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0.2 Abstract

We rely on our episodic memory, the memory for personally experienced events, to

remember the last vacation we took or to remember what was for dinner last night.

In this dissertation, I use electroencephalographic (EEG) recordings to measure the

neural correlates of episodic memory retrieval. I collected EEG recordings across a

series of recognition memory tasks in which participants studied words or images

and then were tested on their memory for those items. In the first chapter, I use

pattern classification analyses to measure neural evidence for a retrieval brain state,

a whole-brain activity/connectivity pattern that is engaged when an individual

attempts to access a stored representation. I find that greater temporal overlap

- the distance in time between two experiences - leads to automatic induction of

the retrieval state and impairs memory of past events. In the second chapter, I

investigate memory and decision making processes during retrieval. I find distinct

processes occur prior to and following a memory response that are modulated by

successful retrieval. In the next chapter I measure post-response feedback signals

using pattern classification analyses. I find that post-retrieval neural signals reflect

an intrinsic reward signal in response to successful retrieval. In the final chapter,

I show that the memory benefit for extrinsic reward following retrieval may be

dependent on the strength of the memory that is retrieved.
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Chapter 1

Introduction

Episodic memory is our memory for personally experienced events. For example, I

can vividly remember my sixteenth birthday at my mom’s house when I was gifted

my dachshund, Weenee, or the beginning of my fourth year of graduate school at

the Shenandoah Valley Animal Services Center where I adopted my cat, Arugula.

Episodic memories are tied to a spatiotemporal context, i.e., when and where an

event occurred (F. Wang & Diana, 2017). Successful episodic memory relies on at

least two components: encoding – the formation of new memories – and retrieval –

accessing a stored representation of a past experience. Successful retrieval is often

accompanied by the reinstatement of an original event’s spatiotemporal context.

The goal of this dissertation is to investigate the neural mechanisms of memory

retrieval.

One method for measuring episodic memory in the laboratory is through the

recognition paradigm. In the recognition paradigm, a participant studies a list

of items, typically words or images, and then completes a memory test in which
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the goal is to recognize previously presented items. This paradigm allows us to

measure the processes that occur when someone remembers having previously

seen an item. Cognitive processes such as memory and decision making occur

quickly, within ten to hundreds of milliseconds (Cohen, 2014a). To separately

investigate these fast occurring processes, I utilize scalp electroencephalography

(EEG) which allows the measurement of neural signals on the order of milliseconds.

In scalp EEG, several electrodes are placed on the scalp of a participant which

directly measure voltage potentials across many neurons. The raw voltage trace can

be decomposed into a series of sine waves at different frequencies (Cohen, 2014a).

Frequency is continuous, but is often separated into five measured frequency bands

which include delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz) and

gamma (30-100 Hz). Frequency signals reflect synchronous neuronal firing and

communication across the brain (Fries, 2005) and activity in these frequency bands

support different cognitive processes.

We engage in memory retrieval often and for many reasons. For example, if I’m

going on a trip out of the country, I need to remember where my passport is. Did

I give my dog his medication before leaving the house? Do I have the ingredients

at home to make cinnamon rolls? In order to remember if I have the ingredients

at home, I might use memory cues to access the stored information, such as pic-

turing myself in the kitchen or what I last baked. The ability to jump back in time

and reconstruct or reinstate these specific events has been characterized as “mental

time travel” (Tulving, 1972). Greater reactivation of previously experienced events

during a memory test can predict retrieval accuracy (Gordon, Rissman, Kiani, &

Wagner, 2014). However, memory retrieval is imperfect and accurate information

is not always reactivated (Schacter & Addis, 2007). Understanding how stored in-
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formation is accessed is critical to cognition, yet the neural mechanisms underlying

memory retrieval are unclear. Therefore, the projects described in this dissertation

encompass four aims, the broad goal of which is to elucidate the neural mechanisms

that support retrieval. In Aim 1, I test the hypothesis that the retrieval brain state

– a whole-brain configuration of activity/connectivity patterns – can be induced

automatically on the basis of temporal contextual overlap between experiences. In

Aim 2, I test the hypothesis that decision-making processes are engaged following

successful memory retrieval. In Aim 3, I test the hypothesis that post-retrieval

neural signals reflect intrinsic reward in response to successful retrieval. Finally, in

Aim 4, I test the hypothesis that extrinsic reward during retrieval practice reinforces

the contents of retrieval and improves subsequent memory.

1.1 Memory retrieval brain state

A brain state is a whole-brain activity/connectivity pattern that is temporally sus-

tained (Tang, Rothbart, & Posner, 2012; Long, 2023). The ability to form a represen-

tation of a new experience and to access a stored representation of a past experience

involves the engagement of memory encoding and retrieval brain states, respec-

tively. The brain must flexibly switch between these states to effectively learn

new information and retrieve existing information. Electrophysiological work in

rodents suggests that encoding and retrieval are neurally dissociable brain states

that recruit distinct neural substrates, meaning they cannot be engaged in simulta-

neously (Hasselmo, Bodelon, & Wyble, 2002). Therefore, the ability to effectively

engage or disengage the two states is crucial for successfully perceiving and con-

verting new information into memories while also maintaining the integrity of past
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information.

When one experience overlaps with another (e.g. encountering an acquaintance

at both a coffee shop and the grocery store) interference can occur due to a tradeoff

between encoding the present event and retrieving the past event. Competition or

interference between overlapping memories can lead to forgetting (McGeoch, 1942;

Anderson, 2003; Kuhl, Rissman, Chun, & Wagner, 2011). Temporal information

- ’when’ something occurred - is a defining feature of episodic memory (Tulving,

1993) and impacts how events are encoded and retrieved. Two events that occur

closer together in time and/or space are more likely to be recalled together (Kahana,

1996; Manning, Polyn, Baltuch, Litt, & Kahana, 2011). According to Retrieved

Context Theory, items are bound to their spatiotemporal (i.e. when and where)

context during memory formation and memory retrieval is driven by reinstatement

of the study context (Howard & Kahana, 2002; Polyn, Natu, Cohen, & Norman,

2005). The finding that participants tend to remember experiences in the order

in which the initially occurred (Kahana, 1996) provides evidence in support of a

context representation that drifts slowly over time. Comparison of activity patterns

between study and test items provides support for Retrieved Context Theory in

that the shorter the temporal distance or greater temporal overlap (i.e. proximity

in time) between two items at study, the greater the similarity between the study

pattern of one item and the test pattern of the other item (Manning et al., 2011;

El-Kalliny et al., 2019). The interpretation is that this increased similarity reflects

greater overlap in temporal context as events occur nearer to one another. However,

the influence of temporal overlap between events on memory brain states is unclear.

A retrieval state, or mode, is a tonically maintained state that is entered when

there is need to engage episodic retrieval – that is, intentionally accessing a
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stored representation of a past experience situated within a spatiotemporal context

(Tulving, 1983). Although memory retrieval is typically considered in relation to

attempting to recall a past event during the test phase of an experiment, in reality,

memory retrieval could occur while trying to form new memories. Specifically,

retrieval could occur whenever there is temporal overlap between experiences. If

(1) items are bound to the context in which they occur (2) neighboring items are

bound to overlapping temporal context representations and (3) context is used

to cue retrieval, items that occur close together in time may retrieve each other.

In Chapter 2, I directly investigate the role of temporal overlap in the trade-off

between memory states using scalp EEG.

1.2 Intrinsic feedback signal following successful

memory retrieval

What motivates us to engage in retrieval? Successful retrieval may be intrinsically

rewarding such that the act of correctly remembering which Oreo flavors I have

tried engages the reward system. Remembering which flavors I’ve tried informs

my decision making. If I know I’ve tried all the flavors except the new Churro,

maybe that’s what I’ll decide to buy. Or if I know I liked the Peanut Butter

Chocolate Pie ones the best, maybe that’s what I end up getting. Prior work has

linked the reward system – in particular, the striatum – to successful memory

retrieval, whereby the striatum shows greater activity when a subject correctly

recognizes an old stimulus (hit) compared to when the subject correctly rejects

a new stimulus (correct rejection; CR, Achim & Lepage, 2005; Fliessbach, Weis,

Klaver, Elger, & Weber, 2006; Spaniol et al., 2009; H. Kim, 2013; Clos, Schwarze,
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Gluth, Bunzeck, & Sommer, 2015). As both hits and CRs constitute accurate trials,

the dissociation in striatal activity for hits compared to CRs suggests that the signal

change is not driven by dissociations between correct and incorrect trials, but rather

is a response to successful retrieval. As this striatal response occurs absent of

explicit rewards (e.g. monetary incentives or positive feedback), it may signal that

successful retrieval is intrinsically rewarding (Satterthwaite et al., 2012). As I utilize

scalp EEG to enable differentiation of memory vs. decision-making processes

engaged during retrieval, I cannot directly measure striatal activity. Instead, I can

leverage reward/feedback based spectral signals that have been identified within

the cognitive control literature.

Theta power (4-8 Hz activity in EEG) is associated with episodic memory

(Klimesch, Doppelmayr, Schimke, & Ripper, 1997; Nyhus & Curran, 2010; Her-

weg, Solomon, & Kahana, 2020) and supports feedback based learning (Cohen,

2014b). In particular, during the test-phase of a memory experiment, theta power

is greater for hits vs CRs (Burgess & Gruzelier, 1997; Duzel, Neufang, & Heinze,

2005; Nyhus & Curran, 2010). In feedback based learning, theta power increases

following incorrect relative to correct responses (Mazaheri, Nieuwenhuis, Dijk, &

Jensen, 2009) and negative relative to positive outcomes (Cavanagh & Frank, 2014).

Taken together, these findings point to a potential internally driven feedback signal

following successful retrieval which may be indexable via theta power. In Chapters

3 and 4, I will address the role of theta power in successful memory retrieval.

The standard approach to investigating memory reinforcement is through the

use of extrinsic reward (i.e. monetary compensation), however, providing an

explicit reward for every successfully remembered experience does not reflect real-

world scenarios and may, in fact, change intrinsic reward processing (Hidi, 2016).
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However, although an intrinsic reward signal is more likely to reflect real-world

processing, reliance on such a signal limits an experimenter’s ability to manipulate

reward signaling and control what is reinforced. Therefore, although extrinsic re-

ward may not reflect real-world experiences, their application allows me to directly

test how rewards following memory retrieval modulates memory processing.

1.3 Extrinsic feedback following memory retrieval

Establishing the way in which reward reinforces the contents of retrieval will pro-

vide insights into how memory can be improved through extrinsic rewards. The

positive relationship between motivation and memory – as motivation increases,

successful memory increases (Dickerson & Adcock, 2018) – suggests that manip-

ulating motivation may be a viable approach for improving memory. Individuals

can use reward to prioritize the storage of information. Evidence suggests that

associating a study item with a potential reward (e.g. monetary compensation) – to

be received if the item is remembered at test – impacts the likelihood that the item is

later remembered (Loftus & Wickens, 1970; Adcock, Thangavel, Whitfield-Gabrieli,

Knutson, & Gabrieli, 2006; Marini, Marzi, & Viggiano, 2011), with higher potential

rewards leading to better subsequent memory. Collectively, these findings point to

a clear role of study-phase anticipatory reward on memory enhancement.

Less straightforward is the role of test phase extrinsic reward on subsequent

memory. Memory reinforcement may be better accomplished through direct re-

ward of what is retrieved, rather than through the manipulation of potential for

future reward during study. Prior behavioral work that has investigated test phase

extrinsic reward have found mixed results, such that test phase rewards either
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improve memory (Shigemune, Tsukiura, Nouchi, Kambara, & Kawashima, 2017)

or have no effect on memory (Castanheira, Lalla, Ocampo, Otto, & Sheldon, 2022).

However, both studies still used anticipatory methods such that participants were

aware prior to retrieval that there was a potential to receive a reward for remember-

ing. Additionally, these studies measured the immediate influence of reward on

memory performance rather than the influence of reward on later memory. Thus, it

may be through post-retrieval mechanisms, rather than pre-retrieval anticipatory

mechanisms, that reward reinforces the contents of retrieval. In Chapter 4, we

set out to identify the extent to which test phase extrinsic reward reinforces the

contents of retrieval and impacts subsequent memory.

1.4 Overview

In this dissertation, I will attempt to address outstanding questions about the

neural mechanisms of memory retrieval. Chapter 2 reveals that temporal overlap

between similar but non-identical stimuli induces automatic retrieval. Chapter 3

investigates decision making mechanisms following successful retrieval. Chapter

4 extends these findings to investigate whether post-retrieval decision making

signals relate to feedback. Chapter 4 determines the extent to which test-phase

extrinsic reward modulates subsequent memory.
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Chapter 2

Temporal context modulates encoding

and retrieval of overlapping events

Devyn E. Smith, Isabelle L. Moore & Nicole M. Long
The Journal of Neuroscience, 42(14), 3000–3010

2.1 Abstract

Overlap between events can lead to interference due to a tradeoff between encod-

ing the present event and retrieving the past event. Temporal context information

– ‘when’ something occurred, a defining feature of episodic memory – can cue

retrieval of a past event. However, the influence of temporal overlap, or proximity

in time, on the mechanisms of interference are unclear. Here, by identifying brain

states using scalp electroencephalography (EEG) from male and female human

subjects, we show the extent to which temporal overlap promotes interference and
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induces retrieval. In this experiment, subjects were explicitly directed to either en-

code the present event or retrieve a past, overlapping event while perceptual input

was held constant. We find that the degree of temporal overlap between events

leads to selective interference. Specifically, greater temporal overlap between two

events leads to impaired memory for the past event selectively when the top-down

goal is to encode the present event. Using pattern classification analyses to measure

neural evidence for a retrieval state, we find that greater temporal overlap leads to

automatic retrieval of a past event, independent of top-down goals. Critically, the

retrieval evidence we observe likely reflects a general retrieval mode, rather than

retrieval success or effort. Collectively, our findings provide insight into the role of

temporal overlap on interference and memory formation.

2.2 Introduction

Overlap between events leads to interference and impairs memory for those events

(McGeoch, 1942; Anderson, 2003). For example, at a conference you may talk to

a colleague whom you had previously met over Zoom. Later you may have diffi-

culty remembering either the original Zoom meeting or the subsequent conference

conversation. The overlap between these events (e.g. the colleague) promotes

retrieval of the past event (the meeting on Zoom) while you are trying to encode

the present event (your conversation; Kuhl, Shah, DuBrow, & Wagner, 2010). As

retrieval and encoding recruit distinct neural substrates and cannot be engaged in

simultaneously (Hasselmo et al., 2002), retrieving the past comes at the expense of

encoding the present (Long & Kuhl, 2019). Although overlap is a critical factor in

retrieval-mediated interference, two events may overlap along many dimensions
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and to varying degrees. Temporal overlap, or proximity in time, has been shown

to enhance inference (Zeithamova & Preston, 2017), but it is unclear how temporal

overlap contributes to interference. The aim of this study is to investigate the extent

to which temporal overlap induces retrieval and, in turn, impacts interference.

Temporal information is a hallmark of episodic memory (Tulving, 1993) and

is well known to impact how events are encoded and retrieved. The closer two

events are in time and/or space the more likely they are to be recalled together

(Kahana, 1996; Manning et al., 2011) and the greater their neural similarity (Manns,

Howard, & Eichenbaum, 2007; Folkerts, Rutishauser, & Howard, 2018). Retrieved

context theory (Howard & Kahana, 2002; Sederberg, Howard, & Kahana, 2008;

Polyn, Norman, & Kahana, 2009; Lohnas & Kahana, 2014) provides an account for

these effects whereby spatiotemporal context – an amalgamation of external stimuli

and internal states – is bound, via the hippocampus, to the present experience

(Eichenbaum, 2004; F. Wang & Diana, 2017; Long & Kahana, 2019; A. Yonelinas,

Ranganath, Ekstrom, & Wiltgen, 2019) and is later used by the hippocampus as

a cue to retrieve past experiences (Long et al., 2017). Comparison of activity

patterns between study and test items – a recalled word or recognition probe

– provides support for retrieved context theory in that the shorter the temporal

distance between two items at study, the greater the pattern similarity between

the study pattern of one item and the test pattern of the other item (Manning

et al., 2011; Howard, Viskontas, Shankar, & Fried, 2012; El-Kalliny et al., 2019).

Although contextually-mediated retrieval is typically considered in relation to the

test phase of an experiment, in principle contextually-mediated retrieval should

occur whenever there is a contextual overlap between items. Such retrieval may

occur automatically, or independent from top-down demands (S. M. Smith, Handy,
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Hernandez, & Jacoby, 2018). Therefore, we hypothesized that overlap in temporal

context between two events produces retrieval during study and in turn promotes

interference.

Here, we report a human scalp electroencephalography (EEG) study in which

subjects studied two sets of object images in which the second set categorically

overlapped with the first set. During study of the second set of object images,

subjects were explicitly instructed to either encode the second (present) object or

retrieve the first (past) object. These instructions were intended to bias subjects

toward either an encoding or retrieval state. A retrieval state or mode is a toni-

cally maintained mental set that is entered when there is need to engage episodic

retrieval (Tulving, 1983; Rugg & Wilding, 2000). Our critical manipulation was

the temporal distance between the first and second object, whereby the shorter the

temporal distance between two objects, the greater their temporal contextual over-

lap. Following study, subjects completed a recognition task to probe their memory

for all previously-presented objects. To the extent that temporal contextual overlap

influences interference, we should find that temporal distance modulates mem-

ory performance for the first and/or second objects. To the extent that temporal

contextual overlap promotes retrieval, we should find that subjects are biased to-

ward a retrieval state during second objects that are presented near in time to a

categorically overlapping first object.
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2.3 Methods

Subjects

Forty (34 female; age range= 18-37, mean age= 20.3 years) right-handed, native En-

glish speakers from the University of Virginia community participated. This sam-

ple size is based on our previous work in which we enrolled 40 participants (Long

& Kuhl, 2019). All subjects had normal or corrected-to-normal vision. Informed

consent was obtained in accordance with the University of Virginia Institutional

Review Board for Social and Behavioral Research and subjects were compensated

for their participation. Three subjects were excluded from the final dataset: one

who previously completed a behavioral version of the task, one who had poor task

performance (recognition accuracy below three standard deviations of the mean of

the full dataset), and one due to technical issues resulting in poor signal quality

throughout the majority of the session. Thus, data are reported for the remaining

37 subjects. The raw, de-identified data and the associated experimental and anal-

ysis codes used in this study will be made available via the Long Term Memory

laboratory website upon publication.

Mnemonic State Task Experimental Design

Stimuli consisted of 576 object pictures, drawn from an image database with mul-

tiple exemplars per object category (Konkle, Brady, Alvarez, & Oliva, 2010). From

this database, we chose 144 unique object categories and 4 exemplars from each

category. For each subject, one exemplar in a set of four served as a List 1 object,
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one as a List 2 object, and the two remaining exemplars served as lures for the

recognition phase. Object condition assignment was randomly generated for each

subject.

List 1 List 2 

+

+
Time 

OLD

+

NEW

OLD

+

NEW

Recognition Phase 

+

+

+

Near
Far

Figure 2.1: Task Design. During List 1, subjects studied individual objects (e.g. bench, apple).
During List 2, subjects saw novel objects that were from the same categories as the objects shown in
List 1 (e.g., a new bench, a new apple). Preceding each List 2 object was an “OLD” instruction cue
or “NEW” instruction cue. The “OLD” cue signaled that subjects were to retrieve the corresponding
object from List 1 (e.g., the old apple). The “NEW” cue signaled that subjects were to encode the
current object (e.g. the new bench). Each run of the experiment contained a List 1 and List 2; object
categories (e.g., bench) were not repeated across runs. List 1 and List 2 objects separated by fewer
than 18 intervening objects were coded as near and List 1 and List 2 objects separated by 18 or
more intervening objects were coded as far (see Methods). Lines around the boxes are shown for
illustrative purposes and were not present during the actual experiment. After eight runs, subjects
completed a two alternative forced choice recognition test that tested memory for each List 1 and
List 2 object. On each trial, a previously presented object, either from List 1 or List 2, was shown
alongside a novel lure from the same category. The subject’s task was to choose the previously
presented object. List 1 and List 2 objects were never presented together.

General Overview. In each of eight runs, subjects viewed two lists containing

18 object images. For the first list, each object was new (List 1 objects). For the

second list (List 2 objects), each object was again new, but was categorically related
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to an object from the first list. For example, if List 1 contained an image of a

bench, List 2 would contain an image of a different bench (Figure 2.1). During

List 1, subjects were instructed to encode each new object. During List 2, however,

each trial contained an instruction to either encode the current object (e.g., the new

bench) or to retrieve the corresponding object from List 1 (the old bench). The

critical manipulation was the distance between the corresponding List 1 and List

2 objects. We divided each list of 18 objects into thirds according to serial position

(first [1-6], middle [7-12], and last [13-18]). The objects in the first third of List 1

were “paired” with the objects in the last third of List 2. For example, if List 1

contained an image of a bench in serial position 1, List 2 would contain an image

of a different bench in serial position 13-18. The objects in the middle third of List

1 were paired with the objects in the middle third of List 2. The objects in the last

third of List 1 were paired with the objects in the first third of List 2. We coded List

1 and List 2 objects as near and far based on the lag, or difference in serial position,

between the two objects in a pair. List 1 and List 2 objects separated by fewer than

18 intervening objects were coded as near; List 1 and List 2 objects separated by

18 or more intervening objects were coded as far. Following eight runs, subjects

completed a two-alternative forced-choice recognition test that separately assessed

memory for List 1 and List 2 objects.

List 1. On each trial, subjects saw a single object presented for 2000 ms followed

by a 1000 ms inter-stimulus interval (ISI). Subjects were instructed to study the

presented object in anticipation for a later memory test.

List 2. On each trial, subjects saw a cue word, either “OLD” or “NEW” for 2000

ms. The cue was followed by presentation of an object for 2000 ms, which was

followed by a 1000 ms ISI. All objects in List 2 were non-identical exemplars drawn
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from the same category as the objects presented in the immediately preceding List

1. That is, if a subject saw a bench and an apple during List 1, a different bench

and a different apple would be presented during List 2. On trials with a “NEW”

instruction (encode trials), subjects were to encode the presented object. On trials

with an “OLD” instruction (retrieve trials), subjects tried to retrieve the categori-

cally related object from the preceding List 1. Importantly, this design prevented

subjects from completely ignoring List 2 objects following “OLD” instructions in

that they could only identify the to-be-retrieved object category by processing the

List 2 object.

