
Learning and Control in Multi-Agent Systems with Applications on
Cyber-Physical Systems

by

Jianyu Su

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Systems Engineering
at the

UNIVERSITY OF VIRGINIA

May 2021

Signature of the Author

Certified by
PhD Program Director Date

Ph.D. IN SYSTEMS ENGINEERING
UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA

CERTIFICATE OF APPROVAL

Ph.D. DEGREE DISSERTATION

The Ph.D. degree dissertation of Jianyu Su
has been examined and approved by the

dissertation committee as satisfactory for the
dissertation required for the

Ph.D. degree in Systems Engineering

Peter A. Beling, Dissertation Advisor

Arsalan Heydarian, Chair

Hongning Wang

Qing Chang

Stephen Adams

Date

2

3

Acknowledgement
I want to thank my adviser Prof. Dr. Peter A. Beling for accepting me as his PhD
student and for his longstanding support and excellent supervision since my joining
his lab. I am deeply grateful to Dr. Stephen Adams for his invaluable discussions,
as well as his patience.

I am wholeheartedly appreciative of Dr. Arsalan Heydarian’s great support
and helpful advice throughout the years. The experience of writing grant proposal
with Arsalan refines my research vision and horns my writing skills, laying the
cornerstone for my phd research.

This thesis emerged from my research at Toyota Infotech Labs, Mountain View,
CA. I am thankful to my project supervisor Dr. Kyuangtae Han for giving me the
opportunity to join their research team.

I wish to thank my friends and Link Lab colleagues Yawen Shen, Alan Wang,
Jingyun (Brian) Ning, and Wenpeng (Nelson) Wang for their friendship, support,
mental therapy, and academic discussion over hotpot. I also want to thank Jing
Huang, Professor Qing Chang for helping me implement my algorithm on manufac-
turing systems. I want thank Hongning Wang for offering the information retrieval
class, which motivates me to learn many useful methods and concepts from the field
of natural language processing.

Last but not the least, I want to thank my family for supporting my decision to
earn my degree in US.

This dissertation is dedicated to my love, Ziyue
(Zoey) Li, my parents, Zonghai Su and Wenqiong

Tan, and people that influence me the most
Shenwu Tian, Wenfeng Tan, Yanming Tian, and

Zuobing Yuan.

Abstract

Recent years have seen the application ofmachine learning (ML) to various domains.
Coupled with deep neural networks, machine learning methods are cornerstones of
adaptive learning and decision-making frameworks. However, Conveniently adopt-
ing ML techniques without carefully examining the systems’ structures and ML
techniques’ assumptions often leads to systems’ sub-optimal performance. For in-
stance, reinforcement learning (RL), which is a machine learning technique that
estimates optimal policies through interactions between an agent and the environ-
ment, is designed for single-agent systems. In practice, a centralized RL framework
is often utilized to coordinate agents in multi-agent settings. As a result, the action
space of a such centralized framework grows exponentiallywith the number of agents
included in the system, which might lead to the system’s poor performance. In this
dissertation, we present a multi-agent RL framework that is applicable to various
cooperative multi-agent systems, as well as proposing new methods to bridge the
gaps in the current literature for tasks such vehicle trajectory prediction and decision
making in large-scale manufacturing systems. Our contribution is three-fold:

1. We propose a graph-based vehicle acceleration framework Traffic Graph
Framework (TGF), which captures hierarchical and chains of interactions
that might affect the predicted vehicle’s future state. The proposed framework
utilizes new variants of graph convolution that are specifically adopted for
modeling the traffic. Combined with the flexibility of graph data structure,
TGF treats the traffic as a multi-agent system and can be employed for various
traffic configurations with high prediction quality.

2. We propose a novelMARLalgorithm, value-decompositionmulti-agent actor-
critic (VDAC). VDAC is an on-policy actor-critic that is compatible with
the parallel training paradigm, A2C. As a result, VDAC offers a reasonable
trade-off between training efficiency and algorithm performance. In our com-
petitive evaluation, VDAC reports higher win rates than other multi-agent
actor-critics on complex multi-agent coordination tasks, StarCraft II micro-
management games.

5

6

3. We propose an adaptive preventive maintenance (PM) scheduling framework
based on VDAC for large-scale manufacturing systems. In the simulation
study, the proposed framework demonstrates its effectiveness by leading other
baselines, including RL-based methods and traditional maintenance models,
on a comprehensive set of metrics. Our analysis further demonstrates that our
MARL-based method learns effective PM policies without any knowledge
about the environment and maintenance strategies.

Contents

List of Symbols 12

1 Introduction 13

2 Graph Convolution for Traffic 19
2.1 Background . 19
2.2 Executive Summary . 20
2.3 Graph Convolution . 20
2.4 Micro-level Highway Traffic Graph 22
2.5 GCNs for Traffic . 22

2.5.1 Ego-discriminated GCN 24
2.5.2 Distance-Aware Graph Convolution Network 24
2.5.3 Long-short Term Memory 25
2.5.4 Gaussian Mixture Model 25

2.6 Dataset and Training . 26
2.7 Evaluation . 27
2.8 Discussion . 30
2.9 Conclusion . 32
2.10 Related Work . 32

3 Value-Decomposition Multi-Agent Reinforcement Learning 35
3.1 Background . 35
3.2 Executive Summary . 36
3.3 Preliminaries and Technical Background 37
3.4 Methods . 39

3.4.1 Naive Central Critic Method 39
3.4.2 Value Decomposition Actor-Critic 40

3.5 Convergence of VDAC Frameworks 44
3.6 Experiments . 47

3.6.1 Ablation 1 . 47
3.6.2 Ablation 2 . 47

7

8

3.6.3 Ablation 3 . 47
3.6.4 Ablation 4 . 48

3.7 Overall Results . 48
3.7.1 Ablation 1 . 48
3.7.2 Ablation 2 . 51
3.7.3 Ablation 3 . 51
3.7.4 Ablation 4 . 51

3.8 Conclusion . 51
3.9 Related Work . 52

4 Preventive Maintenance with VDAC 55
4.1 Background . 55
4.2 Executive Summary . 57
4.3 Problem Statement . 58

4.3.1 System Description . 58
4.3.2 Maintenance Effect and Maintenance Actions 59
4.3.3 Cost Analysis and System Objective 59

4.4 Multi-Agent Adaptive Decision Framework 60
4.4.1 Dec-POMDP Formulation 60
4.4.2 Applying VDAC to obtain PM Policy 62
4.4.3 VDAC Architecture . 63

4.5 Numerical Study . 65
4.5.1 Environment Description 65
4.5.2 Baselines . 66
4.5.3 Training Description . 68
4.5.4 Evaluation . 69
4.5.5 Additional Experiments 73

4.6 Conclusion . 77
4.7 Related Work . 77

5 Closing Remarks 81

6 Appendix 83
6.0.1 Training Details and Hyperparameters 83
6.0.2 StarCraft II Results . 84

List of Figures 84

List of Tables 87

9

Bibliography 89

10

List of Symbols

The next list describes some of the main symbols that will be later used in the
Chapter 1. Other symbols will be introduced throughout the body of this document.

Graph and Graph Convolution

G A directed or an undirected graph

MARL

A A set of agents in a multi-agent system

a An agent index that follows a ∈ A

U A set of actions that are available for every agent

ua An action taken by an agent indexed by a

u A joint action

S A set of true states

πa A policy taken by an agent indexed by a

π A joint policy

r A reward

oa An observation received by an agent indexed by a

τa An observation-action history of an agent indexed by a

u−a A joint action that excludes the action of an agent a

π−a A joint policy that excludes the policy of an agent a

Aa An advantage function with respect to agent a

11

12

Q An action-value function

V An state-value function

Vtot An state-value function that quantifies global state values

V a An state-value function that quantifies agent a’s local observation values

J The objective of a MARL problem

γ The discount factor

θ Learnable weights in policy networks

Chapter 1

Introduction

Recent years have seen rapid developments in the field of deep machine learning
(ML). Benefiting from deep ML’s ability to extract features, deep ML, including
deep reinforcement learning, has been applied across different domains.

In the field of intelligent driving assistance, car-following models have moved
away from traditional approaches, which make assumptions about driver’s state
such as reaction time, to deep learning models. While those deep learning attempts
differ from each other by the number of interactions among the ego-vehicle and
its surrounding vehicles, they share a commonality that only inputs of the fixed
spatial organization are allowed. This impeds those methods from generalizing into
practice as traffic scenarios in reality can be very dynamic.

Graph is a flexible data structure. In a graph, a node can be connected to an
arbitrary number of nodes, which allows graph to be applied to various domains
such as social science, biology, etc. Graph convolution, which directly operates on
graphs, aggregates neighbor information for the central node, which represents the
process of communication between the central node and its neighbors. Furthermore,
a 2-layer graph convolution enables nodes to communicate with nodes that are 2
hops away as shown in Figure 1.1.

Our traffic graph algorithm, combining the flexibility of graph data structure
and the representation ability of graph convolutions, facilitates high-quality ego-
vehicle trajectory prediction under numerous traffic scenarios. This algorithm allows
the ego-vehicle to communicate with a dynamic number of neighbors to learn its
surrouding traffic. Although this supervised algorithm achieves state-of-the-art
performance on generating human-like driving trajectories, it cannot be applied to
multi-agent control problems as the error accumulates over the time horizon. In
contrast, RL, which maximizes a long-term objective, is adaptive to environmental
dynamics and has shown human-level performance on many control tasks without
prior knowledge. Therefore, we turn to multi-agent RL for multi-agent system

13

14

(a) A graph (b) The first graph convolution operation

(c) The second graph convolution
operation

Figure 1.1: Illustration for 2-layer graph convolution operation

control.
RL is a family of machine learning techniques that learns optimal policies

through the interactions between the agent and the environment. It does not neces-
sarily assume an intricate understanding of the environment (environment dynam-
ics). Instead, the RL agent gathers information about the environment by exploring
it. And the interaction proceeds in the following sequence: RL agent receives an
environment state, on which it conditions its action. The environment proceeds to

15

the next state once the RL agent takes its action. At the same time, the RL agent
obtains a reward from the environment. Multi-agent RL is a branch of RL, where
more than one agents work independently but collectively for a common goal of
the environment. More specifically, agents condition their actions on local partial-
observables, instead of true states of the environment. The individual actions taken
simultaneously constitute a joint action. The environment proceeds to the next true
state and returns a reward for the joint action. It is possible to directly apply single-
agent RL to multi-agent tasks. However, such practice only neglects the interactions
among agents but also suffers from the magnitude of action space arised from the
number of agents in the system. In general, the lack of tailored rewards and the
access to true states pose difficulties on multi-agent coordination problems.

Figure 1.2: Multi-agent RL setup

The Last few years have seen the advance of multi-agent RL, especially value-
based methods. For instance, Value-decomposition networks (VDN) represent joint
action-value as a summation of local action-value conditioned on individual agents’
local observation history [82]. QMIX [73], a more general case of VDN, uses
a mixing network that approximates a broader class of monotonic functions to
represent joint action-values. In [79], a more complex factorization framework
three modules, called QTRAN, is introduced and shown to have good performance
on a range of cooperative tasks. While these value-based methods report a good
performance on most of the StarCraft micromanagement games [76], policy-based

16

methods such as COMA [29] struggles with some of the easiest tasks in the StarCraft
micromanagement testbed.

Multi-agent policy gradients methods are facing a number of issues :

• High variance gradient estimates exacerbated in the multi-agent setting [60]

• The discrepancy between the local action-value and global action-value (the
credit assignment issue

• The proof of the learned policy converging to a locally optimal policy

Difference rewards,Da = r(s,u)−r(s, (u−a, ca)), presents a principled frame-
work for distributing rewards among agents based on their performance. The shaped
reward Da, defined by a reward change incurred by replacing the original action ua
with a default action ca, precisely reflects the contribution of agent a to the system
by taking action ua. Difference rewards requires |A| × |U | number of parallel sim-
ulation to be rolled out at every time step to calculate Da for every agent, which
is impractical for complex tasks with numerous agents. While difference rewards
might be demanding to implement, it possesses two properties that is useful for
MARL:

• Monotonic relations holds between shaped rewardsDa and the global reward
r(s,u)

• The baseline, r(s, (u−a, ca)), does not depend on ua

Therefore, any advantage function takes the form Aa = Q(s,u) − b, where b does
not depend on ua, suffice the relation implied by difference rewards.

COMA is a credit-assignment actor-criticwhose convergence to a locally optimal
policy is established. COMA devices tailored gradients for agents based on their
contribution to the overall system. COMA gradients can be written as ∇θJ =

Eπ

[∑
a∇θ log π(ua|τa)Aa(s,u)

]
, whose expectation, however, is proven to be

exactly the expectation of a vanilla policy gradients. COMA’s ability to assign
credits is questionable as it predicts counterfactual action-values for unseen actions.
Furthermore, COMA predicts counterfactual action-value for each action of each
agent, having issues generalizing to large-scale multi-agent problems.

This thesis presents a principled and effective actor-critic framework, value-
decomposition multi-agent actor-critic (VDAC), by enforcing the the monotonic
relation between local state-values V a and the global state-value Vtot, ∂Vtot

∂V a
≥

0, ∀a ∈ {1, . . . , n}, and a rather simple TD-advantage policy gradients, rt +
γV (st+1)− V (st), that can scale to large multi-agent applications.

17

The successive step is to apply VDAC to a real-world application to demonstrate
the effectiveness and efficiency of VDAC. In manufacturing systems, machines suf-
fer from random failures as the result of degradation of parts over time [89]. These
unexpected failures abruptly interrupt normal production operations, which can not
only cause significant production losses but also require considerable resources for
prompt maintenance actions. The maintenance procedure in response to random
failures is referred to as corrective maintenance (CM). To reduce random failures,
a common industrial practice is to proactively shut down machines for preventive
maintenance (PM) according to predefined policies. However, deriving PM policies
that ensure smooth and efficient production has always been a nontrivial task since
PM actions also impact the system in ways that can incur production losses and re-
source costs. The costs of excessive PMmight outweigh the benefits, but conversely,
inadequate PM can be ineffective in preventing random failures. It is challenging
to balance the delicate decision trade-offs that arise in PM for manufacturing sys-
tems, which are distinguished by complicated and non-linear system dynamics due
to interactions among machines/buffers and interruptions from production-related
activities [39]. Recent model-free reinforcement learning (RL) methods shed light
on how to cope with the nonlinearity and stochasticity in such complex systems.
However, the action space explosion impedes RL-based PM policies to be general-
ized to real applications. In order to obtain cost-efficient PM policies for a serial
production line that has multiple levels of PM actions, a novel multi-agent modeling
is adopted to support adaptive learning by modeling each machine as a cooperative
agent.

The principal contribution of this thesis is threefold:

• We propose a graph-based vehicle acceleration framework Traffic Graph
Framework (TGF), which captures hierarchical and chains of interactions
that might affect the predicted vehicle’s future state. TGF builds graphs based
on the defined relationship among vehicles. TGF’s key element is a 2-layer
graph convolution that can directly operate on graphs, which enables the pre-
dicted vehicle to "communicate" with neighbor vehicles that are 2 hops away.
Unlike other deep learning methods, the proposed framework does not require
inputs of a fixed spatial organization, thus can be employed in applications
with various traffic configurations.

• Wepresent a general-purposemulti-agent RL algorithm, value-decomposition
multi-agent actor critic (VDAC) for various multi-agent control tasks. VDAC
is a credit-assignment actor-critic inspired by difference rewards. It learns a
viable approach to distributing rewards to agents. The proposed VDAC out-
performs other policy-based algorithms in complex multi-agent coordination
tasks, StarCraft II micromanagement games.

18

• Designing preventive maintenance (PM) policies that ensure smooth and effi-
cient production for large-scale manufacturing systems is non-trivial. Recent
model-free reinforcement learning (RL) methods shed light on how to cope
with the nonlinearity and stochasticity in such complex systems. However,
the action space explosion impedes RL-based PM policies to be generalized
to real applications. To address the limitation of RL-based PM policies,
We apply VDAC to manufacturing systems to obtain PM policies effectively
and efficiently. In simulation studies, the proposed framework demonstrates
its effectiveness by leading other baselines on a comprehensive set of met-
rics whereas the centralized RL-based method struggles to converge to stable
policies. Our analysis further demonstrates that our multi-agent reinforcement
learning based method learns effective PM policies without any knowledge
about the environment and maintenance strategies.

The rest of this dissertation is organized as follows:
Chapter Graph Convolution for Traffic. We introduce the necessary back-

ground on graph and graph convolution. We also provide details on converting
traffic states to traffic graphs and the adaptation we made on the original GCN. Fi-
nally, benchmark tests are presented to demonstrate the effectiveness of the proposed
framework.

Chapter Value-Decomposition Multi-Agent Reinforcement Learning. We
present VDAC, a general-purpose multi-agent actor-critic. Additionally, preliminar-
ies and necessary background on multi-agent RL are introduced. We further report
VDAC’s performance on complex multi-agent tasks, StarCraft II micromanagement
games, demonstrating VDAC’s effectiveness and efficiency.

Chapter Preventive Maintenance with VDAC. We first identify the gaps in
the current literature of preventive maintenance (PM) policies for manufacturing
systems. We demonstrate how to adopt VDAC to PM scheduling tasks for a produc-
tion line. At last, we present the benchmark comparison between the VDAC-based
PM policies and other baselines, including traditional methods based on heuristics
and a RL-based method. Two simulation studies are conducted to show both the
effectiveness and the scalability of the proposed framework.

Chapter 2

Graph Convolution for Traffic

2.1 Background
Autonomous pilots or intelligent driving assistants predict the future state of traffic
in order to warn human drivers about collision risks. The autonomous system
in the ego-vehicle should consider not only the ego-vehicle’s interactions with its
immediate neighbors, but also hierarchical and chains of interactions that might
affect the ego-vehicle’s future state.

