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Abstract

Multi-microgratings are defined as arrays of one-dimensional diffraction gratings inscribed

inside similarly shaped cells and then arrayed in a two-dimensional periodic fashion. Due

to the high number of spatial periodicities, these structures form intricate diffraction

patterns. A meticulous understanding on how the diffraction patterns form and what their

optical properties are has not previously been studied and it is necessary in order to be

able to exploit these properties in a variety of applications. A theoretical model of these

properties was formulated through analytical and graphical methods based on Fraunhofer

diffraction theory, intensity distribution functions, Fourier Transforms and finite-difference

time-domain (FDTD). The diffraction pattern was found to be formed by the individual

contributions of the periodic elements in multi-microgratings and their interactions. To

validate the theoretical model, multi-micrograting samples with 0.5 and 2 µm periods and

10 and 20 µm sides, arrays of hexagonal apertures and other structures were fabricated

via electron beam lithographic method on silicon substrates. A polymer based replication

method was demonstrated and PDMS replicas were fabricated from silicon masters.

Optical properties of the fabricated structures and their replicas were characterized, their

diffraction patterns were measured and explained. The optical diffraction efficiency of

these samples was measured to be 32.1%. Finally, a brief study of possible applications of

multi-microgratings was carried out in the context of a temperature measurement sensor.

Diffracted beam spots were characterized for thermally induced changes in the diffraction

angles and intensity. An optical interferometric regime was devised that allowed for a

high dynamic range and high resolution temperature measurement that had a theoretical

resolution of 300 times better (capable of resolving <0.1◦C) than using one dimensional

gratings. Alternative applications of multi-microgratings are proposed as well as future

areas of research.
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Chapter 1

Introduction and Motivation

The field of biomimicry examines naturally occurring designs and exploits those designs

for beneficial purposes. Natural optical structures have evolved to solve problems, so

replicating those designs is highly important [1]. Scientists have studied the wings of the

morpho butterflies and their brilliant iridescent colors and learned that it is not due to

pigments but because their scale structures are periodically arranged [2]. The actual wing

structures in morpho butterfly scales are very complex and they generate an iridescent,

bright blue color at large viewing angles due to their intricate design. Figure 1.1 shows

the butterfly and an SEM image of the scale structures in the wings. These repeating

Christmas-tree-like structures allow for both diffraction and optical interference to take

place, which is what gives the butterflies their unique structural color [3]. The design

utilizes the effects of diffraction and interference to generate the color, but it is made up of

a complex architecture of 3D microribs and lamellar reflectors that are hard to reproduce.

Several studies have been reported which try to replicate the optical effects found in

Figure 1.1: (a) Blue morpho butterfly and (b) SEM detail of wing structure [3].

1
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morpho butterfly wing scales for sensing and other applications. The wing scales of the

morpho butterflies can be used as optical gas sensors since they show a highly selective

response to closely related vapors, such as water, methanol, ethanol and dichloroethylene.

Actual wing scales were used in the experiments and were determined to be very selective in

sensing vapors [4]. The same group recently used the wing scales to measure temperature

variation, based on the spectral response of these wings to small temperature variations

[5]. This type of design will eventually inspire new imaging sensors in the infrared region

due to the wings response to heating with MWIR radiation. The spectral response to

changes in vapor concentration (for methanol) and temperature are shown in Figure 1.2

[4, 5, 6]. Wing scales have been used as templates for replication. Films of ZnO and

alumina were deposited on the wing scales and heated to remove the wings and crystallize

the films, producing similar structures. Focused ion beam chemical vapor deposition was

used to produce structures similar to those of the butterfly wings [1]. Much work has been

done to reverse engineer the sorts of designs found in butterfly wings, some by creating

artificial photonic materials that mimic the color generation properties in the wings [7].

Vertically oriented diffraction grating pillars, arrayed in large-scale 2D periodicity have

been fabricated in silicon . The 2D pillars, both normally oriented and tilted, were etched

with a complex Bosch process to achieve a scalloping effect, which mimic the actual wing

structures.

However, these reported methods require complicated equipment and procedures to

fabricate the structures. Some also sacrifice actual wing scales, which prohibits them from

widespread applications. Also, it is hard to fabricate or reproduce large area devices with

similar optical properties to the butterfly wings. Therefore, devices with similar optical

properties that can be fabricated more easily are desired.

The work by Wong et al. [8] describes structures that despite being different in their

architecture, had similar properties to the wing scales. The study focused on fabricating

devices that appeared blue over a wide viewing angle, displaying the effects of diffraction
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Figure 1.2: Spectral response of morpho wing scales to changing methanol concentration
and changing temperature [4, 5, 6].

and interference with properties similar to the iridescent wings. They achieved this by

fabricating a planar array of microgratings which consisted of hexagonally shaped individual

microgratings in different orientations. When illuminated with light, these structures

produced blue iridescent colors and complex diffraction and interference patterns. They

achieved this by fabricating a planar array of gratings which consisted of hexagonally shaped

individual multi-microgratings in different orientations, with a grating period of 440 nm

and a depth of 125 nm. This type of structure was selected because replicating the intricate

three-dimensional structures of the butterfly wings was very complex. The fabrication

method chosen was electron-beam lithography (EBL), with PMMA 495 photoresist of

about 150 nm. A dose value of 227 µC/cm2 and 15 second development time were used.

Figure 1.3 (a) shows the hexagonal micrograting design used and Figure 1.3(b) shows an

AFM image of a region of the fabricated micrograting array [8].

1.1 The multi-micrograting design

The grating arrays used in the current study contain hexagonally shaped micrograting

cells, which contain grating lines with six different orientations, and which are arranged to

generate large area patterns. The six micrograting orientations are grouped in a unit cell,

shown in Figure 1.4(a), which is repeated to generate large area arrays. The hexagon side
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Figure 1.3: (a)Hexagonal micrograting design and (b) AFM image of the fabricated device
in Wong et al [8].

is defined as s and micrograting period as d. Figure 1.4(b) shows an array of micrograting

cells. The multi-micrograting array is composed of hexagonally shaped micrograting cells,

which are arranged to form large area structures.

To fully understand the complex optical diffraction pattern generated by multi-microgratings,

it is important to understand the contributions of the different periodicities found in the

design. The diffraction pattern of a large area micrograting array is formed by the individ-

ual elements seen in Figure 1.5, all of which can produce different diffraction effects. They

are listed below:

1. The hexagonal shape of the micrograting apertures.

2. The large area periodic structure produced by the multiple hexagonal apertures.

3. The 1D gratings with different orientations.

4. The lattice produced by the replicating unit cell containing the microgratings.

5. The interaction between elements 1-4.
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The first two elements correspond to the hexagonal nature of the micrograting cells. The

hexagonally shaped cell, Element 1, acts as an aperture and produce a typical diffraction

pattern for a hexagonal aperture. Element 2, the large area structure produced by the

hexagonal cell arrays can be considered a honeycomb lattice. Arrays of hexagonal apertures

were also chosen for fabrication as they will allow the understanding of the diffraction

pattern from the various elements in multi-microgratings.

The periodic micrograting lines oriented at various angles (Element 3) produce diffraction

effects like those of a 1D grating. As such, those diffraction effects can be explained with

Figure 1.4: (a) Micrograting repeating cell with six different orientations. s is the hexagon
side dimension and d is the grating period. (b) Array of multi-microgratings, with the red
parallelogram defining the unit cell that was used to form the array, with sides a and b.
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Figure 1.5: The individual elements that form the multi-micrograting arrays. (1) The
hexagonal aperture. (2) Periodic hexagonal apertures. (3) 1-D grating with six different
orientations. (4) Unit cell.

the grating Equation 1.1, explained in more detail in the following section.

In the grating equation, d is the period of the grating. The angles θi and θd are the

angles of the incident and diffracted beams, respectively, with respect to a surface normal

to the grating plane. The integer m represents the mode or order of diffraction and λ is

the wavelength of the incident light. By use of this equation it is possible to understand

some properties of diffraction from microgratings, for example, the angular position of the

diffracted spots and the number of diffracted orders. However, the grating equation only

takes the contributions for the 1D component of the micrograting arrays.

Six hexagonal microgratings with different 1D grating orientations are then arrayed into

an oblique lattice (Element 4) to form large area patterns. Consequently, the generated

lattice also produces diffraction effects. The unit cell, depicted as a red parallelogram in

Figure 1.4(b), is used to produce the oblique lattice. The unit cell’s sides a and b are

related to the hexagon side dimension s. Geometrically, it can be shown that the unit cell

dimension b = 3 ∗ s and a = 6 ∗ s.

The complex optical properties of the multi-micrograting design explained in this section

require a prior understanding of several topics that are covered in the next section.
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1.2 Background information

The key characteristics of diffraction gratings are the angular behavior of the diffracted

spots with respect to the angle of incident light, which can be described by the grating

equation; the relative spot intensity and the efficiency of the diffracted orders. This section

discusses prior art as it relates to multi-microgratings, and their status, which will help

justify the need for further understanding of the optical properties of multi-microgratings.

1.2.1 The diffraction grating equation

The simplest explanation of a diffraction grating is a periodic set of apertures or slits

located on a surface, such as the one described in Figure 1.6, where d is the grating period,

a is the slit width and n is the number of slits. Assuming a planar wavefront is incident

on the surface at an angle θi from the normal of the grating, Ray 1 and Ray 2 are in

phase with each other. With θd being the angle of the diffracted beam, at wavefront

position B the rays will constructively interfere when their difference in path lengths

d sin(θd) + d sin(θi) is an integer multiple of the wavelength [9]. From this analysis, the

grating equation follows and is given below:

d(sin θi + sin θd) = mλ (1.1)

Figure 1.6: 1D representation of a diffraction grating.



Chapter 1 Introduction and Motivation 8

The integer m represents the mode or order of diffraction. By analyzing this equation it

is possible to understand some properties of diffraction gratings, for example, the angular

dependence of the diffracted spots, the number of diffracted orders for a given set of

grating parameters.

However, the grating equation falls short when trying to explain more complex systems

such as multi-microgratings with different periodicities and orientations. It can only

provide very discrete and limited information on the angular distribution of the diffracted

spots and no information about their relative intensity. The intensity of the diffracted

beams is said to be distributed to discrete orders , but as it will be shown in this study,

for systems with increasing numbers of periodicities, those intensities are distributed in a

much more complex way.

1.2.2 Formal description of diffraction

In order to have a full understanding of multi-microgratings, a more formal description of

diffraction is required. The following sections discuss some key concepts and theorems

which are going to be utilized to formulate a complete description of multi-microgratings.

Huygens-Fresnel Principle

Huygens established a method to describe the position of a wavefront in a future time.

The assumption states that every point in a wavefront can be considered as new wavefront

sources [10]. Diffraction then becomes determining the way that an electromagnetic wave

propagates through space and time. In the case of having multiple wavefronts, then the

superposition principle applies, which says that electric and magnetic fields at any given

point is the vector sum of the individual wavefronts. Thus, depending on the spatial

locations of two interfering wavefronts, they can either constructively or destructively

interfere forming localized areas of high and low intensities.
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The Fresnel-Kirchoff Diffraction Formula

The Fresnel-Kirchoff diffraction equation describes the wavefront as it is diffracted when it

encounters an aperture.

In simplified, general form, the Fresnel-Kirchoff diffraction formula describes the intensity

distribution of the diffraction pattern of an aperture IAperture in screen space coordinates

given by ~r. It is given by Equation 1.2 where A(~r′) is the complex amplitude of the

aperture at location ~r′.

IAperture ∝
∫

Aperture

A(~r′) · e− i2πλ (~r′−~r)d~r (1.2)

The Fresnel and Fraunhofer approximations

Using the Fresnel-Kirchoff diffraction formula, certain approximations are made for the

near and far fields. For the far field, the distance from the observation screen to the

aperture is significantly greater than the wavelength of light. Furthermore, that distance

also has to be larger than the size of the aperture itself [11].

The Fresnel number, F , is a useful concept to summarize these approximations. It is

given by Equation 1.3, where a is the size of the aperture and L is the distance between

the observation screen and the aperture itself.

F =
a2

Lλ
(1.3)

If the distance to the aperture is much larger than the aperture size, then this becomes

Fraunhofer diffraction, and F << 1. Otherwise, if F ∼ 1, then we have the case of Fresnel

diffraction. If F >> 1, then we have diffraction in the near field.

For the purpose of observing diffraction patterns of microscale diffraction gratings in the

visible range, the Fraunhofer approximation is usually sufficient to describe the diffraction

of apertures. Known solutions for the diffraction of apertures given by different aperture
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shapes will be used in subsequent sections to develop an understanding of the formation

of the diffraction pattern of multi-microgratings.

The array/convolution theorem

The array theorem, which stems from the convolution theorem that is derived for Fourier

Transforms, states that the diffraction pattern of an array of similarly shaped apertures

is given by convoluting the diffraction pattern of a single aperture of the same shape

with the periodicity of the array, most often given as point sources or delta functions [10].

Extending this further, the diffraction pattern of an array of apertures is the convolution

of the Fourier Transform of the aperture shape and the Fourier Transform of the periodic

lattice.

In other words, a diffraction grating can be described as an array of similarly shaped

apertures that repeat periodically. Thus, the diffraction pattern of a diffraction grating

is going to be diffraction pattern of a single slit at each individual location given by the

periodicity. Moreover, this theorem also applies to arrays of apertures of any shape. It

follows then that the diffraction pattern of an array of hexagons, for example, is going

to be the convolution of the diffraction pattern of a hexagonal aperture and that of their

periodic array (i.e. honeycomb array).

Babinet’s Principle

Babinet’s principle states that the diffraction pattern of complimentary diffraction gratings

is the same, except in the central area of the aperture [12]. Analogous to Equation 1.2 the

intensity distribution of a complimentary aperture IComp with complex amplitude 1−A(~r′)

is given by Equation 1.4.

IComp ∝
∫

Aperture

1− A(~r′) · e− i2πλ (~r′−~r)d~r (1.4)

Thus, Babinet’s principle can be described with Equation 1.5 for all values of ~r′ 6= 0.
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IAperture = −IComp (1.5)

For example the diffraction pattern of a rectangular aperture on an otherwise opaque

screen is the same as the diffraction pattern of a an opaque rectangle on a transparent

screen. This theorem becomes important when understanding the shape of the diffraction

patterns of arbitrarily shaped microgratings and their complementary counterparts that

can be produced with replication techniques.

1.2.3 Generalized Fraunhofer intensity distributions

With all the given theorems and background information of the theory behind Fraunhofer

diffraction, it is now possible to start constructing expressions that better represent the

diffraction patterns of gratings.

In the Fraunhoffer approximation, the angular intensity distribution of the diffraction

patterns of several types of apertures, such as rectangular or circular apertures and

diffraction gratings have been formally described by solving the Kirchoff diffraction

integral [11, 13]. The solutions to the diffraction integral, also known as the Fraunhoffer

intensity distributions, can be found by integration.

The normalized intensity distribution as a function of the angle θ of a 1D diffraction

grating consisting of n slits, is presented in Equation 1.6 and is shown to be the convolution

of two terms. The first term, also known as the diffraction factor, is the intensity distribution

for a single aperture (n = 1) of width a and it acts as an envelope function. The second

term, the interference factor, takes into account the contribution of different grating lines

separated by the grating period d. Equation 1.6 is plotted in Figure 1.7(a), where the

dotted line is the diffraction factor and the solid line is the interference factor for the

following parameters: grating period d = 2 µm, grating slit width a = 1 µm, number of

slits n =20 and wavelength λ = 532 nm.
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I (θ)

n2I0

= [sinc (aν)]2

︸ ︷︷ ︸
Diffraction factor

·
[

sin (ndν)

sin (dν)

]2

︸ ︷︷ ︸
Interference factor

(1.6a)

where ν =
π

λ
sin (θ) (1.6b)

A convolution of the two terms results in the diffraction pattern for a periodic diffraction

grating, with the diffraction factor functioning as an envelope that scales the relative

intensities. The result of convoluting the diffraction and interference factors can be seen

as the solid line in Figure 1.7(b), with the dotted line representing the diffraction factor as

reference and to show how it envelopes the convolution and drawn at a different intensity

scale to be able to distinguish the features. Often, the diffraction factor is ignored when

describing a diffraction pattern in order to be able to clearly distinguish weaker features

that would otherwise be obscured by the diffraction factor (envelope function).

Interestingly, the solutions for the local maxima of Equation 1.6 can be found to be the

angles described by the grating equation (Equation 1.1), which can be seen as the peaks

in Figure 1.7(a) and (b) at θ = 0◦, ±15.4◦, ±32.1◦ and ±52.9◦. Also, as mentioned earlier,

for n = 1, Equation 1.6 reduces to the intensity distribution of a single aperture, which is

shown as the dotted envelope in Figure 1.7(b). Moreover, as n increases, the peaks start

becoming narrower and narrower and become delta functions at the limit of n=∞.

The Fraunhofer intensity distribution approach is more robust than just using the

grating equation. It provides much more detailed information on how the intensity is

distributed in a diffraction pattern, and it can be extended even further to explain much

more complex systems other than just conventional 1D gratings.
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1.2.4 Diffraction efficiency

The diffraction efficiency, η, is defined as the ratio of the diffracted and incident powers of

a wave that is incident on a diffraction grating. In other words, the diffraction efficiency is

the proportion of the intensity that is distributed to each of the diffracted orders, as it

can be seen in Equation 1.7:

η = Pdiffracted/Pincident (1.7)

For a 1D grating, the intensity of the diffracted spots depends upon the substrate or

surface material, the quality of the gratings but most of all from the diffraction efficiency

Figure 1.7: Plot of Equation 1.6 for grating parameters period d = 2 µm, grating slit
width a = 1 µm, number of slits n =20 and wavelength λ = 532 nm. (a) Diffraction and
interference factors (dotted and solid, respectively). (b) Convoluted diffraction (dotted
line) and interference (solid line) factors of a magnified region of Figure (a) to visualize
relative intensity of envelope diffraction factor.
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of that particular order. The diffraction efficiency of each diffracted angle θd depends on

the grating shape/profile, the period d, duty cycle, light polarization, the incident angle

θi and the grating depth h [14, 15, 16, 17]. The power of each diffracted order can be

measured and compared to the input power and thus the overall efficiency of a diffraction

grating can be determined.

Equations 1.1 and 1.7 can provide an explanation for the angular behavior of a simple

1D grating and the relative intensity of the diffracted orders, but for more complex

gratings such as 2D gratings or arrays of gratings, a different approach is required since

the contributions of other periodicities and the interactions between different components

of complex gratings are not treated by the grating equation or described by the defined

diffraction efficiency. Scalar and vector diffraction theories are capable of solving simple

1D gratings; however there are two problems with using those theories to understand these

micro-multigratings. When the minimum size in an optical element is smaller than a few

optical wavelengths, scalar diffraction theory was reported to have significant errors in the

calculations [18].

1.3 Prior Art: Multi-microgratings in literature

This section discusses other attempts at describing systems with a high number of pe-

riodicities using several methods. In literature, terms that describe systems with two

or more periodicities vary, such as sequential and crossed gratings, dual gratings two-

and three-dimensional gratings, microgratings, grating arrays, etc. A brief summary of

literature providing explanations for these phenomena is provided below.

Two dimensional gratings and aperture arrays

Applications of two dimensional gratings in imaging have a variety of advantages. Gold

coated silicon with two dimensional gratings have been used for interferometric, phase
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and darkfield X-ray imaging. The phase and absorption gratings that were fabricated

consisted of high-aspect ratio pillars separated by periods of 2 and 4 µm, respectively. The

addition of a second periodicity allows for better phase reconstruction [19]. Lithium niobate

2D arrays of hexagonal apertures with 35 µm period were used for digital holographic

microscopy, in order to obtain multiple images of the same target, allowing for lens-less

imaging. The diffracted beams happened to overlap as well, producing interference fringes

in those regions [20].

Applications of such structures were also proposed for beam splitting, integrated optical

circuits, grating spectroscopy, light trapping for solar cells. Femtosecond lasers were used

to fabricate a double layer of defects on glass substrates with a 4 µm pitch, in a 2D grating

arrangement. The first order diffraction efficiency for these structures was increased from

7.9 to 25.1% when switching from 1D to 2D gratings, since more of the light is coupled into

the diffracted orders, rather than transmit through the zeroth order [21]. Self assembled

2D gratings were formed with a solution consisting of colloidally suspended 1 and 3 µm

polystyrene spheres in water on a glass substrate. Upon water evaporation, the spheres self

assembled into mostly rhomboidal arrangements (hexagonally close packed), forming the

2D gratings that had diffraction patterns similar to those observed for arrays of hexagonal

apertures [22]. Two dimensional arrays of cylindrical pillars made of SiO2 were used

in a silicon solar cell, allowing for more efficient light trapping as compared to random

structures formed by chemical etching. Consequently, short circuit current was increased

by 17% as compared to a planar back cell. Furthermore, a lower sensitivity to angle was

demonstrated, increasing their light trapping abilities [23].

More intricate, tunable 2D gratings were reported. Thermally actuated square gratings

with 100 µm periods on a glass substrate were fabricated and filled with nitrobenzene

and placed on a two-side polished silicon substrate. The beam of a CO2 laser, incident

on the silicon side, was used to heat the samples. As the temperature of nitrobenzene

rises, so does it’s refractive index. When the refractive index of the nitrobenzene reaches
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that of the glass, the grating virtually disappears and just transmits light. Thus, they

were able to tune the first order diffraction efficiency of the gratings [24]. Liquid crystal,

cholesteric, tunable two dimensional gratings formed by layer undulations, showed that

their diffraction patterns were voltage dependent. The possibility of switching from 1D to

2D gratings was also demonstrated, giving their diffraction patterns great flexibility. The

diffraction efficiencies of the 2D gratings were reported to be the product of the diffraction

efficiencies of their individual 1D gratings [25, 26].

Multi-microgratings

In this context, the term multi-microgratings is defined as a collection of similarly

shaped grating cells arrayed in a certain fashion. The closest design to this work’s

multi-mirogratings that was found in the literature [27] was an array of square shaped cells

as a checkerboard grating, with 1D gratings in 2 orientations as it can be seen in Figure

1.8(a). The device was designed to work as a diffractive polarizer with low zeroth order

reflectivity for a 1310 nm wavelength. This was achieved by having a subwavelength period

for the microgratings (360 nm) and a larger period for the separation between similarly

oriented square cells (5 µm). Zeroth order reflection and transmission was shown to be

reduced significantly, as more of the light is coupled into the diffraction spots produced

by the large period array of square cells. The diffraction pattern that shows this effect is

shown in Figure 1.8(b) and (c) where the polarization state is along the pass and block

axes, respectively. This is achieved because of the difference in efficiency between the TE

and TM polarization efficiencies for the grating parameters, which were chosen so that

TE efficiency is maximized while TM efficiency is minimized. Thus, by controling the

input polarization the light either is transmitted into the block axis (zeroth order) or to

the pass axis (the diffracted orders). Some insight as to how the diffraction patterns of

multi-microgratings are formed is becoming apparent, and this will be discussed in the

next chapter.
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Figure 1.8: (a) Checkerboard multi-microgratings used as diffractive polarizer found in
[27]. Figures (b) and (c) show a CCD captured diffraction pattern for polarizations along
the pass axis block axes respectively [27].

An array of circular 1D gratings was also reported for sensing zonal wavefronts [28]. A

schematic design of the device is presented in Figure 1.9(a), where light is incident from

the left into the micrograting device G and focused by a lens L into the detector D. The

micrograting device schematic is shown in Figure 1.9(b). The detector plane was divided

into 4x4 zones. The position of the diffracted orders was then monitored for different

orders and the wavefront aberration was calculated by angular discrimination. Figure

1.9(c) and (d) show first and third order diffracted beams from the detector. In the first

order case, it is possible to see cross talk between different detector zones as beams move



Chapter 1 Introduction and Motivation 18

Figure 1.9: (a) Schematic design of zonal wavefront device in [28]. (b) Schematic of the
4x4 circular micrograting device. (c) First order diffracted beams at the detector plane.
(d) Third order diffracted beams at the detector plane [28].

to adjacent detector zones. This effect is absent in the third order case.

Multi-microgratings for a multi-directional backlight for 3D displays were recently

reported [29] and a 90◦ field of view was achieved. Circular cells with 1D microgratings

with 12 µm periodicity were arrayed in a triangular grid to generate a multiview pixel

for prototype LCD panels, as it is shown in Figure 1.10(a). Color discrimination was

achieved by grating period design. Three different grating periods were selected for the

illuminating LED red, green and blue independent sources, so to only allow first order

diffraction at normal incidence. At wider angles, the effects of higher order diffracted

beams were blocked off by a liquid crystal front plane. Figure 1.10(b) shows an SEM image

of the circular microgratings. It is possible to see the different grating periods for the three

independent sources, as well as their arrangement in a triangular lattice. Figure 1.10(c)

shows the full wave simulation of the radiation pattern from a red circular micrograting

cell when collimated LED light is incident on it. Details of the formation of this diffraction

pattern will be revisited.

Talbot and Lau diffraction, Sequential and crossed gratings

Near field effects found in Talbot and Lau diffraction explain the existence of self-imaging

planes at distances close to a diffractive optical element [30]. Such effects have been studied

for applications in near field lithography, interferometry and they can be extended to



1.3 Prior Art: Multi-microgratings in literature 19

Figure 1.10: (a) Schematic design of multi-directional RGB backlight for 3D displays
found in [29]. (b) SEM micrograph of the fabricated circular microgratings on a triangular
lattice. (c) FDTD calculated radiation pattern for a red circular micrograting [29].

non-optical wavelengths such as those required to study atom-matter interactions [31, 32].

When an array of apertures, for example a diffraction grating, is illuminated, the near field

diffraction pattern shows periodic fringes in the order of the grating spacing. These self

images of the gratings occur at multiple distances of what is known as the Talbot length,

which are multiples of the ratio of the square of the grating spacing and the wavelength.

For optical wavelengths and periods of a few grating periods such as the ones used in this

study, these distances occur at very short distances from the grating plane, in the order

of a few microns to about a few Talbot lengths. At longer distances beyond that, the

diffraction pattern observed transitions to a Fraunhofer diffraction pattern and the self

images tend to disappear. Some interesting concepts that arise from studying systems in

the Lau configuration that use 2D gratings or sequential, individual gratings separated

by fractional Talbot lengths. [32, 33, 34] Far field patterns can be described by the

superposition of the Fourier Transforms of the individual gratings at the diffracted order

center locations. In the case of 2D gratings, such as 2D array of rectangular apertures,

the self imaging distance are also a few microns from the grating itself. When looking at

distances longer than a few multiples of the Talbot length, paraxial approximations tend

to kick in, therefore, for the purpose of our study, the effects of Talbot and Lau diffraction

can be ignored.

Several studies analyzed the effects and applications of the optical phenomena that occur
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when two or more gratings are used sequentially with relatively large separation distances.

The diffraction pattern of rigid and curved gratings [35] is shown to be analogous to the

diffraction pattern of a 2D grating. Other studies looked at applications of sequential

gratings aligned along their optical axis to suppress diffraction orders or for total light

absorption [36, 37].

1.4 Overview of study

As it was explained in this chapter, due to the lack of thorough knowledge on the

topic of multi-microgratings, a better understanding of the diffraction pattern of multi-

microgratings is necessary for several reasons. The diffraction pattern that is generated

is more complex than the grating equation can describe. It is therefore necessary to

fully understand what originates the diffraction pattern. The purpose of this study is

to understand, through design and experimental fabrication, how the complex diffrac-

tion patterns of multi-microgratings are formed and what are their optical properties.

Furthermore, a more thorough understanding of these structures would allow for the

design and implementation of possible applications of multi-microgratings and similar

types of structures that generate complex diffraction and interference patterns. Such

applications include applications in vapor sensing [4], temperature sensing [6] and optical

nanometrology [38, 39, 40].

In this study, the multi-micrograting structures are composed of an array of hexagonally-

shaped grating cells, with six possible orientations. The structures have a complex

diffraction pattern, with each grating orientation producing diffracted spots in the direction

orthogonal to the lines of the grating. The behavior of the diffracted angle and the number

of visible orders depend on the wavelength of the incident light and the incident angle.

The overall behavior of these structures appears to be very similar to that of a 1D

grating and can be explained using the grating equation. However, in the case of multi-
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microgratings, the magnitude and distribution of the intensity within each diffracted spot

receive contributions from several microgratings.

The main objectives of this study are to:

• Provide understanding of the optical properties of multi-microgratings through mod-

eling, fabrication and characterization.

• Demonstrate a low cost method for replication of multi-microgratings.

• Carry out a feasibility study of various potential applications of multi-microgratings.

In order to fully understand the origin of the complex features in the diffraction patterns

of multi-microgratings, Fraunhofer diffraction as it is related to the modeling of multi-

microgratings is discussed in Chapter 2. Analytic and graphical methods are used in order

to predict the features of the diffraction patterns of multi-microgratings. All the features

that form the diffraction patterns of multi-microgratings are successfully explained.

Fabrication of these structures is one of the foremost challenges and is discussed

in Chapter 3. The understanding of the optical properties of multi-microgratings is

consequently developed through fabrication of different kind of periodic structures, so

that the effects of the different components of the micrograting structures can be studied

separately.

Characterization of the optical properties of multi-micrograting structures is discussed

in Chapter 4. The characterization methods are carefully explained and the results of the

characterized samples are presented in detail.

A low-cost, high-fidelity replication method is described in Chapter 5, which allows for

quick and easy replication of these and more kinds of structures. The replication method

and characterized replicated devices are analyzed in this chapter.

Some applications of multi-microgratings are discussed in Chapter 6 and their working

mechanisms explained in order to justify why it would be more beneficial for those

applications to use multi-microgratings, rather than conventional one-dimensional gratings.
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Concluding remarks and future studies are discussed in Chapter 7.

Additional contributions to different projects during graduate research is discussed in

Appendix A, including research carried out at Corning, Inc. with picosecond lasers, the

design of a high-resolution, low cost laser lithography system using a Blu-ray optical head

assembly, a study of self-organized 2D periodic arrays of nanoprotrusions in silicon formed

by nanosecond laser irradiation and nanosecond laser microtexturing of semiconductors

and metals. Appendix B contains a list of publications.



Chapter 2

Modeling of the optical properties of

multi-microgratings

This chapter outlines the modeling and simulation of the optical properties of multi-

microgratings such as the nature of their diffraction pattern and their efficiency. As

described in the previous chapter, the multi-micrograting design is composed of several

periodic elements, all of which produce diffraction effects that interact with each other to

produce the resultant diffraction pattern. Understanding the individual contributions of

the different elements through modeling is therefore necessary, and such an understanding

is developed in the subsequent sections through an expansion of the theories presented

in Chapter 1. The following sections discuss three distinct methods for predicting the

diffraction patterns of multi-microgratings as well as a method to predict their diffraction

efficiency. The modeling results are then analyzed to establish the fabrication parameters

described in Chapter 3.

The main effect that governs the optical properties of multi-microgratings is optical

diffraction. Optical diffraction occurs when a beam of light that is incident on an aperture

has a wavelength that is comparable to the aperture itself. The intensity distribution of

the light after the aperture changes as a function of the size and radial distance. It is no

longer just a shadow of the aperture itself, but due to interference effects the distribution

has areas of high and low intensity. An array of apertures, separated by a distance d,

is also known as a one dimensional diffraction grating. Light is distributed in different

orders around a central maximum, and the angular behavior and intensity of the diffracted

beams is well understood for such one dimensional gratings. The grating equation, seen in

23
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Equation 1.1, describes a method to calculate the mth order diffraction angle θd for a light

beam of wavelength λ, incident at an angle of θi with respect to the grating normal.

The grating equation offers a very simplified approach to understanding the effects

of diffraction from periodic gratings. It only provides the angular behavior of simple

1D grating structures for a given set of parameters, with no information regarding light

intensity anywhere on the pattern other than the indicated diffracted angles. Furthermore,

it falls short when trying to explain more complicated periodic systems, such as two

dimensional arrays of apertures or multi-microgratings.

2.1 Methods

Because of the limiations imposed by the grating equation, a new explanation is needed to

describe the intricate diffraction patterns produced by multi-mcirogratings. The current

section outlines the methods employed to study the origins of the features found in the

diffraction patterns of multi-microgratings. The first one is based on the Fraunhofer

intensity distribution approach. The second one is an adapted finite-difference time-

domain(FDTD) method which is able to numerically compute the electric and magnetic

field distributions for periodic and non-periodic structures. The third method complements

the first two, and it uses graphical Fourier Transforms to model the diffraction patterns

and other optical properties in multi-microgratings.

2.1.1 Fraunhofer intensity distribution method

As described in Chapter 1, the diffraction pattern of 1D gratings can be obtained by

the convolution of the diffraction patterns of a single aperture and by the periodicity

introduced by having multiple grating lines. This analogy can be extended to explain

systems with more periodicities, in which the intensity distribution functions for the
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different periodicities can be convoluted with each other to obtain the system’s intensity

distribution.

2.1.2 Finite-Difference Time-Domain (FDTD) method

The FDTD method is a numerical analysis method that was first proposed by Yee to

approximate the time-dependent Maxwell equations for electromagnetic fields [41, 42]. A

two-dimensional model is devised, with an electromagnetic wave propagating in the XY

plane, with a transverse component Hz [43]. Maxwell’s equations for the TM mode are

given by Equation 2.1, where Hz is the transverse component of the magnetic field, Ex

and Ey are the electric field components and Jsx and Jsy are the electric current density.
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The XY plane grid is divided into i ∗ j Yee cells, such as the one seen in Figure 2.1(a).

The boundaries are defined to be absorbing with a perfectly matched layer (PML). For

simplicity, a screen aperture or grating can be defined as a perfect electric conductor

(PEC), by setting the electric field components to zero in those regions. A sinusoidal

electromagnetic source of a particular wavelength is then defined at a particular location

inside the model volume and is allowed to propagate in the XY plane in a particular

direction, by iterating over time until steady state is achieved. The sinusoidal source

interacts with the aperture that was defined. A simplified schematic of the model is

illustrated in Figure 2.1(b).

At each instant in time, the electric field vectors are solved first, followed by the

magnetic field vectors in the next time iteration. The result is a time evolution of the
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Figure 2.1: (a) Yee cell: representation of FDTD space discretization as seen in [42] (b)
2D FDTD model schematic with sinusoidal source incident on an PEC aperture, with
PML boundary conditions and of electric field Ez as it evolves with time.

electric field. Since the electric field is proportional to the intensity of the wave, then it

can be used to understand how the electromagnetic wave interacts with the diffraction

gratings. For the simulation, because of the short distances, the solved electric fields are

in the near field. A spatial Fourier transform of the field is then used to approximate the

intensity in the far field.

A MATLAB implementation of this method was created and the results are presented

later in this chapter. The FDTD method has advantages and disadvantages. It is

computationally and memory intensive, so the size of the grid has to be carefully chosen

so as to be able to run the simulations in time-efficient manner. Due to its complexity,

only a 1D model of a grating can be solved for. However, the method can be used to

observe other optical effects, such as interference between the different microgratings as

it is shown later in this chapter. The model can be further specialized to incorporate

different materials with distinct refractive indices, different incidence angles, etc. It must

be noted that this model is a numerical approximation and must be carefully analyzed as

such.
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2.1.3 Graphical Fourier Transform method

As apertures become more complex, finding appropriate 2D mathematical descriptions

of the apertures becomes cumbersome. However, as mentioned earlier, the solutions to

the Kirchoff diffraction integrals can also be obtained by the Fourier Transform method.