Subjects completed eight runs with two lists in each run (List 1, List 2). Subjects

viewed 18 objects per list, yielding a total of 288 object stimuli from 144 unique

object categories. Subjects did not make a behavioral response during either List 1

or 2. Following the eight runs, subjects completed a two-alternative forced choice

recognition test.

Recognition Phase. Following the eight runs, subjects completed the recognition

phase. On each trial, subjects saw two exemplars from the same object category

(e.g. two benches; Figure 2.1). One object had previously been encountered either

during List 1 or 2. The other object was a lure and had not been presented during

the experiment. Because both test probes were from the same object category, sub-

jects could not rely on familiarity or gist-level information to make their response

(Brainerd & Reyna, 2002). Trials were self-paced and subjects selected (via button

press) the previously presented object. Trials were separated by a 1000 ms ISI.

There were a total of 288 recognition trials (corresponding to the 288 total List 1

and 2 objects presented in the experiment). Note: List 1 and List 2 objects never

appeared in the same trial together, thus subjects never had to choose between two
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previously presented objects. List 1 and List 2 objects were presented randomly

throughout the test phase.

EEG Data Acquisition and Preprocessing

EEG recordings were collected using a BrainVision system and an ActiCap

equipped with 64 Ag/AgCl active electrodes positioned according to the extended

10-20 system. All electrodes were digitized at a sampling rate of 1000 Hz and were

referenced to electrode FCz. Offline, electrodes were later converted to an average

reference. Impedances of all electrodes were kept below 50 kΩ. Electrodes that

demonstrated high impedance or poor contact with the scalp were excluded from

the average reference. Bad electrodes were determined by voltage thresholding

(see below).

Custom Python codes were used to process the EEG data. We applied a high

pass filter at 0.1 Hz, followed by a notch filter at 60 Hz and harmonics of 60 Hz

to each subject’s raw EEG data. We then performed three preprocessing steps

(Nolan, Whelan, & Reilly, 2010) to identify electrodes with severe artifacts. First,

we calculated the mean correlation between each electrode and all other electrodes

as electrodes should be moderately correlated with other electrodes due to volume

conduction. We z-scored these means across electrodes and rejected electrodes

with z-scores less than -3. Second, we calculated the variance for each electrode

as electrodes with very high or low variance across a session are likely dominated

by noise or have poor contact with the scalp. We then z-scored variance across

electrodes and rejected electrodes with a |z|>= 3. Finally, we expect many electrical

signals to be autocorrelated, but signals generated by the brain versus noise are

24



likely to have different forms of autocorrelation. Therefore, we calculated the

Hurst exponent, a measure of long-range autocorrelation, for each electrode and

rejected electrodes with a |z| > = 3. Electrodes marked as bad by this procedure

were excluded from the average re-reference. We then calculated the average

voltage across all remaining electrodes at each time sample and re-referenced the

data by subtracting the average voltage from the filtered EEG data. We used

wavelet-enhanced independent component analysis (Castellanos & Makarov, 2006)

to remove artifacts from eyeblinks and saccades.

EEG Data Analysis

We applied the Morlet wavelet transform (wave number 6) to the entire EEG time

series across electrodes, for each of 46 logarithmically spaced frequencies (2-100

Hz; Long & Kahana, 2015). After log-transforming the power, we downsampled

the data by taking a moving average across 100 ms time intervals from either 4000

ms preceding to 4000 ms following object presentation during List 1 and List 2

or 0 ms preceding to 1000 ms following probe presentation for the recognition

data. For each phase, we slid the window every 25 ms, resulting in 317 and 37

time intervals, respectively (80 and 10 non-overlapping). Power values were then

z-transformed by subtracting the mean and dividing by the standard deviation

power. Mean and standard deviation power were calculated across all List 1 and

List 2 objects or all recognition events, across time points for each frequency, which

is analogous to performing a pre-stimulus baseline correction. Z-transforming or

baseline correcting spectral power is a necessary step to both reduce the 1/f shape of

the power spectrum – lower frequencies inherently have more power than higher

frequencies – and to perform parametric statistics on the data (Cohen, 2014a).
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General Linear Model

Trial-specific signals during List 2 were estimated using the General Linear Model

(GLM) implemented via the sklearn linear model module in Python. We ran a

separate GLM for each trial in which the trial was modeled as the regressor of in-

terest and all other trials were combined into a single nuisance regressor (Mumford,

Turner, Ashby, & Poldrack, 2012). Serial position (1-36, corresponding to List 1 [1-

18] and List 2 [19-36]) was included as a single parametric regressor in each GLM

to account for serial position effects. This parametric regressor predicts recogni-

tion memory accuracy, such that memory declines as serial position increases (M

= -0.0108, SD = 0.0196, t36 = -3.3116, p = 0.0021), and is consistent with other ap-

proaches for modeling a continuous variable (e.g. Long, Öztekin, & Badre, 2010;

Spitzer, Gloel, Schmidt, & Blankenburg, 2014; Tuladhar et al., 2007). We fit trial-

specific GLMs to the z-scored spectral power for each time point and frequency for

each electrode in order to generate trial-level beta values. These beta values were

used in all subsequent analyses.

Pattern Classification Analyses

Pattern classification analyses were performed using penalized (L2) logistic regres-

sion (penalty parameter = 1), implemented via the sklearn linear model module in

Python. Before pattern classification analyses were performed on the List 2 data,

an additional round of z-scoring was performed across features (electrodes and fre-

quencies) to eliminate trial-level differences in spectral power (Kuhl & Chun, 2014;

Long & Kuhl, 2018). Therefore, mean univariate activity was matched precisely

across all conditions and trial types. Classifier performance was assessed in two
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ways. “Classification accuracy” represented a binary coding of whether the clas-

sifier successfully guessed the instruction condition. We used classification accu-

racy for general assessment of classifier performance (i.e., whether encode/retrieve

instructions could be decoded). “Classifier evidence” was a continuous value re-

flecting the logit-transformed probability that the classifier assigned the correct

instruction for each trial. Classifier evidence was used as a trial-specific, continu-

ous measure of mnemonic state information, which was used to assess the degree

of retrieval evidence present on near and far trials. The logic of using both classifier

accuracy and classifier evidence is that although accuracy indicates how well the

classifier can distinguish encode vs. retrieve trials, accuracy may obscure differ-

ences in conditions upon which the classifier was not directly trained, e.g. the

distance (near, far) between objects. As an example, the classifier may correctly

label both near encode and far encode trials as “encode,” however, it may have less

confidence on the near compared to far trials, reflecting relatively greater retrieval

state evidence on near trials.

We trained within-subject classifiers to discriminate List 2 encode vs. retrieve

trials based on a feature space comprised of all 63 electrodes × 46 logarithmically

spaced frequencies ranging from 2 to 100 Hz. For each subject, we used leave-

one-run-out cross validated classification in which the classifier was trained to

discriminate encode from retrieve instructions for seven of the eight runs and tested

on the held-out run. For classification analyses in which we assessed classifier

accuracy, we averaged beta values over the 2000 ms stimulus interval. For analyses

measuring classifier evidence, we averaged beta values over four separate 500-ms

time intervals across the 2000 ms stimulus interval. We assessed classifier evidence

as a function of instruction (encode, retrieve), temporal distance (near, far), and/or
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retrieval status (success, failure; see below).

To measure the ability of the classifier to generalize across temporal distance,

we trained and tested two separate classifiers to distinguish List 2 encode/retrieve

trials. One classifier was trained on near trials and tested on far trials, the other

classifier was trained on far trials and tested on near trials. As there was a slight

imbalance in the number of encode and retrieve trials within each distance, we

subsampled trials from the condition with the greater number of trials to match

the condition with fewer trials. We repeated this procedure for 100 iterations and

averaged the resulting classification accuracy values across the 100 iterations.

Retrieval Status Analysis

Because we did not explicitly measure retrieval success during the List 2 trials, we

generated ‘retrieval success’ and ‘retrieval failure’ templates based on the recog-

nition phase data. Specifically, we extracted stimulus-locked z-scored spectral

power across 63 electrodes and 46 frequencies separately for hits (trials in which

participants selected the target) and misses (trials in which participants selected

the categorically-related lure). We extracted z-power 500 - 800 ms post-stimulus,

as this interval has routinely been linked with retrieval success (Friedman & John-

son Jr., 2000; Voss & Paller, 2008; Johnson, Price, & Leiker, 2015). We averaged

z-power across all subjects to generate a single ‘retrieval success’ template and a

single ‘retrieval failure’ template.

After having generated the success/failure templates, we applied these tem-

plates to the List 2 data. Because we were interested in whether or not the corre-

sponding List 1 object was retrieved at any point within the List 2 trial, we used the
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trial-level beta values averaged across the stimulus interval (2000 ms). We corre-

lated trial-level beta values with the success and failure templates using a Pearson

correlation. Each trial was assigned a label based on its correlation with the success

and failure templates. A trial that was more positively correlated with the success

template was labeled ‘retrieval success’ or 1, and a trial that was more positively

correlated with the failure template was labeled ‘retrieval failure’ or 0.

We calculated the average label as a function of distance (near, far) and instruc-

tion (encode, retrieve). An average label value of 0.5 means that a given condition

was no more likely to be labeled ‘retrieval success’ than ‘retrieval failure.’ An

average label value greater than 0.5 means that a given condition was more likely

to be labeled ‘retrieval success’ than ‘retrieval failure.’

Statistical Analyses

We used repeated measures ANOVAs and paired-sample t-tests to assess the effect

of instruction (encode, retrieve) and temporal distance (near, far) on behavioral

memory performance.

We used paired-sample t-tests to compare classification accuracy across subjects

to chance decoding accuracy, as determined by permutation procedures. Namely,

for each subject we shuffled the condition labels of interest (e.g., encode and retrieve

for the List 2 instruction classifier) and then calculated classification accuracy. We

repeated this procedure 1000 times for each subject and then averaged the 1000

shuffled accuracy values for each subject. These mean values were used as subject-

specific empirically derived measures of chance accuracy.
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We used repeated measures ANOVAs and paired-sample t-tests to assess the

interaction between instruction (encode, retrieve), temporal distance (near, far), and

time interval on retrieval evidence.

2.4 Results

Influence of Temporal Contextual Overlap on Interference

We first sought to replicate the finding that subjects are able to shift between encod-

ing and retrieval states in a goal directed manner (Long & Kuhl, 2019), by testing

whether instructions influenced performance on the recognition task. Although en-

code/retrieve instructions only appeared during List 2, we also considered whether

memory for List 1 objects was influenced by List 2 instructions (e.g., whether mem-

ory for the old bench was influenced by whether the new bench was associated

with an encode vs. retrieve instruction). A two-way, repeated measures ANOVA

with factors of list (1, 2) and instruction (encode, retrieve) revealed a list by instruc-

tion interaction (F1,36 = 6.045, p = 0.0189, η2
p = 0.14, Figure 2.2A). This interaction

was driven by numerically greater recognition for List 2 objects presented with an

encode (M = 82.88%, SD = 8.51%) relative to a retrieve instruction (M = 80.52%,

SD = 7.79%; difference between List 2 encode vs retrieve: t36 = 2.1072, p = 0.0421,

Bonferroni corrected α = 0.025, Cohen’s d = 0.2938) and numerically greater recog-

nition for List 1 objects presented with a retrieve (M = 84.27%, SD = 7.7%) relative

to an encode instruction (M = 83.3%, SD = 7.03%; difference between List 1 encode

vs retrieve: t36 = -1.7542, p = 0.0879, Bonferroni corrected α = 0.025, Cohen’s d =

0.1324).
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To further demonstrate the impact that encode vs. retrieve instructions have on

memory behavior, we conducted an analysis of recognition phase reaction times.

If subjects are able to shift between encoding and retrieval states, we would expect

to find a list by instruction interaction such that memory responses are slowed for

List 2 objects associated with a retrieve instruction and List 1 objects associated

with an encode instruction. We assessed reaction times from correct trials only.

A two-way, repeated measures ANOVA with factors of list (1, 2) and instruction

(encode, retrieve) revealed a significant main effect of list (F1,36 = 24.84, p < 0.0001,

η2
p = 0.41) driven by faster reaction times for List 1 compared to List 2 objects.

There was a main effect of instruction (F1,36 = 7.27, p = 0.0106, η2
p = 0.17) driven

by faster reaction times for encode compared to retrieve instructions. There was

a significant interaction between list and instruction (F1,36 = 12.9, p = 0.0010, η2
p =

0.26, Figure 2.2B). This interaction was driven by faster reaction times for List 2

objects presented with an encode (M = 1.6456, SD = 0.4405) relative to a retrieve

instruction (M = 1.7904, SD = 0.3954; difference between List 2 encode vs retrieve:

t36 = -4.248, p = 0.0001, Bonferroni corrected α = 0.025, Cohen’s d = 0.346).

We next assessed the relationship between List 1 and List 2 object memory on a

pair-by-pair basis to investigate the encoding-retrieval tradeoff. We isolated cases

in which either the List 1 object was remembered and the associated List 2 object

was forgotten (L1R-L2F) or the List 1 object was forgotten and the associated List 2

object was remembered (L1F-L2R). To the extent that retrieval of List 1 objects trades

offwith encoding of List 2 objects, the proportion of L1R-L2F should be greater for

retrieve compared to encode instructions and the proportion of L1F-L2R should be

greater for encode compared to retrieve instructions. To test this hypothesis, we ran

a 2× 2 repeated measures ANOVA with factors of instruction (encode, retrieve) and
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condition (L1R-L2F, L1F-L2R) and proportion as the dependent variable. There was

no main effect of instruction (F1,36 = 0.471, p = 0.497, η2
p = 0.01) and the main effect

of condition did not reach significance (F1,36 = 3.923, p = 0.0553, η2
p = 0.10). There

was a significant interaction between condition and instruction (F1,36 = 6.045, p =

0.0189, η2
p = 0.14, Figure 2.2C). This interaction was driven by a numerically greater

proportion of L1F-L2R items when the instruction was to encode (M = 0.1288, SD

= 0.0507) compared to retrieve (M = 0.1152, SD = 0.0569; difference between L1F-

L2R encode vs retrieve: t36 = 2.1733, p = 0.0364, Bonferroni corrected α = 0.025,

Cohen’s d = 0.2507) and a numerically greater proportion of L1R-L2F items when

the instruction was to retrieve (M = 0.1528, SD = 0.0597) compared to encode (M =

0.1329, SD = 0.0599; difference between L1R-L2F encode vs retrieve: t36 = -2.0211,

p = 0.0508, Bonferroni corrected α = 0.025, Cohen’s d = 0.3325). Together, these

results support the interpretation that encoding and retrieval processes tradeoff.

Having replicated our previous finding that instructions to encode and retrieve

modulate behavior, we next sought to test the effect of temporal distance on recog-

nition accuracy, specifically for List 1 objects, as shorter temporal distance may

impair List 1 memory specifically for encode trials. The intuition is that automati-

cally retrieved near List 1 objects may be inhibited or suppressed by virtue of being

goal-irrelevant during encode trials. This outcome would be analogous to the in-

hibition that is thought to occur during retrieval induced forgetting (Anderson,

Bjork, & Bjork, 1994; Anderson, 2003).

We assessed whether the distance between objects, as well as the instruction

given during List 2, influenced recognition memory List 1 objects (Figure 2.3). A

two-way, repeated measures ANOVA with factors of instruction (encode, retrieve)

and distance (near, far), revealed a significant main effect of distance (F1,36 = 4.916,
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Encode

Figure 2.2: Influence of Mnemonic Instructions on Memory Behavior. (A) We assessed recognition
accuracy as a function of list (1, 2) and instruction (encode, orange; retrieve, teal). We find a
significant interaction between list and instruction (p = 0.0189) driven by greater accuracy for List
2 objects presented with an encode compared to a retrieve instruction and numerically greater
accuracy for List 1 objects presented with a retrieve compared to an encode instruction. (B) We
assessed reaction times as a function of list and instruction. We find a significant interaction between
list and instruction (p = 0.0010) driven by faster reaction times for List 2 objects presented with an
encode compared to a retrieve instruction. (C) We assessed the relationship between List 1 and List
2 object memory on a pair-by-pair basis for cases where either the List 1 object was remembered
and the associated List 2 object was forgotten (L1R-L2F) or the List 1 object was forgotten and the
associated List 2 object was remembered (L1F-L2R) separately for encode and retrieve instructions.
There was a significant interaction between condition and instruction (p = 0.0189) driven by a
greater proportion of L1F-L2R items for encode compared to retrieve trials and a numerically
greater proportion of L1R-L2F items for retrieve compared to encode trials. * p < 0.05, *** p < 0.001,
uncorrected.

p = 0.0330, η2
p = 0.12) driven by greater recognition accuracy for far compared to

near objects. The main effect of instruction did not reach significance (F1,36 = 3.769,

p = 0.0601, η2
p = 0.09). There was a significant interaction between instruction and

distance (F1,36 = 4.381, p = 0.0435, η2
p = 0.11), driven by greater accuracy for near

retrieve trials (M = 83.88%, SD = 11.11%) relative to near encode trials (M = 80.9%,

SD = 9.17%; difference between near encode vs near retrieve: t36 = -2.6225, p =

0.0127, Bonferroni corrected α = 0.0167, Cohen’s d = 0.2964). Notably, recognition

accuracy on near encode trials was significantly worse compared to both far encode

trials (t36 = -3.3417, p = 0.0020, Bonferroni corrected α = 0.0167, Cohen’s d = 0.5561)

and far retrieve trials (t36 = -3.1204, p = 0.0035, Bonferroni corrected α = 0.0167,

Cohen’s d = 0.4653).
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We observed decreased recognition accuracy for List 1 near objects when subjects

attempted to encode the List 2 object compared to when they attempted to retrieve

the near List 1 object. In fact, near List 1 objects paired with the encode instruction

are remembered worse than all other List 1 objects, strongly suggesting that bottom-

up or automatic retrieval of the near List 1 object, when coupled with the top-down

demand to encode the List 2 object, leads to suppression of the near List 1 object.

Retrieve
Encode

Figure 2.3: List 1 Recognition Accuracy by Instruction and Distance. We assessed recognition
accuracy for List 1 objects as a function of instruction (encode, orange; retrieve, teal) and distance
(near, far). We find a significant interaction between instruction and distance (p = 0.0435) driven by
greater accuracy for near retrieve trials compared to near encode trials. * p < 0.05, uncorrected.

Influence of Temporal Contextual Overlap on Retrieval State

Our first goal was to replicate our previous finding that a pattern classifier trained

on spectral signals can distinguish encode and retrieve trials (Long & Kuhl, 2019).

We conducted a multivariate pattern classification analysis in which we trained a

classifier to discriminate encode vs. retrieve List 2 trials based on a feature space

comprised of all 63 electrodes and 46 frequencies ranging from 2 to 100 Hz. For

this analysis, we averaged beta values over the 2000 ms stimulus interval. Us-
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ing within-subject, leave-one-run-out classifiers, mean classification accuracy was

53.32% (SD = 7.75%), which was significantly greater than chance, as determined

by permutation tests (t36 = 2.5595, p = 0.0148, Cohen’s d = 0.6043; Figure 2.4A).

We next sought to investigate the effect of temporal overlap on retrieval. If

greater temporal contextual overlap between two events promotes retrieval, we

would expect to find greater evidence for a retrieval state on near compared to far

trials. Moreover, to the extent that this retrieval occurs automatically, we would

expect to find greater evidence for a retrieval state early in the stimulus interval.

Although temporal distance could interact with instruction – evidence for a re-

trieval state may be particularly strong for near retrieve trials – given that temporal

distance did not enhance memory for near List 1 objects on retrieve trials or impact

memory for List 2 objects, we do not anticipate an interaction between temporal

distance and instruction.

To investigate the effect of temporal distance on retrieval state evidence over

time, we trained classifiers to discriminate encode vs. retrieve trials using the aver-

age betas from four 500 ms time intervals across the 2000 ms stimulus interval. We

conducted a repeated measures ANOVA in which true (non-permuted) retrieval

evidence was the dependent variable and with factors of instruction (encode, re-

trieve), distance (near, far) and time interval (four 500 ms time intervals). We find a

significant two-way interaction between distance and time interval (F3,108 = 5.355,

p = 0.0018, η2
p = 0.13) whereby retrieval evidence is greater for near compared to far

trials during the first two 500 ms time intervals (near vs. far: 0-500, t36 = 2.4899, p

= 0.0175, Cohen’s d = 0.598; 500-1000, t36 = 4.159, p = 0.0002, Cohen’s d = 0.9056;

Bonferroni corrected α = 0.0125). Retrieval evidence does not differ during the

second two 500 ms time intervals (near vs. far: 1000-1500, t36 = -1.2887, p = 0.2057,
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Cohen’s d = 0.2772; 1500-2000, t36 = 0.9867, p = 0.3304, Cohen’s d = 0.2492; Bonfer-

roni corrected α = 0.0125). We also find a main effect of distance (F1,36 = 8.649, p =

0.0057, η2
p = 0.19; Figure 2.4B), with greater retrieval evidence for near compared to

far trials. We find a significant two-way interaction between instruction and time

interval (F3,108 = 5.041, p = 0.0026, η2
p = 0.12), whereby the largest differences in

retrieval evidence between retrieve and encode trials occur during the last two 500

ms time intervals (encode vs. retrieve: 0-500, t36 = -1.4215, p = 0.1638, Cohen’s d

= 0.3759; 500-1000, t36 = -1.9205, p = 0.0628, Cohen’s d = 0.4996; 1000-1500, t36 =

-4.2349, p = 0.0002, Cohen’s d = 1.2395; 1500-2000, t36 = -4.4573, p = 0.0001, Cohen’s

d = 1.2841; Bonferroni corrected α = 0.0125). We find a significant main effect of

instruction (F1,36 = 22.31, p < 0.0001, η2
p = 0.38; Figure 2.4C), consistent with the

results of the classifier trained on the full 2000 ms interval above. The two-way

interaction between instruction and distance was not significant (F1,36 = 1.932, p =

0.173, η2
p = 0.05) nor was the three-way interaction between instruction, distance,

and time interval (F3,108 = 0.239, p = 0.869, η2
p = 0.0066; Figure 2.4D). Together,

these results suggest that greater temporal contextual overlap induces automatic

retrieval independent of the actual instruction to either encode or retrieve.