Many approaches have been proposed to predict the behavior of vehicles, with
most methods falling into the broad categories of regression formulations or classifi-
cation formulations. While formulating the problem of predicting vehicle behaviors
as a classification problem makes it easier to train the model and compare its perfor-
mance, this classification approach fails to provide detailed future traffic information
for planning the future trajectory. Regression methods, however, are able to infer the
future state of traffic, such as vehicle positions, velocities and accelerations. In the
literature, many of the methods for the regression formulation of traffic prediction
employ Recurrent Neural Networks (RNNs). RNNs are widely used to study time-
series data. In particular, researchers have been successfully applying Long-Short
Term Memory (LSTM) network to various applications such as speech generation,
machine translation, and speech recognition [37]. In this work, we also use an RNN
structure as part of our proposed framework.

A principal weakness of existing driving behavior predictionmethods is that they
use models that require inputs of fixed size and fixed spatial organization, making
it difficult to generalize from training sets into practice. In [67], for instance, the
proposed method uses a leader-follower model that focuses only on the interactions
between the ego-vehicle and its leading vehicle. More recently, neighbor models
that capture more interactions between ego-vehicle and its surrounding vehicles
have been proposed [4, 57]. Though these neighbor methods show some success in

19

20

predicting the ego-vehicle’s future acceleration, they only consider a fixed number
of neighbor vehicles. In addition, they need to deal with information padding if one
of the pre-defined neighbors is absent.

2.2 Executive Summary
In this study, we propose a flexible driving behavior prediction framework that we
call theTrafficGraphFramework. CombiningGraphConvolutionNetworks (GCNs)
and LSTMs, our proposed method is able to capture not only spatial features of var-
ious sizes but also temporal features. This framework consists of undirected graphs
that represent the interactions between vehicles, a multi-layer graph convolution
neural network used to directly encode the graph structure, and a fully-connected or
LSTM mixture density network used to predict future acceleration distributions.

In series of empirical tests, we investigate the the performance of our proposed
models relative to baselines, including GAT and other GCN variants. The test
environment for our methods is a simulation designed to mimic real-world traffic.
The simulation is built using the NGSIM I-80 dataset, which contains vehicle tra-
jectories of more than 2000 individual drivers [20]. In the simulation, ego-vehicles’
traffic states are propagated based on models’ predictions. Models are evaluated by
comprehensive metrics to measure the discrepancy between the generated trajecto-
ries and the ground truth. Furthermore, ablation studies were performed to analyze
the effectiveness of the proposed GCNs and RNN architectures. Results show
that including the proposed GCNs and RNN structure improves model’s prediction
quality.

2.3 Graph Convolution
In this study, we consider an undirected graph G = (E, V) with N nodes vi ∈ V ,
edges (vi, vj) ∈ E, an adjacency matrix A ∈ RN×N , a degree matrix with Dii =∑

j Aij , and a nodes feature informationmatrixX ∈ RN×F . This graphG is utilized
to describe the relationship of interests (i.e. whether two vehicles are considered as
neighbors) among vehicles on highway.

Graph neural networks (GNNs) are a type of neural network designed for the
analysis of graphs [98]. Recently, GNNs have been drawing increasing attention
from both academia and industry for the flexibility that the graph data structure
provides and for their convincing performance on various tasks in different domains,
such as social science [34,51], neural science [30], and knowledge graphs [33]. For
instance, motivated by a first-order approximation of spectral convolution on a
graph, Graph Convolution Networks (GCNs) are a computationally efficient variant

21

of GNNs that have shown success in achieving fast and scalable classification of
nodes in a graph [51]. Another class of GNNs is the Graph Attention Network
(GAT), which utilizes self-attention [7] to allow for inductive reasoning among
nodes, thereby providing additional interpretability while matching other GNNs on
benchmark evaluation.

GCN: GCN takes input as a graph G and output nodes encodings. We consider
the propagation rule originally introduced in [51] as our base model:

H l+1 = σ
(
D̂−

1
2 ÂD̂−

1
2H lW l

)
, (2.1)

where Â = A+ IN is the summation of the undirected graph G’s adjacency matrix
with binary entriesA and self-connection lN ∈ RN , lN ∈ RN is a identity matrix,D
is a degree matrix with Dii =

∑
j A,W l ∈ RN×Cl is a matrix of trainable weights

at depth l, σ is an activation function, and H l is the encoding of all nodes in the
graph at depth l (H0 = X).

This layer-wise propagation rule can be rewritten in the following vector form:

hl+1
vi

= σ
(∑

j

hlvj
cij
W l +

hlvi
cii
W l
)
. (2.2)

Here, j indexes neighboring nodes of vi, normalization factor 1
cij

is an entry located
at the ith row, jth column of D̂− 1

2 ÂD̂−
1
2 .

The propagation rule represented by Equation 2.1 is a first-order approximation
of spectral convolution on a graph. It provides two advantages when used to analyze
graphs: first, it enables to aggregate lth order neighborhood of a central node
during the encoding process; second, it prevents us from prohibitively expensive
eigendecomposition of the graph Laplacian compared with spectral convolution
models [51]. Those properties offer us a computational efficient approach to learn
the interactions between vehicles that are not directly connected in the graph.

GCN utilizes a pre-defined adjacency matrix A whose entries are binary to
obtain normalization factors ci,j = 1

αi,j
. In contrast, GAT, which applies self-

attention, learns to generate the normalization factors for neighbouring nodes rather
than resorting to weights in adjacency matrix A:

αij =
exp

(
LeakyReLU

(
BWahi +WWahj)

))
∑

k∈Ni exp
(
LeakyReLU

(
BWahi +WWahk)

)) , (2.3)

where i indexes the central node, j indexes the surrounding nodes, Wa, B and
W are weights in self-attention with B applied to central nodes and W applied to

22

surrounding nodes, LeakyReLU is an activation function, and αij is equivalent to
normalization factor 1

cij
mentioned in previous equations. Following the practice

in [23], we utilized different layer weights, B and W , to attend to central and
neighbouring nodes respectively. Self-attention weightsWa, B, andW are updated
such that GAT learns how to distribute αij .

2.4 Micro-level Highway Traffic Graph
In the car-following literature, models are proposed to capture the interactions among
the ego vehicle and its neighbors despite the definition of neighbors differs in the
spectrum of research. In this study, we use a flexible data structure, graph, to
model the relationship between the ego vehicle and its neighbors, which enable us
to include a flexible number of neighbors depending on the traffic. As shown in
Figure 2.1, for a vehicle pair (vi, vj) where vi ∈ V and vj ∈ V , the edge (vi, vj) is
connected if and only if:

• vehicle vj and vi appear at the same frame; and

• vehicle vj is less than one lane away from vehicle vi at the current frame
(vehicle vj should be on the same lane with vehicle vi or on vehicle i’s left,
right lanes); and

• the absolute value difference of vehicle vj’s y-coordinate and vehicle vi’s
y-coordinate is less than the designated value τ at the current frame.

Note that there is no fixed limit on the number of neighbors; all vehicles within
an ego-vehicle’s designated distance τ are its neighbor vehicles. In NGSIM I-80
dataset, the traffic of the study area changes frequently. The traffic, hence, is updated
at the same frequency as data was collected in the original dataset. Figure 2.1(c),
and Figure 2.1(d) present statistics regarding graphs.

In this work, we adopt the features used in [57]. For a vehicle node in the graph at
frame t, its feature vector includes the following elements: vehicle lane id lt, vehicle
class id c, vehicle velocity vt, vehicle acceleration at, relative distance from 3 nearest
front neighbor vehicles {df1 , df2 , df3} (pad τ if the number of front neighbors is
smaller than 3), and negative relative distance from 3 nearest rear neighbor vehicles
{−dr1 ,−dr2 ,−dr3} (pad −τ if the number of rear neighbors is less than 3).

2.5 GCNs for Traffic
The propagation rule represented by Equation 2.1 is a first-order approximation of
spectral convolution on a graph. It provides two advantages when used to analyze

23

(a) An ego-vehicle considers vehicles
only within 1 lanes away as potential
neighbor vehicles. A potential neighbor
vehicle will be deemed as ego-vehicle’s
neighbor if and only if the absolute value
of their headway distance is smaller than
τ

(b) A graph is constructed by connecting
every vehicle with their neighbor vehi-
cles. Graph nodes share the same feature
fields

(c) A box plot of the number of nodes
in graphs. This depicts the size of traffic
graphs

(d) A box plot of the number of neigh-
bours possessed by every vehicle node
in graphs. This indicates the number of
edges per each node possessed in traffic
graphs

Figure 2.1: Mapping from real world traffic to traffic graph

graphs: first, it enables to aggregate lth order neighborhood of a central node
during the encoding process; second, it prevents us from prohibitively expensive
eigendecomposition of the graph Laplacian compared with spectral convolution

24

models [51]. Those properties offer us a computational efficient approach to learn
the interactions between vehicles that are not directly connected in the graph.

2.5.1 Ego-discriminated GCN
(EGCN): During the implementation of the base model, we find that self-connection
affects the performance of the system, an observation that leads to our adaptation
of the base model. Self-connection was used to alleviate the problem of vanish-
ing/exploding gradients in GCNs [51]. However, this method applies the same
weightW l to both the central node and its surrounding nodes. In our experiments,
we find it is beneficial to remove the self-connection and apply different layer weights
to discriminate the central node from its surrounding node. This leaves us with the
ego-discriminated propagation rule, which can be represented as follows:

H l+1 = σ
(
D−

1
2AD−

1
2H lW l + INH

lBl
)
, (2.4)

where lN ∈ RN is an identity matrix,Bl ∈ RN×Cl are trainable weights at depth l for
central nodes. The corresponding vector form is given in the following expression:

hl+1
vi

= σ
(∑

j

hlvj
cij
W l +

hlvi
cii
Bl
)
. (2.5)

2.5.2 Distance-Aware Graph Convolution Network
: For the models mentioned in the previous section, their adjacency matrices Â and
A only denote whether a pair of vehicles is close or not, but they do not describe
the degree of closeness. Based on our empirical driving experience–the closer our
neighbor vehicle is, the more attention we will pay to it–we use absolute inverse
relative distances as entries for our adjacency matrix Ã to differentiate the degree of
closeness between vehicles. Therefore, we introduce the following distance-aware
layer-wise propagation rule in our multi-layer GCN (DGCN):

H l+1 = σ
(
D̃−

1
2 ÃD̃−

1
2H lW l + INH

lBl
)
. (2.6)

Here, Ã is an adjacency matrix with Ãij = 1
|yvi−yvj |

where yi represents vehicle vi’s

y-coordinate. D̃ is a degree matrix with D̃ii =
∑

j Aij . In this propagation rule,
Ã’s entries denote the degree of closeness between vehicles. To stablize gradients
during training, we discretize the degree of closeness into three levels: 1, 2, and 3,

25

which represent far away, medium close and very close, respectively. Equation 2.6
can also be rewritten in the following vector form:

hl+1
vi

= σ
(∑

j

hlvj
c̃ij
W l + hlviB

l
)
, (2.7)

where c̃ij is an entry located at ith row and jth column of D̃− 1
2 ÃD̃−

1
2 .

2.5.3 Long-short Term Memory
The Long-short TermMemory (LSTM), which is a type of RNN that can remember
the past state, is used to incorporate the temporal information in predicting the
ego-vehicle’s future acceleration. The LSTM unit that is used in this study can be
written as follows:

ft = σg(Wfxt + Ufht−1 + bf) (2.8)
it = σg(Wixt + Uiht−1 + bi) (2.9)
ot = σg(Woxt + Uoht−1 + bo) (2.10)
c̃t = σc(Wcxt + Ucht−1 + bc) (2.11)
ct = ft ◦ ct−1 + it ◦ c̃t (2.12)
ht = ot ◦ σc(ct) (2.13)

. Here, W , and U denote learnable weights and b represents bias, αg is a sigmoid
activation, αc is a hyperbolic tangent activation, xt is the input for the currrent
timestep t, ht−1 and ht denote the hidden state for the previous and the current
timestep respectively, ft is the output of the forget gate, it is the output of the input
gate, ot is the output of the output gate, c̃t is used to calculate the cell state ct.

2.5.4 Gaussian Mixture Model
In this work, we aim to predict human driver’s acceleration distribution given the
current traffic state. Hence the output of our network model is Gaussian mixture
model (GMM) parameters that characterize the future acceleration distribution. This
mixture density network (MDN) is first proposed byBishop [9] and been successfully
applied in speech recognition and other fields [75]. For aK-component GMM, the
probability of the predicted acceleration follows this equation:

p(a) =
K∑
i=1

wiN (a|µi, σ2
i), (2.14)

where wi, µi, and σi are the weight, mean, standard deviation of the ith mixture
component respectively.

26

2.6 Dataset and Training
Dataset: The NGSIM I-80 dataset contains detailed vehicle trajectory data collected
using synchronized digital video cameras on eastbound I-80 in Emeryville, CA. This
dataset provides precise positions, velocities and other vehicle information over three
15-minute periods at 10 Hz. The study area covers approximately 500 meters in
length and consists of six freeway lanes, including a high-occupancy lane and an on-
ramp lane. We use the NGSIM I-80 reconstructed dataset, which contains vehicles
position, velocity, acceleration from 4:00 p.m. to 4:15 p.m., because it corrects
errors such as extreme acceleration, and inconsistent vehicle IDs [65] [66]. We split
the data into training sets and testing sets by a ratio of 4 to 1.

Data Preparation: Both training set and testing set are divided into 12-second
segments (120 frames). The first 2-second segments (20 frames) are used to initialize
the internal state of LSTM networks. Since the aim of the research is to predict
driving acceleration usingGCNs, we need to prepare traffic graphs from the raw data.
Training: All models are trained to output predicted parameters for distributions

Table 2.1: Model Configuration

Model layer 1 layer 2 layer 3 LSTM clip norm adjacency type
Fully-connected 128 256 128 no 5 /

GCN base 128 256 128 no 5 binary
GAT 128 256 128 no 5 binary
EGCN 128 256 128 no 5 binary
DGCN 128 256 128 no 5 inverse distance
LSTM 128 256 128 yes 5 /

GCN with LSTM 128 256 128 yes 5 binary
GAT with LSTM 128 256 128 yes 5 binary
EGCN with LSTM 128 256 128 yes 5 binary
DGCN with LSTM 128 256 128 yes 5 inverse distance

over future acceleration values. Note that every model in this work shares the same
hyperparameters because we aim to compare the effectiveness of GNN and LSTM
on improving model performance in the task of driver behavior prediction. We set
τ = 20 feet, empirically.

Model structures are shown in Table 2.1. Each model consists of 3 hidden
layers and a 30-component MDN layer. Layer 1 applies Relu activation while
other layers do not use any activation. Layer 1 and layer 2 are followed by batch
normalization. Batch normalization is a mechanism to address the problem of
internal covariate shift. It has been reported that adding batch normalization to

27

state-of-the-art image classification networks yields higher classification accuracy
compared with the original networks [42]. The performance of our models is also
found to improve when batch normalization is applied. Layer 3 is either an FC layer
or an LSTM layer. The final 30-component MDN layer follows layer 3 and has an
output size of 90, which corresponds to a 30-component GMM’s parameters.

All models are trained for 5 epochs. During training, the models are optimized
by the Adam optimizer with a learning rate of 1 × 10−3 [50]. A dropout of 10
percent is applied to help prevent overfitting. Gradient norm clipping is also used
to deal with gradient vanishing and gradient explosion [70]. All networks are
implemented in TensorFlow [2] based on Kpif’sGCN package [51] and Veličković’s
GAT package [88].

2.7 Evaluation
Once trained, each model is used to generate simulated trajectories. For every
trajectory in the test set, the first 2-second segments (20 frames) of true data are
used to initialize LSTM’s internal state. In the following 10 seconds, ego-vehicle’s
velocity and position can be updated by assuming the following equations:

v(t+ δt) = v(t) + a(t+ δt)× δt
y(t+ δt) = y(t) + v(t+ δt)× δt, (2.15)

where v is ego-vehicle’s velocity, y is ego-vehicle’s Y -coordinate and a is vehicle’s
acceleration. The graph and node features are updated by propagating other vehicles’
true trajectory data and ego-vehicle’s simulated trajectory. Following the practice
in [67], we evaluate the quality of simulated trajectories by the following metrics:

• Root Mean Squared Error (RMSE): We use root mean squared error to eval-
uate the discrepancy of speed values between simulated trajectories and true
trajectories at designated horizons for a given ego-vehicle:

RMSEvelocity =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(viH − v̂
i,j
H)2, (2.16)

wherem is the number of true trajectories, n = 20 is the number of simulated
trajectories per true trajectory, viH is the velocity of ith true trajectory at
horizon H , v̂i,jH is the value in jth simulated trajectory at time horizon H .
Similarly, we also use root mean squared error to evaluate the displacement
in Y -coordinate at 10 second horizon between simulated trajectories and true

28

Figure 2.2: RMSE results for all models

trajectories:

RMSEY =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(yi10 − ŷ
i,j
10)2, (2.17)

where yi10 is the Y -coordinate of ith true trajectory at 10 second, ŷi,j10 is the
simulated Y -coordinate value for sample j in the ith trajectory at 10 second
horizon.

Figure 2.2 shows the velocity RMSE for the top 6 models over prediction
horizons between 1 and 10 seconds. Models with original GCN [51] and
GAT [88] are not included because of their bad performance in generating
predicted trajectories. In general, the velocity RMSE accumulates over the
time horizon. Our adapted GCN models outperform non-GCN models. For
non-GCN models, LSTM outperforms the fully-connected model because
LSTM is able to access past information. For GCN models, EGCN model
and DGCN with LSTM outperform other GCN models.

