes csent . A wide range of sensors available

for different autonomous systems provide some form of spatial awareness, and thus csent might come

in various forms. Figure 5.2-c shows csent as a point cloud, a collection of points representing the

sensed objects around the autonomous systems.

This component integrates csent with the previously computed rt. To account for the limited

resolution of the sensors, our approach inflates each point using a user-defined parameter λ repre-

sented as the dashed lines around each point in Figure 5.2-c. This step ensures that when geometric

vectorization occurs, each vector will not pass through obstacles sensed with limited resolutions.

However, as the resolution of sensors increases or the number of sensors increases, the need for in-

flation reduces. Any region of the reachable set that intersects with this inflated region is removed.

Figure 5.2-c shows the reduction of rt to rsent , which now contains the reachable set constrained by

the sensed environment. The resulting reachable set is constrained by the truck and the fire hydrant

the vehicle could reach in the specified time horizon.

5.1.1.2.3 Reduced Reachable Set Vectorization

Once we have computed rsent , the final step, shown in Figure 5.2-d is to convert it from its current

polytope representation to a concise numeric characterization. We resort to a vector approximation

inspired by the centroid-to-boundary shape analysis technique [226]. This technique approximates

complex shapes by computing the distance from a central point to all boundary points of the shape.

More specifically, given a specified number of vectors, the approach samples the rsent space with

vectors whose origin is the autonomous systems and magnitude is defined by their intersection with

the bounds of rsent , quickly providing a characterization of the sensed and reachable space we call
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Algorithm 5: Geometric Vectorization Algorithm

1 Given rsent , st, n, D, I
2 RRS = []
3 for i in n do
4 angle = D[i]
5 v = compute vector(rsent , st, angle)
6 discretized v = round(v, I[i])
7 RRS.append(discretized v)

8 end
9 return RRS

the RRS signature.

Algorithm 5 describes the process in more detail. The inputs are rsent , the current state of the

autonomous systems st, the total number of vectors n used to characterize the space, the spread

D of the vectors which define the angles between vectors, and the tick intervals I which defines at

which intervals vectors can be discretized. The algorithm loops through the total number of vectors

n in line 3. For each vector, it first determines at what angle the vector should be from the centerline

defined by the autonomous systems’s direction of travel from the spread D as shown in line 4. For

example, D might define that vectors are spaced evenly, 4 degrees apart from each other, spanning

from the centerline. In line 5, the algorithm computes the vector’s magnitude from the autonomous

systems’s origin at the specified angle until it reaches the edge of the reachable set rsent . Next, in

line 6, the vector v is discretized by rounding to the nearest value defined by the tick intervals I.

For example, if the currents v’s magnitude was 3.25 and I was defined as (1, 3, 5), then v would be

discretized to the value 3. Finally, in line 7, that discretized vector magnitude is added to the RRS

signature before being returned in line 9.

5.1.1.3 Usages of RRS Signature

The final step in the pipeline is to convert the sequence of ⟨RRSt⟩k signatures into a coverage

vector Ψk. Multiple types of coverage vectors can be computed, from one based on the unique

signatures exposed by a test to one that considers the number of times each signature is executed

or the transitions between signatures over time. However, for the rest of the paper, we focus

on the simplest notion of signature coverage, identifying all unique RRS signatures in ⟨RRSt⟩k,
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⟨RRSt⟩k → {RRSt}k = Ψk, which is similar to converting a trace of lines of code covered into a

coverage vector just containing the unique lines that were executed.

5.1.1.3.1 PhysCov Computation

PhysCov aims to capture how much of the relevant physical environment was covered by a test

suite and is defined in equation 5.1. Intuitively, this metric represents the percentage of distinct

environments perceived that are relevant to the autonomous systems given its state. The number of

seen distinct RRS abstractions α is computed from the union of each of the coverage vectors from

all tests, such that α = Ψ1∪Ψ2∪· · ·∪Ψk. To compute β, the approach enumerates all possible RRS

signatures. Equation 5.1’s denominator takes the product of all possible magnitudes each vector can

obtain and passes it through f to compute β. This, in effect, enumerates all possible combinations

of the tick intervals I, and thus we are left with all possible combinations of RRS signatures. Then

to enumerate all possible Ψ, we pass all possible combinations of RRS signatures through f . A

byproduct of our approach is that we can control the total number of RRS signatures and vary the

granularity of PhysCov by varying n or I.

PhysCov =
α

β
=

Ψ1 ∪ Ψ2 ∪ · · · ∪ Ψk

f
(∏n

i=0

(
|I [i] |

)) (5.1)

5.1.1.3.2 Test Suite Selection

Test selection works on the principle that coverage vectors Ψ are a good proxy for identifying

equivalent tests. If two tests produce the same Ψ then we judge that the tests likely exposed

the system to the same environment-state pairs and thus likely test the same behavior. Once the

approach identifies each of the equivalent coverage vectors, it can select a subset of the test suite

T select with only a single test from each equivalence class T select ⊆ T , where T select = {τi, τj ∈

T |Ψi ̸= Ψj}.
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5.1.1.3.3 Test Suite Generation

The missing Ψ, Ψmissing = β−α, can be the drivers of a targeted test suite generation effort. Once

the approach has identified Ψmissing, it can construct each of the missing RRS signatures using

RRS = f−1(Ψmissing). Then for each RRS ∈ Ψmissing, the approach can generate an environment-

state pair that would result in that specific RRS signature being formed.

5.1.1.4 RRS Generalization

Computing RRS signatures is not restricted to 2D environments, particular sensor types (as long as

they provide a spatial characterization), or autonomous ground vehicles. For example, a quadrotor

reachable set would resemble an upside-down cone, with the quadrotor in the middle. Sensed

obstacles could be used to remove portions of the reachable set, which could then be approximated

using geometric vectorization.

5.1.1.5 Limitations

Our approach has two main limitations. First, it assumes that the approach has access to either a

sensor or an internally sensed scene representation that is spatially represented. By this, we mean,

for example, LiDAR generates point clouds which have some physical spatial meaning that our

approach can consume, while camera images require an additional stage to convert pixel values into

a spatial representation of the scene. While many autonomous systems do this internally, some do it

explicitly. Examples of these include systems designed with end-to-end neural network architectures,

which consume raw images and output actions. In such cases, our approach would need an additional

stage to convert the scene into a spatial representation.

The second limitation is how our approach vectorizes the space. Currently, our approach vector-

izes it using vectors drawn from a selected point. However, these vectors may miss many potential

obstacles, for example, consider an extremely thin pole which the vector passes by. Future versions

of this approach may consider alternative methods for vectorizing the space, such as breaking the

space up into smaller sectors whose areas can be computed, allowing the identification of even the
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smallest obstacles.

5.1.2 Study

We aim to answer the following research questions:

RQ1) How effective is the coverage vector Ψ at grouping equivalent environment inputs such that

they cause similar behaviors? Additionally, what is the impact of the RRS parameters on PhysCov?

RQ2) How effective is PhysCov at selecting tests that induce unique failures?

RQ3) Can PhysCov distinguish similar from different real scenarios?

5.1.2.1 Setup

We evaluate PhysCov on three increasingly complex environments, a traffic kinematic simulation,

a high-fidelity simulation, and data taken from a real autonomous system. This mimics real-world

development, where autonomous systems are first developed in simple simulated environments, then

in complex simulations, and finally tested in the real world. We now describe how we set up our

environments, what baselines we compared against, what evaluation criteria were used, and how we

instantiated our PhysCov pipeline.