The diffraction integrals can be thought of as a coordinate transformation between the

aperture plane (the functions that describe the apertures or gratings) and the image plane

(where the diffraction pattern is projected). In other words, in the Fraunhoffer regime, the

diffraction pattern can be described as the Fourier Transform of the aperture plane. The

same analogy applies to a graphical representation of the aperture or grating plane, with

the resulting graphical Fourier Transform being the simulated diffraction pattern of the

aperture plane [10, 44, 45, 46]. Images of different aperture shapes can be manipulated

with graphical Fourier Transform techniques to obtain their diffraction patterns. By

carrying out a FFT (fast Fourier Transform) of the image of the aperture, the x − y

coordinates of the pixel locations in the image are transformed to θx − θy space, obtaining

the aperture’s diffraction pattern. Spatial distance information from the original aperture

image has to be used to calibrate the simulated diffraction pattern in angular space.

2.2 Simulations of diffraction patterns

Using a combination of the aforementioned methods, the following section discusses

simulations of the diffraction patterns of different periodic systems that will help to explain

how the diffraction pattern of multi-microgratings is formed.

Multi-microgratings, in 1D, can be understood as the combination of the 1D pattern of

the microgratings and the 1D pattern of the arrayed apertures, which is basically a larger

scale diffraction grating. A 1D multi-micrograting is depicted in Figure 2.2. In the general

case, the 1D multi-micrograting intensity distribution function Immg can be interpreted
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as the convolution of the intensity distribution functions for the two individual periodic

elements, and it can be seen in Equation 2.4.

Immg = Imicrogratings · Iapertures (2.4)

The micrograting intensity, Immg, is simply given by Equation 1.6, derived earlier. For

the larger scale aperture array intensity, Iapertures, a similar function is derived for a system

with N apertures with width A, separated by a distance D. Combining all the terms, the

normalized Fraunhoffer intensity distribution for 1D multi-microgratings can be seen in

Equation 2.5.

Immg (θ)

n2N2I0

= [sinc (aν)]2 ·
[

sin (ndν)

sin (dν)

]2

· [sinc (Aν)]2 ·
[

sin (NDν)

sin (Dν)

]2

(2.5)

Equation 2.5 is used in the following section for different parameters in order to predict

the diffraction patterns of different periodic systems.

2.2.1 Diffraction pattern simulation for 1D gratings

To verify the validity of Equation 2.5, the simple case of 1D gratings is analyzed with

it. By setting N and D to 1, Equation 2.5 reduces to the exact solution to the intensity

distribution for a 1D grating. The simulation is run for parameters d = 2 µm, a = 1 µm

and λ = 532 nm. To understand the effects of the numbers of slits n on a diffraction

Figure 2.2: 1D array of micrograting cells, with n small apertures with grating period d
and N large apertures separated by period D.
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Figure 2.3: 1D grating pattern and effects of number of slits n plotted from Equation 2.5
for parameters d = 2.0 µm, a = 1.0 µm, λ = 532 nm; and (a) n = 2 slits, (b) n = 10 slits,
(c) n = 50 slits and (d) n = 100 slits.

grating, a plot for the 1D grating pattern for these parameters can be seen in Figure 2.3(a)

for n = 2 slits, (b) n = 10 slits, (c) n = 50 slits and (d) n = 100 slits. The diffraction

factor was ignored in the interest of presentation and to normalize the intensity at different

angular locations in the patterns.

Figure 2.3(b) has labels for the different diffracted orders. These observed maxima

correspond to the locations given by the grating equation. As n increases, the diffracted

spots get narrower and narrower, but their angular separation stays constant. In the limit

where n approaches infinity, the diffracted spots become Dirac delta functions. Also, the
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higher n, the more energy gets distributed to the narrow discrete diffracted orders.

2.2.2 Diffraction pattern simulation for 1D multi-microgratings

Equation 2.5 is used to simulate the diffraction pattern of 1D multi-microgratings, for a

system with grating lines and large apertures (the micrograting cell shape for example) at

wavelength λ = 532 nm.

The normalized intensity distribution in 1D for the system with grating lines can be

seen in Figure 2.4(a), with grating period d = 2.0 µm, width a = 1.0 µm and n = 5 slits.

The normalized intensity distribution in 1D for the system with apertures only can be seen

in Figure 2.4(b), with aperture period D =34.6 µm, A = 1.0 µm, N = 5 slits. Combining

the two periodicities together, a multi-micrograting is formed and its diffraction pattern is

shown in Figure 2.4(c).

As it can be seen, the diffraction patterns of the grating lines in Figure Figure 2.4(a)

and aperture array in Figure 2.4(b) can be convoluted together to produce the diffraction

pattern of multi-microgratings.

The effects of the number of apertures was (micrograting cells) was studied by varying

the N parameter in Equation 2.5 and using the following parameters: d = 2.0 µm, a =

1.0 µm, n = 5 slits, D =34.6 µm, A = 1.0 µm. N was varied and the results are plotted

in Figure 2.5 for (a) N = 2 apertures, (b) N = 5 apertures, (c) N = 10 apertures and (d)

N = 20 apertures.

As a new periodicity is introduced, in this case for the micrograting cell apertures, the

diffracted spots are further divided into narrow spots around the maxima expected using

the grating equation for 1D gratings. The angular separation of these spots correspond to

the angular separation expected for the separation parameter D. As N increases, the spots

get narrower and more defined, but their separation stays constant. It is also possible to

see that the intensity is no longer distributed to just the discrete order spots given by the
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Figure 2.4: Fraunhoffer intensity distribution based simulated diffraction pattern for a
1D array of microgratings with d = 2.0 µm, a = 1.0 µm, n = 5 slits, D =34.6 µm, A =
1.0 µm, N = 5 slits, λ = 532 nm. (a) Normalized intensity distribution for grating lines
only. (b) Normalized intensity distribution for apertures only. (c) Normalized intensity
distribution of combined grating lines and apertures.

grating equation, but also to spots surrounding it corresponding to the newly introduced

periodicity.

The same simulation was carried out to understand the effects of the micrograting

aperture separation D and the results can be seen in Figure 2.6 for (a) D = 10 µm, (b) D
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Figure 2.5: 1D multi-micrograting pattern and effects of number of N apertures plotted
from Equation 2.5 for parameters d = 2.0 µm, a = 1.0 µm, n = 5 grating lines, D = 34
µm, λ = 532 nm; and (a) N = 2 apertures, (b) N = 5 apertures, (c) N = 10 apertures
and (d) N = 20 apertures.

= 20 µm, (c) D = 50 µm and (d) D = 100 µm.

By varying D it is possible to see that as it increases, the separation between the spots

gets smaller and the spots get narrower as well.

In the previous 1D models, the effects of the different periodicities present in multi-

microgratings have been presented using the Fraunhofer intensity distribution approach,

which provides the exact solution to the distribution of the diffracted intensity in the far

field.
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Figure 2.6: 1D multi-micrograting pattern and effects of aperture separation D plotted
from Equation 2.5 for parameters d = 2.0 µm, a = 1.0 µm, n = 5 grating lines,N = 5
apertures, λ = 532 nm; and (a) D = 10 µm, (b) D = 20 µm, (c) D = 50 µm and (d) D =
100 µm.

2.2.3 Diffraction pattern simulation of 2D apertures

To quickly simulate the effects of the apertures on the diffraction patterns, the Graphical

Fourier Transform method was used in this section. Images of different aperture shapes

are Fourier transformed to obtain their far field diffraction pattern. Figure 2.7 shows the

simulated diffraction patterns using the Graphical Fourier Transform method for (a) a

triangular aperture, (b) a square aperture and (c) a hexagonal aperture. The aperture

images used are shown in the insets of each case.
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Figure 2.7: Graphical Fourier Transform method to simulate diffraction patterns of different
aperture shapes: (a) triangular aperture, (b) square aperture and (c) hexagonal aperture.

A triangular aperture produces three lines. The orientation of these lines are perpen-

dicular to the edges of the triangle (ie. the horizontal edge of the triangle produces the

vertical line in the diffraction pattern). Most of the intensity is distributed to the center

area, which is shaped like a hexagon, because that is the even distribution of the otherwise

odd symmetry. In the case of a square, the center lobe is also shaped like a square, with

vertical and horizontal lines extending radially outwards and which are separated into

different lobes. These are shaped like sinc2 functions, as those observed in the 1D patterns

of 1D apertures. In the case of the hexagonal aperture, three lines are observed that are

all perpendicular to the edges of the hexagon. While the center is shaped as a hexagon,

the same as the triangular aperture, the lines that extend outward look different. They

are closer in shape to the sinc2 lines that are observed for the square aperture. This

means that because the hexagon sides come in pairs, such as the sides in a 1D aperture,

the diffraction along radial lines exhibit that sinc2 behavior. In the case of the triangle,

however, the diffraction lines produced do not have that type of behavior because the

aperture sides do not come in pairs. Rather, they act as single edge diffraction patterns

instead.

The effects of the aperture size are also studied using this method. A hexagon of

different dimensions is plotted in each simulation shown in Figure 2.8 for hexagons of sides

with size (a) 10 µm, (b) 30 µm and (c) 60 µm on a 1024 pixel starting grid (1 px = 0.1
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Figure 2.8: Graphical Fourier Transform method to simulate diffraction patterns of different
hexagonal aperture shapes: (a) 10 µm sides,(b) 30 µm sides and (c) 60 µm sides.

µm). It is possible to see that the smaller the aperture is, the larger the center area is as

well as the wider that the radial lines become. The separation in the lobes in the radial

lines also decrease as the hexagon size increases.

The Graphical Fourier Transform method provides a quick way of simulating 2D

diffraction patterns by just using images of the apertures. It is limited since it does

not scale to wavelenght or real space separations directly, but pixel size can be scaled

to calibrate the images. It is a very powerful method, however, since it can accurately

estimate the diffraction patterns of apertures, gratings and other periodic structures.

2.2.4 Diffraction pattern simulation of 2D arrays of apertures

The Fraunhofer intensity method is further extended to simulate 2D diffraction patterns

of different apertures. As long as the aperture shapes can be described mathematically,

it is possible to simulate the diffraction patterns by convoluting the aperture functions

in each independent direction. Mathematical descriptions for different types of apertures

have been used to simulate their diffraction patterns [47, 48, 49].

Consider a single rectangular aperture in two independent dimensions x and y (with

sides oriented at 0◦ and 90◦). Its diffraction pattern is the the 2D intensity distribution

given by θx and θy, and it is the convolution of the 1D intensities in in the x and y

directions. This diffraction pattern has a rectangularly shaped central lobe (orthogonally
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Figure 2.9: (a) Real space hexagonal p3 lattice and (b) its reciprocal lattice.

rotated to the original aperture), and modulated tails that extend past the central lobe

sides. The 0◦ sides of the rectangular aperture cause a modulation in the diffraction

pattern of the aperture in the vertical (90◦) direction, and the 90◦ sides of the aperture

cause a modulation in the horizontal (0◦) direction. Additionally, due to the convolution

of the two functions, weaker cross terms appear as well.

Instead, consider a single hexagonal aperture (with sides oriented at 0◦, 60◦ and 120◦).

Each of the side pairs acts as an aperture in an orthogonal direction (30◦, 90◦ and 150◦).

Therefore, the diffraction pattern of a hexagonal aperture has a hexagonally shaped center

lobe, with tails extending from the center lobe sides in the 30◦, 90◦ and 150◦ directions.

The honeycomb hexagonal array can be understood as a real space hexagonal or

rhomboidal lattice. Figure 2.9(a) shows a typical honeycomb lattice as the one that was

used to design the micrograting array design. The centers of the hexagons (black dots)

are used as the lattice points, forming the rotated dashed hexagon. Four of the hexagon

centers in the honeycomb lattice can be used to form a unit cell that is depicted as the red

rhombus in Figure 2.9(a). Vectors ~a and ~b can be defined as the lattice vectors. Figure

2.9(b) shows the reciprocal space lattice of the hexagonal lattice described in Figure 2.9(a).

As expected, the lattice vectors ~a∗ and ~b∗ are perpendicular to those in the real space

lattice. The rhomboidal unit cell is used to form the array in reciprocal space. This results

in a rotated honeycomb lattice.
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Figure 2.10: Formation of the 2D diffraction patterns from arrays of hexgonal apertures
with hexagon side of 20 µm and separation of 34.6 µm. (a-c) show simulations using the
Fraunhoffer intensity distribution method and (d-f) using the graphical Fourier Trans-
formform method for a single hexagonal aperture, an array of honeycomb centers, and an
array of hexagonal apertures respectively.

The formation of the 2D diffraction pattern of arrays of hexagonal apertures can be seen

with the simulation results in Figure 2.10. The patterns were simulated using the Fraunhof-

fer intensity distribution method and the graphical Fourier Transform method. Hexagonally

shaped apertures with 20 µm hexagon side lengths were arrayed in a honeycomb lattice

that separated the hexagonal aperture centers by a distance of 34.6 µm.

The diffraction pattern from hexagonal aperture arrays receives two main contributions.

The first contribution is from the diffraction effects from the hexagonal aperture itself.

Using an adapted mathematical representation of a 2D hexagonal aperture [47, 48, 49],

a simulation of a single hexagonal aperture using the intensity distribution approach
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is shown in Figure 2.10(a). Alternatively, Figure 2.10(d) shows a simulated diffraction

pattern using the graphical Fourier Transform approach, which was obtained by plotting

the graphical Fourier Transform of the image of a hexagonal aperture. As it can be seen

in the figures, the two methods that were used to predict the diffraction patterns of single

hexagonal apertures present nearly identical results. A hexagonally shaped center lobe is

formed with long, modulated tails emanating from the pairs of hexagon sides. These tails

grow dimmer in intensity the further away from the center of the hexagon. They also have

areas of high and low intensity. The diffraction effects from the three pairs of sides interact

with each other, producing cross terms which exist in between the long diffraction tails.

The second contribution to the diffraction pattern of arrays of hexagonal apertures

comes from the honeycomb array. The hexagon centers are located 34.6 µm from each

other. Thus, taking just the coordinates of the centers of the each of the hexagons in the

array, a rhomboidal unit cell is formed. In turn, when diffracted, they produce an array

of equidistant spots in orthogonal directions. Figure 2.10(b) was created by plotting the

intensity distribution of a 2D mathematical representation of a honeycomb array. Such

array can be formed by convoluting Equation 1.6 in three different angular directions, and

letting n become large (n >20), resulting in delta-like points which locate the hexagon

centers of the honeycomb array. In the interest of presentation, the simulation in Figure

2.10(b) used n = 5. Analogously, Figure 2.10(e) shows the graphical Fourier Transform of

a honeycomb array. As it can be seen in both simulated patterns, the rhomboidal unit cell

that forms the honeycomb lattice produces a rotated honeycomb lattice in the diffraction

pattern.

By combining the two contributing effects of hexagonal apertures and honeycomb array,

the diffraction pattern of arrays of hexagonal apertures was simulated and it can be seen

in Figures 2.10(c) and (f), respectively via the intensity distribution and graphical Fourier

Transform methods. The two simulations appear to be very similar. The diffraction

pattern consists of a honeycomb array of spots shaped by the envelope of the hexagonal
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aperture patterns. Some graphical artifacts are observable in both simulated patterns, but

their general shape is very similar.

2.2.5 Diffraction pattern simulation of 2D multi-microgratings

To understand how the diffraction pattern from multi-microgratings is formed, it is

necessary to understand how each of the periodicities in the array contributes to the whole

diffraction pattern. A graphical Fourier Transform approach was used. Figure 1.4(a) shows

the repeating cell used to create the multi-micrograting arrays such as the one in Figure

1.4(b), multi-micrograting parameters are set as follows: hexagon side dimension s = 20

µm, micrograting period d = 2.0 µm, vector ~a = 120 µm at 0◦ and vector ~b = 60 µm at

120◦, wavelength λ = 532 nm.

First, it is necessary to understand the contribution of the micrograting cells. The

difraction pattern of each micrograting cell receives contributions from the two elements

that form it: the 1D grating element of each micrograting and the hexagonal shape of

that micrograting. Figure 2.11 shows the simulated patterns of the apertures shown as

the insets via the graphical Fourier Transform approach. Figures 2.11(a) and (b) show

the simulated pattern for a micrograting cell with a grating oriented at 90◦ and 30◦,

respectively. As expected, the micrograting orientation produces positive and negative

Figure 2.11: Graphical Fourier Transform simulations of micrograting diffraction patterns
for (a)single micrograting oriented at 90◦,(b)single micrograting oriented at 30◦ and
(c)collection of six microgratings. Insets shown are the images used to simulate diffraction
patterns. Labels A and B indicate first and second orders respectively.
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orders, arranged radially outward along direction perpendicular to each orientation (0◦

and 120◦). Orders m = 1 and m = 2, labeled as A and B in Figures 2.11(a) and (b), are

found to correspond to the angular position that is described by the grating equation. A

and B both have the same shape as the diffraction pattern of a single hexagonal aperture

(described earlier in Figure 2.10). Thus, it is shown that the diffraction pattern of each

micrograting cell is formed by the convolution of the diffraction patterns of a 1D grating

and of a hexagonal aperture.

Figure 2.11(c) shows the simulated diffraction pattern of the six combined micrograting

cells. This diffraction pattern has a central spot, surrounded by a ring of 12 first order

spots, labeled A. For simplicity, it is possible to refer to the 12 spots as the hours in a

clock. Radially outward from each of the 12 spots in the ring are 12 more spots, of lower

intensity, forming a second ring, labeled B. Each element in the rings are equidistant to

the center spot. The two rings of spots, A and B, correspond to the first and second

orders, respectively, for each of the micrograting orientations. Given that there are six

possible angular orientations of the grating periods within the micrograting cells, then

each angular orientation produces diffracted spots in the corresponding perpendicular

direction. For example, for micrograting orientations of 0◦, spots are produced in a vertical

(90◦) direction, or the spots in the 12 and 6 o’clock positions (one being the positive first

order, and one the negative). For a grating orientation of 30◦, the spots lie in a line that

is oriented at 120◦, or the 5 and 11 o’clock spots. A similar analysis can be carried out

for the other micrograting orientations, thus resulting in the twelve visible spots for the

first order (negative and positive) spots and 12 more for the second order if the grating

equation is satisfied for that particular order.

Now, in order to generate large area multi-microgratings, the unit cell described by

Figure 1.4(b) is used, adding the periodicity of the array itself. Figure 2.12(a) shows

the simulated diffraction pattern via graphical Fourier Transform of a large area multi-

microgratings. Figure 2.12(b) shows the magnification of one of the 12 spots in Figure
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Figure 2.12: Graphical Fourier Transform simulations of micrograting diffraction patterns
for (a)single micrograting oriented at 90◦,(b)single micrograting oriented at 30◦ and
(c)collection of six microgratings. Insets shown are the images used to simulate diffraction
patterns.

2.12(a). Figure 2.12(c) shows detail of one of those spots in 2.12(a). As it can be seen, the

diffraction pattern of a large area multi-micrograting design becomes the convolution of

the diffraction pattern of a six micrograting array, such as that in Figure 2.11(c), and that

of a set of multiple apertures separated by vectors ~a and ~b.

The diffraction pattern from the array formed by vectors ~a and ~b is manifested by the

white parallelogram inscribed in Figure 2.12(c), which has vectors orthogonal to ~a and ~b

at 90 ◦ and 30◦ respectively.

2.3 FDTD simulations of multi-microgratings

As described earlier, more complex FDTD simulations were carried out to study the time-

dependence of the electric field along the z direction, Ez, for a monochromatic sinusoidal

electromagnetic wave incident on diffracting apertures defined by PECs. The electric field

Ez is proportional to the intensity of the diffracted wave and is allowed to propagate with

time until steady state was achieved.

First, 1D gratings were modeled with this method. A 1D grating with 2.0 µm grating

period, 1.0 µm grating aperture and 10 slits is defined with a grid size of 50 nm, to interact

with the sinusoidal EM wave with 532 nm wavelength in vacuum with electric permittivity

ε0 of 0.0278 ∗ 10−9F/m and magnetic permeability µ0 of 12.56 ∗ 10−7H/m. The steady
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Figure 2.13: FDTD simulation of electric field Ezrms of the interaction of 1D diffraction
grating (2.0 µm grating period and 1.0 µm grating width) with EM wave of 532 nm
wavelength.

state Ezrms field is shown in Figure 2.13. Arrows denoting the direction of the expected

diffracted orders were added for clarity. The intensity can be seen to be condensing and

propagating at the angles given by the grating equation. The width of the beams seems

to be correlated to the total grating size.

The same parameters were used to simulate the interaction of a multi-micrograting (2.0

µm grating period, 1.0 µm grating width, and 5 slits and 4 micrograting cells separated by

34 µm) with an EM wave of 532 nm wavelength and the results are shown in Figure 2.14.

The response is similar to the 1D grating case. A few more observations can be made.

Each micrograting produces diffracted beams that travel parallel to the diffracted beams

of the other microgratings. Since they are parallel, diffracted beams of a particular order

(m = 1 for example) produced by different microgratings will not interfere with each other.

However, as it can be seen from the figure, there are areas where the diffracted beam of the
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Figure 2.14: FDTD simulation of electric field Ezrms of the interaction of 1D multi-
micrograting (2.0 µm grating period, 1.0 µm grating width, and with 34 µm micrograting
cell separation) and EM wave of 532 nm wavelength.

left most micrograting interacts with the zeroth order beam from the second micrograting

at a Y distance of 200 µm. The same can be said more of the beams at particular distances.

In those locations, the interference of those beams would be manifested as interference

fringes which will have a fringe period related to the angular separation of the interfering

beams. After those regions of interference, the beams continue to propagate to the far field.

If one were to place a screen in those locations were the beams overlap, the interference

fringes would become visible.

Since the FDTD simulations depict the intensities at the near field, the field distributions

of Ez as a function of x for a fixed y are fourier transformed to obtain the far field patterns.

These far field patterns are shown in Figure 2.15(a) for a 1D grating and (b) multi-

micrograting, centered around the zeroth order max. In the 1D grating case, the intensity

can be seen to weakly be distributed to the first order beams. In the case of the multi-
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Figure 2.15: Far field distribution of Ez for (a) 1D grating and (b) multi-micrograting.

microgratings, the intensity can be seen to be further distributed to higher orders as well.

These far field patterns can be compared to the Fraunhofer intensity distributions shown

in Figure 2.4, which are the exact solutions to the multi-micrograting diffraction pattern.

Furthermore, FDTD simulations can help address some of the issues with simulating

diffraction patterns when the grating period is smaller than the wavelength of light, such



2.3 FDTD simulations of multi-microgratings 45

as in the case for 500 nm grating period multi-microgratings. For example, for 500 nm

period grating or multi-microgratings, the diffraction equation predicts that no diffracted

orders occur at normal incidence. However, if the angle of incidence θi is 40◦, there exists

an m = 1 order that is diffracted at θd = 24.9◦. An FDTD simulation was created to

illustrate this phenomenon. Figure 2.16(a) shows a simulation for multi-microgratings (500

nm grating period, 34 µm micrograting separation) interacting with 532 nm wavelength

light at normal incidence( θi = 0◦). Only the zeroth order (transmitted beam) is able to

propagate. The three micrograting cells have independent zeroth order beams that will not

interact with one another. If instead of normal incidence, the incident angle is changed to

θi = 40◦, then it is possible to see both the transmitted zeroth order beam and the m = 1

order diffracted beam. It is also possible to see that the zeroth order beam of the leftmost

micrograting cell will interact with the first order beam of the second micrograting cell.

2.3.1 FDTD simulations of interference

One of the biggest advantages of the FDTD method is that it can also simulate interference

effects between plane waves, which is an effect that would happen with multi-microgratings.

Referring back to Figure 2.14, it was possible to see that the diffracted beams from a

micrograting can interact with the diffracted beam from a different micrograting.

Conceptually, the two diffracted beams can be considered monochromatic plane waves

traveling at angles ±θint/2 and that intersect at an angle θint. In the region of intersection,

interference fringes would be produced with a fringe period df given by Equation 2.6.

df =
λ

sinθint
(2.6)

An FDTD simulation was carried out that simulates two interacting beams separated

by 30 µm, traveling downwards at angles θint/2 = ±20◦ with a wavelength of 532 nm.

The steady state electric field Ez field is shown in Figure 2.17(a), and the steady state
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Figure 2.16: FDTD simulation of multi-microgratings (500 nm grating period, 34 µm
micrograting separation) interacting with 532 nm wavelength light (a) at normal incidence
(θi = 0◦) showing only the transmitted zeroth order beam propagating and (b) at θi = 40◦

incidence.

RMS electric field Ezrms is shown in Figure 2.17(b). The beam on the left is traveling

at angle θint/2 = 20◦ and the one on the right at angle θint/2 = −20◦ and they intersect

at an angle of 40◦. As it can be seen from both plots, interference fringes are formed

along the white line plotted in Figure 2.17(b). The same simulation was carried out for

two beams traveling at angles θint/2 = ±40◦. Ez and Ezrms for this case can be seen in

Figure 2.17(c) and (d).

As it is seen in Figure 2.17, if the interference angle increases, the fringe period decreases.

To better visualize this effect, the profiles of the RMS fields of Figure 2.17(b) and (d) are
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Figure 2.17: FDTD simulation of interfering beams (30 µm separation, 532 nm wavelength).
(a) Electric field Ez and (b) RMS electric field Ezrms at angles θint/2 = ±20◦. (c) Electric
field Ez and (d) RMS electric field Ezrms at angles θint/2 = ±40◦.

plotted along the white lines and are shown in Figure 2.18(a) for the 20◦ case and (b) for

the 40◦ case. It is possible to see how the interference fringe period changes dramatically.

This simulation was repeated for interference angles θint/2 in the range of 15 to 40◦.

The fringe period was automatically calculated by counting the number of peaks in the

center region and dividing it by the total distance they span to obtain an average fringe
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Figure 2.18: Line profiles of the RMS electric fields from Figure 2.17(b) and (d).

period. The average fringe period is plotted in Figure 2.19 as the black line, and for

reference Equation 2.6 is plotted as well, using the same parameters. The two lines show

to be in agreement, indicating this is a valid method to predict interference fringe periods

and other interference effects observable using this FDTD method.
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Figure 2.19: Line profiles of the RMS electric fields from Figure 2.17(b) and (d). (a)
RMS electric field Ezrms at angles θint/2 = ±20◦. (b) RMS electric field Ezrms at angles
θint/2 = ±40◦.

The FDTD simulations presented complement and corroborate the results shown for

the predicted patterns of multi-microgratings that were calculated with the Fraunhofer

intensity approach and with the graphical Fourier Transform method. These simulations

also predict interference fringes forming in the regions where multi-micrograting diffracted

beams overlap with one another. The simulations carried out were compared to other

approaches that modeled 3D structures like those found in Morpho butterflies using the

FDTD method to understand the diffraction patterns and how their color is being produced

[50]. The simulated diffraction studies look very similar to the ones observed in the current

study.
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2.4 Simulation of diffraction efficiency of multimicrogratings

It has been shown that the diffraction pattern of multi-microgratings is formed by the

different contributing elements that form them: the 1D grating element of the microgratings,

the hexagonal aperture shape of the micrograting, and the periodicity in the array that

forms those apertures. Those elements also contribute to the distribution of power of the

incident beam. As described earlier, the ratio of diffracted power to incident power is

known as the diffraction efficiency , otherwise referred to as the diffraction efficiency η,

and given by Equation 1.7.

η = Pdiffracted/Pincident (1.7)

Diffraction efficiency is a function of several external parameters such as incident light

polarization, angle of incidence, wavelength and substrate material; and grating parameters

such as depth, shape, period and duty cycle. Very complex relationships exist between the

different parameters and their effects on diffraction efficiency, but trench depth seems to

have a large impact on diffraction efficiency.

Figure 2.20(a) has a schematic diagram of what happens to a beam that is incident

on a sample with 1D diffraction gratings. For simplicity in the diagram, the grating

shown is a transmission type grating, rather than reflection type, but the concept remains

the same. Due to the periodic nature of the sample, the incident beam is split into a

zeroth order transmitted beam and two diffracted orders labeled ±m. All of the diffracted

power gets distributed in the 3 orders shown. If instead of a 1D grating sample, the

beam were to be incident on a sample with periodic apertures, then the beam would get

distributed to many different ±M orders as it can be seen with the schematic diagram in

Figure 2.20(b). If the beam is incident on a sample with multi-microgratings, then the

light would interact with both the 1D grating lines and the periodic hexagonal apertures.
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Figure 2.20: (a) Distribution of light in a sample with 1D diffraction grating. (b) Distribu-
tion of light in a sample with periodic apertures.(c) Distribution of light in a sample with
multi-microgratings.

We can conceptualize this idea as follows. First, the beam sees the periodic lines within

the micrograting cells and gets distributed into m orders 0 and ±1. Each, in turn, then

encounter the aperture shape of the microgratings, thus reshaping them. One can think

of this step as the beam intensity getting distributed with the intensity of the single

aperture diffracted pattern. In turn, each of the diffracted beams as well as the zeroth

order transmitted beams all encounter the periodic array of apertures, thus, acting like a

grating again, further separating each of the beams into M orders 0 and ±1. It is possible

to see that the zeroth order transmitted beam has lost more intensity to the increased

number of diffracted spots. It can be expected then, that the total diffraction efficiency

for multi-microgratings would be higher than that for 1D gratings.
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Much research has been done to understand the optimal profile for diffraction gratings

(sinusoidal, square, triangular shapes for the grating facets) [14, 15, 16, 17], but due to

the ease of fabrication, a rectangular profile was selected. It is expected then that the

efficiency of multi-microgratings will have contributions from the different contributing

elements. Therefore, simulations to explain the diffraction efficiency of gratings with

similar parameters to the ones in our design were carried out.

Simulations focused on maximizing diffraction efficiency as a function of trench depth.

Due to the large possible combination of parameters, some of the parameters were fixed.

Incident beam polarization was fixed to TE mode. A wavelength of 532 nm was selected.

The angle of incidence was selected to be 0◦ with respect to the grating normal (ie. normal

incidence), but for patterns with grating periods lower than the wavelength of 532 nm,

the simulations were estimated at a 45◦ angle of incidence. Furthermore, for 1D gratings,

duty cycle was chosen to be 50% as it also maximizes the diffraction efficiency. Therefore,

Square gratings with 50% duty cycle on a silicon substrate were simulated with commercial

software (GSolver V52 Demo, Grating Software Development, Co.) to determine the

optimal depth of the gratings.

2.4.1 Diffraction efficiency simulation results

As it was mentioed earlier, the several designs were selected for fabrication: 1D gratings

with periods of 0.5 and 2 µm, periodic hexagonal aperture arrays with 10 and 20 µm sides,

and multi-microgratings with 0.5 µm period and 10 µm hexagonal sides and 2 µm period

and 20 µm sides. However, the simulation software is only capable of running simulations

of 1D gratings, not 2D complex designs of aperture arrays or multi-microgratings.

Calculated diffraction efficiency plots for 1D gratings of 2.0 µm period with rectangular

facets are shown in Figure 2.21. The effects of trench depth on diffraction efficiency are

shown in Figure 2.21(a) and (b) for TE and TM incident polarizations. To maximize first

order TE diffraction efficiency for the 1D gratings, a grating depth of around 0.95 µm was
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selected to be optimal for the grating period of 2 µm at a 532 nm wavelength, resulting in

a 1D grating TE diffraction efficiency of 14.1% for the first order, and a total diffraction

efficiency of 31.5%. Due to the duty cycles being optimal, for these 1D grating samples

most of the power is expected to be distributed to the first few diffracted orders, with a

great majority of that power to be distributed exclusively to the ± 1 order.

Similar plots were obtained for 1D gratings with 0.5 µm periodicity and it was verified

that the selected trench depth of 0.95 µm would work as well. For 0.5 µm period samples,

only the m = 1 order is allowed at 45◦ incidence, so all the diffracted power goes to that

order. Total TE calculated diffraction efficiency for 1D gratings with 0.5 µm was 10.4%.

To understand the effects of the material covering the gratings and their diffraction

efficiency, simulations were carried out for gratings made of different materials. Figure

2.21(c-d) show simulations for gratings made of silicon, aluminum and silicon with 100 nm

coating of aluminum.

For the pattern with hexagonal apertures, the same software was used to calculate the

diffraction efficiency of arrays of hexagonal apertures. With a 20 µm hexagon cell size, the

period between adjacent hexagons is calculated to be 34.67 µm. Similarly for a 10 µm

hexagon cell size, the period between adjacent hexagons is calculated to be 17.3µm. A

linewidth of 3.0 µm was selected for the width of the hexagon lines. The distance between

adjacent hexagons and the linewidth is used to approximate the hexagonal apertures

as 1D gratings with a duty cycle of 0.17 % for 10 µm hexagons and 0.087% for 20 µm

hexagons. Due to the longer period, the incident light is diffracted into several spots. The

efficiency of individual diffracted spots is considerably reduced. Additionally, due to a

non-ideal duty cycle, efficiency is further decreased. A depth of 1.95 µm was selected since

it provided a local maximum in the efficiency calculations. The total diffraction efficiency

for periodic hexagonal apertures is calculated to be 16.8% for 10 µm hexagons and 8.7%

for 20 µm hexagons. As there also exist cross-terms due to the combined effect of the

different hexagon apertures, the total intensity of the diffracted spots will be distributed
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even further.

The diffraction efficiency of multi-microgratings is expected to behave as a combination

of the 1D and hexagonal aperture array diffraction efficiencies. However, since the majority

of the pattern surface consists of 1D gratings in several orientations, the contributions of

the hexagonal apertures to the total diffraction efficiency is not as large as that of the 1D

gratings. The majority of the light is distributed to the 1D grating orders, therefore the

same grating depth of 0.95 µm was selected for multi-micrograting samples.

A compilation of calculated diffraction efficiencies is summarized in Table 2.1.

This chapter has outlined the simulation methods used to predict the diffraction patterns

of multi-microgratings, presented simulated results, calculated the diffraction efficiency

of multi-microgratings. These simulated optical properties of multi-microgratings will be

compared in subsequent chapters to those measured from fabricated samples.

Figure 2.21: Calculated efficiency for square, 50% duty cycle 2 um gratings at a wavelength
532 nm and normal incidence. Effects of (a) TE and (b) TM polarization. TE diffraction
efficiency effects for (c) silicon, (d) aluminum, (e) 100 nm Al on Si.
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Table 2.1: Calculated diffraction efficiencies

Design Grating period Minimum Etch Calculated total TE
type or cell size feature size depth diffraction efficiency

(µm) (µm) (µm) (%)

1D grating 0.5 1.0 0.95 10.4
1D grating 2.0 1.0 0.95 31.5

Hexagon array 10.0 3.0 1.95 16.8
Hexagon array 20.0 3.0 1.95 8.7

Multi-micrograting 0.5 1.0 0.95 10.4
Multi-micrograting 2.0 1.0 0.95 31.5



Chapter 3

Fabrication of multi-microgratings

This chapter discusses fabrication methods for multi-microgratings as well as a discussion

of their limitations, which reveals why only some of them were selected for the experimental

implementation. The effects of the individual optical elements described earlier can be

observed by the fabrication and characterization of three designs: array of hexagonal

apertures, 1D gratings, and multi-microgratings. The following grating parameters were

selected for fabrication. For 1D gratings and microgratings, grating periods of 0.5 and 2.0

µm (0.25 and 1.0 µm feature sizes, respectively) were chosen. The grating period, which

is comparable to the wavelengths, allows for observation of the diffraction effects of the

1D grating component of the micrograting arrays. For the hexagonal aperture patterns

and the micrograting cell sizes, the hexagons were chosen to be 10 (for microgratings

with period of 0.5 µm) and 20 µm (for microgratings with period of 2.0 µm), so as to

have enough grating lines contained within each hexagon. The total area of the patterned

samples was chosen to be 1.5 mm x 1.5 mm to have an area large enough for experimental

characterization. The design parameters are summarized in Table 2.1.