The Y -coordinate RMSE column in Table 2.2 denotes the displacement in
Y -coordinate between simulated trajectories and their corresponding true tra-
jectories. EGCN model outperforms other models. Velocity RMSE at 10
second horizon reveals the discrepancy of speed between simulated trajecto-
ries and the ground truth. DGCN with LSTM outperforms other models in

29

this metric.

Table 2.2: RMSE Analysis

Model Y RMSE @ 10 s (m) Velocity RMSE @ 10 s (m/s)
Fully-connected (FC) 2.89 0.526

GCN base 3.52 0.622
GAT 4.13 0.688
EGCN 1.40 0.258
DGCN 1.91 0.360
LSTM 1.61 0.331

GCN with LSTM 3.40 0.653
GAT with LSTM 4.09 0.728
EGCN with LSTM 1.86 0.321
DGCN with LSTM 1.63 0.256

• Negative Headway Distance Occurrence: This metric is used to evaluate
models’ robustness. It records the occurrences of unrealistic states led by
models’ poor decision making. Two types of negative headway distances
are considered: (1) ego-vehicle’s negative headway distance representing
collisions with the front vehicle; and (2) following vehicle’s negative headway
distance denoting collisions between the ego-vehicle and its following vehicle.
A robust model will have minimal negative headway distance occurrence.

Table 2.3 shows the number of negative headway occurrences over number
of simulated trajectories for all models. Consistent with RMSE analysis, the
results from Table 2.3 demonstrates that original GCN models often produce
poor acceleration predictions which lead to unrealistic states. EGCN model
and DGCN with LSTM model are robust because there are no unrealistic
states occurring in their simulated trajectories.

• Jerk Sign Inversions: We use the number of jerk sign inversions per trajectory
to evaluate the similarity between the smoothness of the true and simulated
trajectories. Thismetric is used to quantify oscillations inmodel’s acceleration
predictions.

Simulated trajectories of most of models have slightly higher jerk sign inver-
sions than the true trajectories while the LSTM baseline model is not able to
generate smooth trajectories. In addition, jerk sign inversions, combined with
previous metrics, indicate that the trajectories generated by GAT with LSTM
model fail to react against the changes of the ego-vehicle’s surrounding traffic.

30

Table 2.3: Jerk Sign Inversions Per Trajectory

Model Jerk Sign Inversions Negative Headway Occurrence Rate
Fully-connected (FC) 7.5 0.08

GCN base 7.5 0.17
GAT 5.9 0.27
EGCN 7.5 0
DGCN 7.3 0.03
LSTM 13.7 0.02

GCN with LSTM 6.7 0.17
GAT with LSTM 0.0 0.27
EGCN with LSTM 9.5 0.01
DGCN with LSTM 7.3 0
True trajectory 6.3 /

Figure 2.3 shows the sample simulated trajectories by models, including adapted
GCN models and non-GCN models. It can be seen that non-GCN models predict
poorly if the ground truth trajectory includes a long period of acceleration values
that are very close to zero while GCNmodels is able to generate smooth trajectories
close to the ground truth. In addition, non-GCNmodels are prone to predict extreme
acceleration values, which is compensated by oscillation of acceleration values.

2.8 Discussion
Our experiments are designed to answer the following research questions:

• Does GCN improve model performance and are our adaptations to GCN
beneficial?

• Does including LSTM increase prediction quality?

• Why do GAT models fail to generate realistic trajectories?

First, we discover that we improve GCN’s performance when we delete self-
connections and apply different weights to the central nodes and their surrounding
nodes. For GCN base model, we reduced velocity RMSE by 58.5% at 10 seconds
horizon and negative headway occurrence by 17% during simulation. For GCN
with LSTM model, we reduced its 10 seconds horizon velocity RMSE by 50.8%
and negative headway occurrence by 15%.

Second, our experiments demonstrated that GCNs improve model performance.
GCN models are able to generate smooth and robust trajectories close to the ground

31

(a) LSTM models (b) Fully-connected models

(c) LSTM models (d) Fully-connected models

Figure 2.3: Simulated Trajectories For All Models (Orignial GCN and GAT models
are excluded for their bad performance)

truth. For both LSTM and fully-connected models, the non-GCN baseline model
is outperformed by its GCN couterparts, in general. Note that, in the experiments,
our GCNmodels and non-GCNmodels share the same number of hidden layers and
the same number of neurons in each hidden layer. Compared with non-GCN fully-
connected model, our EGCN model reduced the negative headway occurrence rate
from 0.08 to 0, 10 seconds horizon velocity RMSE by 59.6%. Compared with non-
GCN LSTM, our DGCN with LSTM reduced the negative headway occurrence rate
from 0.02 to 0, jerk sign inversions from 13.7 to 7.3 and 10 seconds horizon velocity
RMSE by 22.7%. This trend can also be observed in Figure 2.3. The multi-layer
GCN’s ability to capture multitudes of interactions between vehicles hierarchically
improves model’s prediction quality in terms of our evaluation metrics.

In general, we find that adding LSTM structure improves model prediction

32

quality. Among all models, the best model is DGCNwith LSTM.During simulation,
this model is able to generate robust and smooth driving trajectories with 0 negative
headway, 7.3 jerk sign inversions and 0.256 for 10-second horizon velocity RMSE.

GATs utilize self-attention to assign attentional weights αij for neighbouring
node j. The attentional weights αij indicate the relationship between the central
node and its surrounding nodes. Following [7], we investigated αij to understand
why GAT models fail in our experiment. The investigation shows that the relational
kernel in the baseline GAT models fails to learn the relationships between central
nodes and their surrounding nodes. From the sample in the vehicle 829 at the frame
2373, the relational kernel in the second GAT layer of the GAT model assigns the
same weights to every node: vehicle 829 initially has two neighbours, 818 and 835.
The attentional weights for each node, including the central node 829, is 0.333.
Later in the trajectory, another vehicle 795 approaches the ego-vehicle 829 and the
attentional weights assigned to all 4 nodes are 0.25.

2.9 Conclusion
In this study, we propose the use of graphs defined by the spatial relationships be-
tween vehicles, to model traffic. We further build GCNmodels, operating on graphs,
to predict future acceleration distributions. We propose two GCN models adapted
from the state-of-art GCN and studied the effectiveness of LSTM architectures in
our prediction models. Our resulting frameworks outperform others on the task of
acceleration prediction.

While our proposed methods have been shown to improve prediction perfor-
mance, much work remains to be done. This work can be extended to prediction
in two dimensions, which is an important problem in autonomous driving. At the
same time, it will be interesting to evaluate different graph construction strategies,
such as strategies that include multiple layers of relationships.

2.10 Related Work
The task of modeling driving behavior consists of modeling car-following behaviors
and lane-changing behaviors. In ourwork, we focus on augmenting the car-following
model.

Car-following models capture the interaction between the ego-vehicle and the
vehicles directly adjacent on themicroscopic level of the traffic. Based on the number
of interactions captured, models can be categorized as being either a single-lane or
multiple-lanes.

33

A single-lanemodel focuses on the interactions between vehicles in a single lane.
This model considers up to two kinds of interactions: namely, the ego-vehicle with
its leading vehicle, and the ego-vehicle with its following vehicle. Many traditional
fixed-form models fall into this category, including the Gazis-Herman Rothery
model [15], the collision avoidance model [52], linear models [36], psycho-physical
models [62], and fuzzy logic-based models [47].

Some recent general drivingmodels havemoved away frommaking assumptions
about drivers. Lefèvre et al. compare the performance of feed-forward mixture
density network against traditional baselines [56]. Their empirical tests suggest that
the proposed method is able to achieve performance comparable to the baselines.
Morton et al. study the effectiveness of LSTM in predicting driving behavior on
highways. They reveal that the LSTM’s ability to remember historic states of the
ego-vehicle appears to be the key to achieving the state-of-art performance [67].

More recently, multiple-lane models that consider more interactions, coupled
with neural networks, have been introduced in the literature. Kim et al. propose a
framework based on LSTM to predict vehicle’s future position over the occupancy
grid [48]. Altche et al. use LSTM that predicts traffic using as input state information
on the ego-vehicle states and up to 9 of its neighbors. The model is trained and
evaluated on the NGSIM 101 dataset which has trajectories from more than 6000
individual drivers [4].

Diehl et al. [23] used GNNs for vehicle coordinates prediction and demonstrated
that GATmodels outperform other baselines. Note that our method differs from that
work in three main ways. First, we are interested in generating vehicle trajectories.
Hence, our models are structured to predict 0.1-second future acceleration, which
can be propagated to vehicle trajectories of any lengthwith velocity, acceleration, and
coordinates information. Diehl et al. aim to predict the 5-second-later coordinates of
a vehicle, which contains limited information for the construction of realistic vehicle
trajectories. Second, our framework allows for including an arbitrary number of
neighbors. The models of Diehl et al., by contrast, consider only up to 8 neighbors,
whichmight result in ignoring important information about the state of traffic around
ego-vehicles. Third, we believe that information of ego-vehicle’s past states affects
future actions. Diehl et al. does not consider RNN structure, whereas we include
this structure because it acts to memorize the past states of a vehicle. Furthermore,
we analyze the performance of GNNs with and without RNNs.

34

Chapter 3

Value-Decomposition Multi-Agent
Reinforcement Learning

3.1 Background
Breakthroughs in Q-learning have been made using joint action-value factorization
techniques. Value-decomposition networks (VDN) represent joint action-value as a
summation of local action-value conditioned on individual agents’ local observation
history [82]. In [73], a more general case of VDN is proposed using a mixing
network that approximates a broader class of monotonic functions to represent joint
action-values called QMIX. In [79], a more complex factorization framework three
modules, called QTRAN, is introduced and shown to have good performance on
a range of cooperative tasks. While QMIX reports the best performance on the
StarCraft micromanagement testbed [76], we find that QMIX, in some StarCraft II
compositions, has issues learning good policies that can consistently defeat enemies
when using the A2C training paradigm [63], which was originally introduced to
enable algorithms to be executed efficiently.

On the other hand, on-policy actor-critic methods, such as counterfactual multi-
agent (COMA) [29], can leverage the A2C framework to improve training efficiency
at the cost of performance. [76] point out that there is a performance gap between
the state-of-the-art actor-critic method, COMA, and QMIX on the StarCraft II
micromanagement testbed.

To bridge the gap between multi-agent Q-learning and multi-agent actor-critic
methods, as well as offer a reasonable trade-off between training efficiency and
algorithm performance, we propose a novel actor-critic framework called value-
decomposition actor-critic (VDAC). Let V a, ∀a ∈ {1, . . . , n} denote the local state
value that is conditioned on agent a’s local observation, and let Vtot denote the
global state-value that is conditioned on the true state of the environment. VDAC

35

36

takes an actor-critic approach but adds local critics, which share the same network
with the actors and estimate the local state values V a. The central critic learns the
global state value Vtot. The policy is trained by following a gradient dependent on
the central critic. Further, we examines two approaches for calculating Vtot.

3.2 Executive Summary
VDAC is based on three main ideas. First, unlike QMIX, VDAC is compatible with
a A2C training framework that enables game experience to be sampled efficiently.
This is due to the fact that multiple games are rolled out independently during
training. Second, similar to QMIX, VDAC enforces the following relationship
between local state-values V a and the global state-value Vtot:

∂Vtot
∂V a

≥ 0, ∀a ∈ {1, . . . , n}. (3.1)

This idea is related to difference rewards [95], in which each agent learns from a
shaped reward that compares the global reward to the reward received when that
agent’s action is replaced with a default action. Difference rewards require that any
action that improves an agent’s local reward also improves the global reward, which
implies the monotonic relationship between shaped local rewards and the global
reward. While COMA (also inspired by difference rewards) focuses on customizing
shaped rewards ra from the global reward rtot in a pairwise fashion ra = f(rtot),
VDAC represents the global reward by all agents’ shaped rewards rtot = f(r1, ..., rn)
. Third, VDAC is trained by following a rather simple policy gradient that is
calculated froma temporal-difference (TD) advantage. We theoretically demonstrate
that the proposed method is able to converge to a local optimum by following this
policy gradient. Despite the fact that TD advantage policy gradients and COMA
gradients are both unbiased estimates of a vanilla multi-agent policy gradients, our
empirical study favors TD advantage policy gradients over COMA policy gradients.

This study strives to answer the following research questions:

• Research question 1: Is the TD advantage gradient sufficient
to optimize multi-agent actor-critics when compared to a COMA
gradient?

• Research question 2: Does applying state-value factorization
improve the performance of actor-critics?

• Research question 3: Does VDAC provide a reasonable trade-
off between training efficiency and algorithm performance when
compared to QMIX?

37

• Research question 4: What are the factors that contribute to the
performance of the proposed VDAC?

3.3 Preliminaries and Technical Background

DecentralizedPartiallyObservableMarkovDecisionProcesses (Dec-POMDPs):
Consider a fully cooperative multi-agent task with n agents. Each agent identified by
a ∈ A ≡ {1, . . . , n} takes an action ua ∈ U simultaneously at every timestep, form-
ing a joint action u ∈ U ≡ Ua,∀a ∈ {1, . . . , n}. The environment has a true state
s ∈ S, a transition probability function P (s′|s,u) : S ×U× S → S, and a global
reward function r(s,u) : S×U→ R. In the partial observation setting, each agent
draws an observations z ∈ Z from the observation function O(S,A) : S ×A→ Z.
Each agent conditions a stochastic policy π(ua|τa) : T × U → [0, 1] on its
observation-action history τa ∈ T ≡ Z × U . Throughout this paper, quantities
in bold represent joint quantities over agents, and bold quantities with the super-
script −a denote joint quantities over agents other than a given agent a. MARL
agents aim to maximize the discounted return Rt =

∑∞
l=1 γ

lrt+l. The joint value
function V π(st) = E[Rt|st = s] is the expected return for following the joint policy
π from state s. The value-action function Qπ(s,u) = E[Rt|st = s,u] defines the
expected return for selecting joint action u in state s and following the joint policy
π.

Single-Agent Policy Gradient Algorithms: Policy gradient methods adjust the
parameters θ of the policy in order tomaximize the objectiveJ(θ) = Es∼pπ ,u∼π[R(s, u)]
by taking steps in the direction of ∇J(θ). The gradient with respect to the policy
parameters is

∇θJ(θ) = Eπ[∇θ log πθ(a|s)Qπ(s, u)] (3.2)

, where pπ is the state transition by following policy π, and Qπ(s, u) is an action-
value.

To reduce variations in gradient estimates, a baseline b is introduced. In actor-
critic approaches [53], an actor is trained by following gradients that are dependent
on the critic. This yields the advantage functionA(st, ut) = Q(st, ut)−b(st), where
b(st) is the baseline (V (st) or another constant is commonly used as the baseline).
TD error rt + γV (st+1) − V (st), which is an unbiased estimate of Q(st, ut), is a
common choice for advantage functions. In practice, a TD error that utilizes an
n-step return

∑k−1
i=0 γ

irt + γkV (st+k)− V (st) yields good performance [63].
Multi-Agent Policy Gradient (MAPG) Algorithms: Multi-agent policy gradi-

entmethods are extensions of policy gradient algorithmswith a policyπθa(ua|τ ‘a), a ∈

38

{1, · · · , n}. Perhaps the simplest multi-agent gradient can be written as:

∇θJ = Eπ

[∑
a

∇θ log πθ(u
a|τa)Qπ(s,u)

]
. (3.3)

Taking into the fact agent’s policies are independent, the joint policy π can be written
as a product of independent policies:

π(u|s) =
∏
a

πa(ua|τa) (3.4)

And the vanilla multi-agent gradient can be represented in a single-agent RL
fashion:

∇θJ = Eπ

[∑
a

∇θ log πθ(u
a|τa)Qπ(s,u)

]

= Eπ

[
∇θ log

∏
a

πθ(u
a|τa)Qπ(s,u)

]
= Eπ [∇θ log πθ(u|s)Qπ(s,u)]

(3.5)

Compared with policy gradient methods, MAPG faces the issues of high variance
gradient estimates [60] and credit assignment [29]. Multi-agent policy gradients
in the current literature often take advantage of CTDE by using a central critic
to obtain extra state information s, and avoid using the vanilla multi-agent policy
gradients (Equation 3.3) due to high variance. For instance, [60] utilize a central
critic to estimate Q(s, (a1, . . . , an)) and optimize parameters in actors by following
a multi-agent DDPG gradient, which is derived from Equation 3.3:

∇θaJ = Eπ[∇θaπ(ua|oa)∇uaQua(s,u)|ua=π(oa)]. (3.6)

Unlike most actor-critic frameworks, [29] claim to solve the credit assignment issue
by applying the following counterfactual policy gradients:

∇θJ = Eπ

[∑
a

∇θ log π(ua|τa)Aa(s,u)

]
, (3.7)

where Aa(s,u) = Qπ(s,u)−
∑

ua πθ(u
a|τa)Qa

π(s, (u−a, ua)) is the counterfactual
advantage for agent a. Note that [29] argue that the COMA gradients provide agents
with tailored gradients, thus achieving credit assignment. At the same time, they
also prove that COMA is a variance reduction technique.

39

Table 3.1: Actor-Critics studied.

Algorithm Central Critic Value Decomposition Policy Gradients
IAC [29] No - TD advantage
VDAC-sum Yes Linear TD advantage
VDAC-mix Yes Non-linear TD advantage
Naive Critic Yes - TD advantage
COMA [29] Yes - COMA advantage

3.4 Methods
In addition to the previously outlined research questions, our goal in this work is
to derive RL algorithms under the following constraints: (1) the learned policies
are conditioned on agents’ local action-observation histories (the environment is
modeled as Dec-POMDP), (2) a model of the environment dynamics is unknown
(i.e. the proposed framework is task-free and model-free), (3) communication is
not allowed between agents (i.e. we do not assume a differentiable communication
channel such as [21]), and (4) the framework should enable parameter sharing among
agents (namely, we do not train different models for each agent as is done in [85]). A
method that met the above criteria would constitute a general-purpose multi-agent
learning algorithm that could be applied to a range of cooperative environments,
with or without communication between agents. Hence, the following methods are
proposed.

