




ABSTRACT

Dimensions of data are expanding. An increasing number of spatio-temporal data

are available with numerous features, including ordinary numerical and categorical

features as well as unstructured features like text. Although those high dimensional

data can help improve predictions, efficient methods of processing spatio-temporal

data with many different types of features are limited.

This dissertation formalized an important class of problems related to spatio-

temporal data. In the dissertation, an effective mathematical model, the local spatio-

temporal generalized additive model(LSTGAM), was developed to predict and clas-

sify spatio-temporal data. This model can fully utilize many different types of data,

such as spatial and temporal data, geographic data, demographic data, textual data,

etc. The model can be easily estimated by available algorithms and has good inter-

pretability. To assist the building of LSTGAM, a randomized least angle regression

(RLAR) method was used to select features for non-linear regression models. Tests

with simulated data and real data showed RLAR performed well. In addition, a

new method, the semantic role labeling-based latent Dirichlet allocation (SRL-LDA)

model, was developed to extract key information from text. This method is based on

the automatic semantic analysis and understanding of natural language, combined

with dimensionality reduction via latent Dirichlet allocation. The above two models,

LSTGAM and SRL-LDA, can be applied together to applications where unstructured

textual data contains indicators relevant to the spatio-temporal properties of events.

The newly developed models have been applied to four real problems, including

predictions of criminal incidents and analysis of train accidents. Results showed the
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LSTGAM outperformed several previous models, such as spatial generalized linear

models and hot spot models, in evaluations with the spatio-temporal classification

problem. It also showed that SRL-LDA can effectively extract useful information

from unstructured textual data like Twitter posts. Information extracted by SRL-

LDA showed the ability to improve the prediction performance in different cases.

Those applications also revealed interesting sources of data for criminal prediction:

social media services like Twitter. As discussed at the end of the dissertation, a large

scale text analysis system with modeling techniques developed in this dissertation

can provide solutions for many areas where predictions are important.



ACKNOWLEDGMENTS

I feel extremely lucky to have my PhD journey at University of Virginia with so

many talented and friendly faculty, colleagues and friends. First, I would like to thank

my advisor Prof. Donald Brown. Thank you for introducing me to such interesting

research on knowledge discovery and data mining. Thank you for providing me with

many great opportunities. Thank you for your guidance on my study. Thank you

for your understanding and support during my difficult time. I have learned so

much from you. You are a wonderful advisor. Second, I would like to thank my

PhD advisory committee members Prof. Stephanie Guerlain, Prof. Stephen Patek

and Prof. Theodore Chang. Thank you for your suggestion to help me improving my

dissertation work. Especially, thank you Prof. Stephanie Guerlain for editing my final

dissertation. Third, I would like to thank Jamie Conklin and Dr. Matthew Gerber,

who worked closely with me during my PhD study. Without your help, the completion

of this dissertation would be impossible. Thank you Jamie for helping me with

programming and getting data. Thank you Matt for the insightful discussion on text

modeling, especially on the semantic role labeling technique, which is the foundation

for the semantic role labeling-based latent Dirichlet allocation model presented in

this dissertation. Forth, I would like to thank my friends at UVa who have made

my PhD life enjoyable: Xiaohuan, Tiantian, Yonghang, Ruwei, Zhenyu, Hui Hua,

Haiyan, Zhang Nan, Yiyi, Jian Kang, Dandan, Mingyi, among others.

Last but the most importantly, I would like to thank my family. I thank my

parents Jianhua Xu and Zhongwen Wang, for the lifelong love and support. I thank

my parents-in-law Yuhuan Duan and Fuxue Shen, for your help during the first few

iii



iv

months of our first baby. And finally, to my wife Lei and our son Aaron: thank you

Lei for everything you have done for our family. Thank you Aaron for your arrival.

Thank you for being the most important part of my life!



CONTENTS

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 8

2.1 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Supervised Learning Methods . . . . . . . . . . . . . . . . . . 9

2.1.2 Unsupervised Learning Methods . . . . . . . . . . . . . . . . . 15

2.1.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Spatio-Temporal Modeling . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Spatial Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Spatio-Temporal Modeling . . . . . . . . . . . . . . . . . . . . 21

2.3 Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Overview of Text Mining Process . . . . . . . . . . . . . . . . 23

2.3.2 Structuring Text Data . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Text Mining Applications . . . . . . . . . . . . . . . . . . . . 28

2.4 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Semantic Role Labeling . . . . . . . . . . . . . . . . . . . . . 32

i



ii

3 The Local Spatio-Temporal Generalized Additive Models 34

3.1 The Spatio-Temporal Generalized Additive Model (STGAM) . . . . . 34

3.2 The Local Spatio-Temporal Generalized Additive Model (LSTGAM) . 40

3.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Review of Least Angle Regression (LAR) . . . . . . . . . . . . 42

3.3.2 The Randomized LAR (RLAR) . . . . . . . . . . . . . . . . . 46

3.3.3 Evaluation of RLAR . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Estimation of STGAM . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Estimation of LSTGAM . . . . . . . . . . . . . . . . . . . . . 58

3.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 The Semantic Role Labeling-Based Latent Dirichlet Allocation Model 62

4.1 Incorporating Unstructured Textual Features into LSTGAM . . . . . 62

4.2 The Semantic Role Labeling-Based Latent Dirichlet Allocation Model

(SRL-LDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Review of the Latent Dirichlet Allocation Model (LDA) . . . . 64

4.2.2 Review of Semantic Role Labeling (SRL) . . . . . . . . . . . . 69

4.2.3 The Semantic Role Labeling-Based Latent Dirichlet Allocation

Model (SRL-LDA) . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Estimation of SRL-LDA . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Model Evaluation and Applications 76