5.1.2.2 Environments

We used three different environments in the study. The first two were simulations, and the final was

data collected in the real world, using a real autonomous system.

5.1.2.2.1 HighwayEnv

Figure 5.3, shows the HighwayEnv [214] environment. HighwayEnv is a minimalistic open-source

simulator used to explore control and navigation aspects of autonomous driving. The ego vehicle

uses an onboard sensor to track the position and velocity of the closest traffic vehicles and a rule-

based navigation module to traverse the highway. We configured the scenario by placing the ego

vehicle at one end of a highway, and the goal was for the ego vehicle to navigate down the highway

as fast as possible. The highway was populated with between 1 and 10 vehicles placed randomly in
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front of the ego vehicle. The first traffic vehicle was spawned in a random lane 15m in front of the

ego vehicle. Subsequent vehicles were spawned in random lanes using 2m intervals.

Figure 5.3: HighwayEnv [214], BeamNG [33], and the Waymo Open
Perception Dataset [333] environments.

The 10 traffic vehicles

were allowed to operate be-

tween speeds of 15m/s −

25m/s, while the ego ve-

hicle speeds were 15m/s −

30m/s. Each run lasts

25 seconds, allowing the

ego vehicle to overtake the

other vehicles. If the ego ve-

hicle collides with another vehicle, the simulator removes that vehicle and reduces the velocity of

the ego vehicle. By allowing and recording multiple collisions during each test, we could ensure that

all tests were precisely 25 seconds. We generated 1,000,000 tests to explore the possible scenarios

that could occur in HighwayEnv. Of the 1,000,000 tests, 94% executed without any failures.

5.1.2.2.2 BeamNG

The second environment, shown in Figure 5.3, is BeamNG.tech [33] (BeamNG), a versatile high-

fidelity vehicle simulator with state-of-the-art soft-body physics, collision detection, and sensors.

The ego vehicle is controlled by BeamNG’s autonomous driver module, which has approximately

2500 lines of code to perform speed and steering modulation, obstacle avoidance, and path planning.

We spawn between 1-10 traffic vehicles at random locations in a 60m × 20m rectangle centered

30m ahead of the ego vehicle. The vehicles had a speed limit of 120km/h, while the ego vehicle was

144km/h (to allow the ego-vehicle to overtake the traffic vehicles). The traffic vehicles are controlled

by BeamNG’s traffic module which maintains a traffic density, so when a traffic vehicle is overtaken

and thus no longer in the field of view of the ego vehicle, it respawns the vehicle in front but out of

sight of the ego vehicle. Each run was configured to last 50 seconds. If a failure occurred during the

run, we let the autonomous vehicle software try and recover for the rest of the test. BeamNG can
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not run faster than real-time, and it has license restrictions for running multiple instances, which

limited the number of runs to 10,000 tests, which took roughly a week of continuous execution on

a high-end machine. The ego vehicle achieved an 87.39% success rate over all tests. Although the

success rate of both simulated systems is lower than an ideal safety-critical system, it is fitting for

our study as it allows us to evaluate the failure detection capabilities of PhysCov.

5.1.2.2.3 Waymo Open Perception Dataset

Our third environment is the real world as perceived by the Waymo vehicle (Waymo Open Perception

Dataset [333]). Using this real-world dataset allowed us to evaluate PhysCov ’s applicability to real-

world systems, but we note that it has no recorded failures and limited scenarios. So our focus is

on the ability of PhysCov to form equivalent input classes. Our PhysCov pipeline uses sensor data

from the mid-range LiDAR on top of the vehicle and four short-range LiDARs (front, side left, side

right, and rear). We also use data from the 3 front-facing cameras to understand and explain each

scenario. We selected all 798 scenarios from the training set. Each scenario contains a 20-second

snippet of autonomous vehicle driving, giving us a total of 15, 960 seconds of real-world driving data

captured at 10Hz, which results in 159,600 RRS signatures generated over the entire dataset.

5.1.2.3 Baseline Techniques

We consider several techniques mentioned in the related work: code covered, miles driven, scenario

coverage, and trajectory coverage. Miles driven was discarded as all tests drive for a similar time and

distance, so it provided no valuable information. Scenario coverage was also dismissed as it requires

full knowledge of the entire environment and all relationships between objects in the environment,

which is not feasible given the complexity of the BeamNG or Waymo tests. Additionally, it is

impractical for long and large numbers of tests, given the amount of data it needs to track. Thus,

we ended up employing code and trajectory coverage.
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5.1.2.3.1 Code Coverage

Since the control software for Highway-Env is written in Python, we used the existing “Coverage.py”

tool to compute both the line and branch coverage [29]. BeamNG’s autonomous control software is

written in Lua, and coverage tools for Lua are still quite limited (e.g., LuaCov [290]). Therefore,

we implemented our own tool to track line, branch, and intraprocedural prime path coverage1,

intraprocedural path coverage, and path coverage. The source code for Waymo’s autonomous vehicle

is not publicly available; thus, no code coverage was computed for Waymo.

5.1.2.3.2 Trajectory Coverage

Trajectory coverage measures the extent to which an autonomous vehicle covers discrete regions on

a road [153]. The measure requires users to define a driving area, and the original work assumes

a rectangular bounded area to facilitate its specification. Next, the driving area is divided into

equally sized blocks. We set the block size to 1m × 1m, matching the original paper. Each time

the autonomous vehicle drives over one of the blocks, it is marked as covered. Trajectory coverage

is computed as the set of blocks covered over the total number of blocks in the driving area. As

defined, the approach is “naive” in that assuming most scenarios will consist of rectangular roads

when most areas actually consist of irregular shapes (e.g., a curve on the road). As part of our

study, we implement a version that supports irregular shapes that precisely match the curves of the

road area while also ignoring portions of the road that should not be covered, for example, lanes

with traffic in the opposite direction. We call this approach “improved” trajectory coverage.

5.1.2.4 Evaluation Criteria

To evaluate PhysCov, we primarily considered two criteria: the consistency of equivalent classes and

failures as it provides a concrete way to judge test’s behaviors.

1In a prime path, each node cannot appear more than once, and it is not a subpath of any other prime path.
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5.1.2.4.1 Equivalent Classes and Inconsistencies

A desirable coverage abstraction will produce the smallest number of equivalent classes, where all the

inputs in each class lead to the same behavior. Thus, we evaluate the coverage metrics in terms of

the number of equivalence classes they render and the consistency displayed by the rendered classes.

For example, for our proposed measure Ψ, two tests that have the same Ψ are said to belong to

the same equivalence class and thus should generate the same behavior. For lines of code coverage,

two tests that exercise the same lines are said to belong to the same equivalence class and should

behave consistently. Similarly, two tests are equivalent for trajectory coverage if they cover the same

blocks in the drivable area. We judge an equivalent class containing tests that pass and fail to be

inconsistent, while classes that contain just passing or just failing tests to be consistent.