3.4.1 Naive Central Critic Method
A naive central critic (naive critic) is proposed to answer the first research question:
is a simple policy gradient sufficient to optimize multi-agent actor-critic methods.
As shown in Fig 3.1, naive critic’s central critic shares a similar structure with
COMA’s critic. It takes (st, ut−1) as the input and outputs V (s). Actors follow a
rather simple policy gradient, a TD advantage policy gradient that is common in the
RL literature given by:

∇θJ = Eπ

[∑
a

∇θ log π(ua|τa)
(
Q(s,u)− V (s)

)]
, (3.8)

where Q(s,u) = r + γV (s′). In the next section, we will demonstrate that policy
gradients taking the formof Equation 4.9 under our proposed actor-critic frameworks

40

Figure 3.1: Naive Critic

are also unbiased estimates of the naive multi-agent policy gradients. Algorithm 1
describes the naive critic.

3.4.2 Value Decomposition Actor-Critic

Difference rewards enable agents to learn from a shaped reward Da = r(s,u) −
r(s, (u−a, ca)) that is defined by a reward change incurred by replacing the original
action ua with a default action ca. Any action taken by agent a that improves Da

also improves the global reward r(s,u) since the second term in the difference
reward equation does not depend on ua. Therefore, the global reward r(s,u) is
monotonically increasing with Da. Inspired by difference rewards, we propose
to decompose state value Vtot(s) into local states V a(oa) such that the following
relationship holds:

∂Vtot
∂V a

≥ 0, ∀a ∈ {1, . . . , n}. (3.9)

With Equation 3.9 enforced, given that the other agents stay at the same local states
by taking u−a, any action ua that leads agent a to a local state oa with a higher value
will also improve the global state value Vtot.

Two variants of value-decomposition that satisfy Equation 3.9, VDAC-sum and
VDAC-mix, are studied.

41

Algorithm 1 Naive Central Critic

1: Initialize critic θc, target critic θ̂c, and actor θ
2: for each training episode e do
3: Empty buffer
4: for ec = 1 to BatchSize

n
do

5: t = 0, hao for each agent a
6: while game not terminated and t < T do
7: t = t+ 1
8: for each agent a do
9: hat , π

a
t = Actor(oat , hat−1, uat−1, a; θ)

10: Sample action uat from πat
11: end for
12: Get reward rt and next state st+1

13: end while
14: add experience to buffer
15: end for
16: Collate episodes in buffer into single batch
17: for t = 1 to T do
18: Batch unroll RNN using states, actions and reward
19: Calculate yt and At using θ̂c
20: end for
21: for t = T down to 1 do
22: Calculate gradient wrt θc : ∆θc ← ∇θc

(
yt − V (st,ut−1; θ

c)
)2

23: Update critic θc ← θc − α∆θc

24: Every C steps update target critic θ̂c ← θc

25: end for
26: for t = 1 down to T do
27: Accumulate gradient wrt θ : ∆θ ← ∆θ +∇θ log π(uat |oat)At
28: end for
29: Update actor weights θ = θ + α∆θ
30: end for

VDAC-sum

In VDAC-sum, the total state value Vtot(s) is a summation of local state values
V a(oa): Vtot(s) =

∑
a V

a(oa). This linear representation is sufficient to satisfy
Equation 3.9. VDAC-sum’s structure is shown in Figure 3.2. Note that the actor
outputs both πθ(oa) and Vθv(oa). This is done by sharing non-output layers between
distributed critics and actors. In this paper, θv denotes the distributed critics’

42

Figure 3.2: VDAC-sum

parameters and θ denotes the actors’ parameters for generality. The distributed
critic is optimized by minibatch gradient descent to minimize the following loss:

Lt(θv) =

(
yt − Vtot(st)

)2

=

(
yt −

∑
a

Vθv(o
a
t)

)2

,

(3.10)

where yt =
∑k−t−1

i=t γiri + γ(k−t)Vtot(sk) is bootstrapped from the last state sk, and
k is upper-bounded by T .

The policy network is trained using the following policy gradient g = Eπ[
∑

a∇θ log π(ua|τa)A(s,u)],
where A(s,u) = r+ γV (s′)− V (s) is a simple TD advantage. Similar to indepen-
dent actor-critic (IAC), VDAC-sum does not make full use of CTDE in that it does
not incorporate state information during training. Furthermore, it can only represent
a limited class of centralized state-value functions.

VDAC-mix

To generalize the representation to a larger class of monotonic functions, we utilize
a feed-forward neural network that takes input as local state values Vθ(oa),∀a ∈
{1, . . . , n} and outputs the global state value Vtot. To enforce Equation 3.9, the

43

Algorithm 2 Value Decomposition Actor-Critic (VDAC-sum)
1: Initialize actor network θ
2: for each training episode e do
3: Empty buffer
4: for ec = 1 to BatchSize

n
do

5: t = 0, hao for each agent a
6: while game not terminated and t < T do
7: t = t+ 1
8: for each agent a do
9: hat , π

a
t , V

a
t = Actor(oat , hat−1, uat−1, a; θ)

10: Sample action uat from πat
11: end for
12: Get reward rt and next state st+1

13: end while
14: add experience to buffer
15: end for
16: Collate episodes in buffer into single batch
17: for t = 1 to T do
18: Batch unroll RNN using states, actions and reward
19: Calculate yt and At using θ
20: Accumulate gradient wrt θ : ∆θv ← ∆θv +∇θ

(
yt −

∑
a V

a
t

)2
21: end for
22: for t = 1 to T do
23: Accumulate gradient wrt θ : ∆θπ ← ∆θπ +∇θ log π(uat |oat)At
24: end for
25: Update actor weights θ = θ + απ∆θπ − αv∆θv
26: end for

weights (not including bias) of the network are restricted to be non-negative. This
allows the network to approximate any monotonic function arbitrarily well [24].

Theweights of themixing network are produced by separate hypernetworks [32].
Following the practice in QMIX [73], each hypernetwork takes the state s as an input
and generates the weights of one layer of the mixing network. Each hypernetwork
consists of a single linear layer. An absolute activation function is utilized in the
hypernetwork to ensure that the outputted weights are non-negative. The biases are
not restricted to being non-negative. Hence, the hypernetworks that produce the
biases do not apply an absolute non-negative function. The final bias is produced
by a 2-layer hypernetwork with a ReLU activation function following the first layer.
Finally, the hypernetwork outputs are reshaped into a matrix of appropriate size.

44

Figure 3.3: VDAC-vmix

Figure 3.3 illustrates the mixing network and the hypernetworks.
The whole mixing network structure (including hypernetworks) can be seen as a

central critic. Unlike critics in [29], this critic takes local state values V a(oa),∀a ∈
{1, . . . , n} as additional inputs besides global state s. Similar to VDAC-sum, the
distributed critics are optimized by minimizing the following loss:

Lt(θv) =

(
yt − Vtot(st)

)2

=

(
yt − fmix(Vθv(o1t), . . . , Vθv(ont))

)2

,

(3.11)

where fmix denotes the mixing network. Let θc denote parameters in the hyper-
networks. The central critic is optimized by minimizing the same loss Lt(θc) =
(yt−Vtot(st)). The policy network is updated by following the same policy gradient
in Equation 4.9. The pseudo code is provided in Algorithm 3.

3.5 Convergence of VDAC Frameworks
[29] establish the convergence of COMA based on the convergence proof of single-
agent actor-critic algorithms [53, 83]. In the same manner, we utilize the following
lemma to substantiate the convergence of VDACs to a locally optimal policy.

45

Algorithm 3 Value Decomposition Actor-Critic (VDAC-mix)
1: Initialize hypernetwork θc, and actor network θ
2: for each training episode e do
3: Empty buffer
4: for ec = 1 to BatchSize

n
do

5: t = 0, hao for each agent a
6: while game not terminated and t < T do
7: t = t+ 1
8: for each agent a do
9: hat , π

a
t , V

a
t = Actor(oat , hat−1, uat−1, a; θ)

10: Sample action uat from πat
11: end for
12: Get reward rt and next state st+1

13: end while
14: add experience to buffer
15: end for
16: Collate episodes in buffer into single batch
17: for t = 1 to T do
18: Batch unroll RNN using states, actions and reward
19: Calculate yt and At using θc
20: Accumulate gradient wrt θc : ∆θc ← ∆θc + ∇θc

(
yt −

Vtot(V
1
t , . . . , V

n
t)
)2

21: Accumulate gradient wrt θ : ∆θv ← ∆θv+∇θ

(
yt−Vtot(V 1

t , . . . , V
n
t)
)2

22: end for
23: for t = 1 to T do
24: Accumulate gradient wrt θ : ∆θπ ← ∆θπ +∇θ log π(uat |oat)At
25: end for
26: Update actor weights θ = θ + απ∆θπ − αv∆θv
27: Update hypernet weights θc = θc − α∆θc

28: end for

Lemma 1: For a VDAC algorithm with a compatible TD(1) critic following a
policy gradient

gk = Eπ

[∑
a

∇θk log π(ua|τa)A(s,u))

]
,

at each iteraction k, lim infk||∇J || = 0 w.p.1.

46

Proof The VDAC gradient is given by:

g = Eπ

[∑
a

∇θ log π(ua|τa)A(s,u)

]
, (3.12)

A(s,u) = Q(s,u) − Vtot(s). We first consider the expected distribution of the
baseline Vtot:

gb = −Eπ

[∑
a

∇θ log π(ua|τa)Vtot(s)

]

= −Eπ

[
∇θ log

∏
a

π(ua|τa)Vtot(s)

]
,

(3.13)

where the distribution Eπ is with respect to the state-action distribution induced
by the joint policy π. Writing the joint policy as a product of independent actors
π(u|s) =

∏
a π(ua|τa). The total value does not depend on agent actions and is

given by Vtot(s) = f(V1(o
1), . . . , Vn(on)) where f is a non-negative function. This

yields a single-agent actor-critic baseline: gb = −Eπ[∇θ log π(u|s)Vtot(s)].
Now let dπ(s) be the discounted ergodic state distribution as defined by [83]:

gb = −
∑
s

dπ(s)
∑
u

∇θ log π(u|s)Vtot(s)

= −
∑
s

dπ(s)Vtot(s)∇θ

∑
u

log π(u|s)

= −
∑
s

dπ(s)Vtot(s)∇θ1

= 0

(3.14)

The remainder of the gradient is given by:

g = Eπ

[∑
a

∇θ log π(ua|τa)Q(s,u)

]

= Eπ

[
∇θ log

∏
a

π(ua|τa)Q(s,u)

]
,

(3.15)

which yields a standard single-agent actor-critic policy gradient g = Eπ[∇θ log π(u|s)Q(s,u)].
[53] establish that an actor-critic that follows this gradient converges to a local max-
imum of the expected return Jπ, subject to assumptions included in their paper.

In the naive critic framework, Vtot(s) is evaluated by the central critic and does
not depend on agent actions. Hence, by following the same proof in Equation 3.14,
we can show that the expectation of naive critic baseline is also 0, thus proves naive
critic also converges to a locally optimal policy.

47

3.6 Experiments
In this section, we benchmark VDACs against the baseline algorithms listed in Table
3.1 on a standardized decentralised StarCraft II micromanagement environment,
SMAC [76]. SMAC consists of a set of StarCraft II micromanagement games that
aim to evaluate how well independent agents are able to cooperate to solve complex
tasks. In each scenario, algorithm-controlled ally units fight against enemy units
controlled by the built-in game AI. An episode terminates when all units of either
army have died or when the episode reached the pre-defined time limit. A game is
counted as a win only if enemy units are eliminated. The goal is to maximize the
win rate.

We consider the following maps in our experiments: 2s_vs_1sc, 2s3z, 3s5z,
1c3s5z, 8m, and bane_vs_bane. Note that all algorithms are trained under A2C
framework where 8 episodes are rolled out independently during the training. Refer
to Appendix for training details and map configuration.

We perform the following ablations to answer the corresponding research ques-
tions:

3.6.1 Ablation 1
Is the TD advantage gradient sufficient to optimize multi-agent actor-critics? The
comparison between the naive critic and COMA will demonstrate the effectiveness
of TD advantage policy gradients because the only significant difference between
those two methods is that the naive critic follows a TD advantage policy gradient
whereas COMA follows the COMA gradient (Equation 3.7).

3.6.2 Ablation 2
Does applying state-value factorization improve the performance of actor-critic
methods? VDAC-sum and IAC, both of which do not have access to extra state
information, shares an identical structure. The only difference is that VDAC-sum
applies a simple state-value factorizationwhere the global state-value is a summation
of local state values. The comparison between VDAC-sum and IAC will reveal the
necessity of applying state-value factorization.

3.6.3 Ablation 3
Compared with QMIX, does VDAC provide a reasonable trade-off between training
efficiency and algorithm performance? We train VDAC and QMIX under A2C

48

training paradigm, which is proposed to promote training efficiency, and compare
their performance.

3.6.4 Ablation 4
What are the factors that contribute to the performance of the proposed VDAC?
We investigate the necessity of non-linear value-decomposition by removing the
non-linear activation function in the mixing network. The resulting algorithm is
called VDAC-mix (linear) and can be seen as VDAC-sum with access to extra state
information.

3.7 Overall Results
As suggested in [76], our main evaluation metric is the median win percentage
of evaluation episodes as a function of environment steps observed over the 200k
training steps. Specifically, the performance of an algorithm is estimated by pe-
riodically running a fixed number of evaluation episodes (in our implementation,
32) during the course of training, with any exploratory behaviours disabled. The
median performance as well as the 25-75% percentiles are obtained by repeating
each experiment using 5 independent training runs. Figure 3.4 demonstrates the
comparison among actor-critics across 6 different maps.

In all scenarios, IAC fails to learn a policy that consistently defeats the enemy.
In addition, its performance across training steps is highly unstable due to the
non-stationarity of the environment and its lack of access to extra state information.

Noticeably, VDAC-mix consistently achieves the best performance across all
tasks. On easy games (i.e, 8m), all algorithms generally perform well. This is due to
the fact that a simple strategy implemented by the heuristic AI to attack the nearest
enemies is sufficient to win. In harder games such as 3s5z and 2s3z, only VDAC-
mix can match or outperform the heuristic AI. It is worth noting that VDAC-sum,
which cannot access extra state information, matches the naive critic’s performance
on most maps.

3.7.1 Ablation 1
Consistent with [60], the comparison between the naive critic and IAC demonstrates
the importance to incorporate extra state information, which is also revealed by the
comparison between COMA and IAC (Refer to Figure 3.4 for comparisons between
naive critic and COMA across different maps.). As shown in Figure 3.4, naive critic
outperforms COMA across all tasks. It reveals that it is also viable to use a TD

49

(a) 1c3s5z (b) 2s_vs_1sc

(c) 2s3z (d) 3s5z

(e) bane_vs_bane (f) 8m

Figure 3.4: Overall results: Win rates on a range of SC mini-games. Black dash
line represents heuristic AI’s performance

advantage policy gradients in multi-agent settings. In addition, COMA’s training is
unstable, as can be seen in Figure 3.5a, which might arise dues to its inability to
predict accurate counterfactual action-value Qa(s, (u−a, ua)) for un-taken actions.

50

(a) 2s_vs_1sc (Ablation 1) (b) 2s_vs_1sc (Ablation 2)

(c) 2s_vs_1sc (Ablation 3) (d) 3s5z (Ablation 4)

51

3.7.2 Ablation 2
Despite the similarity in structure of VDAC-sum and IAC, VDAC-sum’smedian win
rates at 2 million training step exceeds IAC’s consistently across all maps (Refer to
Figure 3.4 for comparisons betweenVDAC-sumand IACacross 6 differentmaps.). It
reveals that, by using a simple relationship to enforce equation 3.9, we can drastically
improve multi-agent actor-critic’s performance. Furthermore, VDAC-sum matches
naive critic on many tasks, as shown in Figure 3.5b, demonstrating that actors that
are trained without extra state information can achieve similar performance to naive
critic by simply enforcing equation 3.9. In addition, it is noticeable that, compared
with naive critic, VDAC-sum’s performance is more stable across training.

3.7.3 Ablation 3
Figure 3.5c shows that, under the A2C training paradigm, VDAC-mix outperforms
QMIX in map 2s_vs_1sc. It is also noticeable that QMIX’s performance is unstable
across the training steps in map 2s_vs_1sc. In easier games, QMIX’s performance
can be comparable to VDAC-mix. In harder games such as 3s5z, VDAC-mix’s
median test win rates at 2 million training step outnumber QMIX’s by 71%. Refer
to Appendix for complete comparisons between VDACs and QMIX.

3.7.4 Ablation 4
Finally, we introduced VDAC-mix (linear), which can be seen as a more general
VDAC-sum that has access to extra state information. Consistent with our previous
conclusion, the comparison between VDAC-mix (linear) and VDAC-sum shows that
it is important to incorporate extra state information. In addition, the comparison
between VDAC-mix and VDAC-mix (linear) shows the necessity of assuming the
non-linear relationship between the global state value Vtot and local state values
V a,∀a ∈ {1, . . . , n}. Refer to Appendix for comparisons between VDACs across
all maps.

3.8 Conclusion
In this paper, we propose a new credit-assignment actor-critic framework that en-
forces themonotonic relationship between the global state-value and the shaped local
state-value. Theoretically, we establish the convergence of the proposed actor-critic
method to a local optimal. Empirically, benchmark tests on StarCraft microman-
agement games demonstrate that our proposed actor-critic bridges the performance
gap between multi-agent actor-critics and Q-learning, and our method provides a

52

balanced trade-off between training efficiency and performance. Furthermore, we
identify a set of key factors that contribute to the performance of our proposed
algorithms via a set of ablation experiments. In future work, we aim to implement
our framework in real-world applications such as highway on-ramp merging of semi
or full self-driving vehicles.