5.1 The Spatio-Temporal Modeling for Breaking and Entering Incidents . 76

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.3 Model Construction and Estimation . . . . . . . . . . . . . . . 80

5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



iii

5.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Automatic Crime Prediction using Events Extracted from Twitter Posts 92

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Data Collection and Modeling . . . . . . . . . . . . . . . . . . 95

5.2.3 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . 99

5.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 The Spatio-Temporal Modeling for Criminal Incidents using Textual

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 Modeling and Results . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Prediction of Equipment Damage in Train Accidents using Spatio-

temporal and Textual Features . . . . . . . . . . . . . . . . . . . . . 111

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.3 Modeling and Results . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Conclusion and Future Work 119

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



LIST OF FIGURES

2.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Comparison of Full Model, Stepwise Model and LAR Models . . . . . 46

3.2 Relationships between X1, X2 and Y . . . . . . . . . . . . . . . . . . 47

3.3 Evaluation of RLAR on the Two-Variable Selection Problem . . . . . 51

3.4 Evaluation of RLAR on the Four-Variable Selection Problem . . . . . 53

3.5 Comparison of Models with Different Number of Features . . . . . . . 54

3.6 An Example of HRP-TIP Plot . . . . . . . . . . . . . . . . . . . . . . 61

4.1 LDA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 An Example of Syntactic Parse Tree . . . . . . . . . . . . . . . . . . 70

4.3 SRL-LDA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Criminal Incidents in Charlottesville, Virginia . . . . . . . . . . . . . 79

5.2 Overall Process of the Spatio-Temporal Modeling of Criminal Incidents

in Charlottesville, Virginia . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 AUC from Different Models . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 HRP-TIP Plots to Compare Hot Spot Model, Spatial GLM, STGAM

and LSTGAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Heat Map of the Prediction of Criminal Incidents in 2005-02 by STGAM 87

5.6 Estimation of STGAM . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Estimation of LSTGAM in S1 . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Estimation of LSTGAM in S2 . . . . . . . . . . . . . . . . . . . . . . 91

iv



v

5.9 Time Series Plots of Hit-and-Run Incidents in Charlottesville, Virginia 93

5.10 Overall Process of Criminal Incident Prediction Using Tweets . . . . 95

5.11 ROC Curves for Predicting Hit and Run Incidents . . . . . . . . . . . 102

5.12 REML Scores of STGAM with Different Predictors . . . . . . . . . . 105

5.13 Prediction in October 2011 . . . . . . . . . . . . . . . . . . . . . . . . 110

5.14 Selected Estimated Smooth Functions of STGAM using SRL-LDA . . 111

5.15 Histograms of Equipment Damages . . . . . . . . . . . . . . . . . . . 113

5.16 Equipment Damages of Train Accidents in 2007 . . . . . . . . . . . . 116



LIST OF TABLES

1.1 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Link Functions for Different Distributions . . . . . . . . . . . . . . . 10

3.1 An Example of the Values of κ . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Features Used for the Spatio-Temporal Modeling of Breaking and En-

tering Incidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Wilcoxon Significance Test Results for AUC Comparisons . . . . . . . 84

5.3 Top 10 Most Likely Words for Each of the 10 Topics to Predict Hit-

and-Run Incidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Ranked Features by RLAR for the Spatio-Temporal Modeling of Crim-

inal Incidents using Textual Information . . . . . . . . . . . . . . . . 106

5.5 Top 15 Most Likely Words for Each of the 10 Topics to Predict Breaking-

and-Entering Incidents . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Ordinary Features for Equipment Damage Modeling . . . . . . . . . . 114

5.7 Top 10 Most Likely Words for Each of the 10 Topics to Predict Equip-

ment Damages Involved in Train Accidents . . . . . . . . . . . . . . . 117

5.8 Predicted RMSE of Equipment Damages . . . . . . . . . . . . . . . . 118

vi



LIST OF SYMBOLS

‖ · ‖ L2 norm.

α,β, θ, η Parameters in mathematical models.

β̂ The estimation of β.

δ(·) A decision function mapping probabilities to discrete values.

δ A threshold for decision functions.

ε Random noise.

ε A tolerance threshold for loss functions.

κt A temporal dummy variable indicating the continuos zeros before time

t for a binary variable with the values of zero or one.

Ω(·) A complex penalty function.

b(·) A basis function for generalized additive models.

E(·), µ Expectation of random variables.

f(·) A mathematical function.

G A spatial grid index set.

G(·) A link function.

I(C) An indicator function. If condition C is true, I(C) = 1; otherwise,

I(C) = 0.

L(·) A loss function.

NN(C) The nearest neighbor of C.

Pr(·), Π(·) A probability function.

sg A spatial grid.

vii



viii

S A space of interest.

S A spatial data set defined by grids.

t Time.

T A temporal data set.

V ar(·) Variance of random variables.

w· A word, token, or term.

W , w A sequence of words, tokens and terms.

x[g,t] A vector of features at grid g and time t.

x[g,t,p] The pth feature at grid g and time t.

Xp The pth feature at all the locations and time.

X A feature set.

Xcat A categorical feature set.

Xnum A numerical feature set.

Xtxt A textual feature set. Each element is a document.

Xt′6tc The set of observed features at time tc.

Y ,y Response variables.



CHAPTER 1

INTRODUCTION

This chapter first introduces the background of the dissertation research. Then

the problem is defined and formulated mathematically. At last, the chapter overviews

each chapter in the dissertation.

1.1 Background

In many important problems data are associated with spatial and temporal in-

formation. For example, criminal rates are linked with the specific cities and time.

Textual data like news describe events which happened in the certain locations and

time. Every photo is taken at the exact geographic location and time. However, those

spatial and temporal information is ignored in many data analysis methods and ap-

plications, because it is relatively not important or there lacks a good model. For

example, cross-sectional data analysis methods, like regression models, assume that

observations are collected at the same time without regard to differences in space.

