
Understanding and Optimizing Memory Access Behaviors via

Hardware/Software Co-design

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Alif Ahmed

December 2023

© 2023 Alif Ahmed

Abstract

Due to the ever-increasing gap between the speed of processing elements and the speed at which memory

systems can feed them with data, current computing systems are often bottlenecked by limited memory

bandwidth. To alleviate the memory bandwidth bottleneck, algorithms and data structures for data-intensive

applications must be designed to leverage hardware features in the memory hierarchy, and in some cases, a

software-hardware co-design approach is beneficial. To that extent, first, we propose Hopscotch, which is a

micro-benchmark suite for memory performance characterization. It aims to fill the gap left by existing memory

benchmarks by providing kernels covering a wide range of spatio-temporal locality spectrum. Additionally, the

Hopscotch suite contains tools for memory-access pattern visualization and empirically deriving the Roofline

model, thereby helping users to isolate performance bottlenecks and reverse-engineer memory characteristics.

Next, we optimize two data-intensive applications by leveraging the memory-centric hardware features in

traditional general-purpose architecture. The BigMap approach optimizes the memory access behavior of

a popular fuzzer, AFL, to enable large bitmaps for accurate coverage tracking. In BigMap, we propose a

two-level hashing scheme that consolidates scattered random accesses, vastly improving the spatial locality

of the bitmap operations. In our next work, GraphTango, we minimize cache line accesses on streaming

graphs by proposing a hybrid storage format and a cache-friendly hashing scheme. GraphTango provides

excellent update/analytics throughput regardless of a graph’s degree distribution, unlike prior approaches.

My last two works focus on hardware-software co-optimization for reducing data movement. In Pulley, we

provide an in-memory sorting accelerator that can leverage the subarray-level parallelism for a distributed

LSB-first radix sorting. This approach avoids the single-point merging bottleneck of the prior near-data

and in-memory sorting accelerators. Finally, we propose a vault-level PIM architecture for accelerating the

inference tasks on temporal graph neural networks. We incorporate a feature-based partitioning scheme to

minimize inter-vault communication and improve the workload balance, resulting in significant throughput

gain and latency reduction over other approaches.

i

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Alif Ahmed

This dissertation has been read and approved by the Examining Committee:

Kevin Skadron, Adviser

Ashish Venkat, Committee Chair

Felix Lin

Jundong Li

Adwait Jog

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, Dean, School of Engineering and Applied Science

December 2023

ii

Acknowledgements

I am grateful to many people who have contributed to shaping this dissertation. This dissertation would not

have been possible without the influence, advice, and support of many colleagues, friends, and family.

First, I would like to thank my advisor, Prof. Kevin Skadron for his constant and genuine support

and guidance during my academic career. He always encouraged me to pursue projects that piqued my

interest without constraining me to projects strictly adhering to funding requirements. I will always gratefully

remember the time he went through great lengths to reopen the admission portal of UVA so that I can pursue

my Ph.D. study alongside my then-wife. Whenever I was stuck in a problem or stressed over any issues,

personal or work related, he never showed impatience and always guided me towards the right direction. He

was my guardian angle during the demanding years of my Ph.D. life and I will always remember him fondly

no matter where I end up in my life. It has been a great honor and privilege to work with him.

Second, I would like to extend my heartfelt gratitude towards my collaborators and co-authors, including

Ashish Venkat, Felix Lin, Jundong Li, Jack Davidson, Farzana Ahmed Siddique, Marzieh Lenjani, Jason D.

Hiser, Anh Nguyen-Tuong, Farimah Farahmandi, Yuanwen Huang, Yangdi Lyu, Subodha Charles, Jonathan

Cruz, and many others. Without their knowledge and inputs, none of my work would have be possible. I

would also like to express my gratitude to the many friends and colleagues within and outside our research

group, including Lingxi Wu, Rasool Sharifi, Yiqing Yang, Wole Jaiyeoba, Tommy Tracy, Sergui Mosanu,

Akhil Sekhar, Tauhid Ahmed, Taufiq Ahmed, Moniruzzaman Liton, Zakaria Mehrab, Kevin Chen, Justin

Chen, and many more.

Third, I would like to thank my colleague and ex-wife Farzana for tolerating me for nearly a decade.

Although we decided to go separate ways in our life, she always stayed with me as my best friend and took

care of me and comforted me in many situations when I felt lost. Last, but certainly not least, I would like to

thank my parents for always being there for me and supporting me through every stage of my life.

Contents

Contents iv
List of Tables . vii
List of Figures . viii

1 Introduction 1
1.1 Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation . . . 4
1.2 BigMap: Future-proofing Fuzzers with Efficient Large Maps 5
1.3 GraphTango: A Hybrid Representation Format for Efficient Streaming Graph

Processing . 5
1.4 Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting 6
1.5 TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-

Stacked Memory . 7
1.6 Dissertation Structure . 7

2 Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation 9
2.1 Introduction . 9
2.2 Related Works . 10
2.3 Kernel Implementation . 11

2.3.1 Generic Design Decisions . 11
2.3.2 Read-Only Kernels . 13
2.3.3 Write Only Kernels . 14
2.3.4 Mixed Kernels . 15

2.4 Evaluation with Hopscotch . 15
2.4.1 Bandwidth Measurement . 16
2.4.2 Latency Measurement . 17
2.4.3 Impact of Locality . 18
2.4.4 Roofline Model and Machine Balance . 18

2.5 Conclusions . 20

3 BigMap: Future-proofing Fuzzers with Efficient Large Maps 21
3.1 Introduction . 21
3.2 Background . 23

3.2.1 American Fuzzy Lop (AFL) . 23
3.2.2 Collision Rate . 26

3.3 Implication of Näıve Hash Collision Mitigation Strategy . 26
3.3.1 Cost of Expanding Hash-space . 27

3.4 BigMap: Adaptive Two-Level Bitmap . 28
3.4.1 Two-Level Bitmap Scheme . 28
3.4.2 Illustrative Example . 29
3.4.3 Access Patterns of the Bitmap Operations . 30
3.4.4 Implementation Details . 32
3.4.5 Additional Optimizations . 33

3.5 Evaluation . 33

iv

Contents v

3.5.1 Experimental Setup . 33
3.5.2 Evaluating the Impact of Map Size Variation . 35
3.5.3 Evaluating Coverage Metric Composition . 38
3.5.4 Evaluating the Scalability with Parallel Fuzzing . 39

3.6 Related Work . 41
3.7 Conclusion . 43

4 GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates
and Analysis 44
4.1 Introduction . 44
4.2 Background on Existing Representation Formats . 46
4.3 GraphTango Data Structure . 48
4.4 GraphTango Basic Operations . 50

4.4.1 Edge Insertion . 50
4.4.2 Edge Deletion . 51
4.4.3 Edge Traversal . 51

4.5 Optimizing GraphTango . 51
4.5.1 Cache-Friendly Hashing Scheme . 51
4.5.2 Memory Allocation Scheme . 53
4.5.3 Parallelization . 55
4.5.4 Determining the TH1 Threshold . 56

4.6 Evaluation . 57
4.6.1 Experimental Setup . 57
4.6.2 Analytics and Update Performance . 58
4.6.3 Memory Usage . 60
4.6.4 Impact of TH1 Threshold . 61
4.6.5 Impact of Optimizations . 61
4.6.6 Integration with DZiG and RisGraph . 63

4.7 Details of Hash Function Implementation . 64
4.8 Conclusions . 65

5 Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting 67
5.1 Introduction . 67
5.2 Background and Motivation . 70
5.3 Proposed method . 70

5.3.1 Baseline PIM architecture . 70
5.3.2 Local sorting . 72
5.3.3 Histogram generation . 72
5.3.4 Prefix-sum . 73
5.3.5 Merging and key placement . 73

5.4 Evaluation . 73
5.4.1 Methodology . 73
5.4.2 Throughput . 74
5.4.3 Power and temperature constraints . 74

5.5 Conclusions and future Work . 74

6 TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked
Memory 75
6.1 Introduction . 75
6.2 Background and Motivation . 78

6.2.1 Temporal Graph Neural Network (TGNN) . 78
6.2.2 3D-stacked memory . 80

6.3 TGN-PNM Microarchitecture . 81
6.3.1 Vault-level Processing Unit (VPU) . 81

Contents vi

6.3.2 Global Control Unit (GLCU) . 82
6.3.3 Partial-Sum Accumulation Unit (PSAU) . 82

6.4 Mapping TGNN Frameworks on TGN-PNM . 83
6.4.1 Mapping of common operations . 83
6.4.2 Graph storage format . 86

6.5 Evaluation . 88
6.5.1 Methodology . 88
6.5.2 Datasets . 89
6.5.3 Mapping on evaluated architectures . 89
6.5.4 Throughput and latency results . 92
6.5.5 Area estimation . 95

6.6 Related Work . 96
6.7 Conclusions and Future Work . 96

7 Conclusions and Future Work 98

Bibliography 104

List of Tables

2.1 A comparison of supported access patterns and platforms of existing memory benchmarks . . 11
2.2 Characteristics of the included kernels . 12
2.3 System configuration of the evaluation platforms . 13
2.4 Impact of spatio-temporal locality on bandwidth. Single Threaded. 18

3.1 Access Patterns of the Bitmap Operations . 31
3.2 Benchmark Characteristics . 34
3.3 Code Coverage with laf-Intel and N-gram . 38

4.1 Vertex type switching steps for insertion/deletions . 50
4.2 Evaluated Datasets . 58
4.3 Average Memory Usage (Bytes Per Edge) . 59
4.4 Impact of Optimizations on the Update Throughput (Baseline is the proposed hybrid format

without any optimizations applied) . 62

6.1 Arithmetic intensity (flops/byte) of various TGNN models. 79
6.2 Characteristics of the used datasets. Time encoder dimension is fixed to 100 for all datasets. 89
6.3 Configuration of the evaluated architectures. 90
6.4 Average throughput gain and latency reduction of TGN PNM hybrid approach across the

datasets. 95
6.5 Area estimation of TGN-PNM. 95

vii

List of Figures

2.1 (a) 1D representation of tile kernel access pattern. W is the full array width, K is the stride
and L is the sequential access length. (b) 2D representation showing the tile pattern. (c)
Varying spatio-temporal locality with L and K. 14

2.2 Measured bandwidth of the evaluation platforms for different kernels. Working set size is
mentioned with platform name. Knights Landing 1G effectively measures the bandwidth of
the MCDRAM. 16

2.3 Measured latency of the evaluation platforms with different working set size. 17
2.4 Roofline plot with machine balance for Nvidia GeForce 1080 Ti GPU. This GPU has 128 SP

cores vs only 4 DP cores per SM. Performance figures reflects this ratio. 19
2.5 Roofline plot with machine balance for Intel Core i7 6700k CPU. The implemented kernel

leverages the AVX2 vector extension. 19

3.1 The generic workflow of a coverage-guided fuzzer. 24
3.2 Hash collision rate drops as bitmap size is increased (derived from Equation 3.1). 27
3.3 Runtime composition with varying bitmap sizes. Map operations dominate the runtime for

bigger maps. The reported time is for one million test case generation. 28
3.4 Steps of bitmap update operation for AFL’s and BigMap’s data structure. The hit counts in

the coverage bitmap are scattered in (a), while consolidated in (b). 29
3.5 An illustrative example of bitmap operations on AFL’s and BigMap’s data structures. Value

on top is the index of the bitmaps. Locations accessed at each step are highlighted in bold.
(a) Execution trace and the assigned edge IDs (random). (b) AFL’s data structure. Reset,
classify, compare, etc., operations need to access the full bitmap. (c) BigMap’s data structure.
The full map is accessed only during initialization. Afterward, reset, classify, compare, etc.,
accesses only the used region of the coverage bitmap. Index bitmap is only accessed during
the hit count update. 30

3.6 Test case generation throughput of AFL and BigMap with different map sizes. AFL’s through-
put drops significantly as the map size is increased. Map size variation has considerably less
impact on BigMap. 36

3.7 Edge coverage with varying map sizes. AFL’s edge coverage suffers due to throughput loss
with bigger maps. Not all benchmarks are shown to improve clarity. 37

3.8 Unique crashes found with varying map sizes. Going from 64kB to 256kB map shows improve-
ment as a result of reduced collisions. AFL suffers for bigger map sizes due to throughput
loss. 37

3.9 (a) Throughput (normalized to the single instance) vs. the number of fuzzing instances. Dotted
lines represent the individual benchmarks from (b), and the solid red line is their average. The
solid black line shows 1:1 scaling as a reference. (b) Speedup attained by BigMap over AFL.
The coverage map is fixed to 2MB for both (a) and (b). 40

3.10 Unique crashes found with a varying number of fuzzing instances. The coverage map is fixed
to 2MB. 41

4.1 Example of different graph representation formats. Here, each edge e is an {dst, prop} tuple. 47
4.2 Proposed hybrid representation format of GraphTango. 49

viii

List of Figures ix

4.3 Proposed hashing scheme. (a) Hash function to determine the index to the hash table. (b) An
example probing sequence for M = 5 and N = 4. 52

4.4 Allocation and deallocation on the memory pool. Deleted pointers are shown by dashed lines
and the modified pointers by red lines. 54

4.5 Load-balancing scheme of GraphTango. In the first stage, all threads go over a subset of the
batch to fill bucket-chains. Afterwards, each worker thread locks and process the next available
bucket-chain until all buckets are processed. 56

4.6 Comparison of the analytics throughputs. Higher is better. 59
4.7 Comparison of update throughputs. Higher is better. 60
4.8 Impact of TH1 threshold on update throughput and memory usage. 61
4.9 Batch processing time breakdown of DZiG and RisGraph integration. Lower is better. 63

5.1 Parallel Radix sorting: (a) The intermediate array, which has one element per bucket and
per subarray-level processing unit (SPU), (b) in step 1, each SPU generates a local histogram
array, (c) in step 2, an aggregator processing unit (APU), outside memory layer (e.g., in the
logic layer of 3D stack memories) performs a prefix-sum on all local histogram arrays, and (d)
in step 3, each SPU determines the position (pos) of each key by deriving the bucket number
and adding the prefix value of the bucket to the current index of the bucket (line 8-9). 68

5.2 Our proposed architecture: (a) The circles are subarrays, the rectangles are banks, and the
pentagons are switches. Banks are connected using a dragonfly topology. (b) A bank with an
SPU and three Walkers per subarray pair, (c) architecture of each SPU. (d) An example of
local binary radix sorting. SPU loads one row of array A[:] in Walker1. In each cycle, SPU
reads one entry from Walker1 and places it in either Walker2 or Walker3, based on the binary
digit being processed. Once Walker1 is fully read, SPU loads a new row from array A[:] to
Walker1. Once either of Walker2 or Walker3 is full, SPU writes the row in array B[:]. However,
the SPU writes Walker1 in rows starting from the start of the array B[:] but writes Walker3 in
rows starting from the end of the array B[:]. 71

5.3 Throughput comparison of Pulley vs. Bonsai [1] and IMC [2] 74

6.1 Organization of a Hybrid Memory Cube [3, 4]. 80
6.2 TGN-PNM Architecture. 81
6.3 Partial-sum accumulation unit (PSAU). Figure drawn assuming a total of eight VPUs. 83
6.4 Mapping of dense matrix multiplication on TGN-PNM. 84
6.5 Total operand load time for the Wikipedia dataset with different memory address mapping

and page policy configurations. Lower is better. 86
6.6 Throughput and batch processing latency for TGN-attn. 93
6.7 Throughput and batch processing latency for TGN-sum. 94

Chapter 1

Introduction

In recent years, the processing capability of computers has witnessed a remarkable increase, primarily

driven by advancements in microprocessor design and parallel computing technologies. However, this rapid

progress in processing power has not been matched by a similar increase in memory bandwidth [5]. The

consequence of this growing performance gap is that modern processors, equipped with advanced vector

units, can execute thousands of double-precision floating-point computations in the time it takes to satisfy a

single last-level cache miss, leading to idle processor cores while waiting for data to be fetched from memory

[6]. This disparity between processing power and memory bandwidth is exacerbated by the explosion of

data-intensive applications across various domains, such as machine learning, bioinformatics, video analytics,

graph processing, and database systems. These applications often operate on large datasets characterized by

irregular access patterns and exhibit a low compute-to-memory ratio, making it challenging to hide the memory

access latency. Consequently, traditional von Neumann architectures, when running such data-intensive

workloads, face a ”memory wall” scenario, where the processor’s computational capacity is underutilized due

to memory access bottlenecks [7, 8].

Interesting concepts are being developed to alleviate the memory wall issue. One is to move the computation

near or inside memory (processing-in-memory or PIM). These approaches leverage the observation that the

internal memory bandwidth can be orders of magnitude higher than the external IO interface bandwidth.

For example, an 8 GB Hybrid Memory Cube (HMC) has an aggregated (i.e., read + write) external IO

bandwidth of 320 GB/s via high-speed serial links [3]. On the other hand, the same cube has an internal

bandwidth of 512GB/s at the logic layer, 2 TB/s at the bank level, and even higher at the subarray level (5+

TB/s) [9]. Another advantage of adopting near-data processing is to achieve memory-capacity-proportional

bandwidth [10]. For instance, sixteen of these HMC cubes can be connected together to achieve 8 TB/s

1

Introduction

bandwidth at the logic layer, while the external IO bandwidth remains capped at 320 GB/s. Beyond the

bandwidth advantage, PIM provides energy benefits as well (e.g., data movement cost of 10.48 pJ/bit to the

logic layer compared to 65 pJ/bit to the external interface [11]). For these reasons, there has been a recent

influx of PIM-based approaches from both academia and industry, placing compute units at the buffer chips

of DDR4 [12], banks of GDDR6 [13], and at various levels (i.e., logic layer, banks, subarrays) of 3D-stacked

memories [9, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Besides these emerging PIM-based accelerator architectures,

there are software-based solutions that aim to circumvent the memory wall by minimizing data movement

with approaches such as compression [23, 24, 25] or by improving cache utilization [26]. These approaches

face trade-offs in terms of performance, power, area, cost and complexity of implementation, time-to-market,

application and library support, etc. All these factors must be carefully considered when accelerating an

application of interest.

In this dissertation, I hypothesize that, to avoid being bottlenecked by the memory wall,

algorithms and data structures for data-intensive applications must be designed to leverage

hardware features in the memory hierarchy, and in some cases, a software-hardware co-design

approach is beneficial. Accordingly, I present five pieces of work to support my hypothesis: (i) Hopscotch:

A Micro-benchmark Suite for Memory Performance Evaluation [27], (ii) BigMap: Future-proofing Fuzzers with

Efficient Large Maps [28], (iii) GraphTango: A Hybrid Representation Format for Efficient Streaming Graph

Updates and Analysis [29]. (iv) Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

[18, 30], and (v) TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked

Memory (planned submission).

My first work, Hopscotch, introduces a comprehensive memory benchmark suite accommodating a wide

range of access patterns. The relevance of this work with my hypothesis stems from the observation that

the impact of the hardware features in the memory hierarchy on a workload is not always self-evident. For

instance, it is commonly assumed that sequential memory access can attain a significantly higher bandwidth

compared to random accesses, primarily due to the memory controller prioritizing row buffer hits (FR-FCFS

scheduling). However, with the evolution of multi-core processors, the likelihood of row buffer hits has

substantially diminished. This trend is reflected in the design of HMC, which prioritizes parallelism over row

buffer locality and is achieved by mapping consecutive DRAM accesses to different banks (i.e., low address

interleaving) rather than on the same row and by employing a closed page policy and narrow row buffers

[3, 31]. In fact, on HMC-based systems, sequential and random accesses demonstrate very similar bandwidth

[4]. Consequently, optimizing an application by converting random accesses to sequential may offer limited

performance benefits on an HMC-based system. To avoid such pitfalls, it is essential to use benchmarks with

2

Introduction

different access patterns, read-write mix, working set size, and other relevant metrics to properly characterize

a system’s performance. The Hopscotch benchmark suite is designed with that objective in mind.

The rest of my works target accelerating four important data-intensive applications: BigMap targets

coverage-guided fuzzing, GraphTango targets streaming graph processing, Pulley targets large-scale sorting,

and TGN-PNM targets temporal graph neural networks. In the case of BigMap, a memory bottleneck is

observed when trying to support large coverage bitmaps to mitigate hash collisions. The coverage bitmap

is very sparsely filled, but the full map needs to be traversed for various operations on the map since the

exact locations of the used entries are unknown. While we initially hypothesized that a PIM solution would

be beneficial, we instead introduced a two-level hashing scheme that consolidates only the used portion in

an auxiliary map, reducing the working set size and improving cache utilization. Our approach effectively

removed the memory bottleneck and allowed an arbitrarily large map size, verified by increasing the map size

from 64kB to 8MB without any noticeable impact on performance.

In our next work, GraphTango, we propose a hybrid storage format for streaming graphs that aims to

minimize cache line fetches. The key insight in this work is that the typical graph workloads show irregular

access patterns with a very large working set size that is unlikely to fit in the last-level cache (LLC). Even with

our smallest dataset of 5 million edges, the LLC miss rate during the update phase is over 49%, indicating

that the working set size is larger than the LLC. Therefore, it is unlikely that doing lookup operations or

neighbor traversal of two different nodes will overlap in the same cache lines. With this observation, the data

structure optimization primarily boils down to whether we can overlap the lookup and neighbor traversal

of the same node in the same cache line. To that extent, we proposed a hybrid data structure where the

low-degree vertices store the edges directly with the neighborhood metadata, confining accesses to a single

cache line, medium-degree vertices use adjacency lists, and high-degree vertices use hash tables as well as

adjacency lists. We proposed a novel hashing scheme that places consecutive probes in the same cache line,

minimizing the number of cache line fetches. While this hybrid scheme provided excellent throughput gain, we

improved our approach with a novel bucket-chaining-based workload balancing technique. These two works

(BigMap and GraphTango) support our hypothesis that the memory bottleneck can be largely alleviated

using hardware features in the memory hierarchy (namely caching and TLB optimizations for these two

approaches) of traditional general-purpose architectures.

In our next work, Pulley, we targeted large-scale sorting. While the previous works are software-based

techniques implemented on existing platforms, Pulley approach is a hardware-algorithm co-optimization

approach that is based on our prior subarray-level PIM architecture, Gearbox [14]. In Pulley, we observed

that the existing in-memory sorting algorithms are based on merge sort. The limitation of merge sort is

that while the buckets can be sorted independently, the final merge step has to go through all the elements

3

Introduction

and create a single-point merging bottleneck. In our approach, we leveraged radix sort that is scalable and

does not suffer from this bottleneck. However, the radix sort requires random accesses that are not optimal

for PIM. To alleviate this issue, we introduce a local-sorting step that does a one-bit radix sorting within

latched row buffers. After this local-sorting step, the rest of the accesses become sequential access. With our

approach, we observed 13x to 20x speedup over FPGA and in-logic-layer-based sorting accelerator.

In our last work, TGN-PNM, we target accelerating temporal graph neural networks (TGNN) by placing

processing units on the vaults of an HMC-like 3D-stacked memory. One key challenge with TGNN workload is

the evolving nature of the graph, making it extremely difficult to maintain workload balance at runtime. We

alleviated this issue by partitioning along the feature dimension, where each vault contains a subset of features

for all nodes. With this approach, each vault-level processing unit has the exact same amount of workload,

solving the imbalance issue. Furthermore, elementwise operations do not need inter-vault communication.

Operations involving reduction (e.g., dot products) require inter-vault communication but have a regular

pattern and can easily be handled by an adder tree. A matrix/vector with small feature dimensions is

stored in a traditional fashion to prevent DRAM column access under-utilization and is processed using a

broadcast-based mechanism. These last two works (Pulley and TGN-PNM) fit our hypothesis as they try to

alleviate the memory bottleneck by hardware-software co-optimization. The rest of this chapter goes into

more details of these approaches.

1.1 Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

Most memory benchmarks use either fully sequential or random access patterns [32, 33, 34, 35, 36]. However,

real-world applications show a wide variety of access patterns that fall in-between these two extremes. A

benchmark with a tunable access pattern is more appropriate in such cases. While some memory benchmarks

provide limited tunability (e.g., Spatter [37], ApexMap [38]), they do not support individual tuning of

read-only, write-only, or mixed-accesses, hindering their ability to isolate memory bottlenecks. We present

Hopscotch, a micro-benchmark suite in which the access pattern of read-only, write-only, and mixed accesses

can be tuned to cover a wide spatio-temporal locality spectrum. Most of these kernels are available on CPU,

GPU, and FPGA platforms (FPGA porting courtesy to Mosanu et al. [39]). We provide a few additional

tools with Hopscotch, namely a memory access pattern visualizer and an empirical Roofline tool for CPU

and GPU.

4

Introduction

1.2 BigMap: Future-proofing Fuzzers with Efficient Large Maps

In this work, we accelerate a popular coverage-guided fuzzer called AFL by consolidating memory accesses to

a smaller cache region, improving utilization, and reducing pollution. Coverage-guided fuzzing is a powerful

technique for finding security vulnerabilities and latent bugs in software. Such fuzzers usually store the

coverage information in a small bitmap. The bitmap is accessed frequently; thus, the size is kept small to

fit the bitmap in faster cache levels. Hash collision within this bitmap due to its small size is a well-known

issue and can reduce fuzzers’ ability to discover potential bugs. Prior works noted that collision mitigation

with naively enlarging the hash space leads to an unacceptable runtime overhead. This work introduces

BigMap, a two-level hashing scheme that enables the use of an arbitrarily large coverage bitmap with low

overhead. The key observation is that the overhead stems from frequent operations performed on the full

bitmap, although only a fraction of the map is actively used. BigMap condenses these scattered active

regions on a second bitmap and limits the operations only to that condensed area. Further optimizations

are performed by leveraging huge pages to reduce the number of page walks caused by TLB misses. We

implemented our approach on top of the popular fuzzer AFL and conducted experiments on 19 benchmarks

from FuzzBench and OSS-Fuzz. The results indicate that BigMap does not suffer from increased runtime

overhead, even with large map sizes. Compared to AFL, BigMap achieved an average of 4.5x higher test case

generation throughput for a 2MB map and 33.1x for an 8MB map. The throughput gain for the 2MB map

increased further to 9.2x with parallel fuzzing sessions, indicating the superior scalability of BigMap. More

importantly, BigMap’s compatibility with most coverage metrics, along with its efficiency on bigger maps,

enabled exploring aggressive compositions of expensive coverage metrics and fuzzing algorithms, uncovering

33% more unique crashes. BigMap makes using large bitmaps practical and enables researchers to explore a

wider design space of coverage metrics.

1.3 GraphTango: A Hybrid Representation Format for Efficient Streaming

Graph Processing

In this work, we propose an optimized graph storage format for streaming graph processing that attempts

to minimize cache line accesses. Streaming graph processing involves performing batched updates and

analytics on time-evolving graphs. The underlying representation format of the graph largely determines

the throughputs of these updates and analytics phases. Existing representation formats usually employ

variations of hash tables or adjacency lists. However, a recent study showed that the adjacency-list-based

approaches perform poorly on heavy-tailed graphs, and the hash table-based approaches suffer on short-tailed

5

Introduction

graphs [40]. We propose GraphTango, a hybrid representation format that provides excellent update and

analytics throughput irrespective of the graph’s degree distribution. GraphTango dynamically switches among

three different formats based on a vertex’s degree: i) Low-degree vertices store the edges directly with the

neighborhood metadata, confining accesses to a single cache line, ii) Medium-degree vertices use adjacency

lists, and iii) High-degree vertices use hash tables as well as adjacency lists. In this case, the adjacency

list provides fast traversal during the analytics phase, while the hash table provides constant-time lookups

during the update phase. We further optimized the performance by designing an open-addressing-based hash

table that focuses on maximizing cache line utilization. In addition, we developed a thread-local lock-free

memory pool that allows fast growing/shrinking of the adjacency lists and hash tables in a multi-threaded

environment. We further improved the performance by designing a novel bucket-chaining-based workload

balancing technique. We evaluated GraphTango by integrating it with the SAGA-Bench framework and

compared it with four other representation formats: Stinger, Degree-aware Robin Hood Hashing, and two

adjacency list-based formats with different workload balancing schemes. GraphTango vastly outperforms

these approaches, on average providing 4.5x higher insertion throughput, 3.2x higher deletion throughput,

and 1.1x higher analytics throughput over the next best alternative. Furthermore, we integrate GraphTango

with the state-of-the-art graph processing frameworks, DZiG and RisGraph. The results demonstrate that

GraphTango combined with DZiG and RisGraph reduces the average batch processing time by 2.3x and 1.5x,

respectively, compared to the vanilla versions of these frameworks.

1.4 Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

In this work, we propose a subarray-level PIM architecture for accelerating large-scale sorting. Sorting is an

important kernel that requires many passes on data, where each pass imposes significant data movement

overhead. PIM can reduce this data movement overhead while providing high parallelism. We selected

radix sorting as the sorting algorithm because it is scalable and can exploit PIM’s parallelism. However,

this algorithm is inefficient for current PIM-based accelerators for three reasons: (i) requiring a large

intermediate array per processing unit, wasting capacity, (ii) requiring a prefix-sum operation across all the

large intermediate arrays, imposing performance overhead, and (iii) requiring significant random accesses,

which are costly in PIM. In this work, we propose an algorithm and hardware co-optimization for sorting that

enables every group of processing elements to cooperatively share and generate an intermediate array, reducing

the capacity overhead of intermediate arrays and the performance overhead of the prefix-sum operation. To

prevent the shared array from becoming a bottleneck due to random accesses, we eliminate random accesses

by adding a local sorting step to the radix sorting and providing efficient hardware support for this step.

6

Introduction

On average, Pulley delivers 20× speedup compared to Bonsai, an FPGA-based sorting accelerator, and 13×

speedup compared to IMC, an in-logic-layer-based sorting accelerator.

1.5 TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference

on 3D-Stacked Memory

In this work, we propose TGN-PNM, a PIM-based accelerator designed specifically for Temporal Graph

Neural Networks (TGNNs). TGNNs are gaining increasing attention due to their ability to capture complex

relationships and temporal dynamics in various domains. However, designing accelerators for TGNN workloads

poses several challenges, including the lack of a standard model architecture, the absence of distinct execution

phases, and the difficulty in maintaining workload balance in evolving graphs. Existing accelerators for

static GNNs are not easily extendable to TGNNs. In this work, we leverages the concept of vault-level

parallelism by placing a Vault Processing Unit (VPU) at each vault in a 3D-stacked memory. The VPU

consists of a SIMD unit for time encoding, elementwise, and other memory-intensive operations, and a

systolic array for compute-intensive dense-matrix-matrix multiplications. By placing compute units at the

logic layer, our design achieves near-linear performance improvement with increasing memory stacks and

exposes higher internal memory bandwidth. We address the challenges of TGNN workloads by introducing a

hybrid partitioning scheme that uses traditional partitioning for small feature-dimensions, and feature-based

partitioning for large feature-dimensions. We evaluated our approach against a few architectures: a high-end

CPU and GPU, a subarray-level general purpose PIM architecture Gearbox, a bank-level AI accelerator

Newton, and the FGPA-based TGNN accelerator tFGPA. Our evaluation demonstrated average throughput

gains of 26.8x over CPU, 16.7x over GPU, 5.2x over Gearbox, 4.4x over Newton, and 10.4x over tFPGA.

1.6 Dissertation Structure

The remainder of this dissertation is organized as follows:

• Chapter 2 presents the design principles and features of Hopscotch, the micro-benchmark suite for

memory performance evaluation.

• Chapter 3 delves into the BigMap approach, focusing on optimizing the memory access patterns of

coverage-guided fuzzers and ensuring efficient cache utilization.

• Chapter 4 introduces GraphTango, a hybrid graph representation format tailored for streaming graph

processing, emphasizing cache performance improvements.

• Chapter 5 describes Pulley, an algorithm-hardware co-optimization approach for large-scale in-memory

sorting, showcasing significant speedup over FPGA and in-logic-layer sorting approaches.

7

Introduction

• Chapter 6 presents TGN PIM, a processing-in-memory architecture designed for accelerating temporal

graph neural network inference leveragin feature-based partitioning.

• Chapter 7 summarizes the dissertation, discusses its contributions, and outlines potential future

directions.

Through these chapters, we aim to provide a comprehensive exploration of memory access challenges

and innovative solutions, validating our hypothesis that memory-centric optimizations, whether through

hardware or software, can enhance the performance of data-intensive applications and mitigate the memory

wall challenge.

8

Chapter 2

Hopscotch: A Micro-benchmark Suite

for Memory Performance Evaluation

2.1 Introduction

Benchmarking for memory characterization is a well-studied problem. Most benchmarks use either fully

sequential or random access patterns for this purpose [32, 33, 34, 35, 36]. However, real-world applications

show a wide variety of access patterns that fall in-between these two extremes. A benchmark with a tunable

access pattern is more appropriate in such cases. Examples of such benchmarks are Spatter and ApexMAP.