5.1.2.4.2 Failures

There are no failures in the Waymo Perception Open Dataset; thus, this metric was not computed

for Waymo. For the simulation environments, we count the number of failures and the number

of unique failures as they represent a refinement of the considered exposed behaviors. We define

failures as either a crash or a stall. A crash occurs when the ego vehicle collides with any obstacle,

while a stall occurs when the ego vehicle comes to a complete stop, even though there is a way to

keep moving forward. During each crash, we record the velocity of the traffic vehicle, the velocity of

the ego vehicle, and the angle of incident. We then define a unique crash as one whose velocities and

angle of the incident match within a threshold of 1m/s and 1 degree, respectively. Given two crashes

that fall inside this threshold, we argue that there was only one unique crash, as the circumstances

around the crash must have been extremely similar to result in the same velocities and angle of

incidence. To detect a stall, we determine if the vehicle has a velocity of less than 0.01m/s and if

the vehicle has an obvious way to move forward. We define having a way forward as there being

a 30-degree gap in front of the ego vehicle, with no obstacles. We categorized stalls based on the

distance and angle to the closest object. This distance angle pair could then be compared to other

stalls to see if the stall happened under similar conditions and thus used to identify unique stalls.
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5.1.2.5 PhysCov Implementation

Implementing the PhysCov pipeline consists of first collecting the state and sensor data from each

vehicle, followed by the three major steps described in the approach: reduction to reachable set,

reduction to sensed reachable set, and vectorization. The implementation was made publicly avail-

able [140].

5.1.2.5.1 State and Sensor Collection

To account for differences between each of the environments’ state and sensor formats, we convert

all data into a standard trace format that contains the current time, position, velocity, heading,

crash status, stall status, and a 2D point cloud of all detected obstacles around the vehicle in

the vehicle’s frame of reference. The three environments we study provide the ego vehicle’s time,

position, velocity, and heading. Since there are no crashes or stalls in the Waymo environment, these

cells were set to False. HighwayEnv tracks the crash status of vehicles internally, so we modified

it to externalize it. BeamNG reports precise vehicle damage that we simplified as a crash if any

damage was reported. Stalls were detected by checking when the ego vehicle’s velocity was less than

0.01m/s, and had a 30-degree gap in front with no obstacles.

To capture the 2D point cloud, we used different approaches for each environment. For High-

wayEnv, the only obstacles are the traffic vehicles and the road’s edge. Since we know the exact size

of the vehicles and the road’s edge is straight, we can geometrically compute a 2D point cloud of

all objects in the ego vehicle’s frame of reference. BeamNG lets us equip the vehicle with a LiDAR

that returns a point cloud. We configured the LiDAR of the ego car similar to those in commercial

vehicles [358]. To focus the LiDAR on obstacles ahead of the vehicle in a 2D plane, we configured

it to return a 180-degrees arc with a 0.1-degree range on the z-axis. Note that in BeamNG, read-

ings are returned with some environmental noise since the LiDAR follows the vehicle’s pitch and

roll as it throttles, brakes, or hits bumps in the road. Since BeamNG reports the point clouds in

the global frame, we convert it to the ego frame. The Waymo dataset includes 5 cameras and 5

LiDARS, where each LiDAR generates a 3D point cloud in the ego frame of reference, with points
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up to 75 meters away. We combined each of the individual point clouds into a single high-fidelity

point cloud, and then we removed all LiDAR points behind the ego vehicle, as these points could

not affect the approximated reachable set, leaving only points within a 180-degree arc in front of

the vehicle. Finally, we flatten the LiDAR to generate a 2D cloud to points between 0.75m above

the ground and below 1.25m with respect to the ego vehicle, as these are obstacles with which the

vehicle might collide.

5.1.2.5.2 Reachable Set Computation

To compute a reachable set, we need the vehicle’s state, including the initial position, linear ve-

locity, and angular velocity. Each of the ego vehicles returns the position and linear velocity. We

approximated the angular velocity as 0, using the assumption that the majority of scenarios contain

roads without sharp turns and the ego vehicle moving forward, therefore the magnitudes of angular

velocity should always be extremely small. Under this assumption, we can efficiently approximate

the reachable set as a sector, as shown in Figure 5.2b. The sector’s origin was set to the position of

the ego vehicle.

The sector’s line of symmetry was set to match the direction of travel of the ego vehicle. At a

given time t, the sector’s radii were computed based on a user-defined time horizon multiplied by the

vehicle’s maximum speed. When the vehicle is not traveling at maximum speed, the sector results

in an over-approximation of the actual reachable space. This is acceptable in that we would rather

include additional spaces than ignore potentially dangerous obstacles. The maximum velocity of the

ego vehicle for HighwayEnv was 110km/h. Using v = d × t, and a timestep of 1 second, we can

compute that the sector’s radii should be 30m. Similarly, the maximum speed for BeamNG and the

Waymo vehicle was set to 144km/h. Again using a time step of 1 second, we can compute that the

sector’s radii should be 40m.

Finally, the sector arc was set to match the maximum steering angle of the vehicle. The maximum

steering angle for HighwayEnv was 30 degrees, resulting in a 60-degree arc. For BeamNG and

Waymo, we selected a generic Audi vehicle with a maximum steering angle of 33 degrees [152]

(66-degree arc). While this sector-based approximation could be more precise by accounting, for
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example, for changes to the angular velocity, we favor its application because it provides a safe

over-approximation, is applicable across the three environments, and its efficient to compute, which

is key given the datasets’ sizes.

5.1.2.5.3 Sensed Reachable Set Computation and Vectorization

Our implementation combines these two steps into a single computation. It requires a user-defined

point inflation size δ, total vectors n, spread D, and tick intervals I. It starts by converting each

point in the cloud to a circle centered on the point with a radius δ, which we set to 0.2m (we

empirically found this value to reduce the chances that an object goes undetected while also avoiding

obstructing other objects). Next, the implementation creates n vectors, which stem outward from

the ego vehicle, based on D, which defines how we spread the vectors out. It then computes the

length of each vector from the origin of the ego vehicle to the first intersection, which is either the

edge of the reachable set or one of the points from the point cloud. The real values representing the

length of each vector are then rounded as per I. These computations rely on the “shapely” python

package, which offers functionality to manipulate and analyze planar geometric objects [117].

Below we give detail on how each of the parameters was defined.

Total vectors (n): We explore n between 1 and 10 to explore its impact on the signatures

generated. When n = 1, denoted as (Ψ1), only a single vector was used to approximate rsent ,

resulting in a RRS signature with a single magnitude. When n = 10, denoted as (Ψ10), the RRS

signature included 10 magnitudes.

Spread D: We assumed that the region directly in front of the vehicle was the most important.

Therefore we designed D to favor the center of the reachable set. The approach places vectors at

roughly 6-degree intervals from the centerline. For example, when n = 1, a vector was placed on the

centerline. When n = 2, two vectors were placed at ±6 degrees. When n = 3, a vector was placed

on the centerline, and two vectors were placed at ±12 degrees, etc.

Tick Intervals I: RQ1 and RQ2 used failures as part of the evaluation criteria, and since crashes

occur in the region closest to the vehicle, we set I = {5m, 10m} from the vehicle. RQ3 was applied

to a real dataset without failures and focused on categorizing and comparing real-world scenarios.
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Therefore we extended the resolution to I = {5m, 15m, 25m, 35m} along each vector.

5.1.2.6 RQ1: Ψ Effectiveness

This research question explores how effective PhysCov is at generating equivalent input classes.

Tables 5.1 and 5.2 show, each baseline and PhysCov for HighwayEnv and BeamNG. Specifically,

they show the number of classes generated, and for the classes with more than one test, the number of

consistent classes (containing only passing or only failing tests), inconsistent classes (containing both

failing and passing tests), the average number of tests per class, and the percentage of inconsistent

classes.