3.1 Overview of suitable fabrication technique

The fabrication of periodic patterns can be carried out with a variety of techniques,

depending on the required feature density and dimensions, the type of substrate used and

the necessity for replication of the generated structures. A few criteria must be met by

these fabrication methods, which are:

1. Must be accessible to our research group.

56
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2. Must be resource-effective (cost and time).

3. Must be able to generate complex designs of small feature sizes.

4. Must be able to fabricate multi-orientation gratings.

5. Must be able to generate close to high aspect ratio, vertical sidewalls in the interest

of matching with simulations; and of precise depths, as trench depths greatly affect

the diffraction efficiency.

Among the most common methods are mechanical ruling, holographic (interference

lithography), optical and laser lithography, laser ablation and ion and electron beam

lithography [9] and these methods are described below.

3.1.1 Optical lithography

One of the most common lithography systems is optical projection, which uses an advanced

optical design to expose a pattern onto a photoresists using a mask. It is capable of

exposing large areas of resist and offers great repeatability, but its resolution is limited by

the wavelength of light being used. Excimer lasers are the current standard, and feature

sizes have reached dimensions below 100 nm [51].

Similar dimensions have been fabricated using X-ray sources instead of coherent light

as the source of energy for these systems [52]. Masked systems are capable of producing

complex designs, but the cost for an intricate optical mask with very small feature sizes

can be prohibitive. Masked, optical lithography can in fact be used for fabrication of multi-

microgratings, but in order to fabricate microgratings with submicron periods, expensive

high-density masks and advanced optical lithography equipment would be necessary.
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3.1.2 Interference lithography

Laser interference lithography is a cost-effective technique used to fabricate large area

periodic patterns such as 1D gratings and 2D arrays of features, with sub-micron line

widths. A low-cost ( $ 1,000) interference lithography system with a 405 nm GaN

semiconductor laser diode in a Lloyds mirror configuration has been reported to be able

to generate periodic patterns with a 300 nm period using PFI-88 photoresist [53]. A

similar, cost-effective ($ 15,000) setup using an AlInGaN 405 nm diode was used to make

periodic patterns with periods between 290-750 nm over a large area on AZ5214-E resist

[54]. More advanced methods that produce periodic and quasiperiodic nanostructures

using EUV lithography showed that high resolution is achievable with interfering beams

[55, 56, 57]. While interference lithography systems are low-cost and simple, the periodicity

of the patterns is determined by the interference effects of multiple laser beams and such

technique is not suitable to fabricate microgratings of different orientations and complex

architectures as the one required for this study.

3.1.3 Direct laser writing lithography

Another way of fabricating devices using mask-less lithography is to use a laser source and

scan it across the photoresist covered sample, known as direct laser writing (DLW). The

minimum resolution that can be achieved with this technique is in the range of 0.5 to 1

µm depending upon the wavelength and focusing optics, and it has a high throughput and

relatively low cost. Direct-laser lithography can fabricate large-area, arbitrary patterns but

its main limitation is the resolution which is larger than the critical dimensions required

for this study. This technique would have been viable, but it was not readily available at

the University of Virginia and it would have not allowed for the fabrication of patterns

with sub-micron features easily.
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3.1.4 Ion and electron beam lithography

Ion and electron beam lithography have been shown to produce features on the order

of 10 nm, but their high complexity, high cost and low throughput limit their wider

applications [58]. This technique could potentially satisfy all the criteria described earlier,

so it was chosen as the ideal fabrication method. Electron-beam lithography (EBL) systems

were available at the University Of Virginia, but they had a high cost of operation and

maintenance. They were also not able to generate large area (1.5 mm) size samples in a

time efficient manner. Some sample microgratings were fabricated at UVa, but the pattern

area was limited to around 0.5 x 0.5 mm at about an 8 hour exposure time.

Fortunately, a collaboration with Oak Ridge National Laboratory and the Center for

Nanophase Materials Sciences (CNMS) was established in order to use their EBL and

clean-room facilities for the fabrication of multi-microgratings.

3.2 Sample fabrication at ORNL

After careful consideration of possible fabrication techniques and discussion with the

CNMS group at ORNL and due to equipment availability as well as sample requirements in

terms of minimum feature size, two fabrication techniques were employed at their facilities.

Samples that had fine features such as multi-microgratings (250 and 1000 nm features)

were selected to be exposed with a state of the art JEOL JBX-9300FS EBL system. For

samples with hexagonal apertures, since the minimum feature size was not critical (larger

than 1 µm), optical contact lithography was selected. The techniques and fabrication

procedures for both are explained in the following subsections.
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Figure 3.1: Flow chart of the EBL fabrication procedure used to fabricate samples with
multi-micrograting patterns and 1D gratings.

3.2.1 EBL fabrication of multi-microgratings

The EBL fabrication procedure is summarized in the schematic shown in Figure 3.1 and is

described in detail below.

For the fabrication of 1D gratings and micrograting arrays, adhesion promoter P20 was

spin coated on silicon wafers (p-type, <100>, 100 mm) at 3000 rpm for 45 s. ZEP520A

electron-beam resist was then spin-coated at 3000 rpm for 45 s for a desired thickness of

approximately 400 nm. The wafers were then baked at 100 ◦C for 2 minutes.

Patterns were designed with CAD software and transferred to a JEOL JBX-9300FS

EBL system (Energy = 100 keV, Current = 2 nA, Base dose = 250-290 µC/cm2). Samples

were loaded into exposure cassettes and the system automatically loads the cassettes,

seen in Figure 3.2(a) into the electron beam exposure column as shown in Figure 3.2(b).

Patterns were adjusted for proximity effect correction (PEC) and dimension biases (-25 to

-75 nm corrections) to expose features with the desired dimensions and duty cycle. An

example of a PEC corrected pattern is shown in Figure 3.2(c), where it can be seen that a
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Figure 3.2: JEOL JBX-9300FS EBL system used to expose patterns with high density
features. (a) Loading cassette mechanism. (b) Electron beam exposure column. (c)
Example of PEC corrected pattern, where red areas denote features that required feature
size corrections due to electron beam overexposure due to proximity to other features.

great majority of the center area of the pattern (seen in red) required the PEC correction

to avoid overexposure of features, while the edges did not need a large correction. Exposed

patterns were then developed in Xylenes for 35 s, rinsed with isopropyl alcohol (IPA) and

dried with N2.

A descum step with 02 plasma (200 sccm) was performed in an IonWave10 Microwave

Plasma System for 15 s to remove particulates left over from the resist development steps.

For all fabricated patterns (high and low feature density), a 20 nm chromium hard mask

was deposited on the wafers with an electron-beam evaporator to transfer the pattern

from the resist to the silicon substrates. Metal liftoff was performed by placing samples in

an acetone ultrasonic bath. Then the wafers were submerged in resist stripper and cleaned

again with 15 s of O2 plasma.

To enhance diffraction efficiency of the patterns, trenches were etched via plasma etching

of the silicon in accordance with the efficiency simulations described earlier. Etching was

done with an Oxford Plasmalab System 100 with a recipe that was originally designed for

vertical sidewall etching of silicon waveguides (Pressure = 15 mTorr, RF-Power = 30 W,

ICP = 1200 W, 25 sccm of SF6, 60 sccm of C4F8 and 5 sccm of Ar), at an approximate

rate of 180 nm/min for 5-10 minutes depending on the required depths for each pattern.
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For the purpose of optical characterization of patterns, samples were metallized with

70-80 nm of aluminum with an E-beam evaporator, which should increase their reflectivity

from approximately 36% to approximately 90%, and diffraction efficiency by a factor of 2 -

2.5.

3.2.2 Fabrication of samples with hexagonal apertures using op-

tical contact lithography

Due to limited availability of the EBL system, for patterns with low density of features

(hexagonal apertures only), since the critical dimensions were 3 µm for the borders, contact

lithography was chosen for their fabrication. Their fabrication procedure is summarized in

Figure 3.3 and is described below.

A quartz mask coated with chromium and photoresist was exposed with a direct-laser

write Heidelberg Mask Writer (DWL66). The mask was then developed and a chrome

etching step was added to transfer the patterns from the developed resist to expose the

quartz substrate.

The mask was used with a contact lithography aligner and was used to expose AZ

photoresist coated wafers. After exposure, the samples were developed in AZ 300 MIF

Developer, rinsed with IPA and dried with N2. The subsequent steps were identical as

those for EBL fabrication from the development step.
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Figure 3.3: Flow chart of the EBL fabrication procedure used to fabricate samples with
hexagonal apertures.



Chapter 4

Surface characterization and optical

diffraction properties of multi micro-

gratings

This chapter discusses the surface characterization and optical properties of the fabricated

samples such as morphology, diffraction patterns and their efficiency. The characterization

methods are explained in each section. Figure 4.1 shows a multi-micrograting sample

with 2 µm periodicity fabricated using EBL, before being diced into individual samples

and before aluminum deposition. It is possible to see each individual multi-micrograting

sample as the diffracted color varies depending on the incident angle.

Figure 4.1: Photograph of fabricated multi-micrograting sample with 2 µm periodicity
before dicing and metal deposition.

64
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Figure 4.2: SEM micrographs of fabricated silicon samples with (a) 1D grating with period
of 0.5 µm, (b) 1D grating with period of 2.0 µm, (c) array of hexagonal apertures with
hexagon side dimension of 10 µm and (d) array of hexagonal apertures with hexagon side
dimension of 20 µm.

4.1 Surface characterization

In order to examine the surface morphology of the fabricated silicon samples, scanning

electron micrographs of the patterns were obtained. Figure 4.2(a) shows a SEM micrograph

of the fabricated sample with the 1D grating pattern (at a 30◦ tilt) for grating period of

0.5 µm. Figure 4.2(b) shows an SEM micrograph of the fabricated sample with the 1D

grating pattern for grating period of 2.0 µm. Figure 4.2(c)and (d) show SEM micrographs

of fabricated samples with the pattern of hexagonal apertures for cells with side dimension

of 10 and 20 µm respectively.

Unfortunately, as it can be seen in Figure 4.2(c), the 10 µm side dimension hexagon
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Figure 4.3: (a) SEM micrograph of fabricated silicon sample with multi-micrograting array
with grating periods of 0.5 µm. Magnified details of regions around the edge of (a) are
shown in (b).

aperture patterns did not turn out as expected. As described in the fabrication chapter,

the hexagonal aperture patterns were fabricated via a contact aligner and a mask that

was exposed with a DLW system. The system did not have a resolution good enough

to properly expose the 1 µm features in the mask, therefore, some lines did not connect

properly. However, as it will be discussed later, this error in fabrication did not significantly

affect the generated diffraction pattern.

Figure 4.3(a) shows an SEM micrograph of a multi-micrograting sample with 0.5 µm

grating period and 10 µm hexagon side dimension and Figure 4.3(b) shows a magnified

area of (a) near one of the edges to be able to see the sample features clearly. With

features of 500 nm grating period and 0.95 µm trench depth, it is possible to see their

high aspect ratio. Due to the etching process, vertical sidewalls were achieved. Similarly,

Figure 4.4(a) shows SEM micrographs of the combined multi-micrograting patterns with a

2.0 µm grating period and 20 µm hexagon side dimension. Figures 4.4(b) and (c) shows

images of (a) at higher magnifications.

From the SEM micrographs it is possible to see that the samples were fabricated to the

desired specifications. For patterns with high feature density, sample critical dimensions

had to be adjusted in the EBL exposure step for PEC and for dimension bias, resulting in

50% duty cycles and precise grating periods with no spatial variation of these dimensions
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Figure 4.4: (a) SEM micrograph of fabricated silicon sample with multi-micrograting array
with grating periods of 2.0 µm. Magnified details of regions around the edge of (a) are
shown in (b) and (c).

in different parts of the 1.5 mm x 1.5 mm areas of the samples. The edges are well defined

and the sidewall profiles are straight, which indicates that the recipe that was used for

the etching process was appropriate. Feature shape, periodicty and regularity are very

important in determining the quality of the samples’ diffraction patterns, especially when

it comes to diffraction efficiency.

The depth of the trenches can be extracted from the 30◦ tilted SEM micrographs. It

was determined that they were very close to the specified depths of 0.95 and 1.95 µm,

respectively for samples with micrograting arrays and with hexagonal apertures. These

measurements were also in agreement with profilometer data. Additionally, to verify the

depth measurements, Figure 4.5(a) shows a laser confocal micrograph of multi-micrograting

sample with 2.0 µm grating period, which shows a typical grating profile for the fabricated

samples. To show the grating profile, Figures 4.5(b) and (c) show a 3D profile of the

captured laser confocal micrograph and a linescan profile of a selected area. Similarly, the

grating depths of samples with 1D gratings and hexagonal apertures was measured with

laser confocal microscopy and were found to be in agreement with the other measurements.

4.2 Optical diffraction study of fabricated structures

The diffraction patterns from arrays of hexagonal apertures and multi-microgratings were

obtained by illuminating the samples with a laser beam with λ = 532 nm at normal
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Figure 4.5: Laser confocal micrographs of micrograting pattern with 2.0 µm periodicity.
(a) Top view. (b) 3D height profile. (c) Linescan profile.

incidence. The reflected diffraction patterns were projected onto a screen 20 cm away and

photographed. Due to the variation in intensity distribution in the diffraction pattern, the

areas of high intensity tend to saturate the camera sensor used to take the images and low

intensity features are not well captured. A photographic technique called High Dynamic

Range photography (HDR) has been used to overcome the issue of having to capture a

wide range of exposures [59, 60, 61]. Images of diffraction patterns were captured at several

exposure levels and then recombined to produce a more uniform intensity distribution

allowing the capture of both high and low intensity details without saturation. This

technique was applied in order to obtain high quality images of the diffraction pattern.
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4.2.1 Optical diffraction patterns from arrays of hexagonal aper-

tures

The diffraction patterns of arrays of hexagonal apertures with side dimensions of 10 µm

and 20 µm, such as the ones in Figure 4.2(c) and (d), are shown in Figure 4.6(a) and (b).

The two diffraction patterns look very similar with respect to overall intensity distribution,

but the separation between individual diffraction spots is different due to the different

hexagon side dimensions. The inset in Figure 4.6(b) shows details of the center area of

the pattern projected on a screen 300 cm away.

As described earlier, the arrays of hexagonal apertures receive contribution from the

hexagonally shaped aperture and periodic arrangement of the cells (Elements 1 and 2).

The diffraction patterns of the fabricated patterns with two side dimensions both have

three main features. First, the center area of the diffraction pattern is shaped as the

hexagon, which arises from the hexagon shape acting as an individual aperture.

Second, there are three lines oriented at 30◦, 90◦ and 150◦. The hexagonal cells act as

individual apertures, and thus, they diffract light. The hexagon has two sides oriented at

0◦, which can be considered as an aperture in 1D space. That aperture, when illuminated

with planar electromagnetic radiation, diffracts the incoming wave in the shape of a sinc2

function in the direction perpendicular to the edges of the aperture. Thus, the illuminating

light would produce a sinc2 intensity distribution in a direction normal to the apertures.

In this case, the 0◦ aperture produces an intensity distribution in the vertical direction.

The other two pairs of hexagon sides (60◦ and 120◦) produce two intensity distributions

(at their respective normals of 150◦ and 30◦). Combining all three 1D apertures (with a

convolution of the three aperture functions describing the three hexagon edges) generates

the three lines. The three lines in Figure 4.6(a) appear to be dimmer than those in Figure

4.6(b) because of fabrication errors described earlier.

Third, as seen in the inset in Figure 4.6(b), the individual lattice spots are observed.
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Figure 4.6: Observed diffraction pattern of sample with arrays of hexagonal apertures
with hexagon side dimensions (a) 10 µm and (b) 20 µm with laser light with λ = 532 nm.
Inset in (b) shows center area of diffraction pattern projected on a screen 300 cm away, to
obtain details.

They are originated by the honeycomb lattice that was used to array the hexagons. The

red parallelogram in the inset shows a lattice that exists in the diffraction pattern. Each

of the spots are all measured to be equidistant to each other, indicating that the lattice

that produced these spots had two vectors that were equal in dimensions. The angular

separation of the lattice spots is measured to be in accordance with that one of the

generating lattice of hexagonal apertures. Even though the 10 µm sample that originated

the diffraction pattern in Figure 4.6(a) had fabrication errors, its diffraction pattern still

appears as predicted. Due to the periodic nature of the hexagon aperture centers, it
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Figure 4.7: (a) Observed diffraction pattern for multi-micrgorating silicon master with 2.0
µm period illuminated with laser with λ = 532 nm projected on a screen 20 cm from the
reflecting sample at normal incidence. (b) Detail of one of the spots from (a)at a further
distance. (c) The same spot in (b) but projected on a screen 300 cm away, to obtain
details.

is concluded that the observed lattice in the diffraction pattern to be reciprocal to the

honeycomb lattice that originated the hexagonal aperture arrays.

4.2.2 Diffraction patterns of arrays of multi-microgratings

The multi-micrograting samples with grating period of 2.0 µm produced a very unique

diffraction pattern as it can be seen in Figure 4.7(a). Figure 4.7(b) shows details of the

diffraction pattern in 4.7(a). To examine the small details seen in Figure 4.7(b), the screen

was moved to a distance of 300 cm and a photograph was taken and results are shown in

Figure 4.7(c).

The diffraction pattern of the multi-micrograting structures is composed of several

prominent features which are a result of the multi-micrograting constituting elements



Chapter 4 Surface characterization and optical diffraction properties of multi microgratings72

described earlier. The first feature can be seen in Figure 4.7(a) as a set of twelve bright

annular spots surrrounding the central beam. For simplicity, these features are named after

the hour hands of a clock. They are originated by periodic lines at six different orientations

(Element 3). Consequently, these spots behave in accordance to the 1D grating equation.

Each of the periodic micrograting orientations produces diffracted spots in a direction

perpendicular to the grating lines, such as they do in a 1D grating. Given that there are 6

possible angular orientations of the periodic grating lines within the micrograting cells,

then each angular orientation produces diffracted spots in the corresponding perpendicular

direction. For example, for micrograting orientations of 0◦, diffraction spots are produced

in a vertical (90◦) direction. For a grating orientation of 30◦, the spots lie in a line that

is oriented at 120◦. Furthermore, just as 1D gratings, each of the micrograting cells can

produce positive and negative orders. Thus, the 0◦ microgratings produces the 12 and 6

o’clock spots around the central reflected spot. A similar analysis can be carried out for

the other micrograting orientations, thus resulting in the twelve visible spots for the first

order (negative and positive) spots. Higher order spots extend radially outward from the

center beam but are not shown in the photographs.

The second feature, seen in Figure 4.7(b), is produced by individual hexagons and their

periodicity (Elements 1 and 2) and it is seen at a higher magnification of the individual

annular spots of Figure 4.7(a). Each of the twelve annular spots (1D diffraction grating

spot locations) has the same features. The three lines and hexagonal shape of the spot

observed in Figure 4.7(b) are very similar to the diffraction pattern observed for hexagonal

apertures only, as seen in Figure 4.6. The 1D diffraction grating spot locations act as

centers for individual hexagonal diffraction patterns. In other words, a convolution of the

diffraction patterns of 1D grating and hexagonal aperture arrays is observed in Figure

4.7(b). These cross terms now exist in the diffraction pattern that would otherwise not

appear.

The third feature, seen in Figure 4.7(c), is formed by the oblique lattice that is formed
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from the unit cell that was used to generate the large area micrograting arrays, as it can be

seen from the red parallelogram drawn in Figure 4.7(c). The six hexagonal microgratings

were broken down into a unit cell that had dimensions a and b (related to the hexagon

side dimension s), as it can be seen in Figure 1.4. The unit cell itself is skewed, as a is

twice as long as b. Therefore, the periodicity of the unit cell is expressed in the diffraction

pattern as a lattice depicted by the red parallelogram.

In other words, the diffraction pattern of arrays of multi-microgratings can be explained

as the convolution of the different periodicities that form the arrays and it appears to

have a spatial hierarchy for the existence of these cross terms. The smallest observable

features in the diffraction pattern (the lattice described by the red parallelogram in Figure

4.7(c)) corresponds to the largest feature in the micrograting array design (the unit cell

that forms the arrays). This lattice is convoluted with the diffraction pattern of individual

hexagonal apertures, thus creating the pattern seen in Figure 4.7(b). In turn, the pattern

seen in Figure 4.7(b) is then convoluted with the 1D diffraction grating spot locations,

creating the large and complex diffraction pattern of multi-microgratings seen in Figure

4.7(a).

For comparison, Figure 4.8(d-f) show experimental diffraction patterns captured for

multi-microgratings at similar magnifications.

It can be seen that the experimentally observed diffraction patterns of multi-microgratings

are very similar to their simulated patterns, confirming that their diffraction pattern is

formed by the different periodicities found in the arrays. The micrograting period forms

positive and negative orders around the central spot. Due to the hexagonal shape of the

micrograting, each of the positive and negative spots are shaped like the diffraction pattern

of a hexagonal aperture. Finally, the vectors used to create the multi-microgratings appear

in the diffraction pattern, giving rise to an array of spots in a grid like fashion, described

by a rhomboidal unit cell.
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Figure 4.8: Simulated via graphical Fourier Transform and observed diffraction patterns
of an array of hexagonally shaped microgratings with s = 20 µm, d = 2.0 µm, vector
~a = 120 µm at 0◦ and vector ~b = 60 µm at 120◦, wavelength λ = 532 nm.(a) The 12
calculated spots shown correspond to the positive and negative orders of each micrograting
orientation. (b) shows a magnified image of one of the 12 spots seen in (a). (c) Higher
magnification of a spot in (a), showing the periodic nature of the small features produced
by the large area array. (d-f) show experimentally observed diffraction patterns at similar
magnifications as those in (a-c).
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4.3 Beam profile measurements of diffracted spots

Beam profiles of samples with 1D gratings and multi-microgratings are an important

measurement that help exemplify the advantages of using multi-microgratings over tra-

ditional 1D gratings. Measurements of diffracted beam profiles were carried out using

two techniques, with a scanning pinhole and with a commercial CCD camera sensor. The

measurement techniques are described in this section.

4.3.1 Beam profile measurement using pinhole scanning tech-

nique

Beam profiles were measured experimentally using a pinhole scanning technique. The

experimental setup for the measurement can be seen in Figure 4.9(a). A 1 mm pinhole

aperture was mounted on a linear translation stage and the power transmitted through the

aperture was measured with a power meter. While it provides an integrated measurement

of the sample beam profiles, this technique is valid since it was used both for samples with

1D gratings and multi-microgratings with 2 µm periodicities. Because a 1D grating spot

was of much higher intensity than a multi-micrograting spot, a linear polarizer was used

after the laser to ensure that similar power levels were measured by the power meter and

to eliminate any overall intensity related phenomena in the power meter.

Measurements were carried out to understand the differences between 1D grating and

multi-micograting beam profiles using the aforementioned setup. Maximum intensity in

the sensor was approximately 15-20 µW for both samples. The aperture was scanned

along the diffracted beams at 127 µm intervals using the linear stage. OriginPro was used

to normalize the intensity of the acquired data with respect to the maximum intensity

measured and also centered with respect to the same maximum intensity location. Figure

4.9(b) shows the beam profiles as captured by this technique. An OriginPro filter was
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Figure 4.9: (a)Experimental setup for beam profile characterization using pinhole scanning
technique. (b) Beam profiles for 1D grating and multi-microgratings as captured by this
technique.
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used to calculate the beam widths. These were found to be 1383.83 µm and 1213.4 µm

respectively. Using this technique it was possible to determine that the multi-micrograting

beams appear to be 12.3% narrower.

4.3.2 Beam profile measurements using CCD camera

Commercial CCD beam profilers tend to be expensive, but a cost-effective technique using

the CCD sensor found in a webcam was reported to produce accurate measurements of

laser beam profiles [62]. The experimental setup for this technique can be seen in Figure

4.10(a). Samples were illuminated with a green laser diode with 532 nm wavelength, under

two conditions: with a narrow probing beam and with a 10x expanded beam. This was

done to understand the effects of input beam width on diffracted beam profiles. For the

first condition, the 1.2 mm laser beam width was not modified. For the second condition

the beam was magnified by 10x to 12 mm using a removable 10x ThorLabs beam expander.

The intensity of the beams was attenuated with combinations of neutral density (ND)

filters and polarizer to prevent saturation on the sensor, which can capture intensity values

between 0 and 255. A bandpass notch filter (ThorLabs, 550-40) was used to prevent any

unwanted light from entering the sensor and to enhance contrast ratio.

A commercial webcam (Intel CS110), seen in Figure 4.10(b) was used for these mea-

surements. The housing and lens of the webcam were removed to reveal the CCD sensor,

seen in Figure 4.10(c). The active area of the sensor is shown inside the white dashed

rectangle. The CCD sensor had a resolution of 352 x 288 pixels, for a total sensor area of

2.84 x 2.33 mm. Pixel pitch was measured via an optical microscope and was found to

be 8.08 µm, and an optical image of the sensor array is shown in Figure 4.10(d). Images

of the beams were then captured with freeware program QFocus. Intensity profiles were

extracted from the captured images using ImageJ software. Beam profile data was then

normalized and fitted to a Gaussian profile using OriginPro to obtain measurements of

the FWHM of the beams.
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Figure 4.10: (a) Experimental setup for beam profile characterization using CCD webcam.
(b) Intel CS110 Webcam used as a beam profiler. The housing and lens were removed
to reveal the CCD sensor. (c) Picture of CCD sensor area. Active area, shown inside
dashed rectangle, has dimensions of 2.84 x 2.33 mm and a resolution of 352 x 288 pixels.
(d) Optical microscope image of CCD pixel array. Pixel pitch is measured to be 8.08 µm.

For the first condition, for a probing beam with 1.2 mm width, the total pattern size

(1.5 x 1.5 mm) is larger than the probing beam. Figure 4.11 shows images of the beam

profiles captured with the CCD sensor at a sample to sensor distance of 30 cm for the first

condition. Figure 4.11(a) shows the beam profile captured for a 1D grating sample, and

the slice of the profile along the blue dotted line is shown in Figure 4.11(b). Several images

(5) were captured and fitted to a Gaussian profile to calculate an average FWHM for 1D

grating beams of 562.1 µm, which is comparable to the input beam that was measured

using the same technique to have a FWHM of 563 µm. Figure 4.11(c) shows an image of

a captured beam profile for a sample with a multi-micrograting pattern, specifically from

the red rectangle shown in the inset. The captured image shows almost 3 of the individual

beams that were seen in that area of the diffraction pattern, and their separation on the



4.3 Beam profile measurements of diffracted spots 79

Figure 4.11: Beam profiles obtained with CCD sensor at a sample to sensor distance of 30
cm and with a probing beam of 1.2 mm. (a) Beam profile for a sample with a 1D grating
pattern. (b) Slice along blue dotted line of (a) to show raw beam profile and Gaussian
fit to obtain FWHM. (c) Beam profile for a sample with multi-micrograting pattern. For
clarity, inset shows a photograph of the area of the diffraction pattern that was captured.
(d) Slice along blue dotted line to show beam profile and Gaussian fit to obtain FWHM.

sensor of 1.25 mm corresponds to the expected separation (0.27◦) of the beams at a sample

to sensor distance of 30 cm. Figure 4.11(d) shows the profile along the blue dotted line

in Figure 4.11(c), with its corresponding Gaussian fit. Several images (5) were used to

compute an average FWHM of 482.4 µm, which is about 14.1% narrower than the FWMH

for a 1D grating beam. For this first condition, the beams from 1D grating samples are

observed to have a Gaussian profile of similar characteristics to the input laser beam, but

for the micrograting, they are found to be slightly narrower.

For the second condition, for a probing beam with 12 mm width, the total pattern size

is smaller than the probing beam, which becomes important as the probing beam now
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encounters the aperture shape of the total pattern size. Beam profiles captured with the

CCD sensor for an expanded probing beam can be seen in Figure 4.12, at a sample to

sensor distance of 30 cm. Figure 4.12(a) shows the profile of a 1D grating sample when

illuminated with an expanded probing beam. The sample had a pattern size of about

1.5 x 1.5 mm, and it acts as an aperture, causing the light to diffract into the pattern

observed. The pattern corresponds to the Fresnel diffraction from a square aperture rather

than Fraunhofer diffraction, as it would be expected for this wavelength, aperture size

and sample to sensor distance (Fresnel number F = 14.09). The beam is square shaped,

as the aperture, and was observed to have the same size of 1.5 x 1.5 mm at sample to

sensor distances between 10 cm and 50 cm. Figure 4.12(b) shows the beam profile of a

sample with multi-micrograting patterns at a sample to sensor distance of 30 cm. The

image now shows three separate micrograting beams all incident on the sensor at the

same time. They have a rectangular shape due to the expanded beam encountering the

total pattern shape as an aperture and producing Fresnel type diffraction. Due to the

fact that three micrograting beams are incident on the CCD sensor, it causes them to

interact with each other, which produces the high contrast areas of high and low intensity

fringes in the areas where the beams overlap. A slice profile of the interference fringes

along the red line in Figure 4.12(b) is shown in Figure 4.12(c). The interference fringes

are fitted to a cos2(x) function, having a period between 90 - 100 µm at a sample to

sensor distance of 30 cm. The three micrograting beams have an angular separation (0.27◦)

that causes them to separate as the distance from the sample increases, but at sample to

sensor distances between 10 and 35 cm such interference fringes were observed. At longer

distances, the beams separate enough as to not interfere with each other on the CCD

sensor. It is important to note that similar interference fringe effects could be achieved

with the same expanded probing beam but with a much larger total pattern size, which

would produce no additional Fresnel aperture effects from the total pattern size as the

diffracted beams would still have a Gaussian profile. Such interference fringes provide very
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Figure 4.12: Beam profiles captured with a CCD sensor with an expanded probing beam
for a sample to sensor distance of 30 cm. (a) For a sample with 1D grating pattern. (b)
For a sample with a multi-micrograting pattern. (c) Slice profile of the interference fringes
observed in (b).

sharp, resolvable features that can be further exploited for increased resolution in sensing

applications, which would otherwise be challenging with 1D gratings.

4.4 Efficiency measurement of fabricated samples with

an integrating sphere

In order to measure the total diffraction efficiency of the samples, typically a laser beam

of known power is incident on the grating sample. The power for each of the diffracted

orders is then measured individually and the total efficiency can be calculated as the sum

of the power of the diffracted beams (excluding the reflected zeroth order beam). Such

measurement is simple for 1D gratings, however, when you have multiple diffracted orders

or very complex diffraction patterns, capturing all the diffracted light becomes complicated.

To overcome this obstacle, samples were positioned at the output port of an integrating

sphere (Labsphere, Inc), as it can be seen in Figure 4.13. Light incident from a green diode

laser with 1.5 mm beam width and 7.3 mW power at a 532 nm wavelength enters the

integrating sphere via the input port and is incident on the samples. Samples were placed

on a tilt mount, to adjust the direction of the reflected beam and to cause it to escape the
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Figure 4.13: Total diffraction efficiency measurement using integrating sphere.

integrating sphere back through the input port. All the light beams that get diffracted

then get captured inside the integrating sphere, and bounce off the highly reflective walls

until they are collected by a detector. Total efficiency can then be calculated for any

sample by finding the ratio of the total diffracted power as measured by the detector and

the input laser power. The zeroth order power was measured separately to ensure all the

power is accounted for.

Measurements were calibrated with three standard reflectors: a gold standard, a plain

silicon wafer and a silicon wafer coated with 80 nm aluminum film. Expected reflectivities

for the different materials at 532 nm were obtained with a tool called Reflectance Calculator

(Filmetrics) and compared to the measured values using the integrating sphere technique.

The results are summarized in Table 4.1. Measured values are found to be slightly lower

than the expected reflectivities within a 5.1% error.

Table 4.2 shows the measured total diffraction efficiency for the fabricated samples,

measured with the described integrating sphere technique. Diffraction efficiency was

optimized for 1D grating parameters of 0.95 µm trench depth, λ = 532 nm. Therefore, the
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Table 4.1: Calibration of integrating sphere measurement at λ = 532 nm

Reflector Expected Measured
material Reflectivity Reflectivity

(%) (%)

Gold 76.4 73.0
Silicon 37.4 36.3

80 nm Al on Silicon 92.2 87.0

Table 4.2: Measured Total Diffraction Efficiency of fabricated samples

Sample Reflected 0th Total TE diffraction
order power (%) efficiency (%)

1D Grating 2.9 33.7
1D Grating w/ 80 nm Al 3.7 76.7

Micrograting 1.8 32.1
Micrograting w/ 80 nm Al 7.4 70.1

Hex. apertures w/ 80 nm Al 52.6 23.7

measured total diffraction efficiency for silicon samples with 1D grating patterns of 33.7%

is comparable to the calculated 31.5% that was obtained with simulations. Efficiency

values were measured to be slightly higher than the calculated efficiencies by about 2%.

The addition of an 80 nm layer of Al to increase reflectivity also increased diffraction

efficiency by over a factor of 2.3 to 76.7%. Samples with micrograting patterns in silicon

were measured to have a total diffraction efficiency of 32.1%, which is nearly as high as the

measured 1D grating diffraction efficiency. Micrograting samples with an 80 nm layer of

Al show an increased efficiency by a factor of 2.2, to 70.1%. Samples with hexagon arrays

only, with an 80 nm layer of Al were measured to have a 23.7% total diffraction efficiency,

which corresponds to the same rate of increase as compared to a simulated 8.7%. The

total diffraction efficiency of 1D gratings plays the biggest role in the multi-micrograting

diffraction efficiency, rather than the total diffraction efficiency of the array of apertures.

Diffraction efficiency properties can be tailored to increase it at a particular wavelength,

diffraction order and angle depending on the requirements.



Chapter 5

Replication of multi-microgratings

After successful fabrication of multi-micrograting structures, a quick, high-fidelity, high-

accuracy replication process was implemented for several reasons. This chapter justifies the

need for a replication process, outlines a replication procedure and characterizes replicated

structures.

Patterning and microtexturing of surfaces are important methods to change surface

properties of materials for several applications, such as antireflective coatings, hydrophobic

and hydrophilic surfaces among others. Typical processes use a variety of techniques to

fabricate the structures on substrates like silicon and metals, but are typically multi-step,

expensive processes that can fabricate only a few specimens at a time [63]. Nanoimprinting

technologies have recently been developed that utilize previously patterned substrates to

emboss soft polymers [64, 65, 66]. Polymers such as polymethyl methacrylate (PMMA)

and polydimethylsiloxane (PDMS) are commonly used in the nanoimprint techniques.