Spatter shows sparse access using a scatter-gather kernel [37], while ApexMAP provides a tunable access

pattern for reads [38]. Unfortunately, Spatter only supports mixed access, and ApexMAP only reads. Consider

a system with excellent read bandwidth, but low write bandwidth. An evaluation with a mixed access

benchmark will evaluate the system with as low performing because the write bandwidth will act as a

bottleneck. However, an application with mostly read accesses (e.g., machine learning inference) will run

on this system perfectly fine, which will not be properly identified by that particular benchmark. Besides,

mixed access benchmarks cannot determine whether the read or the write bandwidth is the bottleneck. On

the other hand, benchmarks with only read or only write accesses will show the same performance figures

on systems that incorporate independent read and write channels and systems that do not. Therefore, a

memory benchmark should be tunable, and should also support read-only, write-only, and mixed accesses.

However, a closer inspection, as summarized in Table 2.1 reveals that no existing benchmarks show these

two desirable properties simultaneously. In our attempt to fix this gap, we present Hopscotch, which

is a comprehensive micro-benchmark suite for memory characterization. It introduces a tunable kernel

9

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

supporting read-only, write-only and mixed accesses. The pattern exhibited by this kernel is best described

as a tiled pattern. This is common pattern in multimedia applications. Furthermore, this kernel can

be tuned to change the degree of spatio-temporal locality. Hopscotch also includes various non-tunable

kernels with different access patterns. Finally, these kernels are combined in interesting ways to form the

micro-benchmarks. Besides the usual peak bandwidth and latency measurement, Hopscotch provides insight

on caching efficiency and expected bandwidths with different access patterns. Hopscotch kernels are currently

supported on CPU, GPU, and FPGA platforms. The FPGA port is carried out by Mosanu et al. as a

part of the Pimulator work [39] and runs on a RISC V soft-core. Furthermore, the simplistic nature of the

kernels make then easily portable to other emerging architectures as well and can be an interesting tool in

evaluating PIM-based architectures. The benchmark suite is publicly available on following Github repository:

https://github.com/alifahmed/hopscotch. We published the findings of this work in [27].

The remainder of the chapter is organized as follows. Related memory benchmarks are surveyed in Section

2.2. The design and implementation methodology of the kernels are discussed in Section 2.3. Section 2.4

evaluates three platforms using the micro-benchmarks. Section 3.7 concludes the work and discusses potential

future directions.

2.2 Related Works

There exists a number of benchmarks for evaluating memory system characteristics. Few early benchmarks

explored sequential access patterns for measuring peak sustainable bandwidth. Among them, STREAM

covered mixed accesses [32] while STREAM2 introduced read-only and write-only kernels [41]. CacheBench

added a provision for read-modify-write operations [35]. Deakin et al. extended peak sustainable bandwidth

measurements to GPU [42]. Unfortunately, peak sustainable bandwidth is not a good predictor of latency

bound applications. lmbench introduced a pointer-chasing access pattern to measure back-to-back-read

latency [33]. A few other benchmarks contained similar random access patterns for latency and random

update rate measurements [34, 43, 44]. Unfortunately, these benchmarks support only sequential and random

patterns, unlike real-world applications.

The MAPS (Memory Access Pattern Signature) benchmarks, such as ApexMAP [38] and MultiMAP

[45], support a wider range of access patterns using tunable kernels. ApexMAP parameterizes the regularity,

working-set-size, and locality of accesses. MultiMAP uses stride and working-set-size. While tunable, these

two benchmarks support only read access. A recent paper proposes Spatter [37], which covers scatter-gather

access patterns with tunable sparsity. Spatter can be configured to have a combination of sequential, strided,

or random reads and writes. Unfortunately, Spatter only has mixed accesses. As described earlier, mixed

10

https://github.com/alifahmed/hopscotch

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

Table 2.1: A comparison of supported access patterns and platforms of existing memory benchmarks

Benchmark
Read-only

pattern

Write-only

pattern

Mixed pattern

(read, write)

STREAM [32] – – (sequential, sequential)

STREAM2 [41] sequential sequential (sequential, sequential)

CacheBench [35] sequential sequential (sequential, sequential)

lmbench [33]
sequential,

random
sequential (sequential, sequential)

HPC-Challenge [34] – –
(sequential, sequential),

(random, random)

MultiMAP [45] strided – –

ApexMAP [38] tunable – –

pmbw [43]
sequential,

random

sequential,

strided
–

TinyMemBench [44] random sequential (sequential, sequential)

MLC [46]
sequential,

random
–

(sequential, sequential),

(random, sequential)

X-Mem [47]

(v2.4.2)

sequential,

strided,

random

sequential,

strided
(random, random)

GPU-STREAM [36, 42] – – (sequential, sequential)

Spatter [37] – – (tunable, tunable)

Hopscotch tunable tunable (tunable, tunable)

access benchmarks cannot determine whether the read or the write bandwidth is being the bottleneck. Table

2.1 summarizes the access patterns supported by different benchmarks. To our knowledge, Hopscotch is the

first benchmark suite that provides tunable access patterns for read-only, write-only, and mixed accesses.

2.3 Kernel Implementation

2.3.1 Generic Design Decisions

An overview of the kernels included in Hopscotch is presented in Table 2.2. Each kernel operates on fixed size

arrays. The size can be changed at compile time to control where in the memory hierarchy the data reside.

Each kernel iterates multiple times over the working set. The first iteration is ignored in timing calculations

(warm start). Reported time is the elapsed wall clock time. The build system uses GNU gcc with ”-O3

-march=native -fopenmp” flags. GPU codes are compiled with Nvidia’s CUDA Complier (NVCC). NVCC

11

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

Table 2.2: Characteristics of the included kernels

Kernel Name

Operation

(i = outer loop index,

j = inner loop index)

Read Pattern Write Pattern

r seq ind x = a[i] sequential –

r seq reduce x += a[i] sequential –

r rand ind
idx = rand gen(i)

x = a[idx]
random –

r rand pchase p = ∗p random –

r stride <k> x = a[i]; i += k; strided –

r tile x = a[i+ j]; i += k; tunable –

w seq memset memset(a, x,W) – sequential

w seq fill a[i] = x – sequential

w rand ind
idx = rand gen(i)

a[idx] = x
– random

w stride <k> a[i] = x; i += k; – strided

w tile a[i+ j] = x; i += k; – tunable

rw seq inc a[i]++ sequential sequential

rw gather a[i] = b[idx[i]]
sequential

+ random
sequential

rw scatter a[idx[i]] = b[i] sequential random

rw scatter gather a[idx1[i]] = b[idx2[i]]
sequential

+ random
random

rw tile
a[i+ j] = b[i+ j];

i += k;
tunable tunable

uses maximum optimization level for device code by default. Optimization level of host code has no impact

on results.

We measured the transferred bytes as seen by the user. For example, copying 1MB data would mean 1MB

read and 1MB write, total 2MB. This approach is the same as STREAM. Interestingly, there are other ways

as mentioned in [48]. lmbench uses the amount moved from one place to other (1MB for the prior example).

Hardware, on the other hand, may move a different amount. If the write-allocate policy is active, then the

data to be written is read into the cache first, making the total transferred bytes to 3MB. As mentioned,

Hopscotch will report 2MB in such cases. When combining results from multiple kernel runs, geometric mean

is used in case of rates (e.g., MB/s). The correctness of some kernels is sensitive to optimizations. In such

cases, the volatile keyword is used to prevent optimization instead of unportable inline assembly.

12

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

Table 2.3: System configuration of the evaluation platforms

CPU Core
Freq.

(GHz)

Cache
Memory

L1D L2 L3 others

Core i7-6700k

(Skylake)
4 4.0

4× 32 KiB,

private, 8-way

4× 256 KiB,

private, 4-way

4× 2 MiB,

shared, 16-way
–

DDR4-3200 (14-14-14)

4× 8 GB, 2 Channels

Xeon Phi 7210

(Knights Landing)
64 1.3

64× 32 KiB,

private, 8-way

32× 1 MiB,

shared, 16-way
–

16 GB MCDRAM,

shared, direct map

DDR4-2666 (19-19-19)

6× 32 GB, 6 Channels

Xeon Gold 5218

(Cascade Lake)
16 2.1

16× 32 KiB,

private, 8-way

16× 1 MiB,

private, 16-way

16× 1.375 MiB,

shared, 11-way
–

DDR4-2666 (19-19-19)

2× 32 GB, 2 Channels

2.3.2 Read-Only Kernels

Read-only kernels in Hopscotch are designed carefully to contain only read accesses, at least from the user’s

perspective. These kernels can still incite writes in the hardware when evicting dirty cache lines. These stray

writes can happen during the first run only. The measurements are not impacted by this because the timing

for the first run is discarded.

Hopscotch contains two sequential read-only kernels. The first kernel r seq reduce uses reduction operation

(x += a[i]) inside a loop. Although it contains data dependency, it can be efficiently distributed among

multiple threads using OpenMP reduction directive. The second kernel r seq ind is a data-independent

version that reads from the array into a register (x = a[i]). We prevented the compiler from optimizing away

this statement using the volatile keyword. In our experiments, we found out that the data-independent

version runs slightly faster.

There are two kernels for the random read-only pattern. The first kernel r rand pchase exhibits a

pointer-chasing scheme (p = (void**)*p). The array initialization routine generates a Hamiltonian cycle

of pointers. Thus, it guarantees uniform distribution, and each array element is accessed only once. The

pointer-chasing type operation is better suited for latency calculation since each read must complete before

the next read can be issued. This ensures only one outstanding read (queue depth of one at the memory

controller) at any given time. The second kernel r rand ind reads from randomly generated indices. These

indices are generated in each iteration instead of being read from an array. Reading an index from an array

(e.g., x = a[b[i]]) would result in an overlapping sequential and random type access pattern instead of purely

random pattern. Our approach is similar to the HPC-challenge benchmark’s RandomAccess kernel [34].

The random index generation routine must be kept minimal since we are considering only memory bound

applications. HPC-challenge’s index generation routine has a loop-carried dependency. We avoided the

dependency by generating indices from the loop counter. Although the generated indices are not uniformly

13

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

stride, K

length, L

stride, K

length, L

working set size, W

W/K

(a)

(b)
temporal

spatial

(c)

K=L=W

L=1
K>linesize

L=W
K=1

L=2
K=1

Figure 2.1: (a) 1D representation of tile kernel access pattern. W is the full array width, K is the stride and
L is the sequential access length. (b) 2D representation showing the tile pattern. (c) Varying spatio-temporal
locality with L and K.

distributed, they are random enough to defeat any caching and prefetching efforts. r rand ind kernel maxes

out the memory controller queue unlike r rand pchase kernel.

Hopscotch also includes a read-only kernel with a tunable access pattern. Figure 2.1 depicts the structure

of the kernel. It shows a tile-like pattern, which is a mixture of sequential and strided access. The kernel is

parameterized using the working set size (W), stride (K), and sequential access length (L). The pattern can

be made fully sequential by setting K = L = W , and of stride K with setting L = 1. Locality behavior of this

kernel can be controlled with L and K as shown in Figure 2.1(c). When L ⩽ K, there will be no overlapping

access, making the temporal locality zero. Making L > K would result in overlap. The minimum overlap will

happen for K = W/2 and L = K +1. As we increase L, or decrease K, temporal locality will increase. K = 1

and L = W will provide the maximum overlap. The locality behavior of the kernel is shown in Figure 2.1(c).

2.3.3 Write Only Kernels

Ensuring that kernels issue only writes while maintaining portability is difficult. In write-allocate, a cache line

is read first in case of a write miss. Few instruction set architectures support non-temporal store instructions

to indicate that the value written will not be used in the near future. This bypasses write-allocation. However,

using these non-temporal store instructions with the help of inline assembly reduces portability. Most

implementations of memset function issue such non-temporal stores if the architecture supports it [49].

Hopscotch includes two sequential write kernels. The w seq memset kernel uses memset, and the w seq fill

kernel writes to an array using a loop. If the system uses write-allocate policy, the w seq memset kernel

14

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

shows the actual write-only bandwidth, while the w seq fill kernel shows the bandwidth for simultaneous

read and write. On the other hand, if the system does not use write-allocate, then both kernels show similar

results. Thus, a big gap between the results of these two kernels indicates write-allocation. The opposite

is not true. Both kernels can report similar bandwidth even in the presence of write-allocate policy. This

scenario can happen if the compiler is smart enough to recognize the non-temporal behavior of the write

loop, or the memory supports independent read and write channels. In the latter case, the extra reads will

not impact the write bandwidth significantly.

Besides the sequential kernels, Hopscotch also includes random, strided and tunable write-only kernels.

However, these kernels may issue extra reads in presence of write-allocation. Unlike memset, there is no

portable way of providing a non-temporal hint for non-sequential writes. These three kernels are implemented

the same way as their read-only counterparts by replacing the read operations by writes.

2.3.4 Mixed Kernels

Hopscotch includes five kernels with mixed access. rw seq inc sequentially reads an array and increments

each element. Since each element is explicitly read before updating the value, this kernel is impervious to

the ambiguity caused by the write-allocate policy. This kernel can be used to measure the peak sustainable

bandwidth for mixed access workloads. The next three kernels (rw gather, rw scatter and rw scatter gather)

exhibit standard scatter and gather type accesses. rw gather kernel consists of a source data array (b), a

destination data array (a), and an index array (idx). The data is copied from the source array in the order

given by index array and then written to the destination array sequentially. In our implementation, the

index array is initialized using idx[i] = i, and then shuffled. Thus, the rw gather kernel has a combination of

sequential read of index array, random read of source array, and sequential write to the destination array.

Similarly, the rw scatter kernel reads sequentially from the source and the index array, and then writes to the

destination array based on the index. The rw scatter gather is a combination of the previous two patterns.

It has two randomized index arrays - one indicating the positions for read, and the other indicating the

positions for write. Overall, the rw scatter gather kernel is a combination of sequential reads of the index

arrays, random read of the source array, and random write to the destination array. Finally, the rw tile

kernel has a tunable pattern similar to r tile, with the read replaced by a copy.

2.4 Evaluation with Hopscotch

We have evaluated three platforms with Hopscotch. Table 2.3 shows the details of the platforms. The Skylake

platform represents a typical desktop. The Knights Landing platform uses a Xeon phi processor with Intel

15

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

0

25

50

75

100

125

150

175

200

225

250
Ba

nd
w

id
th

 (G
B/

s)
Knights Landing 1G Knights Landing 64G Skylake 1G Cascade Lake 1G

Figure 2.2: Measured bandwidth of the evaluation platforms for different kernels. Working set size is
mentioned with platform name. Knights Landing 1G effectively measures the bandwidth of the MCDRAM.

Many Integrated Core (MIC) architecture. It has 64 low-frequency cores arranged in tiles. Each tile has two

cores with a shared 1 MiB L2 cache. Additionally, it has an on-chip eight channel high-bandwidth distributed

16 GB MCDRAM. The MCDRAM can be used as a cache for the DDR memory, or as a standalone memory,

or as a combination of both. In our evaluation, we have used the MCDRAM as a cache. The Cascade Lake

platform uses a high-end server grade Xeon Scalable processor. This configuration reflects current generation

servers.

2.4.1 Bandwidth Measurement

The bandwidth micro-benchmark estimates the expected bandwidth for different read and write access

patterns. This benchmark runs all the non-temporal kernels. This is because reusing an array element counts

it multiple times in the bandwidth measurement, while not contributing towards required bandwidth. Kernels

with random access patterns are assumed to be non-temporal and included in this benchmark, although they

show low amount of locality.

Figure 2.2 presents the results of running the bandwidth benchmark on our platforms. For the Skylake

and Cascade Lake platforms, we have set the working set size large enough to exercise the main memory. For

the Knights Landing platform, we have used 1 GB working set size to evaluate the MCDRAM and 64 GB

working setize for evaluating the main memory. The r seq ind kernel gives the peak sustainable bandwidth

for read. The r seq reduce kernel shows 31.6% degradation for the MCDRAM compared to the r seq ind

kernel. For other platforms, the difference is only 1.2% on average. We expected r stride 16 to show higher

bandwidth than r rand ind. Accesses from both kernels will miss, but r stride 16 is more prefetcher friendly.

However, r rand ind has a small amount of locality making it marginally faster in two of the platforms.

For write-only accesses, the faster kernel between w seq memset and w seq fill measures the peak

sustainable write bandwidth. We found w seq memset to be faster, except for the MCDRAM. This indicates

16

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

0

50

100

150

200

250

300

4k 8k 16
k

32
k

64
k

12
8k

25
6k

51
2k 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

25
6M

51
2M 1G 2G 4G 8G 16

G
32

G
64

G

La
te

nc
y

(n
s)

Working Set Size

Skylake Knights Landing Cascade Lake

Figure 2.3: Measured latency of the evaluation platforms with different working set size.

the possibility of improvement in the memset function for Knights Landing architecture. For Skylake, the

bandwidth of w seq fill is roughly half of the memset kernel, hinting towards write-allocation.

2.4.2 Latency Measurement

Hopscotch’s latency micro-benchmark measures the worst case back-to-back-read latency of an unloaded

system. Back-to-back-read latency is the time that each read takes, assuming that the instructions before

and after are also cache-missing reads [33]. We have used the pointer chasing kernel (r rand pchase) for this

benchmark. It does a series of loads (p = ∗p), where the address of the next read is the value of the ongoing

read. Because of the dependency, only one read can be outstanding at a time. Since the accessed address

sequence is entirely random for this kernel, prefetching schemes cannot help to improve the measured latency.

Thus it measures the ”worst case” latency.

Figure 2.3 shows the results of running the benchmark on our evaluation platforms. The Skylake platform

shows slightly lower latency than the Cascade Lake platform. This is mainly due the the higher memory

frequency and tighter timings of the memory module used in the Skylake platform. On the other hand, the

Knights Landing exchanges latency for better bandwidth. The plateau from 8MB to 256MB shows the latency

of the L2 cache to be approximately 173ns. The latency of MCDRAM is 210ns. Because of the distributed

nature of the MCDRAM, Knights Landing has Non-Uniform Memory Access (NUMA), which means access

latency will vary based on the relative location of memory and processor. As our benchmark is not NUMA

aware, the measured latency can be thought of as the latency seen by the vast majority of applications.

17

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

Table 2.4: Impact of spatio-temporal locality on bandwidth. Single Threaded.

Spatial

locality

Temporal

locality

Bandwidth (MB/s)

Knights

Landing 1G

Knights

Landing 64G

Cascade

Lake 1G
Skylake 1G

low low 251 232 971 605

low high 885 857 8703 5700

high low 1727 1581 9216 4621

high high 1755 1772 10251 6499

2.4.3 Impact of Locality

The impact of locality is evaluated using the r tile kernel. This kernel is executed on four locality configurations

as shown in Table 2.4. Low spatial and low temporal locality configuration is achieved by setting K = 32 and

L = 1. Any value of K that results in stride wider than cache line is acceptable for this configuration. For

low spatial and high temporal locality, we selected K = 1 and L = 2. Increasing the value of L will increase

the number of times each element is reused. High spatial locality and low temporal locality is achieved with

K = W and L = W . This results in sequential access. Finally, setting K = 1 and L = 32 provided us with

high spatial and high temporal locality. Any large value of L is acceptable. However, it should be smaller than

the L1 cache size. A ratio of the high-high and the low-low configurations gives us a notion of the effectiveness

of the caching system. In our evaluation, both Knights Landing platforms show similar performance, with a

ratio of 7.3. The Cascade Lake and the Skylake platforms show a ratio of 10.7. The Cascade Lake and

Skylake platforms also have better speedup with higher temporal locality, indicating premature cache line

replacement in Knights Landing. The direct mapping of MCDRAM in Knights Landing may be one of the

reasons for such behavior.

2.4.4 Roofline Model and Machine Balance

The original Roofline model shows peak theoretical performance with varying operational intensity [50]. The

Roofline model is helpful in determining the maximum achievable performance of an application. It also

indicates whether the application is memory-bound or compute-bound using the concept of machine balance

and code balance:

Machine Balance, Bm =
Maximum sustainable mamory BW (words/s)

Peak performance (flops/s)

Code Balance, Bc =
Requested data (words)

Computation (flops)

18

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

10 1 100 101 102 103

Arithmetic Intensity (FLOP/Byte)

102

103

104

Pe
rfo

rm
an

ce
 (G

FL
OP

/s
)

Roofline Plot (GeForce GTX 1080 Ti)
Performance (SP)
Machine Balance (SP)
Performance (DP)
Machine Balance (DP)

Figure 2.4: Roofline plot with machine balance for Nvidia GeForce 1080 Ti GPU. This GPU has 128 SP
cores vs only 4 DP cores per SM. Performance figures reflects this ratio.

10 1 100 101 102 103

Arithmetic Intensity (FLOP/Byte)

101

102

Pe
rfo

rm
an

ce
 (G

FL
OP

/s
)

Roofline Plot
Performance (SP)
Machine Balance (SP)
Performance (DP)
Machine Balance (DP)

Figure 2.5: Roofline plot with machine balance for Intel Core i7 6700k CPU. The implemented kernel leverages
the AVX2 vector extension.

Intuitively, machine balance denotes the capability of the machine, while code balance denotes the intensity

of the applications. If Bm < Bc, then the volume of data requested by the application per flop will surpass

the capability of the machine. In this case, the application performance will be bottlenecked by the memory

bandwidth of the machine. Even having a perfect cache will not help in this scenario.

However, determining peak theoretical performance is non-trivial. One way is hand calculating based on

the specification provided by the vendors. Unfortunately, the required information is not available in many

19

Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation

cases. Another way is to experimentally measure the peak achievable performance. Hopscotch adopts the

latter approach. The kernel first loads an element of the working set into a register. Then it repetitively

performs balanced multiply-add operations until the requested operational intensity is reached. Finally, the

updated value is stored back. These steps are performed on all of the elements of the working set, and

repeated for different operational intensity. Partial unrolling is done to keep all the fused-multiply-add (FMA)

units busy without register spilling. Hopscotch provides a Roofline benchmark for both CPU and GPU

platforms.

Hopscotch additionally displays the machine balance on the Roofline plot. Machine balance is the ratio of

peak performance and peak memory bandwidth [32]. Machine balance is a property of the platform, while the

operational intensity is a property of the application. An application will be memory-bound if the operational

intensity of that application is lower than the machine balance. Otherwise, it will be compute-bound.

Figure 2.5 shows the Roofline plot generated by Hopscotch for an Nvidia GTX 1080 Ti GPU. This GPU

has 28 streaming multiprocessors (SM). Each SM has 128 single precision cores and 4 double precision cores.

These cores can execute one FMA instruction each clock. With boost core clock of 1582 MHz, the peak single

precision performance is (28 ∗ 128 ∗ 1582 ∗ 2) = 11339 GFLOP/s, and peak double precision performance is

(28 ∗ 4 ∗ 1582 ∗ 2) = 354 GFLOP/s. Actual performance can exceed these numbers with GPU Boost. This

feature allows higher core clocks if thermal and power budget permit. As we can see in Figure 2.5, the

reported performance with Hopscotch kernel is very close to the theoretical peak performance.

2.5 Conclusions

We presented Hopscotch, which is a micro-benchmark suite for memory characterization. It contains kernels

with different access patterns for read-only, write-only, and mixed accesses. Furthermore, we introduced a

kernel with tunable spatio-temporal locality. We also demonstrated how these kernels are combined into

micro-benchmarks revealing important memory characteristics. Bandwidth, latency and caching efficiency

are measured using the benchmark suite for three different platforms. We also demonstrated and validated

the empirical roofline tool on CPU and GPU platforms.

As for the future direction, it would be interesting to do a principle component analysis with different

performance metrics as the features to identify potential overlaps between the kernels and also to determine

the gaps that are not covered by the current kernels. Another interesting direction to pursue would be to port

the kernels to a few PIM-based architectures. Extending the kernels to enable evaluating memory controller

fairness (e.g., detecting starvation) and prefetching schemes would be interesting as well.

20

Chapter 3

BigMap: Future-proofing Fuzzers with

Efficient Large Maps

3.1 Introduction

Real-world applications usually have a large codebase, making it difficult to detect security vulnerabilities

while providing a vast attack surface to the adversaries. Fuzzing techniques are geared towards automatically

generating test vectors to expose these vulnerabilities or to improve the code coverage in general. Among

different types of fuzzer, black-box fuzzers blindly generate random test vectors without resorting to any form

of program analysis. Consequently, these fuzzers scale very well with program size and are easily parallelizable

but are unlikely to find rare bugs. On the other end of the spectrum, white-box fuzzers can do a directed and

exhaustive search of the coverage space with symbolic execution, but are prohibitively slow to be useful for

large, real-world applications [51, 52, 53, 54]. Coverage-guided grey-box fuzzers fill the middle ground and

so far have been most successful in finding software bugs. At the time of this writing, Google’s OSS-Fuzz

platform uncovered over 20,000 vulnerabilities on 300 projects [55] with the help of three coverage-guided

grey-box fuzzers - libFuzzer [56], Honggfuzz [57], and American Fuzzy Lop (AFL) [58].

As the name suggests, coverage-guided fuzzers use some form of a coverage metric to track and guide their

test generation process. For example, libFuzzer and Honggfuzz use basic block coverage. AFL, on the other

hand, tracks edge hit counts with the help of a coverage bitmap. Each edge encountered while executing

a test case is dynamically assigned to a location on this bitmap to store and update the hit count. This

coverage bitmap is accessed very frequently and should occupy faster cache levels to maximize the test case

generation throughput. For this reason, the size of the bitmap has historically been kept small (the default

21

BigMap: Future-proofing Fuzzers with Efficient Large Maps

size is 64kB for AFL). Due to the bitmap’s size limitation and the randomness of the location assignment, it

is possible to have hash collisions, where two or more edges point to the same location on the bitmap. Hash

collisions introduce ambiguity in coverage feedback and can severely limit the fuzzer’s ability to find bugs

[59]. Our work seeks a better understanding and efficient mitigation of this issue.

The straightforward way for reducing hash collisions is to expand the hash space (i.e., increase coverage

bitmap size). Prior works noted that näıvely enlarging the bitmap can severely diminish the test case

generation throughput, potentially resulting in lower code coverage within the same time budget [59]. We

investigated the reason behind the throughput drop with larger bitmaps. We observed that for large bitmaps,

most of the time is spent doing a few specific operations (e.g., reset, classify, compare, and hash) on the

bitmap. These operations are performed on the full bitmap, although only a small fraction of the bitmap is

actively used for storing coverage statistics. This type of access pattern is inefficient and heavily pollutes the

processor’s data cache, ultimately lowering the throughput. In this work, we introduce BigMap, a two-level

bitmap scheme that optimizes these map operations. BigMap adds an extra level of indirection to bitmap

accesses to condense randomly scattered coverage metrics in a sequential bitmap, vastly improving cache

locality behavior. Furthermore, the map operations now only need to be performed on the used portion

instead of the full bitmap. Overall, our proposed approach enables using large maps without sacrificing

throughput.

We integrated BigMap into AFL and conducted experiments with benchmarks from FuzzBench [60]

and OSS-Fuzz [55]. With AFL’s carefully tuned default map size of 64kB, BigMap demonstrated identical

throughput, despite adding an extra level of indirection. The throughput gain over AFL increased with map

size, with up to 13.6x (average of 4.5x) for a 2MB map and up to 114x (average 33.1x) for an 8MB map.

BigMap also demonstrated better scalability with concurrent fuzzing instances, achieving an average of 9.2x

higher throughput than AFL for a 2MB map and up to 12 parallel instances. The higher throughput resulted

in uncovering 37% more unique crashes on average.

Interestingly, BigMap is compatible with any coverage metric (not just edge hit count) as long as it

uses some form of a coverage bitmap. This property, along with the efficiency of BigMap with large maps,

enables exploring aggressive compositions of coverage metrics and algorithms previously thought infeasible.

To demonstrate this capability of BigMap, we selected a few large applications from OSS-fuzz [55] as seed

benchmarks. Their discoverable edges are further amplified by enabling laf-intel transformations1 [61] and

then combining it with a more expressive coverage metric, N-gram [62]. This combination resulted in fuzzing

harnesses with over 600k discoverable edges (over 5.5 million static edges). To put it into context, typical

1Laf-intel transforms multi-byte comparisons into a cascade of single-byte comparisons. Laf-intel also deconstructs switch
statements and strcmp/memcmp functions into if-else statements.

22

BigMap: Future-proofing Fuzzers with Efficient Large Maps

real-world applications have around 1k - 50k discoverable edges [63, 64, 65]. After mitigating hash collisions

on these benchmarks with the help of BigMap, we saw a 33% increase in the number of unique crashes. In

summary, we make the following contributions:

• We investigate the shortcomings of enlarging bitmap to mitigate hash collision and identify the following

key reasons: frequent operations on the full coverage map and excessive cache pollution.

• We leverage our findings in designing BigMap. BigMap introduces a two-level mapping scheme to limit

the operations on the used region of the map. With this adaptive technique, the bitmap can be made

arbitrarily large without sacrificing speed.

• We extend base AFL with our proposed method. Compared to AFL, we see an average of 4.5x higher

test case generation throughput for a 2MB map and 33.1x for an 8MB map.

• We evaluate the scalability of BigMap with concurrent fuzzing instances. Compared to AFL, we see an

average throughput gain of 9.2x for a 2MB map. Furthermore, BigMap was able to uncover 37% more

unique crashes.

• BigMap’s enables the aggressive composition of coverage metrics. We evaluate the composition of two

well-known coverage metrics, laf-intel and N-gram, and find that unique crash coverage improved by

33%.

AFL fuzzer with integrated BigMap is open-sourced at: https://github.com/alifahmed/BigMap. We

published the findings of this work in [28].

3.2 Background

3.2.1 American Fuzzy Lop (AFL)

AFL is one of the most popular fuzzers currently available. Many prior works [59, 66, 67] built upon AFL,

including our work. AFL uses an evolutionary algorithm for fuzzing. Figure 3.1 illustrates this flow. In general,

this workflow is applicable to other coverage-guided fuzzers as well. At the beginning of the process, AFL

instruments the target application and populates the seed pool with user-provided seed inputs. Afterwards,

AFL enters a fuzzing cycle: i) Selects a seed from the seed pool for mutation. ii) Mutates the seed to generate

many new test cases. A seed is usually mutated tens of thousands of times before moving to the next seed.

iii) Executes the generated test cases and checks the coverage feedback. If any test case crashes or hangs, it is

reported to the user. If a test case covers an interesting path dictated by the fitness function (e.g., improves

coverage), it is added to the seed pool as a potential candidate for future mutations. Otherwise, the test

case is discarded. iv) After finishing with the current seed, the flow goes to (i) and selects a new seed for

23

https://github.com/alifahmed/BigMap

BigMap: Future-proofing Fuzzers with Efficient Large Maps

Testcases

Target
App

Initial
Seeds

Instrument

Seed Pool

Seed
Mutation

Instrumented
Application

Seed
Scheduling

Discard

Report
Crash/Hang

Global
Coverage Coverage

Execution

fe
e

d
b

ac
k

Add to
Pool Fitness Function

Figure 3.1: The generic workflow of a coverage-guided fuzzer.

mutation. Fuzzing cycle continues until the user interrupts, or some other criteria is met (e.g., coverage goal

or time budget).

Seed Scheduling and Mutation

This section is kept short because our approach is orthogonal to the seed scheduling and mutation strategy.

Seed scheduling policy determines which seed from the seed pool will be fuzzed next. AFL prioritizes the

seeds based on their execution speed and input file length. Short input files are preferred because a mutation

is more likely to touch important control structures and not just redundant data blocks on a smaller file [63].

As for mutating the seed, AFL applies a few deterministic (i.e., not random) mutation steps followed by

random mutations. The mutation steps involve bit-flips, block substitution, splicing, etc. The deterministic

mutation steps usually take a long time to finish. It is a common practice to skip this deterministic stage and

directly apply random mutations for shorter runs (e.g., 24 hours).

Execution and Coverage Feedback

AFL collects the coverage of a test case with the help of the instrumented target. The exact execution path

is not tracked. Instead, a coarse-grained edge hit count is used as the coverage metric [63]. The edges are

identified as a hash of the (source block, destination block) tuple. Listing 3.1 shows the necessary steps.

1 BX , BY = random % MAP SIZE <COMPILE TIME>

2 EXY = (BX >> 1)⊕BY

3 coverage bitmap [EXY]++

Listing 3.1: Instrumentation capturing the hit counts of EXY .