First, we consider the baseline metrics. Line coverage groups tests into 2754 and 151 classes for

HighwayEnv and BeamNG, respectively. Among the ones with multiple tests, 75% and 65% are

inconsistent. Branch coverage groups tests into 7097 and 146 classes, reducing the inconsistency

rate to 63% and 58% when compared to line coverage. The more complex code coverage measures

in BeamNG do not fare any better. Intraprocedural prime path coverage produces more equivalence

classes than both line and branch coverage. However, the number of inconsistent classes actually

jumps from 64 and 56 to 113. The more exhaustive intraprocedural path coverage and path coverage

are overly specific, producing a unique signature for each test, suggesting an inability to group any

tests. Similar to the complex code coverage measures, trajectory coverage generates 650,123 and

10,000 signatures.

Next, we consider the different parameters of Ψ. As expected, as the total number of vectors

increases, so does the number of equivalent classes generated while the percentage of inconsistent

classes decreases. This highlights the ability of Ψ to vary the granularity of analysis. For example,

Ψ1 results in 2283 and 450 equivalent classes with multiple tests for HighwayEnv and BeamNG,

respectively. Of these classes, 55% and 57% are inconsistent. As we increase the approximation

granularity, the number of consistent classes with multiple tests increases, while the number of

inconsistent classes with multiple tests decreases. Our most detailed approximation, Ψ10, results

in 9004 equivalent classes with multiple tests for HighwayEnv, while staying roughly consistent at

440 for BeamNG, 18% and 32% being inconsistent. This highlights our metric’s ability to scale its
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Table 5.1: Equivalent classes across metrics for HighwayEnv

All classes Only considering classes with more than 1 test

Cov
Metric

Equiv
classes

Equiv
classes

Inconsistent
classes

Avg # tests
in classes

Percentage
inconsistent
classes

Line 2754 2241 1672 446.0 75%
Branch 7097 4589 2889 217.4 63%

Traj 650123 41717 8155 9.4 20%

Ψ1 3335 2283 1251 437.6 55%
Ψ5 4096 1887 501 528.8 27%
Ψ10 41443 9004 1640 107.5 18%

Table 5.2: Equivalent classes across metrics for BeamNG

All classes Only considering classes with more than 1 test

Cov
Metric

Equiv
classes

Equiv
classes

Inconsistent
classes

Avg # tests
in classes

Percentage
inconsistent
classes

Line 151 99 64 100.5 65 %
Branch 146 97 56 102.6 58 %
I Prime
Path

421 151 113 64.4 75 %

I Path 10000 0 0 0 —
A Path 10000 0 0 0 —

Traj 10000 0 0 0 —

Ψ1 682 450 258 21.7 57 %
Ψ5 1594 330 132 26.5 40 %
Ψ10 3628 440 139 15.5 32 %

abstraction granularity while also creating more consistent equivalent classes with multiple tests.

To compare the baseline metrics versus PhysCov, we can identify the Ψx where the choice of

x helps to render the number of equivalent classes observed in the baseline coverage measure. In

HighwayEnv, branch coverage groups tests into 7097 equivalent classes. Ψ5 is the closest, group-

ing tests into 4096 classes. Ψ5 has 27% of inconsistent classes, less than half of branch coverage.

Trajectory coverage generated 650, 123 equivalent classes, which is 15 times more classes than our

most specific metric Ψ10. One might argue that trajectory coverage performs well since it generates

41, 717 classes with multiple tests with 20% inconsistency, while Ψ10 only generates 9004 with 18%.

However, a class generated by trajectory coverage has, on average, 9 tests while Ψ10 classes have,

on average, 107 tests. This indicates that trajectory coverage is generating overly specific classes

that add no value compared with Ψ10. For BeamNG, establishing a fair comparison against code

coverage metrics is more difficult as even Ψ1 renders more classes. However, to capture the more

complex environments Ψ5 is sufficient to reduce the inconsistency rate to 40%, and with Ψ10 the

inconsistency rate is 32%, half that of branch coverage. The results for trajectory coverage align
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Figure 5.4: PhysCov for tests in BeamNG

with those from Highway-Env. It generates overly specific classes, in fact, so specific that no tests

were grouped together.

Next, we examine PhysCov as the size of the test suite size increases through Figure 5.4 for

BeamNG (similar trends can be observed for HighwayEnv, and we share those results in our arti-

fact [140]). The shaded regions show the minimum and maximum coverage for the test suite size. To

generate these regions, we computed each line 10 times while randomly varying the order in which

tests were added to the test suite. These figures show three trends. First, code coverage measures,

naive trajectory coverage, and Ψ1 saturate within the first 50 tests, while Ψ2 saturates within the

first 1000 tests. These metrics suffer as their resolution is too limited to be helpful as adequacy

metrics. Second, when x in Ψx increases, the coverage achieved grows rapidly before starting to

level off. This is because, as time passes, tests conducted on the same scenario struggle to reveal
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new coverage. The improved trajectory coverage is comparable to Ψ7. While this is promising,

one concern is that if we were to add a new scenario, for example, a similar highway in another

city, trajectory coverage would require a second derivable area to be defined, and show a sudden

vertical drop in coverage as the denominator would have doubled (assuming the new derivable area

is the same size as the old), while PhysCov ’s denominator would not change. This would happen

for any scenario, regardless of its similarity or difference. This thought experiment indicates another

shortcoming of trajectory coverage, which would either need to know all possible scenarios which

may be covered beforehand (so that a static denominator could be computed), or each time a new

scenario was added, the denominator would change, and the coverage achieved would drop. The

third and final trend is that similar to the higher Ψ, the unique number of failures also levels off with

a greater number of tests as new faults become more difficult to expose. Next, we explore whether

the correlation between failures and coverage supports this observation.

Since the correlation between unique failures detected and coverage is expected to temper as a

metric saturates, we explore this relation over small suites consisting of 10, 50, 100, 500, 1000, and

5000 tests. We generate 1000 suites of each size and compute the correlation between the test suites

coverage and the unique failures detected. The resulting Pearson correlation coefficients are shown

in Tables 5.3 and 5.4. These tables show a stark contrast between structural code coverage and

PhysCov. There is almost no correlation between the structural code coverage metrics and unique

failures found. When looking at trajectory coverage, there appears to be a moderate correlation

between trajectory coverage and failures, with increases for larger suites. Analyzing this increase in

correlation revealed that the definition of unique failures artificially favored this metric as crashes in

identical circumstances (e.g., velocity and angle of collision, number of vehicles, and obstacles in the

vicinity) occurring in different sections of the track were independently counted. This indicates that

this metric may be complementary to Ψ and that Ψ parameters may need to be adjusted based on

the failure type. Still, Ψ10 correlation is greater for 11 of the 12 suites combinations looked at in this

study. Finally, when we consider PhysCov, there is also a modest correlation between failures and

PhysCov, and the strength of the correlation varies across two factors. First, using a higher resolution

RRS abstraction always produces test suites with a higher correlation with failures. Second, and as
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Table 5.3: Correlation between coverage and unique failures found for test suites of different sizes
in HighwayEnv.

Test
Suite
Size

Line
Coverage

Branch
Coverage

Naive
Trajectory
Coverage

Improved
Trajectory
Coverage

PhysCov
(Ψ5)

PhysCov
(Ψ10)

10 0.09 0.10 0.02 — 0.63 0.69
50 0.00 0.02 0.05 — 0.55 0.68
100 0.05 0.05 0.20 — 0.43 0.64
500 -0.02 -0.02 0.23 — 0.21 0.47
1000 nan -0.02 0.22 — 0.20 0.37
5000 nan 0.08 0.09 — 0.05 0.32

Table 5.4: Correlation between coverage and unique failures found for test suites of different sizes
in BeamNG.