Retrieval State Mechanisms

We have found an increase in retrieval state evidence when objects appear closer

together in time. Although our hypothesis is that this dissociation reflects greater

instantiation of a retrieval state, the classifier may be indexing retrieval success or

retrieval effort as opposed to a general retrieval state or mode (Rugg & Wilding,

2000). Specifically, by virtue of the shorter temporal distance, retrieval success

might be greater for near compared to far objects. Likewise, by virtue of the longer
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Figure 2.4: Retrieval State Evidence. We trained an L2-logistic regression classifier to discriminate
encode vs. retrieve trials during List 2. The classifier was trained and tested on averaged beta
values across 63 electrodes and 46 frequencies. (A) The classifier was trained on average beta
values across the 2000 ms stimulus interval. Mean classification accuracy across all subjects (solid
vertical line) is shown along with a histogram of classification accuracies for individual subjects
(gray bars) and mean classification accuracy for permuted data across all subjects (dashed vertical
line). Mean classification accuracy for permuted data ranged from 49.7% to 50.27% across individual
subjects (1000 permutations per subject). Mean classification accuracy was 53.32%, which differed
significantly from chance (p = 0.0148). (B-D) We trained and tested four classifiers on four 500 ms
time intervals within the 2000 ms stimulus interval. (B) When we average retrieval evidence over
instruction, we find a significant interaction between distance and time interval (p = 0.0018) driven
by greater retrieval evidence on near compared to far trials early in the stimulus interval. (C) When
we average retrieval evidence over distance, we find a significant interaction between instruction
and time interval (p = 0.0026) driven by greater retrieval evidence on retrieve compared to encode
trials late in the stimulus interval. (D) We do not find a three-way interaction between instruction,
distance, and time (p = 0.869). Error bars denote SEM. * p < 0.05, *** p < 0.001, uncorrected.

temporal distance, retrieval might be more effortful for far compared to near objects.

In our previous classification analysis, the classifier was trained using data from

both near and far trials, meaning that the dissociation between encode/retrieve

trials, and consequently, near/far trials, could be based on information exclusively

from either near or far trials. Put another way, the classifier may have learned to

distinguish either encode and ‘retrieval success’ (i.e. near retrieve) trials or encode

and ‘retrieval effort’ (i.e. far retrieve) trials. Therefore, to demonstrate that a general

retrieval state or mode underlies the dissociation between near and far trials, we

trained two separate classifiers to distinguish encode/retrieve using only near or

only far trials, and tested the classifiers on the other held-out distance (far or near)

trials. The logic is that to the extent that the dissociation between encode/retrieve

37



is supported by the same mechanism on both near and far trials, classifiers trained

on one distance should generalize – reflected by above chance (50%) performance

– to the other distance. To the extent that the dissociation between encode/retrieve

is driven either by retrieval success or retrieval effort, the classifiers should fail to

generalize to the other distance.

(A) Near Classifier

Encode

Training Data:

Testing Data:

Retrieve

(B) Far Classifier

Training Data:

Encode Retrieve

Testing Data:

p = 0.0042 p = 0.0038Near
Far

Figure 2.5: Cross Distance Mnemonic State Decoding. We trained two L2-logistic regression
classifiers to discriminate encode vs. retrieve based on average beta values for the 2000 ms stimulus
interval with 63 electrodes and 46 frequencies used as features. For each classifier we show mean
classification accuracy across all subjects (solid vertical line) along with a histogram of classification
accuracies for individual subjects (gray bars) and mean classification accuracy for permuted data
across all subjects (dashed vertical line). (A) We trained the classifier on only List 2 near trials and
tested the classifier on List 2 far trials. Mean classification accuracy for permuted data ranged from
49.73% to 50.40% across individual subjects (1000 permutations per subject). Mean classification
accuracy was 52.98%, which was significantly greater than chance performance (p = 0.0042). (B)
We trained the classifier on only List 2 far trials and tested the classifier on List 2 near trials. Mean
classification accuracy for permuted data ranged from 49.27% to 50.46% across individual subjects
(1000 permutations per subject). Mean classification accuracy was 52.85%, which was significantly
greater than chance performance (p = 0.0038).

We conducted a multivariate pattern classification analysis in which we trained

a classifier on only near or far trials to discriminate encode vs. retrieve trials. We

averaged beta values across the stimulus interval (2000 ms) and used leave-one-

run-out cross-validated classification. First, we trained a classifier to distinguish

encode vs. retrieve List 2 near trials and tested the classifier on the List 2 far trials

(Figure 2.5A). Mean classification accuracy was 52.98% (SD = 5.77%), which was

significantly greater than chance performance (t36 = 3.0602, p = 0.0042, Cohen’s d =

0.7225; Figure 2.5A). Next, we trained a classifier to distinguish encode vs. retrieve
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List 2 far trials and tested the classifier on List 2 near trials (Figure 2.5B). Mean

classification accuracy was 52.85% (SD = 5.48%), which was significantly above

chance (t36 = 3.0933, p = 0.0038, Cohen’s d = 0.7377; Figure 2.5B). The ability of

these classifiers to generalize across distance suggests that neural signals during

encode and retrieve trials are similar across temporal distance.

The cross-distance decoding analysis suggests that a general retrieval mode is

present during both near and far trials. However, it is possible that the dissocia-

tion we observe between near and far trials in our prior analysis of retrieval state

evidence is still driven in some part by retrieval success. Namely, greater retrieval

state evidence may specifically be tracking near - success trials.

To adjudicate between the possibilities that elevated retrieval evidence on near

trials is due to a retrieval mode vs. retrieval success, it is necessary to account

for retrieval success during each List 2 trial. By design, there are no behavioral

responses made during List 2 trials in order to equate the behavioral output across

instructions. Therefore, we do not have a direct measure of retrieval success.

However, we can generate a proxy of retrieval success by leveraging the recognition

phase data. Specifically, we created a ‘retrieval success’ and a ‘retrieval failure’

template (Figure 2.6A) across all subjects and assigned a retrieval ‘status’ label to

each List 2 trial of either ‘retrieval success’ (1) or ‘retrieval failure’ (0) based on how

well a given trial correlated with each template (see Methods).

To validate our proxy of retrieval success, we first assessed whether temporal

overlap impacts retrieval success. Given that retrieval success should be more

likely for near compared to far objects, we predicted that near trials should be

labeled ‘retrieval success’ more often than far trials, reflected by an average label
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value closer to 1. We conducted a two-way, repeated measures ANOVA with

factors of instruction (encode, retrieve) and distance (near, far) and the average

retrieval status label as the dependent variable (Figure 2.6B). We find a significant

main effect of distance (F1,36 = 11.32, p = 0.0018, η2
p = 0.24) driven by greater

assignment of ‘retrieval success’ for near compared to far trials. We find no main

effect of instruction (F1,36 = 0.104, p = 0.749, η2
p = 0.0029) and no interaction between

instruction and distance (F1,36 = 0.351, p = 0.557, η2
p = 0.0097).

Having established that our proxy for retrieval success matches our predictions,

we next sought to test whether retrieval state evidence differs as a function of

retrieval success. If the output of a classifier trained on all List 2 trials purely reflects

a retrieval mode, near trials should show greater retrieval state evidence than far

trials regardless of retrieval success. If the classifier purely reflects retrieval success,

retrieval success trials should show greater retrieval state evidence than retrieval

failure trials regardless of distance. We conducted a repeated measures ANOVA

in which true (non-permuted) retrieval evidence was the dependent variable with

factors of retrieval status (success, failure), distance (near, far) and time interval

(four 500 ms time intervals). We find a significant main effect of distance (F1,36 =

7.564, p = 0.0093, η2
p = 0.17; Figure 2.6C) driven by greater retrieval evidence on near

compared to far trials. We find a significant two-way interaction between distance

and time interval (F3,108 = 5.853, p = 0.0010, η2
p = 0.14) whereby retrieval evidence

is greater for near compared to far trials for the first two 500 ms time intervals (near

vs. far: 0-500, t36 = 2.579, p = 0.0141, Cohen’s d = 0.6058; 500-1000, t36 = 3.973, p

= 0.0003, Cohen’s d = 0.8835; Bonferroni corrected α = 0.0125). Retrieval evidence

does not differ during the second two 500 ms time intervals (near vs. far: 1000-1500,

t36 = -1.5492, p = 0.1301, Cohen’s d = 0.3336; 1500-2000, t36 = 0.8985, p = 0.3749,
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Cohen’s d = 0.2254; Bonferroni corrected α = 0.0125). The three-way interaction

between retrieval status, distance, and time interval was not significant (F3,108 =

0.703, p = 0.552, η2
p = 0.02). Bayes factor analysis revealed that a model without the

three-way interaction term is preferred to a model with the three-way interaction

by a factor of 13.1333. Together, these results suggest that although retrieval may be

more successful on near compared to far trials, retrieval success does not influence

the dissociation in retrieval evidence between near and far trials.

Retrieve
Encode

(B) (C)

Success
Failure

Near
Far

Retrieval 
Success

Retrieval 
Failure

(A)

Retrieval Success Template Retrieval Failure Template

Z-Pow
er

Figure 2.6: Impact of Retrieval Success on Retrieval State Evidence. (A) We derived retrieval
success and retrieval failure templates from hit and miss trials during the recognition phase. Each
panel shows an across-subject electrode-frequency spectrogram of z-power during retrieval suc-
cess (hits; left) and retrieval failure (misses; right) in which red indicates z-power increases and
blue indicates z-power decreases. (B) We assessed average retrieval status label as a function of
instruction (encode, orange; retrieve, teal) and distance (near, far). We find a significant main effect
of distance (p = 0.0018) driven by greater assignment of ‘retrieval success’ for near compared to far
trials. (C) We assessed retrieval state evidence as a function of distance (near, solid; far, dashed) and
retrieval status (success, red; failure, blue). We find a significant interaction between distance and
time interval (p = 0.0010) driven by greater retrieval evidence on near compared to far trials early in
the stimulus interval. Error bars denote SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, uncorrected.

2.5 Discussion

Here we show that temporal contextual overlap between events selectively in-

creases interference and induces automatic retrieval. We used scalp EEG to mea-

sure memory brain states in a task during which subjects were explicitly instructed

41



to either encode the present event or retrieve a past, overlapping event. We find

behavioral evidence that temporal overlap selectively leads to interference for past

events when the top-down goal is to encode the present event. We find neural

evidence that temporal overlap induces automatic retrieval independent from top-

down demands to encode or retrieve. Critically, our neural results suggest that

the retrieval state we observe is likely the result of a general retrieval mode (Rugg

& Wilding, 2000), rather than a reflection of retrieval success or effort. Collec-

tively, these findings demonstrate a link between temporal context, interference,

and memory brain states.

We find that greater temporal overlap between events leads to a selective mem-

ory deficit for a past event when the top-down demand is to encode the present

event. Overlap between events can lead to both proactive interference, in which

learning about a past event impairs memory for the present, and retroactive in-

terference, in which learning about a present event impairs memory for the past

(Underwood, 1948; Crowder, 1976). Here we find that greater temporal overlap

between two events leads to an increase in retroactive interference; however, this

increase is selective for conditions in which subjects’ top-down goal is to encode the

currently presented stimulus. This result has striking similarity with retrieval in-

duced forgetting (Anderson et al., 1994; Anderson & Spellman, 1995). In paradigms

that produce retrieval induced forgetting, subjects retrieve a target (e.g. strawberry)

based on a word stem (e.g. s ) and a cue (e.g. food) that is associated with

other non-targets (e.g. tomato). Researchers theorize that cue driven retrieval of

the non-target leads to suppression or inhibition which impairs subsequent mem-

ory for the non-target (c.f. Perfect et al., 2004). As the strength, typically framed

in terms of semantic overlap, between non-target and cue increases, there is an in-
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crease in memory impairment, putatively due to stronger inhibition (Anderson et

al., 1994). We extend these findings by showing that temporal overlap can likewise

impair memory for non-targets, suggesting that greater temporal overlap may lead

to inhibition of automatically retrieved items that are not goal relevant.

Although in our study we find that temporal overlap is detrimental to later

memory, there is evidence that temporal overlap between events can facilitate

behavior. Participants are better at associative inference tasks when associated

events are studied close together in time (Zeithamova & Preston, 2017). Events

presented close together in time are often recalled together (temporally clustered,

Kahana, 1996; Long & Kahana, 2015) and overall recall performance increases

as more events are temporally clustered (Sederberg, Miller, Howard, & Kahana,

2010; Healey, Crutchley, & Kahana, 2014). Temporal overlap may promote the

integration of two separate events (Schlichting & Preston, 2015; Richter, Chanales,

& Kuhl, 2016), which enables those events to cue one another during a memory

test. It is possible that in our study the explicit instruction to encode interrupts

or prevents integration leading to worse memory for the past event. Follow-up

studies investigating the influence of temporal overlap in the absence of explicit

instructions to encode or retrieve are needed to test this possibility.

We find induction of a retrieval state early in the stimulus interval when objects

are closer together in time. We anticipated that greater temporal overlap would

lead to increased retrieval on the basis of retrieved context theory. According to

retrieved context theory (Howard & Kahana, 2002; Sederberg et al., 2008; Polyn et

al., 2009; Lohnas & Kahana, 2014), spatiotemporal context is bound to items during

study and used as a retrieval cue during test (Long et al., 2017), enabling items with

overlapping spatiotemporal contexts to cue retrieval of one another (Manning et
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al., 2011). Consistent with retrieved context theory, we find more retrieval state

evidence for objects with greater temporal overlap (near compared to far objects).

Our observation of elevated retrieval state evidence on near trials even when the

instruction is to encode the present (or, conversely, when the instruction is to not

retrieve the past), suggests that the retrieval we observe is the result of a bottom-up

or stimulus driven property of the object (e.g. its temporal contextual overlap with

a past object) rather than the result of top-down or goal driven demands. The

dissociation in retrieval evidence as a function of temporal overlap may reflect

the engagement of an automatic retrieval process, given that automatic retrieval is

thought to be a fast, bottom-up process that can occur without top-down control

(Moscovitch, 1994). That the largest retrieval state evidence dissociations between

near and far trials occur within the first 1000 ms following stimulus onset is con-

sistent with this interpretation. Collectively, these findings indicate that memory

brain states can be impacted by both bottom-up and top-down influences.

We interpret the retrieval state effects that we observe as reflecting a general

retrieval mode rather than serial position effects, retrieval success, or retrieval effort.

By design, near and far objects occurred in systematically distinct serial positions

(primacy and recency, respectively). To address this inherent confound, we fit a

trial-level GLM to the z-transformed spectral power and included serial position

as a parametric regressor based on a logistic-regression model fit of the behavioral

data. We used this approach to limit the potential contribution of serial position

to the observed retrieval state effects as distinct neural signals are recruited across

primacy and non-primacy positions (Sederberg et al., 2006). Given that the GLM

cannot completely eliminate serial position effects, lingering primacy-related sig-

nals could contribute to the observed dissociation in retrieval evidence between
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near and far trials. However, we note that as the pattern classifier is trained on data

across all serial positions, we expect such a contribution to be limited.

The dissociation between near and far trials could be the result of other re-

trieval processes rather than a more general retrieval mode (Tulving, 1985; Rugg

& Wilding, 2000). Retrieval as it stands is a broad concept and can encompass

multiple different ‘sub-processes.’ We consider a retrieval state or mode as a

content-independent process. Although typically retrieval mode has been consid-

ered within the framework of goal-directed or intentional remembering, we expect

that a retrieval mode can also be engaged automatically based on bottom-up in-

puts (as demonstrated in the current study) and may align or be synonymous with

the internal axis of attention (Chun, Golomb, & Turk-Browne, 2011). A retrieval

mode is thought to be distinct from retrieval ‘orientation’ in which specific cues or

features are used to guide memory (Herron & Wilding, 2004; Hornberger, Rugg, &

Henson, 2006a, 2006b). Finally, both retrieval mode and orientation are separate

from retrieval success and retrieval effort. After directing attention internally and

orienting to particular cues to guide retrieval, an individual will either bring to

mind the target item (retrieval success) or fail to bring to mind the target item,

leading to effortful retrieval.

The retrieval process that we observe in the current study likely reflects a re-

trieval state given that a pattern classifier can distinguish encoding and retrieval

across both near and far trials and that retrieval state evidence does not differ as a

function of retrieval success. If the processes underlying near and far trials were

entirely the product of retrieval success and retrieval effort, respectively, the cross-

distance pattern classifier would be unable to distinguish encoding and retrieval

across these trials. This is not to say that there are not potential differences in
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terms of retrieval success or effort between near and far trials, only that there exist

shared mechanisms which enables the pattern classifier to generalize across these

trials. Although we cannot rule out the potential influence of retrieval effort, the

interpretation that elevated retrieval evidence on near compared to far trials reflects

decreased retrieval effort would be inconsistent with our findings of greater retrieval

evidence on retrieve compared to encode trials, given that one would expect more

retrieval effort for retrieve trials. By leveraging the recognition phase data, we

indexed retrieval success across near and far trials and found that retrieval state

evidence is modulated by distance, but not retrieval success. It is important to note

that our index of retrieval success is more likely to capture recollection-based as

opposed to familiarity-based retrieval processes, though given the strong categori-

cal overlap between the object pairs, we would anticipate high levels of familiarity

for all objects regardless of temporal overlap. As the content of retrieval varies

on every trial, it is unlikely that retrieval orientation differs systematically across

near and far trials. Thus the account best supported by these findings is that the

dissociation in retrieval state evidence reflects a general retrieval mode. These

results present an exciting avenue for future work to further dissociate these differ-

ent retrieval sub-processes via multivariate methods and to more generally relate

memory retrieval to internal attention.

Our results add to a growing body of work demonstrating the presence of neu-

rally dissociable mnemonic states (Hasselmo et al., 2002; Hasselmo, 2005). Like

other brain states (e.g. Kay & Frank, 2019), mnemonic states likely reflect sus-

tained brain activity configurations. The shift between encoding and retrieval can

occur on the order of milliseconds via theta oscillations which drive rapid shifts in

entorhinal-hippocampal connectivity (Hasselmo et al., 2002). However, these states
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may operate along slower timescales and be mediated by acetylcholine (Hasselmo

& McGaughy, 2004; Meeter, Murre, & Talamini, 2004). Mnemonic states predict

subsequent memory (Long & Kuhl, 2019), impact the cortical location of stimu-

lus representations (Long & Kuhl, 2021), and can influence behavior and decision

making (Duncan, Sadanand, & Davachi, 2012; Duncan & Shohamy, 2016; Patil &

Duncan, 2018). Memory encoding and retrieval may reflect two states along a

continuum within the broader framework of external and internal attention, re-

spectively (Chun et al., 2011). Here we show that mnemonic states in the cortex

persist for several hundred milliseconds and are influenced by bottom-up stimulus

properties, in addition to explicit top-down demands. We expect that mnemonic

states fluctuate based on both stimuli and goals – to the extent that events overlap,

there is the potential for automatic retrieval and a shift into a retrieval state. Track-

ing mnemonic state fluctuations will be critical for understanding both how these

states are induced and how these states in turn impact behavior.

In summary, we show that temporal overlap between events induces retrieval

and selectively impairs memory performance. These findings are consistent with

theoretical models which propose that temporal information can cue retrieval

(Howard & Kahana, 2002) and behavioral findings that retrieving non-goal rel-

evant information can lead to memory impairments (Anderson et al., 1994). More

broadly, these findings point to a role for bottom-up stimulus features in driving

mnemonic brain states.
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Chapter 3

Response-locked theta dissociations

reveal potential feedback signal

following successful retrieval

Devyn E. Smith, Justin R. Wheelock & Nicole M. Long
Under Review

3.1 Abstract

Successful memory retrieval relies on memory processes to access an internal rep-

resentation and decision processes to evaluate and respond to the accessed rep-

resentation, both of which are supported by fluctuations in theta (4-8Hz) activity.

However, the extent to which decision making processes are engaged following

a memory response is unclear. Here, we recorded scalp electroencephalography
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(EEG) while human participants performed a recognition memory task. We fo-

cused on response-locked data, allowing us to investigate the processes that occur

prior to and following a memory response. We replicate previous work and find

that prior to a memory response theta power is greater for identification of previ-

ously studied items (hits) relative to rejection of novel lures (correct rejections; CRs).

Following the memory response, the theta power dissociation ‘flips’ whereby theta

power is greater for CRs relative to hits. We find that the post-response ‘flip’ is more

robust for hits that are committed quickly, potentially reflecting a positive feedback

signal for strongly remembered experiences. Our findings suggest that there are

potentially distinct processes occurring before and after a memory response that

are modulated by successful memory retrieval.

3.2 Introduction

Successful remembering is dependent on both memory processes to access stored

representations and decision processes to evaluate and respond to the accessed

representation. How these processes unfold over time, and the underlying neural

mechanisms, are critically important to memory success, yet our understanding

of these processes remains limited. In particular, convergent evidence from scalp

electroencephalography (EEG) studies in both the memory literature (Klimesch

et al., 1997; Nyhus & Curran, 2010) and the decision making literature (Frank et

al., 2015; Pinner & Cavanagh, 2017; Senftleben & Scherbaum, 2021) suggest that

frontocentral theta (4-8 Hz activity in EEG) supports both memory and decision

making processes. However, the extent to which theta dissociations in a memory

task reflect decision making processes is unclear, likely due to limited investigation
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of EEG signals following a memory response. The aim of this study is to investigate

the neural correlates leading up to and following a memory response.

It is well established that successful remembering is characterized by electro-

physiological changes around 300 to 800 ms following stimulus onset during a

memory test (Friedman & Johnson Jr., 2000; Rugg & Wilding, 2000; Voss & Paller,

2008; Addante, Ranganath, & Yonelinas, 2012). Specifically, two event-related

potentials (ERPs) distinguish successful remembering of a target or studied item

(hit) from successful rejection of a lure or non-studied item (correct rejection, CR).

The FN400, a negative going frontal ERP component thought to reflect familiarity

(Rugg et al., 1998; Mecklinger, 2000; Curran & Hancock, 2007) is more negative for

CRs than hits around 300 to 500 ms after stimulus onset (Curran, 2000; Curran &

Cleary, 2003; Curran, 2004) and the LPC, a late positive going parietal ERP com-

ponent thought to reflect recollection (Friedman & Johnson Jr., 2000; Mecklinger,

2000) is more positive for hits than CRs around 400 to 800 ms after stimulus onset

(Curran, 2000; Friedman & Johnson Jr., 2000; Curran & Cleary, 2003; Curran, 2004).