24

BigMap: Future-proofing Fuzzers with Efficient Large Maps

Here MAP SIZE is the size of the coverage bitmap. BX and BY are the source and the destination basic

block IDs, respectively. EXY is the ID corresponding to the X → Y edge. Basic block IDs are assigned at

compile time following a discrete uniform distribution over the [0..MAP SIZE) range. On the other hand,

edge IDs are calculated at runtime and also falls within [0..MAP SIZE). The shift operation in the edge ID

calculation makes it possible to preserve the directionality of the edges (e.g., EXY ̸= EY X). It also helps

in properly identifying distinct tight loops (e.g., EXX ≠ EY Y ≠ 0). AFL sports an alternative technique

for getting edge IDs that leverages the trace-pc-guard coverage sanitizer of the Clang compiler [68]. In this

method, the Clang compiler itself instruments static edges without any need to instrument at the basic

block level. Unfortunately, this method cannot detect indirect edges as the target basic block information is

unavailable at compile time.

Irrespective of how the edge IDs are generated, they act as an index to the coverage bitmap. The

corresponding byte at that index stores the desired statistics (e.g., hit count for vanilla AFL) of that particular

edge. The following steps are performed to collect the coverage of individual test cases:

• Bitmap reset: The coverage bitmap is a shared data structure and is used by all the test cases. Thus,

before executing a test case, the coverage bitmap is cleared to remove any artifact of previous runs. A

simple memset to zero does this job.

• Bitmap update: The instrumented target executes the test case and records the edge hit counts on

the bitmap.

• Bitmap classify: The exact hit counts are converted to coarse hit counts by mapping them into

buckets. The buckets used by AFL are: [1], [2], [3], [4-7], [8-15], [16-31], [32-127], [128,∞]. Hit counts

that fall into different buckets are considered as an interesting change in the control flow. Change

within the same bucket is ignored. Bucketing also mitigates the impact of accidental hash collisions.

• Bitmap compare: After the classify step, the modified bitmap is compared with a global coverage

bitmap that keeps track of all the edges covered so far. Newly discovered edges, if any, are added to the

global coverage map at this point. If the test case crashes/hangs instead, it is compared to a global

crash/hang coverage bitmap.

• Bitmap hash: If the test case is considered interesting, a hash of the bitmap is calculated and saved

for rapid comparison in the future.

Since these bitmap operations are performed for every test case (expect bitmap hash, which is performed

for every interesting test case), it is crucial to minimize the time spent on these operations. One way to

facilitate faster bitmap operations is to keep the bitmap size small. This limitation on map size leads to a

high number of hash collisions. As stated earlier, collisions introduce ambiguity in coverage feedback and may

25

BigMap: Future-proofing Fuzzers with Efficient Large Maps

result in discarding interesting test cases. This work’s primary objective is to enable large coverage bitmaps

(thus reducing hash collisions) without incurring associated runtime overhead.

3.2.2 Collision Rate

In our work, the severity of the hash collision is quantified using the collision rate metric. Consider drawing

n keys from a hash space of size H. Among the n draws, if c number of key matches with one of the previously

drawn keys, then the collision rate is defined as c/n (where c < n). If the key draw follows a discrete uniform

distribution, then the collision rate can be expressed using Equation 3.1.

CollisionRate(H,n) = 1− H

n

[
1−

(
H − 1

H

)n]
(3.1)

Equation 3.1 is consistent with how AFL generates the block and edge IDs. Here, the hash space size H

is analogous to the coverage bitmap size, and the number of drawn keys n is equivalent to the number of

generated IDs.

Note that the collision rate does not indicate the actual number of keys with collision. Consider an

example where the following keys are sequentially drawn: {4, 2, 5, 3, 2}. Here, the collision rate is 1/5 and not

2/5. Although the given collision rate definition does not account for all the colliding keys, we have used it to

remain consistent with the existing literature [59, 63].

3.3 Implication of Näıve Hash Collision Mitigation Strategy

Hash collisions can be completely avoided by assigning unique IDs to every discoverable edge. Otherwise,

traversing two (or more) different edges will update the same location in the coverage bitmap. Unfortunately,

assigning unique IDs may not always be possible. AFL’s default bitmap size is 64kB, where each byte stores

the statistics of an edge. Thus, even in the best scenario, at most 64k edges can be assigned with different

IDs. Any more than that, and collision will be unavoidable. The birthday problem suggests that the collision

is likely to occur with significantly less than 64k edges [69]. Assuming a uniform distribution of the edge IDs

within the 64kB bitmap range, the probability of having at least one collision is ∼50% after assigning only

300 IDs.

Similar to edge IDs, block IDs are also randomly generated within the [0..MAP SIZE) range (Listing

3.1). Thus, it is quite possible to have more than one basic block with the same ID. Edges originating from

or entering these colliding blocks will point to ambiguous locations in the coverage bitmap. Bucketing the

26

BigMap: Future-proofing Fuzzers with Efficient Large Maps

64k 128k 256k 512k 1M 2M 4M 8M 16M 32M
Bitmap Size

0

10

20

30

40

50

60

70

80

90

100

Co
lli
si
on

Ra
te

(%
)

No. of keys
5k
10k
20k
50k
100k
200k
500k
1M

Figure 3.2: Hash collision rate drops as bitmap size is increased (derived from Equation 3.1).

hit counts provides some protection against such accidental hash collisions. Having too many collisions still

severely limits the fuzzer’s ability to guide its fuzzing process by providing incorrect coverage feedback.

The straightforward way of reducing hash collisions is to expand the hash space (i.e., use a larger bitmap).

Figure 3.2 shows the collision rates with different bitmap sizes and the number of keys drawn (derived from

Equation 3.1). The keys here are analogous to the discoverable edges and blocks. For real-world applications,

the number of discoverable edges usually ranges from 1k to 50k. As a result, a 64kB map is subjected to ∼30%

collision rate. Using more thorough coverage metrics like full/partial path coverage [62], context-sensitive

edge coverage [67], or branch condition transformations [61] can make the required number of IDs go well

over 500k. These techniques can be stacked, further increasing the collision rate. We need a much larger map

than 64kB if we want to explore these techniques without worrying about hash collisions.

3.3.1 Cost of Expanding Hash-space

The bitmap should be much larger than the number of required IDs to keep the collision rate in check.

Unfortunately, increasing bitmap size also increases the runtime overhead of the bitmap operations. Figure

3.3 shows the runtime composition for six benchmarks with 64kB, 2MB, and 8MB bitmap sizes. For the small

64kB map, the fuzz target’s execution time dominates the overall runtime. The costs of bitmap operations

are negligible at this point. On the other hand, the runtime is dominated by the bitmap operations for the

larger 8MB map. The classify, compare, and reset operations require iterating through the full bitmap for

every test case. As a result, they are impacted most by the increase in bitmap size. Bitmap hash operation

also needs to go through the full bitmap but is only performed on the interesting test cases. Therefore, the

27

BigMap: Future-proofing Fuzzers with Efficient Large Maps

0

0.5

1

1.5

2

2.5

3

64k 2M 8M 64k 2M 8M 64k 2M 8M 64k 2M 8M 64k 2M 8M 64k 2M 8M

libpng sqlite3 gvn bloaty openssl php

Ti
m

e
(h

o
u

rs
)

Execution Map Classify Map Compare Map Reset Map Hash Others

Figure 3.3: Runtime composition with varying bitmap sizes. Map operations dominate the runtime for bigger
maps. The reported time is for one million test case generation.

overhead of hash operation varies considerably depending on the benchmark. There are a few other bitmap

operations not shown in this figure, simply because they are too infrequent to have any perceivable impact

on the runtime.

3.4 BigMap: Adaptive Two-Level Bitmap

In the AFL’s data structure for coverage tracking, the keys are randomly distributed throughout the bitmap.

Figure 3.4(a) shows an example where the edge ID EXY is used as the key to access the coverage map. In

this example, only five of the twelve locations are modified. However, since there is no information on exactly

where these modified locations are, the bitmap operations like reset, classify, compare, etc., have to traverse

the complete map. We propose the use of a two-level bitmap scheme to consolidate these scattered accesses.

3.4.1 Two-Level Bitmap Scheme

In our proposed scheme, the consolidation process is carried out during the bitmap update phase by maintaining

three data structures: i) A coverage bitmap that holds the coverage statistics. ii) An used key that points to

the next available space in the coverage bitmap. iii) An index bitmap that maps an edge ID to a location in

the coverage bitmap. Figure 3.4(b) demonstrates the update steps. First, we query index bitmap[EXY] to get

28

BigMap: Future-proofing Fuzzers with Efficient Large Maps

KXY = 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

0 19 13 0 0 34 0 0 27 0 0 0 51
coverage
bitmap

(a) AFL’s bitmap update

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

-1 0 1 -1 -1 4 -1 -1 2 -1 -1 -1 3
index
bitmap

19 13 27 51 34 0 0 0 0 0 0 0 0
coverage
bitmap

used_key = 5

(b) BigMap’s two-level bitmap update

EXY = 8

EXY = 8

Figure 3.4: Steps of bitmap update operation for AFL’s and BigMap’s data structure. The hit counts in the
coverage bitmap are scattered in (a), while consolidated in (b).

the location of the stored hit count. If the edge is encountered for the first time, we will get an invalid location

(-1 in our implementation). In this case, the index bitmap[EXY] is assigned to the next available location

in the coverage bitmap (= used key). Once we have the location, the hit count in the coverage bitmap is

incremented.

As depicted in Figure 3.4, BigMap’s scheme makes the coverage statistics contained within the first

used key locations, unlike AFL. Therefore, all the bitmap operations (except bitmap update) need to iterate

over the [0..used key) range instead of the full bitmap. As a result, the runtime of the map operations will

depend on how many edges are discovered instead of how big the coverage bitmap is. An interesting aspect

of this solution is its adaptive nature, where the default bitmap size can be arbitrarily large irrespective

of the target application’s size. Applications with a large number of discoverable edges will benefit from

hash collision mitigation, and applications with few discoverable edges will not incur any significant overhead

despite having large map structures. This flexibility helps in situations when it’s difficult to assess the optimal

map size in advance.

3.4.2 Illustrative Example

Figure 3.5 shows a step by step example of how the map operations are performed. We will focus on BigMap

and will contrast it with AFL towards the end of this section.

At the beginning of the fuzzing session, BigMap initializes the index bitmap to -1, indicating none of the

edges are assigned any location yet. The hit counts in coverage bitmap are also set to zero. This initialization

29

BigMap: Future-proofing Fuzzers with Efficient Large Maps

A → B → A → B → C

0 0 0 0 0 0 0 0 0 0reset

0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 2 0 0

0 1 0 0 0 0 0 2 0 1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0

-1 -1 -1 -1 -1 -1 -1 0 -1 -1

-1 1 -1 -1 -1 -1 -1 0 -1 -1

-1 1 -1 -1 -1 -1 -1 0 -1 -1

-1 1 -1 -1 -1 -1 -1 0 -1 2

A → B

EAB = 7
EBA = 1
EBC = 9

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [0] [1] [2] [3] [4] [5] [6] [7] [8] [9][0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

reset

used
key (n)

0

1

2

2

3

3

execution path:

(a) Trace

coverage_bitmap index_bitmap coverage_bitmap

(b) AFL’s data structure (c) BigMap’s data structure

0 0 0 0 0 0 0 0 0 0initialize -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0initialize 0

B → A

A → B

B → C

A → B

B → A

A → B

B → C

0 1 0 0 0 0 0 2 0 1classify -1 1 -1 -1 -1 -1 -1 0 -1 2 2 1 1 0 0 0 0 0 0 0classify

30 1 0 0 0 0 0 2 0 1compare -1 1 -1 -1 -1 -1 -1 0 -1 2 2 1 1 0 0 0 0 0 0 0compare

30 0 0 0 0 0 0 0 0 0reset -1 1 -1 -1 -1 -1 -1 0 -1 2 0 0 0 0 0 0 0 0 0 0reset

run test

run next test

Figure 3.5: An illustrative example of bitmap operations on AFL’s and BigMap’s data structures. Value on
top is the index of the bitmaps. Locations accessed at each step are highlighted in bold. (a) Execution trace
and the assigned edge IDs (random). (b) AFL’s data structure. Reset, classify, compare, etc., operations need
to access the full bitmap. (c) BigMap’s data structure. The full map is accessed only during initialization.
Afterward, reset, classify, compare, etc., accesses only the used region of the coverage bitmap. Index bitmap
is only accessed during the hit count update.

is performed a single time during the whole fuzzing campaign, and it is the only time BigMap accesses

the full bitmaps. At this point, the index bitmap and the coverage bitmap are ready to capture the test

case’s coverage information. The used portion (none for the first run) of the coverage bitmap is reset before

each test is executed. During execution, the index bitmap is updated as new edges are being discovered.

Corresponding locations in the coverage bitmap is also updated. After the execution is finished, the hit

counts are bucketed and compared with the global coverage maps. If the test case is deemed interesting by

the fuzzer, additional bitmap operations such as hashing, rank update, etc., may be performed. These steps

read/modify only the used portion of the coverage bitmap as well.

A few things to note here. The index bitmap is touched only during the update phase. It is not accessed

at any other phase, including reset. Therefore, the same edge will point to the same coverage bitmap location

for all the test cases. Also, the update phase is the only stage where AFL’s data structure is more efficient.

AFL’s structure does one data access per edge compared to two accesses of BigMap’s structure. Fortunately,

the extra access shows good cache locality, as will be discussed in the next section.

3.4.3 Access Patterns of the Bitmap Operations

AFL’s Data Structure

Table 3.1(a) summarizes the access patterns for AFL’s data structure. The bitmap update does sparse access

over the coverage bitmap. These accesses correspond to the IDs of the encountered edges. It has a high

temporal locality because the same edges are likely to be traversed again within the same program execution

30

BigMap: Future-proofing Fuzzers with Efficient Large Maps

Table 3.1: Access Patterns of the Bitmap Operations

(a) AFL’s Data Structure

Map

Operation
Bitmap Access to

Temporal

locality

Spatial

locality

Cache

pollution

Update Coverage Used map2 High Low Low

Others1 Coverage Full map Low High High

(b) BigMap’s Data Structure

Map

Operation
Bitmap Access to

Temporal

locality

Spatial

locality

Cache

pollution

Update
Index Used map2 High Low Low

Coverage Used map2 High High None

Others1
Index None – – None

Coverage Used map2 High High None

1Bitmap reset, compare, classify, hash etc.

2Corresponds to the highlighted cells in the example of Figure 3.5.

(e.g., edges inside loops or common functions). The same edges are also likely to be traversed across different

executions due to the overlap of execution paths.

The rest of the bitmap operations iterates the full map. Most of these locations do not contain any useful

information, therefore causes heavy cache pollution. In turn, the cache pollution may trigger the eviction of

useful data to slower cache levels or memory. For example, pollution may prevent keeping common edge

locations in L1/L2 cache across consecutive executions.

BigMap’s Data Structure

Table 3.1(b) shows the access patterns for BigMap’s data structure. During the update operation, BigMap’s

structure makes two accesses per edge, first to the index bitmap and then to the coverage bitmap. Access

to the index bitmap is scattered and is identical to the pattern of AFL’s data structure. On the other

hand, access to the coverage bitmap has a high spatial and temporal locality. The spatial locality stems

from the fact that the edge hit counts are now residing in close vicinity. The rest of the bitmap operations

do sequential access to the coverage bitmap, exhibiting high spatial and temporal locality. We infer high

temporal locality for BigMap’s structure and not for AFL’s structure. This is because AFL’s structure has a

high reuse distance as it accesses the full map. Overall, BigMap’s structure demonstrates vastly improved

cache locality behaviors compared to AFL.

31

BigMap: Future-proofing Fuzzers with Efficient Large Maps

3.4.4 Implementation Details

The BigMap approach requires minor modifications of AFL’s instrumentation to support the two-level bitmap

update. The new instrumentation is shown in Listing 3.2.

1 BX , BY = random % MAP SIZE <COMPILE TIME>

2 EXY = (BX >> 1)⊕BY

3 i f (index bitmap [EXY] == −1)

4 index bitmap [EXY] = used key++

5 KXY = index bitmap [EXY]

6 coverage bitmap [KXY]++

Listing 3.2: BigMap instrumentation for map update.

Here, lines 1, 2, and 6 are identical to AFL’s instrumentation scheme (Listing 3.1). Lines 3-5 are added

to query and modify the index bitmap. Since these instructions are executed for every edge, overhead can

be a big concern. Given the rarity of new edge discovery, most of the time, the overhead will consist of one

branch condition check (at line 3) and one extra access to the index bitmap (at line 5). The branch condition

outcome is highly skewed towards not-taken and will be predicted correctly by the branch predictor almost

always. Furthermore, the access to the index bitmap is amenable to hit the L1 or L2 cache, making the access

time negligible. The index bitmap update (at line 4) will be invoked only when a new edge is discovered for

the first time. Interestingly, while the index bitmap is indexed by the edge ID, it does not necessarily have to

be the case. In fact, any coverage metric can be used in edge ID’s place, trivializing the integration process.

The modification in the instrumentation takes care of the bitmap update operation. Further adjustments

are required to support the rest of the bitmap operations. It primarily involves changing the iteration count

from the full map size to used key. Bitmap hash operation is an exception to this rule. AFL uses CRC32 for

calculating bitmap hash. If we always calculate hash in the [0..used key) range, it might lead to wrong hash

values. Consider the following example with three test case executions:

Execution Path used key coverage bitmap Bitmap Hash

P1: A → B → C 2 {1,1,0,0,...} crc32({1,1})
P2: A → B → C → D 3 {1,1,1,0,...} crc32({1,1,1})
P3: A → B → C 3 {1,1,0,0,...} crc32({1,1,0})

The hash of first case is crc32(P1) = crc32({1, 1}). Here, {1, 1} are the hit counts up to the used key.

While executing the second case, the used key will be incremented to 3. Therefore, the hash of third case will

be calculated as crc32(P3) = crc32({1, 1, 0}). The first and third paths are essentially the same. However,

32

BigMap: Future-proofing Fuzzers with Efficient Large Maps

the calculated hash values do not match because crc32({1, 1}) ̸= crc32({1, 1, 0}). To avoid such discrepancy,

BigMap calculates the hash up to the last non zero value in the coverage bitmap.

3.4.5 Additional Optimizations

We carried out a few additional optimizations to make our implementation faster. These optimizations are

orthogonal to the two-level bitmap scheme and can be adopted by any AFL based fuzzers. First, we merged

the bitmap classify and compare steps. The bitmap compare operation almost always follows the classify

operation. Because these operations are carried out in the same region of the bitmap, they can be easily

merged. This merging allows more efficient use of cache and cuts the cost of (compare + classify) to half. The

second optimization is to replace normal reset operation with a non-temporal version. The reset operation

happens just before the execution and can pollute cache with regions of the bitmap that are never used.

Using non-temporal stores prevents this pollution. This optimization is only beneficial to the vanilla AFL

because BigMap already limits the map operations to the used region. Our final optimization is to allocate

the index and coverage bitmap using the OS-provided facility for huge pages. There are limited numbers

of slots on L1/L2 DTLB, and a large bitmap can consume many of them, resulting in frequent page-walks

caused by DTLB misses. Allocating the bitmaps on a huge page reduces these overheads.

3.5 Evaluation

We evaluated our proposed approach in three steps. First, we demonstrated that BigMap could support

larger maps without sacrificing test generation throughput, unlike standard AFL. Second, we investigated

BigMap’s ability to support coverage metric compositions and whether that leads to practical benefits in

terms of improved code coverage. This step also acts as a justification for using large coverage maps. Finally,

we evaluated the scalability of both fuzzers with respect to the number of concurrent fuzzing instances.

3.5.1 Experimental Setup

System Configuration

The experiments were conducted on a system with two Intel Xeon E5645 CPUs (totaling 12 physical cores)

clocked at 2.40GHz. Each fuzzing instance was pinned to a separate physical core with a private 32kB L1

data cache, 256kB unified L2 cache, and a shared 12MB L3 cache. Fuzzers were run for 24 hours. Because

the run time is relatively short, the deterministic fuzzing step is skipped, and the fuzzers were configured to

run in persistent mode. Persistent mode enables feeding multiple inputs in a loop and does not have any

33

BigMap: Future-proofing Fuzzers with Efficient Large Maps

Table 3.2: Benchmark Characteristics

Benchmark
Number

of seeds

Discovered

edges1

Collision

rate2 (%)

Static

edges3
Version

zlib 77 722 0.55 875 v1.2.11

libpng 1 1,218 0.92 2,987 v1.6.35

systemd 6 2,314 1.74 53,453 v245

libjpeg 1 2,928 2.20 9,542 v2.0.4

mbedtls 1 5,377 3.99 10,942 v2.21.0

proj4 43 6,379 4.71 7,830 v6.3.1

harfbuzz 58 8,930 6.51 10,021 v2.6.4

libxml2 1 9,422 6.86 50,327 v2.9.10

openssl 2,241 10,297 7.46 45,989 v1.0.2u

bloaty 94 10,536 7.62 89,658 v1.0

curl 31 12,728 9.11 62,523 v7.68.0

php 2,782 20,260 13.98 123,767 v7.4.3

sqlite3 1,256 40,948 25.64 45,136 v3.31.1

licm 101 64,317 36.29

977,899 v10.0.1

gvn 140 65,781 36.89

strength-reduce 122 76,065 40.83

indvars 174 82,105 42.98

loop-vectorize 345 108,231 51.06

instcombine 1,046 131,677 56.90

1 Maximum edge coverage among all fuzzing configurations.

2 With a 64kB map.

3 Derived using SanitizerCoverage [68].

fork() call or initialization overheads, thus significantly boosts the test execution rate. This setup is adopted

from FuzzBench [60]. As for the instrumentation mode, we used the afl-clang-fast that leverages an LLVM

compiler pass to inject the instrumentation code. This mode is faster than the gcc-based or coverage-sanitizer

based alternatives [63]. Optimizations mentioned in Section 3.4.5 applied to both AFL and BigMap.

Benchmarks

We used 19 benchmarks in our experiments. The characteristics of these benchmarks are given in Table 3.2.

The first 13 benchmarks are taken from FuzzBench [60]. These benchmarks are relatively small and have low

collision rates. The remaining six benchmarks are LLVM optimization passes collected from OSSFuzz [55].

These benchmarks share the same LLVM-opt binary [70], and different fuzzing harnesses are selected via

34

BigMap: Future-proofing Fuzzers with Efficient Large Maps

command-line arguments. The LLVM-opt binary itself has a high number of static edges. Collectively, the

benchmarks span a wide range of discoverable edges (∼1k - 131k) and collision rates.

Performance Metrics

The following metrics are used to evaluate the performance of our approach:

• Test case generation throughput or execution rate: Denotes the number of test cases evaluated

by the fuzzer per unit time. Everything else being equal (e.g., seed selection and mutation strategy), a

fuzzer with a higher throughput is expected to give better coverage.

• Unique crashes: AFL has a built-in deduplication mechanism for finding unique crashes. AFL

considers a crash unique if it covers an edge unseen by the previous crashes or does not cover an

edge common in all the previous crashes. This mechanism requires maintaining a local and global

crash-coverage bitmap, making it inherently biased towards larger maps. To avoid this bias, we resorted

to Crashwalk [71], which takes the hash of the call stack and the faulting address for deduplicating

crashes.

• Edge Coverage: While crash coverage is the proper way of quantifying a fuzzer’s performance, crashes

in a program are typically sparse. Therefore, in addition to crash coverage, we also report edge coverage.

Intuitively, a fuzzer that covers more edges are also likely to discover more bugs. To get the edge

coverage, we collected the output corpus of the fuzzers and subjected them to a bias-free independent

coverage build.

3.5.2 Evaluating the Impact of Map Size Variation

We claimed that BigMap performs efficiently regardless of the size of the coverage bitmap. This section

validates the claim by comparing BigMap’s performance with AFL for four different map sizes: 64kB, 256kB,

2MB, and 8MB. In this experiment, we used an average of three runs to reduce the variations introduced by

random mutation steps.

Impact on Test Case Generation Throughput

The test case generation throughput of AFL and BigMap is shown in Figure 3.6. As expected, AFL’s

throughput dropped dramatically as the map size is increased. On average, AFL’s throughput went from

4,400/sec for a 64kB map to only 125/sec for an 8MB map. BigMap handled large maps gracefully without

any significant drop, and the average throughput remained consistently above 4,100/sec irrespective of the

map size.

35

BigMap: Future-proofing Fuzzers with Efficient Large Maps

0

2

4

6

8

10

12

14

16

18
Th

ro
u

gh
p

u
t

(t
h

o
u

sa
n

d
s/

se
c)

64k 256k 2M 8M

64k 256k 2M 8M

AFL

BigMap

Average speedups
64k map : 0.98x

256k map : 1.4x
2M map : 4.5x
8M map : 33.1x

Figure 3.6: Test case generation throughput of AFL and BigMap with different map sizes. AFL’s throughput
drops significantly as the map size is increased. Map size variation has considerably less impact on BigMap.

For the 64kB map, BigMap usually outperformed AFL for smaller benchmarks (e.g., zlib, libpng,

proj4), while AFL performed better on larger benchmarks (e.g., sqlite3, indvars, instcombine). This outcome

is because only a tiny portion of the 64kB map is used for the small benchmarks. In such cases, BigMap

gained the advantage by traversing the used region of the map. On the other hand, larger benchmarks

almost completely filled the 64kB map. As a result, BigMap and AFL performed nearly the same during

the classify, compare, and reset stages, but BigMap is ultimately slightly slower due to the extra indirection

overhead during the update stage. One thing to note here is that the nearly full map also implies very high

collision rates, suggesting the use of maps bigger than 64kB would be beneficial. Other factors impacting the

throughput include the working-set size and access-pattern of the benchmark itself.

For larger maps, BigMap universally provided higher throughput than AFL. The 8MB map, in particular,

incurred an extremely high performance hit for AFL. This performance hit is because, with an 8MB map, the

combined size of the local and global coverage maps exceeded the last-level cache capacity of our experimental

setup. Note that for a few benchmarks (e.g., libpng, proj4, libjpeg etc.), BigMap attained higher throughput

at larger map sizes. We attribute this behavior to the various non-deterministic steps applied throughout the

fuzzing process. As mentioned before, we have aggregated multiple runs to reduce the impact of randomness.

Still, a fuzzing run can produce test cases that exercise longer (or shorter) execution paths more frequently

relative to other runs.

On average, BigMap attains 0.98x, 1.4x, 4.5x, and 33.1x higher throughput for 64kB, 256kB, 2MB, and

8MB maps, respectively. We conclude that BigMap might not be an attractive choice for small map size of

64kB. However, if larger map is required (e.g., for reducing hash collisions or to support complex coverage

metrics), then BigMap clearly provides superior test generation throughput.

36

BigMap: Future-proofing Fuzzers with Efficient Large Maps

Map sizes: 64k – 256k – 2M – 8M

Figure 3.7: Edge coverage with varying map sizes. AFL’s edge coverage suffers due to throughput loss with
bigger maps. Not all benchmarks are shown to improve clarity.

Map sizes: 64k - 256k - 2M - 8M

Figure 3.8: Unique crashes found with varying map sizes. Going from 64kB to 256kB map shows improvement
as a result of reduced collisions. AFL suffers for bigger map sizes due to throughput loss.

Impact on Edge Coverage and Unique Crashes

Figure 3.7 shows the edge coverage with map size increase. During a fuzzing campaign, the rate of discovering

new edges is initially high and then flattens out as time progresses. Our results indicate that BigMap reached

the plateau for all of the benchmarks within the 24 hour time budget. AFL performed identically for small

benchmarks. However, AFL’s low throughput on bigger maps prevented it from reaching the plateau for

benchmarks with a higher number of discoverable edges. Note that mitigating the hash collision was not

particularly beneficial at improving the edge coverage. A public report available on FuzzBench indicates that

the metric edge coverage has a relatively small variance across a wide range of fuzzers [72]. Furthermore, AFL

authors noted that edge count bucketing provides some protection against collisions [63]. We hypothesize that

the inherent small variance and the binning process made the edge coverage relatively insensitive to collisions.

Crashes, on the other hand, are extremely sparse and do not follow any simple pattern. We were able

to find crashes on the bloaty and the LLVM benchmarks. For bloaty, we found one unique crash on all

configurations except for AFL 8MB. The number of unique crashes found on the LLVM benchmarks is given

in Figure 3.8. From this figure, it is evident that AFL performed its best with a 256kB map. The smaller

37

BigMap: Future-proofing Fuzzers with Efficient Large Maps

Table 3.3: Code Coverage with laf-Intel and N-gram

Benchmark

(n-gram + laf-intel)

Collision rate Edge coverage Unique crash

64kB 2MB 64kB 2MB 64kB 2MB

loop-unswitch 70.6 4.9 214,437 211,697 276 325

sccp 71.1 5.2 218,473 226,084 261 324

earlycase 75.3 5.8 260,008 255,295 279 382

loop-prediction 75.8 6.2 265,740 270,806 202 265

loop-rotate 76.2 6.2 271,383 269,534 276 384

irce 77.0 6.0 281,479 262,675 226 245

licm 78.5 7.1 301,490 312,943 284 433

gvn 79.0 7.3 309,262 324,302 295 367

simplifycfg 79.1 7.4 311,143 325,526 285 412

strength-reduce 83.1 8.4 387,462 373,813 250 307

indvars 84.0 9.3 409,555 414,217 271 342

loop-vectorize 87.2 11.2 512,991 510,469 233 362

instcombine 86.9 13.1 588,397 602,669 295 434

AVERAGE 78.8% 7.5% 333,217 335,387 264 352

64kB map prevented finding more crashes due to collisions, while larger maps of 2MB and 8MB caused

excessive runtime overhead, leading to low crash coverage. Interestingly, the optimal map size is unknown

beforehand and may vary with the target application. Therefore, to find the most crashes, AFL has to run

the target application with different map sizes (or have access to an oracle). However, testing with multiple

map sizes will consume valuable compute time that may have been better utilized otherwise (e.g., longer runs

or multiple instances with co-operative fuzzing). Finding the optimal map size is less of an issue for BigMap

as we can choose an arbitrarily large map size with little runtime penalty. This adaptive nature of BigMap

makes it an attractive choice.

3.5.3 Evaluating Coverage Metric Composition

Previously we mentioned how BigMap’s efficiency with large maps enables an aggressive composition of

multiple coverage metrics. In this section, we investigate one such scenario by stacking laf-intel [61] and N-

gram [62]. Because the original AFL does not have in-built support for laf-intel and N-gram, we implemented

BigMap on a community-maintained version of AFL called AFLPlusPlus [73]. We used all the LLVM

fuzzing harnesses available on OSS-Fuzz as benchmarks. The laf-intel transforms each multi-byte comparison

into a series of single-byte comparisons. The switch statements and strcmp/memcmp functions are also

38

BigMap: Future-proofing Fuzzers with Efficient Large Maps

deconstructed into multiple if-else statements. With laf-intel applied, the resulting LLVM-opt has around

5.5 million static edges. N-gram does not increase the number of static edges but provides a more thorough

coverage metric. Unlike AFL’s default edge coverage with (src block, dst block) tuple, N-gram gets partial

path coverage by hashing the last N blocks. We choose N = 3 (i.e., the hash of the last three blocks) for

this experiment. With stacked laf-intel and N-gram applied, the covered edges vary between 212k - 603k

(∼87% collision rate). While laf-intel and N-gram independently showed improvement in terms of edge/crash

coverage in small benchmarks, they were not applied to such large benchmarks previously due to excessive

hash collisions. To our knowledge, this is the first time the combination of laf-intel and N-gram is applied to

benchmarks of this scale. Also, note that the purpose of this experiment is not to scrutinize the effectiveness

of the N-gram or laf-intel themselves, rather show that BigMap can effortlessly support such combinations

with high map pressure. Similar to the setup of Section 3.5.2, we took an average of three runs to reduce the

variation caused by random mutation steps.

The results of the experiment are shown in Table 3.3. Here, both the 64kB and 2MB version employs

BigMap. By mitigating collision with a bigger map, the unique crashes found improved by 33% on average.

However, the edge coverage remained unaffected, similar to what we observed in our previous experiment.

We conclude that for large applications and/or when applying extensive coverage metrics, crash coverage can

benefit from collision mitigation.

3.5.4 Evaluating the Scalability with Parallel Fuzzing

Every fuzzing instance uses one CPU core. As a result, a system with n physical cores can run n concurrent

fuzzing instances with virtually little performance penalty (assuming there is minimal contention for other

system resources) while gaining about n times more throughput. This linear scaling property is achievable

by programs with a small memory footprint, where the program and the used portion of their bitmap fit

within faster cache levels. In this section, we evaluate how scaling fares when a large bitmap (i.e., 2MB) is

used. For this experiment, we ran 4, 8, and 12 concurrent instances in the master-secondary configuration.

In this configuration, a single master instance performs the deterministic fuzzing steps before proceeding to

random fuzzing. The rest are secondary instances that skip the deterministic step. The output corpus is

periodically synchronized between these instances. This configuration is standard for all real-world parallel

fuzzing sessions.