Test
Suite
Size

Line
Coverage

Branch
Coverage

Naive
Trajectory
Coverage

Improved
Trajectory
Coverage

PhysCov
(Ψ5)

PhysCov
(Ψ10)

10 0.05 0.05 -0.22 -0.22 0.04 0.50
50 0.04 0.05 -0.05 -0.05 0.39 0.49
100 -0.04 -0.03 0.03 0.03 0.27 0.43
500 -0.02 -0.04 0.21 0.21 0.18 0.29
1000 0.07 0.09 0.25 0.25 0.11 0.20
5000 0.07 0.08 0.20 0.20 0.07 0.19

expected, increasing the number of tests using the same scenario weakens the correlation as coverage

starts to saturate. Moving to Ψx where x > 10 is likely to mitigate this.

RQ1 Finding: We find that our metric can scale its abstraction granularity while also cre-

ating more consistent equivalent classes than our baselines. Specifically, PhysCov outperforms

traditional code coverage metrics in terms of the percentage of inconsistent classes, where in

both cases, our worst inconsistencies are better than the best instances of traditional code

coverage. Furthermore, we find that trajectory coverage achieves lower inconsistency in some

cases by creating significantly more equivalent classes than our approach. Despite this, can

scale PhysCov to create more consistent classes using significantly fewer abstractions (up to

15 times fewer). We also find that our approach scales better than the baselines and is more

general in that it can account for new scenarios without significant changes. Finally, we show

that PhysCov correlates with failures in 11 of the 12 cases examined in this study.

5.1.2.7 RQ2: Test Selection using PhysCov

This research question explores how effective PhysCov is as a test selection metric and its ability to

select test suites that induce unique failures. The previous research question suggested that PhysCov
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Figure 5.5: Unique failures found when selecting test suites that maximize or minimize PhysCov

did indeed correlate with unique failures. If this were true, we should be able to select test suites

that maximize PhysCov, which in turn would maximize the unique failures found. We generated

100 test suites between 0 and 1% of the original test suite size by repeatedly randomly sampling 100

tests from the original test suite and greedily adding the test that either maximizes or minimizes

the PhysCov of the current test suite.

Figure 5.5 shows the unique failures found by each of the 100 test suites for both HighwayEnv and

BeamNG. Each figure shows test suites that were selected to maximize PhysCov, minimize PhysCov,

or selected randomly. These figures reveal two insights. First, test suites selected to maximize

PhysCov always detect more unique failures than randomly selected suites. Second, minimizing

PhysCov always produces test suites with fewer, generally none, unique failures. This shows that

PhysCov is a good metric for selecting tests and reducing a test suite size. Once again, there is slightly

more variance in the results of BeamNG, likely due to its complexity and noisier environment. Overall

these results indicate that PhysCov is a viable metric for test selection. We could use PhysCov to

select a minimal number of tests while retaining the number of unique behaviors and, in turn, failures

found.
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RQ2 Finding: Our findings show that PhysCov is a viable metric for test selection. Specifi-

cally, test suites selected to maximize PhysCov always detect more unique failures than those

randomly selected, while minimizing PhysCov always results in tests with fewer, if any, unique

failures.

5.1.2.8 RQ3: Real-World Scenarios

Table 5.5: Comparing overlap between RRS when selecting based
on Scenarios and RRS signatures.

Selection

Method
Distinct Similar

Given

Scenarios

Resultant

RRS

Given RRS

Resultant

Scenarios

This research question explores

how effective PhysCov is on a

real dataset. As configured, this

dataset provided 3.1% coverage

using Ψ10, so this dataset is

clearly missing many potential

environment-state pairs that the

vehicle will encounter.

Beyond this simple charac-

terization, this study aims to as-

sess PhysCov potential at distin-

guishing between similar and dif-

ferent real-world scenarios. The

study explores this problem from

two angles. First, using the cam-

era images, we identified 3 tests

where the vehicle was operat-

ing in clearly distinct scenarios

(parking lot, two-lane rural road,

single-lane urban road), and 3

tests where the vehicle was op-

erating in very similar environments (variations of highways). These are shown in the first row of
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Table 5.5. We conjecture that if PhysCov was an effective metric at identifying equivalent classes,

the 3 distinct scenarios should also produce distinct RRS signatures, while 3 similar scenarios should

produce more similar RRS signatures. The results in the second row of Table 5.5 support this con-

jecture. Each test is roughly 20 seconds, with data recorded at 10Hz, resulting in 199 RRS vectors.

Interestingly we see that the distinct scenarios B and C have 3 overlapping RRS signatures, while

scenario C has no overlap. This makes sense when considering that despite the differences of scenario

B (single-lane urban road) and scenario C (dual-lane rural road), they both are narrow roads, so

there is a chance of some overlap in RRS. However, scenario A is a parking lot that is significantly

different from both other scenarios and thus has no RRS overlap.

In the second part of this study, we selected 3 tests that produced the least and 3 that produced

the most overlap in terms of RRS signatures. To do this, we compared all 3-way combinations

of Waymo’s 798 tests, a total of 84,376,796 combinations, and then selected the least and most

overlapped combination, as shown in the third row of Table 5.5. The Venn diagram indicates that

distinct scenarios have no overlap, while similar scenarios produce nearly 139 identical RRS signa-

tures. We conjecture that if PhysCov was a good metric, the tests with no overlap should intuitively

be required to perform distinct behaviors, while tests with overlap should require similar behaviors.

The fifth row in Table 5.5 shows camera data from the selected tests. When selecting distinct RRS

vectors, we ended up with 3 distinct scenarios: a busy intersection, a one-way downtown city road,

and a two-lane road with a separator. The scenarios with similar RRS signatures corresponded

to three scenarios where the Waymo vehicle was stuck in dense traffic. Interestingly two of these

scenarios (A and B) stem from the same root test, even though Waymo provided them as separate

tests.

RQ3 Finding: We demonstrate that PhysCov can be applied to real datasets. Using PhysCov,

we find that the Waymo Open Perception Dataset provides only 3.1% coverage using Ψ10,

indicating that it is missing many potential environment-state pairs. We also show how PhysCov

can distinguish between different and similar scenarios, which is helpful in deciding how best

to optimize and augment a test suite.
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5.2 Conclusion

This work introduces a general approach to quantify the number of unique physical environments

and physical state pairs experienced by an autonomous vehicle. It relies on a novel abstraction of the

sensed environments, RRS, that employs physical reachability analysis based on the vehicle state

and kinematics and dynamics to identify the most relevant area of the input space and efficiently

produces a vector-based characterization of that space. Our study illustrates how Ψ can render

meaningful equivalent classes to capture the environments, its correlation with failures, and how the

RRS parameters can control the quality and cost of PhysCov. The study also shows the potential

of Ψ to improve the efficiency of the testing process through test selection and distinguish among

different real-world scenarios.
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Chapter 6

Conclusion and Future Work

Autonomous systems are becoming increasingly common in everyday life, driven by advancements in

both software and hardware components. Ensuring the safe operation of these systems, particularly

as they begin to interact more frequently with humans, is crucial for their widespread acceptance in

society. This thesis argues that rigorous testing is essential to ensure their safety and to detect in-

correct behaviors before their deployment. Notably, while the software driving autonomous system

behaviors grows increasingly complex, we specifically highlight that they operate within complex

physical environments and interact with these environments through hardware possessing inherent

physical semantics. Therefore, while it seems intuitive to build on decades of research in software val-

idation to test these autonomous systems, such validation techniques must evolve, or be completely

reinvented, to adequately account for the unique physical attributes driving behaviors.