Similarly, theta power is greater for hits compared to CRs, most often around 500

to 1000 ms after stimulus onset (Burgess & Gruzelier, 1997; Klimesch, Doppelmayr,

Schwaiger, Winkler, & Gruber, 2000; Düzel et al., 2003). According to the drift diffu-

sion model, recognition memory is supported by a mechanism whereby evidence

accumulates over time until a threshold is reached and a decision is made (Ratcliff

& McKoon, 2008). Given evidence that theta power is positively correlated with

reaction times, such that theta power increases until a response is made (Jacobs,

Hwang, Curran, & Kahana, 2006), theta power prior to a response may reflect

evidence accumulation and/or reinstatement (Nyhus & Curran, 2010; Herweg et

al., 2020; Kota, Rugg, & Lega, 2020; Guan, Ma, Chen, Luo, & He, 2023). However,

50



these effects are related to representation access prior to a response and as such, do

not elucidate the processes that may unfold after a memory response is made.

Parallel findings from the decision making and cognitive control literature have

revealed that both ERPs and theta power track errors and negative feedback signals

prior to and following a response (Luu, Tucker, & Makeig, 2004; Trujillo & Allen,

2007; Cavanagh, Frank, Klein, & Allen, 2010; Cavanagh & Frank, 2014; Luft, 2014).

Specifically, the error-related negativity (ERN), a negative going fronto-central ERP

component that reflects decision conflict or error monitoring (Frank, Woroch, &

Curran, 2005; L. Wang, Gu, Zhao, & Chen, 2020), is more negative following incor-

rect compared to correct responses (Gehring, Goss, Coles, Meyer, & Donchin, 1993;

Cavanagh, Zambrano-Vazquez, & Allen, 2012). Similarly, across cognitive control

tasks such as the Stroop task, the flanker task, and go/no-go tasks, theta power is

greater following incorrect compared to correct responses and following negative

relative to positive outcomes (Mazaheri et al., 2009; Cohen, 2014b; Cavanagh &

Frank, 2014). Together, these findings suggest that post-response theta power may

reflect a feedback signal or monitoring process.

Although there is evidence for post-retrieval monitoring during recognition

memory (Rugg, Henson, & Robb, 2003; Hill, Horne, Koen, & Rugg, 2021), these

signals are often measured following access of the representation, but prior to the

memory response itself. Further complicating interpretation is that reaction times

are generally faster for hits than CRs (Uncapher, Boyd-Meredith, Chow, Rissman, &

Wagner, 2015; Weidemann & Kahana, 2016), meaning that stimulus-locked hit vs.

CR dissociations may include both pre- and post-response related processes. That

is, insofar as an evaluative or updating decision making process is engaged after a

memory response has been made, stimulus-locked comparisons may contrast post-
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hit evaluative decision making processing with pre-CR memory retrieval related

processing. There is ERP evidence that post-retrieval monitoring processes are

supported by a late old/new effect over right frontal cortex (Wilding & Rugg, 1996;

Johansson & Mecklinger, 2003), characterized by a positive voltage deflection that is

greater for hits than CRs (Hayama, Johnson, & Rugg, 2008). However, the majority

of such post-retrieval monitoring signals occur after the putative representation

has been accessed, but before a behavioral response is made (Woodruff, Uncapher,

& Rugg, 2006; Cruse & Wilding, 2009, 2011), leaving open the question of whether

decision making mechanisms are engaged following a memory response. Greater

conflict between memory decisions in a recognition task – created via differential

payoff rates for correct old vs. new responses – leads to a greater post-response

ERN (Curran, DeBuse, & Leynes, 2007), suggesting that control or monitoring

processes may be engaged after a memory response is made.

Our hypothesis is that distinct processes occur prior to and following a memory

response. To test our hypothesis, we conducted a human scalp EEG recognition

memory study in which we specifically assessed response-locked theta power and

provided no explicit feedback to participants. By investigating response-locked

signals, we can separately assess pre- and post-response related processing during

both hits and CRs. We expected to replicate prior work and find greater theta power

for hits compared to CRs preceding the response (equivalent to the established

stimulus-locked effects, e.g. Burgess & Gruzelier, 1997; Düzel et al., 2003; Nyhus &

Curran, 2010). To the extent that distinct, and potentially decision making related,

processes are engaged following a memory response, we expected to find a post-

response theta pattern that differed from the pre-response hit vs. CR effect. First, if

there are neither memory nor decision making related signals following a memory
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response, theta power following both hits and CRs should return to baseline.

Alternatively, because both hits and CRs are correct responses, theta power may be

similarly decreased for both response types following a memory response. Finally,

given that the reward system – in particular, the striatum – has previously been

linked to successful memory retrieval, whereby the striatum shows greater activity

for hits compared to CRs (Spaniol et al., 2009; Clos et al., 2015) successful retrieval

may be intrinsically rewarding (Satterthwaite et al., 2012; Speer, Bhanji, & Delgado,

2014). Therefore, theta power may dissociate post-response hits from CRs such

that theta power would be greater for CRs compared to hits following the memory

response, reflecting a positive feedback signal for hits. The direct comparison of

two classes of responses that are both accurate, but differ in terms of successful

retrieval, enables adjudication between these alternative hypotheses.

3.3 Methods

Participants

Forty (30 female; age range = 18-42, mean age = 21.9 years) native English speak-

ers from the University of Virginia community participated. Our sample size

of N = 40 was selected based on prior scalp EEG studies conducted in our lab

(D. E. Smith, Moore, & Long, 2022; Moore & Long, 2024). All participants had nor-

mal or corrected-to-normal vision. Informed consent was obtained in accordance

with University of Virginia Institutional Review Board for Social and Behavioral

Research and participants were compensated for their participation. Two par-

ticipants were excluded from the final dataset: one for technical difficulties that
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resulted in a subset of test items being presented twice during the test phase and

one who failed to comply with task instructions. Thus data are reported for the

remaining 38 participants. All raw, de-identified data and the associated experi-

mental and analysis codes used in this study will be made available via the Long

Term Memory Lab Website upon publication.

Recognition Task Experimental Design

Stimuli consisted of 1602 words, drawn from the Toronto Noun Pool (Friendly,

Franklin, Hoffman, & Rubin, 1982). From this set, 288 words were randomly

selected for each participant. Of these words, 192 were presented in both the study

and test phase while the remaining 96 served as lures in the test phase.

Study Phase. In each of 12 runs, participants viewed a list containing 16 words,

yielding a total of 192 trials. During each trial, participants saw a single word pre-

sented for 2000 ms followed by a 1000 ms inter-stimulus interval (ISI; Figure 3.1A).

As we did not want to bias participants to the semantic features of the study items

(Moore & Long, 2024), we did not include an encoding task. Instead, participants

were instructed to study the presented word in anticipation for a later memory

test and did not make any behavioral responses. An earlier motivation of this

work was to investigate how semantic associations among study items influence

memory formation mechanisms. To that end, each list was split evenly into two

parts containing 8 words (“first associates” and “second associates,” respectively)

separated by a brief 2000 ms delay. Semantic association strength was determined

using Word Association Space values (WAS; Nelson, Zhang, & McKinney, 2001);

‘strong’ semantic associates had a WAS value of 0.4 or greater and ‘weak’ semantic
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Figure 3.1: Task design. (A) During the study phase, participants studied individual words in
anticipation of a later memory test and made no behavioral responses. After 12 runs of 16 item
word lists, participants completed a recognition test phase. On each trial, participants saw either a
target, a word that was presented during the study phase, or a lure, a word that was not presented
during the study phase. Participants’ task was to make an old or new judgement for each word.
There were one of four possible response types, hits (teal; an ‘old’ response to a target), correct
rejections (orange; a ‘new’ response to a lure), misses (dashed black lines; a ‘new’ response to a
target), and false alarms (dotted black lines; an ‘old’ response to a lure). Lines and colors around
the boxes are shown for illustrative purposes and were not present during the actual experiment.
(B) We analyzed two regions of interest (ROIs), a left central ROI (FC5, FC1, C3, CP5, CP1, FC3, C1,
C5, CP3) and a right central ROI (CP6, CP2, C4, FC6, FC2, CP4, C6, C2, FC4).

associates had a WAS value less than 0.4 (Long & Kahana, 2017). Half of the first

and second associates were strongly semantically associated and half of the first

and second associates were weakly semantically associated. Both strong and weak

semantic associates were weakly semantically associated to all other study words.

Word lists were generated for each participant by randomly drawing a word from

the pool of 1602 words and selecting either a strong or weak associate from the

word pool and then removing the selected word, selected associate, and all other

strong semantic associates of the selected word, from the pool. We iteratively

repeated this process until a total of 192 words were selected.
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Test Phase. Following the 12 study runs, participants completed the recogni-

tion test phase. On each trial, participants viewed a word which had either been

presented during the study phase (target) or had not been presented (lure; Figure

3.1A). Participants’ task was to make an old or new judgment for each word by

pressing one of two buttons (“d” or “k”). Response mappings were counterbal-

anced across participants. Test trials were self-paced and responses could occur

anytime after the stimulus onset. Participants received no feedback on the accu-

racy of their responses. Test trials were separated by a 1000 ms ISI. There were a

total of 288 test trials with all 192 study words presented along with 96 novel lures,

half of which were semantically associated to a study word. As key findings are

unchanged when accounting for semantic associations, we do not consider them

further.

EEG Data Acquisition and Preprocessing

All acquisition and preprocessing methods are based on our previous work

(D. E. Smith et al., 2022); for clarity we use the same text as previously reported. EEG

recordings were collected using a BrainVision system and an ActiCap equipped

with 64 Ag/AgCl active electrodes positioned according to the extended 10-20 sys-

tem. All electrodes were digitized at a sampling rate of 1000 Hz and were referenced

to electrode FCz. Offline, electrodes were later converted to an average reference.

Impedances of all electrodes were kept below 50kΩ. Electrodes that demonstrated

high impedance or poor contact with the scalp were excluded from the average

reference. Bad electrodes were determined by voltage thresholding (see below).

Custom python codes were used to process the EEG data. We applied a high
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pass filter at 0.1 Hz, followed by a notch filter at 60 Hz and harmonics of 60

Hz to each participant’s raw EEG data. We then performed three preprocessing

steps (Nolan et al., 2010) to identify electrodes with severe artifacts. First, we

calculated the mean correlation between each electrode and all other electrodes as

electrodes should be moderately correlated with other electrodes due to volume

conduction. We z-scored these means across electrodes and rejected electrodes

with z-scores less than -3. Second, we calculated the variance for each electrode,

as electrodes with very high or low variance across a session are likely dominated

by noise or have poor contact with the scalp. We then z-scored variance across

electrodes and rejected electrodes with a |z|>= 3. Finally, we expect many electrical

signals to be autocorrelated, but signals generated by the brain versus noise are

likely to have different forms of autocorrelation. Therefore, we calculated the

Hurst exponent, a measure of long-range autocorrelation, for each electrode and

rejected electrodes with a |z| > = 3. Electrodes marked as bad by this procedure

were excluded from the average re-reference. We then calculated the average

voltage across all remaining electrodes at each time sample and re-referenced the

data by subtracting the average voltage from the filtered EEG data. We used

wavelet-enhanced independent component analysis (Castellanos & Makarov, 2006)

to remove artifacts from eyeblinks and saccades.

EEG Data Analysis

We applied the Morlet wavelet transform (wave number 6) to the entire EEG time

series across electrodes, for each of 46 logarithmically spaced frequencies (2-100

Hz; Long & Kahana, 2015). Because we hypothesized distinct processes occur

prior to and following a memory response, after log-transforming the power we
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focused exclusively on test-phase data. We then downsampled the test-phase data

by taking a moving average across 100 ms time intervals from -1000 to 3000 ms

relative to the response and sliding the window every 25 ms, resulting in 157

time intervals (40 non-overlapping). Mean and standard deviation power were

calculated across all trials and across time points for each frequency. Power values

were then z-transformed by subtracting the mean and dividing by the standard

deviation power. We focus exclusively on the theta band (4-8 Hz) for all analyses.

Regions of Interest

We examined theta power across two regions of interest (ROIs; Figure 3.1B), left

central (FC5, FC1, C3, CP5, CP1, FC3, C1, C5, CP3) and right central (CP6, CP2,

C4, FC6, FC2, CP4, C6, C2, FC4). We specifically focus on the frontocentral region

as prior work has demonstrated that theta power in these regions dissociates both

hits and correct rejections (Burgess & Gruzelier, 1997; Klimesch et al., 1997; Gruber,

Tsivilis, Giabbiconi, & Müller, 2008; Nyhus & Curran, 2010) and positive and

negative feedback (Cohen, Elger, & Ranganath, 2007; Marco-Pallarés et al., 2008;

Mas-Herrero, Ripollés, HajiHosseini, Rodrı́guez-Fornells, & Marco-Pallarés, 2015).

Univariate Analyses

To test the effect of response type on theta power leading up to and following

memory responses, our two conditions of interest were hits (correctly recognized

targets) and correct rejections (CRs, correctly rejected lures). We compared theta

power across hits and CRs separately for each ROI. For each participant, we cal-
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culated z-transformed theta power across both ROIs in each of the two conditions,

across 100 ms time intervals from 500 ms pre-response to 1000 ms post-response.

For a direct comparison of pre-response and post-response theta power, we fur-

ther averaged z-transformed theta power over the 500 ms pre-response and 500

ms post-response interval separately for hits and CRs. We selected 500 ms as our

pre-response interval based on our prior work investigating contextually mediated

retrieval processes in the hippocampus (Long et al., 2017).

Peak Analysis

To measure the center frequency (CF) of theta leading up to and following memory

responses, we used fitting oscillations & one over f (FOOOF; Ostlund et al., 2022).

To specifically measure periodic signals, for each participant, we fit the FOOOF

model to every test trial and extracted all identified CFs within the theta band prior

to and following the response for both ROIs. We compared the averaged CF over

the 500 ms pre-response and 500 ms post-response interval between hits and CRs.

Statistical Analyses

We used a repeated measures ANOVA (rmANOVA) to assess the distribution of

reaction times (RTs) for hits and CRs. For post hoc comparisons across RTs, we

used false discovery rate (FDR; p = .05) correction (Benjamini & Hochberg, 1995) to

correct for multiple comparisons. We used rmANOVAs and paired-sample t-tests

to assess the effect of response type (hits, CRs) and time interval (pre-response,

post-response) on theta power.
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3.4 Results

Our first goal was to measure memory discrimination (d’) to ensure that partici-

pants were following directions and able to discriminate between targets and lures.

For each participant, we calculated d’ by subtracting the normalized false alarm

rate (the percentage of lures that were incorrectly identified as ‘old’) from the nor-

malized hit rate (the percentage of targets that were correctly identified as ‘old’).

The average d’ was 1.75 (SD = 0.58; Figure 3.2A), indicating that participants were

able to successfully distinguish targets from lures.

(A) Memory Discrimination (B) Response Distribution by RT Bin

Hit
CR

Mean = 1.75

Figure 3.2: Memory discrimination and responses as a function of reaction time bin. (A) We
used d’ to assess memory discrimination. Participants were able to correctly discriminate between
targets and lures. (B) We assessed the proportion of hits (teal) and CRs (orange) as a function of RT
bin. The highest proportion of hits and CRs occurs in the 750-1000 ms bin and a significantly greater
proportion of hits compared to CRs occur within the 500-750 ms bin. Error bars reflect standard
error of the mean. *p < 0.05; ***p <.001 (FDR-corrected).

Having found that participants are able to discriminate targets and lures, we

next assessed median reaction times (RTs) for hits and CRs. To the extent that RTs

reliably differ between hits and CRs, stimulus-locked neural dissociations between

these conditions may be driven by engagement of different processes, e.g. memory

vs. decision making, rather than differential engagement of the same process. That

is, if hits occur more quickly than CRs, a stimulus-locked comparison between the
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two conditions could reflect a comparison between post-response processes for hits

vs. pre-response processes for CRs. The average median RT for hits (M = 954.9, SD

= 419.6) was significantly faster than for CRs (M = 1122.8, SD = 317.3, t36 = -4.427,

p = 0.0001, d = 0.4514). This RT difference suggests that stimulus-locked theta

dissociations could be driven by dissociations in pre- vs. post-response processes

across hits and CRs.

Given the dissociation in median RT between hits and CRs, we next sought

to compare the distribution of RTs across conditions to determine when relative

to stimulus onset the majority of hits and CRs occur. We grouped RTs into nine

bins selected to cover the full range of RTs with higher resolution in the faster (<

2500 ms) bins: 0-500 ms, 500-750 ms, 750-1000 ms, 1000-1250 ms, 1250-1500 ms,

1500-1750 ms, 1750-2000 ms, 2000-2500 ms, and 2500-10000 ms (Figure 3.2B). We

calculated the proportion of hits and CRs that occurred within each RT bin for

each participant and then averaged those proportions across all participants. We

conducted a 2 × 9 rmANOVA with factors of response type (hit, CR) and RT bin.

We do not find a significant main effect of response type (F1,37 = 0.51, p = 0.479, η2
p =

0.01). We find a significant main effect of RT bin (F8,296 = 74.48, p < 0.0001, η2
p = 0.67)

and a significant interaction between response type and RT bin (F8,296 = 22.36, p <

0.0001, η2
p = 0.38). We report the results of post hoc t-tests comparing proportions of

hits and CRs within each RT bin in Table 3.1 and highlight the key findings below.

We find that the highest proportion of responses occurs in the 750-1000 ms RT bin

for both hits and CRs. However, a significantly greater proportion of hits (M =

0.28, SD = 0.19) occur within the 500-750 ms RT bin compared to CRs (M = 0.12, SD

= 0.11). Thus, if participants evaluate or update a representation after responding,

neural activity observed within the 500-750 ms interval may reflect a comparison of
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post-hit evaluation processes with pre-CR memory or retrieval related processes.

Table 3.1: Post hoc t-tests comparing the proportion of hits and CRs in each RT bin.

Hits CRs Hits vs CRs
RT Bin (ms) Mean SD Mean SD t36 p d

0-500 0.002 0.006 0.0004 0.002 1.579 0.1229 0.3252
500-750 0.28 0.19 0.12 0.11 7.058 < 0.0001 1.081
750-1000 0.33 0.11 0.34 0.13 -0.466 0.6438 0.0898

1000-1250 0.14 0.08 0.19 0.07 -4.198 0.0002 0.6536
1250-1500 0.07 0.04 0.10 0.04 -4.425 0.0001 0.7708
1500-1750 0.04 0.02 0.06 0.04 -2.549 0.02 0.4681
1750-2000 0.02 0.02 0.04 0.03 -4.012 0.0003 0.7581
2000-2500 0.03 0.03 0.05 0.03 -3.973 0.0003 0.6373

2500-10000 0.07 0.10 0.09 0.10 -2.009 0.052 0.2192

Note: bold values indicate tests that survive FDR correction.

Our hypothesis is that distinct memory and decision making processes occur

preceding and following a memory response, meaning that we should find dif-

ferential theta power engagement pre- and post-response. Specifically, we should

replicate past findings of greater theta power for hits compared to CRs pre-response,

reflecting memory related processing. To the extent that decision making processes

are engaged following a response, we should either find decreased theta power for

both hits and CRs – as both conditions are correct responses – or we may find

a theta dissociation between hits and CRs. That is, to the extent that successful

retrieval is intrinsically rewarding, post-response theta power should be decreased

for hits compared to CRs. We conducted a 2 × 2 × 15 rmANOVA with factors of

response type (hit, CR), ROI (left central; LC, right central; RC) and time interval

(-500 to 1000 ms in fifteen 100 ms intervals). We report the results of this ANOVA

in Table 3.2 and highlight the key findings here. We find a significant interaction

between response type and time interval (F14,518 = 6.127, p< 0.0001, η2
p = 0.14) which

indicates that theta power dissociations between hits and CRs changes over time.
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Table 3.2: Analysis of variance results for response type (hit, CR), ROI, and time interval (-500
to 1000 ms in fifteen 100 ms intervals) on theta power.

Effect df F p ηp
2

Main effect of response type (1,37) 0.172 0.681 0.005
Main effect of ROI (1,37) 11.36 0.002 0.23

Main effect of time interval (14,518) 21.59 < 0.0001 0.37
Interaction of response type × ROI (1,37) 0.218 0.643 0.006
Interaction of ROI × time interval (14,518) 3.408 < 0.0001 0.08

Interaction of response type × time interval (14,518) 6.127 < 0.0001 0.14
Interaction of response type × ROI × time interval (14,518) 2.23 0.006 0.06

Note: bold values indicate p < 0.05.

Given the significant three-way interaction between response type, ROI, and

time interval, we next performed follow-up post-hoc ANOVAs over time separately

for each ROI. We conducted two 2 × 15 rmANOVAs with factors of response type

(hit, CR) and time interval (-500 to 1000 ms in fifteen 100 ms intervals). We report

the results of this ANOVA in Table 3.3 and highlight the key findings here. For

both ROIs (Figure 3.3), we find a significant interaction between response type and

time interval (LC: F14,518 = 5.373, p < 0.0001, η2
p = 0.13; RC: F14,518 = 3.791, p < 0.0001,

η2
p = 0.09). These results demonstrate that theta power dissociations between hits

and CRs vary across time interval, suggesting that differential processes may be

engaged pre- vs. post-response that distinguish these response types.

Table 3.3: Analysis of variance results for response type (hit, CR) and time interval (-500 to 1000
ms in fifteen 100 ms intervals; pre-response, post-response) on theta power for the left and right
central ROI.

-500 to 1000 ms interval Pre vs. post response interval
Left Central Right Central Left Central Right Central

Effect df F p ηp
2 F p ηp

2 df F p ηp
2 F p ηp

2

Main effect of response type (1,37) 0.382 0.54 0.01 0.007 0.934 0.0002 (1,37) 0.009 0.925 0.0002 0.871 0.357 0.02
Main effect of time interval (14,518) 19.76 < 0.0001 0.35 20.91 < 0.0001 0.36 (1,37) 5.832 0.0208 0.14 0.708 0.406 0.02
Interaction of response type × time interval (14,518) 5.373 < 0.0001 0.13 3.791 < 0.0001 0.09 (1,37) 16.18 0.0003 0.30 5.306 0.027 0.13

Note: bold values indicate p < 0.05.