The replication process can be used on the previously fabricated silicon masters to

generate nearly identical polymer replicas which share very similar optical properties in

terms of how diffraction patterns are formed, but in a different substrate. The silicon

masters can be used many dozens of times with no degradation to the fabricated structures,

making this a very inexpensive, quick and reliable method for replication. The process can

produce similar, small feature sizes in a simple fashion, with no surface preparation. Since

the PDMS replicas are elastomeric, it expands the possibilities of further applications that

require such properties by being more responsive to external perturbations. PDMS is also

transparent to visible wavelengths and can be used to fabricate transmission diffraction

gratings. The PDMS embossing method was chosen because of the versatility that it allows

when trying to form accurate replicas of the previously fabricated multi-microgratings.
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5.1 Experimental PDMS embossing method

Silicon master samples were used to replicate their structures onto PDMS substrates. A

flow chart describing the experimental procedure is outlined in Figure 5.1 and described

in this section.

The PDMS polymer was obtained as Sylgard 184 Silicone Encapsulant (Dow-Corning).

The polymer is a two part polymer mixture of a base agent and a hardener.

The base and hardener are poured together in a glass container at a 10:1 weight ratio.

The mixture is carefully mixed with a glass or plastic rod to prevent excessive air bubble

Figure 5.1: Flow chart depicting replication process using PDMS embossing method.
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formation. The mixture is then placed in a vacuum desiccator for 10 minutes to remove

any formed bubbles.

Silicon masters are placed on a Petri dish, face up, inside a nylon washer to serve as a

mold for the replication process. The PDMS mixture is dispersed on top of the silicon

master to form approximately 3 mm thick samples.

The Petri dishes are placed on a hot plate at 80-100 ◦C for 90 minutes to initiate

the curing process. To ensure proper curing, the samples were cooled down to room

temperature for an additional 3-5 hours, which helped in the separation step. Alternatively,

proper curing and separation was achieved with a curing period of 24 hours at room

temperature.

After the curing and cooling steps are completed, the 3 mm thick replicas are carefully

peeled from the silicon masters with tweezers as to not induce cracking of the PDMS

replicas and to prevent the polymer from breaking and permanently filling the gaps of the

fabricated silicon masters. Afterwards, samples are inspected with an optical microscope

for possible polymer residues. If necessary, samples are quickly submerged in Dynasolve

190 polymer coating remover (Dynaloy) to remove any left over PDMS.

5.2 Characterization of optical properties of replicated

microgratings

5.2.1 Surface morphology

The replicated samples were examined using SEM. To prevent charging under SEM image

acquisition, the PDMS replicas were coated with 12 nm of gold-palladium via a sputter

coater. As it can be seen, the replicas are high quality inverse patterns of the masters.

Instead of having protruding gratings and structures from the surface of the silicon, the

patterns are recessed below the surface of the PDMS, thus making them more robust.
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Figure 5.2 shows SEM micrographs of PDMS replicas fabricated using this method.

Figure 5.2(a) shows a 1D grating sample with 0.5 µm periodicity. Due to the high aspect

ratio and small feature size (950 nm depth, 250 nm width), the PDMS was found to be

strongly bound to the substrate, making the separation and replication process not feasible

for samples with critical dimensions smaller than 500 nm, such as multi-microgratings with

0.5 µm period. This limitation of the replication procedure can be overcome with certain

surface treatment techniques, however, they were not available. However, for samples with

larger critical dimensions, the replication process worked very well as it can be seen in the

rest of the SEM micrographs. Figure 5.2(b) shows a replicated 1D grating sample with 2.0

µm periodicity. Figure 5.2(c) and (d) show replicated samples with hexagonal apertures

of 10 and 20 µm respectively. The 10 µm hexagon aperture replica turned similar to

its silicon counterpart, as the silicon master originally had defects during its fabrication

process. Figure 5.2(e) and (f) show replicated multi-microgratings with 2.0 µm periods.

Areas close to the center of 5.2(e) can be seen to have edges that are bending due to the

elastomeric property of PDMS, but that does not seem to have a strong effect on the

optical properties of the fabricated structures as it will be shown below.

To compare the fidelity of the replicated structures, Figure 5.3 shows the silicon masters

and their replicas in PDMS. Figure 5.3 are SEM micrographs of (a) a fabricated 1D grating

with period of 2.0 µm in silicon and (b) its replica in PDMS; (c) a fabricated array of

hexagonal apertures with hexagon side dimension 20 µm in silicon and (d) its replica in

PDMS; and (e) a fabricated array of microgratings with period of 2.0 µm in silicon and

(f) its replica in PDMS. Depths were measured for replicated samples using the SEM

technique and it was found to be 950 nm as well.

5.2.2 Diffraction patterns of replicated structures

Figure 5.4 shows the optical diffraction patterns for (a) 10 µm hexagonal apertures, (b) 20

µm hexagonal apertures and (c) multi-microgratings with 2 µm period. Their respective
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Figure 5.2: PDMS replicas of samples. 1D grating replicas with periods of (a) 0.5 µm and
(b) of 2.0 µm. Hexagon aperture replicas with side dimension (c) 10 µm and (d) 20 µm.
(e) and (f) Replicas of multi-micrograting samples with 2.0 µm period.

silicon master diffraction pattern counterparts are shown in (d)-(f). As expected, the

replicated 3D structures look like the original masters but inverted. As per Babinet’s

Principle [67, 68], the diffraction patterns of an aperture plain and its complimentary

(inverted) plane are the same. As it can be seen in Figure 5.4, which shows the diffraction

patterns obtained from PDMS replicas and Si masters, the diffraction patterns are very

similar. In the case for replicas with the 10 µm sides, the pattern seems to lack the vertical

line that would be originated from the horizontal edges from the hexagonal apertures/

The vertical line can be seen to be missing from the SEM from PDMS replicas shown in
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Figure 5.3: Silicon masters and their PDMS replicas. (a) 1D grating with period of 2.0
µm in silicon and (b) its replica in PDMS. (c) Array of hexagonal apertures with hexagon
side dimension 20 µm in silicon and (d) its replica in PDMS. (e) Array of microgratings
with period of 2.0 µm in silicon and (f) its replica in PDMS.

Figure 5.2. The zeroth order, transmitted beam does not seem to have such high intensity

as that found in Si masters, so it was not necessary to let that go through a hole in the

screen where the diffraction patterns were projected.

5.2.3 Total TE Diffraction Efficiency

Using the integrating sphere method in transmission mode, the diffraction efficiencies for

samples with 1D gratings and multi-microgratings with 2 µm periods were determined.
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Figure 5.4: Diffraction patterns produced from PDMS replicas with patterns (a) 10 µm
hexagonal apertures, (b) 20 µm hexagonal apertures and (c) multi-microgratings with 2
µm period. Diffraction patterns of Si masters for (d) 10 µm hexagonal apertures, (e) 20
µm hexagonal apertures and (f) multi-microgratings with 2 µm period.

Samples were placed at the entrance port of the integrating sphere, allowing reflected

and backscattered light to leave the integrating sphere. The zeroth order transmitted

beam and diffracted beams were allowed to be collected by the integrating sphere. Then

the zeroth order power was measured independently and subtracted from the integrated

measurement to obtain total TE diffraction efficiency for the PDMS replicas.

Total TE diffraction efficiency was calculated for PDMS (n = 1.41) for 532 nm wavelength

light and at normal incidence, and was calculated to be 92.1%. The zeroth order beam

intensity was expected to have 4.9% of the total intensity of the incident beam. Zeroth

order beams were measured to be 5.6% and 7.8% for 1D grating and multi-micrograting

replicas, respectively. The zeroth order beams were subtracted from the integrating sphere

measurement and a total TE diffraction efficiency of 90.3% and 88.4% for 1D grating and

multi-micrograting replicas were calculated respectively. Both values were slightly lower

than the expected diffraction efficiency and it can be attributed to measurement error.

Also, transmitted zeroth order beams were found to be slightly higher than expected,
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suggesting that some efficiency could have been lost in the replcation process due to areas

not being completely separated as well as possibly from stretching of certain high density

features in the multi-micrograting case. The measured diffraction efficiencies in PDMS

were higher than for Si samples because of material properties and because of limited

reflection losses.

A novel PDMS embossing method was adapted to replicate the fabricated structures,

which created high fidelity replicas for patterns that had higher critical dimensions. For

samples with high aspect ratios or very small dimensions (sub micron), surface treatments

may be necessary to facilitate PDMS/master separation. Imprinting the patterns onto a

flexible, optically transparent substrate such as PDMS opens up the possibility for further

applications.



Chapter 6

Feasibility study of applications of multi-

microgratings

It was shown earlier that multi-microgratings have complex diffraction patterns that

arise from the interaction of the multiple periodic elements that are present in the multi-

micrograting design. These diffraction patterns are formed by the combination of the effects

of periodic grating lines, single and multiple apertures as well as the arrangement of those

apertures containing grating lines. Hence, the diffraction patterns contain information

regarding the interaction between the individual elements that form the multi-microgratings.

These cross-term interactions between the different periodicities opens the opportunity for

novel sensor applications.

In 1D gratings, the intensity is distributed between the 0th order and a few higher

order diffracted beams, which occur at very localized and discrete angular positions. In

the case of multi-microgratings, a significant portion of the intensity is also distributed

into multiple higher order diffracted beams, into the diffraction due to apertures and into

the periodic nature of the apertures.

Thus, by monitoring the position and intensity of the diffracted beams, the overall

diffraction pattern characteristics and intensity distribution from multi-microgratings

can be shown to be more sensitive to changes. Furthermore, as it was shown earlier,

multi-micrograting beams tend to be slightly narrower than their 1D grating counterparts.

Also, depending on the sensing configuration, they also interfere with each other at the

sensor plane, producing highly defined interference patterns.

Overall, the purpose of this chapter is to describe a feasibility study of possible
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applications of multi-microgratings which exploit the differences between 1D gratings and

multi-microgratings. Some phenomena presented earlier are revisited in order to use the

acquired knowledge to provide an explanation, such as the examples of multi-microgratings

in literature, color generation over wide angles. Also, a method that utilizes the complex

multi-micrograting diffraction pattern and their interference is described in the framework

of temperature sensing, which can also be further extended for other sensor applications

such as strain/stress sensing, vapor concentration detection and nanometrology, etc.

6.1 Application of multi-micrograting theory

6.1.1 Color generation over wide angles

An interesting problem to revisit is the idea that multi-microgratings can be used to

generate blue color over a wide range of angles, as it was theoretically implied in [8], such

as in Morpho butterfly wing scales. The wing scales are made up of periodic structures

that when interacting with white light, produce blue iridescent colors that arise from the

combination of diffraction and multi-layer interference from the periodic structures that

form them. The diffractive structures found within those scales demonstrated to have a

periodicity in the range between 400-500 nm. Assuming a periodicity of 440 nm, only light

with wavelength lower than 440 nm will be allowed to diffract at normal incidence. This

means that there would be a ±1 order for wavelengths below 440 nm. If the wavelength is

longer than 450 nm, then there would be no diffracted beams at normal incidence. As the

incident angle increases, however, longer wavelengths are allowed to diffract as well.

The same thinking can be applied to multi-microgratings with 440 nm period, where the

micrograting period produces the diffractive effects and the interfering multi-micrograting

beams produce the interference effects. To help visualize this concept, an FDTD simulation

was carried out using similar parameters as above (440 nm period multi-microgratings

illuminated with 450 nm wavelength light) at different incident angles. Figure 6.1(a)
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Figure 6.1: Demonstration of color generation over wide angles: FDTD simulation of
multi-microgratings (440 nm grating period, 34 µm micrograting separation) interacting
with 450 nm wavelength light (a) θi = 20◦, (b) θi = 40◦ and (c) (b) θi = 60◦ .

through (c) show multi-micrograting response at 20, 40 and 60◦ respectively. If incident

with white light, at normal incidence (not shown), only wavelengths of 440 nm or below

will produce diffraction.

The diffracted orders are labeled for guidance. As θi increases, both orders are seen to

rotate to the right. At lower angles, the dominant light is produced by the zeroth order

beam, while at higher angles, the light diffracted into the first order is dominant.
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Figure 6.2: Schematic diagram that illustrates multiple interference locations of first order
diffracted beams and zeroth order beams .

Furthermore, as it can be readily observed in Figure 6.1(b) interference fringes are

being formed by the interaction of the zeroth order of one micrograting and the first

order another one. It can be shown that with an arbitrarily long patterned sample, the

diffracted beam from one micrograting would interfere with the zeroth order of several

other microgratings. A schematic diagram of this concept is shown in Figure 6.2. The

paths for the zeroth order and first diffracted order are shown and their intersections are

marked to illustrate the regions where the beams would interfere.

To show that blue color is primarily generated, FDTD simulations were carried out for

multi-microgratings of 440 nm period, at a 30◦ incident angle as shown in Figure 6.3(a)-(c)

for wavelengths of 400 nm, 500 nm and 600 nm, respectively. The angles at which the m

= 1 diffracted orders occur are seen to be increasing. The intensity of the m = 1 diffracted

beams seem to be decreasing as wavelength increases. This example shows, qualitatively,

that the blue wavelengths would be more dominant if the devices were illuminated with

white light, thus producing brighter blue colors.

Additionally, the effects of wavelength on the diffraction efficiency were studied by

numerically computing the efficiencies for 440 nm period gratings using GSolver (which

uses the RCWA method) as it is shown in Figure 6.3(d). Silicon gratings were modeled with
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Figure 6.3: Simulated diffracted beams to understand the effects of wavelength on 440
nm period multi-microgratings for incident angle of 30◦ and for wavelengths of (a) 400
nm, (b) 500 nm and (c) 600 nm. (d) Calculated first order diffraction efficiency for
multi-microgratings of 440 nm period at different angles of incidence.

square facets and 200 nm deep trenches and the incident angle was varied. It is possible to

see that as the incident angle increases from 0◦ to 80◦, longer and longer wavelengths are

allowed to diffract. However, the highest efficiencies were achieved at shorter wavelengths

between 300 and 500 nm. At higher angles of incidence, light with wavelengths between

500 nm and 700 nm is allowed to diffract, but their diffraction efficiencies are much lower

than those in the blue wavelengths.

A special note regarding diffracted beam divergence must be discussed. In the case of

multi-microgratings, each micrograting cell acts as an aperture. When diffracting through

an aperture, a plane wave will have a divergence half angle that can be calculated from

the first minimum of the single slit envelope function, which can be derived from Equation

1.6. By finding the solutions where the intensity drops to zero, it is possible to calculate

the divergence half angle for a plane wave that encounters an aperture of size D [69]. This

divergence is given by Equation 6.1:
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sinθ ≈ θ ≈ λ

D
(6.1)

It can be seen as D decreases, then the minima angular location increases. That is to say,

when incident on smaller apertures, the divergence would be larger. The diverging nature

of the diffracted beams has some consequences. In the far field, the diffracted beams from

multi-microgratings will spread out enough so that they will overlap, producing a uniform

blue color. For example, when a multi-micrograting with 440 nm period, 10 µm hexagon

side and 34 µm micrograting cell separation interacts with light of 450 nm wavelength

incident at 30 degrees, the divergence half angle can be calculated to be 4.5 mrad. This

means that a distance of 10 cm, the beam would have a diameter of 9 mm. Referring

back to the schematic diagram in Figure 6.2, it is possible to see that the diffracted beams

from a micrograting travel parallel to the diffracted beam of other microgratings. Thus, in

the far field, the separation between those beams would be the same separation as the

micrograting separation. For this example that would mean that the diffracted beams

from adjacent microgratings would be 34 µm apart from each other, and thus can be

clearly shown to be interacting with one another at a diameter of 9 mm. This results in a

uniform distribution of color. With 1D gratings, this would not occur as the divergence

would be much smaller, and there would only be one diffracted beam, rather than several

from different micrograting cells. Furthermore, the diverging nature of the diffracted

multi-micrograting beams means that as white light is incident on them, the zeroth order

light will diffuse in the far field, while due to the short period of the multi-microgratings,

would only allow blue colors to be diffracted. The resulting effect is that the white light

gets diffused, leaving behind the diffracted blue light, thus accentuating the blue color.
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6.1.2 Multi-microgratings in literature

Three particular cases in the literature presented in Chapter 1 refer to having used some

form of multi-microgratings. The knowledge that has been acquired for multi-micrograting

theory in this study was applied to those examples.

The first one was an array of circular zonal plates, with different grating periods inside

each circular cell and oriented at different angles using 4x4 cells [28]. An image of the

device was used to simulate the diffracted pattern using a Graphical Fourier Transform

approach. The device can be seen in Figure 6.4(a) and the simulated diffraction pattern

in Figure 6.4(b). Because each of the cells had a different period and different angles, the

diffracted spots are unique for each grating. There are no contributions from different

micrograting cells into the total pattern. There are several orders, each consisting of 4x4

matrices of diffracted spots. The first order beam in the simulated pattern is the really

bright area located near the center of the pattern. The second order is easier to distinguish

as the spots are not so close together. The circular diffracted spots take the shape of

the circular cell from which they originate. The study had issues differentiating between

certain orders of diffracted beams and it is possible to see why there was crosstalk between

different diffracted beams. Also, since there is empty space between cells as they cannot

be packed efficiently in this manner, it is possible to see a lot of scattered light around the

diffracted orders. For reference, the actual diffraction pattern observed by the study can

be seen in Figure 1.9.

The second example was found in [29] where circular microgratings of different periods

were arranged in different patterns to be used as color pixels for 3D displays. Figure 6.4(c)

shows an SEM micrograph from one of the devices in the study. It’s image was used to

simulate its diffraction pattern using the Graphical Fourier Transform method and the

results are shown in Figure 6.4(d). The circular microgratings had several periods, which

is why the diffracted orders are manifested in a similar grid. A considerable amount of
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Figure 6.4: (a) Circular micrograting cells in a square 4x4 grid for zonal wavefront sensing
seen in [28] and (b) its simulated diffraction pattern using the Graphical Fourier Transform
method. (c) Circular microgratings of different periodicities arranged in a triangular grid
used for a backlight illuminator found in [29] and (d) its simulated diffraction pattern
using the Graphical Fourier Transform method.

scattered light can be seen and that arises from the poor quality of the image used and due

to the space that exists between the circular microgratings. One more thing to note, this

simulation method cannot differentiate between aperture sizes being larger or smaller than

the wavelength. In the case of the reported study, the periods used were subwavelength,

therefore the effects of the diffracted beams at normal incidence would be non existent.

Only the center area would see the effects of the periodicities larger than the wavelength,

in this case, the separation between different apertures, and this is manifested by the

grid-like pattern observed in the simulations carried by the study using the the FDTD
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Figure 6.5: (a) Array of square multi-microgratings used in [27]. (b) A simulated diffraction
pattern using Graphical Fourier Transform method. (c) The exact solution using intensity
distribution functions.

technique, seen in Figure 1.10.

The third one was an array of square microgratings of different orientations, stitched

together to form a large area pattern [27] used for a grating based polarizer. First, a

Graphical Fourier Transform simulation is carried out using the pattern seen in Figure

6.5(a) and the result is shown in Figure 6.5(b). It is possible to see that the light is

being distributed to a zeroth order beam, as well as first order beams in the vertical and

horizontal directions. Due to the cells being arranged in a square array, the diffracted

orders separate into smaller beams, also arranged in a square grid. Because of the simplicity

in this design, the exact solution can be found in 2D using Equation 2.5, and it is used to

simulate the diffraction pattern and plotted in Figure 6.5(c). It is much easier to see the

first order beams that appear in the vertical and horizontal directions. For comparison,

Figure 1.8 shows the captured diffraction pattern by that study.

The device was used as a selective polarizer by allowing most light to be distributed to

the zeroth order beam or to the first order beams by means of controlling the etching depth.

An optimal depth was found to offer highest diffraction efficiency in one polarization and

lowest in the perpendicular polarization. Then by controlling the incident beam polarization

it was possible for the team to control the distribution of diffracted light, which is an

interesting application of multi-microgratings for polarization selection.
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6.1.3 Applications in beam splitting

As it was just presented, a possible application for multi-microgratings is in beam splitting,

for example for interconnects. If a particular arrangement is desired, it is possible to use

the theory that was discussed in this study. If a 4 beam arrangement is required, square

microgratings in a square grid can be used to separate the light into strong diffracted beams,

using a similar arrangement as that observed in Figure 6.5. An important consideration

in this case is the size of the incident beam. While it would be possible to use just 2

micrograting cells in a 2x1 grid or 4 micrograting cells in a 4x4 grid, those cells would have

to be relatively large (approximately the size of the diameter of the incident beam divided

by 2 or 4), very careful alignment would be critical so as to evenly control the power being

distributed to each of the 4 beams. If the incident beam is not exactly centered, then

different amounts of power would be distributed to the different orders. To mitigate that

effect, instead of using just 4 mirograting cells, by adding more cells, the device would

act as if it had multiple more periodic apertures and since the cell size is large, then the

diffracted spots generated by the aperture would be close enough to the expected location

and thus coupled in a more evenly distributed intensity.

Similarly, if a 3-beam arrangement was required, it would be best to use an array

of large triangular microgratings arranged in a triangular grid with 3 different periods,

parallel to one of the three sides of the triangle. Since 3 is an odd number. However, 3

micrograting orientations would produce 6 diffracted spots. A unit cell that could be used

is shown in Figure 6.6(a), with the different colored numbers used to differentiate the

three different periods. The unit cell was used to form a large area pattern such as the

one shown in Figure 6.6(b). The predicted diffracted pattern, showing the six diffracted

spots is shown in Figure 6.6(c). One possible solution to obtain 3 diffracted spots would

be to use a subwavelength period for the micrograting, and set the incident angle so that

only one of the diffracted orders is visible.
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Figure 6.6: Triangular array of microgratings. (a) Possible unit cell showing three different
orientations. (b) Large area pattern formed by repeating the unit cell. (c) Predicted
diffraction pattern showing six visible orders.

6.2 Temperature sensing with multi-microgratings

There are several temperature measurement techniques. The most common ones are direct

contact measurements such as those with thermocouples, which require physical contact

between the probe and the material being measured. Physical contact is not always

feasible in certain processing configurations and thermocouples are highly susceptible

to contamination. Conventional, optical noncontact measurement techniques such as

pyrometers, which measure blackbody radiation from a surface are relatively inaccurate,

as they are highly dependent on surface and material properties (i.e. emissivity, roughness)

and offer poor spatial resolution [70].

Newer methods for temperature sensing, such as microbolometers, thermal bimorphs,

thermal buckling based sensor arrays, Fabry-Perot structures and cantilevers have poor

spatial resolution and poor broadband operation [5]. Some novel designs such as thermally

actuated interferometric sensors have been reported based on device fabricated with PDMS

[71], long period grating fiber sensors with high temperature sensitivity [72, 73] and designs

with photonic crystals [74, 75] and plasmonic nanostructures [76]. These novel designs

are complicated to fabricate and may not be suitable for a simple, quick temperature

measurement.
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6.2.1 Temperature sensors based on thermal expansion of 1D

gratings

One dimensional gratings have been proposed as method for temperature measurements,

using diffracted beam angular measurement changes due to thermal expansion of the

grating substrates, like PDMS, silicon carbide, silicon and gallium arsenide [77, 78, 79].

Results are promising, but they lack a high spatial resolution and sensitivity.

Low-cost, simple methods such as those described in [71, 78] based on thermal expansion

of diffraction gratings offer a fast method to measure temperature. The angular deflection

of diffracted beams was monitored due to increases in temperature in Si-C (α = 6.5· 10−6

◦C−1) and PDMS (α = 277· 10−6 ◦C−1) and reported sensor configurations capable of

resolving ∆T = 5◦C and 0.01◦C, respective, have been reported. While α plays a big role

in the sensitivity of the system, for a Si (α = 2.6· 10−6 ◦C−1) [80] based sensor, sensitivity

in the order of a few ◦C can be expected.

To obtain better sensitivity (0.3-0.6◦C), more complicated configurations can be used,

such as those described in [70, 77]. Two independent probing beams at different incident

angles are incident on Si substrates with diffraction gratings, so that their diffracted beams

travel parallel to each other to a sensor. The difference in centroid position of the individual

beams is monitored and used to measure changes in temperature and rotation. While this

configuration offers a higher sensitivity, it has a complicated optical configuration that is

very sensitive to alignment.

Interferometric measurement methods using expansion of gratings can obtain further

improvements in sensitivity, which also require complicated setups with critical alignment,

cost and operation [81, 82, 83, 84]. It follows that using interferometric measurements

would then improve the sensitivity of optical temperature measurement using thermal

expansion of gratings.
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6.2.2 Temperature sensing with multi-microgratings

As the temperature of a solid is changed its physical dimensions are also affected. The

coefficient of thermal expansion (CTE), α, is a characteristic of each material and it is

a measure of the magnitude of the thermally induced change in dimensions [85]. This

coefficient is also dependent on temperature itself. The change of dimensions in an object,

∆L, is given by Equation 6.2. The equation states that the change in length of an object

∆L is proportional to the change in temperature ∆T , where L is the initial length and

the proportionality constant α is the coefficient of thermal expansion.

∆L = α ∗ L ∗∆T (6.2)

When surface relief gratings are present on a substrate, thermal expansion of the

substrate can induce changes in the periodicity of the gratings. A change in this periodicity

will result in a change in the diffracted angles, and thus, this technique can be used to

measure changes in temperature. The change in the periodicity (∆d) of a grating with

period d is given in Equation 6.3.

∆d = α ∗ d ∗∆T (6.3)

A change in temperature of the substrate will induce a change in the periodicity of

the micro-multigratings, and it will be dependent on the material itself (by means of the

coefficient of thermal expansion) and the change in temperature. If the grating periodicity

is changed, then it follows that the diffraction angle will also have to change. The accuracy

at which that angular deflection can be measured determines the measurable resolution of

the temperature change.

The mechanism showing the thermally induced changes in the diffracted angles is shown

in Figure 6.7. If temperature increases from T to T ′, this will cause a linear expansion in
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Figure 6.7: Visualization of changes in diffracted angle caused by thermally induced
periodiciy changes that affect the diffracted angle.

Figure 6.8: Schematic of screen projection of diffraction patterns.

the grating periodicity from d to d′. In other words, as ∆T increases, ∆d will also have to

increase. An increase in the grating periodicity will mean that the diffracted beams will

shift towards the 0th order. Since the thermally induced changes in the grating periodicity

will be relatively small, accurate measurement of the position of diffracted beams becomes

very important.

In order to measure the changes in the diffracted angles, ∆θ, a screen can be placed at

a distance D from the grating sample as seen in the schematic diagram in Figure 6.8.

The diffracted orders will be projected onto the screen, and the distance between the
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zeroth order beam and the first diffracted spot will be given by s. The relationship between

the diffracted angle θd, the distance to the screen D and the separation between the 0th

order and the diffracted order can be described by tan(θd) = s/D. As the distance to the

screen D is moved further away, the separation of the diffracted order and the 0th order

on the screen, s, will also increase. Thus, the measurements will be more accurate as D

increases.

The change in displacement ∆s can be measured, and an accurate way of measuring

that change is by monitoring the displacement using a CCD camera. The resolution of

the system is going to depend on the resolution of the optics and the ability of the system

to resolve measurements of displacement. Arbitrarily long sample to sensor D distances

can be used to measure a small change in the diffracted angle. Angular shift, ∆θd, is

however fixed. It is good practice to normalize the measurement with respect to sample

distance. Angular shift is also proportional to the change in temperature and the reference

angular position, so for a given change in temperature, a larger θd is preferable, which can

be achieved by using higher order diffracted beams or large angle of incidence θi of the

probing beam.

As an example, a simulated change in dimensions ∆d is introduced to the diffracted

patterns of multi-microgratings as seen in Figure 6.9. The unaltered, ∆d = 0% pattern is

shown in Figure 6.9(a)-(f), where (a) is the contribution of the periodic aperture and (b)

its line profile; (c) is the contribution of the aperture shape and (d) its line profile; (e) is

the combined effect of the prior patterns to form the multi-micrograting pattern and (f) is

its line profile. A simulated change of ∆d = 10% is introduced, and the altered diffraction

patterns are shown on the right side of Figure 6.9. Figure 6.9(g)-(l) correspond to similar

patterns to those found in (a)-(f) but with the added ∆d = 10%. As ∆d is increased, the

individual lattice spots seen in Figure 6.9(b) shift slightly to the left as it can be seen in

Figure 6.9(h) due to the increased distance between neighboring apertures. Additionally,

the added ∆d causes the aperture to also change in dimensions, and the cross term showing
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Figure 6.9: Simulated diffraction pattern for an unaltered ∆d = 0% pattern (left) and
altered ∆d = 10% (right) pattern. (a) The lattice of spots formed by diffraction pattern
of periodic apertures and (b) Its line profile. (c) The aperture shape diffraction pattern
and (d) Its line profile. (e) The convolution of (a) and (b), which is the resulting multi-
micrograting pattern and (f) Its line profile. (g) through (l) show similar patterns and line
profiles for the altered pattern with ∆d = 10%. Red arrows are added for clarity.

interaction (marked with the red arrow in Figure 6.9(f) and (l)), are also affected by the

change in dimensions. They interact differently with the lattice of spots formed by the

periodic apertures. The net result is a change in not only the maximum position of the

diffracted spots but also their intensity. While the simulated 10% change in dimensions

is rather drastic, the principle still holds. Such an effect that arises from the cross term

interactions in multi-microgratings can potentially be used to monitor dimensional changes

in the diffraction pattern.

Peak to peak ratios can be used to monitor changes in intensity. Figure 6.10(a)

corresponds to a simulated diffraction profile where the first four peaks along a fixed θy
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Figure 6.10: (a) Profile of a simulated diffraction pattern showing Peak 1 through Peak 4.
(b) Ratio of Peak 2 to Peak 3. (c) Ratio of Peak 2 to Peak 4.

have been labeled Peaks 1 through 4. A simulation was coded to monitor the peak to

peak ratios. Figure 6.10(b) shows the peak intensity comparison between Peak 2 and Peak

3 and Figure 6.10(c) shows the peak intensity comparison between Peak 2 and Peak 4.

Both ratios were fitted to second order polynomials. It can be seen that they follow a

similar trend, albeit the Peak 2/Peak 3 ratio changes more dramatically as ∆d increases.

The interaction between the lattice spots and the hexagonal aperture can be seen to cause

intensity variations that can be used for different applications.

Use of multi-micogratings allows measurement of several parameters. If multi-micogratings

are present on the surface of a substrate, the absolute temperature of a substrate can

be determined if the CTE of the substrate and the periodicity of the multi-micograting

are known. Changes in the angular position of the diffracted orders can then be used

to determine changes in the periodicity, which in turn can be used to determine the

overall change in temperature of the substrate. This can be realized with gratings of

single orientations, but there are advantages to having multi-micogratings of multiple

orientations. By monitoring the diffracted angles, in the case of multi-micogratings, it is

possible to determine the spatial variation of temperature.

The size of the probing beam has a large impact on the measurement of this method.

If the probing beam is large in diameter but smaller than the overall size of the multi-

micrograting pattern, the diffraction pattern will be the result of the contribution of all the
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multi-micogratings. However, a smaller beam can probe the area covered by the repeating

unit of six hexagons. This pattern provides local information on the scale of the repeating

cell. If the probing beam is even smaller in diameter, it can be focused to only be incident

on a single hexagon, thus being able to determine the temperature of that particular area.

The spatial resolution of this method will be in part dependent on the individual size of the

hexagonal gratings. For probing beams that are larger than the muti-micrograting pattern

itself, and at the right sample to detector position, interference effects were observed which

create sharp, highly defined features.

An important characteristic of a sensor is its efficacy at resolving adjacent measurement

points, i.e. the resolution of the system. It is dependent on several factors such as the

sensor resolution, the range of measurement but most importantly the signal to noise ratio

(SNR). The SNR is tied to the contrast of the measurement (or fringe visibility) [86, 87],

and it is defined as the ratio of the signal value compared to the average noise of the sensor.

Features with high contrast can be more easily resolved, where contrast C is defined as the

interferometric visibility of the system as seen in Equation 6.4. One way to improve SNR

is to have a high contrast in the measurement as to compared to the noise level, but what

ultimately determines the resolution of a system is going to be the spatial dimensions of

the high contrast features. Assume two Gaussian features of equal intensity of 200, ideal

contrast of 1, but with different FWHMs as seen in Figure 6.11, where the blue curve has

a FWHM that is half of the black curve. For a given change in displacement along the X

axis of both curves, since the blue curve is sharper it will more readily be able to resolve

that particular change, as long as it is higher than the SNR of the system.

C =
Imax − Imin

Imax + Imin

(6.4)

Prior, in Chapter 4, it was shown that the measured FWHM of a multi-micrograting

diffracted beam was narrower than that for a 1D grating, which suggests that carrying out

the measurement with a multi-micrograting beam would provide better results.
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Figure 6.11: Comparison of resolution of Gaussian features of similar intensity, contrast
but different feature size.

Sensing with interference effects in multi-microgratings

In addition to being narrower, under certain conditions, the multi-micrograting diffracted

beams can be allowed to interfere at the sensor plane, producing high contrast, sharp

fringes. Figure 6.12 illustrates this effect. If we assume the diffracted beam from a 1D

grating of FWHM = 560 µm such as the one previously observed for a 1D grating seen as

the black line in Figure 6.12(a), a typical 45 µm displacement that causes it to shift to

the red line can be measured. One way to quantify that measurement is to look at the

differential signal DS given by Equation 6.5, where T1 and T2 are the original and shifted

signals respectively. The differential signal of Figure 6.12(a) can be seen in Figure 6.12(b).

A maximum change of around ±11% is observed in the differential signal.

DS = 100% ∗ (
T2

T1
− 1) (6.5)

For comparison, if the beam were instead narrower, that maximum change in the

differential signal would be greater, such as in the case for multi-microgratings. However,

as shown earlier, if the beam that is probing the grating sample is expanded so that it
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Figure 6.12: Simulated 45 µm displacement in (a) 1D grating Gaussian signal and (c)
multi-micrograting signal with interferometric fringes with 90 µm periodicity. (b) and (d)
represent differential changes in the signal to visualize strength of measurement.

is larger than the total grating size, at a similar sample to sensor distance and due to

their proximity, multi-micrograting beams were observed to interfere with one another,

producing fringes. Figure 6.12(c) simulates interference fringes with equal contrast but

much sharper than the beam of Figure 6.12(a) and of 90 µm period. It is represented by

the black T1 line, noting the difference in spatial scales. In the ideal case, a half period

displacement of 45 µm exemplified by the red curve would produce the maximum change in

the system’s differential signal, as it can be seen in Figure 6.12(d). The differential signal

can be found to have a maximum change of 100%. While this is an ideal case scenario, it

is clearly observable how utilizing the interference effects observed on multi-micrograting

diffraction patterns, which do not appear on 1D grating diffraction patterns, can much

more readily utilized to carry out measurements.
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Interference sensing with phase changing method

To more accurately measure changes in displacement using interference fringes, a phase

can be calculated for the reference image at T1 and at T2 for the example seen in Figure

6.12. The computed phase difference, ∆φ, can be used as a metric for calibration or

measurement. As it can be seen from Figure 6.12(c) and (d), since a half period was chosen

as the displacement, the phase difference between T1 and T2 is π. A short simulation was

written in MATLAB that calculates the phase difference ∆φ [88]. To obtain the phase,

Fourier Filters were applied to isolate one of the periodic frequencies of curves T1 and T2,

a wrapped phase is calculated and unwrapped and the difference in phase between the

reference image and the changed image are calculated. Since the fringe period was chosen

to be displaced by a half period, the calculated phase is π.