This thesis enhances the traditional testing pipeline. This pipeline starts with test generation,

executes the tests, and then computes test adequacy, ensuring that the system was thoroughly tested.

Each introduced approach within the testing pipeline was specifically designed to account for either

an autonomous system’s physical environments, physical semantics, or both.

More specifically, within test generation, we introduce two approaches. The first is feasible

and stressful trajectory generation, which is designed to create tests that account for the physical

semantics of autonomous vehicles [138]. This approach constructs trajectories that are valid by
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construction with respect to an autonomous vehicle’s physical semantics. Our approach utilizes a

modified version of the Probabilistic Roadmap (PRM) that incorporates the kinematic and dynamic

models of the autonomous system to generate trajectories that are valid by construction. It then

filters trajectories using a parameterizable scoring model, which selects the ones most likely to

maximize a given stress metric. Finally, we provide a study showcasing how this technique generated

tests with more valid trajectories than baselines, and resulted in significant increases in maximum

deviation—up to 55.9% and 41.3% for the two autonomous systems studied.

The second test generation approach we introduce is differential testing on existing data1. The

premise of this approach is that it allows exploration of large portions of the physical environment

through the vast collection of already collected sensor data. Our method processes this existing

sensor data, identifying the subset likely to result in failures and relevant to a specific autonomous

system. We implement this approach in two stages. First, we introduce a differential testing tech-

nique that compares behaviors of multiple autonomous systems. Specifically, this component iden-

tifies sensor input that produces behavioral differences across these systems, indicating potential

failures. Second, we introduce a filtering stage, designed to exclude sensor input not relevant to a

specific autonomous system. This component uses both sensor data and an autonomous system’s

Operational Design Domain (ODD) to generate a compliance vector that indicates which ODD se-

mantic dimensions were met by the sensor input. We demonstrate the application of this approach

using 3 versions of a commercial autonomous vehicle on video data containing over 4.6 million sensor

input. Our findings indicate a substantial number of sensor inputs that produce behavioral differ-

ences indicative of failures. Specifically, we found that 9.8% of all sensor inputs resulted in steering

differences of 10 degrees or more between the 3 autonomous systems, with 11,769 instances causing

steering differences of 100 degrees or more. We also show how using external data collected inde-

pendently of the autonomous systems can increase the number of detected failures by up to 569%.

Finally, we demonstrate that our filtering can achieve semantic accuracies of up to 94.2%, high-

lighting several examples of sensor inputs that are relevant with respect to the ODD and producing

significant steering difference.

1Automated ODD checking portion under submission
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Next, we examine test execution, where we introduce two approaches. The first approach ad-

dresses ways to overcome the inherent differences between simulated and real-world environments.

These differences are collectively known as the simulation-reality gap and is problematic for testers, as

it means that behaviors produced in simulation may not be possible in the real world, and behaviors

in the real world may be impossible to replicate in simulation, potentially leading to failure-inducing

behaviors being incorrectly flagged or going unnoticed. To overcome this, we present World-In-the-

Loop simulation [135], an approach that integrates both real and simulated sensor data to allow

autonomous systems to operate in a new mixed reality. Our approach allows developers to vary the

extent of simulation and reality combined when forming this mixed reality, enabling developers to

gradually scale their testing from simulation to reality. We present a study that showcases how,

through this gradual increase in realism, failures that are present only in the real world and can-

not be detected in pure simulation are detectable using the mixed-reality environment produced by

World-In-the-Loop simulation.

The second test execution approach investigates ways to explore the physical semantics of au-

tonomous systems in the real world. The premise of this work is that autonomous systems frequently

encounter external forces, necessitating testing under such conditions. However, this process often

requires specialized equipment, is costly, and depends on specific real-world conditions. In this work,

we focus on drones, such as quadrotors, which must handle forces from carrying objects, contending

with wind, managing sudden force reductions from dropping objects, and absorbing impacts during

grabbing or catching activities. We introduce an approach capable of replicating a range of forces on

a drone without needing physical connections to external sources, allowing for a much wider range

of tests to be executed, more quickly and more cheaply. Specifically, we introduce a generalizable

haptic suit [143], which attaches directly to a drone. This suit features additional propellers on arms

that extend outward and can rotate around the arm’s axis to exert extra forces on the drone. We

also provide a force-to-control module and a controller, both capable of translating any force into

actuation commands for the haptic suit. We demonstrate the suit’s ability to replicate four indoor

real-world test scenarios and one outdoor scenario. Additionally, we identify a case where a failure

occurring in a real-world test is nearly perfectly replicated using the haptic suit. Overall, the haptic
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suit offers a promising method for testing a large volume of varied real-world scenarios without the

need for complex setups or dependent on specific outdoor conditions.

The final chapter presents a technique for measuring the test adequacy of an autonomous vehicle.

The premise of this work is that the behaviors of autonomous vehicles are significantly driven by

a system’s physical environment and physical semantics. Traditional coverage metrics, which do

not take these factors into account, correlate poorly with behavior when applied to autonomous

systems—a finding we demonstrate in a later study. Therefore, we present an approach called

Physical Coverage [140], which uses kinematic and dynamic models along with reachability analysis

to account for a vehicle’s physical semantics. This approach combines these elements with the

perceived physical environment of the autonomous systems. The resulting metric is approximated

using a geometric vectorization technique to provide an abstraction of both the physical environment

and physical semantics of the system throughout a test. Our study shows how this coverage metric

correlates more closely with behavior compared to other state-of-the-art techniques at the time and

significantly improves over traditional coverage metrics when applied to autonomous systems. We

also showcase use cases of our approach, for example, to perform test suite reduction or to apply

scenario selection on real autonomous system data from Waymo.

6.1 Broader Impacts

Traditional software systems have revolutionized the world we know today. However, before these

systems could be deployed in the real world, especially in safety-critical scenarios or where the cost of

failure was high, they required rigorous validation to ensure safe and correct operation. This necessity

was a major driving factor behind what is now known as traditional software testing and engineering.

Similarly, autonomous systems today hold the potential to revolutionize several industries, including

transportation, manufacturing, space exploration, environmental monitoring and protection, and

healthcare, to name just a few. However, to realize this potential and integrate autonomous systems

into our everyday lives, it is imperative that they operate safely and as expected. This dissertation

explores methods to adapt traditional software validation techniques, which have proven successful
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in ensuring the safety and reliability of software systems in the past. We combine these proven

methods with innovative new ideas and approaches tailored to address the unique challenges posed

by autonomous systems. By developing effective validation strategies sharing repositories of the

tools and data [139, 136, 144, 142, 141], we help pave the way for the integration of these systems

into the real world, bringing us one step closer to the future, while also enhancing our ability to

ensure their safe and correct operation.

6.2 Future Work

There are numerous avenues for future research across the three areas of the testing pipeline out-

lined in this thesis. Beyond refining and enhancing the current methodologies, a significant direction

for future work involves adapting and applying the approaches presented to a more diverse set of

autonomous systems. This adaptation process, while seemingly straightforward, often demands in-

novative changes to make the work more generalized than it already is. For instance, transitioning

the testing techniques from ground vehicles, which primarily operate in a 2D space, to aerial vehicles

such as drones, requires updating techniques to accommodate a third spatial dimension. Similarly,

expanding these techniques from individual vehicles to swarms introduces complexities such as in-

creased cost and the potential for new behavioral dynamics driven by different vehicle interactions.