Large-scale multi-agent control problems are at the heart of a number of chal-
lenging problems facing society. For example in traffic management, there are over
300,000 accidents per year that occur during highway merging. The number of ac-
cidents could be significantly reduced if effective autonomous driving was broadly
available in personal vehicles. MARL algorithms, like ones proposed in this paper,
offer a possible solution to the autonomous driving task. Other areas of significant
societal impact include healthcare, smart manufacturing, smart grids, and other
transportation infrastructure.

3.9 Related Work
MARL has benefited from recent developments in deep reinforcement learning,
with the field moving away from tabular methods [10] to deep neural networks [29].
Our work is related to recent advances in CTDE deep multi-agent reinforcement
learning.

The degree of training centralization varies in the literature on MARL. Inde-
pendent Q-learning (IQL) [85] and its deep neural network counterpart [84] train
an independent Q-learning model for each agent. Those that attempt to directly
learn decentralized policies often suffer from the non-stationarity of the environ-
ment induced by agents simultaneously learning and exploring. [28, 87] attempt to
stabilize learning under the decentralized training paradigm. [31] propose a train-
ing paradigm that alternates between centralized training with global rewards and
decentralized training with shaped rewards.

Centralized methods, by contrast, naturally avoid the non-stationary problem at
the cost of scalability. COMA [27], takes advantage of CTDE, where actors are
updated by following policy gradients that are tailored by their contributions to the
system. Multi-agent deep deterministic policy gradient (MADDPG) [60] extends
deep deterministic policy gradient (DDPG) [58] tomitigate the issue of high variance
gradient estimates exacerbated in multi-agent settings. Based on MADDPG, [92]
propose multi-agent soft Q-learning in continuous action spaces to tackle the issue
of relative overgeneralization. Probabilistic recursive reasoning [93] is a method
that uses a probabilistic recursive reasoning policy gradient that enables agents to
recursively reason what others believe about their own beliefs.

More recently, value-based methods, which lie between the extremes of IQL

53

and COMA, have shown great success in solving complex multi-agent problems.
VDN [82], which represents joint-action value function as a summation of local
action-value function, allows for centralized learning. However, it does not make
use of extra state information. QMIX [73] utilizes a non-negative mixing network to
represent a broader class of value-decomposition functions. Furthermore, additional
state information is captured by hypernetworks that output parameters for the mixing
network. QTRAN [79] is a generalized factorization method that can be applied
to environments that are free from structural constraints. Other works, such as
CommNet [27], TarMAC [21], ATOC [44], MAAC [43], CCOMA [80] and BiCNet
[71] exploit inter-agent communication.

The proposed VDAC method is similar to QMIX and VDN in that it utilizes
value-decomposition. However, VDAC is a policy-based method that decomposes
global state-values whereas QMIX and VDN, which decompose global action-
values, belong to the Q-learning family. [68] address credit-assignment issue, how-
ever, under a differentMARL setting,CDec-POMDP. COMA,which is also a policy
gradient method inspired by difference rewards and has been tested on StarCraft II
micromanage games, represents the work most closely related to this paper.

54

Chapter 4

Preventive Maintenance with VDAC

4.1 Background

In manufacturing systems, machines suffer from random failures as the result of
degradation of parts over time [89]. These unexpected failures abruptly interrupt
normal production operations, which can not only cause significant production
losses but also require considerable resources for prompt maintenance actions. The
maintenance procedure in response to random failures is referred to as corrective
maintenance (CM). In order to reduce random failures, a common industrial practice
is to proactively shut down machines for preventive maintenance (PM) according to
predefined policies. However, deriving PM policies that ensure smooth and efficient
production has always been a nontrivial task, since PM actions also impact the
system in ways that can incur production losses and resource costs. The costs of
excessive PM might outweigh the benefits, but conversely, inadequate PM can be
ineffective in preventing random failures. It is challenging to balance the delicate
decision trade offs that arise in PM for manufacturing systems, which are distin-
guished by complicated and non-linear system dynamics due to interactions among
machines/buffers and interruptions from production-related activities [39].

Reinforcement learning (RL) is a machine learning technique that estimates op-
timal policies through interactions between an agent and the environment. RL has
recently emerged as an effective method for obtaining PM policies in manufacturing
systems thanks to its capability for dealing with complex and stochastic environ-
ments. The complexity and size of the studied manufacturing systems, and hence
RL techniques applied, vary across the spectrum in this line of research. Model-
based RLmethods utilizing known transition probabilities between states are mostly
restricted to two-machine-one-buffer manufacturing systems [26,45,91], because it
is impractical to obtain the transition probabilities for larger systems. The explo-
sion of state space with increased system size warrants the use of model-free RL

55

56

methods, which do not require a model of the environment dynamics, and deep RL,
which approximates value functions or policy with deep neural networks [38, 40].
Whethermodel-based ormodel-free, prior RLwork shares the approach ofmodeling
the maintenance problem using a centralized RL framework in which all machines
across the manufacturing system are precisely coordinated by a central agent (see,
e.g., [26,38,40,45,91]). This commonality in modeling framework arises from the
fact that standard RL is designed for a single agent, and manufacturing research
aims to improve the performance of the entire manufacturing system rather than
individual machines within the system. Traditional group maintenance (GM) and
opportunistic maintenance (OM) are inspired by the observation that the mainte-
nance of one unit does not result additional production loss if another unit is already
under maintenance [89]. Under the centralized framework, the RL-based PM pol-
icy not only outperforms traditional GM/OM policies, but also learns to conduct
GM/OM when necessary [38].

These previously outlined approaches demonstrate the technical feasibility of
applying state-of-the-art RL methods in complex maintenance problems. However,
there are still quite a few practical constraints in many real production systems
that existing methods fail to incorporate. First, most existing approaches (see,
e.g., [26, 38, 40, 45, 91]) assume that maintenance activities restore a machine to
its perfect health state. These approaches fail to consider the industrial reality
that there are often multiple maintenance options that can lead to different post-
maintenance health states and thatmaintenance activities could be imperfect [41,46].
Second, existing methods fail to cover the full spectrum of production systems in
the real world, as production system size dramatically varies from a two-stage
machining line to automotive assembly plant with dozens of stations. The current
approaches, which have issues being scaled to largemanufacturing systems, are often
restrained to systems of relatively small sizes. For instance, most of target systems
for serial production lines range from two-machine-one-buffer to six-machine-five-
buffer [26,38,45,91]. This is because single-agent RL methods are prone to action
space explosion as the RL agent’s action size grows exponentially with number of
machines considered in the system. This exponential increase in the size of the action
space can lead to poor performance [29]. Third, when a centralized RL framework
is adopted, these approaches implicitly assume that all the state information in
manufacturing system is observable. For some large-scale manufacturing systems,
system-wide data collection and transmission could be inefficient and even infeasible
[16, 49]. Finally, it appears to be appealing to model each machine in a complex
system as a model-free RL-agent and optimize individual performance to alleviate
the problem of action space explosion. However, handcrafting individual rewards
is often impractical because of the difficulty inherent in quantifying an individual
component’s contribution to the success or failure of the system. Hence, optimizing

57

individual performance might contradict the collective objective of the system. In
addition, the interactions among agents are ignored since they are considered as a
part of an agents’ environment.

4.2 Executive Summary
To address the limitations of RL-based PM policies, we extend our previous RL
framework [38] to a multi-agent setting and apply MARL to obtain optimal policies.
Under this setting, the manufacturing system is modeled as a cooperative system
where agents make decisions separately while collectively achieving a common goal
of the system. MARL then obtains optimal policies through interactions between
agents and the environment. Besides addressing the aforementioned limitations,
MARL is an appealing and viable technical approach to taking on those challenges
in maintenance problem among large-size manufacturing systems for the following
reasons. First, similar to autonomous vehicle coordination [80] and traffic lights
control [94], it is natural to model complex manufacturing systems as cooperative
multi-agent systems where machines interact and cooperate with others. Second,
MARL allows us to take advantage of edge computing to achieve real-time policy
execution without assuming global observability as it allows each machine to indi-
vidually make maintenance decision that only condition on their local observation-
action trajectories. Third, MARL guarantees that separate maintenance decisions
from individual machines could collectively achieve the common goal of the whole
system, without the need to handcraft individual rewards for each machine. Our
principal contributions are as follows:

• We settle the action space explosion issue in RL-based PM policies by propos-
ing a deep MARL approach as opposed to centralized RL. PM decision-
making based on MARL can be scaled up to large manufacturing systems
while still outperforming traditional multi-unit maintenance policies;

• Guided by knowledge on manufacturing systems, we formulate the PM deci-
sion making problem using a decentralized partially observable Markov de-
cision process (Dec-POMDP) framework, under which we are able to adopt
state-of-the-art RL paradigms such as centralized training and decentralized
execution (CTDE) that largely increases policy performance;

• Free from action space explosion issue, we further advance the RL appli-
cations in PM problems to more realistic industrial scenarios, for example,
important practical constraints including imperfect maintenance effect, local
observability and production disruptions can be considered;

58

• Wedemonstrate the proposedmethod by successfully implementing a state-of-
the-art MARL algorithm called Value-Decomposition Actor Critic to solve
the PM problem in large manufacturing systems efficiently and effectively.
Machines make PM decisions independently but still learn to cooperate to
perform OM/GM as reported in prior research based on centralized RL [38].

4.3 Problem Statement

4.3.1 System Description
We consider a serial production line that consists of n machines and n − 1 buffers
with limited capabilities as shown in Figure 4.1. The arrows depict the direction
of material flow in the system. The material is referred to as a final product once
it has been processed by all machines sequentially. Otherwise, it is said to be an
intermediate part.

Figure 4.1: Serial Product Line Structure

AmachineMa, a ∈ {1, 2, · · · , n}, possesses the following properties: the cycle
time Ta denoting the time needed forMa to process an intermediate part, the lifespan
la that represents the time it takes for a machine from the perfect health status to
failure and follows a known probability distribution pa, the resource cost cPMa and
duration dPMa needed for conducting a PM, the resource cost cCMa and duration dCMa
needed for conducting a CM.

A buffer Ba, a ∈ {1, 2, · · · , n − 1}, is located between Ma and Ma+1 and
can be best described by the following properties: current buffer level ba, and
buffer capability ca. An intermediate part that comes out of machineMa enters its
downstream buffer Ba if and only if ba < ca, otherwise Ma is said to be blocked.
MachineMa starts a new cycle by receiving an intermediate part from its upstream
Ba−1 if ba−1 > 0, otherwise Ma is said to be starved. Note that the first machine
M1 is never starved and the last machineMn is never blocked.

Maintenance actions, either PM or CM, would require the machine to temporar-
ily cease production. If a machine Ma is under maintenance, intermediate parts
gradually drains in its downstream buffers and increasingly pile up in its upstream
buffers, which might lead adjacent machines to idle states due to blockage or starva-
tion. The gradual propagation of machines’ idleness could finally cause production

59

loss of the whole system. The analytical model and system property analysis for the
described production line can be found in our prior work [99].

4.3.2 Maintenance Effect and Maintenance Actions
The extent to which the maintenance action can restore a machine’s health state
is referred to as maintenance effect. In this work, we use Kĳima Model II [46]
to model the effects of different levels of maintenance actions. Let ga denote the
machine Ma’s age prior to maintenance, then the machine’s age immediately after
the maintenance, denoted by g′a, is given by

g′a = ga ∗ ra (4.1)
where 0 ≤ ra < 1 is the recovery factor of the maintenance on machineMa. ra = 0
indicates a perfect maintenance, since the machine age g′a is set to be zero after
maintenance. By contrast, 0 < ra < 1 relates to an imperfect maintenance, as
the post-maintenance age g′a starts somewhere between zero and the original age
ga. In other words, imperfect maintenance does not fully restore machine’s health
condition and hence earlier arrival of subsequent random failure would be expected
after imperfect maintenance than a perfect one.

In this work, we consider two levels of PM for eachmachine, namely an imperfect
(level 1) PM option with and a perfect (level 2) PM option, denoted as PM1 and
PM2 respectively, with recovery factors 0 < rPM1

a < 1 and rPM2
a = 0. Generally,

imperfect PM costs less resource and has shorter duration than perfect PM. In
addition, CM is conducted in response to random failures and its effect is assumed
to be perfect, i.e. rCMa = 0. The cost and duration of CM are much larger than
that of any PM options [17]. In summary, maintenance resource costs rank as
CPM1
a < CPM2

a � CCM
a and maintenance duration satisfies dPM1

a < dPM2
a � dCMa .

4.3.3 Cost Analysis and System Objective
Given a time horizon T , the total system cost related to maintenance activities can be
broken down into: resource costs of all CM actions CCM(T), resources costs of all
PM actions CCM(T), and loss of revenue CPL(T) on account of system production
losses. It is noted that both PM and CMwould contribute to CPL(T) by introducing
machine stoppages that in turn cause system production losses.

Let πa denote PM policy for machine Ma, and π represent system-level joint
PM policy. The PM policy π instructs when and where to conduct PM, thus largely
shaping the cost break-downs and hence the total system cost. We use Cπ(T) to
represent total system cost in time horizon T under a joint PM policy π, and it can
be written as:

60

Cπ(T) = CPM(T) + CCM(T) + CPL(T) (4.2)
The objective of this study is to find an optimal joint policy π∗ to minimize the

total cost C in a time horizon T through deep MARL techniques:

π∗ = arg min
π
{Cπ(T)} (4.3)

4.4 Multi-Agent Adaptive Decision Framework
Our previous study proposed a centralized adaptive decision framework that is based
onDQN [38] and successfully applied it to a six-machine-five-buffer production line.
However, this RL-based framework has issues being generalized to more realistic
applications due to action space explosion. Consequently, the framework only
consider one level of PM to limit the action space size of the studied system.

(a) Serial production line RL formulation (b) Serial production line MARL formulation

Figure 4.2: Action space comparison between RL and MARL formulations

In comparison, MARL is less prone to action space explosion as its action space
is independent of number of agents in the system. This is because, under theMARL’s
decentralized setting, the agents make decisions independently. Figure 4.2 depicts
the action spaces of a n-machine production line under RL and MARL respectively.

The following sections are organized to describe: 1) how to formulate the PM
of serial production line problem to a MARL problem; and 2) how to derive PM
policies effectively and efficiently with the aforementioned VDAC algorithm.

4.4.1 Dec-POMDP Formulation
State Definition

: In the CTDE framework, agents condition their actions on the local partial ob-
servations and are optimized by the gradients that are dependent on global states.

61

Therefore, we need to design local observations o that provide the basis for agents’
actions and global states s that encapsulate information that is useful for training.

Given a machineMa, three factors that are essential to its PM decision making
are: 1) the age of machine Ma, ga; 2) the upstream and downstream buffer status
related to ba−1 and ba; 3) Ma’s remaining maintenance duration, da, if applicable.
In addition, the status ofMa’s immediate adjacent machines is also useful because
it might relate to the blockage or starvation of machineMa. Consequently, the local
observation for machineMa is defined as:

oa = [ga, ga−1, ga+1, ba−1, ca − ba, ca+1 − ba+1, da, da−1, da+1]. (4.4)

Note that we use buffer vacancy ca − ba instead of buffer level ba to represent the
real-time status of the downstream buffer. This is because the buffer vacancy is a
more sufficient criteria than buffer level in determining if the machine is blocked
or not. Furthermore, the s that represents the global state of the production line is
obtained by concatenating local observations from all machines and it is written as:

s = [o1, o2, · · · , on]. (4.5)

Action Definition

: CM is triggered by a machine’s random failure and is out of the machine’s control.
Hence, the action that can be taken for a machine is to conduct a PM or leave it as it
is. In this study, we consider two levels of maintenance actions: a perfect (level 2)
PM and a imperfect (level 1) PM. This leaves us an action vector of size 3 for each
agent. For instance, machineMa’s action can be written as:

ua =


0 leave machine a as it is
1 conduct imperfect (level 1) PM on machine a
2 conduct perfect (level 2) PM on machine a.

(4.6)

This action representation can be extended to the cases where more levels of PMs
are considered. Note that the action space will be 3n for the same manufacturing
system under the centralized RL framework as shown in Figure 4.2.

Reward Definition

: On one hand, machine starvation and blockage caused by random failure might
lead to production loss. On the other hand, excessive PM would also result in
increasing machine down time and cost. To balance the trade-off between PM and
random failure, we define the reward as the negative overall cost, which consists

62

of production loss cost due to machine stoppages, and maintenance resource costs
incurred by PM and CM. At time step t, the reward r(t) is given by:

r(t) = −PL(t) · cp −
n∑
a=1

cPM1
a 1PM1

a (t)−
n∑
a=1

cPM2
a 1PM2

a (t)−
n∑
a=1

cCMa 1CM
a (t),

(4.7)
where PL(t) · cp represents production loss cost at step t with cp being the unit
price of a final product,

∑M
a=1 c

CM
a 1CM

a (t) represents cost incurred by CM at step t,∑n
a=1 c

PM1
a 1PM1

a (t)+
∑n

a=1 c
PM2
a 1PM2

a (t) represents overall PMcost. 1PM1
a (t) = 1

if Ma is conducting level 1 PM at time t, otherwise 1PM
a (t) = 0. Similarly,

1CM
a (t) = 1 ifMa is under CM at time t, otherwise 1CM

a (t) = 0.
Zou et al. [99] has proved that a downtime event would lead to system-level pro-

duction loss only when it impedes the slowest machine, and therefore the production
loss at time step t can be evaluated by:

PL(t) =
D(t)

Tn∗
. (4.8)

Here, n∗ indexes the slowest machine in the serial line, D(t) denotes the stoppage
time of the slowest machine at step t, and Tn∗ denotes the cycle time of the slowest
machine.