Figure 3.9(a) shows the resultant throughput. Each benchmark’s throughput is normalized to the

corresponding single-run version to visualize the scaling effect better. The black line is added as a theoretical

reference for 1:1 scaling, where k instances gain k times the throughput. The bold red line is the average

39

BigMap: Future-proofing Fuzzers with Efficient Large Maps

0

10

20

30

40

50

60

Sp
e

e
d

u
p

 w
it

h
 B

ig
m

ap 1 4 8 12

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t

1 2 3 4 5 6 7 8 9 10 11 12

of fuzzing instances

BigMap AFL

(a)

(b)

1:1

AVG

of fuzzing instances # of fuzzing instances

Figure 3.9: (a) Throughput (normalized to the single instance) vs. the number of fuzzing instances. Dotted
lines represent the individual benchmarks from (b), and the solid red line is their average. The solid black
line shows 1:1 scaling as a reference. (b) Speedup attained by BigMap over AFL. The coverage map is fixed
to 2MB for both (a) and (b).

execution rate across all benchmarks. It is evident that both BigMap and AFL cannot maintain 1:1 scaling

with large maps. The reason is, with multiple instances and large maps, the working set is much more likely

to exceed the last-level cache capacity. Note that the last-level cache is shared across all the fuzzing instances.

BigMap performs relatively well since it does not access the full map, therefore having a smaller effective

memory footprint. AFL scales poorly. The throughput of AFL has a negative slope above four instances,

meaning the total number of executions actually went down as the number of instances was increased. The

per benchmark speedup attained by BigMap is given in Figure 3.9(b). This speedup is measured by taking

the ratio of total test cases generated by BigMap and AFL with equal number of instances. As AFL scales

poorly with the number of instances compared to BigMap (demonstrated in Figure 9(a)), it is expected for

40

BigMap: Future-proofing Fuzzers with Efficient Large Maps

of instances: 1 – 4 - 8 - 12

Figure 3.10: Unique crashes found with a varying number of fuzzing instances. The coverage map is fixed to
2MB.

the speedup to show a super-linear behavior. On average, BigMap achieved a speedup of 4.9x, 9.2x, and

13.8x for the 4, 8, and 12 concurrent runs, respectively.

Figure 3.10 depicts a similar trend in the number of unique crashes found. AFL suffers due to the drop in

execution throughput. For 4, 8, and 12 instances, BigMap found 20%, 36%, and 49% more unique crashes on

average. If we compare the best configurations available on our hardware (e.g., 12 instances for BigMap and

4/8 instances for AFL), BigMap shows an average speedup of 9.2x and uncovers 37% more crashes.

3.6 Related Work

Fuzzing as an evolutionary process was first introduced by Sidewinder in 2006 [74]. Since then, most successful

fuzzers have followed this path [58, 73, 56, 57, 75, 66, 67, 76, 77, 78]. A critical component in this evolutionary

process is the fitness function that determines what inputs will be used as seeds for future fuzzing rounds.

AFL and AFL based fuzzers [58, 73, 66] use coarse edge hit counts as the fitness function. Any test vector

that exercises a yet-unseen edge or a seen edge with a different hit count is considered an interesting input.

On the other hand, libFuzzer based fuzzers [56, 57, 75] leverage compiler support such as SanitizerCoverage

[68] to utilize basic block coverage as the fitness function. Angora [67] combines function calling context

with edge coverage to differentiate between interesting test cases covering the same sets of edges but have

unique execution paths. PerfFuzz [79] considers both execution count and code coverage. Ankou [78] queries

behavioral similarity between a new test case and the current seeds in the seed pool to determine if it should

be considered as interesting. All of these approaches use some form of code coverage as the fitness function.

BigMap is orthogonal to these approaches and can be adopted to improve their fitness functions’ accuracy by

reducing collision.

In addition to seed selection, fuzzers can leverage coverage information for scheduling seeds from the

seed pool. AFL schedules ”favored” entries more frequently, and these entries are determined based on the

41

BigMap: Future-proofing Fuzzers with Efficient Large Maps

edge coverage. AFLFast [66] selects seeds that cover the least frequently traveled paths. VUzzer [75] uses

control-flow graphs to model the execution path and prioritizes inputs that visit deeper blocks. Cerebro [80]

employs a multi-objective algorithm that takes code coverage, complexity, and execution time into account

during scheduling the seed. FairFuzz [81] prioritizes seeds based on rare branch coverage. The intuition being

that rare branches are more likely to hide hard to trigger bugs. NeuFuzz [82] trains a deep neural network

model to differentiate between a vulnerable path from a clean path and prioritizes the vulnerable one. AFLGo

[83] measures branch distance to select seeds that are closer to predetermined targets. Since these approaches

use coverage feedback in their scheduling mechanism, hash collisions can obscure the seeds’ priority.

The expressiveness of the coverage metric is another factor that influences the collision rate. Angora’s

context-sensitive coverage puts up to eight times more pressure on the bitmap [67]. Coverage metrics such as

N-gram (hash of last N branches), memory-access-aware branch coverage, and memory-write-aware branch

coverage also exhibits higher map pressure than simple edge coverage [62]. Control-flow transformations such

as laf-intel [61] or CmpCov [84] can increase the map pressure as well, necessitating collision mitigation.

Fuzzers do not need to fixate to a particular coverage metric or scheduling algorithm. An ensemble of

different fuzzing mechanisms is proven to be an effective strategy [62, 85]. Ensemble fuzzers run multiple

fuzzing instances with different metrics and periodically cross-pollinate the inputs. However, unlike BigMap,

they do not stack the coverage metrics together, which is still subjected to increased hash collisions. Comparing

BigMap with ensemble fuzzing is not covered in this work and can be an interesting avenue for future research.

CollAFL [59] is the state-of-the-art technique for mitigating hash collisions in coverage bitmap. It leverages

static analysis to distribute edge IDs with a link-time compiler pass. Blocks with a single incoming edge are

assigned IDs statically. For other blocks, injected instrumentation generates the IDs at runtime. It adapts

to indirect edges by considering all blocks with no incoming edges as the potential branching target. One

shortcoming of CollAFL is that it cannot be extended for coverage metrics other than the block or edge

coverage (e.g., N-gram, Angora). In addition, it expands the bitmap to fit all the statically assigned IDs. Our

experimental findings (presented in Table 3.2) indicate that only a fraction of the static edges are visited

during a fuzzing campaign, making the increase in map size a source of unnecessary runtime overhead. While

both BigMap and CollAFL aim to solve the hash collision issue, they are orthogonal mitigation techniques.

BigMap can be used independently of CollAFL to reduce hash collisions. It can also be used in combination

with CollAFL to completely eliminate collisions while providing more efficient access to the map. Furthermore,

BigMap supports any form of coverage metric as long as it is recorded in a coverage bitmap, making it

applicable to a wide variety of fuzzers.

42

BigMap: Future-proofing Fuzzers with Efficient Large Maps

3.7 Conclusion

We investigated the common belief that enlarging bitmaps to mitigate hash collisions necessarily results in

the deterioration of both throughput and quality in fuzzing campaigns. Our key observation is that the

primary source of overhead stems from frequent map operations performed on the full bitmap, although only

a fraction of the map is under active use. Although our initial assumption was that PIM-based architecture

would be a good fit to accelerate such a workload, we found a software-based solution that optimizes memory

access behaviors of the coverage-bitmap operations. Consequently, we proposed BigMap, a two-level bitmap

that adds an extra level of indirection to limit the map operations on the map’s active regions. This approach

reduced the effective working set size, improved cache utilization and reduced cache pollution. We further

improved our approach by incorporating huge pages for the coverage-bitmaps, reducing the page walks caused

by TLB misses. Our evaluation results showed 0.98x-33.1x throughput gain over AFL as we increased the map

size from 64kB to 8MB. BigMap also demonstrated better scalability with the number of concurrent fuzzing

instances. Furthermore, BigMap’s compatibility with most coverage metrics, along with its efficiency on large

maps, enabled exploring aggressive compositions of coverage metrics and fuzzing algorithms, uncovering 33%

more unique crashes. By making the use of large maps practical and open-sourcing BigMap, we hope to

enable and spur further research into the design space of coverage metrics.

43

Chapter 4

GraphTango: A Hybrid

Representation Format for Efficient

Streaming Graph Updates and

Analysis

4.1 Introduction

Streaming graph processing involves performing batched updates and analytics on a time-evolving graph.

The update phase handles modifications to the graph topology (e.g., insertion/deletion of edges and nodes),

while the analytics phase runs the necessary algorithms on the graph. This is a common scenario in many

real-world graph applications such as social network analysis [86, 87], bioinformatics [88, 89], recommendation

systems [90, 91], routing and navigation [92], knowledge discovery [93], sensor networks [94], etc. The focus

of streaming graph processing is fundamentally different from static graph processing. Static graphs are

constructed only once, and the construction cost gets amortized over time. Therefore, the overall performance

of a static graph processing framework is primarily determined by the analytics throughput. In the case

of streaming graphs, the graph topology can change very frequently. Hence, both update and analytics

throughput is critical for streaming graphs [40].

44

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

The most common operation during the update phase is edge lookup. The lookup is performed before

insertion to avoid duplicate edges1 and before deletion to find the location of the target edge. On the

other hand, the most common operation during the analytics phase is the neighborhood traversal of a given

vertex. The performance of a streaming graph processing framework is critically dependent on how efficiently

the graph storage format can support these lookup and traversal operations. Existing storage formats for

streaming graphs usually employ variations of adjacency lists or hash tables [97, 96, 40, 95, 98]. Approaches

based on adjacency lists [95, 40] provide high update throughput on short-tailed graphs2 but suffer in

heavy-tailed graphs as it requires linear lookup through the edge array [40]. On the other hand, hash-based

approaches [97, 96] offer constant-time lookup, providing better update throughput on heavy-tailed graphs.

However, they perform poorly on short-tailed graphs because the overhead of hash calculation and several

random accesses becomes more expensive than conducting a simple linear search. Furthermore, edges are

stored in hash tables relatively sparsely to mitigate collisions. As a result, edge traversal becomes inefficient

and negatively impacts their analytics phase’s throughput. None of the existing approaches can efficiently

handle both short-tailed and heavy-tailed graphs.

This work proposes GraphTango, a streaming graph representation format that provides excellent

performance regardless of the graph’s degree distribution. Our key idea is to adaptively switch the underlying

data structure based on the vertex degree: i) Type1 vertex : Low-degree vertices where the edges are stored

within the same cache line as the neighborhood metadata. Update and edge traversal thus requires only

one cache line access, unlike other approaches. ii) Type2 vertex : Medium-degree vertices that store edges

as adjacency lists. The degree is too high for this type to fit all edges in a cache line, but small enough so

that linear search performs better than hashing. iii) Type3 vertex : High-degree vertices that store edges as

adjacency lists, along with hash tables storing indexes to the adjacency lists. In this case, the adjacency list

provides optimal edge traversal during the analytics phase, while the hash table provides constant-time lookup

during the update phase. The hash tables are not accessed during the analytics phase, avoiding any potential

cache pollution. To improve the cache access pattern of the hash table, we designed an open-addressing-based

hash table with double hashing that fully utilizes every fetched cache line. Our proposed hashing scheme

minimizes cache line fetches and is especially beneficial if the hash tables do not fit into the last level cache

(LLC), which is often the case for real-world graph workloads3. With this hashing scheme, updates for Type3

vertices are performed with only three cache line accesses for more than 99.2% of the cases. In addition, we

1In accordance with the prior works [40, 95, 96, 97], edges are inserted only after a lookup to avoid duplicate edges.
2Following prior work [40], we define heavy/short-tailed graph with respect to an update batch: heavy-tailed graphs have

high maximum degree within a batch. Short-tail is the opposite.
3Even with our smallest dataset of 5M edges, the LLC miss rate during the update phase is over 49%, indicating that the

working set size is larger than the LLC.

45

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

developed a thread-local lock-free memory pool that allows fast growing and shrinking of the adjacency lists

and hash tables in a multi-threaded environment.

We evaluated GraphTango by integrating it with the SAGA-Bench [40] benchmarking framework. SAGA-

Bench integration ensures that all approaches use the same algorithm implementations via a common API.

Therefore, any performance improvement comes purely from the data structure standpoint. SAGA-Bench

comes with four representation formats: AdListShared, AdListChunked, Stinger [95], and DegAwareRHH

[97], each of which is shown to excel in different algorithm and dataset combinations [40]. Details of these

formats can be found in Section 4.2. For update operations, GraphTango consistently performed best across

all datasets. On average (maximum), GraphTango demonstrates 4.5x (6.6x) higher insertion throughput and

3.2x (5.0x) higher deletion throughput over the next best approach. As for analytics, GraphTango offers

1.1x (1.6x) higher throughput than the next best approach. Unlike prior approaches, GraphTango provides

excellent update and analytics throughput for both short-tailed and heavy-tailed graphs.

Being a storage format, GraphTango is orthogonal to most full-fledged graph processing frameworks

and can easily replace the underlying storage formats of those frameworks. To demonstrate, we integrated

GraphTango with the state-of-the-art graph processing frameworks DZiG [99] and RisGraph [100]. DZiG +

GraphTango reduced the overall batch processing runtime by 2.3x (5.2x) on average (maximum) compared to

the original DZiG. RisGraph + GraphTango reduced the overall batch processing runtime by 1.5x (1.9x) on

average (maximum) compared to the original RisGraph.

GraphTango is publicly available on GitHub, both as a standalone framework and as an integration with

SAGA-Bench, DZiG, and RisGraph: https://github.com/alifahmed/graphTango.git. We made the

findings of this work publicly available by putting it into the arXiv [27]. It is currently under

review for IJPP, 2024 [101].

4.2 Background on Existing Representation Formats

Figure 4.1 illustrates how various graph representation formats store vertices and edges. While these examples

store only the outgoing edges, the concept is also applicable if storing incoming edges.

Compressed Sparse Row (CSR) is one of the most commonly used formats for static graphs

[102, 103, 104, 105]. As shown in Figure 4.1(b), CSR organizes data in an edge array and an index array.

Edges are stored in the edge array in ascending order - all edges of vertex vi appear before any edge of vi+1.

The index array stores the position of the first edge of every vertex. CSR is widely used for static graphs

because it provides a compact representation, increasing spatial locality while traversing the graph. However,

46

https://github.com/alifahmed/graphTango.git

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

src edgePtr

0

1

2

3

e6

e1 e2 e5

e3 e4

e5

1 0

3 2

e6

e1

e4

e3

e2

src edgePtr

0

1

2

3

e6

--

e1

e2

e5

--

e3

e4

Edge
block {src, dst} → e

{0, 2}→ e6

{3, 0} → e3

{3, 2} → e4

src edgePtr

0

1

2

3

{dst} → e

{0}→ e1

{2} → e2

{3} → e5

0 1 2 3

0 1 4 4

0 1 2 3 4 5
e6 e1 e2 e5 e3 e4

(b) Compressed sparse row

Edge
array

Index
array

(a) Example graph (c) Adjacency list

Vertex array Edge arrays

Vertex
array

(d) Stinger

Combined hash table
(low-degree vertices)

Separate hash tables
(high-degree vertices)

(e) Degree-Aware Robin Hood hashing

Figure 4.1: Example of different graph representation formats. Here, each edge e is an {dst, prop} tuple.

inserting or deleting an edge requires reconstructing both the edge array and the index array, making CSR

unsuitable for dynamic graphs.

Adjacency List stores the edges of every vertex in separate arrays (Figure 4.1(c)). A vertex array stores

the pointers to these edge arrays. These edge arrays are assumed to be memory-contiguous (like

std::vector), rather than a linked list of edges. This important distinction is used throughout the rest

of the dissertation. As each edge array can grow/shrink independently, insertion and deletion operations

only modifies the edge array of the corresponding vertex. This property makes adjacency lists a common

choice for dynamic graph frameworks [40, 98]. Another advantage of adjacency lists is that the edge traversal

during the analytics phase has a sequential access pattern, leading to excellent analytics throughput for

vertex-centric algorithms. The downside of adjacency lists is that the edges are not stored in any particular

order within an edge array. Therefore, finding an edge requires a linear search through the corresponding

edge array, leading to poor update throughput on high-degree vertices.

In adjacency-list-based approaches, parallel updates on multiple vertices are realized in two ways. The first

scheme is the shared style multithreading (referred as AdListShared), where the vertex array additionally

contains a lock for every vertex. Any thread can process updates on any vertex by acquiring the corresponding

lock first. This approach provides fine-grained parallelism. However, if most updates are targeted towards the

same vertex, it can cause lock contention and is often the case for heavy-tailed graphs. The alternative scheme

groups source vertices into chunks and assign each chunk to a fixed thread (referred as AdListChunked).

Chunked style multithreading is lock-free. However, it is prone to workload imbalance if the chunks have a

high disparity in the number of edges they contain.

47

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

Stinger [95] is an adjacency-list-based representation format. As illustrated in Figure 4.1(d), Stinger

stores the edges as linked lists of edge blocks. Each edge block can accommodate a fixed number of edges

(default is 16). Parallelism in Stinger is achieved by acquiring locks on the edge blocks. The capacity of the

edge blocks presents a trade-off between performance and storage requirements. Using smaller capacity edge

blocks increase parallelism but makes graph traversal inefficient by increasing the amount of pointer-chasing

accesses. On the other hand, larger blocks lead to many unused slots for low-degree vertices. Besides,

like adjacency lists, Stinger also suffers from linear lookups on high-degree vertices, stagnating the update

throughput.

Degree-Aware Robin Hood Hashing (DegAwareRHH) [97] is a hash-based format. As shown

in Figure 4.1(e), DegAwareRHH maintains two types of hash tables based on the vertex degree. Edges

corresponding to low-degree vertices are stored in a combined hash table to improve data locality. On the

other hand, each high-degree vertex maintains its own hash table. Both of these hash tables use Robin Hood

hashing [106], which minimizes probing distance. For parallelism, DegAwareRHH leverages chunked-style

multithreading similar to AdListChunked. The constant time lookup enabled by the hash tables makes

DegAwareRHH suitable for the update phases on heavy-tailed graphs. However, the sparse storage of

edges in the hash table makes DegAwareRHH’s edge traversal inefficient, negatively impacting the analytics

throughput.

4.3 GraphTango Data Structure

Figure 4.2 gives an overview of the GraphTango data structure4. GraphTango organizes the vertex data in

two arrays: one for storing the vertex properties (vProp) and the other for storing neighborhood metadata of

the vertex (edgeMeta). These arrays are indexed using vertex id. Neighbors of each vertex are stored as an

ex = {dst, [prop]} tuple, where ex.dst is the destination vertex id, and ex.prop is an optional edge property

(e.g., the weight of the edge).

The edgeMeta array is aligned to a page boundary5, and each element of the array is of cache line size.

Therefore, accessing any field of edgeMeta[i] will bring the rest of the fields into the cache. The deg field

holds the current degree of the corresponding vertex. Depending on the degree, a vertex will fall into one of

the following three categories:

Type1 Vertex: These are low-degree vertices with deg ≤ TH0. As illustrated in Figure 4.2(b), we store

the edges directly with the metadata for Type1 vertices. The threshold TH0 denotes the number of edges

4The description assumes storing only outgoing edges for clarity. In our implementation, we stored both incoming and
outgoing edges for directed graphs.

5To clarify, only the edgeMeta array itself is page boundary aligned, not the edge arrays or hash tables it may point to.

48

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

Vertex Array

vProp

0

1

2

3

...

...

...

edgeMeta

deg

deg

deg

deg

... ...

... ...

... ...

cache line wide

Type1

Low-degree vertices (deg ≤ 𝑇𝐻0)
Store edges directly inside neighbor metadata

deg e0 e1 ... edeg-1

Type2

Medium-degree vertices (𝑇𝐻0 < 𝑑𝑒𝑔 ≤ 𝑇𝐻1)
Use adjacency list

deg cap edgePtr <unused>

e0 e1 edeg-1

Type3

High-degree vertices (deg > 𝑇𝐻1)
Use both adjacency list and hash table

deg cap dstMap edgePtr <unused>

cache line wide

dst→ idx

e2.dst → 2

e1.dst → 1

...

e3.dst → 3

...

e0.dst → 0

Hash Table

e = {dst, [prop]}

0 {e0.dst, [e0.prop]}

1 {e1.dst, [e1.prop]}

2 {e2.dst, [e2.prop]}

3 {e3.dst, [e3.prop]}

... ...

... ...

Edge Array

(a)

(b)

(c) (d)

Edge

Array

Figure 4.2: Proposed hybrid representation format of GraphTango.

that can fit inside the metadata and is defined as:

TH0 =

⌊
CACHE LINE SIZE − sizeof(deg)

sizeof(e)

⌋

For example, TH0 = 7 for a typical cache line size of 64 bytes and edges of 8 bytes. The advantage of

storing edges with metadata is that all edges are brought into the cache as soon as we access the vertex

during the update or analytics phase. When searching for a specific edge, we need to do a linear search.

However, the search is extremely fast, as all accesses will be cache hits.

Type2 Vertex: These are medium-degree vertices with TH0 < deg ≤ TH1, where TH1 is a user-

configurable threshold. Edges for this type of vertices are stored in adjacency lists, as shown in Figure 4.2(c).

To support adjacency lists, edgeMeta additionally maintains the current capacity (cap) and a pointer to its

edge array (edgeP tr).

Like Type1 vertices, Type2 also requires a linear search when looking for a specific edge. As the linear

search on the edge array is prefetcher-friendly and has good spatial locality, it offers better performance than

hash-based search up to a certain point (i.e., tuned using the TH1 threshold). However, the linear nature of

the search becomes a performance bottleneck for higher-degree vertices. Hash-based search is preferable in

such cases, as explained below.

Type3 Vertex: These are high-degree vertices with deg > TH1. Figure 4.2(d) illustrates this scenario.

Here, we maintain both an adjacency list and a hash table for each Type3 vertex. The hash table maps an

edge’s destination vertex id (ex.dst) with its location in the corresponding adjacency list. Maintaining both

hash table and adjacency list comes with the following benefits: i) The hash table enables constant-time

lookups during the update phase. ii) The adjacency list provides fast and efficient traversal during the

analytics phase. Prior hash-based approaches suffer from low analytics throughput due to inefficient edge

49

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

Table 4.1: Vertex type switching steps for insertion/deletions

(a) Insertions triggering type switch or capacity doubling

Direction New capacity
Alloc new

edge array

Edge copy

size

Dealloc old

edge array
Rehash

Type1 → Type2 nextPow2(TH0) ✓ deg (=TH0) X X

Type2 → Type2 cap * 2 ✓ deg ✓ X

Type2 → Type3 cap * 2 ✓ deg (=TH1) ✓ ✓

Type3 → Type3 cap * 2 ✓ deg ✓ ✓

(b) Deletions triggering type switch or capacity halving

Direction New capacity
Alloc new

edge array

Edge copy

size

Dealloc old

edge array
Rehash

Type3 → Type3 cap / 2 ✓ deg ✓ ✓

Type3 → Type2 cap / 2 ✓ deg (=TH1) ✓ X

Type2 → Type2 cap / 2 ✓ deg ✓ X

Type2 → Type1 TH0 X deg (=TH0) ✓ X

traversal [40]. GraphTango is free of this issue because it uses only the adjacency lists for edge traversal and

does not require accessing the hash tables during the entirety of the analytics phase.

4.4 GraphTango Basic Operations

4.4.1 Edge Insertion

The edge insertion procedure is as follows: (i) Retrieve the edge metadata - edgeMeta[srcId]. (ii) If the

current deg reaches the current capacity , we double the capacity. The exact steps for capacity doubling

will depend upon the current and new type, as demonstrated in Table 4.1(a). In general, capacity doubling

involves allocating memory for the larger edge array, copying current edges to the new edge array, and freeing

the old array. For Type3, the hash table is also rehashed. The amortized cost of capacity doubling is O(1)

[107]. (iii) Search for a duplicate edge using dst. As mentioned earlier, for Type1 and Type2, it will involve

doing a linear search, and for Type3, the search will be performed using the hash table. (iv-A) If the edge is

found, update the property and return. (iv-B) If the edge is not found, add the edge at the end of the edge

array and increment deg. For Type3, we also create an entry in the hash table pointing to the location.

50

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

4.4.2 Edge Deletion

The edge deletion procedure is as follows: (i) Retrieve the edge metadata - edgeMeta[srcId]. (ii) Search for

existing edge using dst. (iii-A) If the edge is not found, return. (iii-B) If the edge is found, delete the entry

from the edge array and hash table (for Type3) and decrement deg. We do a compaction step here to fill

the gap. It involves moving the last entry of the edge array to the deleted entry’s position and updating

the corresponding hash table record. The compaction step is simple and is of constant time complexity. (iv)

If the deg becomes 1/4th of the capacity, we halve the capacity. The steps for capacity halving is given in

Table 4.1(b). Similar to the capacity doubling during insertion, the amortized cost of capacity halving is also

O(1) [107].

4.4.3 Edge Traversal

As we store the edges in consecutive memory for all three vertex types6, the edge traversal API simply

returns a cursor (i.e., position of the iterator) for indexing to the: i) edgeMeta[vid] for Type1 vertices, or ii)

edgeMeta[vid].edgeP tr for Type2/Type3 vertices. GraphTango’s traversal mechanism is essentially the same

as an adjacency list for Type2/Type3 vertices. As for Type1, GraphTango has a better access pattern as it

requires one less indirection.

4.5 Optimizing GraphTango

4.5.1 Cache-Friendly Hashing Scheme

The hash table used by the Type3 vertices can be realized in several ways. The most convenient approach

is to use std::unordered map. Unfortunately, this approach is not ideal for our purpose because the C++

standard [108] effectively limits the collision resolution of std::unordered map to separate chaining7. With

separate chaining, the hash table is constructed as an array of buckets. Each bucket points to a linked

list of colliding elements (i.e., keys that hashed to the same bucket). The issue with separate chaining is

that it involves multiple random accesses - one to access the bucket and one or more for traversing the

linked list. Each of these random accesses is a potential cache miss if the hash table does not fit into the

cache. An alternative to separate chaining is open addressing, where all elements are stored in the hash

table itself, eliminating the need for linked lists traversals. Prior hash-based graph representation formats

[97, 96] leveraged open-addressing-based Robin Hood hashing [106] that minimizes probing distance. For

6Even after deletions, our compaction step ensures that all valid edges of a vertex are stored in consecutive memory.
7This constraint is a side effect of mandating pointer stability, which means that an iterator must remain valid upon inserting

or deleting elements.

51

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

⑤ ④ ⑥ ⑦ ① ⓪ ② ③

cache line wide

ℎ 𝑘𝑒𝑦, 𝑖 = 𝑁 ∗ ℎ1 𝑘𝑒𝑦,
𝑖

𝑁
+ ℎ2(𝑘𝑒𝑦, 𝑖 𝑚𝑜𝑑 𝑁)

Permutation of {0,… ,𝑴 − 1}
(selects a cache line)

Permutation of {0,… ,𝑵 − 1}
(selects offset within the cache line)

𝑴: Number of cache lines in the hash table

𝑵: Number of {𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒} pairs within a single cache line

(a)

𝑘𝑒𝑦 → ℎ(𝑘𝑒𝑦, 𝑖)

hash

table

...

(b)

{𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒}

Figure 4.3: Proposed hashing scheme. (a) Hash function to determine the index to the hash table. (b) An
example probing sequence for M = 5 and N = 4.

GraphTango, we designed a more cache-friendly open-addressing-based hash table that minimizes the number

of cache line accesses, making it especially suitable for real-world graph workloads where the hash table is

unlikely to fit into the cache.

The key idea of our hashing scheme is to limit the probes within a single cache line until it is fully searched,

before moving onto a different cache line. Figure 4.3 illustrates this hashing scheme. The hash table itself is

composed of an array of {key, value} pairs. The index of the i-th probe to the hash table is given by the

following hash function:

h(key, i) = N · h1

(
key,

⌊
i

N

⌋)
+ h2(key, i mod N)

Here, N is the number of {key, value} pairs that can fit within a single cache line. The purpose of

h1

(
key,

⌊
i
N

⌋)
is to select a cache line for probing and returns the base index of that selected cache line.

Note that the
⌊

i
N

⌋
parameter remains the same for every N consecutive probes, thereby selecting the same

cache line. As h1() should eventually explore all cache lines in the hash table, it must be a permutation of

{0, 1, ...,M−1}, where M is the number of cache lines in the hash table. On the other hand, h2(key, i mod N)

determines the offset within the cache line and must be a permutation of {0, 1, ..., N − 1}. Any hash function

conforming to this permutation requirement can be used to implement h1() and h2(). In GraphTango, we

used double hashing for h1() to avoid primary/secondary clustering. h2() uses linear probing to make hash

computation simpler. Our hash function is very cheap to compute, with the reference implementation having

52

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

two multiplications and eight other simple arithmetic/logical instructions. This is because we ensure that both

N and M are powers-of-two, converting expensive modulus and division operations to simple shifts. Further

optimization is possible by leveraging SIMD instructions to do a parallel comparison on all entries mapped to

the same cache line. However, as discussed later, GraphTango demonstrates short probing distance, making

iterative comparison just as performant. Interested readers can find the implementation details of

these hash functions in the Appendix 4.7.

Insertions and deletions to the proposed hash table are similar to other open-addressing-based hash tables.

Each location of the hash table can contain either: i) a valid {key, value} pair, or ii) an empty marker, or iii)

a deleted marker (i.e., tombstone). We used two reserved values as the empty and deleted marker instead of

using dedicated tag storage. During both insertion and deletion, the table is probed (using the hash function)

until the key or an empty marker is found. If the key is found: i) For insertion, the corresponding value is

updated. ii) For deletion, the entry is marked as deleted. Instead of key, if an empty marker is found: i) No

action is required for deletion. ii) For insertion, the {key, value} pair is inserted to the location of the first

encountered delete marker, or to the current location if no delete marker was encountered.

When using with GraphTango, the hash tables’ initial capacity is set to twice the capacity of the

corresponding adjacency lists. Upon inserting/deleting edges, both the hash tables and the adjacency lists

can grow/shrink in size (see Section 4.4), but the capacity ratio always remains 2. This property sets the

maximum load factor (α) of the hash table to 0.5. Assuming uniform hashing8, the theoretical average

probing distance is: i) 1
1−α = 2 for an unsuccessful search. This is often the case for edge insertions in the

absence of duplicates. ii) 1
α ln

1
1−α = 1.39 for a successful search (e.g., deleting existing edges). In GraphTango,

we can fit eight {key, value} pairs within a single cache line (i.e., N = 8). As a result, the hash table needs

to access only one cache line as long as the probing distance remains ≤ 8, which provides a large slack over

the theoretical average probing distances. We empirically observed the same trend with our graph datasets,

where over 99.2% of the insertions had a probing distance ≤ 8. Therefore, almost all edge insertion operations

for Type3 vertices require only three cache line accesses: i) one for retrieving edgeMeta[srcId] metadata that

contains hash table and adjacency list pointers, ii) one for searching the hash table, and iii) one for indexing

to the adjacency list.

4.5.2 Memory Allocation Scheme

As discussed in Section 4.4, GraphTango requires frequent growing/shrinking of adjacency lists and hash tables.

Calling malloc()/free() in every such instance can cause high runtime overhead and memory fragmentation.

8Double hashing can demonstrate performance very close to the ideal scenario of uniform hashing [107, 109].

53

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

256B

 256B

5 6 7 8 9

 freePtrs
alloc(100)

𝑙𝑜𝑔2(100)

128B

128B

128B

 128B

return

Thread 0

Thread 1

256B

 256B

5 6 7 8 9

 freePtrs
free(ptr,100)

𝑙𝑜𝑔2(100)

128B

128B

128B

 128B

Thread 0

Thread 1

(a) Allocation

128B

(b) Deallocation

...

...

Figure 4.4: Allocation and deallocation on the memory pool. Deleted pointers are shown by dashed lines and
the modified pointers by red lines.

We avoid this issue by designing a fast thread-local lock-free memory pool that supports O(1) allocation and

deallocation.

Figure 4.4 illustrates the data structure of the memory pool. This memory pool allocates chunks in

power-of-two sizes. Individual linked lists of available chunks are maintained for each valid size. The heads of

the linked lists are stored in the freeP trs array. The first 8 bytes of each chunk (highlighted green) hold

the pointer to the next free chunk of the same size. This way, no extra storage beside the freeP trs array is

required to hold the pointers. However, it limits the minimum chunk size to 8 bytes in a 64-bit machine.