There is an increasing need for models which take spatial and temporal informa-

tion into account, especially the models which can make accurate spatio-temporal

predictions. Law enforcement is such an example. As reported by Bureau of Justice

Statistics [67], there were 22,879,720 personal and property crimes in 2008. The total

economic loss to victims of all crimes was 18,075 million dollars. To prevent crimes,

law enforcement agencies need to study the spatio-temporal patterns of crimes. With

a spatio-temporal model of criminal incidents, they can discover the relationships be-
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tween demographic, economic, and geographic factors and crimes as well as possible

causality of crimes. In addition, they can predict the locations and time of future

criminal activities. If the model can predict future crimes accurately, law enforcement

agencies can deploy limited resources, such as walking and driving patrols, surveil-

lance systems, and neighborhood watch programs, to improve security and reduce

threats.

To meet the above needs, spatio-temporal models have been studied. In classic

spatio-temporal models, the variable of interest, such as criminal incidents, pollution

levels and epidemic diseases, is modeled as a random process defined on the space

and time. Other features1 associated with the variable are not well considered. For

example, spatial hot spot models [2,11,29] are widely applied by law enforcement. In

this type of models, current crime clusters are so called hot spots. Methods to generate

hot spots include spatial histograms, clustering, mixture models, scan statistics, and

density estimation. Future criminal incidents are predicted to occur in these high

risk areas. These models do not show the insight into behaviors of actual criminals

and cannot indicate the changes of crime patterns. More sophisticated statistical

models [60,84,115] have been developed by researchers to account for those problems.

The major limitations with these models include that they considered only a few

number of numerical features and they did not incorporate the temporal information

very well.

The simple spatio-temporal models mentioned above are not enough. Nowadays

dimensions of data are expanding. There are more and more spatio-temporal data

with numerous features, especially high dimensional data like text. For example, law

enforcement has incident data including locations (e.g. longitudes and latitudes),

1In this dissertation, a “feature” means a variable which describes a certain at-

tribute related to the variable of interest. Sometimes, it is called predictor or ex-

planatory variable.
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time (e.g. years, months and time), location features (e.g. distances to the nearest

highways), criminal features (e.g. types of crimes, numbers of victims, and types of

weapons), and other multimodal data (e.g. narratives). Another example of such

data is the train accident data from Federal Railroad Administration [34], which

record locations and times of train collisions, attributes of trains, weather conditions,

damages, and narrative descriptions. In addition, social media such as Facebook2

and Twitter3 allow users to instantly create, disseminate, and consume information

about the events which happened in any location and time.

These spatio-temporal data and associated features provide more information than

traditional numerical and categorical data. Especially the textual data from social

media account for the rich and rapidly context that surrounds incidents of interest.

Utilizing these data can help improve spatio-temporal predictions. For example,

Google used search terms with locations to predict H1N1 outbreaks [42]. Scholars

used news articles to predict stock market behaviors [70, 83, 87] and used Twitter

posts to predict weekend box office results [3], election results [5], and stock market

trends [12].

However, efficient methods of modeling spatio-temporal data with many features,

especially textual features, are limited. The objective of this dissertation is to de-

velop an efficient method to model such spatio-temporal data with different types of

features, including numerical features, categorical features and textual features.

1.2 Problem Definition

This dissertation develops an efficient method to perform predictions and classifi-

cations over spatio-temporal data with the consideration of ordinary features as well

as textual features. As discussed in Section 1.1, there are various features available

2http://www.facebook.com

3http://www.twitter.com
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about an area of interest. Generally, the objective is to model the patterns of a certain

variable (e.g. the probability of criminal incidents) of this area with these features

and apply the model to predict.

Mathematically, the problem can be defined as follows4:

Suppose we are interested in a space S ⊂ Rd, where d is the dimension of the

space. Usually, d = 2 or 3. We can represent S by discrete grids: S =
⋃
sg∈S

sg, where

S = {sg|sg ⊂ Rd, g ∈ G} is a spatial data set, and G = {g|g ∈ N+} is a spatial

grid index set. We have a temporal data set T = {t|t ∈ R+} and a feature set

X = {x[g,t]|x[g,t] ∈ X1 × X2 × · · ·XP , g ∈ G, t ∈ T} associated with S. For feature

data, Xp(p ∈ N+, p ≤ P ) can be numerical (Xp ⊂ Xnum), categorical (Xp ⊂ Xcat),

and textual (Xp ⊂ Xtxt), where Xnum,Xcat,Xtxt are defined in Table 1.1.

Table 1.1: Mathematical Notation

Notation Definition Explanation

G G = {g|g ∈ N+} A spatial grid index set.

sg sg ⊂ Rd A spatial grid.

S S ⊂ Rd A space of interest with dimension d.

S S = {sg|g ∈ G} The spatial data set such that S =
⋃
sg∈S

sg.

T T = {t|t ∈ R+} A temporal data set.

x[g,t] x[g,t] ∈ X1 ×X2 × · · · ×XP A vector of features at grid g and time t. A

feature Xp can be numerical (Xp ⊂ Xnum),

categorical (Xp ⊂ Xcat), and textual set

(Xp ⊂ Xtxt).

x[g,t,p] x[g,t,p] ∈ Xp The pth feature at grid g and time t.

Continued on the next page

4Table 1.1 defines all notations used in the following problem definition.
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Table 1.1: Mathematical Notations (continued)

Notation Definition Explanation

X X = {x[g,t]|x[g,t] ∈ X1 × X2 ×

· · · ×XP , g ∈ G, t ∈ T}

A feature set.

Xcat Xcat = {xj|xj ∈

{C1, C2, · · · }, j ∈ N+}

A categorical feature set, where C· is any

categorical value.