4.4.2 Applying VDAC to obtain PM Policy
It is often elusive to handcraft rewards for individual agents in complex systems.
Difference rewardsDa = r(s,u)−r(s, (u−a, ca)), which adopts the reward changes
incurred by replacing agent a’s action with a default action ca as local rewards [95].
The intent of the difference rewards substitution is to shed light on quantifying
individual rewards in cooperative multi-agent systems. Unfortunately, difference
rewards requires n − 1 counterfactual simulations to be rolled out at every time
step, which can present an extreme computational burden. While it is impossible to
implement difference rewards in practice, it is easy to enforce the monotonic relation
between shaped local reward Da and r(s,u) as indicated by difference rewards.

Inspired by difference rewards, VDAC is an on-policy multi-agent actor-critic
that enforces the monotonic relation between local state-values and global state-
values. Specifically, a mixing neural network represents the global state-value as a
non-linear function of local state-values. To enforce the monotonic relation between
local and global state-values, weights of mixing neural network are restricted to be
non-negative. This constraint ensures that given agents other than agent a stay at the
same local states, the global state-value should increase if agent a transmit to local
states with higher local state-values.

63

As shown in Figure 4.2b, distributed agents are responsible for making decisions
for the corresponding machine under the MARL setting.

4.4.3 VDAC Architecture

Figure 4.3: VDAC Architecture

VDAC consists of distributed actors that make decisions for designatedmachines
and a central critic that estimate the global state-value Vtot. As shown in Figure 4.3,
the actor network takes inputs as observations oat and actions uat−1 of the previous
step t − 1, outputs a multinomial policy π(oat) for timestep t. It also estimates the
state-value of the local observation V (oat). To capture the temporal dependencies
within agents’ trajectories, Gated Recurrent Unit (GRU) is Incorporated in actor
networks. Note that to speed up training as well as save memory, actor networks
share the same weights. The value mixing network, which takes input as local state-
values V (oat) and outputs the global state-value Vtot(s), serves as a central critic. To
incorporate the global state information that is unavailable to actors, the parameters
of the value mixing network is generated from a hypernetwork which takes input as
the global state st. Please refer to [81] for details about VDAC method.

Actors are optimized by following gradients that depend on the central critic.
Let θπ to denote actor network parameters and θV to denote hypernet parameters for
generality. The actor network is optimized by following the policy gradient given

64

by:

∇θπJ = Eπ

[∑
a

∇θπ log π(ua|τa)
(
Q(s,u)− V (s)

)]
, (4.9)

where V (s) is estimated by a central critic and Q(s,u) = r + γV (s′). The critic is
optimized by minibatch gradient descent to minimize the following loss:

Lt(θV) =

(
yt − Vtot(st; θV)

)2

, (4.10)

where yt =
∑k−1

i=0 γ
irt +γkV (st+k) is the target value, k can vary from state to state

and is upper-bounded by Tmax.

Action Mask

Note that when machineMa is under maintenance (namely, da(t) > 0), the machine
cannot conduct actions that interrupt its current maintenance. Hence the only
action available for machine Ma is to leave it as it is. To enforce the rules of the
studied process, an action mask mt is often applied to filter out invalid actions
[76, 78]. More specifically, our multinomial policy network outputs a 3-element
action probability vector vect, representing the probability of taking each action.
Element-wise multiplication vect ⊗mt makes sure that the probability for invalid
actions to be 0. The resulted vector is then normalized such that the sum of the
vector equals to 1.

Implementation

Figure 4.5 demonstrate the procedure to implement VDAC to the maintenance
problem in serial production lines. The procedure can be generally divided into
two parts: 1) Obtaining experience, and, 2) optimizing parameters. In the phase
of obtaining experience, multiple episodes are rolled out independently to increase
experience sampling efficiency. For an agent a, its trajectory Ti at episode i is
recorded {(oa0, s0, ua0, r0, a), · · · , (oaT−1, sT−1, uaT−1, rT−1, a)}i. In addition, its cor-
responding action masks {ma

0,m
a
1, · · · ,ma

T−1}i at episode i are also recorded. Note
that the central critic is absent during this phase. During the parameter optimization
phase, the data acquired in the sampling phase will be discarded once it is used to
optimize the network parameters. Therefore, no replay buffer is required.

65

Figure 4.4: Action Mask

4.5 Numerical Study
Two numerical studies are conducted in our experiments to demonstrate the effec-
tiveness of the proposed MARL-base policy. The first numerical study compares
the proposed methods with others, utilizing a six-machine-five-buffer serial produc-
tion line adopted from our previous study on DQN-based policy [38]. The second
numerical study uses a ten-machine-nine-buffer serial production line to further
examine the scalability of those methods.

4.5.1 Environment Description
We first test our method on a serial production line simulation that is extended
from [38]. Compared with the original simulation introduced in [38], our simulation
is obtained by simply adding an imperfect PMaction for eachmachine. The proposed
MARL policy is compared with the DQN-based policy as well as other traditional
PM policies. Note that by adding one action for each machine, the action space of
the DQN agent increases from 26 = 64 to 36 = 729. The simulation parameters are
provided by industry collaborators and are listed in Table 4.1 and 4.2. MachineMa’s
life span follows a Weibull distribution whose scale parameter and shape parameter
are αa and βa respectively.

For each experiment run, the simulation duration is 1500 timesteps. Each run
starts with randomly generated initial system states, including randommachine ages

66

Figure 4.5: Implementation Details

and random buffer levels, to make sure that the agents’ policies are independent
of initial conditions. During the simulation, every time a machine finished its
PM or CM, its lifespan is sampled from the Weibull distribution conditioning on
post-maintenance age.

4.5.2 Baselines
Deep Q-learning (DQN): Following [38], we implement a DQN policy for multi-
level PM in the serial production line. To make the DQN agent consistent with
MARL agents, our DQN policy network follows DRQN [35] where a GRU [19]
is utilized to memorize the past state of the system. Note that the DQN agent can
access global state swhereas ourMARL agents can only access partial observations.
DQN also need an action mask to filter out invalid actions. At time t, invalid actions
uinvalidt are masked out by setting Q(st, u

invalid
t) = −∞.

Run-to-Failure (R2F): The Run-to-Failure scenario is used to evaluate the
system performance if no PM is conducted throughout the time horizon. Each
machine in the production line keeps running until it encounters a random failure.
Hence, CM is the only type of maintenance that is conducted in this scenario. Any
other PM policy is deemed as effective only when it improves system performance
from the Run-to-Failure scenario.

Group Maintenance (GM): Given GM policy, all the machines would receive
PM simultaneously. GM policy tends to reduce the impacts of PM on the whole

67

Table 4.1: Machine Parameters

Parameters M1 M2 M3 M4 M5 M6

Cycle Time Ta (min) 1.00 0.90 1.20 1.05 1.10 1.05
Level 1 PM cost cPM1

a ($) 50.0 45.0 55.0 60.0 45.0 50.0
Level 2 PM cost cPM2

a ($) 105.0 98.0 110.0 120.0 90.0 103.0
Level 1 PM duration dPM1

a (min) 5 4 4 5 6 4
Level 2 PM duration dPM2

a (min) 10 9 8 11 12 9
CM cost cCMa ($) 110.0 100.0 120.0 130.0 110.0 125.0

CM duration dCMa (min) 28 31 25 32 24 25
level 1 PM degree rPM1

a 0.8 0.8 0.8 0.8 0.8 0.8
level 1 PM degree rPM2

a 0 0 0 0 0 0
Scale parameter αa 400 430 500 580 550 575
Shape parameter βa 15 15 15 15 15 15

Table 4.2: Buffer Parameters

Parameters B1 B2 B3 B4 B5

Buffer capability bi 8 10 12 6 8

system by enforcing concurrent machine stoppages. There is one pivotal decision
variable in GM policy, which is the time interval τ for carrying out group PM.
Since there is no analytical method to derive τ due to the ultra complexity of the
production system, the optimal τ can be found through Monte Carlo simulation.

OpportunisticMaintenance (OM): OMpolicy is inspired from the observation
that once there is a machine undergoing CM, other machines can receive PMwithout
incurring extra system production losses. Under OM policy, whenever one or
multiple machines fails in the serial production line, we will conduct CM on those
failed machines. In the meantime, we will turn off all other operational machines
for PM.

Opportunistic Group Maintenance (OGM): OGM policy is a combination of
OM policy and GM policy. Similar to GM, there is also a predefined time interval
τ . If there is a random failure occurs before the time interval τ arrives, OM policy
would be triggered, i.e. all other operational machines are turned off for PM. If the
time interval τ is reached without machine random failures, GM policy would be
carried out so that all the machines receive PM simultaneously. We also leverage
Monte Carlo simulation to derive the optimal τ .

68

4.5.3 Training Description
MARL training: The agent networks contains a GRU [19] with a 64-dimensional
hidden state, with a fully-connected layer before and after. Algorithms are trained
with RMSprop with learning rate 5× 10−4. We set γ = 0.99. The mixing network
consists of a single hidden layer of 32 units, whose parameters are outputted by
hypernetworks. An ELU activation function follows the hidden layer in the mixing
network. The hypernetworks consist of a feedforward network with a single hidden
layer of 64 units with a ReLU activation function. Throughout the paper, Q(st,ut)
is given by:

Q(st,ut) =
k−1∑
i=0

γirt+i + γkV (st+k), (4.11)

where k can vary from state to state and is upper-bounded by T .
As described in the previous section, the algorithm alternates between sam-

pling experience and optimizing parameters. MARL model is set to train 2050000
timesteps. Eight episodes are run independently during sampling phase. Models are
saved every 200000 training timesteps. The best saved model is later benchmarked
with other baselines. Note that actions are drawn according to the multinomial
probability outputted by the actor network during the training whereas actions with
the largest probability are picked during the test.

Training experiments are conducted on a PCwith aNvidia RTX2080 Ti graphics
card, a AMD 3700X CPU and a 32 GB RAM, with one run taking approximately 1
hour.

RLTraining: We also train a RL agent for comparison. TheQ-learning network
is identical to the actor network described in the previous section except that the
Q-learning network does not have a softmax layer and an additional state-value
layer. The buffer size is set to be 450000. During the training, actions are selected
via ε-greedy. ε is set to 1 initially and then linearly decreases to 0.05 in 50000
training steps. During the testing, the action with the largest action-value is picked.
Other settings are identical to MARL training settings. Note that DQN is an off-
policy algorithm, which is not compatible with the A2C framework. Therefore, one
episode, instead of 8 independent episodes, is rolled out during training. DQN’s
training process takes approximately 4 hours with the same hardware that described
above.

Baselines: OM, OGM, and GM methods cannot condition their choices of
action on states of the system. Namely, they can either always conduct level-1 PM
or level-2 PM. In addition, OGM and GM have a variable τ that decides when to
conduct PM. Since there is no analytical method to derive τ and choice of actions,
we determine the best combinations via Monte Carlo simulation: OM, OGM, and

69

GM always take level-1 (imperfect) PM; the optimal τ is 360 for GM and 350 for
OGM.

4.5.4 Evaluation
Training Monitoring: First, we monitor the training of MARL to verify if the

(a) Test return as a function of training
step (b) A closer look at test return

(c) Random failures counts as a function
of training steps

(d) PM counts as a function of training
steps

Figure 4.6: MARL Training Monitoring

algorithm converges. During the course of the training, we periodically halt the
training and test the trained model at the current training step for 16 independent
episodes. Hence, we can evaluate the model’s performance as a function of training
steps.

Since the VDAC’s objective is to maximize the return Rt =
∑T−1

t γt−1rt, we
examine the average of return as a function of training steps. As shown in Figure
4.6a, the average return plateaus until around 1.2 million training steps and then
converges to higher values.

70

Figure 4.6c and 4.6d depict the average number of random failures and PMs
per episode, respectively. They demonstrate that the VDAC algorithm learns to
reduce random failure occurrences by applying timely PM at around 1.2 million
training steps. Through the course of training after 1.2 million training steps,
policies alternate from aggressive PM and passive PM without affecting return
values drastically.

With the evidence provided by Figure 4.6, we conclude that MARL policy can
converge during the 2050000-step training.

(a) Average test return per episode as a
function of training step

(b) Average PM counts per episode as a
function of training steps

(c) Average Random failures per episode
counts as a function of training steps

(d) DQN Loss as a function of training
steps

Figure 4.7: RL Training Monitoring

We conduct the same analysis on RL training. Figure 4.7a depicts that the test
return oscillates drastically during the course of the training. Figure 4.7c shows that
the RL agent learns to reduce average random failure counts at the end of the training,
by excessively conducting PMs. Our further investigation on loss shows that the
loss gradually increases during the course of training. Therefore, we conclude RL

71

policy fails to converge for this multi-level PM task. We think that this is due to the
fact that the RL agent deals with an action space of size 36 = 729.

Test Benchmark: We also benchmark the saved MARL policy with other
baseline policies (Note that Q-learning policy is excluded from the benchmark since
it fails to converge). During the test, the initial states of machines are randomly
generated by the simulation. To account for the randomness resulted from the states
initialization, each method is tested for 50 episodes independently and the average
performance statistics are reported. Figure 4.8 encompasses a set of comprehensive
metrics that are used for test evaluation, including profit per episode, throughput
numbers per episode, PM counts per episode, random failure per episode, PM cost
per episode, and CM cost per episode.

(a) Average profit per episode bymethods (b) Average number of throughputs per
episode by methods

(c) Average number of PM and random
failure per episode by methods

(d) Average cost of PM and CM per
episode by methods

Figure 4.8: Evaluation Results

In general, all methods other than R2F are effective policies. This is because
they achieved higher average profit over R2F, as shown in figure 4.8a. Among the
effective policies, MARL policy reports the best average profit and throughput per

72

episode. OM policy perform slightly better than OGM in profit although the OM
policy reports less throughput than OGM. And GM has the least profit compared
with other 3 effective policies.

Table 4.3: Maintenace Cost Summary

MARL OGM OM GM R2F
PM Cost ($) 2422.21 2674.05 2083.19 1771.45 0.00
CM Cost ($) 100.54 233.00 472.00 690.00 2059.45

Overall Cost ($) 2522.75 2907.05 2555.19 2461.45 2059.45

Metrics such as average PM counts and random failures are scrutinized to un-
derstand policies. Recall that the goal of this study is to find policies that ensure the
smooth operation of the serial production line. Namely, the learned policy should
mitigate the stoppage caused by random failures while not committing too many
maintenance actions. The R2F policy, which passively performs CM, has the least
average maintenance cost per episode of $2095.45. However, it reports the least
profit and throughput due to the production loss and CM cost. The OM policy is
more aggressive compared with R2F in terms of performing PM. It reduces random
failure from R2F’s 17.9 to 6.08 per episode. As a result, its profit and throughput
improve by 8.68% and 9.11%, respectively, compared with R2F. The variable τ
does make OGM and GM more adaptive than R2F as is reflected by the decreas-
ing random failure counts. OGM’s PM policy is more aggressive than GM as a
result of the opportunistic maintenance performed by OGM. In comparison with
OM, OGM conducts 5.7 more PMs per episode and encountered 2.22 less random
failures on average. And OGM spends 351.86 more US dollars on maintenance. As
a consequence, although OGM produces 2.75 more products per episode than OM,
it generates less profit. Compared with OGM, MARL reduces both the number of
PMs and random failures. In the comparison with OM, MARL is able to perform
3.41 more PMs while incurring $32.44 less overall cost.

To closely examine the learned MARL policy, we roll out an episode with
random state initialization, using the learned MARL policy. Partial record that
contains consecutive maintenance is shown in Tables 4.4 and 4.5.

At t = 649, the MARL policy conducts PM on machine 6 at an age of 497. At
t = 750, machine 4 conducts PM at an age of 451. At t = 849, machine 1 goes into
PM at an age of 287. The MARL policy is likely to memorize the likely break-down
age for different machines and conduct timely PMs for them. This observation
explains why MARL has low random failure and low maintenance cost on average
as shown in Figure 4.8.

At t = 1221, machines 4 and 5 conduct PM simultaneously. Note that machine

73

Table 4.4: Partial Maintenance Record

Time
(min)

Failed
ma-
chines

Machine ages ga(t) Buffer levels

649 - [89, 57, 267, 341, 197, 497] [7, 10, 0, 0, 0]
759 - [199, 167, 377, 451, 307, 101] [8, 10, 0, 0, 0]
814 - [254, 222, 432, 44, 362, 156] [7, 10, 3, 0, 0]
847 - [287, 255, 25, 77, 395, 189] [8, 10, 0, 0, 0]
858 - [1, 266, 36, 88, 406, 200] [0, 10, 0, 0, 0]
891 - [34, 299, 69, 121, 21, 233] [6, 10, 3, 6, 0]
1144 - [287, 244, 322, 374, 274, 486] [8, 10, 0, 0, 0]
1155 - [1, 255, 333, 385, 285, 497] [0, 9, 0, 0, 0]
1188 - [34, 288, 366, 418, 318, 24] [5, 10, 0, 0, 5]
1221 - [67, 24, 399, 451, 351, 57] [7, 9, 0, 0, 0]

5 conducts PM at an age of 406 at t = 858 whereas it conducts PM at an age of 351
when t = 1221. The PM at t = 1221 can be seen as an “group maintenance” as
machine 5 accommodates its maintenance schedule to that of machine 4.

Interestingly, the MARL agents favor perfect PM over imperfect PM. This is
due to the fact that the cost efficiency (the amount of money spent to reset 1 unit of
age) of imperfect PMs is much lower than perfect PMs. In contrast, baselines such
OM, GM, and OGM, have trouble capturing the dynamics of the environment and
favor imperfect PMs. This is because those methods cannot perform timely PM and
because perfect PMs incur higher cost and longer machine down time. In summary,
examination of the MARL policy reveals that it is able to schedule PM strategically;
that is, the MARK policy conducts group maintenance and captures environment
dynamics.