To specifically test for a pre- vs. post-response dissociation in theta power for
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Figure 3.3: Theta power dissociations across hits and correct rejections preceding and following
memory responses. Response-locked z-transformed theta power (4-8 Hz) for the left and right
central ROIs. The solid vertical black line indicates when the response was made. Hits are shown in
teal, correct rejections (CRs) are shown in orange. Error bars reflect standard error of the mean. (A)
Over the left central ROI, we find a significant interaction between response type and time interval
(p < 0.001) driven by greater pre-response theta power for hits than CRs and numerically greater
post-response theta power for CRs than hits. (B) Over the right central ROI, we find a significant
interaction between response type and time interval (p = 0.027) driven by greater theta power for
hits than CRs during the pre-response time interval.

hits and CRs, we averaged signals within the 500 ms pre- and post-response time

intervals (Figure 3.3, insets). We conducted two 2 × 2 rmANOVAs, one for each

ROI, with factors of response type (hit, CR) and time interval (pre-response, post-

response). We report the results of this ANOVA in Table 3.3 and highlight the key

findings here. In both ROIs, we find a significant interaction between response type

and time interval. In LC, this interaction was driven by greater theta power for hits

(M = 0.18, SD = 0.21) relative to CRs (M = 0.10, SD = 0.18) in the pre-response time

interval (t36 = 2.559, p = 0.0147, d = 0.4459) and numerically greater theta power for

CRs (M = 0.05, SD = 0.25) relative to hits (M = -0.03, SD = 0.29) in the post-response

time interval (t36 = 2.021, p = 0.0506, d = 0.3019). In RC, this interaction was driven

by numerically greater theta power for hits (M = 0.16, SD = 0.21) relative to CRs

(M = 0.10, SD = 0.19) in the pre-response time interval (t36 = 1.911, p = 0.0637, d

= 0.295) and no difference in theta power for hits (M = 0.08, SD = 0.24) relative

to CRs (M = 0.08, SD = 0.29) in the post-response time interval (t36 = -0.1160, p
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= 0.9083, d = 0.015). We next tested the hemispheric specificity of this effect by

directly comparing the post-response theta power dissociation across ROIs. We

computed post-response difference scores (CRs minus hits) for each ROI. We find

that the post-response theta power dissociation in LC (M = 0.081, SD = 0.25) does

not significantly differ from the post-response theta power dissociation in RC (M

= 0.004, SD = 0.21; t36 = 1.605, p = 0.1171) indicating that the effect is not specific to

the left hemisphere. Together, these results indicate that theta power is modulated

by successful retrieval leading up to and following memory responses.

As the theta band encompasses multiple frequencies (4-8Hz), we next tested

the extent to which the center frequency of theta differed across response type and

time interval. To specifically measure periodic signals, we fit the fitting oscillations

& one over f (FOOOF) model to every test trial and extracted all identified center

frequencies within the theta band prior to and following the response for the left

and right central ROI. We compared the center frequency between hits and CRs pre-

and post-response. We do not find any differences in center frequency for either

ROI or time interval (LC, pre-response: t36 = -0.0976, p = 0.9228; LC, post-response:

t36 = 0.2201, p = 0.8270; RC, pre-response: t36 = -0.3237, p = 0.748; RC, post-response

t36 = -1.072, p = 0.2908). The center frequency for all conditions is generally around

5.6Hz.

Prior work (Herweg et al., 2020; Guan et al., 2023) suggests that the pre-response

theta power dissociation that we observe specifically reflects evidence accumula-

tion or reinstatement that ultimately supports recollection. The post-response theta

power effects may likewise reflect a feedback signal in response to recollected con-

tent. Due to the current task design we cannot directly measure recollection and

familiarity; however, we can leverage reaction time (RT) as a coarse assay of con-
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fidence. The general assumption is that compared to trials with slow RTs, trials

with fast RTs reflect faster evidence accumulation (Mulder & van Maanen, 2013;

Shenhav, Straccia, Musslick, Cohen, & Botvinick, 2018; Rollwage et al., 2020) and

greater confidence (Ratcliff, 1978; Ratcliff & Starns, 2009; Weidemann & Kahana,

2016). To divide the trials based on RT, we calculated the median RT across all

correct responses (hits and CRs) for each participant, and labeled hits as either

‘fast’ (those below the median RT) or ‘slow’ (those above the median RT). To the

extent that fast hits reflect strongly remembered experiences or the degree of evi-

dence accumulation, we should find differential theta power engagement pre- and

post-response. Specifically, we should find greater pre-response theta power for

fast hits compared to CRs, as there is no experience to remember or reinstate during

a CR. To the extent that post-response theta power reflects a feedback signal based

on reinstated content, we should find decreased theta power for fast hits compared

to CRs.

To specifically test for a pre- vs. post-response dissociation in theta power for

fast hits, slow hits, and CRs, we averaged signals within the 500 ms pre- and post-

response time intervals (Figure 3.4). We conducted two 2 × 3 rmANOVAs, one for

each ROI, with factors of time interval (pre-response, post-response) and response

type (fast hit, slow hit, CR). We report the results of this ANOVA in Table 3.4 and

highlight the key findings here. In LC, we find a significant interaction between

response type and time interval. This interaction was driven by a significant

interaction between both fast hits and CRs (F1,37 = 24.56, p < 0.0001, η2
p = 0.40) and

fast hits and slow hits (F1,37 = 15.02, p = 0.0004, η2
p = 0.29). The interaction between

slow hits and CRs was not significant (F1,37 = 2.892, p = 0.0974, η2
p = 0.07). In the

pre-response interval, theta power was significantly greater for fast hits (M = 0.22,
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Figure 3.4: Theta power dissociations across fast hits, slow hits, and correct rejections preceding
and following memory responses. Response-locked z-transformed theta power (4-8 Hz) for the
left and right central ROIs. Fast hits are shown in dark teal, slow hits are shown in light teal and
correct rejections (CRs) are shown in orange. Error bars reflect standard error of the mean. (A) Over
the left central ROI, we find a significant interaction between response type and time interval (p <
0.0001) driven by a significant pre-post interaction between fast hits and CRs (p < 0.0001). (B) Over
the right central ROI, we find a significant interaction between response type and time interval (p
= 0.0206) driven by a significant pre-post interaction between fast hits and CRs (p = 0.008).

SD = 0.23) relative to CRs (M = 0.10, SD = 0.18; t36 = 3.080, p = 0.0039, d = 0.5789)

and numerically greater for fast hits relative to slow hits (M = 0.14, SD = 0.25; t36

= 1.908, p = 0.0642, d = 0.3256). In the post-response interval, theta power was

significantly greater for CRs (M = 0.05, SD = 0.25) and slow hits (M = 0.02, SD =

0.28) relative to fast hits (M = -0.07, SD = 0.33; CRs vs. fast hits: t36 = 2.554, p =

0.0149, d = 0.4161; slow hits vs. fast hits: t36 = 2.606, p = 0.0131, d = 0.2918).

In RC, we find a significant interaction between response type and time interval

(F2,74 = 4.095, p = 0.0206, η2
p = 0.10). This interaction was driven by a significant

interaction between fast hits and CRs (F1,37 = 7.885, p = 0.008, η2
p = 0.18), whereby

theta power was numerically greater for fast hits (M = 0.15, SD = 0.26) relative

to CRs (M = 0.10, SD = 0.19) in the pre-response time interval (t36 = 1.274, p =

0.2107, d = 0.2278) and numerically greater for CRs (M = 0.08, SD = 0.29) relative

to fast hits (M = 0.04, SD = 0.27) in the post-response time interval (t36 = 0.9688, p =
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0.3389, d = 0.1549). The interaction between slow hits and CRs was not significant

(F1,37 = 0.306, p = 0.583, η2
p = 0.008) nor was the interaction between fast hits and

slow hits (F1,37 = 4.038, p = 0.0518, η2
p = 0.010). Together, these results suggest that

post-response theta power dissociations may reflect a positive feedback signal in

response to strongly remembered experiences.

Table 3.4: Analysis of variance results for response type (fast hit, slow hit, CR) and time interval
(pre-response, post-response) on theta power for the left and right central ROI.

Left Central Right Central
Effect df F p ηp

2 F p ηp
2

Main effect of response type (2,74) 0.019 0.981 0.0005 1.938 0.151 0.05
Main effect of time interval (1,37) 7.459 0.0096 0.17 0.87 0.357 0.02

Interaction of response type × time interval (2,74) 14.93 < 0.0001 0.29 4.095 0.0206 0.10

Note: bold values indicate p < 0.05.

3.5 Discussion

The goal of the current study was to test the hypothesis that distinct processes occur

prior to and following a memory response. We recorded scalp EEG while partic-

ipants performed a recognition memory task and received no explicit feedback

on their performance. Crucially, we focused our analyses on response-locked test-

phase data to separate the processes occurring before and after a memory response.

We show that reaction times (RTs) are faster for hits compared to correct rejections

(CRs) and that a greater proportion of hits occur within 500-750 ms of stimulus

onset compared to CRs. We replicate established findings (Nyhus & Curran, 2010)

that preceding a memory response, theta power (4-8Hz) in frontocentral electrodes

is greater for hits compared to CRs. We show that these pre-response theta power

dissociations ‘flip’ in left central electrodes following the memory response. We
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find that this post-response ‘flip’ is specific to hits committed quickly, potentially re-

flecting a positive feedback signal for strongly remembered experiences. Together,

these findings suggest that there are potentially distinct memory and decision

making processes engaged preceding and following a memory response that are

modulated by successful retrieval.

We find faster RTs for hits compared to CRs, replicating past findings (Uncapher

et al., 2015; Weidemann & Kahana, 2016). Faster RTs for hits may be driven by

greater memory strength (Verde & Rotello, 2007; Wixted, 2007) and/or greater con-

textual reinstatement (Gordon et al., 2014; Hanczakowski, Zawadzka, & Macken,

2015). However, these RT differences indicate that traditional hit vs. CR com-

parisons of stimulus-locked data may capture both pre- and post-response related

processes. We specifically find that a larger proportion of hits occur within 500-

750 ms of stimulus onset compared to CRs meaning that if participants evaluate

or update a representation after responding, and they respond at different times

for hits relative to CRs, estimates of neural signals within this time window may

reveal differences in post-hit evaluation processes following successful retrieval vs.

memory/retrieval related processes related to correctly rejecting lures. Thus, our

results highlight the importance of utilizing response-locked data to investigate the

distinct processes leading up to and following a memory response.

Consistent with prior EEG work (Burgess & Gruzelier, 1997; Klimesch et al.,

1997, 2000; Düzel et al., 2003; Nyhus & Curran, 2010), we find greater pre-response

theta power for hits than CRs. EEG power in the theta frequency band has been

proposed to coordinate cortical areas, supporting the ability to encode and retrieve

contextual information about time and space that is central to episodic memory

(Hasselmo & Stern, 2014). Successful memory retrieval depends on the access of
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an internal representation of a past experience. This access may take the form of

reinstatement, wherein encoded content is reconstructed during retrieval (Danker

& Anderson, 2010), which may specifically be supported by coordination between

cortical areas (Herweg et al., 2020). Our findings are generally consistent with the

drift diffusion model (Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, & McKoon,

2016) whereby the pre-response theta power dissociations may reflect evidence

accumulation. Insofar as pre-response theta power reflects reinstatement of a past

experience (Kota et al., 2020; Guan et al., 2023), our finding of generally lower

pre-response theta power for CRs is consistent with the evidence accumulation

account as there is no experience to reinstate during a CR. Although we did not

fit the drift diffusion model to the neural data, we would predict that greater theta

power preceding a response would be associated with a higher or faster drift rate,

the model parameter that reflects the strength of the rate of evidence accumulation

(Ratcliff et al., 2016). This interpretation is consistent with our finding of robust

pre-response theta power dissociations specifically between slow hits and fast hits.

Fast RTs are thought to reflect rapid evidence accumulation (Mulder & van Maanen,

2013; Shenhav et al., 2018; Rollwage et al., 2020), thus greater pre-response theta

power for fast hits compared to slow hits may reflect faster evidence accumulation

for strongly remembered experiences.

Following a memory response, we find a ‘flip’ in theta power over the left

central ROI, such that theta power is greater for CRs than hits. Participants did not

receive feedback indicating that they were correct suggesting that the dissociation

in theta power may occur in response to intrinsic feedback signals specifically

following successful retrieval. Although prior work has demonstrated that post-

retrieval monitoring processes are engaged following memory retrieval (Rugg et
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al., 2003; Hill et al., 2021), the majority of these findings reflect signals that precede

a behavioral response. Our interpretation is that the post-response theta power

dissociation between hits and CRs may reflect a feedback signal. This interpretation

is consistent with work from the cognitive control literature showing that theta

power increases for incorrect compared to correct responses and following negative

relative to positive outcomes (Cavanagh et al., 2010; Cavanagh & Frank, 2014). Prior

work has proposed that frontal midline theta (FMT) is associated with reward

processing – specifically that the FMT is larger following negative feedback or

monetary loss (Cohen et al., 2007; Marco-Pallarés et al., 2008) – and is a mechanism

for communication between brain regions (Glazer, Kelley, Pornpattananangkul,

Mittal, & Nusslock, 2018). As both hits and CRs constitute correct responses, we

may have anticipated decreased post-response theta power for both response types.

However, only hits reflect successful retrieval. Thus, the post-response decrease

in theta power for hits may reflect positive feedback specifically in response to

successful retrieval.

We find that the pre- vs. post-response dissociation in theta power is specific

to fast hits. To the extent that fast hits reflect highly confident responses (Ratcliff,

1978; Ratcliff & Starns, 2009; Weidemann & Kahana, 2016), the post-response theta

power decrease for fast hits may reflect a positive feedback signal. Neuro-imaging

work has repeatedly shown that reward-related regions (e.g. striatum) are more

active during hits compared to CRs in the absence of explicit reward (Achim &

Lepage, 2005; de Zubicaray, McMahon, Eastburn, Finnigan, & Humphreys, 2005;

Henson, Hornberger, & Rugg, 2005; Fliessbach et al., 2006; Spaniol et al., 2009;

Schwarze, Bingel, Badre, & Sommer, 2013; Clos et al., 2015). As both responses

are correct, the dissociation in striatal activity for hits compared to CRs suggests
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that the signal change is not driven by overall accuracy, but rather is a response

to successful retrieval and indicates that successful retrieval may be intrinsically

rewarding (Satterthwaite et al., 2012; Speer et al., 2014). Taken together, the post-

response theta dissociation that we observe in the current study may represent a

positive feedback signal in response to successful retrieval, though a direct test of

this account is necessary to support this claim. The direct investigation of post-

response test-phase feedback signals presents an exciting avenue for future work.

Our broad interpretation of the present findings is that the post-response theta

power decrease reflects the last process in a cascade of processes that support “re-

membering,” generally construed. An individual begins remembering by percep-

tually processing an externally presented stimulus and then engages in a memory

search, internal attention, evidence accumulation, and/or matching process in an

attempt to access a stored representation (Polyn & Kahana, 2007; Kahana, 2012;

Ratcliff et al., 2016; D. E. Smith & Long, 2024) – these two processes need not

be serial and instead an individual may iterate between them. If these processes

are successful, an item – and possibly its context or other associated informa-

tion – may be reinstated, as in Tulving’s original proposal of ecphory (Tulving,

1983). Reinstatement is followed by a monitoring process in which the accessed

representation is evaluated (Cruse & Wilding, 2009). A decision is then made

in tandem with commission of a behavioral response. Finally, a decision making

post-response evaluative or representation updating process is engaged. Our inter-

pretation is that the frontocentral post-response theta dissociation reflects this final

decision making step. Given the limitations in estimating reinstatement of verbal,

as opposed to visual, stimuli (Brunec, Robin, Olsen, Moscovitch, & Barense, 2020),

future work is needed to directly test this account and the timing and relationship
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between reinstatement and post-decision signals.

A critical open question is how the observed RT distributions and pre- vs. post-

response theta dissociations relate to the established processes of recollection and

familiarity. Recollection is the retrieval of contextual details and familiarity is mem-

ory strength without detailed retrieval (A. P. Yonelinas, 2001a; Diana, Vilberg, &

Reder, 2005; Gimbel & Brewer, 2011; Addante et al., 2012). There is mixed evidence

as regards RTs for recollection and familiarity, with some evidence that recollection

responses are faster than familiarity responses (Diana et al., 2005; Gimbel & Brewer,

2011; Herweg et al., 2016) and some evidence that recollection responses are slower

than familiarity responses (Atkinson & Juola, 1974; Jacoby, 1991; Besson, Ceccaldi,

Didic, & Barbeau, 2012). Due to our task design, we cannot disambiguate recollec-

tion from familiarity based responses, but we can leverage RT as a coarse assay of

confidence. Our assumption is that compared to slow hits, fast hits reflect higher

confident responses (Ratcliff, 1978; Ratcliff & Starns, 2009; Weidemann & Kahana,

2016). High confident responses may be supported by the recollection of contex-

tual details (A. P. Yonelinas, 2001a, 2001b), in which case elevated pre-response

theta power may reflect the reinstatement of contextual details during fast hits.

Likewise, the decreased post-response theta power following fast hits may reflect a

positive feedback signal in response specifically to recollected experiences. Future

work will be needed to directly test this possibility.

Although we did not anticipate hemispheric differences, we consistently found

influences of ROI on theta power. Overall, the effects that we observe are numer-

ically stronger in the left central, relative to right central, ROI, although a direct

test of the post-response theta dissociation for left vs. right ROIs indicated that

the effect is not specific to the left hemisphere. It is unlikely that motor responses
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contributed to the observed hemispheric effects given that responses were coun-

terbalanced across participants and typically motor movements engage higher

frequency bands (e.g. Crone et al., 1998). The hemispheric asymmetry may be

driven by the stimuli used and/or intrinsic hemispheric connections (D. Wang,

Buckner, & Liu, 2014). We used visually presented words in the current study

and verbal stimuli are well known to recruit the left hemisphere (de Zubicaray,

Miozzo, Johnson, Schiller, & McMahon, 2011; Vigneau et al., 2011; Price, 2012; Ries,

Dronkers, & Knight, 2016), including during memory tasks (Kelley et al., 1998;

H. Kim, 2011). Investigation of resting state data has shown that cortical networks

have intrinsic within-hemisphere connections which may enable control over the

specific functions or processes that are engaged (D. Wang et al., 2014). Future work

will be needed to probe both the hemispheric asymmetry of this effect as well as the

overall spatial specificity, given that we chose to focus exclusively on frontocentral

regions given the convergence of memory and decision making literature on this

area; however, other areas are known to also support memory retrieval (e.g. right

frontal, Evans, Williams, & Wilding, 2015; left parietal, Jacobs et al., 2006). Our

findings generally show a frontocentral theta pattern consistent with pre-response

memory-related processing and post-response decision making related processing.

Together, our findings suggest that distinct processes occur prior to and fol-

lowing a memory response and, in particular, that decision making processes may

follow successful retrieval. A direction for future research will be to directly inves-

tigate the extent to which the post-response theta dissociation reflects a feedback

signal. More broadly, we contribute to a growing body of literature characterizing

the role of theta activity in successful memory retrieval.
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Chapter 4

Successful retrieval is followed by an

intrinsic reward signal

Devyn E. Smith & Nicole M. Long

4.1 Abstract

Fluctuations in theta (4-8Hz) activity supports both successful retrieval and

feedback-based learning. However, the extent to which theta power dissocia-

tions reflect a feedback signal in response to successful retrieval is unknown. Here,

we recorded scalp electroencephalography (EEG) while human participants per-

formed between-subjects recognition memory tasks in which we manipulated test

phase goals. We replicate prior work and find that following a memory response,

theta power decreases selectively for identification of previously studied items
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(hits) relative to rejection of novel lures (correct rejections; CRs), regardless of task

goals. We used an independently validated feedback classifier to measure positive

feedback evidence as a function of task goals, responses (hits vs. CRs), and time.

We find greater positive feedback evidence for hits following a response, regard-

less of the task goals. Together, these results suggest that successful retrieval is

intrinsically rewarding.

4.2 Introduction

Theta power (4-8 Hz) in scalp electroencephalography (EEG) has been shown to

dissociate both successful retrieval (Burgess & Gruzelier, 1997; Nyhus & Curran,

2010; D. E. Smith, Wheelock, & Long, 2024) and track feedback or outcomes across

cognitive control tasks (Cavanagh & Frank, 2014). However, the extent to which

theta power dissociations reflect a feedback signal in response to successful re-

trieval is unknown. Successful retrieval may be intrinsically rewarding (Speer et

al., 2014) as evidenced by greater reward-related region (e.g. striatum) activity

during successful item retrieval (hits) compared to correct identification of a new

stimulus (correct rejections; CRs) in the absence of extrinsic reward (Spaniol et

al., 2009; Clos et al., 2015). Alternatively, test phase reward signals may reflect

goal attainment (Han, Huettel, Raposo, Adcock, & Dobbins, 2010) as in a typical

recognition experiment, participants are asked to recognize old items, such that

hits reflect goal attainment. The aim of this study was to identify whether test

phase theta signals reflect intrinsic reward or goal attainment.

Theta has been shown to support both episodic memory retrieval (Nyhus &

Curran, 2010) and feedback-based learning (Cohen, 2014a). Specifically, following
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stimulus onset, theta power is greater for hits compared to CRs (Burgess & Gruze-

lier, 1997; Klimesch et al., 2000). Following successful retrieval, this dissociation in

theta power ‘flips’ such that theta power is greater for CRs than hits (D. E. Smith et

al., 2024). Given evidence that theta power increases following incorrect relative to

correct responses and negative relative to positive outcomes (Mazaheri et al., 2009;

Cavanagh & Frank, 2014), the post-response theta power dissociation between hits

and CRs may reflect a feedback signal. Furthermore, the error-related negativity

(ERN), an intrinsic feedback signal, reflects comparison processes or conflict moni-

toring (L. Wang et al., 2020) that arises from ongoing theta activity (Trujillo & Allen,

2007). Taken together, these findings suggest that post-response theta power may

reflect an intrinsic feedback signal or monitoring process in response to successful

retrieval.

Parallel findings from neuro-imaging work have repeatedly shown that reward-

related regions are active during successful item retrieval (Achim & Lepage, 2005;

de Zubicaray et al., 2005; Spaniol et al., 2009; Clos et al., 2015). Specifically, the

striatum shows greater activity when a subject correctly recognizes an old stimulus

compared to when the subject correctly rejects a new stimulus. As both hits and

CRs constitute accurate trials, the dissociation in striatal activity for hits compared

to CRs suggests that the signal change is not driven by dissociations between

correct and incorrect trials, but rather is a response to successful retrieval. As this

striatal response occurs absent of explicit rewards (e.g. monetary incentives or

positive feedback), it may signal that successful retrieval is intrinsically rewarding

(Satterthwaite et al., 2012).