A much more sensitive case would be when directly looking at the interference of two

diffracted multi-micrograting beams and having the angle they intersect, as if by induced

by temperature changes. The idea was previously discussed in Chapter 2, where it was

proposed that by counting the number of fringes and calculating the fringe period when

the diffraction angles were changing. We can utilize the phase change technique just

presented and run an FDTD simulation of interfering beams. Two micrograting diffracted

beams, separated by 30 µm, are allowed to interfere and form interference fringes. They

are diffracting at angles of ±32◦. The selected parameters are typical for the devices in

this study. The illuminating source was light with 532 nm wavelength. The diffracted

angle θd (or interference half-angle θint/2, as they can be shown to be the same angles) was

simulated to increase from 32◦ to higher angles at different increments, as if temperature

were decreasing in the sample. As a reminder, as temperature in a sample decreases, the

sample dimensions decrease. Inherently, the grating separation decreases, which in turn

cause the diffracted angles to increase.

The FDTD simulations were allowed to run and reach steady state. Instead of looking
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Figure 6.13: Effects of decreasing temperature, causing an increase in the diffracted angle
(or interference half-angle) from 32 to 33◦, shown as red circles fitted to a blue best fit line.

at how much the fringes are moving, the phase change ∆φ is calculated with respect to

the reference beams at 32.0◦ (∆φ=0). The phase change is calculated for each increment

of 0.1◦ up to 33.0◦. The plot for the phase change ∆φ as a function of the interference

half-angles is shown in Figure 6.13 as the red circles fitted to a blue linear trend. The initial

condition at a half-angle of 32◦ is on the top left corner of the plot, and as temperature

decrease is simulated, the phase change moves downwards to the right.

While the trend shown is very clearly linear, a change in the interference half-angle of

a whole degree, and assuming a silicon sample, corresponds to a change in temperature

∆T of over 1100◦C, which is not very useful. However, this technique can be shown to be

very sensitive. Different increments in interference half-angles ∆θint/2 were selected to

understand the sensitivity of the phase change technique and the results are plotted in

Figure 6.14 for increments (a) ∆θd = 1x10−4◦, (b) 1x10−5◦ and (c) 1x10−6◦. The R2 values

for the fitted curves are shown as well. The linear trend remains for all cases. The R2 are

for the two increments in Figure 6.14(a) and (b) are very high, indicating a good fit of

the trend to the data. It can be said that differentiating two adjacent measurements at

these deltas would accurately differentiate them from one another. In the third case, for

∆θint/2=1x10−6◦, the actual captured values (red circles) are seen to be deviating from the

linear trend. At this point, it is still possible to differentiate two adjacent measurements.
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Table 6.1: Summary of phase changing technique sensitivity

∆θd ∆T ∆φ per step R2

(◦) (◦C) (rad)
10 1100 -0.4 1

1*10−4 1.1 -0.0004 0.99929
1*10−5 0.11 -0.00004 0.99792
1*10−6 0.011 -0.000004 0.94576

At lower values of ∆θint/2, the ability to distinguish two adjacent measurements would be

lost. The resolving capabilities of this method are summarized in Table 6.1.

Due to the nature of the process, an ambiguity as to the direction of the phase shift is

introduced since the phase shift is periodic and a 2π shift is the same as a 0 π shift. Due

to that ambiguity, errors can be made when calculating the phase. In this example, a 2π

shift corresponds to a full 90 µm shift, but the calculated phase can result to be multiples

of ±2π.

A solution is proposed, which uses both the high dynamic range and low resolution of

1D grating displacements and also the low dynamic range, high resolution of the phase

change mechanism of the interference fringes caused by the multi-microgratings to obtain

a high dynamic range, high resolution sensing method that would otherwise be impossible

with just 1D gratings.

Using 1D gratings in sensing applications was shown earlier to have some advantages.

Because multi-micrograting optical properties are the combined effect of the elements that

compose them, the sensing current method shares some of the conventional 1D grating

advantages as well as helps mitigate some of the issues. The advantages of using multi-

microgratings is summarized below, which set them apart from other optical temperature

measurement techniques.

1. Noncontact.

2. Real-time.
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Figure 6.14: Simulation of effects of decreasing temperature, causing an increase in the
diffracted angle (or interference half-angle) at three different ∆θint/2 separating each
measurement step, of (a) 1x10−4◦, (b) 1x10−5◦ and (c) 1x10−6◦.

3. High dynamic range/ high resolution by combining displacement measurements of

large features that behave as 1D grating spots and sharp features present from

allowing multi-micrograting beams to interfere with each other.

4. Capable of localized micron scale measurements by probing different areas of multi-

microgratings.
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5. Simple architecture and alignment, requiring only a laser, a substrate with multi-

micrograting patterns and a camera.

6. Capable of measuring changes in variety of substrates such as transparent and opaque

with low or no susceptibility to surface emissivity or conditions, flat or curved as long

as periodic elements can be fabricated.

7. Analogous technique can easily be adapted for stress/strain, displacement or rotation

measurements.

6.2.3 Experimental description of multi-microgratings in tem-

perature sensing

To test the feasibility of temperature sensing using multi-microgratings, the experimental

setup shown in Figure 4.10 was slightly modified to include a hot plate and is shown

in Figure 6.15. The incident angle and sample to sensor positions were estimated from

photographs of the experimental setup. 1D grating and multi-micrograting samples with 2

µm periodicities were placed and slowly heated to different temperatures to observe changes

in the diffraction pattern as a function of temperature. The optional beam expander was

used to modify the incident beam size so that adjacent beams in multi-microgratings could

interfere with each other.

The diffracted beams were captured by the CCD sensor and analyzed for changes.

Average RMS noise of the CCD sensor was measured using MatLab by analyzing the

mean and standard deviations of several captured signals and it was found to be 5.9%,

with a range between 4.5% to 10.4%. It is established that if a measured signal is below

the average noise of the sensor (SNR≤1), then a change cannot be resolved.

Temperature of the hot plate (Corning Digital Hot Plate) was calibrated to the nominal

reading in the device controls with a k-type thermocouple over several cycles, and such

calibration can be seen in Figure 6.16. Additionally, a pyrometer based infrared ther-
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Figure 6.15: Experimental setup for temperature change experiments.

mometer (Fluke 568) was used on the hot plate to verify temperature readings. During

experiments, temperature was carefully monitored with the attached thermocouple and

infrared thermometer.

6.2.4 Results of temperature sensing with multi-microgratings

For proof of principle, thermally induced changes in diffraction patterns were observed

for different sensor configurations. A silicon sample with 1D grating with 2 µm periodic

lines was exposed to temperature variations between room temperature and 133◦C. The

sensor was placed 48 cm away. The first order diffraction pattern area near the first order

was monitored. Typically 5 measurements were carried out for each temperature and the

centroid position of the diffracted beam was measured. A plot of these changes can be

seen in Figure 6.17(a). The changes in the diffracted angle induced by the changes in

temperature can be seen to closely related to the expected changes, calculated by using

the parameters given earlier for Si samples. A linear regression fit to the data shows an

expected change of 4.09 µm/◦C for this sample to sensor distance of 48 cm. This kind
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Figure 6.16: Calibration for hot plate setup for temperature experiments. Thermocouple
measurements were compared with infrared thermometer to ensure proper calibration.

of measurement exemplifies the range and resolution of the system and it serves as the

standard to which sensor configurations with multi-microgratings can be compared.

A similar measurement was carried out for a sample with multi-microgratings of the

same periodicity at a sensor distance of 35 cm. The observed changes can be seen in Figure

Figure 6.17(b) and results closely agree with the expected change of 2.93 µm/◦C. When

normalized to a sensor distance of 48 cm by a ratio comparison, the expected change is

calculated to be 4.07 µm/◦C , it is possible to see that the changes induced by both 1D

gratings and multi-microgatings to be similar in magnitude, however, as explained earlier,

multi-micrograting features were shown to be slightly narrower in diameter, so carrying

out the measurement with multi-micrograting beams can offer better resolution.

In order to calculate system resolution and to visualize how using multi-microgratings

would be beneficial in the described sensor configuration, images of displaced diffraction

beams are shown in Figures 6.18 and 6.19 for two cases. Case 1 is with a measurement
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Figure 6.17: Measured and calculated changes in first order diffraction spot for (a) 1D
gratings and (b) multi-microgratings.
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using a 1D grating and Case 2 is using multi-microgratings. Displacement in both cases

is measured to be 65 µm. It should be noted that the sample to sensor distances was

different for each of the two cases, as it will be discussed below.

Case 1: 1D gratings (beam not expanded)

Figure 6.18(a) and (b) shows the first order diffracted beam positions at temperatures

of 30◦C and 60◦C for a sample with 1D gratings at a sample to sensor distance of 48 cm.

The reference (30◦C) beam is shown as the solid line in Figure 6.18(c). A contrast value of

0.988 (Imax = 175, Imax = 1) is calculated using Equation 6.4. The displaced beam profile

is plotted in Figure 6.18(d) as the solid line and the reference beam appears as the dotted

line. The differential change produced by the measurement can be seen in Figure 6.18(e).

A maximum change of 12.6% was observed, which is still above the measured 5.9% average

noise in the sensor. The effective observed change which can be seen to be high enough to

resolve the measurement when compared to the average noise (5.9%) of the sensor. The

SNR is calculated to be 2.13. Under the current parameters, a minimum displacement

of 30.43 µm would be necessary in order to resolve the change, which corresponds to a

14.04◦C minimum resolvable temperature.

Case 2: Multi-microgratings (expanded beam)

A sample with multi-micrograting pattern was exposed to temperature variations and the

first order diffracted beam using an expanded probing beam was measured as shown in

Figure 6.19(a) for room temperature (30◦C) and (b) 100◦C at a sample to sensor distance

of 20 cm. As it can be seen, diffraction fringes that are produced by expanding the probing

beam cause the diffracted beams to interfere with each other, producing the high contrast

lines in the regions of overlap. The contrast of the fringes is calculated to be 0.990 (Imax

= 203, Imax = 1), which is of similar magnitude to that in the case of the sample with

1D gratings. However, due to the sharpness of the feature, a smaller change can be more
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Figure 6.18: Diffracted beam displacement for 1D gratings at (a) 30◦C (reference) and
(b) 60◦C. (c) shows the reference beam profile and (d) shows the displaced beam as the
solid line and reference as the dotted line for clarity. (e) shows the differential signal that
results.

readily resolved. Figure 6.19(c) shows the profile of the room temperature measurement

as the solid line, which has been smoothed (Gaussian filter) to more easily visualize the

fringes and their periodic nature. Figure 6.19(d) shows the displaced diffracted beam

at a temperature of 100◦C as the solid line, while the dotted line represents the room

temperature reference measurement. Arrows are added to clarify how the displacement

occurred. The differential signal produced by this measurement is shown in Figure 6.19(e),

where the maximum observable change can be seen to be produced at a position around

300 µm in the sensor, and it is around 51%. The SNR is calculated to be 8.6, which is

much higher than that for 1D gratings. Under this configuration, the sensor would be able

to resolve a minimum displacement of 7.5 µm, which corresponds to a minimum ∆T of

8.07◦C. A phase change ∆φ is calculated to be 1.52, which corresponds to the expected π/2
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Figure 6.19: Diffracted beam displacement for multi-microgratings at (a) 30◦C (reference)
and (b) 100◦C. (c) shows the reference beam profile and (d) shows the displaced beam as
the solid line and reference as the dotted line for clarity. (e) shows the differential signal
that results.

shift for this particular displacement. A phase calculation can easily assign a numerical

value to the displacement and can be used for alignment and characterization purposes.

Due to the different sample to sensor distance in Case 1, the resolution measurement

of Case 1 is normalized to the sample to sensor distance of 20 cm and it is calculated to

be 33.6◦C, while for Case 2 it remains as 8.07◦C. Case 2 shows a resolution that is 4.2

times higher than that for Case 1. The range of such a system under this configuration,

normalized to a sensor to sample distance of 20 cm, is between 30 and 140 ◦C.

A third case is considered, using multi-microgratings with interfering multi-micrograting

beams. As shown earlier in this chapter, this phase changing technique is very sensitive to

changes in angular displacement and fringe periodicity. The current equipment (camera
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Table 6.2: Summary for 1D gratings and multi-microgratings

Parameters Case 1 Case 2 Case 3
(1D Gratings) (Multi-microgratings) (Multi-microgratings

with interference)

Contrast (AU) 0.988 0.990 0.990

SNR (AU) 2.13 8.6 8.6

Sample-sensor 48 20 10
distance (cm)

∆T (◦C) 30 70 <0.1

Adjusted min. resolvable 33.6 8.07 <0.1
∆T (◦C)

Improvement (AU) NA 4.2x 300x

with poor resolution, setup) and sample size (1.5 mm samples) prevent from experimentally

demonstrating this effect. With the current samples of 2 µm grating period, 34 µm

separation between multi-microgratings and 1.5 mm in size, the maximum distance at

which beams would interfere would be about 5.6 mm, which is not ideal to position a sensor

to observe the interference patterns. At that distance it would be difficult to differentiate

between beams, and even less to be able to resolve any interference effects. A more usable

sensor distance would be in the order of 100 mm, which would correspond to samples with

dimensions up to 27 mm if maintaining grating period, micrograting separation, contrast,

SNR and range. It was proven however, through simulation, that it would be possible to

use the interference effects of multi-microgratings to resolve up to 0.011◦C. That ability to

resolve such small changes in temperature would be over 3054 times better than with 1D

gratings at a 0.011◦C change in temperature.

Table 6.2 summarizes the parameters and results for Cases 1 and 2 and the theoretical

limit using interference effects (Case 3).
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6.3 Discussion

A method that uses the thermal expansion of 1D gratings and multi-microgratings was

described to measure temperature changes. Several key aspects show these clear im-

provements. Beams that are narrower for multi-microgratings allow for a better sensor

resolution. High contrast fringes that are produced only in the case of multi-micrograting

diffraction patterns can be used to increase the resolution of the system by 4.2 times.

The improvement in resolution can be achieved without a decrease in the dynamic range

of the sensor configuration. With 1D gratings, in order to improve the resolution of a

system with a similar configuration it would require the sample to sensor distance to be

increased, at the cost of a reduced field of view (range). In the case of the interferometric

measurement using multi-microgratings, the same range can be achieved but at a much

higher resolution.

Furthermore, the tested configuration is simple and cost-effective. A simple webcam

is sufficient to capture the diffracted beams. No critical alignment is necessary, which is

often the case with interferometric setups requiring multiple beams. A low power laser

beam (5 mW) can be used as the probing light source. One can argue that instead of using

multi-microgratings, a large period 1D grating could be used in order to have multiple

diffracted beams. A 1D grating with a period of 10-20 wavelengths ((i.e. d = 50-100 µm)

would produce multiple diffracted orders that could be interfered on the sensor plane, but

since the diffraction efficiency of higher order 1D grating beams is much lower, a higher

power laser may be necessary for proper sensor operation. One of the key advantages of

multi-microgratings is the fact that the diffraction efficiency can be tailored to be enhanced

for larger angles because of the multi-micrograting low period (i.e. 2 µm) and diffraction

efficiency that distributes most of the power to the area of the pattern. This corresponds

to first order diffracted beam, but which is further separated into more spots because of

the periodic nature of the apertures.
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Further improvements could be made by using a better, lower noise camera with a larger

sensor and higher dynamic range or by using better alignment techniques. The thermal

expansion method measures changes in the diffracted angle due to induced changes in

dimensions by temperature differences. The method can easily be extended for sensing

displacement, stress/strain and rotation. Micro-multigratings can be incorporated into

substrates using different methods. Using photolithography, for example, these structures

could be made out of photoresist or etched onto the substrates surface and the temperature

could easily be determined. Also, the probing area could be made out of polymers that

contain the micro-multigratings, such as PDMS, that could be glued or attached to the

surface of the substrates easily, and temperature measurements could be carried out.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The objective of this work was to understand the fundamental optical properties of multi-

microgratings. In Chapter 1, it was established that the theory to explain the complex

optical properties of multi-microgratings was incomplete. The diffraction patterns produced

by structures with multiple periodicities had not been properly understood in previous

work. In order to better understand the possible applications of multi-microgratings, other

effects such as interference and parameters like efficiency, beam characteristics among

others were required to be studied.

Proper simulation of optical properties of multi-microgratings like their diffraction

patterns, efficiency and interference effects was of critical importance. In Chapter 2,

through analytical and graphical techniques the diffraction patterns of multi-microgratings

were found to form from the contribution of the different periodic elements that form the

multi-microgratings, which are the periodic lines (1D gratings), the hexagonal aperture

shapes of the multi-micrograting cells and the arrays that periodically arranged those

apertures into large area patterns. By deconstructing the different periodic elements that

form the multi-microgratings it was possible to understand how each of those elements

contribute to the final diffraction pattern. In short, the interaction of the incident light

and the multi-microgratings can be understood as follows: the light first encounters the

periodic 1D grating lines and gets separated into diffracted orders as they would in a

1D grating. Second, the light then interacts with the hexagonal apertures. Third, the

light then interacts with the periodic apertures. The resulting diffraction pattern has high

126
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intensity arrays of diffracted spots near the 1D grating locations, their intensity is tailored

by the envelope function that comes from the interaction with hexagonal apertures and

further separated into periodic spots that are formed from the lattices that form the large

area arrays. It was also shown that complex periodic structures can be broken down into

their constituting elements for easier understanding of how their diffraction patterns are

formed, but suggesting that there is a strong interaction between the different periodic

elements. The interaction gives rise to areas of high intensity appearing as highly defined,

sharp features. These features could prove to be very sensitive to changing conditions

in the samples themselves. Such idea can be exploited in multiple applications such as

strain or temperature sensing where both anisotropic and isotropic changes in the sample

dimensions could lead to very defined changes in a diffraction pattern. Two simulation

approaches were presented. A Fraunhofer intensity distribution approach was developed

in order to mathematically explain structures with multiple periodic elements. This

approach is useful when mathematical expressions of the apertures can be easily derived,

such as regularly shaped aperture arrays. Also, the simulations can be targeted to only

selected areas of interest with great detail, allowing for high resolution images of any area

of the simulated diffraction pattern. This first approach provides the exact solution to

multi-microgratings. A different method, a graphical Fourier Transform approach, was

implemented to simulate the diffraction patterns of more complex structures. Diffraction

patterns of such structures can be simulated by obtaining their graphic Fourier Transform,

but the diffraction patterns must be spatially calibrated. Furthermore, such technique only

applies to square images with pixel counts that are in powers of 2. Memory limitations can

prevent simulating diffraction patterns for very large images. This graphical approach can

be further optimized to run in parallel environments to overcome the memory limitation

issues. It has proven to be a very useful tool to explain the formation of diffraction patterns

of complex periodic structures like arrays of hexagonal microgratings, but it is also possible

to use such approach to simulate the diffraction patterns of quasi-periodic and non-periodic
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structures as well. However, both approaches were only able to explain the interaction of

light with multi-microgratings in the far field, as both provide solutions to the far field

patterns. In order to better understand near field patterns and other optical effects such

as interference between beams, an FDTD method was used. This method is ideal to

study the optical interactions between light and matter by studying the time-evolving EM

fields. The FDTD technique can be developed for very specific applications, such as to

model diffraction efficiency in these structures, but it was found that the best technique

to model diffraction efficiency of multi-micrograting was using the RCWA technique. This

technique solves light interaction with periodic structures, although it works better with

fully periodic structures or at best 2D systems with only a few periodicities such as square

gratings. In the case of multi-microgratings, the technique worked well since the majority

of the contribution to the diffraction efficiency arises from the 1D grating portion of the

structures, which correspond to most of the area that the multi-microgratings encompass.

To summarize, by studying all the various techniques it was possible to divide the problem

of explaining the optical properties of multi-microgratings into smaller problems. The

correct choice of technique would depend on the final use of the structures. Different

multi-microgratings can be tailored for different applications. The exact distribution of

light intensity can be carefully controlled by means of controlling etching depth, substrate

choice, grating period, micrograting cell size, coatings, etc.

In Chapters 3 to 5, presented work was focused on experimentally fabricating and

characterizing the optical properties of multi-microgratings and their respective polymer

replicas. Electron-beam fabrication of 1D grating structures, periodic hexagonal apertures

and multi-microgratings was carried out to individually characterize the contributiuons

of the different elements that make the multi-microgratings. High quality samples were

fabricated on Si using the fabrication procedure provided by Oak Ridge National Laboratory

facilities. The complex optical diffraction pattern generated from multi-microgratings has

been explained using an understanding of the optical principles that govern the diffraction
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from periodic structures. In summary, the diffraction pattern of multi-microgratings is

formed by convoluting the individual diffraction patterns of the individual periodic elements

that describe it: the hexagonal shape of the cells, the lattice that is formed with the

periodic hexagons, the 1D periodic grating lines oriented at six different orientations. This

convolution produces cross terms that have been explained. The micrograting diffracted

beam size seem to be slightly narrower than those for a similar 1D grating. Furthermore,

depending on the plane of observation, multi-micrograting diffracted beams can interact

with each other, producing high contrast interference fringes. Diffraction efficiency of multi-

micrograting samples was measured to be highly dependent on 1D grating parameters.

Low-cost method of replication has been demonstrated, and optical properties of replicas

have been compared to masters and found to be in agreement. The overall diffraction

pattern formation is independent of substrate, however, substrate selection was found to

be very important if maximum effifiency is required to go to a particular order or for a

particular application. Limitations with the presented replication method, for example

limitations on minimum feature size that can be replicated, could be overcome by studying

different replication schemes. A possible candidate would be nanoimprint lithography,

which has been used to replicate fine features in three dimensions and would be an ideal

way to generate large area substrates for certain applications of multi-microgratings.

Chapter 6 explored the application of multi-microgratings in a temperature measurement

scheme that improves on earlier optical, non-contact methods of temperature measurement

using 1D gratings. These methods use the idea that as a sample with 1D gratings is

heated, the induced thermal expansion shifts the diffracted position of the beams. One of

the limitations of such a configuration is that in order to increase the resolution of the

system, measurement range is often sacrificed since the detection plane must be moved

further away from the surface being sensed. Because of the profiles of multi-micrograting

beams, it is possible to increase the resolution of this method. Furthermore, due to the

possibility of having interfering beams, the resolution is increased by a factor of 300 (
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compared to making the measurement using ordinary 1D gratings, without sacrificing

the measurement range in the system) and would allow to resolve tenths of degrees of

changes in temperature. This measurement method was intended as a proof of principle

example on how these multi-micrograting structures can be utilized for measurements of

temperature, stress/strain, rotation and other forms of optical metrology of samples. The

method presented requires simple alignment and equipment, making it an attractive option

to a measurement where high speed, non-contact optical measurements are required. Using

the interference effect found inherent in multi-micrograting diffraction patterns, it was

shown that the resolution could be significantly increased to be able to resolve temperature

changes to tenths of degrees, without the need for special alignment or complicated setups.

This effect was shown to be existent at short distances to the substrates. To extend

the distance at which these interference effects are observable, multi-microgratings must

be arrayed to cover larger areas. The patterns studied were smaller than 1.5 mm in

dimensions, but having much larger patterns would be useful to see interference effects at

longer distances. Furthermore, to experimentally verify the resolution with the interference

effects, it would be necessary to have very stable equipment. With the equipment available,

it was found that small changes were difficult to identify due to variations in ambient

temperature. The CCD sensor that was used was very inexpensive, and because of that it

had poor optical resolution, framerate and stability.

There are several industrial processes that would benefit from sensors made with multi-

microgratings. There are two processes in glass manufacturing where temperature control

is extremely difficult but that highly affect the quality of the fabricated materials. One

of them is during glass etching in acidic and aqueous solutions. The etching process is

exothermic, and the etching rate is highly related to local sample temperature. Etching

times are typically in the order of seconds or minutes, but there is no way of inserting a

thermocouple or relying on processing parameters such as etch bath temperature to properly

extract localized sample temperatures. Furthermore, samples are submerged in acid. An
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optical method to accurately, quickly and capable of resolving sample temperatures in

this environment is very promising. Having multi-micrograting structures patterned into

glass before etching could be very valuable. Just by illuminating the structures when

samples are submerged in the etching bath, withouth complicated alignment it would

be possible to measure localized changes in temperature. This would ensure etching

uniformity. Analogously, another process that requires clever control of temperature is

during ion exchange to fabricate strengthened glasses. Ion exchange layers are formed by

submerging samples into dopant baths. Careful control of the ion exchange thickness layer

is paramount, especially with typical ion exchange glasses becoming thinner and thinner.

These are just two real world examples that would benefit from using multi-microgratings

patterned into samples in order to measure temperature.

For the first time, a thorough understanding of the optical properties and diffraction

and interference effects in multi-microgratings has been provided, which can be used

to tailor properties for different applications. These optical properties were simulated.

Samples with multi-micrograting structures were fabricated, characterized and replicated.

Experimentally observed interference of micrograting beams, producing sharp interference

fringes. Monitoring position and intensity of fringes allows for sensing applications, other-

wise not likely with 1D gratings. This simple method for temperature measurement was

presented, which increased resolution of the method by a factor of 4.2 ( without sacrificing

measurement range). Sensing can be achieved at a micron scale level with capability of

simultaneous multi-point detection, applicable to both isotropic and anisotropic changes.

Possible extensions of the current work are described in the following section.

7.2 Future Work

Further research needs to be done in order to study the various applications of these

structures, for vapor, temperature and strain sensing and for nanometrology, optical
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telecommuncations and spectroscopy. Key parameters that need to be well understood

include polarization dependent losses, dispersion, spectral resolution for such applications.

Spectroscopic studies of vapor and temperature sensing using multi-microgratings

Morpho butterfly wing scales have been used in vapor and temperature sensing applications

due to their unique optical properties [4, 5, 6]. These properties allowed for the possibility

of systematic monitoring of their reflectance spectra, as it was shown in Figure 1.2, when

illuminated with white light and exposed to different vapor concentrations and different

temperatures. The authors concluded that changes in the reflectance spectra due to vapor

concentration variations were due to a change in effective refractive index as analyte

molecules get trapped in the structures. Similarly, changes in reflectance spectra due to

temperature variations were thought to be caused by changes in the multi-layer interference

effects. Signature signals were observed for different vapors and different heating regimes.

Preliminary studies were carried out with multi-micrograting samples using white light

illumination in the experimental setups shown in Figure 7.1(a) and (b). White light from a

halogen source was used to illuminate samples and reflectance spectra were captured using

a USB Ocean Optics fiber spectrometer. Multi-microgratings were exposed to different

vapor concentrations from nitrogen vapor infused with different analyte molecules. A

systematic change was observed when the concentration of the analyte vapors was changed.

These effects are summarized in Figure 7.2(a) for 2 µm multi-micrograting samples subject

to differing methanol concentrations. The graph shows wavelength vs. differential spectra

at different vapor concentrations. The different curves represent changes from the reference

case (flow of methanol 0 sccm) to increasing methanol flow (20 sccm, 40 sccm, etc). One

possible explanation is due to the change in the effective refractive index in the structures

when different flow conditions are changed or changes in efficiency due to changes in the

effective trench depths. More work is required to properly understand this phenomenon.
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Analogously, when multi-micrograting samples were subject to temperature changes

when placed on a thermoelectric heater, reflectance spectra was observed to change

dramatically. Some preliminary results are shown in Figure 7.2(b). In this case, the

differential spectra was calculated for the difference between the reference case response at

room temperature to increasing temperatures up to 120◦C. Again, it is theorized that a

change in efficiency could be the cause of the different responses at different temperatures,

but more studies are required to confirm this idea.

In both vapor and temperature sensing experiments, the changes were observed to be

repeatable when cycled through different iterations. Signatures from these two experiments

must be further analyzed to understand precisely what causes the changes but it would

be possible to use these structures in such applications. Furthermore, sensitivity and

resolution must be determined for such experiments in order to prove their validity. A

better spectrometer with higher dynamic range and resolution would be required in order to

more accurately monitor the changes. Furthermore, simulation of these spectral signatures

would be a possible area for future work, either using the FDTD method described here or

other methods to solve for the optical properties of periodic structures (such as RCWA).

Understanding the proper interaction between the different periodic structures and vapor

analytes can be modeled to be able to design better structures suited to a particular

application.

Polarization dependence

Similar structures to our hexagonal multi-microgratings composed of square micrograting

cells with 2 orientations were described in the literature review section in Chapter 1. Those

structures were used as a low reflectivity, low loss polarizer, and this was achieved by

having a subwavelength period for the microgratings and a larger than the cell separation.

Structures fabricated in our study had similar features, multi-microgratings with 500 nm

period and 10 µm sides. This type of structure may work well for low IR wavelength
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polarizer applications since even a greater majority of the light is distributed to the

diffracted beams rather than the zeroth order. Further research is required in order to

prove these effects.

Strain/stress sensing

A temperature measurement method was devised earlier which relied on the shift of

diffraction angles induced by temperature changes in samples with multi-microgratings.

Analogously, such technique can be extended for stress/strain sensing. The angular

deflection occurs in near real-time , making this method useful for situations where the

need for an in-situ stress/strain measurement is required. For example, as theorized in [89],

these structures could be placed in high stress areas on the wings of aircraft to monitor

wing deformations accurately and quickly.

Nanometrology

A series of works cited in [38, 39, 40] utilized the diffraction patterns of penrose quasi-

periodic structures for nanometrology applications. The intricate diffraction patterns

produced by those structures had a high number of periodic and quasiperiodic elements

that produced very intricate, densely populated diffraction patterns. By monitoring those

patterns using sensitive CCD cameras, they were able to generate algorithms that can use

the diffraction patterns as optical rulers. Only diffraction effects were considered for that

study, but multi-beam interference fringes could be further used to refine these optical

rulers. A similar study could be carried out using multi-microgratings as they incorporate

diffraction patterns of multiple periodicities that can be tailored to have very densely

populated features.
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Figure 7.1: Experimental setups for monitoring changes in reflectance spectra of multi-
microgratings (a) due to vapor concentration variations and (b) due to changes in temper-
ature.
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Figure 7.2: Preliminary results demonstrating changes in reflectance spectra of multi-
microgratings (a) due to methanol concentration variations and (b) due to changes in
temperature.
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This paper presents the results of optical diffraction properties of multimicrograting structures
fabricated by e-beam lithography. Multimicrograting consist of arrays of hexagonally shaped cells
containing periodic one-dimensional (1D) grating lines in different orientations and arrayed to form large
area patterns. We analyzed the optical diffraction properties of multimicrogratings by studying the indi-
vidual effects of the several periodic elements of multimicrogratings. The observed optical diffraction
pattern is shown to be the combined effect of the periodic and non-periodic elements that define themulti-
microgratings and the interaction between different elements. We measured the total transverse electric
(TE) diffraction efficiency of multimicrogratings and found it to be 32.1%, which is closely related to the
diffraction efficiency of 1D periodic grating lines of the same characteristics, measured to be 33.7%. Beam
profiles of the optical diffraction patterns from multimicrogratings are captured with a CCD sensor tech-
nique. Interference fringes were observed under certain conditions formed by multimicrograting beams
interfering with each other. These diffraction structures may find applications in sensing, nanometrology,
and optical interconnects. © 2015 Optical Society of America
OCIS codes: (070.2575) Fractional Fourier transforms; (050.1950) Diffraction gratings; (050.1960)

Diffraction theory.
http://dx.doi.org/10.1364/AO.54.001808

1. Introduction

The field of biomimicry examines naturally occurring
designs and exploits these designs for beneficial pur-
poses. Natural optical structures have been used for
several applications, so low-cost methods to replicate
these designs is important [1]. Several studies have
been reported that try to replicate the optical effects
found in morpho butterfly wing scales for sensing
and other applications [2–4].

The actual wing structures in morpho butterfly
scales are very complex and they generate an irides-
cent, bright blue color at large viewing angles due to
their intricate design. The design uses the effects of
diffraction and interference to generate the color, but
it is made up of a complex architecture of three-
dimensional (3D) microribs and lamellar reflectors

that are hard to reproduce. Wing scales have been
used as templates for replication. Transparent metal
oxides were deposited on the wing scales and heated
to remove the wings and crystallize the films, produc-
ing similar structures [5]. They were used to make
chemical sensors. Focused ion beam and chemical
vapor deposition were used to produce 3D structures
similar to those found in the butterfly wings [6].
However, these reported methods require compli-
cated equipment and procedures to fabricate the
structures. They also sacrifice actual wing scales,
which prohibits them from widespread applications.
It also is hard to fabricate or reproduce large area
devices with optical properties similar to the butter-
fly wings. Therefore, more easily fabricated devices
with optical properties similar to these wing struc-
tures are needed.

Wong et al. [7] describes structures that, despite
being different in their architecture, had optical
properties similar to the wing scales. Their study
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focused on fabricating devices that appeared blue
over a wide viewing angle, displaying the effects of
diffraction and interference with properties similar
to the iridescent wings. They achieved this effect
by fabricating a planar array of microgratings that
consisted of hexagonally shaped individual micro-
gratings in different orientations. When illuminated
with light, these structures produced blue iridescent
color and complex diffraction and interference
patterns.

A more thorough understanding of the diffraction
properties of multimicrogratings is necessary for sev-
eral reasons. The diffraction pattern generated is
more complex than the simple grating equation
can describe. It is therefore necessary to fully under-
stand what causes the diffraction pattern frommulti-
micrograting structures. The purpose of this study is
to understand, through design and experimental fab-
rication, the optical properties of complex diffraction
patterns and how they are formed. Furthermore, a
more thorough understanding of these structures
would allow the design and implementation of pos-
sible applications of multimicrogratings and similar
types of structures that generate complex diffraction
and interference patterns. Such applications include
vapor sensing [2], temperature sensing [3], strain
sensing, and optical nanometrology [8–10].

2. Theory and Design of Multimicrogratings

The grating arrays used in the current study contain
hexagonally shaped micrograting cells, which con-
tain grating lines with six different orientations,
and are arranged to generate large area patterns.
The six micrograting orientations are grouped in a
unit cell, shown in Fig. 1(a), that is repeated to

generate large area arrays. The hexagon side is de-
fined as s and micrograting period as d. Figure 1(b)
shows an array of micrograting cells, also referred to
as multimicrogratings. The multimicrogratings are
composed of hexagonally shaped micrograting cells,
which are arranged to form large area structures.

To fully understand the complex optical diffraction
pattern generated by multimicrogratings, it is impor-
tant to understand the contributions of the different
periodicities found in the design. The diffraction pat-
tern of large area multimicrogratings is formed by
the following individual elements, all of which can
produce different diffraction effects:

1. The hexagonal shape of the micrograting aper-
tures, as seen in Fig. 1(c).

2. The large area periodic structure produced
by the multiple hexagonal apertures, as seen in
Fig. 1(d).

3. The 1D gratings with different orientations, as
seen in Fig. 1(e).

4. The lattice produced by the replicating unit
cell containing the microgratings, as seen in Fig. 1(f).

5. The interaction between elements 1-4, as dis-
played in Figs. 1(c)–1(f).

The first two elements correspond to the hexagonal
nature of the micrograting cells. The hexagonally
shaped cells, Element 1, act as apertures and pro-
duce a typical diffraction pattern for a hexagonal
aperture. Element 2, the large area structure pro-
duced by the hexagonal cell arrays can be considered
a honeycomb lattice. Arrays of hexagonal apertures
also were chosen for fabrication because they will
help us understand the diffraction pattern from
the various elements in multimicrogratings.