Xnum Xnum = {xj|xj ∈ R, j ∈ N+} A numerical feature set.

Xtxt Xtxt = {xj|xj =<

wordj1, wordj2, · · · , wordjnj
>

,word· ∈ Dictionary, nj ∈

N+, j ∈ N+}

A textual feature set. Each element is a

document. word· has the value of a word

or phrase and Dictionary is the collection

of all words and phrases.

Xt′6tc Xt′6tc = {x[g′,t′]|x[g′,t′] ∈

X, g′ ∈ G, t′ ∈ {t|t 6 tc, t ∈

T}}

The set of observed features at time tc.

Two types of problems can be defined based on the type of the variable of interest:

the classification problem and the regression problem.

• The classification problem:

At time tc, we are interested in the values of the P th feature XP = {0, 1} at

locations S∗ = {sg|sg ∈ S, g ∈ G∗ ⊂ G} and time T∗ = {t|t > tc} in the future.

The objective is to find a probability function:

Π[g,t] = Pr[x[g,t,P ] = 1|Xt′6tc ,S,T] (1.1)
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and a decision function:

δ[g,t] = δ(Π[g,t]) : [0, 1]→ {0, 1} (1.2)

such that:

L(Π[g,t], δ[g,t]) =
∑

g∈G∗,t∈T∗
weight0 · I(δ[g,t] = 0|x[g,t,P ] = 1)

+
∑

g∈G∗,t∈T∗
weight1 · I(δ[g,t] = 1|x[g,t,P ] = 0) < ε (1.3)

where Xt′6tc = {x[g′,t′]|x[g′,t′] ∈ X, g′ ∈ G, t′ ∈ {t|t 6 tc, t ∈ T}}, g ∈ G∗, t ∈ T∗,

x[g,t,P ] is the value of the P th feature at grid g and time t, L(·) is a loss function,

I(·) is an indicator function, weight0, weight1 are weights of different types of

errors, and ε is a tolerance threshold.

The major difficulty of this problem is to find an accurate probability function

Π[g,t] = Pr[x[g,t,P ] = 1|Xt′6tc ,S,T], such that Π[g,t] has high values for the loca-

tions and time when x[g,t,P ] = 1 (e.g. criminal incidents will happen) and low

values for the locations and time when x[g,t,P ] = 0 (e.g. criminal incidents will

not happen). Given a good probability function Π[g,t], different thresholds can

be run to choose the best decision function which minimizes different types of

errors. Alternatively, users can choose their own decision functions based on

their resources and risk preferences. For example, if modeling the probability of

criminal incidents, law enforcement agencies can choose a cutoff value δ∗ = 0.8

to classify the locations and time with predicted probabilities higher than δ∗ as

the high risk area.

This dissertation focuses on the development of Π[g,t].

• The regression problem:
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At time tc, we want to predict the values of the P th feature XP ⊂ Xnum at

locations S∗ and time T∗. (S∗ and T∗ are the same as defined in the classification

problem). The objective is to find a function:

x̂[g,t,P ] = f(Xt′6t∗ ,S,T) + ε (1.4)

such that:

L(x̂[g,t,P ]) =
∑

g∈G∗,t∈T∗
‖x̂[g,t,P ] − x[g,t,P ]‖ < ε (1.5)

where g ∈ G∗, t ∈ T∗, Xt′6tc = {x[g′,t′]|x[g′,t′] ∈ X, g′ ∈ G, t′ ∈ {t|t 6 tc, t ∈ T}},

L(·) is a loss function, x̂[g,t,P ] is the predicted value, x[g,t,P ] is the true value, ε

is random noise, and ε is a tolerance threshold.

1.3 Overview of the Dissertation

This dissertation is organized as follows.

Chapter 2 reviews methods related to the dissertation research in four research

fields, data mining, spatio-temporal modeling, text mining and natural language pro-

cessing. Chapter 3 defines the overall local spatio-temporal generalized additive mod-

els (LSTGAM) to model the spatio-temporal data with features. A feature selection

algorithm, model estimation methods and a model evaluation method are also dis-

cussed in this chapter. Chapter 4 describes the semantic role labeling-based latent

Dirichlet allocation model (SRL-LDA) to extract textual information and how to in-

corporate these extracted information into LSTGAM. Chapter 5 applies the models

developed in this dissertation to four real problems and evaluates the performance

of the models based on real data. Chapter 6 concludes the dissertation and suggests

future work.



CHAPTER 2

LITERATURE REVIEW

As discussed in Chapter 1, the objective of this dissertation is to develop models of

spatio-temporal data with the consideration of different types of features, especially

textual features. There are four research fields related to this problem: data mining,

spatio-temporal modeling, text mining and natural language processing. This chapter

reviews the most related models and techniques in these fields.

2.1 Data Mining

Data mining or knowledge discovery is a process to extract useful information

from data. Most data mining techniques apply statistical models to learn patterns

from data with the assistance of computers. Therefore, data mining is closely related

to statistical learning, machine learning, and pattern recognition. Data mining has

been broadly applied to different areas, including business, economics, medicine, and

engineering.

Based on the types of problems to solve, data mining can be classified into su-

pervised learning and unsupervised learning [36]. The problem of this dissertation

is a supervised learning problem. Therefore, this section reviews supervised learning

methods in details and unsupervised learning methods briefly.

8
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2.1.1 Supervised Learning Methods

Supervised learning attempts to learn patterns from data by training sets. Each

observation in a training set consists of both inputs (or predictors, explanatory vari-

ables, features) and an output (or response variable). Supervised learning models

relationships between inputs and outputs, and predicts outputs when inputs are given.

Linear Regression

The most fundamental supervised learning method is multiple linear regression

[36,89]. Linear regression models are simple and efficient solutions for many problems.