4.5.5 Additional Experiments
To demonstrate the scalability of our proposed framework, we extend the previous
serial production line by adding 4 more machines. Parameters for the additional
machines and buffers can be found in Tables 4.6 and 4.7.

The training process described in the previous section is used here as well. Note
that the DQN agent now faces 310 = 59049 actions whereas the action space of
MARL agents is invariant to the number of agents. Since the memory of DQN is set
to 750000 units, each unit stores the action ut taken by the RL agent and the action
mask mt that keeps track of valid actions, with ut and mt being 59049-element
vectors. The RAM in our hardware fails to allocate enough memory for DQN’s

74

Table 4.5: Partial Maintenance Record (continue)

Time (min) Action ut PM GM
649 [0, 0, 0, 0, 0, 2] Y
759 [0, 0, 0, 2, 0, 0] Y
814 [0, 0, 2, 0, 0, 0] Y
847 [2, 0, 0, 0, 0, 0] Y
858 [0, 0, 0, 0, 2, 0] Y
891 [0, 2, 0, 0, 0, 0] Y
1144 [2, 0, 0, 0, 0, 0] Y
1155 [0, 0, 0, 0, 0, 2] Y
1188 [0, 2, 0, 0, 0, 0] Y
1221 [0, 0, 0, 2, 2, 0] Y Y

Table 4.6: Machine Parameters for Additional Machines

Parameters M7 M8 M9 M10

Cycle Time Ta (min) 1.20 1.30 1.10 1.05
Level 1 PM cost cPM1

a ($) 55.0 60.0 45.0 50.0
Level 2 PM cost cPM2

a ($) 110.0 120.0 90.0 103.0
Level 1 PM duration dPM1

a (min) 4 5 6 4
Level 2 PM duration dPM2

a (min) 8 11 12 9
CM cost cCMa ($) 120.0 130.0 110.0 125.0

CM duration dCMa (min) 25 32 24 25
Level 1 PM degree rPM1

a 0.8 0.8 0.8 0.8
Level 2 PM degree rPM2

a 0.8 0.8 0.8 0.8
Scale parameter αa 500 400 390 470
Shape parameter βa 15 15 15 15

Table 4.7: Buffer Parameters for Additional Buffers

Parameters B6 B7 B8 B9

Buffer capability bi 10 12 9 8

replay buffer. Note that the memory needed for the replay buffer grows drastically
with the number of agents or actions, making the DQN impractical to deal with
large and complex manufacturing systems. As for other baselines, Monte Carlo
simulations are rolled out to find optimal τ and choice of PM action. OM, OGM,
and GM still always take level-1 (imperfect) PM; The optimal τ is 280 for GM and
290 for OGM.

75

Figure 4.9 depicts the training of MARL agents in the extended 10-machine-9-
buffer serial production line. The test return remains consistent until approximately
1.6 million training steps. Compared to the training process in the previous section,
it takes more training steps for the agent to converge to good PM policies. This
is due to the fact that the dynamics of the environment is further complicated by
the additional 4 machines. Thus, the difficulty of deriving good PM policies also
increases.

Figure 4.9: Average test return per episode as a function of training step

Consistent with the findings in the previous experiment, all policies except R2F
are effective policies and the MARL policy continues to achieve the best average
profit. As shown in Figures 4.10c and 4.10a, excessive PM does not necessarily
lead to good profit. For instance, the MARL policy reports more random failures
than OGM. However, OGM achieves low random failure by excessively conducting
PMs. Consequently, the MARL policy spends $1000.68 less in overall maintenance
than OGM on average. It is obvious that all baselines except R2F have a tendency
to commit over-PM leading to an increase in a machine’s downtime and an increase
in production loss. This demonstrates that the proposed MARL policies can find
the trade-off between production loss and PMs.

We also examine the learned policy in the new environment by rolling out an
episode with random initialization. Partial records that contain consecutive main-
tenance are shown in Tables 4.8 and 4.9. Consistent with the policy examination in

76

(a) Average profit per episode bymethods (b) Average number of throughputs per
episode by methods

(c) Average number of PM and random
failure per episode by methods

(d) Average cost of PM and CM per
episode by methods

Figure 4.10: Evaluation Results for 10-machine-9-buffer Serial Production Line

the previous experiment, the learned policy in the new environment can also per-
form timely PM and favors perfect PM over imperfect PM. Additionally, we observe
increasing occurrences of opportunistic maintenance and group maintenance, i.e.
the MARL agent is learning these maintenance strategies through interaction with
the system. For instance, machine 1 encounters random failure and goes through
CM at time 139. At t = 143, machine 5 conducts PM while machine 1 is still
under maintenance (CM is longer than PM in general). Machine 5’s PM that takes
the advantage of unscheduled failure on other machines is said to be opportunistic
maintenance. The same incident can be observed at time 605. At t = 385 and
t = 506, group maintenance is conducted, respectively.

77

Table 4.8: Partial Maintenance Record

Time
(min)

Failed
ma-
chines

Maint
type Machine ages ga(t)

139 M1 CM [340, 130, 468, 128, 254, 130, 174, 84, 116, 75]
143 - PM [0, 134, 472, 132, 258, 134, 178, 88, 120, 79]
160 M2 CM [0, 151, 489, 149, 6, 151, 195, 105, 137, 96]
297 - PM [129, 288, 111, 286, 142, 288, 332, 242, 274, 233]
308 - PM [140, 299, 122, 297, 153, 299, 3, 253, 285, 244]
330 - PM [162, 321, 144, 319, 175, 321, 25, 275, 10, 266]
385 - PM [217, 46, 199, 374, 230, 376, 80, 330, 65, 321]
396 - PM [228, 57, 210, 0, 241, 387, 91, 0, 76, 332]
506 - PM [338, 167, 320, 110, 351, 101, 201, 110, 186, 442]
600 M1 CM [432, 261, 414, 204, 82, 195, 295, 204, 280, 85]
605 - PM [0, 266, 419, 209, 87, 200, 300, 209, 285, 90]

4.6 Conclusion
Multi-level PM scheduling in a serial production line is challenging due to the
explosion of action space and the non-linear, stochastic nature of the system. We
propose to model the PM decision making process in serial production lines as
Dec-POMDP and demonstrate how to implement MARL to obtain PM policies. We
utilize two numerical experiments to further establish the necessity of modeling the
PM decision-making as multi-agent problems instead of as a single-agent problem.
In the 6-machine-5-buffer experiment, the DQN policy exhibits convergence issues
while the MARL policy achieves the best profit among all baselines. In the 10-
machine-9-buffer experiment, the DQN method cannot be implemented efficiently
due to the increasing size of its replay buffer and action space. By contrast, MARL
does not suffer from this issue and continues to report the best average profit among
all policies.

4.7 Related Work
Machine maintenance policies have been studied under numerous application sce-
narios and are characterized by the target system. Based on the structure of the
studied system, the current literature can be categorized into single-unit policies and
multi-unit policies.

Single-unit policies provide maintenance policies for one-unit systems. The

78

Table 4.9: Partial Maintenance Record (continue)

Time (min) Action ut OG GM
139 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
143 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] Y
160 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
297 [0, 0, 0, 0, 0, 0, 2, 0, 0, 0]
308 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0]
330 [0, 2, 0, 0, 0, 0, 0, 0, 0, 0]
385 [0, 0, 0, 2, 0, 0, 0, 2, 0, 0] Y
396 [0, 0, 0, 0, 0, 2, 0, 0, 0, 0]
506 [0, 0, 0, 0, 2, 0, 0, 0, 0, 2] Y
600 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
605 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] Y

relation between the maintenance decisions and system maintenance cost is usually
known in such systems. Therefore, it is common to model single-unit maintenance
as a stochastic process, where the optimal solution can be solved to achieve certain
objectives (e.g. minimizing the maintenance cost rate [59, 64, 97], maximizing the
machine availability [14], maximizing machine reliability [61], etc.). Examples
are age-dependent policies [90] and repair limit policies [54]. While a multi-unit
system can be reduced tomultiple single-unit systems, a generalization of single-unit
policies to multi-unit systems is questionable due to its rigorous assumption that
there is no structural dependencies between subsystems [89]. Therefore, single-unit
policies are not suitable for serial production lines.

In comparison, multi-unit policies that consider dependencies between subsys-
tems are more suitable to solve maintenance problems in large-scale production
systems because the structural and operational dependencies among machines are
often considered in this line of research. However, maintenance policies are often
derived by exploiting the specific structure of the system, such as serial systems [25],
parallel systems [8], and k-out-of-n systems [22] etc, thus are often limited to cer-
tain scenarios. Most of the multi-unit policies are based on the fundamental idea
of group and opportunistic maintenance, which are inspired by the observation that
the maintenance of one subsystem does not incur extra production loss if another
subsystem is already under maintenance [89]. For instance, [69,77] propose a group
maintenance policy to conduct multiple PM simultaneously, thus avoiding incurring
additional production loss. Opportunistic maintenance policies [1, 55, 96] aim to
derive a time window where insertions of PM do not result in extra production loss.
In addition, those heuristic-based methods tend to consider less general production
systems, where buffers among machines are not considered, thus neglecting the

79

delays of machine state propagation caused by buffers [100].
Recent studies that do not assume heuristics of GM and OM policies often adopt

the approach of reinforcement learning, by modeling the maintenance problems as
MDPs [5,38,74], semi-Markov decision processes [13,86], and POMDPs [3,11,12].
Most of these works either assume that a model is given or only derive maintenance
policies for simplified multi-unit systems, which impedes those methods from be
generalized to realistic scenarios. Karamatsoukis et al. assume the model of
the system and derives a PM policy for a two-machine-one-buffer manufacturing
system using dynamic programming (DP) [45]. Wang et al. model a two-machine-
one-buffer manufacturing system as semi-MDP [91]. Ramirez et al. propose a
simulation-based approximate dynamic programming approach for the optimiza-
tion of PM scheduling decisions in semiconductor manufacturing systems, while
suffering from the assumption that the line is perfectly balanced [72]. Arab et al.
derive maintenance policies on systems with simplified dynamics, i.e. the mainte-
nance schedule does not affect machine reliability status [6]. Choo et al. derives a
hierarchical maintenance policy for parallel production lines without buffers [18].
Huang et al., which derives model-free Q-learning maintenance policies for a six-
machine-five-buffer serial production [38], represents the work most closely related
to this paper. Nonetheless, their PM policies do not consider imperfect maintenance
effects and have issues scaling to larger manufacturing systems.

80

Chapter 5

Closing Remarks

This dissertation presents new machine learning techniques as well as their applica-
tions on Cyber-Physical Systems.

In the chapter 2, we identify that the current car-following models require inputs
with fixed-size and fixed spatial organization, which limits the generalization of
those methods. Instead of simply expanding the input size of car-following models,
we propose a graph-based method that enables the ego-vehicle to learn from a
flexible number of neighbors in a hierarchical fashion. Specifically, we propose
the use of graphs defined by the spatial relationships between vehicles, to model
traffic. We further adpat the original GCN to incorporate our assumptions about
drivers. Coupled with the LSTM, our resulting frameworks can learn both temporal
and spatial information for ego-vehicles. In our simulation studies, the proposed
frameworks outperform others on the task of acceleration prediction.

While the proposed graph method can be used to predict ego-vehicle’s tra-
jectories in a short horizon, it can not be used for ego-vehicle’s control as the
prediction error accumulates during vehicle’s traveling course. In the chapter 3, we
study reinforcement learning that can be applied for control in multi-agent systems.
We propose a new credit-assignment actor-critic framework, value-decomposition
multi-agent actor-critic (VDAC), that enforces the monotonic relationship between
the global state-value and the shaped local state-value. Theoretically, we establish
the convergence of the proposed actor-critic method to a local optimal. Empirically,
benchmark tests on StarCraft II micromanagement games demonstrate that our pro-
posed actor-critic bridges the performance gap between multi-agent actor-critics
and Q-learning, and our method provides a balanced trade-off between training
efficiency and performance.

The chapter 4 presents a VDAC-based adaptive preventive maintenance schedul-
ing framework. Current methods either suffer from the nonlinear, stochastic nature
of manufacturing systems, or the issue of action space explosion. By formulating

81

82

the scheduling problem into a cooperative multi-agent problem, we are able to alle-
viate the aforementioned issues facing the traditional and centralized methods. We
utilize two numerical experiments to further establish the necessity of modeling the
PM decision-making as multi-agent problems instead of as a single-agent problem.
In the 6-machine-5-buffer experiment, the DQN policy exhibits convergence issues
while the MARL policy achieves the best profit among all baselines. In the 10-
machine-9-buffer experiment, the DQN method cannot be implemented efficiently
due to the increasing size of its replay buffer and action space. By contrast, MARL
does not suffer from this issue and continues to report the best average profit among
all policies.

While the research studies in this dissertation advance the corresponding sub-
fields, they suffer from the following limitations:

• For the first chapter, the criterion to construct traffic graphs are not established.
For instance, the neighbor distance τ is selected empirically for highway
driving. In practice, optimal τ might exist for different driving scenarios such
as highway driving, city driving, etc.

• VDAC utilizes the non-negative mixing network to assign credits among
agents. However, in-depth analysis of the discrepancy between assigned
credits and the ground truth is not conducted, which might help us understand
the mixing network.

• The proposed framework is only tested on serial production lines, where
we can directly model each machine as an agent. For complex production
systems with multiple lines interconnected, we might need to resort to other
modeling techniques such as modeling a group of machines as a single agent.
In addition, the limitation of resources is not considered in our research.

Chapter 6

Appendix

InChapter 3, we use all the default settings in [76]. That includes: the game difficulty
is set to level 7, very difficult, the shoot range, observe range, etc, are consistent
with the default settings. The action space of agents consists of the following set of
discrete actions: move[direction], attack[enemy id], stop, and no operation. Agents
can only move in four directions: north, south, east, or west. A unit is allowed to
perform the attack[enemy id] action only if the enemy is within its shooting range.

Each unit has a sight range that limits its ability to receive any information out of
range. The sight range, which is bigger than shooting range, makes the environment
partially observable from the standpoint of each agent. Agents can only observe
other agents if they are both alive and located within the sight range. The global
state, which is only available to agents during centralised training, encapsulates
information about all units on the map.

The observation vector also follows the default implementation in [76]: It con-
tains the following attributes for both allied and enemy units within the sight range:
distance, relative x, relative y, health, shield, and unit type. In addition, the obser-
vation vector includes the last actions of allied units that are in the field of view.
Lastly, the terrain features, in particular the values of eight points at a fixed radius
indicating height and walkability, surrounding agents within the observe range are
also included. The state vector includes the coordinates of all agents relative to the
center of the map, together with units’ observation feature vectors. Additionally,
the energy of Medivacs and cooldown of the rest of the allied units are stored in the
state vector. Finally, the last actions of all agents are attached to the state vector.

6.0.1 Training Details and Hyperparameters
Experiments are obtained by using Nvidia RTX 2080 Ti graphics cards, with each
independent run taking 1 to 3 hours depending on the scenario. Each independent run
corresponds to a unique random seed that is randomly generalized at the beginning.

83

84

Table 6.1: Map Descriptions.

Map Name Ally Units Enemy Units
2s_vs_1sc 2 Stalkers 1 Spine Crawler

8m 8 Marines 8 Marines
2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots
3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots
1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots

bane_vs_bane 20 Zerglings & 4 Banelings 20 Zerglings & 4 Banelings

The agent networks of all algorithms resemble a DRQN [35] with a recurrent
layer comprised of a GRU [19] with a 64-dimensional hidden state, with a fully-
connected layer before and after. The exception is that IAC, VDAC-sum, and
VDAC-mix agent networks contain an additional layer to output local state values
and the policy network outputs a stochastic policy rather than action-values.

Algorithms are trained with RMSprop with learning rate 5 × 10−4. During
training, 8 games are initiated independently, from which episodes are sampled.
Q-learning replay buffer stores the latest 5000 episodes for each independent game
(In total, replay buffer has a size of 8 × 5000 = 40000). We set γ = 0.99 and
λ = 0.8 (if needed). Target networks (if exists) are updated every 200 training steps.

The architecture of the COMA critic is a feedforward fully-connected neural
network with the first 2 layers, each of which has 128 units, followed by a final layer
of |U | units. Naive central critic shares the same architecture with COMA critic
with an exception that its final layer contains 1 units.

The mixing network in QMIX and VDAC-mix shares an identical structure. It
consists of a single hidden layer of 32 units, whose parameters are outputted by
hypernetworks. An ELU activation function follows the hidden layer in the mixing
network. The hypernetworks consist of a feedforward network with a single hidden
layer of 64 units with a ReLU activation function.