Allocation steps are shown in Figure 4.4(a). For an allocation request of sz bytes, the pool will return a

chunk of size newSz = 2k, where k = ⌈log2(sz)⌉ (i.e., nearest power of two that is ≥ sz). The allocation

proceeds as follows: i) Find the first available free chunk of newSz. This is simply given by ret = freeP trs[k].

ii) If ret is not a null pointer, then it points to a free chunk. In this case, we update freeP trs[k] to point to

the next free chunk, and return ret. iii) If ret is a null pointer, this indicates no chunk of the requested size

is available. In this case, a large memory block is allocated (of size max(4MB,newSz) and aligned to the

page boundary) and then split into a linked list of newSz byte chunks. freeP trs[k] is set to point to the

first chunk. At this point, we have free chunks of newSz. Therefore, repeating step (ii) will complete the

54

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

allocation. Note that, once allocated, the full chunk can be used to store data, including the space initially

used to hold the pointer to the next chunk.

Deallocation steps are shown in Figure 4.4(b). Unlike the standard free(ptr), we provide the size of the

allocated chunk as an additional parameter - free(ptr, sz). Using the sz parameter, we can directly index to

the freeP trs array and add ptr as a free chunk, as shown in Figure 4.4(b).

An advantage of the proposed memory pool is that the most recently deallocated chunk will be allocated

first, thereby being more likely to reside in the cache. Furthermore, each thread maintains its own freeP trs

array. As a result, no lock is required when multiple threads are trying to allocate/deallocate simultaneously.

A minor downside is that one thread cannot allocate free chunks from another thread’s pool. We found it to

be of little consequence in practice because the maximum amount of unused space per thread is O(blockSize).

Also, note that the ⌈log2(sz)⌉ calculation used to index freeP trs is very cheap to perform. It only requires

count leading zero (clz) and shift instructions.

4.5.3 Parallelization

As discussed in Section 4.2, both shared and chucked style multithreading approaches have shortcomings. In

shared style multithreading, the lock granularity is a single node. Therefore, every update requires attaining

a lock and contributes to the increased overhead. Besides, if many updates within a batch involves the

same node, then shared style multithreading suffers severe lock contention as many threads try to lock that

particular node. On the other hand, there is no lock needed in chunked style multithreading, but it suffers

from workload imbalance because the thread to node mapping is fixed. Therefore, even if a thread is free and

here are updates left to process, that thread cannot process that update if it is not mapped to that particular

thread. Besides, all threads need to go over the full batch to check if the updates belong to that thread.

To solve these issues, in GraphTango, we propose a novel workload balancing technique using the concept

of bucket-chaining. Figure 4.5 shows this scheme. Our approach essentially increases the lock granularity of

the shared style multithreading by first creating a bucket-chain. In this first step, all the threads go over a

subset of the batch, and distribute the updates within that portion into separate buckets. In this stage, each

bucket set is local to the thread, so no locking is necessary. Which bucket a particular update goes is decided

based on the node id. Note that the access pattern of each thread in this step is sequential through the batch,

as well as sequential when inserting an update to a bucket (i.e., always inserted on the top position of the

bucket).

Once all updates are assigned a bucket, we start the second phase of processing the updates. In this

phase, all threads will try work stealing on the bucket-chains to process them. The bucket-chains are formed

55

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

u
p

d
at

es

thread 1

𝑏1
1 𝑏1

2 𝑏1
3 𝑏1

4

thread 2

𝑏2
1 𝑏2

2 𝑏2
3 𝑏2

4

d
is

tr
ib

u
te

 u
p

d
at

es
 t

o
 b

u
ck

et
s

sync threads

b
u

ck
et

s

lock 𝑏1

𝑏1
1 𝑏2

1 𝑏1
3 𝑏2

3 𝑏1
4 𝑏2

4 𝑏1
2 𝑏2

2

thread 1

lock 𝑏3 lock 𝑏4 lock 𝑏2

thread 2

p
ro

ce
ss

 u
p

d
at

es

batched
updates

Figure 4.5: Load-balancing scheme of GraphTango. In the first stage, all threads go over a subset of the
batch to fill bucket-chains. Afterwards, each worker thread locks and process the next available bucket-chain
until all buckets are processed.

by linking the first bucket of first thread with first bucket of second thread and so on. In this way, the same

indexed nodes will fall in the same bucket-chain, even if they were distributed by a different thread during

the first step. This ensures that all updates of a nodes are processed in the same order as they appeared

within the batch. Also, if a thread finished processing their current bucket-chain, it can immediately start

processing other updates by acquiring the lock of the next bucket-chain. Our approach solves all the issues

faced by the other two approaches and provides excellent load balancing.

4.5.4 Determining the TH1 Threshold

Unlike the TH0 threshold, which is fixed for a given cache line size and edge element size, the TH1 threshold

is flexible and has a moderate impact on performance and memory usage (Section 4.6.4). As mentioned

before, TH1 should be set to a value for which O(TH1) linear search through the edge array is likely to

perform better than O(1) hash table lookup. The following equation provides an estimate and can be used as

a rule of thumb for selecting TH1:

TH1 = 2⌈log2(3×edgesPerCacheLine)⌉ (4.1)

56

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

This equation sets TH1 to a value roughly corresponding to four cache line accesses for Type2 vertices.

This is slightly above the three cache line accesses of Type3 vertices, as Type2 vertices have favorable

sequential access patterns and do not incur hash calculation overheads. As an alternative, we provide a

microbenchmark program (graph dataset agnostic) with GraphTango that empirically finds a suitable TH1

threshold.

4.6 Evaluation

4.6.1 Experimental Setup

A) Platform: The experiments are conducted on an AMD Ryzen 3900x @ 3.8GHz machine with 12 physical

cores, 64MB of LLC, and 32GB of DDR4 DRAM. Hyper-threading and turbo-boost were disabled for better

reproducibility. All experiments are performed with 12 cores.

B) Implementation: We evaluated GraphTango by integrating it with the SAGA-Bench [40] benchmark-

ing framework. SAGA-Bench comes with four representation formats - AdListShared, AdListChunked, Stinger

[95], and DegAwareRHH [97]. Details of these formats can be found in Section 4.2. SAGA-Bench integration

facilitates fair comparison, because all approaches must use the exact same algorithm implementations

through a common API . The source code is compiled with gcc-9.3.0 and -03 flag.

Both vertex id and edge property are considered to be of 64-bits size. Therefore, GraphTango has TH0 = 7

for unweighted graphs and TH0 = 3 for weighted graphs. TH1 is set to 32 following the tuning carried out in

Section 4.6.4. This TH1 value also matches the value provided by Equation 4.1.

C) Profiling Methodology: Graph datasets are first randomly shuffled to break any existing ordering of

edges. This is done to reflect the realistic scenario where edge updates are unlikely to occur in any pre-defined

order. The shuffled dataset is inserted in batches of 1M edges until the full graph is built and then deleted9

in batches of 1M edges until no edges are left to delete. This batch size is similar to prior works [96, 40].

Analytics is performed on the graph after every batch of insertions and deletions. Reported

throughputs are the geometric mean of the per-batch throughputs. GraphTango dynamically

switches between vertex types as edges are inserted/deleted. As discussed in Section 4.4, this switching may

involve memory allocation/deallocation, copying, or rehashing. This switching overhead is included in

the reported results.

D) Datasets: We have used four real-world datasets in our experiments: Orkut, LiveJournal, Wiki-

topcats (referred as Wiki), and Wiki-talk (referred as Talk). Orkut and LiveJournal are online social media

9The vanilla SAGA-Bench does not support edge deletions. We added deletion support for all representation formats by
closely following the corresponding papers or from their source code if available.

57

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

Table 4.2: Evaluated Datasets

Dataset
Vertices Edges Max degree1 Vertex mapping2

(million) (million) in out Type1 Type2 Type3

Orkut 3.0 117.2 329 329 27.2% 38.6% 34.2%

LiveJournal 4.8 69.0 237 332 63.0% 26.0% 11.0%

Wiki 1.8 28.5 8,504 154 57.8% 33.9% 8.3%

Talk 2.4 5.0 665 20,088 98.3% 1.2% 0.5%

1 Per-batch maximum degree with batch size of 1 million edges
2 For TH0 = 7 and TH1 = 32

networks, Wiki is a dataset of Wikipedia hyperlinks, and Talk is the Wikipedia communications network.

These datasets are part of the SNAP dataset collection [110]. All these datasets are directed except for Orkut.

Properties of these datasets are given in Table 6.2. Orkut and LiveJournal have a much lower per-batch

maximum degree compared to Wiki and Talk. Consequently, Orkut and LiveJournal are characterized

as short-tailed graphs while Wiki and Talk are heavy-tailed graphs.

E) Algorithms: We used four algorithms in our experiments: i) Breath-First Search (BFS), ii) Page

Rank (PR), iii) Single-Source Shortest Path (SSSP), and iv) Connected Components (CC). Vertex centric

incremental compute model is used for these algorithms, where the computation is constrained within the

region affected by the update phase instead of the whole graph. The implementations of these algorithms are

directly taken from SAGA-Bench without any modification.

4.6.2 Analytics and Update Performance

A) Analytics Throughput: Figure 4.6 shows the analytics throughput of the representation formats. As

mentioned in Section 4.6.1(C), the analytics phase is conducted multiple times as we gradually build the graph.

Reported values are the geometric mean of per-batch throughputs. GraphTango outperforms other approaches

in every dataset and algorithm combinations. Compared to the next best approach (i.e., AdListShared for

BFS, SSSP, CC and AdListChunked for PR), GraphTango provides an avg (max) speedup of 1.1x (1.6x).

As all these approaches are using the exact same algorithm implementation, their relative performance is

primarily determined by their edge traversal efficiency. Adjacency-list-based approaches perform well in this

regard, because their edge traversal consists of mostly sequential accesses. GraphTango also uses adjacency

lists for medium- and high-degree vertices (Type2 and Type3). For low-degree vertices (Type1), GraphTango

has a better access pattern, as it requires one less indirection (i.e., does not need pointer chasing to find

the corresponding edge array), thereby offering higher throughput. Stinger, despite using coarse-grained

adjacency lists, suffers due to additional pointer chasing between edge blocks. Overall, GraphTango provides

58

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

0

250

500

750

1000

1250

1500

Orkut LiveJournal Wiki Talk Orkut LiveJournal Wiki Talk Orkut LiveJournal Wiki Talk Orkut LiveJournal Wiki Talk

BFS PR SSSP CC

An
al

yt
ic

s
th

ro
ug

hp
ut

 (m
illi

on
 e

dg
es

 /
se

c)
AdListShared AdListChunked Stinger DegAwareRHH GraphTango

Figure 4.6: Comparison of the analytics throughputs. Higher is better.

Table 4.3: Average Memory Usage (Bytes Per Edge)

Dataset
AdList- AdList-

Stinger
DegAware

GraphTango
Shared Chunked RHH

Orkut 13.3 12.0 32.7 43.8 33.6

LiveJournal 16.3 12.9 48.9 57.0 34.6

Wiki 15.7 12.7 44.1 62.9 34.4

Talk 44.8 21.9 230.2 74.6 116.9

an avg (max) speedup of 1.8x (5.1x) over AdListShared, 1.3x (1.6x) over AdListChunked, 2.0x (2.7x) over

Stinger, and 5.2x (14.0x) over DegAwareRHH.

B) Update Throughput: Figure 4.7 shows the update (edge insertion and deletion) throughput. Note

that the updates are interleaved with analytics phases (see Section 4.6.1.C). The algorithm choice of the

analytics phase has little impact on the update throughput, and the reported values are the average across

the four algorithms. Here, GraphTango outperforms other approaches by a large margin. Adjacency-list-

based approaches perform well on short-tailed graphs. On these graphs, GraphTango provides an avg

(max) speedup of 2.5x (2.7x) over the next best approach AdListShared. On the other hand, hash-based

DegAwareRHH performs best on the heavy-tailed graphs. Interestingly, AdListShared performed even worse

than AdListChunked for heavy-tailed graphs. This is due to the lock contention of shared-style multithreading

on AdListShared. On heavy-tailed graphs, GraphTango provides an avg (max) speedup of 6.5x (6.6x) over the

next best approach DegAwareRHH. Notably, other approaches are suitable for either short- or heavy-tailed

graphs. GraphTango’s hybrid nature makes it consistently the best-performing irrespective of the graph’s

degree distribution.

59

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

0

5

10

15

20

25

30

Orkut LiveJournal Wiki Talk

In
se

rt
th

ro
ug

hp
ut

(m
illi

on
 e

dg
es

 /
se

c)

AdListShared AdListChunked Stinger
DegAwareRHH GraphTango

0

5

10

15

20

25

30

Orkut LiveJournal Wiki Talk

D
el

et
e

th
ro

ug
hp

ut
(m

illi
on

 e
dg

es
 /

se
c)

Figure 4.7: Comparison of update throughputs. Higher is better.

4.6.3 Memory Usage

Table 4.3 shows the average memory usage per edge. The AdListShared and AdListChunked are most

efficient in terms of memory usage. Compared to AdListChunked - Stinger, DegAwareRHH, and GraphTango

require 5.1x, 4.1x, and 3.4x more memory on average, respectively. For DegAwareRHH, the high memory

usage is caused by: i) Sparse storage of edges in hash tables (to reduce collision), and ii) Robin Hood

hashing mechanism that requires storing the probe distance for each entry. On the other hand, Stinger and

GraphTango have a relatively high initial capacity (16 for Stinger and TH0 for GraphTango) that remains

mostly unused for low-degree vertices. This scenario is especially noticeable for the Talk dataset, where more

than 96% of the vertices have a degree ≤ 3, leading to high memory usage. Although GraphTango has higher

memory usage compared to the simple adjacency-list-based approaches, the update throughput benefit is

significant, especially on heavy-tailed graphs (19.3x to 32.8x speedup on Wiki and Talk datasets). If needed,

one way to reduce memory usage of GraphTango is to increase the TH1 threshold, as discussed in Section

4.6.4. Compared to Stinger and DegAwareRHH, GraphTango requires less memory as well as provides much

higher performance.

60

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

12

14

16

18

20

22

24

26

28

8 16 32 64 128 256 512

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 e

d
g

e
s
 /
 s

e
c
)

12

17

22

27

32

37

42

47

8 16 32 64 128 256 512

M
e

m
o

ry
 u

s
a

g
e

 (
b

y
te

s
 /
 e

d
g

e
)

TH1 TH1

Talk = 116.9

Orkut LiveJournal Wiki Talk

Figure 4.8: Impact of TH1 threshold on update throughput and memory usage.

4.6.4 Impact of TH1 Threshold

Figure 4.8 shows the impact of the TH1 threshold on update throughput and memory usage. Analytics

throughput is not shown because the choice of TH1 does not impact the analytics performance. TH1 of

16 and 32 provides the best throughput on three out of the four datasets. We used TH1 of 32 in all other

experiments, as it has lower memory usage.

The TH1 threshold controls the ratio between Type2 and Type3 vertices. Increasing TH1 maps more

higher-degree vertices to Type2 instead of Type3. As Type2 vertices requires linear search during updates,

it eventually becomes a performance bottleneck for TH1 > 32. On the other hand, Type2 vertices do not

require maintaining a hash table and thus require less memory than Type3. As a result, increasing TH1

reduces the memory usage. On average, increasing TH1 from 8 to 512 reduces the memory usage by 1.9x.

The Talk dataset is an outlier showing negligible variation with TH1. This is because, for the Talk dataset,

98.3% of the vertices are mapped to Type1 (refer to Table 6.2), leaving only 1.7% of the vertices that can be

affected by changing TH1.

4.6.5 Impact of Optimizations

The purpose of this section is to isolate the contribution of the proposed hybrid format as well as the memory

allocation and hashing scheme optimizations. Table 4.4 shows our findings. In this table, the STail and

HTail columns show the normalized update throughput over the baseline configuration for short-tailed and

heavy-tailed graphs, respectively. We show only the update throughput because the memory pool and hashing

optimizations have a negligible impact on the analytics throughput.

61

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

Table 4.4: Impact of Optimizations on the Update Throughput (Baseline is the proposed hybrid format
without any optimizations applied)

Configuration Format
Allocation Hashing Speedup

Scheme Scheme STail HTail

baseline Hybrid malloc2 std map3 1.00 1.00

next best1 - - - 0.76 0.29

opt pool Hybrid proposed std map3 1.12 1.14

opt hash Hybrid malloc2 proposed 1.71 1.70

GT Tessil Hybrid proposed Tessil4 1.40 1.60

GT RHH Hybrid proposed RHH5 1.35 1.45

GT Abseil Hybrid proposed Abseil6 1.34 1.43

GraphTango Hybrid proposed proposed 1.89 1.79

DegAwareRHH DegAware malloc2 RHH 0.29 0.29

DegAwareCFH DegAware malloc2 proposed 0.40 0.38

1 AdListShared for STail and DegAwareRHH for HTail.
2 glibc version 2.31.
3 std::unordered map with libstdc++ version 6.0.28.
4 tsl::robin map from [111], version 1.0.1.
5 Robin Hood hashing implementation from [112], version 3.11.5.
6 Google’s Abseil flat hash map version LTS 20211102 [113].

The baseline configuration implements our proposed hybrid format (i.e., Type1, Type2, and Type3

mapping of vertices) but uses sub-optimal malloc for memory allocation and std::unordered map for hashing.

We can observe that using only the hybrid format is sufficient to provide a better performance than the

next best approach (AdListShared for STail and DegAwareRHH for HTail). Compared to the next best

approach, the baseline offers 1.3x (3.4x) higher speedup for STail (HTail) graphs. The opt pool configuration

shows the benefit of the proposed memory allocation scheme. On average, the proposed pool provides 1.13x

better performance over the baseline. On the other hand, the opt hash configuration shows the benefit of

the proposed cache-friendly hashing scheme, offering 1.71x speedup over std::unordered map. With both

optimizations enabled, GraphTango provides an average speedup of 1.84x over the baseline.

A valid concern at this point is whether we can combine other hashing schemes with our hybrid format to

get even better performance. To answer this question, we tried three other open-addressing-based hash-table

implementations: i) GT Tessil : The Robin Hood hashing variation of Tessil (tsl::robin map) [111]. This is

the fastest hash table implementation according to the benchmark results published in [114]. ii) GT RHH :

Another fast implementation of Robin Hood hashing from [112, 114]. Although it is slightly slower than

Tessil, it consumes significantly less memory. iii) GT Abseil : Google’s Abseil flat hash map [113, 115]. The

max load factors of these approaches are set equal to ours (= 0.5) for a fair comparison. On STail (HTail)

graphs, the proposed hashing scheme provides 1.35x (1.12x) speedup over GT Tessil, 1.4x (1.23x) speedup

62

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

In
s
e

rt
io

n

D
e

le
ti
o
n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o
n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o
n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o
n

A
n

a
ly

ti
c
s

T
o

ta
l

Orkut LiveJournal Wiki Talk

P
ro

c
e
s
s
in

g
 t

im
e

 p
e

r
b
a

tc
h
 (

s
e
c
) RisGraph

RIsGraph + GraphTango

In
s
e

rt
io

n

D
e

le
ti
o
n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o
n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o
n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o
n

A
n

a
ly

ti
c
s

T
o

ta
l

Orkut LiveJournal Wiki Talk

RisGraph

RIsGraph + GraphTango

In
s
e

rt
io

n

D
e
le

ti
o

n

A
n

a
ly

ti
c
s

T
o
ta

l

In
s
e

rt
io

n

D
e
le

ti
o

n

A
n

a
ly

ti
c
s

T
o
ta

l

In
s
e

rt
io

n

D
e
le

ti
o

n

A
n

a
ly

ti
c
s

T
o
ta

l

In
s
e

rt
io

n

D
e
le

ti
o

n

A
n

a
ly

ti
c
s

T
o
ta

l

Orkut LiveJournal Wiki Talk

RisGraph

RIsGraph + GraphTango
BFS SSSP CC

(b) RisGraph vs [RisGraph + GraphTango].

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

Orkut LiveJournal Wiki Talk

P
ro

c
e
s
s
in

g
 t

im
e

 p
e

r
b
a
tc

h
 (

s
e

c
) DZiG

DZiG + GraphTango

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

Orkut LiveJournal Wiki Talk

DZiG

DZiG + GraphTango

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

In
s
e

rt
io

n

D
e

le
ti
o

n

A
n

a
ly

ti
c
s

T
o

ta
l

Orkut LiveJournal Wiki Talk

DZiG

DZiG + GraphTango
BFS SSSP PR

(a) DZiG vs [DZiG + GraphTango].

0.74 0.72

Figure 4.9: Batch processing time breakdown of DZiG and RisGraph integration. Lower is better.

over GT RHH and 1.41x (1.25x) speedup over GT Abseil. Because our hashing scheme tries to minimize

cache line access, it is especially suitable for graph workloads where the hash table is unlikely to reside in the

cache.

Finally, we evaluate whether DegAwareRHH can leverage our hashing scheme to outperform GraphTango.

DegAwareCFH denotes this configuration. DegAwareCFH provides 1.37x (1.31x) better throughput over the

vanilla DegAwareRHH. However, GraphTango still outperforms it by 4.7x for both STail and HTail graphs.

4.6.6 Integration with DZiG and RisGraph

This section demonstrates that full-fledged graph processing frameworks can leverage the GraphTango format

to improve their performance further. We selected two state-of-the-art graph processing frameworks DZiG

[99] and RisGraph [100] for this purpose. We modified their publicly available source code [116, 117] and

replaced their storage format with GraphTango. We run the datasets on BFS, PR, and SSSP for DZiG. CC

is omitted because its implementation is unavailable in the framework’s repository. For the same reason, PR

is omitted in case of RisGraph.

Figure 4.9(a) shows the comparison results between DZiG and DZiG+GraphTango. DZiG internally uses

adjacency list as graph storage. For this reason, analytics time for DZiG and DZiG+GraphTango is similar in

most cases. Interestingly, the insertion time is also comparable in some cases. For example, LiveJournal and

Wiki datasets for BFS. This is because the original DZiG’s edge insertion does not check for duplicate edges.

63

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

Therefore, the edge insertion becomes as simple as adding an element to the end position of an array 10. On

average, GraphTango provides a 1.9x reduction in insertion time even though it also checks for duplicate

edges. For deletion, unmodified DZiG performs 6x worse on average. We identified two reasons: i) Unlike

insertions in DZiG that do not search for duplicates, delete operations require a linear search through the

neighbor list, incurring higher runtime cost, and ii) DZiG performs a quicksort on the batch based on the

source and destination vertex ids to distribute them among the threads. As we use fixed mapping of vertices

in GraphTango, sorting costs are avoided. Overall, DZiG+GraphTango provides an average of 2.3x reduction

in total batch processing time compared to the original DZiG.

Figure 4.9(b) shows the comparison between RisGraph and RisGraph+GraphTango. RisGraph uses a

hybrid graph storage format that uses adjacency list for low/medium degree vertices and adjacency list along

with hash table for high degree vertices. Unlike GraphTango, RisGraph does not differentiate between low

and medium degree vertices and uses the same data structure for both. Furthermore, RisGraph uses Google’s

dense hash map and does not attempt to minimize the number of cache accesses as GraphTango does with

its proposed cache-friendly hashing scheme. Due to these differences, RisGraph+GraphTango provides on

average 1.5x reduction in total batch processing time compared to the vanilla RisGraph.

4.7 Details of Hash Function Implementation

Given these parameters,

M = Number of cache lines in the hash table

N = Number of {key, value} pairs within a cache line

Our proposed hash function is of the following form:

h(key, i) = N · h1

(
key,

⌊
i

N

⌋)
+ h2(key, i mod N)

Here, h1() selects a cache line inside the hash table array, and h2() selects an offset within the cache

line. Therefore, h1() must be a permutation of {0, 1, ...,M − 1} to ensure that all cache lines are eventually

selected. Similarly, h2() must be a permutation of {0, 1, ..., N − 1} to explore all {key, value} pairs within a

cache line. Any h1() and h2() that meet the permutation requirement can be used. For GraphTango, we

10There is a flag to enable duplicate edge insertion checking. But that checking is done by sorting the batch as a pre-processing
step, thereby incurring heavy overhead.

64

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

used the following:

h1(k, x) = (h3(k) + x · h4(k)) mod M

h2(k, x) = (k + x) mod N

h3(k) = ⌊(A · k mod 2w)/2w−m⌋

h4(k) = ⌊(A · k mod 2w)/2w−2m⌋ or 1

Here, w is the key width in bits, A is a large constant, and m = log2(M). We use double hashing for h1()

to negate primary/secondary clustering. It is computed with the help of two pairwise independent hashing

functions, h3() and h4(). h3() and h4() are computed with multiplicative hashing. As for h2(), we used

simple linear probing. Although seemingly complex, the hash can be computed cheaply as we ensure both N

and M are powers of two. The following code snippet shows how to calculate the hash value for a 32-bit key:

u32 h(u32 key, u32 i){

u32 y = key * A;

u32 h3 = y >> (32 - logM);

u32 h4 = (y >> (32 - (logM << 1))) | 1;

u32 h1 = (h3 + (i >> logN) * h4) & (M - 1);

u32 h2 = (key + i) & (N - 1);

return (h1 << logN) + h2;

}

Note that the code does not need any expensive division/modulus operation. When compiled on an x86 64

machine with gcc 9.3.0 and -O3 flag, it resulted in 2 multiplications and 8 other simple arithmetic/logical

instructions.

4.8 Conclusions

Existing streaming graph representation formats can only support either short-tailed or heavy-tailed workloads

efficiently. This work proposes GraphTango, which aims to solve this issue by adaptively switching formats

based on the current degree of a vertex. We also propose a cache-efficient hashing scheme and a fast memory

pool. These optimizations work in synergy with GraphTango to provide excellent update and analytics

throughput regardless of the graph’s degree distribution. Our evaluation on the SAGA-Bench showed that

on average (maximum), GraphTango provides 4.5x (6.6x) higher insertion throughput, 3.2x (5.0x) higher

deletion throughput, and 1.1x (1.6x) higher analytics throughput over the next best approach. Currently

65

GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis

GraphTango is designed with shared memory systems in mind. It would be interesting to extend this approach

for distributed systems.

66

Chapter 5

Pulley: An Algorithm/Hardware

Co-optimization for In-memory

Sorting

5.1 Introduction

Sorting is widely used and appears in many big data applications and database operations, such as index

creation, sort-merge joins, and user-requested output sorting. Accordingly, many studies have focused on

accelerating sorting using FPGA and ASIC [1, 2]. Two factors limit the performance of these accelerators.

First, these accelerators employ merge-based sorting algorithms, where all the data should eventually pass

through a single merging point, causing a bottleneck. Second, these approaches impose significant data

movement overhead because they move data between memory and processing units in several passes (for

datasets too large for the accelerators’ SRAM buffers), where each pass performs only a few operations per

loaded datum from memory. Since data movement in current systems can be orders of magnitude costlier

than arithmetic and logic operations, the data movement overhead dominates the total execution time and

energy consumption. Processing-in-memory (PIM) architectures alleviate this data movement overhead by

processing data inside the memory.

Recent PIM-based accelerators also provide high parallelism by placing one or several ALUs per memory

segment (e.g., one ALU per memory subarray or a few ALUs per bank) inside memory layers. We refer

to these PIM-based accelerators as in-memory-layer accelerators. New high-bandwidth interconnects (e.g.,

67

Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

//The intermediate array 1
Struct bucket{ 2

int hist; 3
int prefix; 4
int index; 5

}; 6
//nSPU=number of SPUs 7
//nBkt=number of buckets 8
bucket intmdt[nSPU][nBkt]; 9

(a)

//Step 1: Local Histogram 1
Input: keys[],mask,nShift, 2
SPU_ID //SPU’s ID 3
nSPU//number of SPUs 4
Output: intmdt[][]=0 5
//-------------------------------- 6
If (SPU_ID<nSPUs){ 7
 for(j=0;j< keys.length;j++){ 8
 bkt=(keys[i]& mask)>>nShift; 9
 intmdt[SPU_ID][bkt].hist++;}} 10

(b)

//Step 2: Prefix-sum 1
Input: intmdt[][],t=0 2
APU_ID//Aggregator PU’s ID 3
Output: intmdt[][] 4
------------------------------- 5
If (PU_ID== APU_ID){ 6
 for(bkt=0;bkt<nBkt;bkt++){ 7
 //for each PU 8
 for(i=1;i<nSPUs;i++){ 9
 intmdt.prefix[i][bkt]=t 10
 t+=intmdt.hist[i][bkt];}}} 11

(c)

//Step 3:Key placement 1
Input:intmdt[][],keys[],mask,nShift 2
Output:sortedKeys[] 3
--------------------------------- 4
If (SPU_ID<nSPUs){ 5
 for(j=0;j< keys.length;j++){ 6

bkt=(keys[j]& mask)>>nShift; 7
 pos=intmdt[i][bkt].prefix+ 8
 intmdt[i][bkt].index; 9
 intmdt[i][bkt].index++; 10
 sortedKeys[pos]=key[j];}} 11

(d)

Figure 5.1: Parallel Radix sorting: (a) The intermediate array, which has one element per bucket and per
subarray-level processing unit (SPU), (b) in step 1, each SPU generates a local histogram array, (c) in step 2,
an aggregator processing unit (APU), outside memory layer (e.g., in the logic layer of 3D stack memories)
performs a prefix-sum on all local histogram arrays, and (d) in step 3, each SPU determines the position
(pos) of each key by deriving the bucket number and adding the prefix value of the bucket to the current
index of the bucket (line 8-9).

NVLink [118]) provide all-to-all connections between multiple devices and increase the connectivity of

multi-device PIMs, providing even higher capacity and parallelism. Thus, it is crucial to employ scalable

algorithms such as radix sorting that can exploit the high parallelism and high connectivity of multi-device

in-memory-layer PIM-based accelerators.

In this work, my contributions are the following: i) Developing a cycle-accurate simulation framework for

Pulley and conducting the experiments, ii) Identifying the capacity issue of storing the histogram in local

subarrays for large radix, and brainstorm with the primary author to devise a solution, and iii) Identifying

the issue of maintaining stable sort during the local-sorting phase.

Radix sorting splits the k bits of keys into smaller d-bit digits, and sorts data in ⌈k/d⌉ passes. In each pass,

the algorithm partitions the keys into radix = 2d distinct buckets and places a key in a bucket in three steps.

The first step is Histogram generation, where each processing unit generates a histogram array by counting

the number of keys in each bucket. In the second step, the algorithm performs Prefix-sum operations across

all local histogram arrays generated by all processing elements. Finally, in the third step, Key placement,

each processing unit uses the prefix-sum results to find the address of each key in the pass’s sorted output

and writes the key in the correct address. This last step moves keys among memory segments, memory stacks,

68

Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

and devices, introducing significant data movement overhead. Therefore, to reduce data movement overhead

for sorting, we need to reduce the number of passes by employing large radixes.

However, implementing large-radix sorting in PIM is challenging for three reasons. First, large-radix

sorting requires reserving a large histogram array per processing element, wasting the capacity. Second, the

Histogram generation step introduces random accesses to the histogram array. Random access to a large

array is very costly in PIM because memory reads the data at a row granularity, only a few Kbits. If the

histogram array does not fit in one row, each random access to the histogram array may need to load a new

row, imposing significant performance and energy overhead. Third, the Prefix-sum step with large radix

imposes significant performance overhead because, in current in-memory-layer accelerators, the prefix-sum

operation across memory segments should be performed using a core far from memory segments. The core

moves all the histogram values and prefix-sum values between the memory segments and the core.

In this work, we address these challenges. To this end, we employ a baseline PIM architecture, Fulcrum [9],

which has one lightweight processing unit per two subarrays. Fulcrum [9] uses a version of radix sorting that

dose not calculate the length of each bucket and assumes (i) all buckets have almost the same length, and (ii)

a bucket in each pass can always fit in one subarray. These assumptions are not true for sorting gigabytes

of real-world data, where data is unevenly distributed among buckets and buckets surpass the capacity of

one subarray. In this work, we address these inefficiencies of Fulcrum by enabling radix sorting that uses

histogram and prefix-sum values for calculating the exact length of each bucket and the exact position of each

key within each bucket. More importantly, we enable large radix sorting, which reduces the number of passes.

We, therefore, propose an algorithm/hardware co-optimization by which every group of processing units

can cooperatively generate a shared intermediate array. In our algorithm, first, each processing unit locally

sorts its keys. We optimize the local sorting by exploiting an efficient sequential mechanism for dichotomizing

keys and proposing hardware support that enables filling and processing the two buckets in binary radix

sorting from two different directions, eliminating the histogram generation step for the local binary radix

sorting (more details in Section 5.3.2). Next, in our algorithm, each processing unit iteratively generates a

small part of the histogram array (e.g., 256 elements) and then reduces this small part in the large shared

intermediate array. The local sorting step enables the part-by-part histogram generation, providing two

benefits: (i) reducing the size of the intermediate array per processing unit and (ii) eliminating random

accesses to the shared intermediate array. Since our proposed method requires only one histogram array per

group of processing elements, our proposed method also decreases the overhead of prefix-sum operations on

histogram arrays.