Reward signals following successful retrieval may alternatively reflect the at-

tainment of a task goal. Evidence from a recognition study in which participants
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were explicitly rewarded for hits or CRs suggests that test phase reward signals

may be driven by the task goal rather than successful retrieval (Han et al., 2010).

When participants had the potential to earn a reward for CRs, striatal activity

was greater in response to CRs than hits, suggesting that reward signals reflect

goal attainment. However, presenting an extrinsic reward (e.g. money) changes

a task from potentially intrinsically rewarding to extrinsically rewarding (Hidi,

2016), meaning that the introduction of explicit rewards for CRs may alter the

natural structure whereby hits are intrinsically rewarding. Therefore it is unclear

whether test phase reward signals are similarly modulated by goals in the absence

of extrinsic rewards.

Our hypothesis is that post-response test phase reward signals reflect successful

retrieval. Alternatively, test phase reward signals may reflect goal attainment (Han

et al., 2010). In a typical recognition experiment, the participants’ goal to identify

old items is confounded with successful retrieval. To adjudicate between these

hypotheses, we conducted two recognition memory experiments (E1, E2) in which

we manipulated test phase goals. Participants goal was to either successfully

retrieve study items (E1) or detect new items (E2). We recorded scalp EEG to

separately measure memory vs. feedback related theta signals. Our expectation is

that the task instructions will impact the memory and decision processes in which

participants engage when responding to stimuli. Prior work (Brainerd, Bialer,

Chang, & Upadhyay, 2021) provides two hypotheses for how task goals can impact

behavior, encoding specificity and the Fuzzy Trace Theory (FTT) noncompensatory

gist principle. According to the encoding specificity account, memory decisions are

made based on the match between the task goal (e.g. recognize old) and the probe

(e.g. target) whereas the FTT noncompensatory gist principle suggests that general
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or gist level information is used to reject items. We used cross-study classification

to measure test phase feedback evidence. To the extent that feedback signals reflect

successful retrieval, the same post-response signals should dissociate hits and CRs

regardless of memory goals.

4.3 Methods

Participants

Seventy six native English speakers from the University of Virginia community

participated, with thirty eight participants enrolled in each experiment (E1: 28

female; age range = 18-32, mean age = 20.47 years; E2: 26 female; age range =

18-32, mean age = 20.5 years). All participants had normal or corrected-to-normal

vision. Informed consent was obtained in accordance with University of Virginia

Institutional Review Board for Social and Behavioral Research and participants

were compensated for their participation. Our sample size was determined a priori

based on behavioral pilot data (E1, N= 5; E2, N= 3) described in the pre-registration

report of this study (https://osf.io/tfq9u). A total of four participants (two each from

E1 and E2) were excluded from the final dataset due to EEG event markers not being

recorded. Thus data are reported for the remaining seventy two participants. All

raw, de-identified data and the associated experimental and analysis codes used

in this study will be made available via the Long Term Memory Lab Website upon

publication. These data have previously been reported (D. E. Smith & Long, 2024);

all of the analyses and results described here are novel.
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(A) Task Design (B) Regions of Interest
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Figure 4.1: Task design and regions of interest. (A) The Phase 3 flanker task was divided into
a practice subset of three runs and a main subset of six runs. The practice subset was completed
prior to Phase 1 to determine response duration during the main subset (see Methods). In E1 Phase
1, participants studied individual words in anticipation of a later memory test. In E2 Phase 1,
participants read the words silently. In E1 Phase 2, participants completed a recognition test and
made old or new judgements using a confidence rating scale from 1 to 4, with 1 being definitely
new and 4 being definitely old. In E2 Phase 2, participants completed a detection phase in which
the goal was to detect new words that were not presented in Phase 1. Participants made old or new
judgements without the use of a confidence rating scale. All participants then completed Phase
3, a flanker task, in which they made speeded responses to a central target. Immediately after
each response, a green check mark indicating a correct response or a red X indicating an incorrect
response was presented. In Phase 4, participants completed a final recognition memory test in
which all the words from Phases 1 and 2 were presented along with novel lures. Participants made
old or new judgements using a confidence rating scale from 1 to 4, with 1 being definitely new and
4 being definitely old. (B) We analyzed two regions of interest (ROIs), a left central ROI (FC5, FC1,
C3, CP5, CP1, FC3, C1, C5, CP3) and a right central ROI (CP6, CP2, C4, FC6, FC2, CP4, C6, C2, FC4).

Recognition Task Experimental Design

We conducted two recognition memory experiments (E1, E2) and manipulated test

phase instructions between subjects. Participants’ goal was to successfully retrieve

study items (E1) or to detect new items (E2). Stimuli consisted of 1602 words,

drawn from the Toronto Noun Pool (Friendly et al., 1982). From this set, 640 words

were randomly selected for each participant. Participants completed four phases
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(Figure 4.1A). Phase 3 was divided into two subsets; the practice subset preceded

Phase 1 and the main subset preceded Phase 3.

Phase 1. In each of 10 runs, participants viewed a list containing 16 words,

yielding a total of 160 trials. On each trial, participants saw a single word presented

for 2000 ms followed by a 1000 ms inter-stimulus interval (ISI). In E1, participants

were instructed to study the presented word in anticipation for a later memory test

and did not make any behavioral responses. In E2, participants were instructed to

read the words silently and did not make any behavioral responses.

Phase 2. Participants completed a recognition memory test with different mem-

ory goals. On each trial, participants viewed a word which had either been pre-

sented during Phase 1 (target) or had not been presented (lure). In E1, participants’

task was to make an old or new judgement for each word using a confidence rating

scale from 1 to 4, with 1 being definitely new and 4 being definitely old. In E2,

the task was framed as a detection phase in which participants’ task was to detect

new words that were not presented in Phase 1. Participants made an old or new

judgment without the use of a confidence rating scale for each word by pressing

one of two buttons (“d” or “k”). Response mappings were counterbalanced across

participants. Phase 2 trials were self-paced and separated by a 1000 ms ISI. There

were a total of 320 test trials with all 160 Phase 1 words presented along with 160

novel lures.

Phase 3. Prior to beginning Phase 1, participants completed three practice runs of

a flanker task in which they made speeded responses to a central target in a string of

congruent (e.g. >>>>>>>) or incongruent (e.g. <<<><<<) arrows. Feedback was

presented immediately after each response as either a green check mark indicating
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a correct response or a red X indicating an incorrect response. Response duration,

the interval in which a response was accepted, was initially set to 375 ms based on

pilot data. To maintain difficulty and ensure an approximately balanced number

of correct and incorrect responses during the main subset of Phase 3, response

duration was individually adjusted based on participants’ accuracy following each

practice run. If accuracy was below 50%, response duration increased by 25 ms,

if accuracy was above 50%, response duration decreased by 25 ms. Thus, after

completing the three practice runs, the final response duration could be a minimum

of 300 ms and a maximum of 450 ms. After completing Phase 2, participants

completed the main subset of Phase 3 which consisted of six runs of the flanker

task. Throughout the main subset of Phase 3, the response duration was fixed to

that obtained from the final practice run.

Phase 4. Participants completed a final recognition memory test in which all

the words from Phase 1 and 2 were presented along with novel lures. Trials were

self-paced and participants made old or new judgements for each word using

a confidence rating scale from 1 to 4, with 1 being definitely new and 4 being

definitely old. Trials were separated by a 1000 ms ISI. There were a total of 640

test trials with all 320 Phase 2 words presented along with 320 novel lures. As our

analyses focus on Phases 2 and 3, we do not consider the final test data further.

EEG Data Acquisition and Preprocessing

EEG recordings were collected using a BrainVision system and an ActiCap

equipped with 64 Ag/AgCl active electrodes positioned according to the extended

10-20 system. All electrodes were digitized at a sampling rate of 1000 Hz and were
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referenced to electrode FCz. Offline, electrodes were later converted to an average

reference. Impedances of all electrodes were kept below 50kΩ. Electrodes that

demonstrated high impedance or poor contact with the scalp were excluded from

the average reference. Bad electrodes were determined by voltage thresholding

(see below).

Custom python codes were used to process the EEG data. We applied a high

pass filter at 0.1 Hz, followed by a notch filter at 60 Hz and harmonics of 60

Hz to each participant’s raw EEG data. We then performed three preprocessing

steps (Nolan et al., 2010) to identify electrodes with severe artifacts. First, we

calculated the mean correlation between each electrode and all other electrodes as

electrodes should be moderately correlated with other electrodes due to volume

conduction. We z-scored these means across electrodes and rejected electrodes

with z-scores less than -3. Second, we calculated the variance for each electrode,

as electrodes with very high or low variance across a session are likely dominated

by noise or have poor contact with the scalp. We then z-scored variance across

electrodes and rejected electrodes with a |z|>= 3. Finally, we expect many electrical

signals to be autocorrelated, but signals generated by the brain versus noise are

likely to have different forms of autocorrelation. Therefore, we calculated the

Hurst exponent, a measure of long-range autocorrelation, for each electrode and

rejected electrodes with a |z| > = 3. Electrodes marked as bad by this procedure

were excluded from the average re-reference. We then calculated the average

voltage across all remaining electrodes at each time sample and re-referenced the

data by subtracting the average voltage from the filtered EEG data. We used

wavelet-enhanced independent component analysis (Castellanos & Makarov, 2006)

to remove artifacts from eyeblinks and saccades.
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EEG Data Analysis

For E1 and E2, we applied the Morlet wavelet transform (wave number 6) to the

entire EEG time series across electrodes, for each of 46 logarithmically spaced

frequencies (2-100 Hz; Long & Kahana, 2015). After log-transforming the power,

we downsampled the data by taking a moving average across 100 ms time intervals

from -1000 to 3000 ms relative to the response and sliding the window every 25 ms,

resulting in 157 time intervals (40 non-overlapping). Mean and standard deviation

power were calculated across all trials and across time points for each frequency.

Power values were then z-transformed by subtracting the mean and dividing by

the standard deviation power. We followed the same procedure for the flanker task,

with 117 overlapping (30 non-overlapping) time windows from 1000 ms preceding

to 2000 ms following the response. We focus exclusively on the theta band (4-8 Hz)

for all analyses.

Regions of Interest

We examined theta power across two regions of interest (ROIs; Figure 4.1B), left

central (FC5, FC1, C3, CP5, CP1, FC3, C1, C5, CP3) and right central (CP6, CP2,

C4, FC6, FC2, CP4, C6, C2, FC4). We specifically focus on the frontocentral region

as prior work has demonstrated that theta power in these regions dissociates both

hits and correct rejections (Burgess & Gruzelier, 1997; Klimesch et al., 1997; Gruber

et al., 2008; Nyhus & Curran, 2010) and positive and negative feedback (Cohen et

al., 2007; Marco-Pallarés et al., 2008; Mas-Herrero et al., 2015).
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Univariate Analyses

We performed two univariate contrasts. First, to test the effect of instructions

on theta power, our two conditions of interest were hits (correctly recognized

targets) and correct rejections (CRs, correctly rejected lures) in Phase 2 in E1 and E2.

Second, to test whether theta power is greater following negative relative to positive

outcomes, our two conditions of interest were correct and incorrect responses in the

Phase 3 flanker task. For each contrast and participant, we calculated z-transformed

theta power across the ROI in each of the two conditions, across 100 ms intervals

from 500 ms pre-response to 500 ms post-response, as well as averaged over the

500 ms pre-response interval and the 500 ms post-response interval.

Pattern Classification Analyses

Pattern classification analyses were performed using penalized (L2) logistic regres-

sion implemented via the sklearn module (0.24.2) in Python and custom Python

code. We used our pilot data to determine classifier features. We compared perfor-

mance of two pattern classifiers trained to dissociate positive vs. negative feedback

trials in the flanker task. The classifier trained on spectral signals averaged across

63 electrodes and 46 frequencies yielded higher cross subject classification accuracy

(M = 58.8%, SD = 5.04%) than the classifier trained on spectral signals averaged

across the theta frequency band and 20 central electrodes (M = 56.4%, SD = 4.81%).

Therefore, for all classification analyses, classifier features were comprised of spec-

tral power across 63 electrodes and 46 frequencies. Before pattern classification

analyses were performed, an additional round of z-scoring was performed across

features (electrodes and frequencies) to eliminate trial-level differences in spectral
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power (Kuhl & Chun, 2014; Long & Kuhl, 2018; D. E. Smith et al., 2022). Thus,

mean univariate activity was matched precisely across all conditions and trial

types. Classifier performance was assessed in two ways. “Classification accuracy”

represented a binary coding of whether the classifier successfully guessed the type

of flanker feedback, positive or negative. We used classification accuracy for gen-

eral assessment of classifier performance (i.e., whether feedback could be decoded).

“Classifier evidence” was a continuous value reflecting the logit-transformed prob-

ability that the classifier assigned the correct feedback label (positive, negative) for

each trial. Classifier evidence was used as a trial-specific, continuous measure of

feedback information, which was used to assess the degree of positive feedback

evidence present following hit and CRs during Phase 2.

Cross Study Feedback Classification

To measure feedback evidence in E1 and E2, we conducted three stages of classifica-

tion using similar methods as in our prior work (Long, 2023). First, we conducted

within participant leave-one-run-out cross-validated classification (penalty param-

eter = 1) on all participants who completed the flanker task (N = 72). A classifier

trained on the 500 ms post-response interval can reliably decode positive versus

negative feedback (M = 63.2%, SD = 6.97%), however, during this interval, feed-

back is visually presented. Therefore, it is possible that the decoder is leveraging

properties of the visual stimuli instead of feedback specific responses. To avoid

this potential confound, we trained the classifier on the 100 ms time interval pre-

ceding the response as this interval is less contaminated by visual inputs and is

likely to capture internal feedback signals. For each participant, we generated true

and null classification accuracy values. We permuted condition labels (positive
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feedback, negative feedback) for 1000 iterations to generate a null distribution for

each participant. Second, we conducted leave-one-participant-out cross-validated

classification (penalty parameter = 0.0001) on the selected participants to validate

the feedback classifier and obtain classification accuracy of 62.7% which is signif-

icantly above chance (t71 = 13.73, p < 0.0001, d = 2.304), indicating that the cross

subject feedback classifier is able to distinguish positive and negative feedback.

Finally, we applied the cross subject feedback classifier to the Phase 2 trials of E1

and E2, specifically in 100 ms intervals from 500 ms pre-response to 500 ms post

response. We extracted classifier evidence, the logit-transformed probability that

the classifier assigned a given Phase 2 trial a label of positive feedback or nega-

tive feedback. This approach provides a trial-level estimate of positive feedback

evidence during hits and CRs.

Statistical Analyses

We used mixed effects ANOVAs and t-tests to assess the effect of experiment (E1,

E2) and response (hit, CR) on reaction times. We used mixed effects ANOVAs

and t-tests to assess the effect of experiment (E1, E2), response (hit, CR) and time

interval on central theta power and feedback evidence.

We used paired-sample t-tests to compare classification accuracy across subjects

to chance decoding accuracy, as determined by permutation procedures. Namely,

for each subject, we shuffled the condition labels of interest (e.g., “positive” and

“negative” for the feedback classifier) and then calculated classification accuracy.

We repeated this procedure 1000 times for each subject and then averaged the

1000 shuffled accuracy values for each subject. These mean values were used as
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subject-specific empirically derived measures of chance accuracy.

4.4 Results

Faster reaction times when probe type and goal match.

We previously reported the impact of task goals on correct rejection (CR) rates and

did not find a significant difference in CR rates across E1 and E2 (D. E. Smith & Long,

2024). Therefore, we conducted an exploratory analysis to investigate reaction

times (RTs) for hits and CRs across both experiments. In a typical recognition

memory experiment, participants are asked to recognize old items. The implicit

assumption is that ‘old’ is equal to ‘not-new’, but behavioral evidence (Brainerd

et al., 2021) suggests that recognizing old items is not equivalent to detecting new

items. To the extent that encoding specificity drives memory judgments, we would

expect to find facilitated responses (faster RTs) when the goal and probe type match

(e.g. goal is to detect new and probe type is lure) compared to when the goal and

probe type do not match (e.g. goal is to detect new and probe type is target).

Alternatively, to the extent that participants use general or gist level information

to reject items, we would expect to find faster RTs when the goal and probe type

do not match compared to when the goal and probe type match.

As participants in E1 made confidence judgments and participants in E2 did

not, we divided response types into six conditions, CRs (E2), high confidence CRs

(E1, response of “1”) and low confidence CRs (E1, responses of “2”), hits (E2), high

confidence hits (E1, response of “4”) and low confidence hits (E1, responses of
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“3”; Figure 4.2). For a direct comparison between experiments, we excluded low

confidence responses and conducted a 2 × 2 mixed effects ANOVA with factors of

experiment (E1, E2) and response type (hit, CR). We do not find a main effect of

experiment (F1,70 = 0.137, p = 0.712, η2
p = 0.002). We find a significant main effect

of response type (F1,70 = 42.91, p < 0.0001, η2
p = 0.38) and a significant interaction

between response type and experiment (F1,70 = 22.05, p < 0.0001, η2
p = 0.24). This

interaction was driven by significantly faster CRs in E2 (M = 1302 ms, SD = 328.1

ms) than high confidence CRs in E1 (M = 1479 ms, SD = 379.6 ms; t70 = 2.080, p =

0.0411, d = 0.4973) and numerically faster high confidence hits in E1 (M = 1123 ms,

SD = 200.3 ms) than hits in E2 (M = 1244 ms, SD = 421.1 ms; t70 = 1.529, p = 0.1308,

d = 0.3655). These findings are consistent with the encoding specificity account.

When the participant’s goal (e.g. detect new) matches the probe type (e.g. lure)

responses are faster. These results demonstrate that the manipulated task goals

impact recognition memory responses.

Post-response theta power decreases for hits vs CRs regardless of

goals.

Our first goal was to replicate our previous finding that theta power is modulated

by successful retrieval leading up to and following memory responses (D. E. Smith

et al., 2024). To specifically test for a pre- vs. post-response dissociation in theta

power for hits and CRs across E1 and E2, we averaged signals within the 500

ms pre- and post-response time intervals (Figure 4.3, insets). To the extent that

theta power is modulated by successful retrieval, the same post-response signals

should dissociate hits vs. CRs regardless of memory goals. However, to the extent
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Figure 4.2: Test phase instructions modulate reaction times. Reaction times for hits and correct
rejections (CRs). We divided hits and CRs in E1 into high confident (HC Hit, dark teal; HC CR, dark
orange) and low confident (LC Hit, light teal; LC CR, light orange) responses. Box-and-whisker
plots show median (center line), upper and lower quartiles (box limits), 1.5x interquartile range
(whiskers) and outliers (diamonds).

that theta power dissociations are driven by goal attainment, we would expect

decreased post-response theta for hits compared to CRs in E1 and decreased post-

response theta for CRs compared to hits in E2. Following our pre-registration

and our prior work, we conducted two 2 × 2 × 2 mixed effects ANOVA, one for

each ROI (left central; LC, right central; RC) with factors of experiment (E1, E2),

average time interval (pre-response, post-response) and response type (hit, CR).

We report the results of this ANOVA in Table 4.1 and highlight the key findings

here. If successful retrieval drives the post-response theta decrease for hits, we

would expect to find an interaction between response type and time interval and

no experiment driven interactions. Alternatively, if goal attainment drives the

post-response theta decrease, we would expect to find an interaction between

experiment, time, and response type. Across both ROIs, we find a significant main

effect of time interval (LC: F1,70 = 24.79, p < 0.0001, η2
p = 0.2615; RC: F1,70 = 15.46,
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p = 0.0002, η2
p = 0.1809). We find a significant interaction between response type

and time interval (LC: F1,70 = 52.015, p < 0.0001, η2
p = 0.4263; RC: F1,70 = 44.00, p <

0.0001, η2
p = 0.386). The three-way interaction between response type, time interval,

and experiment was not significant (LC: F1,70 = 0.154, p = 0.6959, η2
p = 0.0022; RC:

F1,70 = 0.2046, p = 0.6525, η2
p = 0.0029). Bayes factor analysis revealed that a model

without the experiment term is preferred to a model with the three-way interaction

by a factor of 754.6 in LC and 83.6 in RC. Together, these results indicate that theta

power is modulated by successful retrieval leading up to and following memory

responses regardless of task goals.

Table 4.1: Theta power for left and right central ROIs as a function of experiment, response type,
and average time interval, mixed effects ANOVAs

Left Central Right Central
Effect df F p ηp

2 F p ηp
2

Main effect of experiment (1,70) 0.8738 0.3531 0.0123 0.9006 0.3459 0.0127
Main effect of response type (1,70) 1.112 0.2953 0.0156 11.51 0.0011 0.1412
Main effect of time interval (1,70) 24.79 < 0.0001 0.2615 15.46 0.0002 0.1809

Interaction of experiment × response type (1,70) 0.2755 0.6013 0.0039 4.545 0.0365 0.061
Interaction of experiment × time interval (1,70) 1.778 0.1867 0.0248 1.672 0.2002 0.0233

Interaction of response type × time interval (1,70) 52.01 < 0.0001 0.4263 44.00 < 0.0001 0.3860
Interaction of experiment × response type × time interval (1,70) 0.1540 0.6959 0.0022 0.2046 0.6525 0.0029

Note: bold values indicate p < 0.05.

Robust feedback decoding in the flanker task.

Before testing our central hypothesis, we validated that feedback in the flanker

task could be reliably decoded. We conducted a multivariate pattern classification

analysis in which we trained a classifier to discriminate positive versus negative

feedback trials based on a feature space comprised of all 63 electrodes and 46 fre-

quencies ranging from 2-100 Hz. For this analysis, we averaged z-power over the

100 ms preceding the response. Using leave-one-participant-out cross-validated

classification (penalty parameter = 0.0001), mean classification accuracy was 62.7%
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Figure 4.3: Theta power dissociations across hits and correct rejections preceding and following
memory responses in E1 and E2. Response-locked z-transformed theta power (4-8 Hz) for the
left and right central ROIs. The solid vertical black line indicates when the response was made.
Hits are shown in teal, correct rejections (CRs) are shown in orange. Error bars reflect standard
error of the mean. (A-B) E1, participants recognize old items. (A) Over left central ROI, we find a
significant interaction between response type and time interval (p < 0.001) driven by numerically
greater pre-response theta power for hits than CRs and greater post-response theta power for CRs
than hits. (B) Over right central ROI, we find a significant interaction between response type and
time interval (p < 0.001) driven by greater post-response theta power for CRs than hits. (C-D) E2,
participants detect new items. (C) Over left central ROI, we find a significant interaction between
response type and time interval (p < 0.001) driven by greater pre-response theta power for hits than
CRs and greater post-response theta power for CRs than hits. (D) Over right central ROI, we find
a significant interaction between response type and time interval (p < 0.001) driven by numerically
greater pre-response theta power for hits than CRs and greater post-response theta power for CRs
than hits.