The periodic micrograting lines oriented at various
angles (Element 3) produce diffraction effects like
those of a 1D grating. As such, those diffraction
effects can be explained by this grating equation:

d�sin θi � sin θd� � mλ: (1)

In this equation, d is the period of the grating. The
angles θi and θd are the angles of the incident and
diffracted beams, respectively, with respect to a sur-
face normal to the grating plane. The integer m rep-
resents the mode or order of diffraction and λ is the
wavelength of the incident light. Using this equation,
we can understand some properties of diffraction
from microgratings; for example, the angular posi-
tion of the diffracted spots and the number of
diffracted orders. However, the grating equation only
takes the contributions for the 1D component of the
multimicrogratings.

Six hexagonal microgratings with different 1D gra-
ting orientations are then arrayed into an oblique
lattice (Element 4) to form large area patterns.
Consequently, the generated lattice also produces
diffraction effects. The unit cell, depicted as a red
parallelogram in Fig. 1(b), is used to produce
the oblique lattice. The unit cell’s sides a and b

Fig. 1. (a) Micrograting repeating cell with six different orienta-
tions. s is the hexagon side dimension and d is the grating period.
(b) Array of multimicrogratings, with the red parallelogram defin-
ing the unit cell used to form the array, with sides a and b.
(c) Hexagonal shape of the micrograting apertures. (d) Large area
periodic structure produced by the multiple hexagonal apertures.
(e) 1D gratings with different orientations. (f) Lattice produced by
the replicating unit cell containing the microgratings.
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are related to the hexagon side dimension s.
Geometrically, it can be shown that the unit cell
dimension b � 3 � s and a � 6 � s.

As it will be discussed below, the diffraction pat-
terns from hexagonal apertures and their arrays,
1D gratings and multimicrogratings would lead to
some cross interaction with each other (Element
5). This interaction is manifested as cross-term spots
that would otherwise not exist if one of the previous
four elements were not present. This property of
multimicrogratings is should be useful for sensing
and other applications.

3. Experimental

A. Fabrication of Multimicrogratings Using Electron-beam
Lithography

The effects of the individual optical elements
described earlier can be studied by the fabrication
and characterization of three designs: array of
hexagonal apertures, 1D gratings, and multimicro-
gratings. The following grating parameters were
selected for fabrication. For 1D gratings and multi-
microgratings, a grating period of 2.0 μm (1.0 μm fea-
ture size) was chosen. This grating period, which is
longer than visible wavelengths, allows for observa-
tion of the diffraction effects of the 1D grating com-
ponent of the multimicrogratings. For the hexagonal
aperture patterns and themicrograting cell sizes, the
hexagons were chosen to be 20 μm, so as to have
enough grating lines contained within each hexagon.
The total area of the patterned samples was chosen
to be 1.5 mm × 1.5 mm to have an area large enough
for experimental characterization.

Much research has been done to understand the
optimal profile for diffraction gratings (sinusoidal,
square, triangular shapes for the grating facets)
[11–14], but due to the ease of fabrication, a rectan-
gular profile was selected. Furthermore, for 1D gra-
tings, duty cycle was chosen to be 50% because it also
maximizes the diffraction efficiency. To maximize
first order transverse electric (TE) diffraction effi-
ciency for the 1D gratings, simulations were carried
out with commercial software (GSolver V52 Demo,
Grating Software Development Co.). A grating depth
of 0.95 μm was selected to be optimal for the grating
period of 2 μm at a 532 nm wavelength. This setup
resulted in a 1D grating TE diffraction efficiency of
14.1% for the first order, and a total TE diffraction
efficiency of 31.5% for all diffraction orders.

Total transverse electromagnetic (TM) diffraction
efficiency for a 1D grating also was calculated for
the given parameters and was found to be 20.2%.
For the pattern with hexagonal apertures, the same
software was used to calculate the total TE diffrac-
tion efficiency of arrays of hexagonal apertures
and it was calculated to be 8.7%, while TM diffraction
efficiency was 5.9%. Because cross-terms also exist
due to the combined effect of the different hexagon
apertures, the total intensity of the diffracted
spots will be lowered even further. The diffraction

efficiency of multimicrogratings is expected to be-
have as a combination of the 1D and hexagonal aper-
ture array diffraction efficiencies. The majority of the
light is distributed to the 1D grating orders; there-
fore the same grating depth of 0.95 μm was selected
for micromultigrating samples. Table 1 summarizes
the design parameters. We will publish more details
on diffraction efficiency simulations separately.

Periodic patterns can be fabricated using a variety
of techniques. Laser interference lithography is typ-
ically used to fabricate large area periodic patterns
such as 1D gratings and two-dimensional (2D) arrays
of features. However, the periodicity of the patterns
is determined by the interference effects of multiple
laser beams and this technique is unsuitable to fab-
ricate microgratings of different orientations and
complex architectures such as the one required for
this study. Although direct-laser lithography can fab-
ricate large area, arbitrary patterns, its main limita-
tion is the resolution is larger than the critical
dimensions required. Masked, optical lithography
can be used for fabrication of multimicrogratings,
but to fabricate microgratings with submicron peri-
ods, expensive high-density masks and advanced
optical lithography equipment is necessary. A high-
energy electron-beam lithography (EBL) system
was chosen for large area fabrication of arbitrary pat-
terns. Figure 2 shows a flow chart for the fabrication
process and details are below.

For the fabrication of 1D gratings and multimicro-
gratings, adhesion promoter P20 was spin coated on
silicon wafers (p-type, h100i, 100mm) at 3000 rpm for
45 s. ZEP520A electron-beam resist was then spin-
coated at 3000 rpm for 45 s for a desired thickness
of approximately 400 nm. The wafers were then
baked at 180°C for 2 min.

We used CAD software to design patterns and
transferred them to a JEOL JBX-9300FS EBL
system (energy � 100 keV, current � 2 nA, base
dose � 250–290 μC∕cm2). Patterns were adjusted
for proximity effect correction (PEC) and dimension
biases (−25 to −75 nm corrections) to expose features
with the desired dimensions and duty cycle. Exposed
patterns were then developed in Xylenes for 35 s,
rinsed with isopropyl alcohol (IPA) and dried
with N2.

Alternatively, for patterns with low density of
features (hexagonal apertures only), contact lithog-
raphy was chosen for the fabrication since the critical
dimensions were 3 μm for the borders. A chrome
mask was fabricated with a direct-laser write

Table 1. Design Parameters and Calculated Diffraction Efficiencies

Design Type

Grating
Period
or Cell

Size (μm)

Minimum
Feature
Size (μm)

Etch
Depth
(μm)

Calculated
Total TE
Diffraction

Efficiency (%)

1D grating 2.0 1.0 0.95 31.5
Hexagon array 20.0 3.0 1.95 8.7
Multimicrograting 2.0 1.0 0.95 31.5
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Heidelberg Mask Writer and a contact lithography
aligner was used to expose AZ photoresist coated
wafers. The samples then were developed in AZ
300 MIF developer, rinsed with IPA and dried
with N2.

A descum step with O2 plasma (200 sccm) was
performed in an IonWave10 microwave plasma
system for 15 s to remove resist residue after the
development step.

For all fabricated patterns (high and low feature
density), a 20 nm thick chromium hard mask was
deposited on the wafers with an electron-beam
evaporator to transfer the pattern from the resist
to the silicon substrates. We performed metal liftoff
by placing samples in an acetone ultrasonic bath.
Then the wafers were submerged in resist stripper
and cleaned again with 15 s of O2 plasma treatment.

To enhance diffraction efficiency of the patterns,
trenches were etched via plasma etching of the sili-
con. Etching was done with an Oxford Plasmalab
System 100 with a recipe that was originally
designed for vertical sidewall etching of silicon wave-
guides (pressure � 15 mTorr, RF-Power � 30 W,
ICP � 1200 W, 25 sccm of SF6, 60 sccm of C4F8
and 5 sccm of Ar), at an approximate rate of
180 nm/min for 5–10 min, depending on the
required depths for each pattern.

For optical characterization of patterns, samples
were metallized with 70–80 nm of aluminum with
an E-beam evaporator.

B. Characterization of Optical Diffraction Patterns

The diffraction patterns from arrays of hexagonal
apertures and multimicrogratings were obtained
by illuminating the samples with a laser beam with
λ � 532 nm at normal incidence, passing through a

small aperture on a screen located at 20 cm from
the samples. The reflected diffraction patterns were
projected onto the screen and photographed by a
camera oriented at approximately 10° from the nor-
mal direction of the screen. Due to the variation in
intensity distribution in the diffraction pattern,
the areas of high intensity tend to saturate the cam-
era sensor used to take the images and low intensity
features are not well captured. A photographic tech-
nique called high dynamic range (HDR) photography
has been used to overcome the issue of having to
capture a wide range of exposures [15–17]. Images
of diffraction patterns were captured at several expo-
sure levels and then recombined to produce a more
uniform intensity distribution allowing the capture
of both high and low intensity details without
saturation. This technique was applied to obtain
high-quality images of the diffraction pattern.

C. Beam Profile Measurement Technique Using a CCD
Camera

Commercial CCD beam profilers are expensive, but a
cost-effective technique using the CCD camera found
in a webcam was reported to produce accurate mea-
surements of laser beam profiles [18]. To obtain the
beam profile characteristics of the diffracted spots,
samples were illuminated with a green laser diode
with 532 nm wavelength, under two conditions: with
a narrow probing beam size and with a 10× expanded
beam. We did this to understand the effects of input
beam width on diffracted beam profiles. For the first
condition, the 1.2 mm laser beam width was used.

For the second condition, the beam was magnified
by 10× to 12 mm in size using a beam expander. The
lens of a commercial Intel CS110 webcam was
removed to image the diffracted spots directly onto

Fig. 2. Fabrication flow charts for samples with 1D and multimicrograting patterns and for samples with hexagonal apertures.
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the CCD camera sensor. The intensity of the beams
was attenuated with combinations of ND filters and
polarizer to prevent saturation of the sensor. The
CCD sensor had a resolution of 352 × 288 pixels,
for a total sensor area of 2.84 × 2.33 mm. Pixel pitch
was measured via an optical microscope and was
found to be 8.08 μm. Images of the beams were then
captured with freeware program QFocus. Intensity
profiles were extracted from the captured images
using ImageJ software. Beam profile data was then
normalized and fitted to Gaussian beams using
OriginPro to obtain measurements of the FWHM
of the beams.

D. Diffraction Efficiency Measurements Using an
Integrating Sphere

Tomeasure the total diffraction efficiency of the sam-
ples, typically a laser beam of known power is inci-
dent on the grating sample. The power for each of
the diffracted orders is then measured individually
and the total efficiency can be calculated as the
sum of the power of the diffracted beams (excluding
the reflected zeroth order beam). Such measurement
is simple for 1D gratings; however, for multiple dif-
fracted orders or very complex diffraction patterns,
capturing all the diffracted light is more complicated.

To overcome this obstacle, samples were posi-
tioned at the output port of an integrating sphere
(Labsphere, Inc.), as shown in Fig. 3. Light incident
from a green diode laser with 1.5 mm beam width
and 7.3 mW measured power at 532 nm wavelength
enters the integrating sphere via the input port and
is incident on the sample. Samples were placed on a
tilt mount, to adjust the direction of the reflected
beam and to cause it to escape the integrating sphere
back through the input port. All the light beams that
get diffracted then get captured inside the integrat-
ing sphere, and bounce off the highly scattering walls
until they are collected by a power meter located at
the detector port. We can then calculate the total
efficiency for any sample by finding the ratio of
the total diffracted power as measured by the detec-
tor and the input laser power. The zeroth order power
wasmeasured separately to ensure all the power was
accounted for.

Measurements are calibrated with three standard
reflectors: a gold standard, a plain silicon wafer, and
a silicon wafer coated with 80 nm aluminum film.
Expected reflectivities for the different calibrated
materials at 532 nm are obtained with a tool called
a reflectance calculator (Filmetrics) and compared
to the measured values using the integrating
sphere technique. Table 2 summarizes the results.
Measured values are found to be slightly lower than
the expected reflectivities within a 5.1% error.

4. Results and Discussion

A. Morphology Results of Fabricated Samples

To examine the surface morphology of the fabricated
silicon samples, scanning electronmicrographs of the
patterns were obtained. Figure 4(a) shows a SEM

Fig. 3. Side view of experimental setup for diffraction efficiency
measurement using integrating sphere.

Table 2. Integrating Sphere Measurement Calibration

Reflector Material

Expected
Reflectivity

at 532 nm (%)

Measured
Reflectivity

at 532 nm (%)

Gold 76.4 73.0
Silicon 37.4 36.3
80 nm Al on Silicon 92.2 87.0

Fig. 4. SEM micrographs of fabricated samples with (a) 1D gra-
ting with period of 2.0 μm and (b) array of hexagonal apertures
with hexagon side dimension of 20 μm.
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micrograph of the fabricated sample with a 1D
grating pattern (at a 30° tilt) for grating period of
2.0 μm. Figure 4(b) shows a SEM micrograph of
the fabricated sample with the pattern of hexagonal

apertures for cells with side dimension of 20 μm.
Figure 5(a) shows SEMmicrographs of the combined
multimicrograting patterns with a 2.0 μm grating
period and 20 μm hexagon side dimension.
Figures 5(b) and 5(c) show images of (a) at higher
magnifications.

From the SEM micrographs, it is possible to see
that the samples were fabricated to the desired spec-
ifications. For patterns with high feature density,
sample critical dimensions had to be adjusted in
the EBL exposure step for PEC and for dimension
bias, resulting in 50% duty cycle and precise grating
period with no spatial variation of these dimensions
in different parts of the 1.5 mm × 1.5 mm areas of
the samples. The edges are well defined and the side-
wall profiles are straight, which indicates that the
recipe used for the etching process was appropriate.

The depth of the trenches can be extracted from
the 30° tilted SEM micrographs. It was determined
that they were very close to the specified depths of
0.95 and 1.95 μm, respectively, for samples with mul-
timicrogratings and with hexagonal apertures.
These measurements were also in agreement with
profilometer data. Additionally, to verify the depth
measurements, Fig. 6(a) shows a laser confocal mi-
crograph of multimicrograting sample with 2.0 μm
grating period, which shows a typical grating profile
for the fabricated samples. To show the fabricated
profile, Figs. 6(b) and 6(c) show a 3D profile and a
linescan profile of a selected area. Similarly, the gra-
ting depths of samples with 1D gratings and hexago-
nal apertures were measured with laser confocal
microscopy and were found to be in agreement with
the other measurements.

B. Optical Diffraction Results

We will now discuss the details of the observed dif-
fraction patterns of arrays of hexagonal apertures
and microgratings. Details on the simulation of
the diffraction properties of arrays of hexagonal

Fig. 5. (a) SEMmicrograph of fabricated silicon sample withmul-
timicrogratings with grating periods of 2.0 μm. Magnified details
of regions around the edge of (a) are shown in (b) and (c).

Fig. 6. Laser confocal micrographs of micrograting pattern with 2.0 μm periodicity. (a) Top view. (b) 3D height profile. (c) Linescan profile.
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apertures, microgratings and other arbitrary designs
will be published separately.

1. Optical Diffraction Pattern from Arrays Of
Hexagonal Apertures
The diffraction pattern for arrays of hexagonal aper-
tures, such as the one depicted in Fig. 4(b), is shown
in Fig. 7(a). Figure 7(b) shows details of the center
area of the pattern projected on a screen 300 cm
away. Figure 7(c) shows a simulated diffraction pat-
tern from the single hexagon shown in the inset. As
described earlier, the diffraction from arrays of hex-
agonal apertures is contributed by the hexagonally
shaped apertures and their periodic arrangement
(Elements 1 and 2).

There are three main features observed in the dif-
fraction pattern of hexagonal apertures. First, the
center area of the diffraction pattern is shaped as
the hexagon. Second, there are three lines oriented
at 30°, 90°, and 150°. The central hexagon and lines
can be seen in Fig. 7(c). The hexagonal cells act as
individual apertures, and thus, they diffract light.
In the vertical direction, the hexagon, comprised of
two sides oriented parallel to each other, can be con-
sidered as an aperture in 1D space. That aperture,
when illuminated with planar electromagnetic radi-
ation, diffracts the incoming wave in the shape of a
sinc2 function in the direction perpendicular to the
edges of the aperture. Thus, the illuminating light
would produce a sinc2 intensity distribution in a di-
rection normal to the apertures. In this case, the 0°
aperture produces an intensity distribution in the
vertical direction. The other two pairs of hexagon
sides (60° and 120°) produce two patterns (at their
respective normals of 150° and 30°). Combining all
three 1D apertures oriented at different angles gen-
erates the three lines. The central hexagon and lines
do not appear as continuous features, as we describe
below. Rather, they serve as an intensity envelope for
the smaller individual diffraction spots.

Third, as seen in Fig. 7(b), we observed small dif-
fraction spots. They originated from the honeycomb
lattice used to form the array of hexagons. The red
parallelogram in Fig. 7(b) shows a periodic element
that exists in the diffraction pattern. Each of the
spots are all measured to be equidistant to each
other, indicating that the lattice that produced these
spots had two periodic elements of equal dimensions.
The angular separation of the lattice spots is
measured to be about 0.26° and is found to be in
accordance with the calculated angle from the gener-
ating lattice of hexagonal apertures. Therefore, we
concluded that the observed periodic elements in
the diffraction pattern is reciprocal of the honeycomb
lattice that originated the hexagonal aperture ar-
rays. These lattice spots in the diffraction pattern
also have varying intensity.

2. Optical Diffraction Results from
Multimicrogratings
Figure 8(a) shows that the multimicrograting sam-
ples with grating period of 2.0 μm produced a very
unique diffraction pattern. Figure 8(b) shows details
of the diffraction pattern indicated in 8(a). To exam-
ine the finer details seen in Fig. 8(b), the screen was
moved to a distance of 300 cm and a photograph was
taken. Figure 8(c) shows results.

The diffraction pattern of the multimicrograting
structures is composed of several prominent features
that are a result of the multimicrograting constitut-
ing elements described earlier. The first feature can
be seen in Fig. 8(a) as a set of 12 bright annular spots
surrounding the central beam. For simplicity, these
features are named after the hour hands of a clock.
They originated from the periodic grating lines at six
different orientations (Element 3). Consequently,
these spots behave in accordance to the 1D grating

Fig. 7. (a) Observed diffraction pattern of sample with arrays of
hexagonal apertures with hexagon side dimensions 20 μm and la-
ser light with λ � 532 nm projected on a screen located 20 cm from
the sample. The dark area in the center corresponds to the hole on
the screen. (b) Details of the center area of the diffraction pattern
are projected on a screen 300 cm away. (c) Simulated diffraction
pattern for a hexagon, such as the one shown in the insert.

Fig. 8. (a) Observed diffraction pattern for multimicrograting on
silicon with 2.0 μm period illuminated with laser with λ � 532 nm
and projected on a screen 20 cm from the diffracting sample at
normal incidence. The irregularly shaped area in the center corre-
sponds to the hole in the screen onto which the diffraction pattern
was projected. (b) Detail of one of the twelve spots shown in (a).
(c) The same spot in (b) but projected on a screen 300 cm away,
to show finer details.
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equation. Each of the periodic micrograting orienta-
tions produces diffracted spots in a direction
perpendicular to the grating lines, similar to a 1D
grating. For example, for micrograting orientations
of 0°, diffraction spots are produced in a vertical
(90°) direction. For a grating orientation of 30°, the
spots lie in a line oriented at 120°. Furthermore, sim-
ilar to 1D gratings, each of the micrograting cells can
produce positive and negative orders. Thus, the 0°
microgratings produces the 12 and 6 o’clock spots
around the central reflected spot. A similar analysis
can be carried out for the other micrograting orien-
tations, thus resulting in the twelve visible spots
for the first order (negative and positive) spots.

The second feature, seen in Fig. 8(b), is generated
by individual hexagons and their periodicity
(Elements 1 and 2) and is observed at each of the
individual annular spots in Fig. 8(a). Each of the
12 annular spots has the same features as shown
in Fig. 8(b). The three lines and hexagonal shape
of the spot observed in Fig. 8(b) are very similar to
the diffraction pattern observed for hexagonal aper-
tures, as seen in Fig. 7. The 1D diffraction grating
spots act as centers for display of individual hexago-
nal diffraction patterns. The diffraction pattern from
individual microgratings appears to be the superpo-
sition of diffraction patterns generated from individ-
ual periodic grating lines and hexagonal apertures.

The combined diffraction effect observed in micro-
gratings happens when the incident light beam is dif-
fracted by periodic grating lines, then the diffracted
beams pass through the hexagonal apertures where
additional diffraction occurs. So, it is like putting two
optical elements—periodic gratings and hexagonal
apertures—in sequence. The overall diffraction effi-
ciency will depend upon the diffraction efficiency
from the periodic grating lines and hexagonal aper-
tures. It is clear that the diffraction spots occur as
expected from the grating equation for periodic lines,
but are transformed into patterns governed by the
hexagonal apertures, which is a clear indication that
there is an interaction between the two patterns.

The third feature, seen in Fig. 8(c), is formed by the
oblique lattice formed from the unit cell that was
used to generate the large area multimicrogratings,
as shown by the red parallelogram drawn in Fig. 8(c).
The six hexagonal microgratings were broken down
into a unit cell that had dimensions a and b (related
to the hexagon side dimension s), as shown in
Fig. 1(b). The unit cell itself is skewed, as a is twice
as long as b. Therefore, the periodicity of the unit cell
is expressed in the diffraction pattern as a lattice
depicted by the red parallelogram.

In other words, the diffraction pattern of multimi-
crogratings can be explained as the convolution of
the different periodicities that form the arrays. It ap-
pears to have a spatial hierarchy for the existence of
these cross-terms. The smallest observable features
in the diffraction pattern [the lattice shown by the
red parallelogram in Fig. 8(c)], which corresponds
to the largest feature in the multimicrograting

design (the unit cell that forms the arrays), is convo-
luted with the diffraction pattern of individual hex-
agonal apertures, thus creating the pattern seen in
Fig. 8(b). In turn, the pattern seen in Fig. 8(b) is then
convoluted with the 1D diffraction grating spot
locations, creating the large and complex diffraction
pattern of multimicrogratings seen in Fig. 8(a).

To summarize, Fig. 9 shows a schematic diagram
of what happens when light is diffracted from the
fabricated samples. For 1D gratings, as it is depicted
in Fig. 9(a), the incident beam encounters the peri-
odic lines and thus is diffracted into a m � 0 beam
and a positive and negative orders m � �1. In the
case of an array of hexagonal apertures, as it is por-
trayed in Fig. 9(b), the light is first incident on the
periodic hexagonal apertures, depicted by the red
hexagons in Fig. 9(b). This interaction both reshapes
the beam into the shape of the diffraction pattern of a
hexagonal aperture and diffracts the beam into
orders M � 0 and�1, which due to the longer period
between periodic hexagons, are closer together.
Finally, when a light beam is incident on multimicro-
gratings, as shown in Fig. 9(c), the light first encoun-
ters the 1D grating and is separated into orders
m � 0 and �1 and because the microgratings are
hexagonally shaped, the diffracted beams are
reshaped to look like the diffraction pattern of a hex-
agonal aperture. Each of those diffracted orders then
interact with the periodicity of the nearest similarly
orientedmicrogratings [depicted as the red parallelo-
gram in Fig. 9(c)], and is further diffracted into
M � 0 and �1.

C. Beam Profile Results

For a probing beam size of 1.2 mm, the total pattern
size (1.5 × 1.5 mm) is larger than the probing beam.
Figure 10 shows images and profiles of the beam cap-
tured with the CCD sensor at a sample-to-sensor dis-
tance of 30 cm. Figure 10(a) shows the beam image
captured for a 1D grating sample, and the slice of the
profile along the blue dotted line is shown in

Fig. 9. Schematic of light distribution from fabricated samples
for (a) 1D gratings, (b) arrays of hexagonal apertures, and (c) multi-
microgratings.
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Fig. 10(b). Several images were captured and fitted
to Gaussian beams to calculate an average FWHM
of 562.1 μm, which is comparable to the input beam
measured using the same technique to have a
FWHM of 563 μm. Figure 10(c) shows an image of
a captured beam for a sample with a multimicrograt-
ing pattern, specifically from the red rectangle region
shown in the inset. The captured image shows almost
three of the individual beams that were in the dif-
fraction pattern, and their separation on the sensor
of 1.25 mm corresponds to the expected separation
(0.27°) of the beams at a sample to sensor distance
of 30 cm. Figure 10(d) shows the profile along the
blue dotted line in Fig. 10(c), with its corresponding
Gaussian fit. Several images were used to compute
an average FWHM of 482.4 μm, which is about
14.1% narrower than the FWMH for a 1D grating
beam. The beams from 1D grating samples are
observed to have a Gaussian profile of similar

characteristics to the input laser beam, but for the
micrograting, they are found to be slightly narrower.
In the case of 1D grating samples, the incident
Gaussian beam encounters one set of periodic aper-
tures, distributing the light into diffracted beams
each with a sinc2 distribution. In the case of the
multimicrograting samples, the incident beam
encounters the periodic 1D grating lines and the
periodic apertures, producing a sinc4 distribution
that is narrower.

For a probing beam with 12 mm width, the total
pattern size is smaller than the probing beam, which
becomes important as the probing beam now encoun-
ters the aperture shape of the total pattern size.
Figure 11 shows beam profiles captured with the
CCD sensor for an expanded probing beam, at a
sample-to-sensor distance of 30 cm. Figure 11(a)
shows the profile of a 1D grating sample when
illuminated with an expanded probing beam. The

Fig. 10. Beam profiles obtained with CCD sensor at a sample-to-sensor distance of 30 cm and with a probing beam of 1.2 mm. (a) Beam
profile for a sample with a 1D grating pattern. (b) Slice along blue dotted line of (a) to show raw beam profile and Gaussian fit to obtain
FWHM. (c) Beam profile for a sample withmultimicrograting pattern. (d) Slice along blue dotted line to show beam profile and Gaussian fit
to obtain FWHM.

Fig. 11. Beam profiles captured with a CCD sensor with an expanded probing beam for at a sample-to-sensor distance of 30 cm. (a) For a
sample with 1D grating pattern. (b) For a sample with multimicrogratings. (c) Slice profile of the interference fringes observed in (b).
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sample had a pattern size of about 1.5 × 1.5 mm, and
its sharp boundaries can cause the light to diffract
into the pattern observed. The pattern corresponds
to the Fresnel diffraction from a square aperture
rather than Fraunhofer diffraction, as it would be ex-
pected for this wavelength, aperture size and sample
to sensor distance (Fresnel number F � 14.09). The
beam is square shaped, as the aperture, and was
observed to have the same size of 1.5 × 1.5 mm at
sample to sensor distances between 10 and 50 cm.
Figure 11(b) shows the beam profile of a sample with
multimicrograting patterns at a sample-to-sensor
distance of 30 cm. The image now shows three
separate diffracted beams from microgratings all
incident on the sensor at the same time. They have
a rectangular shape due to the expanded beam en-
countering the total pattern shape as an aperture
and producing Fresnel type diffraction. Because
three micrograting beams are incident on the CCD
sensor, it causes them to overlap with each other,
which produces the high contrast fringes. A slice pro-
file of the interference fringes along the red line in
Fig. 11(b) is shown in Fig. 11(c). The interference
fringes are fitted to a cos2�x� function, having a
period between 90 and 100 μm at a sample to sensor
distance of 30 cm. The three micrograting beams
have an angular separation (0.27°) that causes them
to separate as the distance from the sample in-
creases, but at sample to sensor distances between
10 and 35 cm such interference is observed. At longer
distances, the beams separate enough and no inter-
ference can be expected. For the particular beam pro-
files described in Figs. 11(b) and 11(c), bright areas of
interference fringes are observed to have an average
intensity of approximately 225 (arbitrary units),
which drops to 10–15 between the fringes. In areas
of non-interfering beams, the average highest inten-
sity drops to 130. This change provides a large inten-
sity contrast. The interference fringes provide very
sharp, resolvable features that can be further ex-
ploited for increased resolution in sensing applica-
tions, which would otherwise be challenging with
1D gratings.

D. Diffraction Efficiency Results

Table 3 shows the measured total diffraction efficien-
cies for the fabricated samples, measured with the
described integrating sphere technique. Reflected
power is the measured power reflected from the
zeroth order beam; that is, the light that does not
undergo diffraction from the samples. Diffraction

efficiency was optimized for 1D grating with trench
depth of 0.95 μm, at λ � 532 nm. The total TE diffrac-
tion efficiency for silicon samples with 1D grating
patterns was measured to be 33.7%. The addition
of an 80 nm layer of Al on Si to increase reflectivity
also increased TE diffraction efficiency by a factor
of 2.3 to 76.7%. Samples with micrograting patterns
in silicon were measured to have a total TE
diffraction efficiency of 32.1%, which is nearly as
high as the measured 1D grating diffraction effi-
ciency. Micrograting samples with an 80 nm layer
of Al on Si show an increased efficiency by a factor
of 2.2, to 70.1%. Samples with hexagon arrays only,
with an 80 nm layer of Al on Si were measured
to have a 23.7% total TE diffraction efficiency.
For clarity, only total TE diffraction efficiency mea-
surements are shown, but total TM diffraction effi-
ciencies also were measured and found to be in
accordance with calculated values. The total diffrac-
tion efficiency of 1D gratings plays the biggest role
in the multimicrograting diffraction efficiency,
rather than the diffraction efficiency of the array of
apertures. Diffraction efficiency can be tailored to
increase it at particular wavelengths, orders and
angles, depending on the application.

5. Conclusions

The optical properties of multimicrogratings have
been characterized through electron-beam fabrica-
tion of 1D grating structures, periodic hexagonal
apertures and multimicrogratings. We explained
the complex optical diffraction pattern generated
from multimicrogratings using an understanding
of the optical principles that govern the diffraction
from periodic structures. In summary, the diffraction
pattern of multimicrogratings is formed by convolut-
ing the individual diffraction patterns of the individ-
ual periodic elements that describe it: the hexagonal
shape of the cells, the lattice that is formed with the
periodic hexagons, and the 1D periodic grating lines
oriented at six different orientations.

This convolution produces cross-terms that we
have explained. The micrograting diffracted beam
size seems to be slightly narrower than those for a
similar 1D grating. Furthermore, depending on the
plane of observation, multimicrograting diffracted
beams can interact with each other, producing
high-contrast interference fringes. Diffraction effi-
ciency of multimicrograting samples was measured
to be highly dependent on 1D grating parameters.
For what we believe is the first time, we have pro-
vided a thorough understanding of the optical prop-
erties and diffraction and interference effects in
multimicrogratings, which now can be used to tailor
those properties for different applications. Further
research must be done to study the various applica-
tions of these structures—for vapor, temperature,
and strain sensing; and for nanometrology, optical
telecommunications, and spectroscopy. Key parame-
ters to understand include polarization-dependent

Table 3. Measured Total Diffraction Efficiency of Fabricated Samples

Sample
Reflected
Power (%)

Total TE Diffraction
Efficiency (%)

1D Grating 2.9 33.7
1D Grating w/80 nm Al 3.7 76.7
Micrograting 1.8 32.1
Micrograting w/80 nm Al 7.4 70.1
Hex. apertures w/80 nm Al 52.6 23.7
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losses, dispersion, and spectral resolution for such
applications.
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Abstract

Modeling and simulation of the 1D and 2D diffraction patterns from complex periodic structures such as

arrays of apertures or arrays of microgratings is presented. Two different approaches are analyzed. First,

a mathematical model is derived from the Fraunhoffer intensity distributions of the diffraction patterns

of periodic structures that can be used to simulate the diffraction patterns of highly periodic structures.

Second, a graphical Fourier Transform approach is described, which overcomes certain limitations imposed

by the intensity based approach. Simulated diffraction patterns obtained with the two methods are

compared to the diffraction patterns of fabricated samples. It is found that the diffraction pattern of

highly complex structures is generated by the combination of the different periodicities that compose the

system, as those periodicities all contribute to their diffraction patterns, but it is also shown that the

interaction between the different periodicities can give rise to highly sensitive cross terms.
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1. Introduction

Naturally occurring optical phenomena such as those found in moth eyes or butterfly

wings have been studied in order to exploit their unique optical properties for different

applications [1]. For example, studies of blue morpho butterfly wing scales, which are

composed of optical structures akin to 3D photonic crystals, have been shown that the

wings could be used in thermal and vapor sensing, high speed imaging and other appli-

cations [2–4]. It is, however, inconvenient to use actual wing scales due to their scarcity

and brittle nature, so artificial fabrication of bio-inspired optical structures has become a

growing field. Furthermore, complex 3D structures that mimic optical properties found

in nature involve complicated and expensive fabrication procedures [5, 6]. Thus, devices

with similar optical properties as bio-inspired structures that can be fabricated more easily

and cost-effectively are desired.

One such approach to use an alternative method to produce devices with similar op-

tical properties as those found in morpho wing scales was analyzed by Wong et al. [7].

The authors describe a planar array of multi-micrograting cells which consisted of hexag-

onally shaped individual microgratings in different orientations which used the effects of

diffraction to produce a blue color that can be seen from different angles. Their periodic

structures produced complex diffraction patterns and understanding how diffraction pat-

terns are formed is the main focus of the current study. We have measured the optical

diffraction properties of fabricated micrograting structures and results have been pub-

lished [8]. In this manuscript, we focus on simulation of optical diffraction properties of

multi-microgratings.

Micrograting cells of six possible grating orientations, can be grouped up together into

a repeating cell as seen in Figure 1(a), with grating period d and hexagon side s. The

repeating cell can be arrayed, resulting in a large area pattern that can be seen in Figure

1(b). Upon closer inspection, and also shown in Figure 1(b), the array can be described

by a unit cell indicated by the red parallelogram with vectors ~a and ~b. The vectors ~a and

~b can be used to translate the unit cell and produce the large areas.

The authors have previously used the indicated design for the fabrication and measure-

ment of the optical properties of arrays of micrograting. A complex diffraction pattern
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Fig. 1. (a) Micrograting repeating cell with six possible orientations. s is the hexagon side

dimension and d is the grating period. (b) Array of multi-microgratings, with the red parallelo-

gram defining the unit cell that was used to form the array, with sides a and b. (c) Photograph

of screen projection of a normal incidence, optical diffraction pattern by multi-micgrograting

array with d = 2 µm, and s = 20 µm and laser light wavelength λ = 532 nm.

was observed, such as the one seen in the photograph shown in Figure 1(c). This shows

a screen projection of a diffraction pattern of a micrograting array with d = 2 µm, and s

= 20 µm fabricated on silicon samples. The diffraction pattern produced by micrograting

arrays can be very intricate, with several features with high and low intensity.

Optical diffraction occurs when a beam of light is incident on an aperture that has a

wavelength comparable to the aperture size. The intensity distribution of the light after

the aperture changes as a function of the aperture size and radial distance.

The grating equation, seen in Equation 1, describes a method to calculate the mth

order diffraction angle θd for a light beam of wavelength λ, incident at an angle of θi with

respect to the grating normal.

d(sin θi + sin θd) = mλ (1)

The grating equation only provides the angular behavior of diffraction from simple

1D grating structures for a given set of parameters, with no information regarding light
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intensity anywhere on the pattern. Furthermore, it falls short when trying to explain

more complicated periodic structures, such as two dimensional arrays of apertures or

microgratings.

Because of the limitations imposed by the grating equation, there is a need to describe

the complex diffraction patterns produced by multi-mcirogratings. The current work re-

ports the origins of the features found in the diffraction patterns from multi-microgratings

through simulation using analytical and graphical approaches. Such understanding can

also be extended to explain the features in other periodic designs.