In summary, this work makes the following contributions:

69

Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

• Proposing the first in-memory-layer approach for gigabyte sorting.

• Reducing the number of required passes by enabling large-radix sorting.

• Exploiting the high parallelism of recent PIMs and all-to-all connectivity of recent interconnections.

• Evaluating the effect of our proposed method against a near-HBM FPGA-based approach [1] and an

in-logic-layer-based sorting accelerator [2].

• Releasing the source code of our simulator [119].

We published the findings of this work in [18] and filed a patent [30].

5.2 Background and Motivation

Figure 5.1 shows the structure of the intermediate array, and the pseudo-code of three steps of the radix

sorting mapped to a PIM-based accelerator, which has one processing unit per subarray (SPU) and one

aggregator core, far from the subarrays. Figure 5.1 (a) shows that each element of the intermediate array has

three fields: (i) histogram value (hist), prefix-sum value (prefix), and index. The index field is used in the

Key placement step and keeps the current index of the bucket. To save the memory space, the prefix-sum

can be performed in place, redcuing the number of fields to two fields. Accordingly, if we uses radix = 216,

each SPU requires at least 512 KB (216 × 2× 4) memory space for the intermediate array.

In addition to the capacity overheads, operations on intermediate arrays impose performance overhead

due to (i) random accesses and (ii) the prefix-sum operation. Line 10 in Figure 5.1 (b) and line 8-10 in Figure

5.1(d) show the random access to the intermediate array. Figure 5.1 (c) shows the prefix-sum operation on

intermediate arrays, where an APU moves many histogram values and prefix-sum values between subarrays

and the APU. Hence, the overhead of the prefix-sum operations is on the order of n × r, where n is the

number of subarray-level processing units, and r is the number of buckets. In this work, we reduce these

capacity and performance overheads.

5.3 Proposed method

5.3.1 Baseline PIM architecture

Figure 5.2 illustrates the architecture of our proposed method, which uses 3D-stacked memories, such

as HMC/HBM. (The proposed architecture can be modified and customized for DIMM as well.) In our

3D-stacked memory, each memory stack has a few layers; within each layer, banks are connected through an

interconnection network with a dragon-fly topology, and within each bank, subarrays are connected through

70

Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

SubarrayPair 1

(b)

SP
U

D
ec

od
er

SP
U

D
ec

od
er

Walker 1
Walker 2
Walker 3

SP
U

D
ec

od
er

Walker 1
Walker 2
Walker 3

Walker 1
Walker 2
Walker 3

In
st

ru
ct

io
n

bu
ffe

r

C
on

tr
ol

 u
ni

t

R
eg

is
te

rs
A

LU

(d) (c)

Control and access signals
Data

Start1
Start2
Start3

End1
End2
End3

(a)

Subarray n

SP
U

D
ec

od
er

R1= A[0]
comp=(A[0]& 0x0001==0)
if(comp):
 B[n-1]=R1
else:
 B[0]=R1

Walker 3

Walker 2

Walker 1 A[0]A[1]A[2]...

B[0]B[1] B[2] ...

..B[n-3]B[n-2] B[n-1]

Logic layer

SubarrayPair 15

SharedSubarray

B[n-3]B[n-2] B[n-1]

B[1] B[2]...

...

B[0] ...

A[0]A[1]A[2].....

......A[n-3]A[n-2]A[n-1]
Array A[:]

...
Array B[:]

Figure 5.2: Our proposed architecture: (a) The circles are subarrays, the rectangles are banks, and the
pentagons are switches. Banks are connected using a dragonfly topology. (b) A bank with an SPU and three
Walkers per subarray pair, (c) architecture of each SPU. (d) An example of local binary radix sorting. SPU
loads one row of array A[:] in Walker1. In each cycle, SPU reads one entry from Walker1 and places it in
either Walker2 or Walker3, based on the binary digit being processed. Once Walker1 is fully read, SPU loads
a new row from array A[:] to Walker1. Once either of Walker2 or Walker3 is full, SPU writes the row in array
B[:]. However, the SPU writes Walker1 in rows starting from the start of the array B[:] but writes Walker3
in rows starting from the end of the array B[:].

a line interconnection topology. Every two banks in a layer form a group, and a through-silicon via (TSV)

connects groups in different layers (which are horizontally aligned) to form a vault. The memory stack also

has one logic layer.

We use a subarray-level PIM approach, Fulcrum/Gearbox[9, 14], as the baseline PIM architecture. In

Fulcrum, every subarray pair has one simplified sequential processing unit (Figure 5.2 (b)) and each vault

has a core in the logic layer. Each subarray-level processing unit (SPU) has a few registers, an 8-entry

instruction buffer, a controller, and an ALU (Figure 5.2 (c)). (The design is motivated by the characteristics

of memory-intensive applications, where there are few simple operations per loaded datum in each step of the

process.) The core in the logic layer has several roles, including (i) broadcasting the eight instructions to all

SPUs at the beginning of each step and (ii) performing aggregation operations.

In Fulcrum, every pair of subarrays also has three row-wide buffers, called Walkers. The Walkers load an

entire row from the subarray at once, but the processing units sequentially access and process one word at

a time. The sequential access is enabled by using a one-hot-encoded value, where the set bit in this value

selects the accessed word. Therefore, to sequentially process the row, the processing unit only needs to shift

the one-hot encoded value, making sequential processing highly efficient. We chose Fulcrum as the baseline

architecture because the three Walkers provide three parallel efficient sequential assess, enabling an efficient

mechanism for dichotomizing keys into two groups, which is the main operation in binary radix sorting.

Fulcrum also cannot efficiently move data among memory banks and assumes that data is already is

bucketed among banks, during the data transfer among the host and the accelerator. This assumption is not

true in many scenarios. The second version of Fulcrum, Gearbox [14], adds the interconnection and hardware

71

Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

support for moving data between banks and subarrays. We employ this capability in Key placement step to

send keys to their destination subarray.

To reduce the number of passes, we use the radix of 216. Therefore, for 32-bit/64-bit keys we require

two/four passes of bucketization on data, where each pass comprises four steps: (i) Local sorting, (ii)

Histogram generation, (iii) Prefix-sum, (iv) Merging and key placement. In the following subsection, we will

explain our contribution in each step.

5.3.2 Local sorting

The three Walkers with shift-based sequential access mechanisms are highly efficient for binary radix sorting,

where we need to dichotomies an array of keys into two buckets (Bucket0 and Bucket1). To this end, we

load the key array row-by-row in Walker1, and employ Walker 2 as Bucket0 and Walker3 as Bucket1. Then,

as shown in Figure 5.2 (d), in each clock cycle, the SPU shifts the one-hot-encoded value to read one key

from Walker1 and writes it to either Walker2 or Walker3 based on the digit being processed by shifting the

one-hot-encoded value of the corresponding Walker. The binary radix sorting is efficient because it requires

no random access. The only problem is that, with non-uniformly distributed keys, the size of each binary

bucket can be very different in each pass. To address this issue, instead of reserving a large space for each

binary bucket, we propose to reserve a space that is almost the size of the key array. Then, we design a

hardware controller that starts Bucket0 from the bottom of the space and fills it upward and starts Bucket1

from the end of the space and fills it downward (Figure 5.2 (d)). The reverse ordering of keys in Bucket1 can

violate stability, a requirement for radix sorting. To maintain stability, we store the end address of Bucket0

as a metadata to enable distinguishing the two buckets. Then, in the next pass, our controller processes

Bucket1 from end to start.

5.3.3 Histogram generation

In this step of our proposed method, 15 processing units in a bank cooperatively generate one large intermediate

array in the lower subarray in the bank. The step comprises three substeps. First, each SPU generates the

histogram values of the first 256 buckets. Second, all SPUs reduce the histogram values of each of the 256

buckets in the lower subarray. Third, all SPUs go to the first substep, to generate the histogram values of the

next 256 buckets, until the histogram values of all the 216 buckets are generated.

As we explained, the second substep requires reducing the histogram values of 256 buckets. To perform

this operation, we propose Cooperative operations, where 15 processing elements cooperate to reduce their

histogram values in the last subarray of the bank.

72

Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

Assuming the histogram array in ithsubarray pair is Hist[i][:], the Cooperative reduction is as follows:

the ith SPU receives a value from (i − 1)th SPU, adds this value to the histogram value of thejth bucket

(Hist[i][j]), and passes the result to the (i+ 1)th SPU.

5.3.4 Prefix-sum

In a 3D-stacked memory, in our configuration, 256 subarrays share a bus (TSVs). A naive PIM-based approach

performs prefix-sum operations on all histogram values in 256 subarrays, imposing significant overhead for

reading and writing these values through the shared bus. Since we reduced the number of intermediate arrays,

the overhead of prefix-sum decreases to the overhead of prefix-sum on only 16 histogram arrays in a vault.

(The cores in the vaults also aggregate their prefix-sum arrays.)

5.3.5 Merging and key placement

The process of finding the exact position of each key is very similar to the original radix sorting, as shown in

Line 11 of Figure 5.1 (d). In this step, keys in the 15 subarrays are sent to the lower subarray, where the

shared histogram array resides. Then, the SPU at the bank level derives the position of the key in the sorted

output array and sends the key and its address through the interconnection toward the destination subarray.

Gearbox [14] adds hardware support for transferring data elements from one subarray to another. We employ

this capability for sending each key to the its destination subarray.

5.4 Evaluation

5.4.1 Methodology

Pulley targets sorting gigabytes of data, where the capacity of one memory stack is not enough. Given that

new interconnection technologies, such as NVLink [118], provide a high-bandwidth fully-connected topology

among multiple devices, we can increase the capacity of our accelerator by connecting multiple devices. We

evaluated Pulley in a 6-device setting, where each device has four stacks of 8-GB memories, providing 192

GB capacity. We chose to place four stacks per device to ensure that the power consumption of each device

is less than 300 Watt. We chose the 6-device setting because the second generation of NVLink allows 6 links

per device. (The third and the fourth generations allow 12 and 18 links per device.)

For each stack, we follow the configurations of Fulcrum [9]. We developed an in-house event-accurate

simulator for Pulley and released the source code of the simulator [119].

73

Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting

Data size (MB)
Th

ro
ug

hp
ut

 (G
B

/S
)

0

100

200

300

400

1024 2048 4096 8192 16384 24576 32768 65536

6-Device Bonsai 6-Device IMC 6-Device Pulley

Figure 5.3: Throughput comparison of Pulley vs. Bonsai [1] and IMC [2]

5.4.2 Throughput

We compared our proposed method against an (i) state-of-the-art near-HBM FPGA-based sorting accelerator

(Bonsai [1]) and an in-logic-layer sorting accelerator (IMC-Sort [2]). The two evaluated approaches are the

most related works that can support sorting gigabytes of data. Pulley, on average, deliver 20× speedup

compared to Bonsai and 13× speedup compared to IMC.

5.4.3 Power and temperature constraints

We evaluated the energy consumption of the memory elements and interconnected elements in Pulley using

CACTI3DD [120] and evaluated the energy consumption of processing units using the RTL synthesize. The

average power consumption of Pulley per stack is 38.6 watts. Our average power density is 540 mW/mm2,

which is under the power density budget of a PIM-based accelerator with a high-end server active cooling

(1214 mW/mm2 [121, 122, 123]) and under the power budget of the PCIe peripheral interface (300 Watts per

device and 75 per stack).

We could not evaluate performance per watt against Bonsai [1] and IMC because Bonsai provides no

energy number, and IMC [2] only provides energy numbers normalized to CPU (we do not know what the

absolute energy consumption of this method is).

5.5 Conclusions and future Work

This work motivates providing hardware support for sharing intermediate arrays in sorting. As future works,

we envision investigating the benefits of shared intermediate arrays for other important kernels such as graph

processing and database operations. We also optimized operations on the shared intermediate by providing

hardware support for co-operative operations. Future works can investigate what other applications can

benefit from these operations.

74

Chapter 6

TGN-PNM: A Near-Memory

Architecture for Temporal GNN

Inference on 3D-Stacked Memory

6.1 Introduction

Graph Neural Networks (GNNs) have gained significant attention in various domains, including social network

analysis [124], biology [125, 126, 127], and recommendation systems [128, 129], owing to their remarkable

capability to capture complex relationships and interactions among entities. GNNs typically learns the

graph representation via a message passing mechanism that aggregates the neighborhood information into

low-dimensional node embeddings. Afterwards, these embeddings are leveraged for performing various

downstream inference tasks on the graph, such as node classification [130, 131], link prediction [132, 133, 134],

and graph clustering [135].

In user facing production environments, these inference tasks on GNNs are often times subjected to very

stringent latency/throughput constraints. Subsequently, researchers have proposed a plethora of accelerator

architectures, primarily focusing on the inference tasks on static GNNs [136, 137, 138, 139, 140, 141, 129].

These accelerators leverage the observation that inference tasks on prevailing static GNN models (e.g., GCN)

are primarily composed of two distinct execution phases: aggregation and combination [136]. The aggregation

phase uses the graph structure and neighbor interactions to recursively update the feature vectors of nodes.

In contrast, the combination phase transforms the aggregated features of each node through neural network

75

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

layers to compute the node embeddings. Among these two phases, the aggregation phase shows the typical

pitfalls of graph processing behavior; this phase is data-intensive with highly irregular access patterns, and

low compute intensity. On the other hand, the combination phase shows a regular access pattern with high

compute density. Accordingly, existing static GNN accelerators aim to optimize one or both of these phases.

However, many of these optimizations are inherently tied to the static nature of the graph (e.g., storing

the graph in specialized compressed formats), and cannot be easily extended to accelerate temporal GNN

(TGNN) [142, 143], where the graph topology is no longer static as the nodes and edges evolves over time.

Most real-life systems of interactions falls into this temporal category, with studies showing that including

the temporal information for graph representation learning can boost prediction accuracy [144, 145, 146].

Despite the importance of TGNNs, if it very challenging to design an accelerator targeting TGNN

workloads for various reasons. First is the lack of standard model architecture. Unlike GCN, which is

the prevailing model for static GNNs, there is no general consensus about which temporal GNN model is

the best, and often times boils down to accuracy-complexity tradeoff. Therefore, it is desirable that the

proposed accelerator is flexible to accommodate design choices that might arise in the future. Second, unlike

static GNN’s aggregation/combination phases, models for TGNNs often times cannot be decomposed into

distinct phases of rigid execution patterns (e.g., aggregation phase itself may require neural network layers,

such as in temporal graph attention [143]). Furthermore, based on the TGNN model architecture, batch

size, and dataset, the operational intensity of the execution phases can vary widely and can contain both

memory-bound and compute-bound kernels (more discussion on this topic on Section 6.2.1). It is critical to

handle both types of kernels efficiently to extract maximum performance. Third, due to the evolving nature

of the graph, it is difficult to maintain proper workload balance. This issue is less prominent in static graphs,

where pre-processing steps can by applied on the graph to reorganize vertices to ensure balance and extract

maximum locality [147, 148, 149]. This pre-processing cost is a one time cost for static graphs and gets

amortized over time, but becomes prohibitively expensive on dynamic graphs. Researchers have proposed

node migrations techniques that can partially solve the workload imbalance on dynamic graphs [98, 150].

Unfortunately, migration based methods introduce additional data-movements to relocate the migrating nodes.

This data-movement overhead is significant for GNN workloads, as each node is usually associated with a

large number of features. Migration-based techniques also require dictionary lookups to determine a node’s

current location. If caching is used, then maintaining coherence also becomes an issue. Because of these

aforementioned challenges, accelerators designed specifically for TGNN is extremely rare. We are aware of only

one prior accelerator that targets TGNN workloads [151], mapping the TGN framework [144] on an FPGA

(referred as tFPGA). However, we observed that this approach can only support a few numbers of compute

76

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

units due to FPGA resource limitation and is vastly outperformed by in-/near-memory-processing-based

approaches.

In this chapter, we propose TGN-PNM, which is a near-memory architecture for accelerating TGNN

workloads. TGN-PNM exploits vault-level parallelism by placing one Vault Processing Unit (VPU) at every

vault in the logic-layer of a 3D-stacked memory. Each VPU contains a SIMD unit for common memory-

intensive operations (e.g., BLAS level 1 and 2 kernels, time encoding, and other elementwise operations) and

a systolic array for compute-intensive operations (e.g., BLAS level 3 kernels). Placing the compute units at

the logic layer enables obtaining performance that is memory-capacity-proportional (i.e., linear performance

improvement can be obtained by increasing the number of memory stacks) and also exposes the internal

memory bandwidth that can be an order of magnitude higher than the bandwidth seen by external I/O links

[10]. While it is possible to obtain a finer-grained parallelism by placing the compute units at the banks or

subarrays, as proposed by a few prior generic accelerator architectures [22, 152, 9, 14, 20, 19, 16], it comes with

several pitfalls. First, any extra logic in the compute units gets multiplied by the number of banks/subarrays.

Therefore, these compute units cannot accommodate complex logic, such as transcendental time encoding

functions needed for TGNN kernels. These functions needs to be handled separately, for example, by the

host or by placing compute cores in the logic layer, thereby introducing a lot of data-movement overhead.

Placing compute units at the bank-/subarray-level also imposes a stricter requirement on the data layout and

moving the intermediate results to conform to this requirement often times becomes a bottleneck. Finally,

gates in the DRAM dies are usually larger and slower than their counterpart in the logic die. These reasons

motivate us to place the compute units at the logic layer, rather than in the banks/subarrays.

In our approach, if we partition the graph in the traditional manner, where each vault holds a subset of

nodes, the primary bottleneck arises from significant inter-vault communication during neighbor aggregation.

To overcome this limitation and improve workload balance, we introduce a feature-dimension partitioning

scheme. The key idea of this approach is to allocate each vault with a subset of the features of all nodes. This

design choice takes advantage of the fact that nodes in GNNs typically possess numerous features (ranging

from hundreds to thousands). With this partitioning scheme, all elementwise operations, including operand

fetch for neighbor aggregation, become localized within each vault. Consequently, inter-vault communication

is only required for dot-product reduction operations during matrix-vector and matrix-matrix multiplications,

as each vault produces only a portion of the output vector or matrix. This reduction can be handled efficiently

with a simple pipelined tree-adder. Additionally, each vault only needs to contain a subset of the weights and

does not need to duplicate the weights across all the vaults. Another advantage of our proposed architecture

is that the compute units within all vaults can work in lockstep, leveraging a single instruction queue and a

77

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

unified fetch/decode unit. We extended our approach with a broadcasting mechanism and hybrid partitioning

scheme, both of which helps towards efficiently handling small feature vectors.

We evaluated our approach against a few architectures: a high-end CPU and GPU, a subarray-level

general purpose PIM architecture Gearbox [14], a bank-level AI accelerator Newton [22], and the FPGA-based

TGNN accelerator tFPGA [151]. Our evaluation demonstrated average throughput gains of 26.8x over CPU,

16.7x over GPU, 5.2x over Gearbox, 4.4x over Newton, and 10.4x over tFPGA.

6.2 Background and Motivation

6.2.1 Temporal Graph Neural Network (TGNN)

Evolving graphs can be expressed in two manners: Discrete-time dynamic graphs (DTDG) and continuous-

time dynamic graphs (CTDG). In DTDG, the dynamic graph is represented as a sequence of static graph

snapshots, G(t) = {Gt1 , Gt2 , ..., Gt}. However, DTDG is a coarse-grained representation where the exact

event timestamps between subsequent snapshots are lost. This loss of temporal information can lead to

comparatively lower accuracy during inference [145]. On the other hand, CTDG is more fine-grained and can

represent the dynamic graph as an ordered sequence of timestamped events, G(t) = {δ1, δ2, ..., δk}, where

each event δi denotes the addition/deletion of a node or an edge. Typically, CTDG is a multigraph, which

means that there can be more than one edge between a pair of nodes, pertaining to multiple interaction

events between the nodes at different times. In this paper, we focus on the continuous time representation of

the temporal graph.

A few prior works proposed neural network models for learning representations over CTDG [153, 154, 144,

145, 155, 146, 156]. Among these approaches, TGN [144] proposes a generic message-passing-based modular

framework that can be tuned to mimic many of these other approaches. In TGN, each node is composed of

raw node features vi that denote the static properties of the node, node memory or state si(t) that captures

the history of temporal interactions, and dynamic node embeddings zi(t) that combine the node memory

with the spatial information (neighborhood or graph topology). Each interaction event involving a node

produces a message. An interaction between nodes vi and vj therefore will produce two messages:

mi(t) = {si(t−)||sj(t−)||Φ(∆ti)||eij} (6.1)

mj(t) = {sj(t−)||si(t−)||Φ(∆tj)||eij} (6.2)

78

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

Table 6.1: Arithmetic intensity (flops/byte) of various TGNN models.

Memory updater function Embedding function

Batch size = 1 Batch size = 32 Batch size = 1 Batch size = 32

Type Wiki GDELT Wiki GDELT Type Wiki GDELT Wiki GDELT

TGN-attn [142] GRU 0.50 0.50 15.04 15.63 attn (1 layer) 3.11 2.62 83.03 69.68

TGN-sum [142] GRU 0.50 0.50 15.04 15.63 sum 0.71 0.48 0.77 0.49

TGAT [145] - - - - - attn (2 layers) 28.09 26.60 116.97 151.61

JODIE [146] RNN 0.05 0.05 13.47 14.82 time projection 0.50 0.50 0.97 0.97

tFPGA [151] GRU 0.50 0.50 15.04 15.56 simple attn 1.03 0.74 1.17 0.78

Here, || denotes the concatenation operation, s(t−) denotes the node state just before the event, Φ(∆t) is

the vector encoding of elapsed time since the last state update of that particular node, and eij is the edge

embedding of that interaction. The time encoding function is usually implemented as Φ(∆t) = cos(∆tw + b),

following prior works such as Time2Vec [157] and TGAT [145]. In batch processing, one node can receive

multiple messages within a batch, which is aggregated into a single message per node by a message aggregator

function. The message aggregator function can be implemented in various ways. The common implementation

simply keeps the most recent message as the aggregated message [144, 151, 156]. The aggregated message is

then used to update the node states as follows:

si(t) = mem(m̄i(t), si(t
−)) (6.3)

sj(t) = mem(m̄j(t), sj(t
−)) (6.4)

Here, m̄(t) is the aggregated message and mem() is a learnable function for updating the memory, e.g., a

recurrent neural network such as LSTM or GRU. Finally, the dynamic embedding is derived by aggregating

over the k-hop temporal neighborhood N k
i :

zi(t) = emb(vi,vj , si(t), sj(t), eij ,∆t)|∀j ∈ N k
i (6.5)

Here, emb() is a learnable function and can be realized in several ways. One is to simply use the node’s

current state, zi(t) = si(t). However, this approach can lead to memory staleness if the node’s state has not

updated in a while [158, 144]. JODIE [146] uses a linear time projection of the node’s state to avoid this

issue, zi(t) = (1 +∆tw) ◦ si(t). TGAT [145] and TGN [142] uses a multi-head graph attention mechanism

over the temporal neighborhood as the embedding function. It is also viable to simply use the average of

neighbor states as the embedding while retaining relatively high accuracy, as shown by TGN-sum [142].

79

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

Vault

BanksDRAM layer Logic layer TSV

(a) (b)
Figure 6.1: Organization of a Hybrid Memory Cube [3, 4].

Table 6.1 summarizes the arithmetic intensity of these functions for different datasets, model-architectures,

and batch sizes. It can be observed that the arithmetic complexity of the same kernels (e.g., embedding

function) can differ vastly among different models. Furthermore, even within the same model and same

function, arithmetic complexity can change widely depending on the data reuse opportunity. Therefore, a

TGNN accelerator must be flexible to efficiently accommodate kernels with different arithmetic intensity.

6.2.2 3D-stacked memory

In 3D-stacked memory, multiple DRAM dies (e.g., 4 or 8) are stacked vertically and may contain an optional

buffer or logic die. Notably, two distinct variations of 3D-stacked memory technology have emerged that are

promising in terms of PIM architectures [159, 121]: Hybrid Memory Cube (HMC) [3] and High Bandwidth

Memory (HBM) [160]. In HBM, the external IO interface of the memory stack is implemented through DDR

physical channels. The HBM memory stacks are tightly integrated with the host die on a silicon interposer,

with the memory controllers residing on the host die. In contrast, the HMC specification places the memory

controllers within a logic die part of the HMC memory stack. Figure 6.1 shows the organization of HMC. In

HMC, memory layers are partitioned vertically to form mostly independent vaults. Each memory layer in

each vault contains multiple memory banks. All banks within a vault are connected using through-silicon vias

(TSVs) that act as the shared bus to carry DRAM address and command signals to these banks. Each vault

also contains a memory controller in its logic layer. DRAM transistors in the memory layers have traditionally

been designed for low cost and leakage. The logic die, on the other hand, uses high-performance transistors

[11]. HMC 2.1 specification supports up to 32 vaults. Four external SerDes IO links are connected to these

memory controllers using a crossbar switch at the logic layer. Note that this crossbar switch only connects

the IO links to the vaults, but the vaults themselves do not communicate directly (e.g., send memory access

requests) with each other. These IO links can be used to connect to the host or can be used to connect to

other HMC cubes to increase capacity. In this chapter, we will mostly refer to memory specifications and

terminologies pertaining to HMC, but the concept can be easily extended to HBM memory by placing the

80

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

...

VPU 1

Vault 1 Vault 2 Vault n

Memory Layers

Logic Layer

...

Global interconnect network

I/O links to host or other cubes

G
lo

b
al

 c
o

n
tr

o
l u

n
it

(G
LC

U
)

Partial
Sum
Acc.

(PSAU)

B
ro

ad
ca

st
ed

d

at
a

fr
o

m
 G

LC
U

VPU

VSPad

Load/Store
Unit

NoC

FP Mul FP Add

CORDIC

Activation functions

SIMD Unit

Systolic Array

From/to PSAU

(a) Microarchitecture Overview (b) Vault Processing Unit (VPU)

Scalar
core

GSPad
Pre-

fetcher

BCBuf

Weight
buffer

Input
FIFO

MC & PHY MC & PHY MC & PHY

TSV

VPU 2 VPU n

Data + Inst bus
Data bus

To MC

Figure 6.2: TGN-PNM Architecture.

VPUs after the memory controller on the host die, similar to the approach proposed in [161]. For our specific

application, however, using HMC offers a few advantages over HBM: i) Placing the VPUs in the logic layer of

HMC results in lower energy for data movement compared to placing them on the host die, as the data do

not have to travel through the silicon interposer. ii) HMC is optimized for random accesses (by using short

row buffers, closed page policy, consecutive address to different banks), while HBM is for sequential accesses

(wider row buffers, open page policy, consecutive address to the same row). Consequently, HMC is better

aligned with the irregular access patterns of graph workloads.

6.3 TGN-PNM Microarchitecture

Figure 6.2(a) presents the microarchitecture of our proposed approach. We primarily add three components

besides the interconnect network and the memory controllers that are already present in the logic layer

of an HMC-like memory: i) Vault-level Processing Units (VPUs) at the logic layer of every vault, ii) one

Global Control Unit (GLCU), and ii) one Partial-Sum Accumulation Unit (PSAU). Next, we will describe

the contents and connectivity of each of these components.

6.3.1 Vault-level Processing Unit (VPU)

The VPUs are the primary computing units in our design. Figure 6.2(b) shows the organization of a VPU.

Each VPU contains a Su × Su systolic array of fused-multiply-accumulators, a Su-lane SIMD unit, a local

scratchpad memory (VSPad), and a weight buffer. In the case of the systolic array, instead of using a single

Su × Su array, it is realized as a group of four arrays, each with the dimension of Su × Sa, where Sa = Su/4.

These arrays can be configured to work cooperatively or independently: as a single Su × Su array, two

81

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

Su × 2Sa arrays, or four Su × Sa arrays. The concept of this segmented systolic array is borrowed from the

work of Yan et al. [136] and is leveraged to support dense matrix multiplication with small feature dimensions

efficiently. The output of the systolic array is sent to the PSAU for accumulation.

The SIMD unit contains Su pipelined multipliers and adders, one 16-stage CORDIC functional unit for

time encoding, and one activation function unit. The activation functions are realized using a lookup table.

The CORDIC unit consumes Su operands simultaneously but processes them sequentially (i.e., it has an

initiation interval of 16 cycles). As both the systolic array and the SIMD unit work on Su data elements at a

time, the access granularity to the VSPad is fixed to size(elem) ∗ Su. These functional units’ operands can

come from the VSPad, weight buffer, result bus, or the global broadcast buffer. All the VPUs operate in a

lockstep controlled by the GLCU. VPUs have very limited outside visibility - they can only load/store data

from their local vault (by using the address broadcasted by the GLCU) and send data out only to the PSAU

for reduction. VPUs cannot communicate directly with each other. We map the dense matrix multiply on

the systolic array. All the other operations are usually mapped to the SIMD unit. Mapping is disscued in

more detail in Section 6.4.1.

6.3.2 Global Control Unit (GLCU)

The primary objective of the GLCU is to drive the VPUs by broadcasting instructions. It also contains a

scalar core, a scratchpad memory (GSPad, local to the GLCU), a data broadcast buffer (BCBuf), and a

prefetcher. The scalar core can be used for operations not supported by the VPUs or for complex reductions

(e.g., softmax in graph-attention). It has access to the full memory stack (via the global interconnect network),

the GSPad, and the BCBuf. The function of the broadcast buffer BCBuf is to provide a common operand

to all the VPUs. In our mapping scheme, discussed later in Section 6.4.1, BCBuf is used for time encoding

and handling low-dimension GEMM. Width of the BCBuf is Su elements. GLCU also contains a prefetcher

that can fill the GSPad or VSPad by fetching a node’s associated data. Using the broadcast mechanism, we

can issue memory read/write requests to every vault in every clock cycle. With this approach, we can easily

saturate the memory controller queue without resorting to maintaining multiple threads, as done in a few

prior PIM approaches [152, 162].

6.3.3 Partial-Sum Accumulation Unit (PSAU)

As discussed earlier, partitioning across the feature dimension requires only inter-vault communication when

performing dot-product reductions during GEMV and GEMM operations. The PSAU handles this reduction.

It contains a pipelined parallel adder tree to reduce the results from all the VPUs’ systolic arrays. A few entry

82

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

dst
addr

acc
reg

Partial sums from VPUs

Accumulation
registersaddr

broadcast to VPUs

Pipeline registers

𝑆𝑢 x 16-bit
FP adders

Figure 6.3: Partial-sum accumulation unit (PSAU). Figure drawn assuming a total of eight VPUs.

accumulation registers store the partial results. The final output is broadcast to all the VPUs and stored in

either one of the VSPads or the GSPad, depending on the destination address. An alternative to running the

vaults in lockstep and doing partial sum across vaults is to make the VPUs completely independent. However,

it requires either having a copy of the model parameters in each vault or a high amount of inter-vault traffic.

To summarize, the VPUs can get their operands from i) their local scratchpad memory (VSPad), ii)

their local DRAM stack (must load to the VSPad first), and iii) the broadcast buffer (BCBuf). After doing

the intended computation, VPUs can send the result to the following: i) local scratchpad (VSPad) as the

intermediate operands for later stages, ii) local DRAM stack store, or iii) PSAU for reduction. The result of

the reduction by PSAU can be sent back to one of the VPU’s scratchpad or the GLCU’s scratchpad.

6.4 Mapping TGNN Frameworks on TGN-PNM

In this section, we discuss a potential graph storage format and mapping schemes for the common operations

pertaining to TGNN frameworks.