6.0.2 StarCraft II Results

85

(a) 1c3s5z (b) 2s_vs_1sc

(c) 2s3z (d) 3s5z

(e) 8m

Figure 6.1: Overall results: VDACs vs QMIX under A2C

86

(a) 1c3s5z (b) 2s_vs_1sc

(c) 2s3z (d) 3s5z

(e) bane_vs_bane (f) 8m

Figure 6.2: Overall results: VDAC-mix vs VDAC-mix(linear) vs VDAC-sum

List of Figures

1.1 Illustration for 2-layer graph convolution operation 14
1.2 Multi-agent RL setup . 15

2.1 Mapping from real world traffic to traffic graph 23
2.2 RMSE results for all models . 28
2.3 Simulated Trajectories For All Models (Orignial GCN and GAT

models are excluded for their bad performance) 31

3.1 Naive Critic . 40
3.2 VDAC-sum . 42
3.3 VDAC-vmix . 44
3.4 Overall results: Win rates on a range of SC mini-games. Black dash

line represents heuristic AI’s performance 49

4.1 Serial Product Line Structure . 58
4.2 Action space comparison between RL and MARL formulations . . . 60
4.3 VDAC Architecture . 63
4.4 Action Mask . 65
4.5 Implementation Details . 66
4.6 MARL Training Monitoring . 69
4.7 RL Training Monitoring . 70
4.8 Evaluation Results . 71
4.9 Average test return per episode as a function of training step 75
4.10 Evaluation Results for 10-machine-9-buffer Serial Production Line . 76

6.1 Overall results: VDACs vs QMIX under A2C 85
6.2 Overall results: VDAC-mix vs VDAC-mix(linear) vs VDAC-sum . . 86

87

88

List of Tables

2.1 Model Configuration . 26
2.2 RMSE Analysis . 29
2.3 Jerk Sign Inversions Per Trajectory 30

3.1 Actor-Critics studied. 39

4.1 Machine Parameters . 67
4.2 Buffer Parameters . 67
4.3 Maintenace Cost Summary . 72
4.4 Partial Maintenance Record . 73
4.5 Partial Maintenance Record (continue) 74
4.6 Machine Parameters for Additional Machines 74
4.7 Buffer Parameters for Additional Buffers 74
4.8 Partial Maintenance Record . 77
4.9 Partial Maintenance Record (continue) 78

6.1 Map Descriptions. 84

89

90

Bibliography

[1] Hasnida Ab-Samat and Shahrul Kamaruddin. Opportunistic maintenance
(om) as a new advancement in maintenance approaches: A review. Journal
of Quality in Maintenance Engineering, 20(2):98–121, 2014.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. Tensorflow: A system for large-scale machine learning. In
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, 2016.

[3] Mohammad M AlDurgam and Salih O Duffuaa. Optimal joint maintenance
and operation policies to maximise overall systems effectiveness. Interna-
tional Journal of Production Research, 51(5):1319–1330, 2013.

[4] Florent Altché and Arnaud de La Fortelle. An LSTM network for high-
way trajectory prediction. In 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), pages 353–359. IEEE, 2017.

[5] Suprasad V Amari, Leland McLaughlin, and Hoang Pham. Cost-effective
condition-based maintenance using markov decision processes. In RAMS’06.
Annual Reliability and Maintainability Symposium, 2006., pages 464–469.
IEEE, 2006.

[6] Ali Arab, Napsiah Ismail, and Lai Soon Lee. Maintenance scheduling in-
corporating dynamics of production system and real-time information from
workstations. Journal of Intelligent Manufacturing, 24(4):695–705, 2013.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[8] Anne Barros, Antoine Grall, and Christophe Bérenguer. Joint modelling
and optimization of monitoring and maintenance performance for a two-unit

91

92

parallel system. Proceedings of the Institution of Mechanical Engineers, Part
O: Journal of Risk and Reliability, 221(1):1–11, 2007.

[9] Christopher M Bishop. Mixture density networks. Technical report, 1994.

[10] Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(2):156–172, 2008.

[11] Eunshin Byon and Yu Ding. Season-dependent condition-based maintenance
for a wind turbine using a partially observed markov decision process. IEEE
Transactions on Power Systems, 25(4):1823–1834, 2010.

[12] Eunshin Byon, Lewis Ntaimo, and Yu Ding. Optimal maintenance strate-
gies for wind turbine systems under stochastic weather conditions. IEEE
Transactions on Reliability, 59(2):393–404, 2010.

[13] GK Chan and Sohrab Asgarpoor. Optimum maintenance policy with markov
processes. Electric power systems research, 76(6-7):452–456, 2006.

[14] J-K Chan and Leonard Shaw. Modeling repairable systems with failure rates
that depend on age and maintenance. IEEE Transactions on Reliability,
42(4):566–571, 1993.

[15] Robert EChandler, RobertHerman, andElliottWMontroll. Traffic dynamics:
studies in car following. Operations research, 6(2):165–184, 1958.

[16] Djabir Abdeldjalil Chekired, Lyes Khoukhi, and Hussein T Mouftah. In-
dustrial iot data scheduling based on hierarchical fog computing: A key
for enabling smart factory. IEEE Transactions on Industrial Informatics,
14(10):4590–4602, 2018.

[17] T Chitra. Life based maintenance policy for minimum cost. In Annual
Reliability and Maintainability Symposium, 2003., pages 470–474. IEEE,
2003.

[18] Benjamin Y Choo, Stephen Adams, and Peter Beling. Health-aware hier-
archical control for smart manufacturing using reinforcement learning. In
2017 IEEE International Conference on Prognostics and Health Manage-
ment (ICPHM), pages 40–47. IEEE, 2017.

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555, 2014.

93

[20] J Colyar and J Halkias. US highway 80 dataset,” Federal Highway Adminis-
tration (FHWA), vol. Tech, no. Rep, 2006.

[21] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh,
Mike Rabbat, and Joelle Pineau. Tarmac: Targeted multi-agent communica-
tion. In International Conference on Machine Learning, pages 1538–1546,
2019.

[22] Karin S de Smidt-Destombes, Matthieu C van der Heĳden, and Aart van
Harten. Joint optimisation of spare part inventory, maintenance frequency and
repair capacity for k-out-of-n systems. International Journal of Production
Economics, 118(1):260–268, 2009.

[23] FrederikDiehl, ThomasBrunner,Michael TruongLe, andAloisKnoll. Graph
neural networks for modelling traffic participant interaction. In 2019 IEEE
Intelligent Vehicles Symposium (IV), pages 695–701. IEEE, 2019.

[24] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René
Garcia. Incorporating functional knowledge in neural networks. Journal of
Machine Learning Research, 10(6), 2009.

[25] V Ebrahimipour, A Najjarbashi, and Mohammad Sheikhalishahi. Multi-
objective modeling for preventive maintenance scheduling in a multiple pro-
duction line. Journal of Intelligent Manufacturing, 26(1):111–122, 2015.

[26] Mohamed-Chahir Fitouhi, Mustapha Nourelfath, and Stanley B Gershwin.
Performance evaluation of a two-machine line with a finite buffer and
condition-based maintenance. Reliability Engineering & System Safety,
166:61–72, 2017.

[27] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon
Whiteson. Learning to communicate with deep multi-agent reinforcement
learning. In Advances in neural information processing systems, pages 2137–
2145, 2016.

[28] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras,
Philip HS Torr, Pushmeet Kohli, and Shimon Whiteson. Stabilising expe-
rience replay for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1702.08887, 2017.

[29] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. Counterfactual multi-agent policy gradients. In
Thirty-second AAAI conference on artificial intelligence, 2018.

94

[30] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein inter-
face prediction using graph convolutional networks. In Advances in Neural
Information Processing Systems, pages 6530–6539, 2017.

[31] JayeshKGupta,MaximEgorov, andMykelKochenderfer. Cooperativemulti-
agent control using deep reinforcement learning. In International Conference
on Autonomous Agents andMultiagent Systems, pages 66–83. Springer, 2017.

[32] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint
arXiv:1609.09106, 2016.

[33] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto.
Knowledge transfer for out-of-knowledge-base entities: A graph neural net-
work approach. arXiv preprint arXiv:1706.05674, 2017.

[34] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing
Systems, pages 1024–1034, 2017.

[35] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially
observable mdps. In 2015 AAAI Fall Symposium Series, 2015.

[36] Walter Helly. Simulation of bottlenecks in single-lane traffic flow. In Inter-
national Symposium on the Theory of Traffic Flow, New York, 1959.

[37] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[38] Jing Huang, Qing Chang, and Jorge Arinez. Deep reinforcement learning
based preventive maintenance policy for serial production lines. Expert Sys-
tems with Applications, 160:113701, 2020.

[39] Jing Huang, Qing Chang, Jorge Arinez, and Guoxian Xiao. A maintenance
and energy saving joint control scheme for sustainable manufacturing sys-
tems. Procedia CIRP, 80:263–268, 2019.

[40] Jing Huang, Qing Chang, and Nilanjan Chakraborty. Machine preventive
replacement policy for serial production lines based on reinforcement learn-
ing. In 2019 IEEE 15th International Conference on Automation Science and
Engineering (CASE), pages 523–528. IEEE, 2019.

[41] Jing Huang, Qing Chang, Jing Zou, and Jorge Arinez. A real-time main-
tenance policy for multi-stage manufacturing systems considering imperfect
maintenance effects. IEEE Access, 6:62174–62183, 2018.

95

[42] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[43] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement
learning. In International Conference on Machine Learning, pages 2961–
2970, 2019.

[44] Jiechuan Jiang and Zongqing Lu. Learning attentional communication for
multi-agent cooperation. In Advances in neural information processing sys-
tems, pages 7254–7264, 2018.

[45] CC Karamatsoukis and EG Kyriakidis. Optimal maintenance of two stochas-
tically deteriorating machines with an intermediate buffer. European Journal
of Operational Research, 207(1):297–308, 2010.

[46] Masaaki Kĳima. Some results for repairable systems with general repair.
Journal of Applied probability, pages 89–102, 1989.

[47] Shinya Kikuchi and Partha Chakroborty. Car-followingmodel based on fuzzy
inference system. Transportation Research Record, pages 82–82, 1992.

[48] ByeoungDo Kim, Chang Mook Kang, Jaekyum Kim, Seung Hi Lee,
Chung Choo Chung, and Jun Won Choi. Probabilistic vehicle trajectory
prediction over occupancy grid map via recurrent neural network. In 2017
IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC), pages 399–404. IEEE, 2017.

[49] Dae-Young Kim, Seokhoon Kim, Houcine Hassan, and Jong Hyuk Park.
Adaptive data rate control in low power wide area networks for long range iot
services. Journal of computational science, 22:171–178, 2017.

[50] Diederik P Kingma and Jimmy Ba. Adam: Amethod for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[51] Thomas N Kipf and MaxWelling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[52] E Kometani. Dynamic behavior of traffic with a nonlinear spacing-speed
relationship. Theory of Traffic Flow (Proc. of Sym. on TTF (GM)), pages
105–119, 1959.

[53] Vĳay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances
in neural information processing systems, pages 1008–1014, 2000.

96

[54] Hirofumi Koshimae, Tadashi Dohi, Naoto Kaio, and Shunji Osaki. Graphi-
cal/statistical approach to repair limit replacement problem. Journal of the
Operations Research Society of Japan, 39(2):230–246, 1996.

[55] Radouane Laggoune, Alaa Chateauneuf, and Djamil Aissani. Opportunis-
tic policy for optimal preventive maintenance of a multi-component sys-
tem in continuous operating units. Computers & Chemical Engineering,
33(9):1499–1510, 2009.

[56] Stéphanie Lefèvre, Chao Sun, Ruzena Bajcsy, and Christian Laugier. Com-
parison of parametric and non-parametric approaches for vehicle speed pre-
diction. In 2014 American Control Conference, pages 3494–3499. IEEE,
2014.

[57] David Lenz, Frederik Diehl, Michael Truong Le, and Alois Knoll. Deep neu-
ral networks for markovian interactive scene prediction in highway scenarios.
In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 685–692. IEEE,
2017.

[58] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and DaanWierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[59] CE Love and R Guo. Utilizing weibull failure rates in repair limit analysis
for equipment replacement/preventive maintenance decisions. Journal of the
operational Research Society, 47(11):1366–1376, 1996.

[60] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and
Igor Mordatch. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in neural information processing systems, pages
6379–6390, 2017.

[61] Mazhar Ali Khan Malik. Reliable preventive maintenance scheduling. AIIE
transactions, 11(3):221–228, 1979.

[62] RM Michaels. Perceptual factors in car-following. Proc. of 2nd ISTTF
(London), pages 44–59, 1963.

[63] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International confer-
ence on machine learning, pages 1928–1937, 2016.

97

[64] Amit Monga, Ming J Zuo, and Roger W Toogood. Reliability-based design
of systems considering preventive maintenance and minimal repair. Interna-
tional Journal of Reliability, Quality and Safety Engineering, 4(01):55–71,
1997.

[65] Marcello Montanino and Vincenzo Punzo. Making NGSIM data usable
for studies on traffic flow theory: Multistep method for vehicle trajectory
reconstruction. Transportation Research Record, 2390(1):99–111, 2013.

[66] Marcello Montanino and Vincenzo Punzo. Trajectory data reconstruction
and simulation-based validation against macroscopic traffic patterns. Trans-
portation Research Part B: Methodological, 80:82–106, 2015.

[67] Jeremy Morton, Tim A Wheeler, and Mykel J Kochenderfer. Analysis of
recurrent neural networks for probabilistic modeling of driver behavior. IEEE
Transactions on Intelligent Transportation Systems, 18(5):1289–1298, 2016.

[68] Duc Thien Nguyen, Akshat Kumar, andHoong Chuin Lau. Credit assignment
for collective multiagent rl with global rewards. In Advances in Neural
Information Processing Systems, pages 8102–8113, 2018.

[69] Robin P Nicolai and Rommert Dekker. Optimal maintenance of multi-
component systems: a review. In Complex system maintenance handbook,
pages 263–286. Springer, 2008.

[70] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International conference on machine
learning, pages 1310–1318, 2013.

[71] Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao
Long, and JunWang. Multiagent bidirectionally-coordinated nets for learning
to play starcraft combat games. arXiv preprint arXiv:1703.10069, 2, 2017.

[72] José A Ramírez-Hernández and Emmanuel Fernandez. Optimization of pre-
ventive maintenance scheduling in semiconductor manufacturing models us-
ing a simulation-based approximate dynamic programming approach. In 49th
IEEE Conference on Decision and Control (CDC), pages 3944–3949. IEEE,
2010.

[73] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory
Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement learning. arXiv
preprint arXiv:1803.11485, 2018.

98

[74] Charles-Antoine Robelin and Samer M Madanat. History-dependent bridge
deck maintenance and replacement optimization with markov decision pro-
cesses. Journal of Infrastructure Systems, 13(3):195–201, 2007.

[75] Tony Robinson, Mike Hochberg, and Steve Renals. The use of recurrent
neural networks in continuous speech recognition. In Automatic speech and
speaker recognition, pages 233–258. Springer, 1996.

[76] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory
Farquhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr,
Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent challenge.
In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, pages 2186–2188. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2019.

[77] Mahmood Shafiee and Maxim Finkelstein. An optimal age-based group
maintenance policy for multi-unit degrading systems. Reliability Engineering
& System Safety, 134:230–238, 2015.

[78] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[79] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and
Yung Yi. Qtran: Learning to factorize with transformation for cooperative
multi-agent reinforcement learning. arXiv preprint arXiv:1905.05408, 2019.

[80] Jianyu Su, Stephen Adams, and Peter A Beling. Counterfactual multi-
agent reinforcement learning with graph convolution communication. arXiv
preprint arXiv:2004.00470, 2020.

[81] Jianyu Su, Stephen Adams, and Peter A Beling. Value-decomposition multi-
agent actor-critics. arXiv preprint arXiv:2007.12306, 2020.

[82] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki,
Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z
Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperativemulti-
agent learning. arXiv preprint arXiv:1706.05296, 2017.

[83] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function ap-
proximation. In Advances in neural information processing systems, pages
1057–1063, 2000.

99

[84] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan
Korjus, Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and
competition with deep reinforcement learning. PloS one, 12(4):e0172395,
2017.

[85] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine
learning, pages 330–337, 1993.

[86] Curtis L Tomasevicz and Sohrab Asgarpoor. Optimum maintenance policy
using semi-markov decision processes. In 2006 38th North American Power
Symposium, pages 23–28. IEEE, 2006.

[87] Nicolas Usunier, Gabriel Synnaeve, Zeming Lin, and Soumith Chintala.
Episodic exploration for deep deterministic policies: An application to star-
craft micromanagement tasks. arXiv preprint arXiv:1609.02993, 2016.

[88] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[89] Hongzhou Wang. A survey of maintenance policies of deteriorating systems.
European journal of operational research, 139(3):469–489, 2002.

[90] HongzhouWang and Hoang Pham. Some maintenance models and availabil-
ity withimperfect maintenance in production systems. Annals of Operations
Research, 91:305–318, 1999.

[91] Xiao Wang, Hongwei Wang, and Chao Qi. Multi-agent reinforcement learn-
ing based maintenance policy for a resource constrained flow line system.
Journal of Intelligent Manufacturing, 27(2):325–333, 2016.

[92] Ermo Wei, Drew Wicke, David Freelan, and Sean Luke. Multiagent soft
q-learning. In 2018 AAAI Spring Symposium Series, 2018.

[93] Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic
recursive reasoning for multi-agent reinforcement learning. arXiv preprint
arXiv:1901.09207, 2019.

[94] Marco A Wiering. Multi-agent reinforcement learning for traffic light con-
trol. In Machine Learning: Proceedings of the Seventeenth International
Conference (ICML’2000), pages 1151–1158, 2000.

100

[95] David H Wolpert and Kagan Tumer. Optimal payoff functions for members
of collectives. InModeling complexity in economic and social systems, pages
355–369. World Scientific, 2002.

[96] Tangbin Xia, Xiaoning Jin, Lifeng Xi, and Jun Ni. Production-driven op-
portunistic maintenance for batch production based on mam–apb scheduling.
European Journal of Operational Research, 240(3):781–790, 2015.

[97] Xitong Zheng and Nasser Fard. A maintenance policy for repairable sys-
tems based on opportunistic failure-rate tolerance. IEEE Transactions on
Reliability, 40(2):237–244, 1991.

[98] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and
Maosong Sun. Graph neural networks: A review ofmethods and applications.
arXiv preprint arXiv:1812.08434, 2018.

[99] Jing Zou, Qing Chang, Jorge Arinez, Guoxian Xiao, and Yong Lei. Dynamic
production system diagnosis and prognosis using model-based data-driven
method. Expert Systems with Applications, 80:200–209, 2017.

[100] Jing Zou, Qing Chang, Yong Lei, and Jorge Arinez. Production system
performance identification using sensor data. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 48(2):255–264, 2016.