A linear regression model assumes additive linear correlations between inputs and

outputs. The model has the following form:

Y = β0 +

p∑
i=1

Xi · βi + ε (2.1)

where Y is the output variable, Xi are input vectors, βi are parameters to be estimated

and ε satisfies E(ε) = 0 and V ar(ε) = σ2.

A linear regression model is usually estimated by the least squares estimation

method, which finds a linear fit to the data that minimizes the sum of square errors.

The estimates of βi can be efficiently computed by β̂ = (XTX)−1XTY . The com-

mon assumptions of linear regression include that the data for the input variables

are known; the input variables are linearly independent; the output variable is quan-

titative and ε are independent, identical distributed with zero mean and constant

variance.

To better discover patterns in data and relax the assumptions of linear regression,

many non-linear supervised learning models have been developed.
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Generalized Linear Models (GLM)

The generalized linear model (GLM) relates response variables to linear models

of inputs via link functions. The distribution of the response variable y in a GLM

is assumed to be from the exponential family, where the probability density function

can be expressed as [109]:

fθ(y) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
(2.2)

where b, a and c are arbitrary functions, φ is the dispersion parameter and θ is the

location parameter. It can be shown that µ = E[Y ] = b′(θ).

A typical GLM assumes the response mean µ can be modeled as follows:

G(µ) = β0 +

p∑
i=1

Xiβi (2.3)

where G(·) is a link function (usually non-linear), βi are parameters and Xi are inputs.

Table 2.1 shows the link functions for the common distributions of response variables.

Table 2.1: Link Functions for Different Distributions

Distribution of y Link Function G(µ)

Gaussian µ

Binomial ln
(

µ
1−µ

)
Poisson ln(µ)

Exponential µ−1

Different from linear regression, GLM cannot be estimated by the least squares

estimates. Instead, GLM is usually estimated by the maximum likelihood method,

which finds the parameters β to maximize the probability of y being observed. This
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optimization problem can be solved by applying the Newton-Raphson algorithm to

log-likelihood functions.

Nearest Neighbor Methods

The nearest neighbor method makes predictions by using outputs with similar

inputs. For example, the k-nearest-neighbor method fits µ(X) as follows:

µ(X) =
1

k

∑
X′∈NN(X)

µ(X′) (2.4)

where NN(X) is the neighborhood of X including the k closest points to X′. As

we can see, this method gives weight 1 to the observations in the neighborhood and

weight 0 to the other observations in the training set. Then it averages the outputs

with weight 1.

The k-nearest-neighbor method has low bias but high variance. To enhance the

performance, several methods have been developed [36]. Instead of giving weights

1 and 0 to observations, kernel methods give weights to observations based on their

distances to the point of interest smoothly. Rather than averaging the outputs, local

regression methods fit linear models by locally weighted least squares.

Generalized Additive Models (GAM)

The generalized additive model (GAM) [49,50] is a generalization of GLM. GAM

is more flexible in the treatment of nonlinearity than GLM. GAM assumes additivity

between predictors, but allows for local nonlinearity in each predictor. The model

can be formed as

G(µ) = α +

p∑
i=1

fi(Xi) (2.5)
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where G is a link function, µ is the mean of the response variable, α is the intercept,

and fi(Xi) are nonlinear smooth functions.

To estimate GAM, fi(Xi) are first represented by scatterplot smoothers. Then the

smoothers are updated by the backfitting algorithm [50] until the changes of functions

f̂i are less than a certain threshold. Alternatively, fi(Xi) are first expressed as sums

of spline basis functions. Then GAM can be reviewed as GLM and estimated by the

penalized iteratively reweighted least squares algorithm [109].

Similar to linear regression, GAM can also be fitted locally [75].

Tree-based Models

A tree model partitions the data set using a sequential series of linear surfaces, and

fits a simple model in each smallest rectangle space. It’s among the most commonly

used data mining techniques because of easy interpretability and easy implementabil-

ity. However, in most tests, its accuracy is worse than other methods.

The tree size is an important tuning parameter controlling the model’s complexity

and performance. A small tree might not be able to capture the structure of data

while a large tree might over fit data. The optimal tree size should be adaptively

chosen from data. To build a tree model, a greedy algorithm is applied. A tree is

first grown to a large size and then this large tree is pruned to a smaller size using

cost-complexity pruning, such as the weakest link pruning [13].

Tree methods are unstable, which means a small change in the training data can

result in a very different series of splits. The major reason for this problem is that the

feature space is partitioned hierarchically in the tree building process. To improve

the performance of trees, the random forests method [14] was developed by Breiman

and Cutler. In the random forests model, multiple N trees are built. Each tree uses a

small subset of predictors and a bootstrapping sample of the training set to calculate

the best split. Each tree is grown to the largest size without pruning. Then the
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prediction is made by voting from all trees. Tests show the random forests model has

lower generalization error than tree models [14].

Support Vector Machines (SVM)

For the binary classification problem with training data {(Xi, yi)|yi ∈ {−1, 1}},

the support vector machine (SVM) [99] maps the input vectors X into a high-

dimensional feature space Z = {(h1(X), h2(X), · · · , hM(X))}, where hm are basis

functions. Then SVM finds the optimal separating hyperplane in this new space Z.

The optimal separating hyperplane is defined as the one which generates the largest

margin between the observations from different classes 0 or 1.

Mathematically, a hyperplane can be defined by {x : f(x) = h(x)Tβ + β0 = 0},

where ‖β‖ = 1. The classification rule by f(x) is then G(x) = sign(f(x)). SVM

solves the following optimization problem [36]:

max
β,β0,‖beta‖=1

C (2.6)

s.t. yif(xi) ≥ C for all i (2.7)

The above optimization can be solved by quadratic programming using Lagrange

multipliers. SVM can also be adapted for regression problems where the response

variables are quantitative.