6.4.1 Mapping of common operations

Dense matrix multiplication

We always process dense matrix multiplication using the systolic array. Figure 6.4 demonstrates our mapping

scheme. Depending on the current input location and input’s feature dimension, we map the operation into

one of the three possible scenarios: i) In the first scenario, input is currently stored in VSPad (i.e., using

feature-based partitioning) and the number of input-features within the vault is ≥ Su. In this scenario, all

lanes of the systolic array will be occupied without resorting to any special strategy. We use input-stationary

83

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

a00 a01 a02 a03 a04 a05 a06 a07

a10 a11 a12 a13 a14 a15 a16 a17

a20 a21 a22 a23 a24 a25 a26 a27

a30 a31 a32 a33 a34 a35 a36 a37

V1 V2

Input matrix

X

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

b40 b41 b42 b43

b50 b51 b52 b53

b60 b61 b62 b63

b70 b71 b72 b73

V1

V2

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

a04 a05 a06 a07

a14 a15 a16 a17

a24 a25 a26 a27

a34 a35 a36 a37

b33

b23 b32

b13 b22 b31

b03 b12 b21 b30

b02 b11 b20

b01 b10

b00

Weight matrix
Systolic array

To
 P

SA
U

To
 P

SA
U

Systolic array

b73

b63 b72

b53 b62 b71

b43 b52 b61 b70

b42 b51 b60

b41 b50

b40

(a) Scenario 1: Input stored in VSPad, with per-vault feature-dimension ≥ 𝑆𝑢

(b) Scenario 2: Input stored in VSPad, with per-vault feature-dimension < 𝑆𝑢

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

V1 V2

b00 b01 b02 b03 b04 b05 b06 b07

b10 b11 b12 b13 b14 b15 b16 b17

b20 b21 b22 b23 b24 b25 b26 b27

b30 b31 b32 b33 b34 b35 b36 b37

V1

V2

X

a00 a01 a00 a01

a10 a11 a10 a11

a20 a21 a20 a21

a30 a31 a30 a31

Input matrix Weight matrix

V1 V2

Systolic array

To
 P

SA
U

b13 b17

b03 b12 b07 b16

b02 b11 b06 b15

b01 b10 b05 b14

b00 b04

a02 a03 a02 a03

a12 a13 a12 a13

a22 a23 a22 a23

a32 a33 a32 a33

Systolic array

b33 b37

b23 b32 b27 b36

b22 b31 b26 b35

b21 b30 b25 b34

b20 b24

V1 V2

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

b00 b01 b02 b03 b04 b05 b06 b07

b10 b11 b12 b13 b14 b15 b16 b17

b20 b21 b22 b23 b24 b25 b26 b27

b30 b31 b32 b33 b34 b35 b36 b37

V1 V2

X

Weight matrix

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

V1 V2

Systolic array

...

... a23

... a22 a13

... a21 a12 a03

a20 a11 a02

a10 a01

a00

b04 b05 b06 b07

b14 b15 b16 b17

b24 b25 b26 b27

b34 b35 b36 b37

Systolic array

To
 r

es
u

lt
 b

u
s

...

... a23

... a22 a13

... a21 a12 a03

a20 a11 a02

a10 a01

a00

Input matrix

To
 r

es
u

lt
 b

u
s

(c) Scenario 3: Input stored in the broadcast buffer (BCBuf).

To
 P

SA
U

Figure 6.4: Mapping of dense matrix multiplication on TGN-PNM.

84

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

dataflow on the systolic array for this case. If the input matrix is (m× n) and the weight matrix is (n× k),

then m is usually the batch size (or batch size * the number of neighbors) or the partitioned output of an

intermediate matrix. n-dimension is also partitioned across vaults. Therefore, these values are relatively

small when compared to k. Using input-stationary dataflow enables streaming the weights along k, thereby

providing higher reuse of the inputs. Furthermore, we use two sets of registers to enable loading the next set

of inputs and biases while processing the current set. Outputs of the systolic arrays are sent to the PSAU

for reduction, after which the final result can be stored in the VSPad or BCBuf, depending on the output

dimension. ii) In the second scenario, input is stored in the VSPad; however, the per-vault feature dimension

is smaller than Su. In this case, using the former scheme will leave some of the systolic array lanes unused. To

avoid this, we use a smaller segment of the systolic array1. To fully utilize the available lanes, the inputs are

duplicated P times, and the weight matrix is also folded P times. This approach fully occupies all the MAC

units, maximizing the available compute bandwidth. The maximum value of P is the number of segments.

While increasing the number of segments means that we can support narrower input matrices efficiently, it

also means that the output of the systolic array produces a higher number of outputs per clock (i.e., P.Su),

and the PSAU had to be widened accordingly. In our implementation, we support four segments. Any higher

value resulted in unacceptable area overhead for PSAU. iii) In this scenario, the input is stored in the BCBuf

and broadcasted to all VPUs, where the corresponding results are calculated and stored back on the same

vault. As we are broadcasting the inputs, we use weight stationary dataflow in this scenario.

Time encoding

As mentioned earlier in Section 6.2, time encoding is usually implemented as Φ(∆t) = cos(∆twt + bt).

Depending on the task, ∆t denotes either the time elapsed since the last update of a node or the incident

time of an edge. wt and bt are the learnable weights and biases. Each VPU contains a subset of these weights

and biases in its weight buffer. Timestamps are stored in the memory in a traditional fashion (discussed in

Section 6.4.2) and fetched in the GSPad for processing. The scalar core computes the ∆t of a batch and then

puts the results in the BCBuf. Then, the ∆t of Su elements are broadcasted to the VPUs. The SIMD units

on the VPUs will multiply the broadcasted value with the stored weights, add bias, and then send it to the

CORDIC unit to calculate the resultant time encoding.

1The idea of a segmented systolic array is borrowed from [136], where a systolic module is formed by combining several
narrower arrays. Refer to Section 6.3.1) for more detail.

85

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

Element size (bytes)

To
ta

l p
re

fe
tc

h
tim

e
(m

s)

0.01

0.1

1

10

64 128 256 512 1024 2048 4096

feat_locality_open feat_para_open feat_para_close
trad_locality_open trad_para_open trad_para_close

Figure 6.5: Total operand load time for the Wikipedia dataset with different memory address mapping and
page policy configurations. Lower is better.

Elementwise operations

Elementwise operations are performed using the SIMD unit. Note that using the broadcasting mechanism for

elementwise operations is not efficient. This is because the same value gets broadcast to every VPU, but

we do not have any reuse opportunity in elementwise operations. Therefore, we store both operands in the

VSPad for elementwise operations. One potential shortcoming of our approach is that, if the dimension of

the operands is small, then the SIMD lanes will be underutilized.

6.4.2 Graph storage format

Static GNN accelerators typically use compressed formats such as CSR to improve locality characteristics.

However, such formats are unsuitable for dynamic graphs, as any change in the graph topology (e.g., addition

of nodes or edges) requires reconstructing the whole graph from scratch. To support this dynamic behavior effi-

ciently, we store the graph in an adjacency list format and limit the maximum number of neighbors a node can

have2. This constraint is fairly common in existing TGNN frameworks and accelerators [144, 151]. To maintain

a fixed number of neighbors, the adjacency list of each node is realized using a circular queue. More specifi-

cally, we stored the following metadata for each node: {head, tail, ts, eid0, eid1, ..., eidK , ets0, ets1, ..., etsK}.

Here, head and tail are used to determine the location for new edge insertion in the circular queue. ts is

the timestamp of the last update. eidi and etsi are i-th edge’s neighbor node id and incident timestamp,

2One reason that limiting the number of neighbors does not hamper the model accuracy by a large margin is that the impact
of temporal interactions of the discarded neighbors is already captured and summarized in the node’s memory.

86

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

respectively. Note that partitioning along the feature dimension is impossible for these graph metadata, as

these are mostly scalar values and are also shared by all the vaults. It is possible to partition these graph

metadata along the node dimension so that each vault contains all metadata associated with a subset of the

nodes. However, real-world graphs usually demonstrate power-law degree distribution, indicating that some

of the vaults will get a disproportionately high number of accesses if we partition along the node dimension,

causing severe load imbalance. Therefore, these metadata are stored in a traditional fashion (i.e., consecutive

memory address is mapped to either in the same DRAM row to maximize row buffer locality or in different

banks to maximize parallelism) and fetched to the global scratchpad (GSPad) instead of the vault’s local

scratchpad (VSPad).

On the other hand, vector data, such as weights and the states of nodes and edges, can be partitioned along

their feature dimension so that each vault contains a subset of features for all nodes. However, if the feature

dimension is small, it may be beneficial to use traditional memory address mapping for these vector data as

well. Figure 6.5 shows the operand prefetch time with different partitioning and address mapping schemes.

We used an 8 GB HMC 2.1 memory stack for this experiment with 32 vaults, 32B DRAM column width,

and 256 B wide row buffers. Here, the x-axis shows the data size associated with each node. We tried three

paging-policy/address-mapping-scheme combinations: i) optimized for row buffer locality, where consecutive

addresses are mapped to the same row (x locality open), ii) optimized for parallelism, where consecutive

addresses are mapped to different banks, and keeping the row buffer open (x para open), and iii) optimized

for parallelism with closed page policy (x para closed). Figure 6.5 suggests that traditional mapping performs

best for per-node data size ≤ 256B. For larger data, feature-based scheme feat locality open performs best.

One interesting observation is that feature-based partitioning performs better in some cases, even when

each vault’s portion of the feature may not fully occupy a DRAM column width (i.e., for an element size

of 512B, translating to a per-vault element size of 16B). One reason is that the memory requests per vault

case of feature-based partitioning are perfectly balanced. Another factor impacting the traditional scheme

was the additional latency of traversing the global interconnect. Therefore, we propose a hybrid partitioning

where the data is stored using a traditional scheme if the associated data size ≤ 256B (feature-dimension

≤ 128 with FP16) and using a feature-based scheme otherwise. An additional consideration is the intended

operation on the data. If it is an elementwise operation, then using the traditional scheme is not viable

because broadcasting is not optimal for elementwise operations. In this case, the data is stored using the

feature-based scheme.

87

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

6.5 Evaluation

In this section, we compare the performance of our method against five other architectures: (i) a high-end

CPU server as the baseline, (ii) NVIDIA A100 tensor core GPU, (iii) subarray-level general purpose PIM

architecture Gearbox [14], (iv) bank-level PIM-based machine learning accelerator Newton [22], and (v) an

FPGA-based TGNN accelerator (we refer to this approach as tFPGA in our paper) [151]. A summary of

the configuration of these platforms is provided in Table 6.3. Due to the lack of TGNN-specific accelerators

except for tFPGA, we choose to compare against semi-general purpose accelerators such as Gearbox and

Newton. Besides, as one of these is subarray-level, and the other is bank-level, it highlights the trade-offs

of the vault-level accelerator we proposed. The rest of the section is organized as follows. First, we discuss

our evaluation methodology. Second, we discuss the other architectures and how we mapped the TGNN

application on them in detail. Third, we present the performance comparison. Finally, we provide the area

estimation.

6.5.1 Methodology

We evaluated our approach by mapping two variants of the TGNN model architecture proposed in [144]:

TGN-attn and TGN-sum. Both of these models use GRU as the memory updater function. TGN-attn uses

a single-layer multi-head graph-attention mechanism for neighbor aggregation, while TGN-sum uses the

average of the neighbor states. As a result, TGN-attn has both memory-intensive (collecting neighbor state

data) and compute-intensive (creating key, value, and query matrices for calculating self-attention weights)

stages. On the other hand, TGN-sum’s neighbor aggregation is memory-bound (refer to Section 6.2.1 for more

details). We set the maximum number of neighbors to 10 and batch size to 200, following the original model

implementation in [144]. However, as discussed later in Section 6.5.3, Gearbox and Newton only support

GEMV operation and perform GEMM by repeating GEMV on every input column. We set the batch size to

one for these two approaches as they do not benefit from batching.

We implemented our approach on an HMC 2.1-like memory stack with 32 vaults and 16 banks per vault.

The TSV width is 64 bits, clocked at 2 GHz, attaining per vault memory bandwidth of 16 GB/s (total 512

GB/s for a single stack). The logic layer is clocked at 1.2 GHz. Su is set to 16 (i.e., 16× 16 systolic array

and 16-lane SIMD units in each VPU). In our implementation, we use 16 bit brain floating-point (BF16)

format for all the operands. We dropped the support for denormalization and restricted rounding modes to

reduce the area required by the FP units.

The performance measures are collected by building cycle-accurate simulation models for the VPUs

and the GLCU and then feeding the resulting memory request trace to a modified version of DRAMSim3

88

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

Table 6.2: Characteristics of the used datasets. Time encoder dimension is fixed to 100 for all datasets.

Dataset |V | |E| |vi| |eij | |si(t)|
Max weight

dim

Total weight

(MB)

Wikipedia 9K 157K - 100 100 516 x 944 5.95

Reddit 11K 672K - 100 100 516 x 944 5.95

GDELT 9K 1913K 413 186 413 1242 x 1680 19.4

[163]. As for the performance metrics, we measured batch processing latency and throughput. We define

batch processing latency as the elapsed time between receiving a batch to process and writing back the

corresponding dynamic node embeddings to memory. We use the number of processed events per unit time

for throughput measurement. The objective is to maximize the throughput and minimize the latency for the

TGNN inference task.

6.5.2 Datasets

We conduct the experiments on three real-world datasets: Wikipedia [146, 164], Reddit [146, 164], and

GDELT [153]. Details of these datasets are given in Table 6.2. Wikipedia and Reddit are bipartite graphs

consisting of user edits on Wikipedia pages and posts on subreddits. GDELT dataset is a reduced version

of a temporal knowledge graph dataset introduced in [156]. Among these datasets, Wikipedia and Reddit

do not have any raw node features. The time encoding and the nodes’ memory dimensions are configurable

hyperparameters. We used 100 as the time encoder dimension. On the Wikipedia and Reddit datasets,

we used 100 as the memory dimension following the prior works [144, 145, 146]. On GDELT, the memory

dimension is set equal to the raw node feature dimension of 483.

6.5.3 Mapping on evaluated architectures

As mentioned earlier, we evaluated our approach against five other architectures. This section goes into the

implementation details and mapping schemes on these architectures.

CPU and GPU

For performance evaluation on the CPU and GPU platforms, we profiled the open-source implementation of

the TGN model architecture [165], which is written using the PyTorch Geometric library. However, on the

GPU platform, we have used FP16 instead of BF16 because the GRU cell of PyTorch does not support BF16

on CUDA as of version 2.0.1. We have not included the host-GPU data transfer times in the measurements

to provide a fair comparison. The reported results are an average of five runs.

89

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

Table 6.3: Configuration of the evaluated architectures.

Architecture Parameters

TGN-PNM 8GB HMC 2.1, 32 vaults, 256B row buffers, TSV BW 16GB/s, 16-lane bfloat16 SIMD and 16x16
systolic array per vault, 32KB VPU SPad, 1MB global SPad, logic layer freq 1.2GHz.

CPU Server with two AMD EPYC 7742 64-core @ 2.25GHz (total 256 hardware threads), 1024GB
DDR4, 8 memory channels, peak memory BW 409.6GB/s.

GPU NVIDIA A100 SXM, 80GB HBM2e, peak memory BW 2039GB/s, peak compute rate for 16-bit
FP is 624 TFLOPs. Host is the same as the baseline CPU server.

Gearbox [14] 8GB HMC 2.1, 32 vaults, 256 subarrays per vault, 256B row buffers, 49ns row activation time,
8192 subarray-level ALUs @ 164MHz, TSV BW 16GB/s per vault, logic layer cores ARM
Cortex-A35 @ 600MHz, 128KB scratchpad memory shared by the cores.

Newton [22] 8GB HBM2e-like, 16 pseudo channels, 16 banks per channel, 1024B row buffers, 49ns row
activation time, 16 MAC units per bank.

tFPGA [151] Xilinx U200 FPGA @ 250MHz, 77GB/s DDR4 memory, two CUs, four 8× 8 systolic arrays and
one 16-lane multiply-add tree per CU.

Gearbox [14]

Gearbox places scalar processing units at the subarrays of a 3D-stacked memory. These processing units

support word-level arithmetic and logic operations. In each subarray, three latched row buffers (called

Walkers) act as the source/destination registers. Gearbox also contains an ARM core in each vault’s logic

layer, primarily for reduction operations. Although the processing units of Gearbox can operate only on a

single word per cycle, Gearbox can attain high performance by leveraging massive subarray-level parallelism.

Authors of Gearbox implemented GEMV operation by mapping each row of the matrix to a subarray and

then broadcasting the input vector elements one by one to all subarrays. The input vector itself is stored in a

shared buffer at the logic layer. The subarray-level processing units (APLUs) perform the MAC operation.

This approach does not require partial sum accumulation across subarrays. However, given the large number

of subarrays (8192 subarrays in an 8GB HMC 2.1 stack), this approach only makes sense for a very large

matrix. For example, the authors used a matrix of dimension 25600x19200 for evaluating performance.

The matrix size is often much smaller in practical TGNN datasets (refer to Table 6.2) and causes extreme

under-utilization of the processing units. In our evaluation, we used an alternative scheme, where every

[subarrays in vault X elems in dram row] slice of the matrix will be mapped to a vault. A full matrix is

thus potentially distributed across multiple vaults. This approach can process a subset of columns in parallel

while maintaining DRAM row buffer locality. Furthermore, all the vaults are cooperatively processing a single

event at a time, thus minimizing the processing latency of events. Additionally, this scheme does not require

duplication of matrices and also maintains proper event ordering. One concern with this approach is that

90

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

it requires accumulating partial sums across vaults. Our evaluation shows that the inter-vault partial sum

accumulation add moderate overhead (25% - 37%). But even with this overhead, the latency improvement is

substantial.

As for mapping the rest of the operations, the GEMM kernel is implemented by repeating GEMV for

each column of the input matrix. Although this approach appears inefficient as it does not utilize any form of

cache blocking to leverage the reuse opportunities, it will not negatively impact the attainable throughput.

This is because the machine balance of Gearbox is extremely low (∼0.03 flop/byte with 164MHz ALUs and

49ns row activation time). As a result, Gearbox is fundamentally compute bound even for GEMV kernels and,

by extension, on GEMM kernels. Tiling for increasing reuse will not provide any improvement in throughput

unless we increase the number of processing units. Therefore, GEMM is implemented simply by repeating

GEMV. The TGNN framework does not require GEMM operations unless we are batching the queries. Since

GEMM in Gearbox does not provide any advantages over multiple individual GEMV operations, query

batching is, in fact, undesirable as it increases the query latency without providing any throughput benefit.

The time encoding and most of the activations used by LSTM/GRU and GAT require calculating

transcendental functions. As Gearbox ALPU does not support these functions, these operations are handled

by the cores at the logic layer. ReLU activations are mapped to ALPUs as they are simple comparisons.

Elementwise operations are cooperatively handled by the cores in the logic layer as well.

The performance of Gearbox is estimated by leveraging the simulation framework of Pulley [119]. Here,

we use an analytical model for regular operations (e.g., GEMV) and simulation otherwise (e.g., feature

aggregation of neighbors). We assumed that all operands, except for the weight matrices, are loaded into the

shared scratchpad memory before processing.

Newton [22]

Newton is a near-memory accelerator proposed by SK Hynix and primarily targets acceleration of the GEMV

operations of machine learning workloads. Newton puts several MAC units in a SIMD fashion (number of

MAC units matched with DRAM columns) in every bank of an HMB2E-like memory stack. The weight

matrix is stored in a chunk-interleaved manner, where the first matrix row’s first chunk is followed by the

second matrix row’s first chunk, and so on. The input vector is stored in a global buffer and is broadcasted to

the bank-level compute units a single chunk at a time, where the result gets reduced by a parallel adder tree.

The width of the chunk is made the same as the DRAM row width to take advantage of the spatial locality.

The first chunk of all the matrix rows is processed first, followed by the second chunk of all matrix rows, etc.

This approach provides maximum reuse of the input vectors. Similar to Gearbox, GEMM operations are

performed with repeated GEMV. Elementwise operations, activations, and time encodings are performed by

91

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

the host. Performance estimation is derived using the performance model provided by the authors in the

original paper [22].

tFPGA [151]

This approach proposes a model-architecture co-design for accelerating the TGN framework [142] on FPGA.

The design consists of multiple independent computing units. Each compute unit supports memory state

updates using GRU and embedding using a simplified version of the graph-attention mechanism. The GRU

is implemented using three 8× 8 systolic arrays3 for efficient GEMM operations corresponding to the update,

reset, and memory gates of GRU. For the embedding, unlike the multi-head attention mechanism used by

TGN that involves computing the key, value, and query matrices, tFPGA uses a simplified approach that only

considers the temporal separation of the neighbors for calculating the attention weights, thereby eliminating

a major portion of the computations. This embedding function is realized using a 16-lane multiply-adder

tree for feature aggregation and one 8× 8 systolic array for feature transformation. For neighbor sampling,

tFPGA samples a fixed number of the most recent neighbors, similar to our approach. Time encoding is

realized by a coarse-grained loop-up table. Further optimizations are done by pipelining all the stages and

using a dedicated edge prefetcher. The HLS code of this approach is open-sourced [166]. However, we faced

compilation issues when trying to generate the FPGA bitstream using the published code and, therefore,

opted to use the performance model provided by the authors in their paper.

6.5.4 Throughput and latency results

Figure 6.6 presents the throughput and latency results for the TGN-attn model, and Figure 6.7 presents the

results for the TGN-sum model. Here, TGN PNM feat uses only the feature-based partitioning scheme, while

TGN PNM hybrid uses the hybrid partitioning scheme. TGN PNM hybrid provides the best throughput

and latency across the benchmarks in both models. Table 6.4 summarizes the average throughput gain and

latency reduction observed by the TGN PNM hybrid across the datasets.

Our results show that CPU and GPU perform worst, both in terms of latency and throughput. High

latency in the case of GPU is expected as GPU architecture is optimized primarily for throughput and

not latency. We attribute the low throughput of GPU for this particular workload to the small batch size.

Increasing the batch size from 200 to 1000 increased the throughput of GPU by 3.7x on average while having a

moderate impact on latency, which is increased by 1.4x. However, increasing batch size to improve throughput

may not be feasible in practical scenarios, as user-facing interactive applications tend to have strict latency

3Authors have evaluated tFPGA on two FPGAs: Xilinx Alveo U200 and Xilinx ZCU104, with different numbers of compute
elements due to FPGA resource constraint. We use the configuration of the more powerful Xilinx Alveo U200 for evaluation.

92

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

1

10

100

1000

Wiki Reddit GDELT

Throughput (kE/s)

10

100

1000

10000

Wiki Reddit GDELT

Latency (us)

CPU GPU Gearbox Newton

tFPGA TGN_PIM_feat TGN_PIM_hybrid

Figure 6.6: Throughput and batch processing latency for TGN-attn.

constraints. Furthermore, increasing the batch size also means that the graph state will update less frequently,

and therefore, embedding will be performed using stale data and can negatively impact accuracy. Besides,

the maximum batch size is limited by the capacity of the on-chip buffers for tFPGA and our approach.

TGN PNM hybrid provides a substantial performance gain over the subarray-level and bank-level PIM

architectures. Note that all these three architectures has almost the same number of MAC units: TGN-PNM

has (16 ∗ 16 + 16) ∗ 32 = 8704 MACs, Gearbox has 8192 ALUs, and Newton also has 8192 MACs. Despite

having similar number of MAC units, for the TGN-attn model our approach has 5.2x higher throughput

than subarray-level Gearbox and 4.4x higher throughput than bank-level Newton. There are a few key

advantages of our approach that enables this throughput gain: i) VPUs of TGN-PNM runs at a much higher

clock frequency than both Gearbox and Newton’s compute units. This is becuase DRAM transistors in the

memory layers are designed for low cost and leakage. The logic die uses high-performance transistors [11].

Although, note that we have used 164 MHz for Gearbox, which the authors reported for a 32-bit ALU, not

16-bit. Therefore, the attainable frequency of Gearbox could be higher for 16-bit FP. ii) Another advantage

of TGN-PNM over the other two approaches is handling time encoding. In case of Gearbox and Newton,

93

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

1

10

100

1000

Wiki Reddit GDELT

Throughput (kE/s)

1

10

100

1000

10000

Wiki Reddit GDELT

Latency (us)

CPU GPU Gearbox Newton

tFPGA TGN_PIM_feat TGN_PIM_hybrid

Figure 6.7: Throughput and batch processing latency for TGN-sum.

their processing elements have to be extremely simple to meet the strict area/power overhead budget of only

about 20% [22] or otherwise loose capacity [152]. Thus, those two approaches cannot accommodate units for

transcendental functions needed by time encoding. As a result, time encoding needs to be performed by host

in case of Newton and at the logic layer in case of Gearbox. The time encoding itself is not a bottleneck,

however, as time encoding sits at the intermediate stages, data have to move frequently in/out of their

subarrays/banks. iii) As Newton only supports broadcast mechanism (one of the operands in their bank-level

SIMD unit always comes from the broadcast buffer), it cannot handle elementwise operations efficiently. In

case of Gearbox, elementwise operations may require re-layouting the data in the intermediate steps. iv) In

case of Newton, underutilization can occurs if the matrix dimension is less than the total number of banks

[22], which is often the case for the node states. Despite these shortcomings, Gearbox and Newton performs

fairly closely to our approach for the more memory-intensive workload of TGN-sum, only trailing by 2.4x

and 2.2x, respectively. Finally, our experiment shows that using hybrid storage scheme (i.e., feature-based

partitioning for large matrix/vectors and traditional for others) improves the throughput slightly by 12-23%

over the feature-based only approach of TGN PNM feat.

94

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

Avg. througput gain Avg. latency reduction

TGN-attn TGN-sum TGN-attn TGN-sum

CPU 26.8 42.1 27.6 38.2

GPU 16.7 34.8 17.2 31.6

Gearbox 5.2 2.4 5.4 2.2

Newton 4.4 2.2 2.9 1.3

tFPGA 10.3 31.1 3.8 10.1

TGN PNM feat 1.14 1.23 1.17 1.12

Table 6.4: Average throughput gain and latency reduction of TGN PNM hybrid approach across the datasets.

Component Count Per unit area (mm2) Total area (mm2)

Scalar core (ARM Cortex A-35) 1 0.68 0.68
Partial Sum Acc. Unit 1 2.25 2.25

Global NoC 1 1.43 1.43
GSPad 1 1.03 1.03

Memory controller and DDR PHY 32 0.18 5.90
Systolic array 32 0.25 8.08

SIMD: FP add & mul 32 0.02 0.51
SIMD: CORDIC 32 0.03 0.96
SIMD: Activation 32 0.15 4.68

VSPad 32 0.32 10.31

Total: 35.83

Table 6.5: Area estimation of TGN-PNM.

6.5.5 Area estimation

The area of processing elements and control logic are derived by synthesizing RTL models on the SAED 14

nm node using the Synopsys Design Compiler. The area of the SRAM buffers and scratchpad memories are

modeled using CACTI-3DD [120] on a 32 nm node and then scaled to 14 nm. The memory controller and

interconnect areas are modeled using McPAT [167]. The resulting area estimation for the major components

are given in Table 6.5. Note that although the total amount of memory is the same for GSPad and VSPad

(32kB * 32 = 1MB), VSPad requires a much larger area as it has to accommodate many read/write ports.

The total estimated area of these components is 35.83mm2, which is 53% of the total die area of 68mm2 of

an HMC stack [11]. This leaves around 32mm2 for the components that we haven’t accounted for, such as

I/O circuits, memory built-in self-test (MBIST), and features to support testing and debugging.

95

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

6.6 Related Work

With the emergence of machine learning workloads, a lot of hardware accelerators have been proposed by

researchers targeting either the compute-intensive [168, 169, 170, 171, 172] or memory-intensive [152, 22]

kernels of neural networks. Unfortunately, these approaches are not specifically designed for irregular access

patterns exhibited by the neighborhood aggregation of graph neural networks. On the other hand, there are

many hardware accelerators tailored for graph analytics workloads [103, 102, 10, 173, 174, 175]. However,

these approaches cannot handle the compute-intensive portion of the temporal GNN workloads efficiently.

A few works cater to the unique hybrid nature of the GNN workloads. HyGCN [136] proposed an ASIC

accelerator for static GCN, where the aggregation is scheduled on a series of SIMD units and node embeddings

are processed by a collection of configurable systolic arrays. AWB-GCN [137] improved upon HyGCN by

adding workload balancing mechanism for power-law graphs by distribution smoothing and row remapping.

GCoD [138] proposed an algorithm/hardware co-design with separate micro-architectures for dense and sparse

matrix. StreamGCN [140] targets streaming processing of many small graphs. FlowGNN [139] introduced

support for edge embeddings. Recently, a PIM-based GNN accelerator has been proposed that accelerates

the memory-bound kernels on the PIM side and delegates compute-bound kernels to the GPU [176]. Besides,

a few general purpose PIM architectures can handle the GNN workloads efficiently if the graph is stored in

specific sparse formats [9, 14]. However, these aforementioned approaches are only applicable to static GNNs

where the graph topology does not change over time.

There is only one prior accelerator that we are aware of specifically targeting temporal GNN [151]. Authors

in this work proposed an algorithm-hardware co-optimization, where they mapped the TGN framework [144]

on a HBM-enabled FPGA. Optimizations proposed by this approach include hardware pipeline stages, look-up

table based time-encoding function, double buffering and prefetching mechanisms. However, this approach

can only accommodate a small number of MAC units due to FPGA resource constraint, limiting the potential

speedup. We evaluated against this approach in Section 6.5 and observed vastly superior performance.

6.7 Conclusions and Future Work

In this paper, we proposed TGN-PNM, a near-memory architecture for accelerating TGNN workloads. In our

approach, we placed a SIMD unit for memory-intensive operations and a systolic array for GEMM operations

at the vault-level. Bottleneck arising from inter-vault communication during neighbor aggregation is avoided

by partitioning the graph along the feature dimension, facilitating near perfect workload balance as well, which

is very difficult to achieve on evolving graphs. Out evaluation against a few other architectures revealed that

96

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

near-/in-memory approaches performs the best for TGNN-type workloads. One interesting future direction

would be to explore if it is beneficial to combine vault-level approach with bank-/subarray-level approach,

where we keep the systolic array in the logic-layer for compute-intensive kernels, but move the processing of

memory-intensive kernels closer to the memory.

97

Chapter 7

Conclusions and Future Work

Due to the ever-increasing gap between the memory bandwidth and processing capability of the modern

processors, as well as the explosion of data-intensive applications, it is imperative to find a solution to the

”memory wall” problem. In my thesis, I hypothesized that to avoid being bottlenecked by the memory wall,

algorithms and data structures for data-intensive applications must be designed to leverage hardware features

in the memory hierarchy, and in some cases, a software-hardware co-design approach is beneficial. In this

dissertation, I presented five pieces of work in support of my hypothesis and made the following contributions.

My first work, Hopscotch, proposes a comprehensive memory benchmark suite that contains a carefully

selected set of kernels with vastly different access patterns. The key contribution of this work is to enable

identifying and isolating the impact of various memory centric hardware features on the system’s performance.

We extended the reach of Hopscotch by porting many of its kernels to GPU and FPGA [39] platforms.

Furthermore, we provided a tool for empirically measuring the roofline plot of CPU and GPU, which can be

troublesome to derive manually by going through the specification documents.

To support my hypothesis, I next target four memory-intensive workloads where the performance is

bottlenecked by the available memory bandwidth. I propose solutions to circumvent the memory bottleneck

by leveraging memory centric hardware features and hardware/software co-design. Accordingly, my second

work, BigMap, focuses on fuzzing applications. We observed that increasing the coverage bitmap size to

mitigate hash collision makes the fuzzer memory-bound, thereby hampering its ability to discover potential

bugs within a given time budget. We overcame this bottleneck by introducing a two-level hashing scheme

that consolidates bitmap traversal into a small area, reducing working set size and, in turn, cache pollution.

We also leveraged the huge page support to reduce page walks caused by TLB misses, helping to improve the

98

Conclusions and Future Work

performance further. We found that with our proposed two-level hash, it is possible to completely avoid the

memory bottleneck even with an extremely large bitmap.

In my third work, I selected streaming graph processing as the target memory-bound application to

accelerate. Graph applications are notorious for their irregular access patterns. Streaming graphs takes

it further because the graph topology can change rapidly, making locality-improving steps such as vertex

reordering infeasible. To tackle the issue, I proposed GraphTango, which aims to minimize the number of cache

line accesses by introducing a hybrid storage format based on vertex degree and designing a cache-friendly

hashing scheme. This hashing scheme maps subsequent probes to the hash table to occur within the same

cache line if possible, thereby improving the cache locality characteristics of the applications. We proposed

other improvements, such as a lock-free memory pool and a novel bucket-chaining-based workload balancing

technique. With our proposed method, we observed up to 6.6x higher throughput over the next-best approach.

In my fourth work, we proposed Pulley, which targets large-scale sorting problems. Our key observation

was that prior in-memory sorting algorithms used merge sort that eventually faced an unavoidable single-point

merging bottleneck. We accelerated the application by hardware/algorithm co-optimization, where we

leveraged one of our prior subarray-level PIM-based approaches and extended it to support LSB-first radix

sort. One key challenge was random accesses when sorting within a local subarray. We proposed a design

that eliminates the random accesses by introducing a pre-sorting step. With Pulley, we effectively removed

the single-point merging bottleneck faced by the prior approaches and improved the performance by 13x-20x.

In my last work, TGN-PNM, we proposed a near-memory accelerator for temporal graph neural networks

(TGNN). In one of our attempts, we tried accelerating TGNN by mapping it to our prior subarray-level

PIM architecture Fulcrum [9, 14]. While it provided excellent performance, the Fulcrum-based approach was

insufficient for a more compute-heavy TGNN workload. We proposed a vault-level near-memory architecture

that contains a systolic array for compute-intensive GEMM operations and uses a SIMD unit for other

operations. We added support for a feature-based partitioning scheme to avoid heavy inter-vault traffic. Our

evaluation demonstrated average throughput gains of 26.8x over CPU, 16.7x over GPU, 5.2x over Gearbox,

4.4x over Newton, and 10.4x over tFPGA [151].