Below we look at more specific areas of potential future work.

6.2.1 Test Generation

There are several promising research directions for the approaches presented in test generation.

Firstly, for feasible and stressful trajectory generation, an immediate step could involve incorporat-

ing more advanced kinematic models to enhance the accuracy of predictions regarding autonomous

vehicle dynamics under various stress metrics. A more substantial advancement would be to in-

tegrate physical environments into the trajectory generation process. Currently, trajectories are

generated as if in an empty world. Including richer physical environments could improve this ap-

proach in two significant ways. Firstly, by generating trajectories that account for environmental
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constraints, it could become applicable to a wider range of developers who do not have access to

large open spaces. This means testers could configure the technique to only generate trajectories

around obstacles present in their testing environment. Secondly, and potentially more intriguing, is

designing environments that use the test trajectories as input. Here, the goal for the autonomous

system would not simply be to follow a trajectory but to navigate a physical environment specifically

constructed to require the autonomous system to execute the given trajectory. Another potential

research direction is to develop trajectories for dynamically changing environments. This could in-

troduce a new layer of complexity, where part of the stress comes from navigating environments that

change over time, such as a window that closes, which the autonomous system must reach, adding

additional constraints to its operation.

The next step for differential testing on existing data would be to refine the oracle. Currently,

the oracle primarily identifies differences based on magnitude and frequency thresholds. However,

potential failures may be more complex and could require additional mechanisms for detection.

These might include analysis of behaviors over extended periods, where failures are detected based

on statistical variance. Another idea is to design an oracle that uses the input scene-state pair,

allowing it to track the invariance of the systems with respect to each autonomous system and

the input, thus enabling it to vary detection thresholds based on the type of input it currently

experiences. For example, divergence in behaviors at intersections is much less concerning than

divergence on straight, empty roads. Another promising direction for future research involves a

more thorough examination of how the state influences the behavior of the system. This would not

only allow us to quantify the contribution of state and environment to failures but also enhance

the technique’s ability to precisely determine the root cause of failure. Building on the principles

of metamorphic testing [313], where one system is given inputs that are semantically similar but

slightly different, our approach could vary both the physical environment and state upon identifying

a failure. This adjustment could help precisely identify the range of environments and states that

lead to problematic behavior. Similarly, while this method could be used to identify ranges of inputs

that result in failure, it could also be used to identify those that the system can handle effectively.

Finally, there is also room to explore LLM’s ability to further classify scenarios. This includes using
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LLMs to classify other sensor data such as LiDAR or radar, training from scratch or fine-tuning

LLMs to specifically classify sensor data semantics, or exploring LLMs’ ability to handle significantly

more complex ODDs.

6.2.2 Test Execution

There are several promising directions for future work in test execution. First, let’s consider World-

In-the-Loop simulation in isolation. One particularly interesting area of future research lies in the

context of swarms. Autonomous systems in swarms not only suffer from the same simulation-reality

gap as individual systems, but are also notoriously expensive to test in the real-world. This expense

arises due to the need for multiple autonomous systems and extensive real-world infrastructure. Con-

sequently, real-world testing often occurs only after significant investment in the project, making any

failures particularly costly. World-In-the-Loop simulation could be a potential avenue for reducing

these costs. By mixing simulated and physical environments and swarms, we could test a combina-

tion of autonomous systems, with some operating in the real-world and others in simulation. This

approach could provide a way to test swarms of autonomous systems, potentially detecting faults

significantly earlier and more cost-effectively than existing methods. Another interesting direction

involves applying World-In-the-Loop to both more sophisticated sensors and using more advanced

mixing techniques. Allowing for additional sensors will expand the technique’s capabilities to a

larger range of autonomous systems, while also necessitating innovations in the area of sensor data

integration. On the note of combining sensor data, various advances in computer vision could enable

much more sophisticated mixing. These advancements would not only enhance the mixed reality’s

realism but could also enable functions not yet considered, such as removing objects from the real

world.

Next, let’s consider the haptic suit. An immediate future step is to test more complex instan-

tiations of this system. Our study initially focused on a two-arm variant, which limited the range

of scenarios that could be explored. A four-arm variant may allow testing a whole new range of

scenarios. Another potential future step would be to explore a wider range of force-inducing mech-

anisms commonly used in human haptics. These mechanisms include shifting weights, motors that
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spin weights around, among others. The haptic suit also presents alternative use cases yet to be

explored. One such use case would be as a safety mechanism. For example, using reinforcement

learning in the real world is challenging because the early stages of the approach often expect the

autonomous system, such as a drone, to experience failures. The haptic suit could be used to effec-

tively “catch” the autonomous system just before it collides with an obstacle or crashes, potentially

preventing damage and allowing for safer real-world training.

Finally, a very compelling future direction for this work is the integration of the two execution

methods. Imagine a future where World-In-the-Loop simulation not only incorporates simulated

obstacles and potential autonomous agents into the mixed reality, but also is capable of applying

physical forces to the system, such as wind. This integration would enable full system tests to be

conducted in mixed-reality before real-world testing becomes necessary. The system could simulate

the force of another drone’s downdraft in a swarm, or the impact of a collision with an obstacle.

Additionally, this integration could enable a range of new testing types. For example, consider testing

a quadrotor in a lab environment with limited space, intended to simulate flying over long distances.

The haptic suit could be used to counteract the forces of the drone trying to fly forward, while

the World-In-the-Loop system provides mixed-reality sensor readings, making the drone’s software

believe it is traversing these long distances.

6.2.3 Test Adequacy

The final chapter of this thesis presents several avenues for future work. As stated in the introduction

to this section, transitioning from a 2D to a 3D representation would enable the application of

Physical Coverage to autonomous systems operating in 3D spaces. In fact, this is currently being

explored [292]. A next step for Physical Coverage, or for a fully developed 3D approach, could be to

improve how the final abstraction is made. Currently, we perform a geometric vectorization. This

approach could be enhanced by using techniques that reduce the risk of missing obstacles, such

as extremely thin poles, by for example dividing the region into smaller sections and computing

their areas. Another idea is to incorporate semantic information about the environment into the

abstraction. By doing so, we can account not only for the physical environment and semantics but
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also for the environment’s semantics. For instance, a system might behave very differently when

encountering a moving human versus a stationary object like a tree. The idea of using semantics has

been a driving force in new and emerging work in the field, such as S3C [378]. However, this work

has currently been showcased using solely camera data. There is potential to combine the generality

of PhysCov with S3C’s ability to discern semantics to result in even more precise coverage metrics

for autonomous systems.

Another potential area of research is to consider the world as dynamic rather than as a series of

stationary snapshots. While this might seem trivial, it could be quite impactful. For example, the

reachable sets of dynamic obstacles could be computed, allowing the technique to foresee not only

potential objects the autonomous system may interact with but also if any dynamic obstacles in

the world may affect the autonomous system. For instance, another vehicle approaching the same

intersection at speed might have overlapping reachable sets with the autonomous system, suggesting

it should be considered in the abstraction.

A final avenue of research is to link coverage back to test generation. Since Physical Coverage

involves a known number of abstractions, it is possible to identify which abstractions were not

exposed by a test suite. Using this information, we could develop a technique capable of constructing

environments that would produce these missing abstractions. By doing so, the approach should

expose the system to several new environment-state pairs, potentially revealing many behaviors

that were not observed during the original test suite.
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[62] H. Cichos, S. Oster, M. Lochau, and A. Schürr. Model-based coverage-driven test suite gener-

ation for software product lines. In Model Driven Engineering Languages and Systems: 14th

International Conference, MODELS 2011, Wellington, New Zealand, October 16-21, 2011.