(SD = 7.79%), which was significantly greater than chance, as determined by per-

mutation tests (t71 = 13.73, p < 0.0001, d = 2.304; Figure 4.4A).
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Greater positive feedback evidence for hits vs CRs regardless of

goals.

Our central goal was to test the hypothesis that successful retrieval is intrinsically

rewarding. Our interpretation is that post-response theta power dissociations

reflect a feedback signal, in which there is greater positive feedback following hits.

However, participants did not receive any explicit rewards or feedback during E1

and E2, therefore we cannot definitively say whether these post-response signals

reflect positive feedback. In order to test our hypothesis, we used the flanker

task to develop an independent measure of feedback. We trained a classifier to

discriminate positive versus negative feedback trials in flanker and then tested

the classifier on Phase 2 hits and CRs in E1 and E2. To the extent that successful

retrieval is intrinsically rewarding, we expect to find greater positive feedback

evidence following hits compared to CRs in both experiments. Alternatively, to

the extent that feedback signals reflect goal attainment, we expect to find greater

positive feedback evidence following CRs compared to hits in E2 relative to E1.

To investigate the effect of instructions and response type on feedback evidence

over time, we trained a classifier to discriminate positive versus negative feedback

trials using the average z-power from the 100 ms preceding the response and

then tested the classifier on ten 100 ms time intervals from 500 ms preceding and

following the response in Phase 2 of E1 and E2. To specifically test for a pre- vs.

post-response dissociation in positive feedback evidence following hits and CRs

across E1 and E2, we averaged signals within the 500 ms pre- and post-response

time intervals (Figure 4.4B,C). Following our pre-registration, we conducted a 2

× 2 × 2 mixed effects ANOVA with factors of experiment (E1, E2), average time
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(C) Positive Feedback Evidence 
for E2

*** M = 62.7 %
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Hit
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Figure 4.4: Positive feedback evidence over time in E1 and E2. (A) Mean classification accuracy
across all participants (solid vertical line) is shown along with a histogram of classification accuracies
for individual participants (gray bars) and mean classification accuracy for permuted data across
all participants (dashed vertical line). Mean classification accuracy was 62.7%, which differed
significantly from chance (two-tailed, paired t-test, p < 0.0001) (B-C) Positive y-axis values indicate
greater positive feedback evidence. The solid vertical line at time 0-100 ms indicates the response.
Each panel shows positive feedback evidence separated by response type (teal: hit; orange: CR)
across the 500 ms pre-response and post-response time intervals. There is greater post-response
positive feedback evidence for hits compared to CRs (p = 0.0001), regardless of experimental goals.
Error bars represent standard error of the mean. ***p < 0.001

interval (pre-response, post-response) and response type (hit, CR). We do not find

a significant main effect of experiment (F1,70 = 0.2409, p = 0.6251, η2
p = 0.0034),

response type (F1,70 = 3.6323, p = 0.0608, η2
p = 0.0493), or time interval (F1,70 = 0.0091,

p = 0.9241, η2
p = 0.0001). The interaction between response type and experiment

was not significant (F1,70 = 0.0493, p = 0.8249, η2
p = 0.0007). We find a significant

interaction between time interval and experiment (F1,70 = 5.496, p = 0.0219, η2
p =

0.0728) and between time interval and response type (F1,70 = 22.01, p < 0.0001, η2
p

= 0.2392). The interaction between time interval and response type was driven by

significantly greater post-response positive feedback evidence for hits (M = 0.03,

SD = 0.05) compared to CRs (M = 0.01, SD = 0.05; t71 = 4.105, p = 0.0001, d = 0.3824).

The three-way interaction between response type, time interval, and experiment

was not significant (F1,70 = 0.3104, p = 0.5792, η2
p = 0.0044). Bayes factor analysis
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revealed that a model without the experiment term is preferred to a model with

the three-way interaction by a factor of 4.56. These results suggest that successful

retrieval may be intrinsically rewarding.

4.5 Discussion

The aim of this study was to identify whether test phase theta signals reflect

intrinsic reward or goal attainment. We conducted two independent recognition

memory experiments in which we manipulated participants’ test phase goals to

either recognize old items (E1) or detect new items (E2). We recorded scalp EEG

and used a cross-study decoding approach (Long, 2023) to measure response-

locked positive feedback evidence during the test phase of each experiment. We

find post-response theta power decreases for hits compared to CRs regardless of

task goals and greater positive feedback evidence for hits compared to CRs across

both experiments. Together, these findings suggest that successful retrieval is

intrinsically rewarding.

We find faster reaction times when the task goal (recognize old, detect new) and

probe type (target, lure) match. This finding is in line with the encoding specificity

hypothesis whereby performance is improved when the study and test phase con-

texts are more similar (Brainerd et al., 2021). The theory of transfer-appropriate

processing may also account for this finding, which emphasizes that the same

processes engaged during study will be engaged again during the test (Morris,

Bransford, & Franks, 1977; Roediger, 1990). The current findings are counter to

previous behavioral work that finds better memory accuracy when the stimulus

type and instruction don’t match, selectively for new items or lures (Brainerd et
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al., 2021), consistent with the Fuzzy Trace Theory (FTT) noncompensatory gist

principle. One possibility to account for the difference in findings may be due

the high level of CR rates in the current study which on average were above 80%

across both experiments. The overall higher performance may indicate differences

in the processes in which participants’ engaged across the current compared to

prior work. Our results add to existing work demonstrating that task goals can

impact the memory and decision processes participants engage when responding

to stimuli.

Consistent with prior EEG work (D. E. Smith et al., 2024), we find greater

post-response theta power for CRs compared to hits, regardless of the task goals.

Finding the same result regardless of the two task goals suggests that there might be

something inherent about recognizing a stimulus as ‘old’, even when that is counter

to the task goal. Our interpretation is that the post-response theta dissociation that

we have identified in our work represents an intrinsic feedback signal in response

to successful retrieval. Along with neuro-imaging work that finds greater reward

system activity during hits compared to CRs (Spaniol et al., 2009), this interpretation

is consistent with work from reward and feedback based learning literature that

finds theta power increases following incorrect relative to correct responses and

negative relative to positive outcomes (Mazaheri et al., 2009; Cavanagh & Frank,

2014). As both hits and CRs constitute accurate trials, the dissociation in activity for

hits compared to CRs suggests that the signal change is not driven by dissociations

between correct and incorrect trials, but rather is a response to successful retrieval.

Thus, the post-response dissociation in theta power for hits and CRs may represent

an intrinsic feedback signal in response to successful retrieval, rather than a general

positive feedback signal following accurate responses.
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Independent of the task goal, we find greater positive feedback evidence for

hits than CRs, suggesting that successful retrieval is intrinsically rewarding. Our

interpretation is that the reward system – in particular, the striatum – generates

a positive feedback signal in response to successful retrieval. Previous work has

shown that when a study item is associated with a potential reward – e.g. a reward

that will be received if the item is remembered at test – leads to the item being

better remembered later (Loftus & Wickens, 1970; Marini et al., 2011). This memory

enhancement for study items assigned a potential reward is driven by correlated

activity between the ventral tegmental area, striatum and hippocampus, in which

reward signals up-regulate memory encoding mechanisms in the hippocampus

(Adcock et al., 2006; Wolosin, Zeithamova, & Preston, 2012). Potentially, in the same

way that study phase anticipation of a future extrinsic reward can enhance memory

formation via striatal-hippocampal connectivity (Adcock et al., 2006; Wolosin et al.,

2012), the same mechanisms may be engaged by intrinsic reward/feedback. Future

work will be needed to directly test this possibility.

An intrinsic feedback signal following successful retrieval has the potential to

influence our ability to remember information. During the study phase of a memory

experiment, an item and the strategy used to encode an item are associated together

and then reinstated during memory retrieval (Polyn, Kragel, Morton, McCluey,

& Cohen, 2012). Accordingly, an intrinsic reward signal during the test phase

should influence the item as well as the reinstated strategy. Therefore, test phase

reward signals in response to successful retrieval may influence the use of memory

strategies. The direct investigation of test phase intrinsic reward on reinforcing

memory strategies to improve memory performance presents an exciting avenue

for future work.
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Together, our findings suggest that there is a positive feedback signal in response

to successful retrieval. A direction for future research will be to directly investigate

the extent to which the positive feedback signal reinforces the information retrieved

and impacts subsequent memory performance. These findings are highly relevant

to a growing body of literature characterizing the relationship between memory

and reinforcement learning. Together, these findings demonstrate that successful

retrieval is intrinsically rewarding, which has implications across many cognitive

contexts.
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Chapter 5

The impact of post-retrieval

test-phase extrinsic reward on

subsequent memory

Devyn E. Smith & Nicole M. Long

5.1 Abstract

The anticipation of extrinsic reward facilitates memory formation. However, it is

unclear how reward following memory retrieval influences the information that

is retrieved and later memory. Here, we conducted four behavioral experiments

in which we manipulated test phase reward delivery. Across all experiments,

participants studied word-image pairs and then completed two rounds of retrieval
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practice, followed by a final recognition test. During retrieval practice, participants

were given a word cue and instructed to bring to mind the associated image.

Participants rated the vividness of their memory for the image and every response

had a 50% chance of receiving reward feedback. Although we find no impact of

either retrieval practice or reward on subsequent memory performance we find

that retrieval practice improves recognition for highly vivid items, but impairs

recognition for items low in vividness. We find some evidence that repeated

rewards improve recognition for high vivid items. Together, these results suggest

that the benefit of both retrieval practice and reward may be dependent on the

strength of the memory that is retrieved.

5.2 Introduction

A viable approach for improving memory may be through the use of extrinsic re-

ward (e.g. monetary compensation) as information that is valuable or rewarding is

prioritized over information that is less rewarding (Loftus & Wickens, 1970). How-

ever, the extent to which reward following memory retrieval impacts subsequent

behavior is unknown. Memory reinforcement may be better accomplished through

direct reward of what is retrieved, rather than through study phase manipulation

of potential future reward. Prior behavioral work that has investigated test phase

extrinsic reward has found mixed results (Shigemune et al., 2017; Castanheira et al.,

2022). However, these studies used anticipatory methods such that participants

were aware prior to retrieval that there was a potential to receive a reward for

remembering. Additionally, these studies investigated the immediate influence

of reward rather than potential long term impacts of reward on later memory.
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Thus, it is an open question how receiving a reward immediately following mem-

ory retrieval impacts neural processing and subsequent behavior. The aim of this

study was to investigate how extrinsic reward following memory retrieval impacts

subsequent memory.

Practicing retrieval without any rewards is well known to improve later memory

(Roediger & Karpicke, 2006; Karpicke & Roediger, 2008; Karpicke, 2012). Accord-

ing to transfer appropriate processing, retrieval practice benefits memory because

the same processes engaged during retrieval practice will be engaged during the

final memory test (Morris et al., 1977). Another explanation for the benefits of

retrieval practice is that of desirable difficulties whereby a desirable amount of

challenge or difficulty improves long-term retention (R. A. Bjork, 1994; E. L. Bjork

& Bjork, 2011). Retrieval practice can facilitate memory but also increase errors

to similar novel stimuli if general information common to both study items and

lures is strengthened (McDermott, 2006) thus, presenting reward during practice

following retrieval may or may not serve to facilitate later memory.

It is well established that associating a study item with a potential reward –

e.g. reward that will be received if the item is remembered at test – impacts the

likelihood that the item is later remembered (Loftus & Wickens, 1970; Marini et al.,

2011; Elliott, Blais, McClure, & Brewer, 2020), with higher potential rewards leading

to better subsequent memory. Enhanced subsequent memory for study items

assigned a potential reward is driven by correlated activity between reward regions

(e.g ventral tegmental area, striatum) and the hippocampus, in which reward

signals up-regulate memory encoding mechanisms in the hippocampus (Adcock

et al., 2006; Wolosin et al., 2012). Given that the hippocampus supports both

memory encoding and memory retrieval (Eichenbaum, 2004; Diana, Yonelinas,
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& Ranganath, 2007; Long et al., 2017), a similar interaction between the reward

system and hippocampus during a memory test may also serve to enhance memory

performance.

Our current understanding of the role of test phase reward is unclear as extant

studies suggest both that test phase rewards improve memory and have no effect

on memory. Shigemune and colleagues (Shigemune et al., 2017) had participants

study words in high or low difficulty tasks and then complete a memory test.

Prior to each test trial, participants were given a cue to inform them that correctly

recognizing a study item would result in a high or low reward. Hit rates (rates of

correctly recognizing study items) were higher in the high compared to low reward

condition in the high difficulty task. However, another study with a similar design

(Castanheira et al., 2022) found no effect of potential reward during test. Thus, test

phase reward yields conflicting behavioral outcomes, leaving our understanding

of the role of test phase reward limited. Furthermore, as both of these studies

measured the influence of reward on immediate memory performance, the extent

to which these test phase rewards impact later memory is unknown.

A limitation of all existing studies – regardless of whether potential reward is

manipulated during the study or test phase – is that reward delivery is always

anticipatory. In these motivated memory studies, individuals are aware prior to

encountering a study or test stimulus that there is the potential to receive a reward

for remembering that stimulus. Such a design will impact how upcoming stimuli

are processed. However, rewards following retrieval should modify neural pro-

cessing after a stimulus is retrieved. It may be through post-retrieval mechanisms,

rather than pre-retrieval anticipatory mechanisms, that reward reinforces the con-

tents of retrieval. A post-retrieval reward may thus lead to alterations in memory
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representations and future behavior, effects which cannot be investigated in an-

ticipatory designs. Thus, how extrinsic reward immediately following memory

retrieval impacts the information that is retrieved remains an open question.

Our hypothesis is that extrinsic reward following retrieval will reinforce the

information that is retrieved and modulate subsequent memory. To test our hy-

pothesis, we conducted four behavioral experiments (E1, E2, E3, E4) in which

we manipulated test phase reward delivery. In each experiment, participants com-

pleted three phases. Across all experiments, participants studied word-image pairs

and then completed two rounds of retrieval practice, followed by a final recognition

test. During retrieval practice, participants were given a word cue and instructed to

bring to mind the associated image. They rated the vividness of their memory for

the image on a scale from one (least vivid) to four (most vivid). Every response had

a 50% chance of receiving reward feedback. To the extent that reward reinforces

the information that is retrieved, we should find increased memory performance

for reward items compared to no-reward items.

5.3 Methods

Participants

168 native English speakers from the University of Virginia community partici-

pated, with forty two participants enrolled in each experiment (E1: 22 female; age

range = 18-22, mean age = 19.2 years; E2: 27 female; age range = 18-21, mean age =

18.8 years; E3: 26 female; age range= 18-21, mean age= 19 years; E4: 25 female; age
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range = 18-21, mean age = 19.1 years). All participants had normal or corrected-to-

normal vision. Informed consent was obtained in accordance with University of

Virginia Institutional Review Board for Social and Behavioral Research and partici-

pants received class credit for their participation. Our sample size was determined

a priori based on pilot data (E2, N = 14) described in the pre-registration report of

this study (https://osf.io/gebm4). A total of two participants (one each from E2 and

E4) were excluded from the final dataset due to a d’> 2.5 SDs of the mean across the

four experiments. Thus data are reported for the remaining 166 participants. All

raw, de-identified data and the associated experimental and analysis codes used

in this study will be made available via the Long Term Memory Lab Website upon

publication.

Recognition Task Experimental Design

We conducted four recognition memory experiments (E1, E2, E3, E4) each

with three phases (Figure 5.1) and manipulated test phase reward delivery

between subjects. Stimuli consisted of 1602 words, drawn from the Toronto

Noun Pool (Friendly et al., 1982) and three categories of images: 490 common

objects (e.g., banjo), drawn from an image database with multiple exemplars per

object category (Konkle et al., 2010), 96 famous faces (e.g., Paul Rudd) and 96

famous scenes (e.g., Taj Mahal; Lee, Samide, Richter, & Kuhl, 2018). From this

set, 192 words and 288 images were selected for each participant. The images

consisted of an equal number (96) of objects, faces, and scenes. Of the 288

images, a subset of 192 were presented in Phase 1, with 64 images drawn from

each visual category. Only one exemplar per object category appeared during

Phase 1 (e.g. one banjo). Word-image associations were randomly generated for
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each participant and randomly assigned to condition (e.g. target or lure, see below).
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Figure 5.1: Task design. During Phase 1, participants studied word-image pairs; images were from
one of three categories: famous faces (e.g. Paul Rudd), famous scenes (e.g. Taj Mahal), and common
objects (e.g. banjo). In Phase 2, participants completed two rounds of retrieval practice. Participants
saw an individual word and were instructed to bring to mind the image associated with each word
and make vividness ratings on a scale from 1 to 4, with 1 being least vivid and 4 being most vivid. In
E1, during the first round of retrieval practice, every response had a 50% chance of receiving reward
feedback displayed as coins. In E2, during the second round of retrieval practice, every response
had a 50% chance of receiving reward. In E3, participants received rewards during both rounds of
retrieval practice. In the first round, as in E1, every response had a 50% chance of receiving reward.
If reward followed an item in the first round of retrieval practice, reward followed the same item in
the second round. In E4, participants did not receive any reward during either round of retrieval
practice. The temporal dynamics of a trial during retrieval practice are as follows: participants see
a word, rate the vividness of their memory for the image, then a reward could immediately follow.
All participants then completed Phase 3, a final recognition memory test that included images only.
Test probes included previously studied images (targets), highly similar lures (non-identical images
depicting the same person, place, or object as the targets), and novel images. Participants made old
or new judgements using a confidence rating scale from 1 to 4, with 1 being definitely new and 4
being definitely old.

Phase 1: Study. In each of four runs, participants studied 48 word-image pairs,

yielding a total of 192 trials. On each trial, participants saw a word-image pair

presented for 2000 ms followed by a 3500 ms distractor interval. The distractor

interval was comprised of alternating fixation and digit presentation (fixation,

digit, fixation, digit, fixation). During digit presentation, participants saw a single

digit, 1 through 10, and were instructed to press one of two buttons (“1” or “2”) to

indicate if the number was odd or even. Each fixation was 500 ms and each digit

presentation was 1000 ms.
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Phase 2: Retrieval Practice. Participants completed two rounds of retrieval prac-

tice of 96 trials each. A total of 96 words from Phase 1 were presented. The same

words were presented in both rounds of retrieval practice in random order. Each

round was further sub-divided into two runs with 48 trials. In each run, an equal

number of words (16) associated with an image from each visual category were

presented. On each trial, participants were presented with a word cue for 4000 ms

and instructed to bring to mind the associated image from the study phase. Partic-

ipants rated the vividness of their memory of the retrieved image on a scale from

1 to 4, with 1 being least vivid and 4 being most vivid. To motivate participants

to use the full response scale, if the same vividness response was made on five or

more consecutive trials, participants received a message instructing them to use the

full scale. Following the word cue, participants saw either a square of scrambled

images or feedback displayed as coins overlaid on the square of scrambled images

for 1000 ms, followed by a 500 ms inter-stimulus interval (ISI).

We manipulated reward delivery across experiments. In E1, during the first

round of retrieval practice, every response had a 50% chance of receiving reward

feedback. In E2, during the second round of retrieval practice, every response had

a 50% chance of receiving reward feedback. In E3, participants received rewards

during both rounds of retrieval practice. In the first round, as in E1, every response

had a 50% chance of receiving reward feedback. If reward followed an item in

the first round of retrieval practice, reward followed the same item in the second

round. In E1, E2, and E3, 48 total words were rewarded (16 words associated with

images from each visual category). In E4, participants did not receive any reward

during either round of retrieval practice.

Phase 3: Recognition Test. Participants completed a final recognition memory
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test for images only. Trials were self-paced and participants made old or new

judgements for each image using a confidence rating scale from 1 to 4, with 1

being definitely new and 4 being definitely old. Trials were separated by a 500

ms ISI. There were a total of 288 test trials. To reduce test phase interference,

participants were only tested on either a target (e.g. original image of Paul Rudd)

or the similar lure (e.g. new image of Paul Rudd), as in prior work (Lee et al., 2018).

Test probes included 96 previously studied images (targets), 96 highly similar lures

(non-identical images depicting the same face, scene, or object as the Phase 1 image),

and 96 novel face, scene, or object images. There we an equal number of images

from each visual category for each test probe condition (i.e. 32 novel scenes). For

E1, E2, and E3, half of the targets were rewarded during retrieval practice and half

were not rewarded. Similarly, half of the lures were associated with an image that

was rewarded during retrieval practice and half were associated with an image

that was not rewarded during retrieval practice. We refer to these as “rewarded

targets” and “rewarded lures” although the rewards are always presented during

the Phase 2 retrieval practice and not during the final Phase 3 recognition test.

Statistical Analyses

We used mixed effects ANOVAs to assess the effect of retrieval practice, reward

structure, and vividness on hit rate and false alarm rate. We used an independent

samples t-test to compare E1-E3 reward and no reward hit rate and false alarm rate

to E4 hit rate and false alarm rate.
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5.4 Results

No evidence that retrieval practice impacts subsequent memory.

Repeated testing or retrieval practice improves long term retention relative to

restudying (Roediger & Karpicke, 2006), therefore across experiments, we expected

to find greater hit rates for targets that were presented during the retrieval practice

phase compared to those that were not practiced. To the extent that retrieval

practice increases errors to related lures (McDermott, 2006), we also expected to

find greater false alarm (FA) rates for similar lures. We conducted a 4 × 2 mixed

effects ANOVA with experiment (E1, E2, E3, E4) and practice condition (practice,

no practice) as factors and hit rate as the dependent variable (Figure 5.2A). We

do not find a main effect of experiment (F3,162 = 0.218, p = 0.884, η2
p = 0.004) or a

main effect of practice condition (F1,162 = 0.665, p = 0.416, η2
p = 0.0041). Bayes factor

analysis revealed that a model without practice condition is preferred to a model

with the practice condition by a factor of 7.97. The interaction between experiment

and practice condition was also not significant (F3,162 = 0.238, p= 0.869, η2
p = 0.0044).