Overall, these works have shown that when an application is bottlenecked by memory bandwidth, it is

possible to derive algorithmic or data structure changes to promote better utilization of memory-centric

hardware features, such as cache hierarchy or TLBs, to reduce or eliminate the bottleneck (BigMap and

GraphTango work). Otherwise, performing hardware/software co-optimization may be necessary to alleviate

the memory bottleneck (Pulley and TGN-PNM work).

There are a few prominent future directions for my dissertation. The first is to explore the combination

of complementary memory-centric architectures. For example, combining bit-serial architectures, such as

99

Conclusions and Future Work

SIMDRAM [19] with word-level architectures, such as Fulcrum [9]. Both approaches have unique strengths

and weaknesses and are suitable for accelerating different operations. Another example would be to combine

vault-level PNM with bank-/subarray-level architectures. Second, it would be interesting to do a principal

component analysis on Hopscotch kernels with different performance metrics as the features to identify

potential overlaps between the kernels and also to determine the gaps that are not covered by the current

kernels.

100

Publications

Peer-reviewed conference and journals

• Hopscotch: A micro-benchmark suite for memory performance evaluation.

Alif Ahmed, Kevin Skadron.

MEMSYS, 2019.

• BigMap: Future Proofing Fuzzers with Efficient Large Maps

Alif Ahmed, Jason D. Hiser, Anh Nguyen-Tuong, Jack W. Davidson, Kevin Skadron.

DSN, 2021.

• Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based

Accelerators.

Marzieh Lenjani, Alif Ahmed, Mircea Stan, Kevin Skadron.

ISCA, 2022.

• Pulley: An Algorithm/Hardware Co-Optimization for In-Memory Sorting.

Marzieh Lenjani, Alif Ahmed, Kevin Skadron.

CAL, 2022.

• PiMulator: a Fast and Flexible Processing-in-Memory Emulation Platform.

Sergiu Mosanu, Mohammad Nazmus Sakib, Tommy Tracy, Ersin Cukurtas, Alif Ahmed, Preslav

Ivanov, Samira Khan, Kevin Skadron, Mircea Stan.

DATE, 2022.

Patents

• Methods, systems, and circuits for co-optimization for in-memory sorting.

Marzieh Lenjani, Alif Ahmed, Kevin Skadron.

U.S. Patent Application 63/366,125, 2022.

101

Publications

Under submission

• GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis.

Alif Ahmed, Farzana Ahmed Siddique (joint 1st author), Kevin Skadron.

IJPP, 2024.

• Efficient Top-K Algorithm On GPU For Small K Values.

Yiqing Yang, Alif Ahmed, Guoyin Zhang, Yanxia Wu, Kevin Skadron

IJHPCA, 2024.

Planned submission

• TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory. In this

paper we would propose our ideas for accelerating temporal GNN as discussed in chapter 6.

Alif Ahmed, Felix Lin, Jundong Li, Kevin Skadron

Prior publications and patents

• QUEBS: Qualifying event based search in concolic testing for validation of RTL models.

Alif Ahmed, Prabhat Mishra.

ICCD, 2017.

• Directed test generation using concolic testing on RTL models.

Alif Ahmed, Farimah Farahmandi, Prabhat Mishra.

DATE, 2018.

• Scalable Hardware Trojan Activation by Interleaving Concrete Simulation and Symbolic Execution.

Alif Ahmed, Farimah Farahmandi, Yousef Iskander, Prabhat Mishra.

ITC, 2018.

• Hardware Trojan Detection Using ATPG and Model Checking.

Jonathan Cruz, Farimah Farahmandi, Alif Ahmed, Prabhat Mishra.

VLSI Design, 2018.

• Automated Activation of Multiple Targets in RTL Models using Concolic Testing.

Yangdi Lyu, Alif Ahmed, Prabhat Mishra.

DATE, 2019. (Best paper nominee)

• Cache Reconfiguration using Machine Learning for Vulnerability-aware Energy Optimization.

Alif Ahmed, Yuanwen Huang, Prabhat Mishra.

102

Publications

TECS, 2019.

• Efficient cache reconfiguration using machine learning in NoC-based many-core CMPs.

Subodha Charles, Alif Ahmed, Umit Y Ogras, Prabhat Mishra.

TODAES, 2019.

• Patent: Device and Method for Controlling Data Request.

Seung-Beom Lee, Alif Ahmed, Joongbaik Kim, Kwon Soon-Wan.

US Patent 10990444, 2021.

103

Bibliography

[1] Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-Chung Frank Chang, and Jason Cong.
Bonsai: High-performance adaptive merge tree sorting. In ISCA, 2020.

[2] Zheyu Li, Nagadastagiri Challapalle, Akshay Krishna Ramanathan, and Vijaykrishnan Narayanan.
IMC-Sort: In-Memory Parallel Sorting Architecture using Hybrid Memory Cube. In GLSVLSI, 2020.

[3] Hybrid Memory Cube Consortium. Hybrid memory cube specification 2.1.
https://www.hybridmemorycube.org/, 2015.

[4] Ramyad Hadidi, Bahar Asgari, Burhan Ahmad Mudassar, Saibal Mukhopadhyay, Sudhakar Yala-
manchili, and Hyesoon Kim. Demystifying the characteristics of 3d-stacked memories: A case study
for hybrid memory cube. In Proceedings of the IEEE International Symposium on Workload Charac-
terization , pages 66–75, 2017.

[5] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Elsevier, 5th edition,
2011.

[6] J. Dongarra. An Overview of High Performance Computing and Benchmark Changes for the Future.
NIST NSCI Seminer, 2016.

[7] S. McKee. Reflections on the memory wall. In Computing Frontiers, 2004.

[8] W. Wulf and S. McKee. Hitting the Memory Wall: Implications of the Obvious. SIGARCH, pages
20–24, 1995.

[9] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie, Ameen Akel, Sean
Eilert, Mircea R. Stan, and Kevin Skadron. Fulcrum: a Simplified Control and Access Mechanism
toward Flexible and Practical in-situ Accelerators. In HPCA, 2020.

[10] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A scalable processing-
in-memory accelerator for parallel graph processing. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015.

[11] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new DRAM architecture increases density and
performance. In 2012 symposium on VLSI technology (VLSIT), pages 87–88. IEEE, 2012.

[12] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F Oliveira, and
Onur Mutlu. Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-
Memory Architecture. arXiv preprint arXiv:2105.03814, 2021.

[13] Yongkee Kwon, Kornijcuk Vladimir, Nahsung Kim, Woojae Shin, Jongsoon Won, Minkyu Lee,
Hyunha Joo, Haerang Choi, Guhyun Kim, Byeongju An, et al. System architecture and software
stack for gddr6-aim. In 2022 IEEE Hot Chips 34 Symposium (HCS), pages 1–25. IEEE, 2022.

[14] Marzieh Lenjani, Ahmed Alif, Mircea R. Stan, and Kevin Skadron. Gearbox: A Case for Supporting
Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators. In ISCA, 2022.

104

Bibliography

[15] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son,
O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, et al. 25.4 A 20nm 6GB Function-In-Memory
DRAM, Based on HBM2 with a 1.2 TFLOPS Programmable Computing Unit Using Bank-Level
Parallelism, for Machine Learning Applications. In 2021 IEEE International Solid-State Circuits
Conference (ISSCC), volume 64, pages 350–352. IEEE, 2021.

[16] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim,
Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and Todd C Mowry. Ambit: In-memory accelera-
tor for bulk bitwise operations using commodity DRAM technology. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 273–287, 2017.

[17] Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, and Ashish Venkat. Sieve: Scalable
In-situ DRAM-based Accelerator Designs for Massively Parallel k-mer Matching. 2021.

[18] Marzieh Lenjani, Alif Ahmed, and Kevin Skadron. Pulley: An algorithm/hardware co-optimization
for in-memory sorting. Computer Architecture Letters, pages 109–112, 2022.

[19] Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, João Dinis Ferreira, Nika Mansouri Ghiasi,
Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gómez-Luna, and Onur Mutlu. SIMDRAM: a
framework for bit-serial SIMD processing using DRAM. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2021.

[20] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie.
DRISA: A DRAM-based reconfigurable in-situ accelerator. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017.

[21] Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubramaniam, Ameen Akel, Sean Eilert,
and Justin Eno. To pim or not for emerging general purpose processing in ddr memory systems. In
Proceedings of the 49th Annual International Symposium on Computer Architecture, pages 231–244,
2022.

[22] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park, Mithuna Thot-
tethodi, and TN Vijaykumar. Newton: A dram-maker’s accelerator-in-memory (aim) architecture for
machine learning. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 372–385. IEEE, 2020.

[23] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. Smaller and faster: Parallel processing of
compressed graphs with ligra+. In 2015 Data Compression Conference, pages 403–412. IEEE, 2015.

[24] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, M Arif Rahman, and Mircea R Stan. An
overflow-free quantized memory hierarchy in general-purpose processors. In 2019 IEEE International
Symposium on Workload Characterization (IISWC), pages 203–215. IEEE, 2019.

[25] Po-An Tsai and Daniel Sanchez. Compress objects, not cache lines: An object-based compressed
memory hierarchy. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 229–242, 2019.

[26] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and Matei Zaharia.
Making caches work for graph analytics. In 2017 IEEE International Conference on Big Data (Big
Data), pages 293–302. IEEE, 2017.

[27] Alif Ahmed and Kevin Skadron. Hopscotch: a micro-benchmark suite for memory performance
evaluation. In Proceedings of the International Symposium on Memory Systems, pages 167–172, 2019.

[28] Alif Ahmed, Jason D Hiser, Anh Nguyen-Tuong, Jack W Davidson, and Kevin Skadron. Bigmap:
Future-proofing fuzzers with efficient large maps. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 531–542. IEEE, 2021.

105

Bibliography

[29] Alif Ahmed, Farzana Ahmed Siddique, and Kevin Skadron. Graphtango: A hybrid representation
format for efficient streaming graph updates and analysis. arXiv preprint arXiv:2212.11935, 2022.

[30] Marzieh Lenjani, Alif Ahmed, and Kevin Skadron. Pulley: An algorithm/hardware co-optimization
for in-memory sorting. U.S. Patent Application 63/366,125,2022, 2022.

[31] Rajeev Balasubramonian. Innovations in the memory system. Springer Nature, 2022.

[32] J. McCalpin. Memory Bandwidth and Machine Balance in Current High Performance Computers.
TCCA, 1995.

[33] L. McVoy and C. Staelin. lmbench: Portable Tools for Performance Analysis. In USENIX, pages
279–294, 1996.

[34] P. Luszczek et al. The HPC Challenge (HPCC) benchmark suite. SC, 2006.

[35] P. Mucci and K. London. Low level architectural characterization benchmarks for parallel computers.
U. Tennessee, Tech. Rep. UT-CS-98-394, 1998.

[36] T. Deakin and S. Smith. GPU-STREAM: Benchmarking the Achievable Memory Bandwidth of
Graphics Processing Units. In SC, pages 3202–3216, 2015.

[37] P. Lavin et al. Spatter: A Benchmark Suite for Evaluating Sparse Access Patterns. arXiv preprint
arXiv:1811.03743, 2018.

[38] E. Strohmaier and H. Shan. Apex-Map: A Global Data Access Benchmark to Analyze HPC Systems
and Parallel Programming Paradigms. In SC, 2005.

[39] Sergiu Mosanu, Mohammad Nazmus Sakib, Tommy Tracy, Ersin Cukurtas, Alif Ahmed, Preslav
Ivanov, Samira Khan, Kevin Skadron, and Mircea Stan. Pimulator: A fast and flexible processing-in-
memory emulation platform. In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1473–1478. IEEE, 2022.

[40] Basak et al. Saga-bench: Software and hardware characterization of streaming graph analytics
workloads. In ISPASS, pages 12–23, 2020.

[41] J. McCalpin. STREAM2. URL: https://www. cs. virginia. edu/stream/stream2, 2019.

[42] T. Deakin et al. GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-
Core Processors Across Diverse Parallel Programming Models. In HiPC, pages 489–507, 2016.

[43] G. Wrigley et al. Memory benchmarking characterisation of ARM-based SoCs. Computer Research
and Modeling, pages 607–613, 2015.

[44] S. Siamashka. TinyMemBench. URL: https://github.com/ssvb/tinymembench, 2019.

[45] A. Snavely et al. A Framework for Performance Modeling and Prediction. In SC, pages 1–17, 2002.

[46] V. Viswanathan et al. Intel Memory Latency Checker v2. URL: https://software. intel. com/en-
us/articles/intelr-memory-latency-checker, 2019.

[47] M. Gottscho et al. X-Mem: A Cross-Platform and Extensible Memory Characterization Tool for the
Cloud. In ISPASS, pages 263–273, 2016.

[48] J. McCalpin. STREAM Benchmark Reference. URL: https://www.cs. virginia. edu/stream/ref. html,
2019.

[49] U. Drepper. What Every Programmer Should Know About Memory. Red Hat, 2007.

[50] S. Williams et al. Roofline: An insightful visual performance model for floating-point programs and
multicore architectures. Technical report, Lawrence Berkeley National Lab, 2009.

106

Bibliography

[51] Cristian Cadar et al. Klee: unassisted and automatic generation of high-coverage tests for complex
systems programs. In OSDI, pages 209–224, 2008.

[52] Alif Ahmed and Prabhat Mishra. QUEBS: Qualifying event based search in concolic testing for
validation of RTL models. In ICCD, pages 185–192, 2017.

[53] Yangdi Lyu, Alif Ahmed, and Prabhat Mishra. Automated activation of multiple targets in rtl models
using concolic testing. In DATE, pages 354–359, 2019.

[54] Alif Ahmed, Farimah Farahmandi, and Prabhat Mishra. Directed test generation using concolic
testing on rtl models. In DATE, pages 1538–1543, 2018.

[55] Kostya Serebryany. Oss-fuzz-google’s continuous fuzzing service for open source software. In URL:
https://github.com/google/oss-fuzz/, 2020.

[56] Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssanitizer. In Cybersecurity Develop-
ment, pages 157–157, 2016.

[57] Robert Swiecki. Honggfuzz: A general-purpose, easy-to-use fuzzer with interesting analysis options.
URL: https://github. com/google/honggfuzz, 2020.

[58] Michal Zalewski. American fuzzy lop, v2.52b. In URL: https://lcamtuf.coredump.cx/afl/, 2020.

[59] Shuitao Gan et al. CollAFL: Path sensitive fuzzing. In Security and Privacy, pages 679–696, 2018.

[60] Fuzzbench: Fuzzer benchmarking as a service. In URL: https://github.com/google/fuzzbench, 2020.

[61] laf-intel: Circumventing fuzzing roadblocks with compiler transformations. In URL:
https://clang.llvm.org/docs/SanitizerCoverage.html, 2020.

[62] Jinghan Wang et al. Be sensitive and collaborative: Analyzing impact of coverage metrics in greybox
fuzzing. In RAID, pages 1–15, 2019.

[63] Michal Zalewski. Technical whitepaper for afl-fuzz. In URL:
https://github.com/google/AFL/blob/master/docs/technical details.txt, 2019.

[64] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing overhead through coverage-
guided tracing. In Security and Privacy, 2019.

[65] Ankou benchmark sources. In URL: https://github.com/SoftSec-KAIST/Ankou-Benchmark, 2019.

[66] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based greybox fuzzing as
markov chain. IEEE Transactions on Software Engineering, pages 489–506, 2017.

[67] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. In Security and Privacy,
pages 711–725, 2018.

[68] Clang sanitizer coverage. In URL: https://clang.llvm.org/docs/SanitizerCoverage.html, 2020.

[69] Joseph Naus. Probabilities for a generalized birthday problem. Journal of the American Statistical
Association, pages 810–815, 1974.

[70] opt - llvm optimizer. In URL: https://llvm.org/docs/CommandGuide/opt.html, 2020.

[71] Ben Nagy. Crashwalk: Bucket and triage on-disk crashes. In URL:
https://github.com/bnagy/crashwalk, 2020.

[72] Fuzzbench report. In URL: https://www.fuzzbench.com/reports/2020-08-23/index.html, 2020.

[73] Marc Heuse et al. American fuzzy lop plus plus (afl++). In URL:
https://github.com/AFLplusplus/AFLplusplus, 2020.

107

Bibliography

[74] Shawn Embleton, Sherri Sparks, and Ryan Cunningham. Sidewinder: An evolutionary guidance
system for malicious input crafting. Black Hat, August, 2006.

[75] Sanjay Rawat et al. Vuzzer: Application-aware evolutionary fuzzing. In NDSS, pages 1–14, 2017.

[76] Insu Yun et al. {QSYM}: A practical concolic execution engine tailored for hybrid fuzzing. In
USENIX, pages 745–761, 2018.

[77] Dongdong She et al. Neuzz: Efficient fuzzing with neural program smoothing. In Security and Privacy,
pages 803–817, 2019.

[78] Valentin JM Manès, Soomin Kim, and Sang Kil Cha. Ankou: Guiding grey-box fuzzing towards
combinatorial difference.

[79] Caroline Lemieux et al. Perffuzz: Automatically generating pathological inputs. In SIGSOFT, pages
254–265, 2018.

[80] Yuekang Li et al. Cerebro: context-aware adaptive fuzzing for effective vulnerability detection. In
ESEC/FSE, pages 533–544, 2019.

[81] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strategy for increasing greybox
fuzz testing coverage. In ASE, pages 475–485, 2018.

[82] Yunchao Wang et al. Neufuzz: Efficient fuzzing with deep neural network. IEEE Access, pages
36340–36352, 2019.

[83] Marcel Böhme et al. Directed greybox fuzzing. In CCS, pages 2329–2344, 2017.

[84] Mateusz Jurczyk. Comparecoverage. In URL: https://github.com/googleprojectzero/CompareCoverage,
2020.

[85] Christopher Salls et al. Exploring abstraction functions in fuzzing. In CNS, pages 1–9, 2020.

[86] Han et al. Chronos: a graph engine for temporal graph analysis. In EUROSYS, pages 1–14, 2014.

[87] Cheng et al. Kineograph: taking the pulse of a fast-changing and connected world. In EUROSYS,
pages 85–98, 2012.

[88] Compeau et al. How to apply de bruijn graphs to genome assembly. Nature biotechnology, 29:987–991,
2011.

[89] Zerbino et al. Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome
research, 18:821–829, 2008.

[90] Grewal et al. Recservice: Distributed real-time graph processing at twitter. In HotCloud, 2018.

[91] Eksombatchai et al. Pixie: A system for recommending 3+ billion items to 200+ million users in
real-time. In WWW, pages 1775–1784, 2018.

[92] Jounsup Park and Klara Nahrstedt. Navigation graph for tiled media streaming. In ICME, pages
447–455, 2019.

[93] Braun et al. Knowledge discovery from social graph data. Procedia Computer Science, 96:682–691,
2016.

[94] Borgman et al. Drowning in data: digital library architecture to support scientific use of embedded
sensor networks. In JCDL, pages 269–277, 2007.

[95] Ediger et al. Stinger: High performance data structure for streaming graphs. In HPEC, 2012.

[96] Wole Jaiyeoba and Kevin Skadron. Graphtinker: A high performance data structure for dynamic
graph processing. In IPDPS, pages 1030–1041, 2019.

108

Bibliography

[97] Iwabuchi et al. Towards a distributed large-scale dynamic graph data store. In IPDPSW, pages
892–901, 2016.

[98] Andrew McCrabb and Valeria Bertacco. Optimizing vertex pressure dynamic graph partitioning in
many-core systems. IEEE Transactions on Computers, 70:936–949, 2021.

[99] Mariappan et al. Dzig: Sparsity-aware incremental processing of streaming graphs. In EUROSYS,
pages 83–98, 2021.

[100] Feng et al. Risgraph: A real-time streaming system for evolving graphs to support sub-millisecond
per-update analysis at millions ops/s. In SIGMOD, pages 513–527, 2021.

[101] Alif Ahmed, Farzana Ahmed Siddique, and Kevin Skadron. Graphtango: A hybrid representation
format for efficient streaming graph updates and analysis. IJPP (under submission), 2024.

[102] Hu et al. Graphlily: Accelerating graph linear algebra on hbm-equipped fpgas. In ICCAD, pages 1–9,
2021.

[103] Ham et al. Graphicionado: A high-performance and energy-efficient accelerator for graph analytics. In
MICRO, pages 1–13, 2016.

[104] Sundaram et al. Graphmat: High performance graph analytics made productive. arXiv:1503.07241,
2015.

[105] Gui et al. A survey on graph processing accelerators: Challenges and opportunities. JCS&T, 34:339–
371, 2019.

[106] Celis et al. Robin hood hashing. In SFCS, pages 281–288, 1985.

[107] Cormen et al. Introduction to algorithms. MIT press, 2009.

[108] ISO/IEC JTC 1/SC 22 technical committee. C++ standard.
https://www.iso.org/standard/79358.html, 2020.

[109] Donald E Knuth. The art of computer programming, volume 3: Searching and sorting. Addison-
Westley Publishing, 1973.

[110] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection.
https://snap.stanford.edu/data/, 2014.

[111] Thibaut Planchon. Tessil github repository. https://github.com/Tessil/robin-map, 2022.

[112] Martin Ankerl. Robin hood hashing github repository. https://github.com/martinus/robin-hood-
hashing, 2022.

[113] Google. Abseil github repository. https://github.com/abseil/abseil-cpp, 2022.

[114] Martin Ankerl. Hashmap benchmarks. https://martin.ankerl.com/2019/04/01/hashmap-benchmarks-
01-overview/, 2019.

[115] Matt Kulukundis. Designing a fast, efficient, cache-friendly hash table, step by step. CPPcon.
Standard C++ Foundation, 2017.

[116] Mariappan et al. Dzig: Sparsity-aware incremental processing of streaming graphs.
https://github.com/pdclab/graphbolt/tree/eurosys21-artifact, 2021.

[117] Feng et al. Risgraph github repository. https://github.com/thu-pacman/RisGraph, 2021.

[118] NVLink AND NVSwitch, The Building Blocks of Advanced Multi-GPU Communication . https:

//www.nvidia.com/en-us/data-center/nvlink/.

[119] FulcumV3. https://github.com/MarziehLenjani/FulcrumV3.

109

https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/MarziehLenjani/FulcrumV3

Bibliography

[120] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brockman, and Norman P Jouppi.
CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main memory. In DATE, 2012.

[121] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu, and Yuan Xie.
SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator. In HPCA, 2021.

[122] Yasuko Eckert, Nuwan Jayasena, and Gabriel H Loh. Thermal feasibility of die-stacked processing in
memory. In WoNDP, 2014.

[123] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse, Lifan Xu, and
Michael Ignatowski. TOP-PIM: Throughput-oriented programmable processing in memory. In HPDC,
2014.

[124] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bronstein. Fake
news detection on social media using geometric deep learning. arXiv preprint arXiv:1902.06673, 2019.

[125] Emanuele Rossi, Federico Monti, Michael Bronstein, and Pietro Liò. ncrna classification with graph
convolutional networks. arXiv preprint arXiv:1905.06515, 2019.

[126] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with graph
convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

[127] Kirill Veselkov, Guadalupe Gonzalez, Shahad Aljifri, Dieter Galea, Reza Mirnezami, Jozef Youssef,
Michael Bronstein, and Ivan Laponogov. Hyperfoods: Machine intelligent mapping of cancer-beating
molecules in foods. Scientific reports, 9(1):9237, 2019.

[128] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data mining, pages 974–983, 2018.

[129] Hongxia Yang. Aligraph: A comprehensive graph neural network platform. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pages 3165–3166,
2019.

[130] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[131] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[132] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular finger-
prints. Advances in neural information processing systems, 28, 2015.

[133] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

[134] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

[135] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

[136] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin Zhang, Dongrui
Fan, and Yuan Xie. Hygcn: A gcn accelerator with hybrid architecture. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 15–29. IEEE, 2020.

110

Bibliography

[137] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya Haghi, Antonino
Tumeo, Shuai Che, Steve Reinhardt, et al. Awb-gcn: A graph convolutional network accelerator
with runtime workload rebalancing. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 922–936. IEEE, 2020.

[138] Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin. Gcod: Graph convolutional
network acceleration via dedicated algorithm and accelerator co-design. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 460–474. IEEE, 2022.

[139] Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and Cong Hao. Flowgnn: A dataflow
architecture for real-time workload-agnostic graph neural network inference. In 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages 1099–1112. IEEE,
2023.

[140] Atefeh Sohrabizadeh, Yuze Chi, and Jason Cong. Streamgcn: Accelerating graph convolutional
networks with streaming processing. In 2022 IEEE Custom Integrated Circuits Conference (CICC),
pages 1–8. IEEE, 2022.

[141] Mingi Yoo, Jaeyong Song, Jounghoo Lee, Namhyung Kim, Youngsok Kim, and Jinho Lee. Sgcn:
Exploiting compressed-sparse features in deep graph convolutional network accelerators. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), pages 1–14. IEEE,
2023.

[142] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs 2020. arXiv preprint
arXiv:2006.10637, 2006.

[143] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

[144] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

[145] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

[146] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 1269–1278, 2019.

[147] Priyank Faldu, Jeff Diamond, and Boris Grot. A closer look at lightweight graph reordering. In 2019
IEEE International Symposium on Workload Characterization (IISWC), pages 1–13. IEEE, 2019.

[148] Vignesh Balaji and Brandon Lucia. When is graph reordering an optimization? studying the effect
of lightweight graph reordering across applications and input graphs. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 203–214. IEEE, 2018.

[149] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu Iwamura. Rabbit
order: Just-in-time parallel reordering for fast graph analysis. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 22–31. IEEE, 2016.

[150] Andrew McCrabb, Eric Winsor, and Valeria Bertacco. Dredge: Dynamic repartitioning during
dynamic graph execution. In Proceedings of the 56th Annual Design Automation Conference 2019,
pages 1–6, 2019.

[151] Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor Prasanna, and Carl Busart. Model-
architecture co-design for high performance temporal gnn inference on fpga. In 2022 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 1108–1117. IEEE, 2022.

111

Bibliography

[152] Jin Hyun Kim, Shin-haeng Kang, Sukhan Lee, Hyeonsu Kim, Woongjae Song, Yuhwan Ro, Seung-
won Lee, David Wang, Hyunsung Shin, Bengseng Phuah, et al. Aquabolt-xl: Samsung hbm2-pim with
in-memory processing for ml accelerators and beyond. In 2021 IEEE Hot Chips 33 Symposium (HCS),
pages 1–26. IEEE, 2021.

[153] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
arXiv preprint arXiv:2302.11636, 2023.

[154] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping
Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for real-time
temporal graph embedding. In Proceedings of the 2021 international conference on management of
data, pages 2628–2638, 2021.

[155] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations, 2019.

[156] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis. Tgl: A
general framework for temporal gnn training on billion-scale graphs. arXiv preprint arXiv:2203.14883,
2022.

[157] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time. arXiv preprint arXiv:1907.05321, 2019.

[158] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of Machine
Learning Research, 21(1):2648–2720, 2020.

[159] Christian Weis, Norbert Wehn, Loi Igor, and Luca Benini. Design space exploration for 3d-stacked
drams. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE, 2011.

[160] JEDEC. High bandwidth memory 3 specification. https://www.jedec.org/standards-
documents/docs/jesd238a, 2023.

[161] Ivan Fernandez, Ricardo Quislant, Eladio Gutiérrez, Oscar Plata, Christina Giannoula, Mohammed
Alser, Juan Gómez-Luna, and Onur Mutlu. Natsa: a near-data processing accelerator for time series
analysis. In 2020 IEEE 38th International Conference on Computer Design (ICCD), pages 120–129.
IEEE, 2020.

[162] UPMEM. https://www.upmem.com/.

[163] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. Dramsim3: A cycle-
accurate, thermal-capable dram simulator. IEEE Computer Architecture Letters, 19(2):106–109,
2020.

[164] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Snap dataset collection: Jodie.
https://snap.stanford.edu/jodie/, 2019.

[165] Rossi et al. TGN github repository. URL: https://github.com/twitter-research/tgn, 2020.

[166] Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor Prasanna, and Carl Busart. Github
repository, model-architecture co-design for high performance temporal gnn inference on fpga.
https://github.com/zjjzby/TGNN-FPGA-IPDPS2022, 2022.

[167] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and Norman P
Jouppi. McPAT: An integrated power, area, and timing modeling framework for multicore and many-
core architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pages 469–480, 2009.

112

https://www.upmem.com/

Bibliography

[168] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. ACM SIGARCH computer architecture news, 44(3):367–
379, 2016.

[169] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 9(2):292–308, 2019.

[170] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-Datacenter Performance Analysis of
a Tensor Processing Unit. 44th International Symposium on Computer Architecture, 2017.

[171] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B Jablin, George
Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten lessons from three generations
shaped google’s tpuv4i: Industrial product. In 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 1–14. IEEE, 2021.

[172] Md Aamir Raihan, Negar Goli, and Tor M Aamodt. Modeling deep learning accelerator enabled
gpus. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 79–92. IEEE, 2019.

[173] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Graphr: Accelerating graph
processing using reram. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 531–543. IEEE, 2018.

[174] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen, Christos
Kozyrakis, and Xuehai Qian. GraphP: Reducing communication for PIM-based graph processing
with efficient data partition. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 544–557. IEEE, 2018.

[175] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and Hyesoon Kim. Graph-
PIM: Enabling instruction-level PIM offloading in graph computing frameworks. In 2017 IEEE
International symposium on high performance computer architecture (HPCA), pages 457–468. IEEE,
2017.

[176] Hai Jin, Dan Chen, Long Zheng, Yu Huang, Pengcheng Yao, Jin Zhao, Xiaofei Liao, and Wenbin
Jiang. Accelerating graph convolutional networks through a pim-accelerated approach. IEEE Transac-
tions on Computers, 2023.

113

	Contents
	List of Tables
	List of Figures

	Introduction
	 Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation
	 BigMap: Future-proofing Fuzzers with Efficient Large Maps
	 GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Processing
	 Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting
	 TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory
	 Dissertation Structure

	Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation
	Introduction
	Related Works
	Kernel Implementation
	Generic Design Decisions
	Read-Only Kernels
	Write Only Kernels
	Mixed Kernels

	Evaluation with Hopscotch
	Bandwidth Measurement
	Latency Measurement
	Impact of Locality
	Roofline Model and Machine Balance

	Conclusions

	BigMap: Future-proofing Fuzzers with Efficient Large Maps
	Introduction
	Background
	American Fuzzy Lop (AFL)
	Collision Rate

	Implication of Naïve Hash Collision Mitigation Strategy
	Cost of Expanding Hash-space

	BigMap: Adaptive Two-Level Bitmap
	Two-Level Bitmap Scheme
	Illustrative Example
	Access Patterns of the Bitmap Operations
	Implementation Details
	Additional Optimizations

	Evaluation
	Experimental Setup
	Evaluating the Impact of Map Size Variation
	Evaluating Coverage Metric Composition
	Evaluating the Scalability with Parallel Fuzzing

	Related Work
	Conclusion

	GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis
	Introduction
	Background on Existing Representation Formats
	GraphTango Data Structure
	GraphTango Basic Operations
	Edge Insertion
	Edge Deletion
	Edge Traversal

	Optimizing GraphTango
	Cache-Friendly Hashing Scheme
	Memory Allocation Scheme
	Parallelization
	Determining the TH1 Threshold

	Evaluation
	Experimental Setup
	Analytics and Update Performance
	Memory Usage
	Impact of TH1 Threshold
	Impact of Optimizations
	Integration with DZiG and RisGraph

	Details of Hash Function Implementation
	Conclusions

	Pulley: An Algorithm/Hardware Co-optimization for In-memory Sorting
	Introduction
	Background and Motivation
	Proposed method
	Baseline PIM architecture
	Local sorting
	Histogram generation
	Prefix-sum
	Merging and key placement

	Evaluation
	Methodology
	Throughput
	Power and temperature constraints

	Conclusions and future Work

	TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory
	Introduction
	Background and Motivation
	Temporal Graph Neural Network (TGNN)
	3D-stacked memory

	TGN-PNM Microarchitecture
	Vault-level Processing Unit (VPU)
	Global Control Unit (GLCU)
	Partial-Sum Accumulation Unit (PSAU)

	Mapping TGNN Frameworks on TGN-PNM
	Mapping of common operations
	Graph storage format

	Evaluation
	Methodology
	Datasets
	Mapping on evaluated architectures
	Throughput and latency results
	Area estimation

	Related Work
	Conclusions and Future Work

	Conclusions and Future Work
	Bibliography