Neural Networks

The neural network model mimics biological neural networks by constructing hid-

den layers of nodes or neurons. As discussed in [36], a neural network model can be

considered as a two-stage regression or classification model. Each node in the hidden
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layer can be expressed as:

Zm = σ(α0m + αTmX),m = 1, · · · ,M (2.8)

where σ(v) is the activation function, usually chosen to be the sigmoid function

σ(v) = 1
1+e−v . The final output of the model is determined by:

Tk = β0k + βTk Z, k = 1, · · · , K (2.9)

fk(X) = gk(T ), k = 1, · · · , K (2.10)

where Z and T are vectors of Zm,m = 1, · · · ,M and Tk, k = 1, · · · , K respectively.

Here gk are final transformation of the outputs T .

The back-propagation method was developed to estimate the parameters in neural

network models [99].

Boosting

Boosting is a method to improve the prediction performance of various supervised

learning models, especially tree models. The intuitive idea of boosting is to change

the distribution over the feature space X in a way that increases the probability of

the harder parts of the space, thus forcing the model to learn more and make less

mistakes on these parts.

The most popular boosting algorithm is called the AdaBoost algorithm [35]. In

the mth iteration of the algorithm, a model Gm is fitted to the training data with

weights {wi}. Then the weights {wi} are updated according to the performance of

Gm so that wi increase for poorly performed observations.

The problem with boosting is that it suffers poor performance when applied to

noisy data [61].
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Comparison of Different Supervised Methods

Among the above supervised learning models, GAM and SVM usually perform

best in prediction accuracy. Nearest neighbor methods do not perform well on high

dimensional data because of the curse of dimensionality. GLM are not as flexible as

GAM. SVM and neural networks models are usually hard to interpret [36].

2.1.2 Unsupervised Learning Methods

Unsupervised learning attempts to learn properties of data without training sets.

Each observation has features (like inputs in supervised learning), and unsupervised

learning builds models to describe certain patterns of observations. For example,

clustering methods measure similarities between observations and classify them into

different groups such that observations from the same group have similar properties.

One of the most popular clustering methods is K-means, which iteratively adds obser-

vations into the closest group [47]. A similar unsupervised learning problem is data

association. Given an incident of interest, data association models find other inci-

dents with similar properties [16]. Association rule analysis is another widely applied

unsupervised learning method, which tries to discover sets of joint features appearing

frequently [36]. These models play an important role in marketing data mining.

2.1.3 Feature Selection

Both supervised learning models and unsupervised learning models are built on

features of observations. Therefore, the feature selection is critical in data mining,

especially with a large number of features. Well-selected features not only simplify

models, but also improve prediction accuracy.

If the total number of features p is small, it is possible to get all the subsets

of features and compare the model performance like mean squared errors with all

possible combinations of features. For p features, there are 2p − 1 possible subsets.
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However, if the total number of features p is large, this method is not feasible. For

example, if we have a problem with 20 features, there will be more than 1 million

possible subsets.

Generally, there is no feature selection method which can output the optimal

subset of features when p is arbitrarily large. In practice, the following methods are

popular to choose good subsets of features.

Stepwise Selection

A simple algorithm to select features is the forward selection. This greedy algo-

rithm begins with no feature and adds one feature each time to the subset. In each

step, the algorithm selects the feature which can most improve the model perfor-

mance. The algorithm stops when no feature can be added or some preset criteria

are satisfied. A closely related algorithm is backward selection, which begins with all

features and drops one feature each time.

The problem with forward selection is that the features added in the early steps

might be no longer important when other features are available. This problem also

exists for backward selection. A simple solution to this problem is stepwise selection.

In each step of the algorithm, a feature can be added or dropped based on changes

of model performance. Stepwise selection performs better than forward selection

and backward selection in practice. However, this algorithm is not optimal because

features are added or dropped sequentially.

Feature Selection by Clustering

When a large number of features are collected for a problem, some of them might

describe similar attributes of the problem or even exactly the same attribute. For

example, the communities and crime data set [82] includes 122 features related to

violent crimes in communities. There are two features in the data set “agePct12t21”
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and “agePct12t29” describing the percentage of population in similar age groups. It

is reasonable to use just one of them in modeling.

Feature selection by clustering is a sophisticated method to pick representative

features for the above situation [15, 46, 60]. This method first applies unsupervised

clustering algorithms such as K-means to all the features. Then it chooses a certain

number of features in each cluster to form the final subset of features.

Penalized Regression Models

For regression models, one of the most popular feature selection methods is the

penalized regression model. This method estimates parameters of regression models

by solving the optimization problem:

θ̂ = arg min
1

n

n∑
i=1

L(fθ(xi), yi) + Ω(θ) (2.11)

where θ is the parameter in the regression model fθ, L(·) is a loss function, and Ω(θ)

is a penalized function for the complexity of fθ. The more complex fθ is, the larger

the value of Ω(θ) is. If we define Ω(θ) as a function of the number of features, the

optimization will try to find the best subset of features with a given size which has

the best performance measured by the loss function.

For linear regression models, the complexity of models is determined by the coef-

ficients β. Therefore, penalized linear models can be expressed as follows:

β̂ = arg min
1

n

n∑
i=1

‖yi − ŷi‖+ λ

p∑
j=1

‖β̂j‖γ (2.12)

where ‖yi− ŷi‖ measures the errors of the regression models, λ adjusts how much the

complexity should be penalized and γ decides how to compute the complexity of β.

When γ = 1, the above model 2.12 is the L1 regularized regression. As shown in [97],

the solution to the model 2.12 has some of the β’s equal to zero. Therefore, it can be
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used to select features.