We then conducted a second 4 × 2 mixed effects ANOVA with experiment (E1, E2,

E3, E4) and practice condition (practice, no practice) as factors and FA rate as the

dependent variable (Figure 5.2B). We do not find a main effect of experiment (F3,162

= 0.633, p = 0.594, η2
p = 0.01) or a main effect of practice condition (F1,162 = 2.025,

p = 0.157, η2
p = 0.01). Bayes factor analysis revealed that a model without practice

condition is preferred to a model with the practice condition by a factor of 5.93.

The interaction between experiment and practice condition was also not significant

(F3,162 = 0.838, p = 0.475, η2
p = 0.02). Together, these findings provide no evidence

that repeated practice impacts subsequent memory.
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(A) Hit Proportions by 
Experiment

(B) False Alarm Proportions 
by Experiment

Practice
No practice

Figure 5.2: Influence of retrieval practice on hit and false alarm rates. A Hit rate proportions for
practiced and not practiced targets for each experiment. We do not find a significant interaction
between practice condition and experiment (p = 0.869). B False alarm (FA) rate proportions for
practiced lures and not practiced lures for each experiment. We do not find a significant interaction
between practice condition and experiment (p = 0.475). Practiced is shown in teal and not practiced
is shown in orange. Box-and-whisker plots show median (center line), upper and lower quartiles
(box limits), 1.5x interquartile range (whiskers) and outliers (diamonds).

No evidence that rewarded retrieval practice impacts subsequent

memory.

Our central goal was to test the hypothesis that extrinsic reward following retrieval

reinforces the information that is retrieved and modulates subsequent memory.

Specifically, we expected to find greater hit rates for reward E1-E3 targets compared

to E4 targets. Insofar as the reward/no-reward structure in E1-E3 constitutes a

“mixed list” (as opposed to “pure list”) condition (Ratcliff, Clark, & Shiffrin, 1990),

we might expect to find lower hit rates for no-reward E1-E3 targets compared to

E4 targets. That is, not receiving a reward in a context of reward may be worse
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for memory than not receiving a reward in a context of no-reward. Following

our preregistration, we treated the data from E1-E3 as one experiment and used

independent samples t-tests to compare reward and no-reward hit rates to E4 hit

rates. We did not find a significant difference in hit rates (t164 = 0.0757, p = 0.9397,

d = 0.0141, BF = 0.19) between reward E1-E3 trials (M = 0.6103, SD = 0.1578) and

E4 (M = 0.6082, SD = 0.1387; Figure 5.3A) or between no-reward E1-E3 trials (M =

0.602, SD = 0.1576) and E4 (t164 = -0.2247, p = 0.8225, d = 0.042, BF = 0.20). Next, we

compared reward and no-reward FA rates to E4 FA rates and based on our pilot

data, expected to find lower FA rates for reward E1-E3 lures compared to E4 lures.

However, we did not find a significant difference in FA rates (t164 = -0.1082, p =

0.914, d = 0.0204, BF = 0.19) between reward E1-E3 trials (M = 0.3363, SD = 0.1374)

and E4 (M = 0.3389, SD = 0.1149; Figure 5.3B) or between no reward E1-E3 trials

(M = 0.3383, SD = 0.1364) and E4 (t164 = -0.0248, p = 0.9803, d = 0.0047, BF = 0.19).

Although we found no difference in hit or FA rates between E1-E3 and E4, it

is possible that reward structure has an impact on subsequent memory. Both hit

rates and FA rates might be greater following two rounds of rewarded retrieval

practice (E3) compared to only one round of rewarded retrieval practice (E1, E2).

Additionally, hit rates may differ as a function of when during practice rewards are

delivered (E1 vs. E2). To the extent that first round retrieval rewards strengthen

image representations and thereby facilitate second round retrieval, E1 hit rates

should be greater than E2 hit rates. To the extent that the lack of rewards during

second round retrieval weakens representations, E1 hit rates should be lower than

E2 hit rates. We conducted a 2 × 3 mixed effects ANOVA with reward (reward,

no-reward) and experiment (E1, E2, E3) as factors and hit rate as the dependent

variable (Figure 5.4A). We do not find a main effect of experiment (F2,122 = 0.43, p

110



(A) Hit Proportions (B) False Alarm Proportions

Figure 5.3: Influence of test phase reward on hit and false alarm rates. A Hit rate proportions
for reward and no reward E1-E3 targets and E4 targets. We do not find a significant difference
in hit rates for reward or no reward E1-E3 targets compared to E4 targets. B False alarm (FA)
rate proportions for reward and no reward E1-E3 lures and E4 lures. We do not find a significant
difference in FA rates for reward or no reward E1-E3 lures compared to E4 lures. Box-and-whisker
plots show median (center line), upper and lower quartiles (box limits), 1.5x interquartile range
(whiskers) and outliers (diamonds).

= 0.652, η2
p = 0.007) or a main effect of reward (F1,122 = 0.394, p = 0.531, η2

p = 0.0032).

The interaction between experiment and reward was also not significant (F2,122 =

2.126, p= 0.124, η2
p = 0.03). We then conducted a second 2× 3 mixed effects ANOVA

with reward and experiment (E1, E2, E3) as factors and FA rate as the dependent

variable (Figure 5.4B). We do not find a main effect of experiment (F2,122 = 0.467,

p = 0.628, η2
p = 0.0076) or a main effect of reward (F1,122 = 0.034, p = 0.853, η2

p =

0.0003). The interaction between experiment and reward was also not significant

(F2,122 = 0.020, p = 0.980, η2
p = 0.0003). Together, these findings suggest that test

phase extrinsic reward following memory retrieval does not impact subsequent

memory.
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(A) Hit Proportions by 
Experiment

(B) False Alarm Proportions 
by Experiment

Reward
No reward

Figure 5.4: Influence of reward structure on hit and false alarm rates. A Hit rate proportions for
reward and no reward targets by experiment (E1, E2, E3). We do not find a significant interaction
between reward and experiment (p = 0.124). B FA rate proportions for reward and no reward lures
by experiment (E1, E2, E3). We do not find a significant interaction between reward and experiment
(p= 0.980). Reward is shown in green and no reward is shown in coral. Box-and-whisker plots show
median (center line), upper and lower quartiles (box limits), 1.5x interquartile range (whiskers) and
outliers (diamonds).

Retrieval practice vividness modulates subsequent memory.

Prior work has shown that vividness during retrieval practice impacts subsequent

memory (Lee et al., 2018). Our inability to detect an impact of both retrieval

practice and rewarded retrieval practice on later memory may be accounted for by

variations in vividness. We did not provide rewards based on vividness ratings,

meaning that strongly remembered (high vivid) and weakly remembered (low

vivid) images were equally likely to have been rewarded. Reward may have

differential effects across these two cases, whereby reward for a high vivid item

may strengthen the stored representation and improve subsequent memory, but
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reward for a low vivid item may not be able to strengthen the representation if

insufficient information is retrieved. Alternatively, high vivid items may be so

well remembered during practice that reward does not provide any additional

reinforcement and instead, reward may serve to strengthen the representation of

the low vivid items only.

(A) Hit Proportions by 
Experiment

(B) False Alarm Proportions 
by Experiment

Low vivid
No practice

High vivid

Figure 5.5: Influence of vividness on hit and false alarm rates. A Hit rate proportions for high
(3 or 4) and low vividness (1 or 2) ratings during retrieval practice and not practiced targets for
each experiment. We find a significant main effect of vividness driven by greater hit rates for the
high vivid condition (p < 0.0001). B False alarm (FA) rate proportions for high and low vividness
ratings during retrieval practice and not practiced lures for each experiment. We find a significant
main effect of vividness driven by greater FA rates for the high vivid condition (p < 0.0001). High
vividness ratings are shown in dark teal, low vividness ratings are shown in light teal, and not
practiced is shown in orange. Box-and-whisker plots show median (center line), upper and lower
quartiles (box limits), 1.5x interquartile range (whiskers) and outliers (diamonds).

Our first goal was to assess the impact of vividness during retrieval practice on

subsequent memory. We specifically focused on vividness ratings during the first

round of retrieval practice as the ratings during this round provide an estimate of

initial memory strength that is not (yet) modulated by practice and/or reward. We
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divided vividness ratings into high and low vividness groups (high = 3 and 4, low

= 1 and 2). Our expectation is that greater retrieval practice vividness should be

associated with both higher hit rates and higher FA rates. That is, we expect that

images strongly remembered (high vivid) during the retrieval practice phase will

be correctly endorsed as old when presented as targets during the final recognition

test. However, to the extent that strong memories contain gist level information

(Brainerd & Reyna, 2002; Lee et al., 2018), highly vivid remembering of gist-level

information is likely to lead participants to erroneously endorse lures associated

with highly vivid images as old. We conducted a 4 × 3 mixed effects ANOVA with

experiment (E1, E2, E3, E4) and condition (high vivid, low vivid, no practice) as

factors and hit rate as the dependent variable (Figure 5.5A). We do not find a main

effect of experiment (F3,162 = 0.17, p = 0.916, η2
p = 0.003). We find a main effect of

condition (F2,324 = 131.8, p < 0.0001, η2
p = 0.45) driven by greater hit rates for the

high vivid condition (M = 0.74, SD = 0.17) compared to the no practice condition

(M = 0.60, SD = 0.15; t330 = 7.793, p < 0.0001, d = 0.858) and greater hit rates for the

no practice condition compared to the low vivid condition (M = 0.55, SD = 0.15; t330

= 2.817, p = 0.0051, d = 0.3101). The interaction between experiment and condition

was not significant (F6,324 = 0.648, p = 0.691, η2
p = 0.01). We then conducted a second

4 × 3 mixed effects ANOVA with experiment (E1, E2, E3, E4) and condition (high

vivid, low vivid, no practice) as factors and FA rate as the dependent variable

(Figure 5.5B). We do not find a main effect of experiment (F3,162 = 0.909, p = 0.438, η2
p

= 0.02). We find a main effect of condition (F2,324 = 25.95, p< 0.0001, η2
p = 0.14) driven

by greater FA rates for the high vivid condition (M = 0.40, SD = 0.19) compared to

the no practice condition (M= 0.35, SD= 0.12; t330 = 3.120, p= 0.002, d= 0.3435) and

greater FA rates for the no practice condition compared to the low vivid condition

(M = 0.31, SD = 0.14; t330 = 2.504, p = 0.0128, d = 0.2756). The interaction between
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experiment and practice condition was also not significant (F6,324 = 0.964, p = 0.449,

η2
p = 0.02). Together, these findings suggest that retrieval practice vividness ratings

modulate subsequent memory.

5.5 Discussion

The aim of this study was to investigate how extrinsic reward following memory

retrieval impacts subsequent memory. We conducted four independent recogni-

tion memory experiments in which we manipulated test phase reward delivery.

We measured the impact of retrieval practice, reward, and vividness on a final

recognition test. We find no effect of retrieval practice or reward on subsequent

memory performance. However, we find that retrieval practice high vividness

ratings were associated with greater hit rates and greater false alarm (FA) rates. To-

gether, these findings suggest that retrieval practice and reward following memory

retrieval may only be beneficial for strongly retrieved memories.

It is well established that repeated testing or retrieval practice facilitates memory

(Karpicke & Roediger, 2008), however, we find no effect of retrieval practice on

subsequent memory performance. This may be due to the format of the final test

used in the current studies. Prior work has found inconclusive evidence regarding

the impact of retrieval practice when the final test format is recognition with some

studies reporting a benefit for repeated testing (Roediger & McDermott, 1995) and

others not (Jones & Roediger, 1995). One well known theory that accounts for the

benefit of retrieval practice is transfer-appropriate processing, which emphasizes

that the same processes engaged during repeated testing or retrieval practice will

be engaged during the final memory test (Morris et al., 1977; Roediger, 1990).
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Potentially, as the retrieval practice phase in the current studies are not matched

– practice was cued recall whereas the final test was recognition – this may also

contribute to the lack of retrieval practice benefit in the present work.

We replicate prior work and find higher vividness ratings during retrieval prac-

tice are associated with greater hit rates and false alarm rates (Lee et al., 2018).

We also find lower hit rates for items low in vividness. Our interpretation is that

the consequences of retrieval vary depending on what information is reactivated.

Higher hit rates for items rated high in vividness and lower hit rates for items rated

low in vividness, may reflect the “zone of destruction”. The zone of destruction

posits that items that are moderately reactivated are weakened whereas items that

are strongly reactivated are strengthened (Detre, Natarajan, Gershman, & Norman,

2013). Possibly, low vivid items in the present study were partially reactivated and

therefore weakened by practice. These findings are comparable to the retrieval

induced forgetting literature whereby retrieving a non-target item is thought to

lead to suppression or inhibition of that item, impairing later memory (Anderson

et al., 1994). Furthermore, impaired subsequent memory for low vivid items is con-

sistent with prior work demonstrating that incomplete reinstatement via violation

of context expectation weakens the memory representation and leads to forgetting

(G. Kim, Lewis-Peacock, Norman, & Turk-Browne, 2014). Taken together, vivid-

ness ratings during the retrieval practice phase may potentially be explained by

whether the correct or incorrect image was reactivated.

We do not find evidence to suggest that rewards following a retrieval test im-

pact subsequent memory. Our finding is consistent with prior behavioral work that

also found no effect of potential reward during test (Castanheira et al., 2022). One

possibility for this lack of effect may be due to insufficient rounds of retrieval prac-
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tice as participants completed only two rounds of retrieval practice. Increasing the

number of rounds or only rewarding trials in which participants are able to vividly

recall the associated stimuli could modulate subsequent memory. Additionally, in

the current study, every response had a 50% chance of receiving a reward in order

to prevent participants from anticipating that a specific response (e.g. high vivid-

ness) or category (e.g. faces) would be rewarded because reward anticipation can

influence participant decisions (Bowen, Marchesi, & Kensinger, 2020). However,

reward prediction errors (RPEs) may drive reinforcement, independent of reward

delivery, and modulate subsequent memory. RPEs occur when the predicted out-

come deviates from what is received, a process that can drive learning (Schultz,

Dayan, & Montague, 1997). As both positive and negative RPEs – receiving unex-

pected rewards or unexpected punishments – modulate neural signals and drive

behavior (Zaghloul et al., 2009; Scimeca, Katzman, & Badre, 2016; Jang, Nassar,

Dillon, & Frank, 2019; Ergo, De Loof, & Verguts, 2020; Rouhani & Niv, 2021), RPEs

may be a potential mechanism for reinforcement. Future work will be needed to

directly test this possibility.

Taken together, our findings indicate that the consequences of retrieval vary

depending on what information is reactivated. A direction for future research

will be to directly investigate the impact on memory of selectively rewarding

items based on how those items are remembered. More broadly, we contribute

to a growing body of literature characterizing the role of test phase reward on

subsequent memory performance.

117



Chapter 6

General Discussion

In the previous chapters, I examined the neural mechanisms of episodic memory

retrieval using recognition paradigms coupled with scalp electroencephalographic

(EEG) recordings. My results suggest that temporal overlap can induce a retrieval

state, an intrinsic reward signal occurs in response to successful retrieval and the

strength of a retrieved memory modulates subsequent memory.

In Chapter 2, I used scalp EEG to identify a memory retrieval state. Partici-

pants completed a mnemonic state task and were instructed to either encode the

present event or retrieve a past, overlapping event. The critical manipulation was

the temporal distance between the first and second object, whereby the shorter

the temporal distance between two objects, the greater their temporal contextual

overlap. Interference can occur between experiences that overlap due to a trade-

off between encoding the present event and retrieving the past event, which can

lead to forgetting (Anderson, 2003; Kuhl et al., 2010). Using pattern classification

analyses, I found that when two events overlap and are experienced nearby in
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time, the memory system is biased toward a retrieval state. This induction of the

retrieval state occurs independent from top-down demands to encode or retrieve

and impairs subsequent memory for the past event. Critically, our neural results

suggest that the retrieval state we observe is likely the result of a general retrieval

mode (Rugg & Wilding, 2000), rather than a reflection of retrieval success or effort.

The results of this chapter demonstrate that a retrieval state can be engaged

independent from the top-down demands to encode or retrieve, suggesting that

bottom-up stimulus features may induce memory states. Prior work has shown

that memory states predict subsequent memory (Long & Kuhl, 2019) and can in-

fluence behavior and decision-making (Duncan et al., 2012; Duncan & Shohamy,

2016). Specifically, behavioral evidence has suggested that brain states linger fol-

lowing a memory judgement and influence ongoing memory judgments (Patil &

Duncan, 2018). To the extent that the retrieval state can be induced automatically

and influence on-going processing, this state has the potential to widely influence

cognition. It is necessary to be able to control both initiation and inhibition of the

retrieval state to leverage this state when task-relevant and to switch out of this

state when task-irrelevant. Future work is necessary to determine how the retrieval

state may be initiated and controlled to better understand the consequences of the

retrieval state on behavior.

In Chapter 3, I investigated the processes occurring prior to and following a

memory response using response-locked theta power. Theta has been shown to

support episodic memory and decision-making (Nyhus & Curran, 2010; Cavanagh

& Frank, 2014). Specifically, theta power is greater for hits compared to correct re-

jections (CRs) after stimulus onset (Burgess & Gruzelier, 1997; Klimesch et al., 2000;

Düzel et al., 2003) and greater following incorrect compared to correct responses
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and following negative relative to positive outcomes (Mazaheri et al., 2009; Cohen,

2014b). Together, these findings suggest that theta power prior to a response may

reflect memory processes and post-response theta power may reflect a feedback

signal. I replicated previous work and found greater theta power for hits than CRs.

Following the memory response, I found that the theta power dissociation ‘flips’

such that theta power is greater for CRs than hits, potentially reflecting a positive

feedback signal selectively for hits.

In Chapter 4, I measured post-retrieval positive feedback evidence in response

to successful retrieval. I conducted two recognition memory experiments and ma-

nipulated the test phase goals. In a typical recognition experiment, the participants’

goal to identify old items is confounded with successful retrieval. Therefore, test

phase reward signals could reflect the attainment of a task goal (Han et al., 2010).

However, the abundance of evidence that finds reward system activity during hits

compared to CRs, in the absence of extrinsic reward (Spaniol et al., 2009; Clos et

al., 2015), suggests that successful retrieval may be intrinsically rewarding (Speer

et al., 2014). I replicate the findings in Chapter 3, and find theta power decreases

selectively for hits relative to CRs, regardless of task goals. I used an independently

validated feedback classifier to measure feedback evidence in each experiment. I

find that regardless of task goals, following a response, there is greater positive

feedback evidence for hits than CRs, suggesting that successful retrieval is intrin-

sically rewarding.

The results of Chapters 3 and 4 suggest that there is a positive feedback signal

in response to successful retrieval. How might intrinsic reward following retrieval

reinforce mnemonic strategies? Mnemonic strategies are techniques used in an

attempt to promote memory, such as grouping items based on a shared meaning.

120



Whereas mnemonic strategies can influence the ability to remember, the neural

mechanisms underlying the reinforcement of these strategies are unknown. It

might be through an intrinsic feedback signal that strategies are reinforced and

promote sustained improvements in memory performance. According to the bind-

ing of items and context (BIC) model, during study the hippocampus binds an item

to its spatiotemporal context, where context includes the mnemonic strategy used

to encode the item (Diana et al., 2007). Furthermore, according to retrieved context

theory (Polyn & Kahana, 2007), retrieval of a study item leads to retrieval of its as-

sociated context. Therefore, the mnemonic strategy encoded with an item should

be retrieved when the item is later remembered (Polyn et al., 2012). Accordingly,

if reward accompanies successful retrieval, retrieval of the item should reinforce

the mnemonic strategy that was initially used to encode the item. However, not

all mnemonic strategies are created equal. One consequence of intrinsic reward

during retrieval is that any mnemonic strategy associated with that item will be

reinforced, even if that strategy is suboptimal. Therefore, it is insufficient to learn

effective mnemonic strategies, individuals also need to avoid ineffective mnemonic

strategies. A critical next step is to establish the extent to which intrinsic reward

reinforces memory processes and impacts subsequent memory.

In Chapter 5, I used extrinsic reward following memory retrieval to investigate

the extent to which reward reinforces the contents of retrieval and impacts sub-

sequent memory. I conducted four behavioral experiments and manipulated test

phase reward delivery. Across all four experiments, participants studied word-

image pairs and then completed two rounds of retrieval practice, followed by a

final recognition test. The structure of reward delivery varied during the retrieval

practice phase in which participants made vividness judgments. It is well es-
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tablished that study phase reward anticipation facilitates memory formation and

subsequent memory (Loftus & Wickens, 1970; Marini et al., 2011). However, mem-

ory reinforcement may be better accomplished through direct reward of what is

retrieved, rather than through study phase manipulation of potential future re-

ward. I find no impact of reward on subsequent memory performance, but I did

find an impact of vividness on subsequent memory, suggesting that the benefit of

reward may be dependent on the strength of the memory that is retrieved.

The results of this chapter demonstrate that retrieval practice improves recog-

nition for highly vivid items, but impairs recognition for items low in vividness.

These findings may reflect the “zone of destruction” whereby items that are mod-

erately reactivated are weakened whereas items that are strongly reactivated are

strengthened (Detre et al., 2013). Potentially, as a result of partial reactivation, low

vivid items in the present study may be weakened by practice. These findings

are in line with the retrieval induced forgetting literature whereby retrieving a

non-target item is thought to lead to suppression or inhibition of that item, impair-

ing later memory (Anderson et al., 1994). Furthermore, my findings of impaired

later memory for items remembered with low vividness is consistent with prior

work demonstrating that incomplete reinstatement via violation of context expec-

tation weakens the memory representation and leads to forgetting (G. Kim et al.,

2014). Expectation violation, or reward prediction errors (RPEs), occur when the

predicted outcome deviates from what is received. RPEs may be a potential mech-

anism for reinforcement as both positive and negative RPEs – receiving unexpected

rewards or unexpected punishments – modulate neural signals and drive behav-

ior (Zaghloul et al., 2009; Scimeca et al., 2016; Jang et al., 2019; Ergo et al., 2020;

Rouhani & Niv, 2021). Therefore, test phase RPEs may have a differential impact
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on memory depending on what information is reactivated. Future work should

work to identify whether RPEs or extrinsic reward – regardless of expectations –

promote subsequent memory.

In conclusion, the work in my dissertation provides a substantial contribution

to our understanding of episodic retrieval mechanisms. Formation and subsequent

retrieval of memories are essential for daily decision making. Therefore, elucidating

the neural mechanisms that support retrieval are critical across cognition. I believe

that the insights my work has provided will lead to a better understanding of how

people successfully retrieve memories and how to improve memory performance.
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