2. Simulation methods

2.A. Fraunhoffer intensity distribution approach to simulate 1D multi-microgratings

In the Fraunhoffer approximation, the angular intensity distribution of the diffraction

patterns from several types of apertures, such as rectangular or circular and diffraction

gratings have been formally described by solving the Kirchoff diffraction integral [9, 10].

Alternatively, if arranged properly, the diffraction integral can be seen as having the form

of a Fourier Transform of the apertures and thus it is solved using a Fourier Transform

technique.

The normalized diffraction intensity distribution for a 1D grating system consisting

of n grating elements is made of two terms and is given by Equation 2, where I(θ) is

the diffraction intensity as a function of the incident angle θ and I0 is the intensity of

the incident wave. The first term, also known as the diffraction factor, is the intensity

distribution for a single aperture of width a and it acts as an envelope function. The sec-

ond term, the interference factor, takes into account the contribution of different grating

elements separated by the grating period d. A convolution of the two terms results in

the diffraction intensity for a periodic diffraction grating, with the first term functioning

as an envelope. Often, the interference is not considered when describing a diffraction

pattern in order to be able to clearly distinguish weaker features that would otherwise be

obscured by the envelope function.
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Fig. 2. 1D array of micrograting cells, with n grating lines of width a separated by period d;

and N apertures of width A separated by D.

I (θ)

n2I0

= [sinc (aν)]2

︸ ︷︷ ︸
Diffraction factor

·
[

sin (ndν)

sin (dν)

]2

︸ ︷︷ ︸
Interference factor

where ν =
π

λ
sin (θ) (2)

Interestingly, the solutions for the local maxima of Equation 2 can be found to be

the angles described by the grating equation (Equation 1). Also, for n = 1, Equation 2

reduces to the intensity distribution of a single aperture.

The same analogy can be extended to explain systems with complex periodicities, in

which the intensity distribution functions for the different periodicities can be convoluted

with each other to obtain the overall system’s intensity distribution. Arrays of multi-

microgratings (similar to the one shown in Figure 2), in 1D, can be understood as the

combination of the 1D pattern of the microgratings and the 1D pattern of the arrayed

apertures. A 1D micrograting array is depicted in Figure 2, where d is the grating period,

a is the grating line width, n is the number of periodic grating lines, D is the separation

between different apertures, A is the aperture width and N is the number of different

periodic apertures. Thus, in the general case, the 1D multi-micrograting diffraction in-

tensity distribution function Immg can be interpreted as the convolution of the intensity

distribution functions for the two individual periodic elements, and is shown in Equation

3.

Immg = Imicrogratings · Iapertures (3)

The multi-micrograting intensity, Immg, is given by Equation 2. For the periodic aper-

ture intensity, Iapertures, a similar function is derived for a system with N apertures with
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width A, separated by a distance D. Combining all the terms, the normalized Fraunhoffer

intensity distribution for 1D multi-microgratings can be described as shown in Equation

4.

Immg (θ)

n2N2I0

= [sinc (aν)]2 ·
[

sin (ndν)

sin (dν)

]2

· [sinc (Aν)]2 ·
[

sin (NDν)

sin (Dν)

]2

(4)

Equation 4 above will be used to simulate the diffraction pattern of an array of 1D

microgratings, where Equation 4(b) represents the micrograting intensity and Equation

4(c) represents the aperture intensity.

2.B. Fraunhoffer intensity distribution approach to simulate 2D arrays of apertures

The previously presented method for simulating the diffraction patterns of 1D arrays of

microgratings can be further extended to simulate 2D diffraction patterns of different

aperture shapes. As long as the aperture shapes can be described mathematically, it is

possible to simulate the diffraction patterns by convoluting the aperture functions in each

independent direction. Mathematical descriptions for different types of apertures and

their diffraction patterns have been reported [11–13].

Consider a single rectangular aperture with two independent dimensions x and y (with

sides oriented at 0◦ and 90◦). Its diffraction pattern is the the 2D intensity distribution

given by θx and θy, and it is the convolution of the 1D intensities in in the x and y

directions. This diffraction pattern has a rectangularly shaped central lobe (orthogonally

rotated to the original aperture), and modulated tails that extend past the central lobe.

The 0◦ sides of the rectangular aperture give rise to the diffraction pattern in the vertical

(90◦) direction, and the 90◦ sides of the aperture gives rise to the diffraction pattern in

the horizontal (0◦) direction. Additionally, due to the convolution of the two functions,

weaker cross terms appear as well.

Now, consider a single hexagonal aperture (with sides oriented at 0◦, 60◦ and 120◦).

Each of the side pairs acts as an aperture in at directions 30◦, 90◦ and 150◦, respectively.

Therefore, the diffraction pattern of a hexagonal aperture has a hexagonally shaped center

lobe, with tails extending from the center lobe sides in the 30◦, 90◦ and 150◦ directions.
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2.C. Graphical Fourier Transform approach to simulate diffraction from 2D arrays

of apertures

As apertures become more complex, finding appropriate 2D mathematical descriptions

of the apertures becomes cumbersome. However, as mentioned earlier, the solutions

to the Kirchoff integrals can also be obtained by the Fourier Transform method. The

diffraction integrals can be thought of as a coordinate transformation between the aperture

plane (the functions that describe the apertures or gratings) and the image plane (where

the diffraction pattern is projected). In other words, in the Fraunhoffer regime, the

diffraction pattern can be described as the Fourier Transform of the aperture function.

The same analogy applies to a graphical representation of the aperture or grating plane,

with the resulting graphical Fourier Transform being the simulated diffraction pattern of

the aperture [14–17].

Images of different aperture shapes can be described with a graphical Fourier Transform

technique to obtain their diffraction patterns. By carrying out a FFT (Fast Fourier

Transform) of the image of the aperture, the x − y coordinates of the pixel locations in

the image are transformed to θx − θy space, obtaining the aperture’s diffraction pattern.

Spatial distance information from the original aperture image has to be used to calibrate

the simulated diffraction pattern in angular space.

2.D. Finite-Difference Time-Domain (FDTD) method to simulate multi-microgratings

The FDTD method is a numerical analysis method that was first proposed by Yee to

approximate the time-dependent Maxwell equations for electromagnetic fields [18, 19]. A

two-dimensional model is devised, with an electromagnetic wave propagating in the XY

plane, with a transverse component Hz [20]. The boundaries are defined to be absorbing

with a perfectly matched layer (PML). The grating device is defined as a perfect electric

conductor (PEC), by setting the electric field components to zero in those regions.

At each instant in time, the electric field vectors are solved first, followed by the

magnetic field vectors in the next time iteration. The result is a time evolution of the

electric field. Since the electric field is proportional to the intensity of the wave, then it
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can be used to understand how the electromagnetic wave interacts with the diffraction

gratings. For the simulation, because of the short distances, the solved electric fields are

in the near field. A spatial Fourier transform of the field is then used to approximate the

intensity in the far field.

A MATLAB implementation of this method was created and the results are presented

in the Results section. Since this method is computationally and memory intensive, the

size of the grid was carefully chosen so as to be able to run the simulations in time-efficient

manner. Due to its complexity, only a 1D model of a grating was solved for.

2.E. Multi-micrograting diffraction efficiency simulations

The diffraction efficiency, η, is defined as the ratio of the diffracted and incident powers of

a wave that is incident on a diffraction grating. In other words, the diffraction efficiency

is the proportion of the intensity that is distributed to each of the diffracted orders, as it

can be seen in Equation 5:

η = Pdiffracted/Pincident (5)

Diffraction efficiency greatly depends on several parameters such as incident angle, sub-

strate material, incident polarization, wavelength, grating period, depth, shape and duty

cycle [21–24]. For large multi-micrograting arrays, the majority of the patterned sample

surface area will consist of 1D gratings contained within the microgratings. Therefore,

it is expected that the greatest contribution to diffraction efficiency will be from the 1D

grating parameters in the microgratings.

In order to simulate multi-micrograting diffraction efficiency, commercial software

(GSolver V52 Demo, Grating Software Development, Co.) was used to optimize the

total diffraction efficiency for a normally incident plane wave of wavelength λ = 532 nm

with transverse electric (TE) polarization. For samples with multi-micrograting patterns,

2 µm period rectangular gratings with 50% duty cycle on a silicon substrate were chosen

to determine the optimal depth of the gratings in order to maximize first order diffraction

efficiency. Total TE diffraction efficiency was then calculated by adding the calculated
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diffraction efficiencies for the first 4 orders.

A similar method was used to calculate the diffraction efficiency of samples with hexag-

onal apertures on silicon. With a 20 µm hexagon cell size, the period between adjacent

hexagons was calculated to be 34.67 µm. A linewidth of 3.0 µm was selected for the

width of the hexagon lines, which means the effective apertures were 31.67 µm in size.

The distance between adjacent hexagons and the linewidth was used to approximate the

hexagonal apertures as 1D gratings with a duty cycle of 0.087%. Due to the longer grating

period, the first 50 orders were taken into account to calculate the total TE diffraction

efficiency of samples with hexagonal apertures.

3. Simulation results

3.A. Simulation of diffraction patterns of 1D multi-microgratings

Equation 4 was used to simulate the diffraction pattern of 1D micrograting arrays, for a

system with 1D gratings and large apertures at wavelength of λ = 532 nm. The diffraction

factor was ignored in the interest of presentation and to normalize the intensity at different

angular locations in the patterns.

The normalized intensity distribution for a 1D system with 1D gratings can be seen

in Figure 3(a), with grating parameters: period d = 2.0 µm, width a = 1.0 µm and

n = 5 lines. The normalized intensity distribution in 1D for the system with periodic

apertures can be seen in Figure 3(b), with aperture parameters: period D =34.6 µm, A

= 31.6 µm, N = 5 slits. Due to the fact that the diffraction factor was ignored in the

interest of presentation, the 1D grating width a and aperture width A do not affect the

patterns. Combining the two periodicities together, a micrograting array is formed and

its diffraction pattern is shown in Figure 3(c).

As it can be seen, the diffraction patterns of the 1D grating system in Figure 3(a) and

periodic aperture system in Figure 3(b) correspond to the 1D diffraction patterns for the

given parameters. The areas of maximum intensity correspond to the angles calculated by

the grating equation, and their angular separation is determined by the grating periods

and aperture separation and the wavelength used. When the two functions are convoluted,
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Fig. 3. Fraunhoffer intensity distribution based simulated diffraction pattern for a 1D array of

microgratings. (a) Normalized intensity distribution for 1D gratings with d = 2.0 µm, a = 1.0

µm, n = 5 slits. (b) Normalized intensity distribution for periodic apertures with D =34.6 µm,

A = 31.6 µm, N = 5 periodic apertures. (c) Normalized intensity distribution of combined 1D

gratings and apertures with the respective parameters given in (c) and (d).

the 1D diffraction pattern of micrograting arrays is formed, which show very defined,

sharp features from the periodic aperture system and their intensity determined by the

1D grating envelope.

3.B. Formation of the 2D diffraction pattern of arrays of hexagonal apertures

The formation of the 2D diffraction pattern of arrays of hexagonal apertures can be seen

in the simulation results in Figure 4. The patterns were simulated using the Fraunhoffer

intensity distribution method and the graphical Fourier Transform method. Hexagonally
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Fig. 4. Formation of the 2D diffraction patterns from arrays of hexgonal apertures with hexagon

side of 20 µm and separation of 34.6 µm. (a-c) show simulations using the Fraunhoffer intensity

distribution method and (d-f) using the graphical Fourier Transform method for a single hexag-

onal aperture, an array of honeycomb centers, and an array of hexagonal apertures respectively.

(g) Experimental diffraction pattern of a fabricated array of hexagonal apertures in silicon, with

the given dimensions, illuminated by 532 nm laser light and projected on a screen 20 cm from

the sample. (h) Magnification of the central area of (g) by locating the screen 300 cm away from

the fabricated sample.

shaped apertures with 20 µm hexagon side lengths were arrayed in a honeycomb lattice

that separated the hexagonal aperture centers by a distance of 34.6 µm.

The diffraction pattern from hexagonal aperture arrays receives two main contribu-
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tions. The first contribution is from the diffraction effects from the hexagonal aperture

itself. Using an adapted mathematical representation of a 2D hexagonal aperture [11–

13], a simulation of a single hexagonal aperture using the intensity distribution approach

is shown in Figure 4(a). Alternatively, Figure 4(d) shows a simulated diffraction pat-

tern using the graphical Fourier Transform approach, which was obtained by plotting the

graphical Fourier Transform of the image of a hexagonal aperture. As it can be seen in

the figures, the two methods that were used to predict the diffraction patterns of single

hexagonal apertures present nearly identical results. A hexagonally shaped center lobe

is formed with long, modulated tails emanating from the pairs of hexagon sides. These

tails grow dimmer in intensity the further away from the center of the hexagon. They

also have areas of high and low intensity. The diffraction effects from the three pairs

of sides interact with each other, producing cross terms which exist in between the long

diffraction tails.

The second contribution to the diffraction pattern of arrays of hexagonal apertures

comes from the honeycomb array. The hexagon centers are located 34.6 µm from each

other. Thus, taking just the coordinates of the centers of the each of the hexagons in

the array, a rhomboidal unit cell is formed. In turn, when diffracted, they produce an

array of equidistant spots in orthogonal directions. Figure 4(b) was created by plotting

the diffraction intensity distribution of a 2D mathematical representation of a hexagonal

(honeycomb) array. Such array can be formed by convoluting Equation 2 in three different

angular directions, and letting n become large (n >20), resulting in delta-like points which

locate the hexagon centers of the honeycomb array. In the interest of presentation, the

simulation in Figure 4(b) used n = 5. Analogously, Figure 4(e) shows the simulated

diffraction pattern of a graphical honeycomb array by the Fourier Transform method.

As it can be seen in both simulated patterns, the rhomboidal unit cell that forms the

honeycomb lattice produces a rotated honeycomb lattice in the diffraction pattern.

By combining the two contributing effects of hexagonal apertures and honeycomb array,

the diffraction pattern of arrays of hexagonal apertures was simulated and it can be seen

in Figures 4(c) and (f), respectively via the intensity distribution and graphical Fourier

Transform methods. The two simulations appear to be very similar. The diffraction
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pattern consists of a honeycomb array of spots shaped by the envelope of the hexagonal

aperture patterns. Some graphical artifacts are observable in both simulated patterns,

but their general shape is very similar.

For comparison, Figure 4(g) shows an experimentally photographed diffraction pattern

produced by illuminating a fabricated silicon sample with a hexagonal array of apertures

with laser light of λ = 532 nm as projected on a screen located 20 cm from the grating

surface. The hexagons had 20 µm sides and were separated by 34.6 µm. Figure 4(h)

shows the central area of the experimental diffraction pattern in Figure 4(g), projected

at 300 cm instead to show the distribution of the spots. Both simulated patterns appear

to be very similar to the observed diffraction patterns, predicting the existence of the

different features.

3.C. Formation of the diffraction pattern of multi-microgratings

To understand how the diffraction pattern from multi-microgratings is formed, it is nec-

essary to understand how each of the periodicities in the array contributes to the whole

diffraction pattern. A graphical Fourier Transform approach was used. Revisiting Figure

1(a) and (b), micrograting array parameters are set as follows: hexagon side dimension s

= 20 µm, micrograting period d = 2.0 µm, vector ~a = 120 µm at 0◦ and vector ~b = 60

µm at 120◦, wavelength λ = 532 nm.

First, it is necessary to understand the various contributions to the diffraction pattern

of the microgratings. The difraction pattern of each micrograting cell receives contribu-

tions from the two elements that form it: the 1D grating element of each micrograting

and the hexagonal shape of that micrograting. Figure 5 shows the simulated patterns of

the apertures with microgratings shown as the insets via the graphical Fourier Transform

approach. Figures 5(a) and (b) show the simulated pattern for a micrograting cell with

a grating oriented at 90◦ and 30◦, respectively. As expected, the 1D grating orientation

produces positive and negative orders, arranged radially outward along direction perpen-

dicular to each orientation (0◦ and 120◦). Orders m = 1 and m = 2, labeled as A and B

in Figures 5(a) and (b), are found to correspond to the angular position that is described

by the grating equation. A and B both have the same shape as the diffraction pattern
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Fig. 5. Graphical Fourier Transform simulations of micrograting diffraction patterns for (a)single

micrograting oriented at 90◦,(b)single micrograting oriented at 30◦ and (c)collection of six mi-

crogratings. Insets shown are the images used to simulate diffraction patterns. Labels A and B

indicate first and second orders respectively.

of a single hexagonal aperture (described earlier in Figure 4). Thus, it is shown that the

diffraction pattern of each micrograting cell is formed by the convolution of the diffraction

patterns of 1D gratings and of hexagonal apertures.

Figure 5(c) shows the simulated diffraction pattern of the six combined micrograting

cells. This diffraction pattern has a central spot, surrounded by a ring of 12 first order

spots, labeled A. For simplicity, it is possible to refer to the 12 spots as the hours in

a clock. Radially outward from each of the 12 spots in the ring are 12 more spots, of

lower intensity, forming a second ring, labeled B. Each spot in the rings is equidistant

to the center spot. The two rings of spots, A and B, correspond to the first and second

orders, respectively, for each of the micrograting orientations. Given that there are six

possible angular orientations of the grating periods within the micrograting cells, then

each angular orientation produces diffracted spots in the corresponding perpendicular

direction. For example, for micrograting orientations of 0◦, spots are produced in a

vertical (90◦) direction, or the spots in the 12 and 6 o’clock positions (one being the

positive first order, and the other the negative). For a grating orientation of 30◦, the

spots lie in a line that is oriented at 120◦, or the 5 and 11 o’clock spots. A similar analysis

can be carried out for the other micrograting orientations, thus resulting in the twelve

visible spots for the first order (negative and positive) spots and 12 more for the second

order if the grating equation is satisfied for that particular order.
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Now, in order to generate large area arrays of microgratings, the unit cell described

by Figure 1(b) is used, adding the periodicity of the array itself. Figure 6(a) shows

the simulated diffraction pattern via graphical Fourier Transform of a large area array of

microgratings. Figure 6(b) shows the magnified image of one of the 12 spots in Figure 6(a).

Figure 6(c) shows detail of one of those spots in 6(a). As it can be seen, the diffraction

pattern of a large array of microgratings becomes the convolution of the diffraction pattern

of a six micrograting array, such as that in Figure 5(c), and that of a set of multiple

apertures separated by vectors ~a and ~b. The diffraction pattern from the array formed by

vectors ~a and ~b is manifested by the white parallelogram inscribed in Figure 6(c), which

has vectors orthogonal to ~a and ~b at 90 ◦ and 30◦ respectively. For comparison, Figure

6(d-f) show experimental diffraction patterns captured for micrograting arrays at similar

magnifications.

It can be seen that the experimentally observed diffraction patterns of arrays of mi-

crogratings are very similar to their simulated patterns, confirming that their diffraction

pattern is formed by the different periodicities found in the arrays. The micrograting

period forms positive and negative orders around the central spot. Due to the hexagonal

shape of the micrograting, each of the positive and negative spots are shaped like the

diffraction pattern of a hexagonal aperture. Finally, the vectors used to create the array

of microgratings appear in the diffraction pattern, giving rise to an array of spots in a

grid like fashion, described by a rhomboidal unit cell.

In summary, it is possible to understand diffraction patterns from multi-microgratings

and other periodic structures by breaking the patterns down to their individual optical

periodic components and studying their diffraction properties as sequential optical el-

ements. For 1D gratings, the incident beam encounters the periodic lines and thus is

diffracted into a reflected or transmitted order m = 0 beam and m = ±1, ±2, ±3, ±4...

orders. Figure 7(a) has a schematic diagram of what happens to a beam that is incident

on a sample with 1D diffraction gratings. In the case of an array of hexagonal apertures,

the diffraction pattern can be understood as the diffraction from a single hexagonal aper-

ture, which reshapes the beam into the shape of the diffraction pattern of a hexagonal

aperture but does not break the beam up into diffracted orders. The beam gets modified
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Fig. 6. Simulated via graphical Fourier Transform and observed diffraction patterns of an array

of hexagonally shaped microgratings with s = 20 µm, d = 2.0 µm, vector ~a = 120 µm at 0◦ and

vector ~b = 60 µm at 120◦, wavelength λ = 532 nm.(a) The 12 spots shown correspond to the

positive and negative orders of each micrograting orientation. (b) Magnification of one of the

12 spots seen in (a). (c) Higher magnification of a spot in (a), showing the periodic nature of

the small features produced by the large area array. (d-f) Experimentally observed diffraction

patterns at similar magnifications as those in (a-c).

by the periodic hexagonal apertures. It is, thus, further diffracted into orders M = 0

and closely-spaced, multiple ± higher orders due to the longer period between adjacent

hexagons. This phenomenon is schematically described in Figure 7(b). Finally, when a

light beam is incident on multi-microgratings, the diffraction pattern can be understood

as the light first encounters the 1D grating and is separated into orders m =0, ±1, ±2,
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Fig. 7. (a) Distribution of light in a sample with 1D diffraction grating. (b) Distribution of light

in a sample with periodic apertures.(c) Distribution of light in a sample with multi-microgratings.

±3, ±4.... Each of those orders then interact with the single hexagonal aperture of the

micrograting, and are reshaped to look like the diffraction pattern of a hexagonal aper-

ture. Furthermore, the mth order diffracted beams then encounter the periodicity of the

nearest similarly oriented microgratings, and are further diffracted into M = 0, ±1, ±2,

±3, ±4... orders. This is exemplified in Figure 7(c).

3.D. FDTD simulations of multi-microgratings

FDTD simulations were carried out to study the time-dependence of the electric field

along the z direction, Ez, for a monochromatic sinusoidal electromagnetic wave incident

on diffracting apertures defined by PECs.
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with , to interact with the sinusoidal EM wave with 532 nm wavelength in vacuum

with .

The following parameters were used to simulate the interaction of a multi-micrograting

with an EM wave of 532 nm wavelength: 2.0 µm grating period, 1.0 µm grating width, 5

slits, 4 micrograting cells separated by 34 µm, a grid size of 50 nm, electric permittivity

ε0 of 0.0278∗10−9F/m and magnetic permeability µ0 of 12.56∗10−7H/m. The results are

shown in Figure 8(a). Each micrograting produces diffracted beams that travel parallel

to the diffracted beams of the other microgratings. Since they are parallel, diffracted

beams of a particular order (m = 1 for example) produced by different microgratings will

not interfere with each other. However, as it can be seen from the figure, there are areas

where the diffracted beam of the left most micrograting interacts with the zeroth order

beam from the second micrograting at a Y distance of 200 µm. The same can be said

more of the beams at particular distances. In those locations, the interference of those

beams would be manifested as interference fringes which will have a fringe period related

to the angular separation of the interfering beams. After those regions of interference,

the beams continue to propagate to the far field. If one were to place a screen in those

locations were the beams overlap, the interference fringes would become visible.

Since the FDTD simulations depict the intensity at the near field, the field distribution

of Ez as a function of x for a fixed y is Fourier Transformed to obtain the far field pattern.

The far field pattern is shown in Figure 8(b), centered around the zeroth order max. In

the case of the multi-microgratings, the intensity can be seen to be further distributed to

higher orders as well. The far field pattern can be compared to the Fraunhofer intensity

distributions shown in Figure 3, which are the exact solutions to the multi-micrograting

diffraction pattern.

3.D.1. FDTD simulations of interference

One of the biggest advantages of the FDTD method is that it can also simulate in-

terference effects between plane waves, which is an effect that would happen with multi-

microgratings. Referring back to Figure 8, it was possible to see that the diffracted beams

from a micrograting can interact with the diffracted beam from a different micrograting.
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Fig. 8. (a) FDTD simulation of electric field Ezrms of the interaction of 1D multi-micrograting

(2.0 µm grating period, 1.0 µm grating width, and with 34 µm micrograting cell separation)

and EM wave of 532 nm wavelength. (b) Far field distribution of Ezrms.

Conceptually, the two diffracted beams can be considered monochromatic plane waves

traveling at angles ±θint/2 and that intersect at an angle θint. In the region of intersection,

interference fringes would be produced with a fringe period df given by Equation 6.

df =
λ

sinθint
(6)

An FDTD simulation was carried out that simulates two interacting beams separated

by 30 µm, traveling downwards at angles θint/2 = ±20◦ with a wavelength of 532 nm.
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Fig. 9. FDTD simulation of interfering beams (30 µm separation, 532 nm wavelength). (a)

Electric field Ez and (b) RMS electric field Ezrms at angles θint/2 = ±20◦. (c) Electric field Ez

and (d) RMS electric field Ezrms at angles θint/2 = ±40◦.

The steady state electric field Ez field is shown in Figure 9(a), and the steady state RMS

electric field Ezrms is shown in Figure 9(b). The beam on the left is traveling at angle

θint/2 = 20◦ and the one on the right at angle θint/2 = −20◦ and they intersect at an

angle of 40◦. As it can be seen from both plots, interference fringes are formed along the

white line plotted in Figure 9(b). The same simulation was carried out for two beams

traveling at angles θint/2 = ±40◦. Ez and Ezrms for this case can be seen in Figure 9(c)

and (d).

As it is seen in Figure 9, if the interference angle increases, the fringe period decreases.

To better visualize this effect, the profiles of the RMS fields of Figure 9(b) and (d) are

plotted along the white lines and are shown in Figure 10(a) for the 20◦ case and (b) for
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Fig. 10. Line profiles of the RMS electric fields from Figure 9(b) and (d).

the 40◦ case. It is possible to see how the interference fringe period changes dramatically.

The FDTD simulations presented complement and corroborate the results shown for

the predicted patterns of multi-microgratings that were calculated with the Fraunhofer

intensity approach and with the graphical Fourier Transform method. These simulations

also predict interference fringes forming in the regions where multi-micrograting diffracted

beams overlap with one another.

3.E. Results of diffraction efficiency simulations

For samples with multi-microgratings, a depth of 0.95 µm was calculated to maximize

the first order diffraction efficiency for the parameters listed earlier. This resulted in a
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Table 1. Design parameters and calculated diffraction efficiencies

Design Grating period Etch Calculated total TE
type or cell size depth diffraction efficiency

(µm) (µm) (%)

1D gratings 2.0 0.95 31.5
Hexagonal apertures 20.0 1.95 8.7
Multi-micrograting 2.0 0.95 31.5

1D grating TE diffraction efficiency of 14.1% for the first order, and a total diffraction

efficiency of 31.5%. Most of the light gets diffracted to the ± 1 order (28.2%), and a

smaller portion (3.3%) is distributed to the higher orders.

For samples with hexagonal apertures only, a depth of 1.95 µm was selected since it

provided a maximum in the efficiency calculations. The total diffraction efficiency for

periodic hexagonal apertures was calculated to be 8.7%. Due to the longer period, the

incident light is diffracted into a higher number of spots. The efficiency of individual

diffracted spots was considerably reduced. Additionally, due to a non-ideal duty cycle,

efficiency was further decreased.

As reported separately [8], the measured total diffraction efficiency for samples with

multi-microgratings with the given parameters was measured to be 32.1%, which is close

to the calculated values. For hexagonal aperture samples, a total diffraction efficiency of

23.7% was measured, which was higher than the calculated since the samples were coated

with 80 nm of Al. The addition of Al to the samples was determined to increase the

diffraction efficiency by a factor of about 2.2 - 2.3 for all other samples, so the measured

total diffraction efficiency for uncoated hexagonal apertures is estimated to be 10.3%,

which is also close to the calculated values. Table 1 summarizes the selected depths for

each of the sample designs as well as the calculated total TE diffraction efficiency.

4. Conclusions

The optical diffraction properties of multi-microgratings have been simulated. Simulated

diffraction patterns of arrays of hexagonal apertures and arrays of microgratings were

compared to the experimental diffraction patterns of silicon fabricated structures and
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found to be in agreement. The diffraction pattern of arrays of hexagonal apertures receive

contributions from the hexagonal aperture, the honeycomb array and their interaction.

The diffraction pattern of arrays of microgratings are the combination of the diffraction

pattern from hexagonal shape of the micrograting cells, the periodic nature of the gratings

within each cell and the grid-like structure that is formed by the vectors that array the

microgratings into large areas.

It has been shown that complex periodic structures can be broken down into their

constituting elements for easier understanding of how their diffraction patterns are formed,

but suggesting that there is a strong interaction between the different periodic elements.

The interaction gives rise to areas of high intensity appearing highly defined and with

sharp features. These features could prove to be very sensitive to changing conditions

in the samples themselves. Such idea can be exploited in multiple applications such as

strain or temperature sensing where both anisotropic and isotropic changes in the sample

dimensions could lead to very defined changes in a diffraction pattern and its intensity.

Three simulation approaches were presented. A Fraunhoffer intensity distribution ap-

proach was developed in order to mathematically explain structures with multiple periodic

elements. This approach is useful when mathematical expressions of the apertures can

be easily derived, such as regularly shaped aperture arrays. Also, the simulations can be

targeted to only display areas of interest with great detail, allowing for high resolution

images of any area of the simulated diffraction pattern. A different, graphical Fourier

Transform approach was implemented to simulate the diffraction patterns of more com-

plex structures. Diffraction patterns of such structures can be simulated by obtaining

their graphic Fourier Transform, but the diffraction patterns must be spatially calibrated.

Furthermore, such technique only applies to square images with pixel counts that are in

powers of 2. Simulations have to be obtained for the whole structure, not just a portion

of it. This approach has been proven to be a very useful tool to explain the formation

of diffraction patterns of complex periodic structures like arrays of hexagonal micrograt-

ings, but it is also possible to use such approach to simulate the diffraction patterns of

quasi-periodic and non-periodic structures as well. A third approach was implemented to

simulate the optical properties of multi-microgratings that is based on the FDTD method.
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The method can be used to observe other optical effects, such as interference between the

different microgratings. The model can be further specialized to incorporate different

materials with distinct refractive indices, different incidence angles, etc.
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Multi-microgratings for high sensitivity

temperature sensing
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Abstract

Development of non-contact, fast, accurate temperature measurements of surfaces is necessary in pro-

duction and development environments in order to increase processing throughput and yields. Optical

temperature measurement methods offer possible solutions, but are often slow, depend on surface con-

ditions and have limited ranges. A temperature measurement method based on optical diffraction of

highly-periodic multi-micrograting structures is presented and compared to similar methods that use

conventional one-dimensional gratings. The system is shown to have a temperature resolution 300 times

better than with 1D gratings, and is capable of resolving changes in temperature of <0.1◦C using inex-

pensive equipment and simple alignment.

Keywords: diffraction grating, grating array, Fourier transform, microgratings, optical temperature sens-

ing, temperature measurement
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1. Introduction

In production environments, accurate temperature measurement of materials and sub-

strates is very critical due to the multitude of different processes. The most common

temperature measurements methods are direct contact measurements such as those with

thermocouples, which require physical contact between the probe and the material being

measured. Physical contact is not always feasible in certain processing configurations

and also thermocouples are highly susceptible to contamination. For example, many pro-

cesses require temperature monitoring while under vacuum or in locations where contact

is not possible, so non-contact temperature measurements are necessary such as those

implemented by optical techniques.

Conventional, optical noncontact measurement techniques such as pyrometers, which

measure blackbody radiation from a surface, are relatively accurate; however, they are

highly dependent on surface and material properties (i.e. emissivity, roughness) and offer

poor spatial resolution and have slow acquisition times [1]. Newer methods for tempera-

ture sensing, such as microbolometers, thermal bimorphs, thermal buckling based sensor

arrays, Fabry-Perot structures and cantilevers have poor spatial resolution and narrow

operating ranges [2]. Some novel designs, such as thermally actuated interferometric sen-

sors, have been reported based on device fabricated with PDMS [3], long period fiber

sensors with high temperature sensitivity [4, 5] and designs with photonic crystals [6, 7]

and plasmonic nanostructures [8]. These novel designs are complicated to fabricate and

difficult to align and may not be suitable for a simple, quick temperature measurement.

An alternative method for optical temperature measurements is using diffraction grat-

ings. One dimensional gratings have been proposed as method for temperature measure-

ments, using diffracted beam angular measurement changes due to thermal expansion of

the grating substrates, like PDMS, silicon carbide, silicon and gallium arsenide [9–11].

Results are promising, but they lack a high spatial resolution and low sensitivity. Low-

cost, simple methods such as those described in [3, 10] based on thermal expansion of

diffraction gratings offer a fast method to measure temperature. The angular deflection

of diffracted beams was monitored for position changes due to increases in temperature

in Si-C (α = 6.5· 10−6 ◦C−1) and PDMS (α = 277· 10−6 ◦C−1) substrates. The studies
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reported sensor configurations capable of resolving ∆T = 5◦C and 0.01◦C respectively.

While α plays a big role in the sensitivity of the system, for a Si (α = 2.6· 10−6 ◦C−1)

substrate [12], sensitivity in the order of a few ◦C can be expected. To obtain better reso-

lution (0.3-0.6◦C), more complicated configurations can be used, such as those described

in [1, 9]. Two independent probing beams at different incident angles were made incident

on Si substrates with diffraction gratings so that their diffracted beams travel parallel

to each other to a sensor. The difference in centroid position of the individual beams

was monitored and used to measure changes in temperature and rotation. While this

configuration offers a higher resolution, it has a complicated optical configuration that is

very sensitive to alignment. Albeit for different applications, interferometric measurement

methods using expansion of gratings can obtain further improvements in resolution, which

also require complicated setups with critical alignment, cost and operation [13–16]. It fol-

lows then that using interferometric measurements would then improve the resolution of

optical temperature measurement methods using thermal expansion of gratings.

In previous work [17, 18], we designed and studied the optical properties of multi-

periodic structures defined as multi-microgratings. We showed that multi-microgratings

have complex diffraction patterns that arise from the interaction of the multiple periodic

elements that are present in the multi-micrograting design. These diffraction patterns

are formed by the combination of the effects of periodic grating lines, single and multiple

apertures as well as the arrangement of those apertures. Hence, the diffraction patterns

contain information regarding the interaction between the individual periodic elements

that form the multi-microgratings. These cross-term interactions between the different

periodicities and interference between diffracted beams opens the opportunity for novel

sensor applications.

1.A. Background on multi-microgratings

Six hexagonal micrograting cells, of six possible grating orientations, can be grouped up

together into a repeating cell as seen in Figure 1(a), which shows the six cells with the

respective grating orientations, grating period d and hexagon side s. That repeating cell

can be arrayed together, resulting in a large area pattern that can be seen in Figure 1(b).

3

Chapter A Authored publication manuscripts 177



Upon closer inspection, and also shown in Figure 1(b), the array can be described by a

unit cell described by the red parallelogram with vectors ~a and ~b. In other words, the

vectors ~a and ~b can be used to translate the unit cell and produce the large area arrays.

We used the indicated design to try to understand the optical properties of arrays

of micrograting cells through fabrication and observation of their complex diffraction

patterns, such as the one seen in the photograph shown in Figure 1(c), which shows a

screen projection of a diffraction pattern of a micrograting array pattern with d = 2 µm,

with s = 20 µm fabricated on silicon samples. The diffraction pattern produced by multi-

micrograting arrays can be seen to be very intricate, with several features with high and

low intensity. It can be explained as the convolution of the different periodicities that

form the arrays. It appears to have a spatial hierarchy for the existence of these cross

terms. The smallest observable features in the diffraction pattern (the lattice described

by the red parallelogram in Figure 1(b)), which corresponds to the largest feature in the

multi-micrograting array design (the unit cell that forms the arrays), is convoluted with

the diffraction pattern of individual hexagonal apertures, thus creating the pattern seen

in Figure 1(c). In turn, the pattern seen in Figure 1(b) is then convoluted with the 1D

diffraction grating spot locations, creating the large and complex diffraction pattern of

multi-microgratings seen in Figure 1(c).