Proceedings 14, pages 425–439. Springer, 2011.

[63] D. Coelho and M. Oliveira. A review of end-to-end autonomous driving in urban environments.

IEEE Access, 10:75296–75311, 2022.

[64] J. Collins, S. Chand, A. Vanderkop, and D. Howard. A review of physics simulators for robotic

applications. IEEE Access, 9:51416–51431, 2021.

173



[65] I. Colwell, B. Phan, S. Saleem, R. Salay, and K. Czarnecki. An automated vehicle safety con-

cept based on runtime restriction of the operational design domain. In 2018 IEEE Intelligent

Vehicles Symposium (IV), pages 1910–1917. IEEE, 2018.

[66] Comma AI. OpenPilot is an open source advanced driver assistance system. https://comma.

ai/openpilot, 2023. [Online; accessed 11-August-2023].

[67] comma.ai. openpilot 5159878, 2022.

[68] commaai. Media. https://www.comma.ai/media, 2023.

[69] commaai. openpilot. https://github.com/commaai/openpilot/blob/b816b5b/docs/

LIMITATIONS.md, 2023.

[70] commaai. openpilot. https://github.com/commaai/openpilot/blob/b816b5b/docs/

LIMITATIONS.md, 2023.

[71] comma.ai. openpilot 2ebd7ab, 2023.

[72] comma.ai. openpilot cb2a53a, 2023.

[73] commaai. Openpilot supports 250+ vehicles. https://comma.ai/vehicles, 2023.

[74] comma.ai Team. Scaling for 10x user growth. https://blog.comma.ai/

scaling-for-10x-user-growth/, 2021.

[75] Y. Cong, C. Gu, T. Zhang, and Y. Gao. Underwater robot sensing technology: A survey.

Fundamental Research, 1(3):337–345, 2021.

[76] Cruise. Driverless is here. https://getcruise.com/, 2023. [Online; accessed 09-July-2023].

[77] E. Daka and G. Fraser. A survey on unit testing practices and problems. In 2014 IEEE 25th

International Symposium on Software Reliability Engineering, pages 201–211. IEEE, 2014.

[78] R. Darwish, L. N. Gwosuta, and R. Torkar. A controlled experiment on coverage maximization

of automated model-based software test cases in the automotive industry. In 2017 IEEE

174

https://comma.ai/openpilot
https://comma.ai/openpilot
https://www.comma.ai/media
https://github.com/commaai/openpilot/blob/b816b5b/docs/LIMITATIONS.md
https://github.com/commaai/openpilot/blob/b816b5b/docs/LIMITATIONS.md
https://github.com/commaai/openpilot/blob/b816b5b/docs/LIMITATIONS.md
https://github.com/commaai/openpilot/blob/b816b5b/docs/LIMITATIONS.md
https://comma.ai/vehicles
https://blog.comma.ai/scaling-for-10x-user-growth/
https://blog.comma.ai/scaling-for-10x-user-growth/
https://getcruise.com/


International Conference on Software Testing, Verification and Validation (ICST), pages 546–

547. IEEE, 2017.

[79] M. D. Davis and E. J. Weyuker. Pseudo-oracles for non-testable programs. In Proceedings of

the ACM’81 Conference, pages 254–257, 1981.

[80] M. S. P. De Melo, J. G. da Silva Neto, P. J. L. Da Silva, J. M. X. N. Teixeira, and V. Teichrieb.

Analysis and comparison of robotics 3d simulators. In 2019 21st Symposium on Virtual and

Augmented Reality (SVR), pages 242–251. IEEE, 2019.

[81] H. Delecki, M. Itkina, B. Lange, R. Senanayake, and M. J. Kochenderfer. How do we fail?

stress testing perception in autonomous vehicles. In 2022 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 5139–5146. IEEE, 2022.
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Appendix

A : Oracle Analysis

This section enumerates the papers reviewed and details our observations on the types of inputs and

outputs employed. In cases where oracles were not explicitly identified or described by the approach,

we analyzed the included studies to determine the criteria used for pass/fail evaluations. The first

table identifies instances where oracles were absent, and the second table lists occurrences where

oracles were explicitly identified.

Papers reviewed from the last two years, where oracles were not used or identified.

Paper
Oracle
Type

Input
Type

Output
Type

Dynamic Testing for Autonomous Vehicles Using Random
Quasi Monte Carlo [112]

Unknown

Procedural generation of high-definition road networks for
autonomous vehicle testing and traffic simulations [252]

NA

Coordinated multi-agent exploration, rendezvous, & task
allocation in unknown environments with limited connectivity [45]

NA

A Highly Maneuverable Flying Squirrel Drone with
Controllable Foldable Wings [174]

NA

Aggressive Trajectory Generation for A Swarm of
Autonomous Racing Drones [321]

NA

A robust and fast occlusion-based frontier method for
autonomous navigation in unknown cluttered environments [251]

NA

Aggregating Single-wheeled Mobile Robots for
Omnidirectional Movements [366]

NA
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Papers reviewed from the last two years, where oracles were identified.

Paper
Oracle
Type

Input
Type

Output
Type

REDriver: Runtime Enforcement for Autonomous Vehicles [335] Specifications Objects Trajectories
Traffic rules compliance checking of automated vehicle
maneuvers [38]

Specifications Objects Trajectories

Safety from fast, in-the-loop reachability with application
to UAVs [225]

Derived
(Differential)

- Position

Semantic image fuzzing of AI perception systems [377]
Specifications
(Metamorphic)

- Perception

Generating Realistic and Diverse Tests for LiDAR-Based
Perception Systems [61]

Specifications
(Metamorphic)

- Perception

AmbieGen: A Search-based Framework for Autonomous
Systems Testing [154]

Implicit Road Position

Stress testing autonomous racing overtake maneuvers with
rrt [25]

Implicit - Crash

Neural network guided evolutionary fuzzing for finding
traffic violations of autonomous vehicles [403]

Implicit - Crash
Implicit Road Position

Parameter Coverage for Testing of Autonomous Driving
Systems Under Uncertainty [207]

Derived
(Differential)

Objects Trajectory

Do as i can, not as i say: Grounding language in robotic
affordances [8]

Implicit - Plan

A review of end-to-end autonomous driving in urban
environments [63]

Implicit - Crash
Implicit Road Position

S3C: Spatial Semantic Scene Coverage for Autonomous
Vehicles [378]

Implicit - Steering

DeepManeuver: Adversarial test generation for trajectory
manipulation of autonomous vehicles [361]

Implicit - Crash
Implicit Road Position

How do we fail? stress testing perception in autonomous
vehicles [81]

Implicit - Position

Trafficgen: Learning to generate diverse and realistic
traffic scenarios [97]

Implicit - Crash

Identifying real-world problems with automated vehicles by
detecting behavioral differences in steering movements
between the human driver and machine [312]

Derived
(Differential)

- Steering Angle

Automatic test and evaluation of autonomous systems [176] Implicit - Perception
Using genetic algorithms for automating automated lane-
keeping system testing [189]

Implicit Road Position

Evaluation of Underwater AprilTag Localization for Highly
Agile Micro Underwater Robots [30]

Implicit - Perception
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