Many methods have been developed to solve penalized linear models, such as Lasso

[97], Bridge [38], LARS [30], gradient descent methods [77], interior-point methods

[58], and cyclical coordinate descent methods [37]. Among these methods, Lasso

is the most successful and widely applied method for feature selection. Least angle

regression (LARS) is a computationally efficient method to get the solution equivalent

to the Lasso. It only needs p steps to compute the order of variables entering the

regression model, where p is the number of features.

There are also studies on penalized generalized additive models [55,66,110]. How-

ever, these models focus on choosing the smoothness of the function fθ rather than

selecting features.

2.2 Spatio-Temporal Modeling

Spatio-temporal modeling analyzes data with both spatial and temporal informa-

tion. Spatio-temporal observations usually correlate with each other, which violates

assumptions of many classic data mining models. Therefore, a class of models focus-

ing on spatio-temporal data have been developed. Time series analysis models one

dimensional temporal data. Spatial analysis models spatial data with two or three

dimensions. Spatio-temporal analysis combines methods from time series analysis

and spatial analysis to model spatio-temporal data.

2.2.1 Time Series Analysis

Time series analysis studies temporal data in the frequency domain and in the

time domain [90].
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Frequency Domain Methods

The frequency domain methods or spectral analysis methods treat temporal data

as continuous signals. The objective is to identify the dominant frequencies in a series.

For example, periodogram [90] is developed to identify significant frequencies. After

dominant frequencies are identified, a time series is modeled by periodic functions:

xt =

q∑
k=1

[Uk1cos(2πωkt) + Uk2sin(2πωkt)] (2.13)

where xt is the value of the time series at time t, Uk1, Uk2 are zero-mean random

variables defining amplitudes and phases of triangular functions, and ω is a frequency

index defining cycles per unit time.

Time Domain Methods

The time domain methods model the time series xt by time t and previous ob-

served values. A time series xt is usually decomposed into four components: trend,

seasonality, cycle and random fluctuations. The first three components can be mod-

eled by traditional data models such as linear regression. The last component is

autocorrelated and is the focus of time series analysis. A widely studied model in

the time domain to model the autocorrelated weak stationary time series is the in-

tegrated autoregressive moving average (ARIMA) model. The ARIMA model with

order (p, d, q) can be formulated as

φ(B)(1−B)dxt = θ(B)wt (2.14)

where B is a backshift operator defined as Bxt = xt−1, φ(B) = 1 − φ1B − φ2B
2 −

· · · − φpBp is the autoregressive operator, θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q is the

moving average operator and wt is white noise. If wt is not white noise, advanced time

series models like seasonal ARIMA and autoregressive conditional heteroskedasticity
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(ARCH) models can be applied.

2.2.2 Spatial Modeling

Spatial models study the variables about spaces. Spatial modeling has three

branches, geostatistics, lattice process, and spatial point process, identified by Cressie

[24].

Geostatistics

Geostatistics studies a random process {Z(s)|s ∈ D} defined on a continuous

space D ⊂ Rd. A typical geostatistical model has the form of

Z(s) = µ(s) +W (s) + η(s) + ε(s) (2.15)

where Z(s) is the value at location s, µ(s) is the large-scale trend, W (s) is the smooth-

scale variation, η(s) is the micro-scale variation, and ε(s) is the random error [86].

In the above model, µ(s) is related to the features at location s. It can be modeled

by linear and non-linear regression models. W (s) is assumed to be a stationary process

with properties

E[W (s)] ≡ c (2.16)

var(W (s + h)−W (s)) = 2γ(h) (2.17)

where c is a constant and 2γ(h) is the so called variogram. η(s) is usually ignored

because it cannot be estimated from data. ε(s) is commonly assumed to be white

noise. Given a number of observations {Z(si)}, the large scale trend and variogram

can be estimated. Then, the above function can predict values at any location s. This

process is called spatial prediction or kriging.
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Lattice Process

Lattice data modeling investigates a random process {Z(si)|si ∈ D} defined on a

countable set of spatial grids D = {si|si ∈ Rd, i ∈ N+}, indexed by i. Grids can have

regular shapes like squares or irregular shapes like county territories.

Lattice data analysis models Z(si) by neighborhood grids and features associated

with grid i. For example, the Markov random field model assumes the conditional

distribution of Z(si), given {Z(si)|si ∈ D}, depends only on {Z(sk)|k ∈ Ni}, where

Ni consists of neighbors of i. Brown and his colleagues [60,73,115] studied conditional

density models on the lattice data with spatial features like distances to the nearest

buildings or roads. Another popular method builds regression models on grids [15].

A recent study [118] also applied the penalized regression model LASSO to choose

the neighborhood size.

Spatial Point Process

Spatial point process modeling studies patterns of spatial points, such as locations

of diseases and crimes. It concerns how points are distributed over spaces: completed

randomly, clustered, or regulated.

Spatial point process models usually assume points are from the Poisson processes.

For example, for a finite region A, N(A), the number of points on A follows a Poisson

distribution with mean λA|A| (λA > 0). λA can be a constant, λA ≡ c, or a function

of features associated with the region A, λA = λ(xA). Diggle [28] conducted a com-

prehensive study on spatial point process modeling. Recent research [84] applied the

GAM to improve classic spatial point process models.

2.2.3 Spatio-Temporal Modeling

Three common approaches directly apply time series models and spatial data

models to analyze spatio-temporal data [86]:
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1. Given each time period, build separate spatial models.

2. Given each location, build separate temporal models.

3. Build models in Rd+1, where d is the dimension of space.

The first two methods model inadequately correlations between locations and

time, while the last method treats locations and time the same [86].