In 1D gratings, the intensity is distributed between the 0th order and a few higher

order diffracted beams, which occur at very localized and discrete angular positions. In

the case of multi-microgratings, a significant portion of the intensity is also distributed

into multiple higher order diffracted beams, due the shape of the micrograting apertures

and into the periodic nature of the apertures.

Thus, by monitoring the position and intensity of the diffracted beams, the overall

diffraction pattern characteristics and intensity distribution from multi-microgratings can

be shown to be more sensitive to changes. Furthermore, as it was shown earlier, multi-

micrograting beams tend to be slightly narrower than their 1D grating counterparts [17].

Also, depending on the sensing configuration, they also interfere with each other at the

sensor plane, producing highly defined interference patterns.

Overall, the purpose of this paper is to describe a feasibility study of possible ap-
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Fig. 1. (a) Micrograting repeating cell with six possible orientations. s is the hexagon side

dimension and d is the grating period. (b) Array of multi-microgratings, with the red parallelo-

gram defining the unit cell that was used to form the array, with sides a and b. (c) Photograph

of screen projection of a normal incidence, optical diffraction pattern by multi-micgrograting

array with d = 2 µm, with s = 20 µm and laser light with λ = 532 nm.

plications of multi-microgratings which exploit the differences between 1D gratings and

multi-microgratings. A method that utilizes the complex multi-micrograting diffraction

patterns and their interference is described in the framework of temperature sensing,

which can also be further extended for other sensor applications such as strain/stress

sensing, vapor concentration detection and nanometrology, etc.

2. Temperature sensing method with multi-microgratings

As the temperature of a solid is changed its physical dimensions are also affected. The

coefficient of thermal expansion (CTE), α, is a characteristic of each material and it

is a measure of the magnitude of the thermally induced change in dimensions [19]. This

coefficient is also dependent on temperature itself. The change of dimensions of an object,

∆L, is given by Equation 1. The equation states that the change in length of an object
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∆L is proportional to the change in temperature ∆T , where L is the initial length and

the proportionality constant α is the coefficient of thermal expansion.

∆L = α ∗ L ∗ ∆T (1)

When surface relief gratings are present on the substrate, thermal expansion of the

substrate can induce changes in the periodicity of the gratings. A change in this periodicity

will result in a change in the diffracted angles, and thus, this technique can be used to

measure changes in temperature. The change in the periodicity (∆d) of a grating with

period d is given in Equation 2.

∆d = α ∗ d ∗ ∆T (2)

A change in temperature of the substrate will induce a change in the periodicity of

the micro-multigratings, and it will be dependent on the material itself (by means of the

coefficient of thermal expansion) and the change in temperature. If the grating periodicity

is changed, then it follows that the diffraction angle will also have to change. The accuracy

at which that angular deflection can be measured determines the measurable sensitivity

of the temperature change.

The mechanism showing the thermally induced changes in the diffracted angles is shown

in Figure 2. If temperature increases from T to T ’, this will cause a linear expansion in

the grating periodicity from d to d’. In other words, as ∆T increases, ∆d will also have to

increase. An increase in the grating periodicity will mean that the diffracted beams will

shift towards the 0th order. Since the thermally induced changes in the grating periodicity

will be relatively small, accurate measurement of the position of diffracted beams becomes

very important.

In order to measure the changes in the diffracted angles, ∆d, a screen can be placed

at a distance D from the grating sample as seen in the schematic diagram in Figure 3.

The diffracted orders will be projected onto the screen, and the distance between the

central beam and each diffracted spot will be given by s. The relationship between the

diffracted angle θd, the distance to the screen D and the separation between the 0th order

and the diffracted order can be described by tan(θd) = s/D. As the distance to the screen
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Fig. 2. Visualization of changes in diffracted angle caused by thermally induced periodiciy

changes that affect the diffracted angle.

Fig. 3. Schematic of screen projection of diffraction patterns.

D is moved further away, the separation of the diffracted order and the 0th order on the

screen, s, will also increase. Thus, the measurements are more accurate as D increases.

The change in displacement ∆s can be measured, and an accurate way of measuring

that change is by monitoring the displacement using a CCD camera. The resolution of

the system is going to depend on the resolution of the optical elements and the ability of

the system to resolve displacement. Arbitrarily long sample to sensor D distances can be

used to make a small change in the diffracted angle be equivalent to a large change in the
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spatial shift, at a cost of range in the measurement and vice versa. Angular shift, ∆θd,

is however fixed. Angular shift is also proportional to the change in temperature and the

reference angular position, so for a given change in temperature, a larger θd is preferable,

which can be achieved by using higher order diffracted beams or large angle of incidence

θi of the probing beam.

Use of multi-micogratings allows measurement of several parameters. If multi- micograt-

ings are present on the surface of a substrate, the absolute temperature of a substrate

can be determined using the CTE of the substrate and the periodicity of the multi-

micograting. Changes in the angular position of the diffracted orders can then be used

to determine changes in the periodicity, which in turn can be used to determine the

overall change in temperature of the substrate. This can be realized with gratings of

single orientations, but there are advantages to having multi-micogratings of multiple

orientations. By monitoring the diffracted angles, in the case of multi-micogratings, it is

possible to determine the spatial variation of temperature. Additionally, it is possible to

simulatenously record temperature at different locations and obtain spatial temperature

information from a substrate with multi-microgratings, which would not be possible with

1D gratings.

The size of the probing beam has a large impact on the measurement of this method.

If the probing beam is large in diameter but smaller than the overall size of the multi-

micrograting pattern, the diffraction pattern will be the result of the contribution of all

the multi-micogratings. However, a smaller beam can probe the area covered by the

repeating unit of six hexagons. This pattern provides local information on the scale of

the repeating cell. If the probing beam is even smaller in diameter, it can be focused to

only be incident on a single hexagon, thus being able to determine the temperature of

that particular area. The spatial resolution of this method will be in part dependent on

the individual size of the hexagonal gratings. For probing beams that are larger than the

muti-micrograting pattern itself, and at the right sample to detector position, interference

effects could be observed which will create sharp, highly defined features.

With an arbitrarily long patterned sample, the diffracted beam from one micrograting

would interfere with the zeroth order of several other microgratings. A schematic diagram
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Fig. 4. Schematic diagram that illustrates multiple interference locations of first order diffracted

beams and zeroth order beams .

of this concept is shown in Figure 4. The paths for the zeroth order and first diffracted

order are shown and their intersections are marked to illustrate the regions where the

beams would interfere. At all the marked locations, the beams would interfere, producing

interference fringes.

In addition to being narrower, under certain conditions, the multi-micrograting

diffracted beams can be allowed to interfere at the sensor plane, producing high con-

trast, sharp fringes. Figure 5 illustrates this effect. If we assume a 1D grating diffracted

beam of FWHM = 560 µm as the black line in Figure 5(a), a typical 45 µm displacement

in the sensor plane can be measured. One way to quantify that measurement is to look

at the differential signal DS given by Equation 3, where T1 and T2 are the original and

shifted signals respectively. The differential signal of Figure 5(a) can be seen in Figure

5(b). A maximum change of around ±11% is observed in the differential signal.

DS = 100% ∗ (
T2

T1
− 1) (3)

For comparison, if the beam were instead narrower, that maximum change in the

differential signal would be greater, such as in the case for multi-microgratings. Also, if

the beam that is probing the grating sample is expanded so that it is larger than the total

grating size, at a similar sample to sensor distance and due to their proximity, multi-
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Fig. 5. Simulated 45 µm displacement/shift in (a) 1D grating Gaussian signal and (c) multi-

micrograting signal with interferometric fringes with 90 µm periodicity. (b) and (d) represent

differential changes in the signal to visualize strenght of measurement.

micrograting beams are observed to interfere with one another, producing fringes. Figure

5(c) simulates interference fringes with equal contrast but much narrower fringe widths

than the beam of Figure 5(a), with 90 µm period and it is represented by the black T1

line. In the ideal case, a half period displacement of 45 µm (T2, as exemplified by the

red curve) would produce the maximum change in the system’s differential signal, as it

can be seen in Figure 5(d). The differential signal can be found to have a maximum

change of 100%. While this is an ideal case scenario, it is clearly observable how utilizing

the interference effects observed on multi-micrograting diffraction patterns, which do not

appear on 1D grating diffraction patterns, can much more readily utilized to carry out

measurements.

To more accurately measure changes in displacement using interference fringes, a phase

can be calculated for the reference image at T1 and at T2 for the example seen in Fig-

10
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ure 5. The computed phase difference, ∆φ, can be used as a metric for calibration or

measurement. As it can be seen from Figure 5(c) and (d), since a half period was chosen

as the displacement, the phase difference between T1 and T2 is π. A short simulation

was written in MatLab that calculates the phase difference ∆φ [20]. To obtain the phase,

Fourier Filters were applied to isolate one of the periodic frequencies of curves T1 and

T2, a wrapped phase is calculated and unwrapped and the difference in phase between

the reference image and the changed image are calculated. Since the fringe period was

chosen to be displaced by a half period, the calculated phase is π.

Further simulations were designed, implementing the finite-difference time-domain

(FDTD) method, to simulate 1D multi-micrograting structures . A two-dimensional

model is devised, with an electromagnetic wave propagating in the XY plane, with a

transverse component Hz [21]. The boundaries are defined to be absorbing with a per-

fectly matched layer (PML). For simplicity, a screen aperture or grating is defined as a

perfect electric conductor (PEC), by setting the electric field components to zero in those

regions. A sinusoidal electromagnetic source of a particular wavelength is then defined

at a particular location inside the model volume and is allowed to propagate in the XY

plane in a particular direction, by iterating over time until steady state is achieved. The

sinusoidal source interacts with the aperture that was defined. At each instant in time,

the electric field vectors are solved first, followed by the magnetic field vectors in the next

time iteration. The result is a time evolution of the electric field. Since the electric field

is proportional to the intensity of the wave, then it can be used to understand how the

electromagnetic wave interacts with the diffraction gratings.

As an example, an FDTD simulation is carried out that simulates two interacting beams

separated by 30 µm, traveling downwards at angles θint/2 = ±20◦ with a wavelength of

532 nm. The steady state RMS electric field Ezrms is shown in Figure 6(b). The beam on

the left is traveling at angle θint/2 = 20◦ and the one on the right at angle θint/2 = −20◦

and they intersect at an angle of 40◦. As it can be seen from both plots, interference

fringes are formed along the white line plotted in Figure 6(a). To better visualize this

effect, the profile of the RMS fields of Figure 6(a) is plotted along the white line and

is shown in Figure 6(b). It is possible to see how the interference fringe period changes

11
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Fig. 6. FDTD simulation of interfering beams (30 µm separation, 532 nm wavelength). (a) RMS

electric field Ezrms at angles θint/2 = ±20◦. (b) Line profile of Ezrms for (a). (c) RMS electric

field Ezrms at angles θint/2 = ±40◦. (d) Line profile of Ezrms for (c).

dramatically. The same simulation was carried out for two beams traveling at angles

θint/2 = ±40◦. Ezrms for this case can be seen in Figure 6(c), and its profile in Figure

6(d).

Similar simulations are carried out for multi-microgratings with 2 µm grating period

and 30 µm micrograting separation, which produce diffracted beams at angles of ±32◦.

The illuminating source was light with 532 nm wavelength. The diffracted angle θd (or

interference half-angle θint/2, as they can be shown to be the same angles) was simulated

to increase from 32◦ to higher angles at different increments, as if temperature were

decreasing in the sample. The FDTD simulations were allowed to run and reach steady

12
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Fig. 7. Effects of decreasing temperature, causing an increase in the diffracted angle (or inter-

ference half-angle) from 32 to 33◦, shown as red circles fitted to a blue best fit line.

state. Instead of looking at how much the fringes are moving, the phase change ∆φ is

calculated with respect to the reference beams at 32.0◦ (∆φ=0). The phase change is

calculated for each increment of 0.1◦ up to 33.0◦. The plot for the phase change ∆φ as a

function of the interference half-angles is shown in Figure 7 as the red circles fitted to a

blue linear trend. The initial condition at a half-angle of 32◦ is on the top left corner of

the plot, and as temperature decrease is simulated, the phase change moves downwards

to the right.

While the trend shown is very clearly linear, a change in the interference half-angle of

a whole degree, and assuming a silicon sample, corresponds to a change in temperature

∆T of over 1100◦C, which is not very useful. However, this technique can be shown to

be very sensitive. Different increments in interference half-angles ∆θint/2 were selected

to understand the sensitivity of the phase change technique and the results are plotted in

Figure 8 for increments (a) ∆θd = 1x10−4◦, (b) 1x10−5◦ and (c) 1x10−6◦. The R2 values

for the fitted curves are shown as well. The linear trend remains for all cases. The R2

are for the two increments in Figure 8(a) and (b) are very high, indicating a good fit of

the trend to the data. It can be said that differentiating two adjacent measurements at

these deltas would accurately differentiate them from one another. In the third case, for

∆θint/2=1x10−6◦, the actual captured values (red circles) are seen to be deviating from the

13
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Table 1. Summary of phase changing technique sensitivity

∆θd ∆T ∆φ per step R2

(◦) (◦C) (rad)

10 1100 -0.4 1

1*10−4 1.1 -0.0004 0.99929

1*10−5 0.11 -0.00004 0.99792

1*10−6 0.011 -0.000004 0.94576

linear trend. At this point, it is still possible to differentiate two adjacent measurements.

At lower values of ∆θint/2, the ability to distinguish two adjacent measurements would

be lost. The resolving capabilities of this method are summarized in Table 1.

Due to the nature of the process, an ambiguity as to the direction of the phase shift is

introduced since the phase shift is periodic and a 2π shift is the same as a 0 π shift. Due

to that ambiguity, errors can be made when calculating the phase. In this example, a 2π

shift corresponds to a full 90 µm shift, but the calculated phase can result to be multiples

of ±2π.

A solution is proposed, which uses both the high dynamic range and low resolution of

1D grating displacements and also the low dynamic range, high resolution of the phase

change mechanism of the interference fringes caused by the multi-microgratings to obtain

a high dynamic range, high resolution sensing method that would otherwise be impossible

with just 1D gratings.

In summary, because multi-micrograting optical properties are the combined effect of

the elements that compose them, the sensing current method shares some of the conven-

tional 1D grating advantages as well as helps mitigate some of the issues. The advantages

of using multi-microgratings is summarized below, which set them apart from other optical

temperature measurement techniques.

1. Noncontact and real-time.

2. High dynamic range/ high resolution by combining displacement measurements of

large features that behave as 1D grating spots and sharp features present from
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Fig. 8. Simulation of effects of decreasing temperature, causing an increase in the diffracted

angle (or interference half-angle) at three different ∆θint/2 separating each measurement step,

of (a) 1x10−4◦, (b) 1x10−5◦ and (c) 1x10−6◦.

allowing multi-micrograting beams to interfere with each other.

3. Capable of localized micron scale measurements by probing different areas of multi-

microgratings.
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4. Simple architecture and alignment, requiring only a laser, a substrate with multi-

micrograting patterns and a camera.

5. Capable of measuring changes in variety of substrates that could be changing due to

processing parameters such as transparent and opaque with low or no susceptibility

to surface emissivity or conditions, flat or curved as long as periodic elements remain

unchanged.

6. Analogous technique can easily be adapted for stress/strain, displacement or rota-

tion measurements.

3. Experimental

Figure 9 shows the experimental setup used to test the feasibility of temperature sensing

using multi-microgratings. 1D grating and multi-micrograting samples with 2 µm period-

icities were placed on a hot plate and slowly heated to different temperatures to observe

changes in the diffraction pattern as a function of temperature. The incident angle and

sample to sensor positions were estimated from photographs of the experimental setup.

The optional beam expander was used to modify the incident beam size so that adjacent

beams in multi-microgratings could interfere with each other.

The diffracted beams were captured by the CCD sensor and analyzed for spatial

changes. To measure beam profiles and beam positions, costly CCD sensors are typi-

cally employed. A cost-alternative method to measure beam profiles and positions [22] is

adapted using a very inexpensive ($15) USB webcam (Intel CS110). The webcam housing

was dismantled and the focusing lens removed to reveal the CCD sensor. The active area

of the sensor has dimensions of 2.84 x 2.33 mm and an active area of 352 x 288 pixels.

Square pixel pitch is measured to be 8.08 µm. Commercial software (QCFocus v2.1) is

used to capture the images from the CCD webcam. Intensity values between 0 and 255

are captured by each pixel of the webcam. In order to prevent sensor saturation, the

diffracted beam power is controlled by a combination of a rotating polarizer and neutral

density (ND) filters. A notch filter (ThorLabs FB550-40) is used to prevent any stray

light from reaching the sensor.
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Fig. 9. Experimental setup for temperature change experiments.

As the laser beam is incident on the samples, the diffracted beam for order m = -

1 is directed to the CCD webcam and beam profiles are extracted from the images at

different temperature conditions using commercial software (ImageJ). Beam profiles are

smoothened with a 5 pixel Gaussian filter to remove noise from the beam profiles. Average

RMS noise of the CCD sensor was measured using MatLab by analyzing the mean and

standard deviations of several captured signals and it was found to be 5.9%, with a range

between 4.5% to 10.4%. It is established that if a measured signal is below the average

noise of the sensor (SNR≤1), then a change cannot be resolved.

Temperature of the hot plate (Corning Digital Hot Plate) was calibrated to the nominal

reading in the device controls with a k-type thermocouple over several cycles. Addition-

ally, a pyrometer based infrared thermometer (Fluke 568) was used on the hot plate to

verify temperature readings. During experiments, temperature was carefully monitored

with the attached thermocouple and infrared thermometer.
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4. Results

In order to calculate system resolution and to visualize how using multi-microgratings

would be beneficial in the sensor configuration described, images of displaced diffraction

beams of similar displacement changes are shown in Figures 10 and 11 for two cases. Case

1 is with a measurement using a 1D grating and Case 2 is using multi-microgratings.

Displacement in both cases is measured to be 65 µm, in order to be able to compare the

measurement methods. It must also be noted that the sample to sensor distances was

also different for each of the two cases, as it will be discussed below.

4.A. Case 1: 1D gratings, beam not expanded

Figure 10(a) and (b) shows the first order diffracted beam positions at temperatures of

30◦C and 60◦C for a sample with 1D gratings at a sample to sensor distance of 48 cm.

The reference (30◦C) beam is shown as the solid line in Figure 10(c). The displaced beam

is shown in Figure 10(d) as the solid line and the reference beam appears as the dotted

line. The differential change produced by the measurement can be seen in Figure 10(e). A

maximum change of 12.6% was observed, which is still above the measured 5.9% average

noise in the sensor. The effective observed change which can be seen to be high enough

to resolve the temperature measurement when compared to the average noise (5.9%) of

the sensor. The SNR is calculated to be 2.13. Under these parameters, a minimum

displacement of 30.43 µm would be necessary in order to resolve the measurement, which

corresponds to a 14.04◦C minimum resolvable temperature.

4.B. Case 2: Multi-microgratings, expanded beam

Similarly, a sample with multi-micrograting patterns was exposed to temperature varia-

tions and the first order diffracted beam using an expanded probing beam can be seen in

Figure 11(a) for room temperature (30◦C) and (b) 100◦C at a sample to sensor distance of

20 cm. As it can be seen, diffraction fringes that are produced by expanding the probing

beam cause the diffracted beams to interfere with each other, producing the high contrast
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Fig. 10. Diffraction beam displacement for 1D gratings at (a) 30◦C and (b) 60◦C. (c) shows the

reference beam profile and (d) shows the displaced beam as the solid line and reference as the

dotted line for clarity. (e) shows the differential signal that results.

lines in the regions of overlap. Due to the sharpness of the feature, a smaller change can

be more readily resolved, as compared to the 1D grating case. Figure 11(c) shows the

profile of the room temperature measurement as the solid line, which has been smoothed

(Gaussian filter) to more easily visualize the fringes and their periodic nature. Figure

11(d) shows the displaced diffracted beams at a temperature of 100◦C as the solid line,

while the dotted line represents the room temperature reference measurement. Arrows

are added to clarify how the displacement occurred. The differential signal produced by

this measurement is shown in Figure 11(e), where the maximum observable change can

be seen to be produced at a position around 300 µm in the sensor, and it is around 51%.

The SNR is calculated to be 8.6, which is much higher than that for 1D gratings. Under
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Table 2. Summary of results for 1D gratings and multi-microgratings

Parameters Case 1 Case 2 Case 3
(1D Gratings) (Multi-microgratings) (Multi-microgratings

with interference)

Contrast (AU) 0.988 0.990 0.990

SNR (AU) 2.13 8.6 8.6

Sample-sensor 48 20 10
distance (cm)

∆T (◦C) 30 70 <0.1

Adjusted min. resolvable 33.6 8.07 <0.1
∆T (◦C)

Improvement (AU) NA 4.2x 300x

this configuration, the sensor would be able to resolve a minimum displacement of 7.5

µm, which corresponds to a minimum ∆T of 8.07◦C. A phase change ∆φ is calculated

to be 1.52, which corresponds to the expected π/2 shift for this particular displacement.

A phase calculation can easily assign a numerical value to the displacement and can be

used for alignment and characterization purposes.

Due to the different sample to sensor distance in Case 1, the resolution measurement

of Case 1 is normalized to the sample to sensor distance of 20 cm and it is calculated to be

33.6◦C, while for Case 2 it remains as 8.07◦C. Case 2 shows to have a resolution that is 4.2

times higher than that for Case 1. The range of such a system under this configuration,

normalized to a sensor to sample distance of 20 cm, is between 30 and 140 ◦C.

Table Table 2 summarizes the parameters and results of the results for Cases 1 and 2.
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Fig. 11. Diffraction beam displacement for multi-microgratings at (a) 30◦C and (b) 100◦C. (c)

shows the reference beam profile and (d) shows the displaced beam as the solid line and reference

as the dotted line for clarity. (e) shows the differential signal that results.

5. Conclusions

A method that uses the thermal expansion of 1D gratings and multi-microgratings was

described to demonstrate the advantages of using multi-microgratings over 1D gratings.

Several key aspects show these clear improvements. Beams that are narrower for multi-

microgratings allow for a theoretical better sensor resolution. High contrast fringes that

are produced only in the case of multi-micrograting diffraction patterns can be used to

increase the resolution of the system by 4.2 times. The improvement in resolution can be

achieved without a decrease in the dynamic range of the sensor configuration. With 1D
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gratings, in order to improve the resolution of a system with a similar configuration it

would require the sample to sensor distance to be increased, at the cost of a reduced field

of view (range). In the case of the interferometric measurement using multi-microgratings,

the same range can be achieved but at a much higher resolution 300 times higher, capable

of resolving <0.1◦C.

Furthermore, the tested configuration is simple and cost-effective. A simple webcam

is sufficient to capture the diffracted beams. No critical alignment is necessary, which is

often the case with interferometric setups requiring multiple beams. A low power laser

beam (5 mW) can be used as the probing light source. One can argue that instead

of using multi-microgratings, a large period 1D grating could be used in order to have

multiple diffracted beams. A 1D grating with a period of 10-20 wavelengths ((i.e. d

= 50-100 µm) would produce multiple diffracted orders that could be interfered on the

sensor plane, but since the diffraction efficiency of higher order 1D grating beams is much

lower, a higher power laser may be necessary for proper sensor operation. One of the key

advantages of multi-microgratings is the fact that the diffraction efficiency can be tailored

to be enhanced for larger angles because of the multi-micrograting low period (i.e. 2 µm),

which has a diffraction efficiency that distributes most of the power to the area of the

pattern that corresponds to first order diffracted beam, but which is further separated

into more spots because of the periodic nature of the apertures.

Further improvements could be made by using a better, lower noise camera with a

larger sensor and higher dynamic range, with more robust alignment techniques. Since

the thermal expansion method measures changes in the diffracted angle due to induced

changes in dimensions by temperature differences, the method can easily be extended

for sensing displacement, stress/strain and rotation. Micro-multigratings can be incorpo-

rated into substrates using different methods. Using photolithography, for example, these

structures could be made out of photoresist or etched onto the substrates surface and

the temperature could easily be determined. Also, the probing area could be made out

of polymers that contain the micro-multigratings, such as PDMS, that could be glued or

attached to the surface of the substrates easily, and temperature measurements could be

carried out.
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Meana, M Enciso-Aguilar, et al. Use of the perfect electric conductor boundary conditions

to discretize a diffractor in fdtd/pml environment. Revista mexicana de f́ısica, 61(5):344–

350, 2015.

25

Chapter A Authored publication manuscripts 199



[22] G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer. A webcam in Bayer-mode as a

light beam profiler for the near infra-red. Optics and Lasers in Engineering, 51(5):571–575,

2013.

26

Chapter A Authored publication manuscripts 200



Appendix B

Additional Work

This appendix includes the first pages of additional work authored and co-authored while

completing the degree:

1. Research at Corning, Inc. Publication: A Comparative Study of Femtosecond and

Picosecond Laser Interactions with Fused Silica

2. High resolution, low cost laser lithography using a Blu-ray optical head assembly

3. Self-organized 2D periodic arrays of nanoprotrusions in silicon with nanosecond laser

irradiation

4. Diode Pumped Solid State Lasers for Surface Microtexture

201



A Comparative Study of Femtosecond and
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Abstract

The surface and bulk damage induced by femtosecond and picosecond IR laser pulses in fused silica is

investigated. Low power femtosecond and picosecond laser pulses are used to study the initial changes

in bulk. A long, conically shaped laser affected zone is observed with a diameter slightly larger than the

focused spot size. Filamentation is observed in the region surrounding the laser affected zone, inducing

small void formation and porosity for both femtosecond and picosecond pulses. However, it is determined

that to achieve high aspect ratio drilling of fused silica, laser energy above a certain threshold is required.

For higher picosecond pulse energies, ablation is observed that extends more than 500 µm deep into the

sample, achieving depth to diameter aspect ratios of over 20:1. Laser induced surface and bulk damage

for different repetition rates and pulse energies are compared. The thermal diffusion length is estimated

for various laser repetition rates. In the high repetition rate cases, fused silica remains in a molten state

between each delivered laser pulses, while in the low repetition rate case the material remains in a solidified

state.
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a b s t r a c t

We present a novel, cost-effective laser lithography system capable of producing periodic and

non-periodic patterns with sub-micrometre feature sizes and periodicities. The optical head assembly

of a Blu-ray disc recorder containing a 405 nm semiconductor diode laser and 0.85 NA objective lens

was mounted on a motion stage and it was used to expose silicon samples covered with a mixture of

SU-8 photoresist and photoinitiating chemicals. Experiments were carried out to demonstrate the

lithographic capabilities of the system, and a smallest feature size of 450 nm was obtained. Grating

structures were fabricated in order to demonstrate system capabilities.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most common lithography systems is optical
projection, which uses an advanced optical design to expose a
pattern onto a photoresists using a mask. It is capable of exposing
large areas of resist and offers great repeatability, but its resolu-
tion is limited by the wavelength of light being used. Excimer
lasers are the current standard, and feature sizes have reached
dimensions below 100 nm [1]. Similar dimensions have been
fabricated using X-ray sources instead of coherent light as the
source of energy for these systems [2]. Masked systems tend to be
expensive, so there is always a need for maskless, low cost, high
resolution lithographic systems. Ion and electron beam lithogra-
phy have been shown to produce features in the order of 10 nm,
but their high complexity, high cost and low throughput limit
their wider applications [3]. Another way of fabricating devices
using maskless lithography is to use a laser source and scan it
across the photoresist covered sample, or direct laser write. The
resolutions that can be achieved with this technique are in the
range of 0.5–1 mm depending upon the wavelength and focusing
optics, and it has a high throughput and relatively lower cost.

The resolution in a direct laser write lithographic system is
determined by the spot size of the beam, which is determined by
the type of lens being used and the wavelength of the light, and is
proportional to

Spot size¼
l

NA
, ð1Þ

where l is the wavelength and NA is the numerical aperture of
the lens [4].

The wavelength of the light is an important factor. Lower
wavelengths can provide better resolution. Objective lenses with
high numerical apertures are able to tightly focus the beam. The
spot size is smallest at the focal spot, and the distance between the
lens and the substrate must be accurately controlled. Just a few
microns away from the focal spot in either direction causes the
beam to become larger, thus, reducing the resolution of the system.

The cost of semiconductor laser diodes has decreased signifi-
cantly in the last few years due to technological developments
and also due to mass production and availability of shorter
wavelengths in the UV-blue region. There are several uses for
these diodes, but one of the most common is as light sources for
reading and writing optical media such as compact discs (CD),
digital video discs (DVD) and now Blu-ray discs (BD). The main
difference between these media is their storage capacity, which is
given by the size of the marks that are written onto the
substrates. As marks get smaller, the storage capacity of the discs
increases. However, in order to be able to read the data encoded
in the smaller marks, lower wavelengths are necessary. The laser
diodes went from 780 nm in wavelength for CDs, to 650 nm for
DVDs and to 405 nm for BDs. The lower wavelength, combined
with a high numerical aperture lens, allow BDs to store over
25 GB of information, compared to the 0.7 GB capacity for CDs
and 4.7 GB capacity for DVDs [5–7].

The standard adopted for BD technology is to use objective lenses
with 0.85 NA. This yields spot sizes of around 480 nm for a 405 nm
wavelength, which highly correlates to the feature size that can be
exposed on a resist. Objectives with higher numerical aperture
reduce the tolerance for disc fluctuations and laser sources below
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We report a phenomenon of spontaneous formation of self-organized 2D periodic arrays of nanostructures
(protrusions) by directly exposing a silicon surface to multiple nanosecond laser pulses. These self-
organized 2D periodic nanostructures are produced toward the edge as an annular region around the
circular laser spot. The heights of these nanostructures are around 500nm with tip diameter ∼100nm.
The period of the nanostructures is about 1064nm, the wavelength of the incident radiation. In the cen-
tral region of the laser spot, nanostructures are destroyed because of the higher laser intensity (due to the
Gaussian shape of the laser beam) and accumulation of large number of laser pulses. Optical diffraction
from these nanostructures indicates a threefold symmetry, which is in accordance with the observedmor-
phological symmetries of these nanostructures. © 2011 Optical Society of America
OCIS codes: 310.6628, 220.4241, 040.6040, 140.0140, 350.3390.

1. Introduction

Laser interaction with matter leading to formation of
various kinds of surface structures, such as ripples
[1–4], surface waves [5,6], and micro/nano structures
[7–17] has been widely reported for semiconductors
[1–4,7], metals [3,10–12], and insulators [18,19].
These surface structures are usually formed inside
the laser irradiated spot and have semiperiodicity
from hundreds of nanometers to several micrometers
in length. For instance, the ripple structures usually
show the period in the order of the laser wavelength
and their formation mechanism has been attributed
to the interference between parts of the incident la-
ser beam with the scattered light from material sur-
face. It has been shown that the orientation of ripples
is dependent on laser polarization and their periods
can also be affected by laser fluence, wavelength, and
angle of incidence. On the other hand, the periodicity
of other structures such as micro/nanostructures and
concentric ringlike morphological structures formed
after the femtosecond and picosecond laser irradia-

tion process on silicon show no direct wavelength de-
pendence [6]; rather, their periodicity is more likely
dependent on thermal processes involved in laser–
matter interaction.

Recently, another type of laser-induced periodic
surface structure has been reported—periodic arrays
of nanoprotrusions or dots [20–24]. Like ripples,
these periodic arrays of dots or protrusions show
remarkable order and periodicity close to the wave-
length of the laser. Guan et al. reported the observa-
tion of 2D-ordered nanoprotrusions in silicon [20]
and ordering of nickel catalyst [21] by using a Lloyd
mirror setup. Longstreth-Spoor et al. produced peri-
odic nanostructures on Co coated Si by a two-beam
interference technique [22]. Nishioka andHorita pro-
duced Si and Ni dots by directly exposing thin films
of Si and Ni deposited on SiO2 to laser beams [23].
After a ripple structure was generated due to melting
and surface tension, they rotated the sample by 90°
and exposed again to create 2D periodic structures.
Very recently, Xiao et al. created 2D-ordered gold na-
nostructures by direct laser exposure through a
mask [24]. Lu et al. reported nanosphere enhanced
periodic nanopatterning of silicon surface by laser

0003-6935/11/162349-07$15.00/0
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Fig. 1. SEM micrographs of microtextured Si sample. (a) Scan speed = 0.08 mm/s, equivalent to about 100 overlapping laser 
pulses at each point.  (b) Higher magnification image of (a). 

Diode Pumped Solid State Lasers for Surface Microtexture 
 

Mool C. Gupta, Longteng Wang, Christian Rothenbach and Keye Sun 
 

Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 
E-mail:mgupta@virginia.edu 

 
 

  Surface microtexture has been observed under nanosecond pulsed laser irradiation of silicon 
and metals. Diode pumped solid state lasers with pulse width in the nanosecond regime can 
provide a low cost method for fabrication of large area microtextured surfaces. Results are 
presented on control of microtexture height using laser processing parameters and mechanism of 
microtexture formation is described.  Microtexture height can be controlled from less than a 
micron to tens of microns with multiple laser pulse irradiation.  The reflectivity of the 
microtextured surface in the visible spectrum was reduced to lower than 5%.   
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1. Introduction 
      Currently there is a significant interest in understanding 
the mechanism of microtexture formation under 
femtosecond laser irradiation [1-5]. Several research groups 
have reported results on microtexture fabrication, 
characterization, mechanism of formation and their 
applications with primary focus using femtosecond and 
excimer lasers.  Ultrafast laser generated microtextured 
surfaces have applications in photovoltaics [6, 7], 
photodetectors [8, 9], water repellant surfaces 
(superhydrophobic) [10] etc. Few research papers have 
reported similar microtexture formation in silicon using 
excimer laser [11]. However, the difficulty with 
femtosecond and excimer lasers for surface microtexture has 
been that it is not practical to produce large area in a cost 
effective manner.  
 We have carried out experiments using high repetition 
rate diode pumped solid state lasers which can provide a low 
cost method for fabrication of large area microtextured 
surfaces. Diode pumped solid state lasers with pulse width at 
around 10 ns are well suited for surface microtexture 

formation.  The reported laser pulse width for microtexture 
formation ranges from about hundred femtosecond (for 
femtosecond lasers) to about 10 ns (for excimer lasers) as 
longer pulse width causes significant thermal diffusion and 
inhibits the formation of microtextures.  When laser pulse 
widths are longer than about 10 ns, surface microtexture 
formation is not reported.  The laser induced microtexture 
has been obtained on a variety of surfaces including 
dielectrics, semiconductors, metals and polymers [11-14].  
In this paper we provide results on dependence of 
microtexture height on nanosecond pulsed laser processing 
parameters and mechanism of microtexture formation is 
described.  
 
2. Experimental   

The surface microtexture experiments were carried out 
using three lasers: a diode pumped solid state laser from 
Quantel Lasers (model Ultra 50), fiber laser from IPG 
Photonics (model YLP-G-10) and Nitrogen laser from 
Stanford Research Systems (model NL-100). Samples were 
placed in a vacuum chamber mounted on a high-precision, 
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