Recent developments in spatial-temporal modeling use the GAM to combine spa-

tial features, temporal features and other ordinary features. A general form of these

models is:

G(Z(si, t)) = f1t(si) +
∑
k=2

fkt(Xikt) + Tt(i) + ε (2.18)

where G(·) is a link function, f1t models spatial variance, fkt(k > 2) accounts for

variance caused by features, and Tt(·) models time-varying residuals. All of f1t,fkt(k >

2) and Tt(·) are non-linear smooth functions. The spatio-temporal GAM have been

applied successfully to different fields, including epidemiology, ecology and security

informatics [27,74,100].

2.3 Text Mining

Text, such as documents and speeches, is one of the most common unstructured

data. Unlike structured data (including numerical and categorical data), text cannot

be fully modeled by mathematical equations or algorithms, but can usually store more

information than structured data. Text mining, or text data mining, is a process of

deriving important and useful information for such unstructured text data. Because

text is a part of human language, text mining is closely related to natural language

processing, which aims to understand human natural language automatically. This

section reviews methods to process text into structured data and how to use the
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derived structured data. Advanced methods to model and understand language will

be discussed in the next section about natural language processing.

2.3.1 Overview of Text Mining Process

A traditional text mining method includes three steps: structuring input text,

performing data mining on structured data, and evaluating and interpreting outputs.

The first step focuses on obtaining numerical representation of text. Research

interests focus on how to represent text with only a small number of features and

speeding up this process. The second step usually applies well-developed techniques

from the data mining field. All methods reviewed in Section 2.1 can fit this need.

The last step interprets the results from data mining models and links them to the

text problems.

Among the three steps, the first step, how to structure and model text, is critical

in text mining.

2.3.2 Structuring Text Data

The mostly widely applied method to structure text data as numerical features is

the vector space model. Documents are represented by feature vectors. The dimension

of each vector is the number of different words in the whole collection of documents,

usually more than one thousand.

Term Frequency-Inverse Document Frequency (TF-DF) Model

The term frequency- inverse document frequency (TF-IDF) model is a vector

space model developed by Buckley and Salton [85]. The TF-IDF method models a

document by a feature vector, consisting of numerical weights of different words in

the document. The weight wij of word i in the document j is computed by a TF-IDF
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function:

wij = TFij × IDFi (2.19)

TFij =
tfij

maxitfij
(2.20)

IDFi = log2(
N

ni
) (2.21)

where tfij counts the frequency of the ith word in the jth document, N is the total

number of candidate documents available for retrieval, and ni is the number of doc-

uments that contain the ith word. wij is a trade-off between high frequency terms

within a document (represented by TF ) and the high distinctiveness of term frequency

within the whole collection of documents (represented by IDF ). As discussed in [1],

IDF can also be interpreted as the change of the amount of information within a

collection of documents after observing a specific word (or term). Therefore, the IDF

is a good measure of distinguishability of words.

TF-IDF model is popular in text mining research, especially for information re-

trieval applications [63]. For example, after representing a collection of documents

by a TF-IDF matrix, the similarity between any two documents can be measured as

the Euclidean distance between two feature vectors. Given a search term, the most

similar documents can be easily found.

The major problem with the TF-IDF model is that it regards words as independent

tokens without the consideration of semantics. As a result, the size of feature vectors

is usually large and the feature vectors are too rigid to compare the meanings of

documents.

To reduce the size of feature vectors, the latent semantic index method [25], prin-

cipal component method [51], keyword method [117] and high information content

words method [103] were developed. These methods can significantly reduce dimen-

sions of feature vectors from thousands to less than one hundred without losing much
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information.

Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a simple but effective method to improve the

TF-IDF model. Suppose we have a TF-IDF matrix Mt×d where t is the number of

total terms and d is the total number of documents, LSI first applies the singular

value decomposition method to Mt×d:

Mt×d = Tt×rSr×rDr×d (2.22)

where T and D are two matrices with orthogonal and unit-length columns, S is the

diagonal matrix with S1,1 ≥ S2,2 ≥ · · · ≥ Sr, r ≥ 0, and r is the rank of M .

Then, the collection of documents is approximated by M̂t×d defined as:

M̂t×d = Tt×kSk×kDk×d (2.23)

where k ≤ r is the selected number of dimensions, and T and D are defined as before

but with smaller dimensions determined by k.

As we can see, this approximation by LSI removes some information from the

original representation of the documents. In this way, common meaning components

of the documents are kept while random effects of individual documents are removed.

Especially, each feature vector no longer describes a specific document as a collection

of independent words but indicates its strength with each underlying concept or latent

variable. Each latent variable can be regarded as a collection of words commonly

appearing in the same context. As discussed in [25], LSI can partly deal with the

synonymy and polysemy problems and thus can perform better than the simple TF-

IDF method.
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Probabilistic Latent Semantic Indexing

In the above LSI model 2.23, if Sk×k is absorbed into Tt×k or Dk×d, the term-

document matrix M̂t×d can be reviewed as a product of two matrices T ∗t×k and D∗k×d.

The first matrix T ∗t×k might be thought as a projection of the original high dimensional

term space (with the dimension of t) into the latent space (with the dimension of k).

In this case, rows of T ∗t×k define the coordinates of documents in the latent space

and columns of D∗k×d define relationships between the documents and each individual

latent variable [52].

The above two matrices T ∗t×k and D∗k×d describe a possible method of how a

document is generated. A document d is observed with some probability Pr(d). Doc-

ument d belongs to a certain latent topic z with probability Pr(z|d). Each latent

class consists of certain words {wi}. To generate d, the words of the document d

are picked according to probability Pr(w|z). This process describes the probabil-

ity latent semantic indexing (pLSI) model, which is a probability generative model.

Mathematically, it can be expressed as follows:

Pr(d, w) = Pr(d)Pr(w|d)Pr(w|d) =
∑
z∈Z

Pr(w|z)Pr(z|d) (2.24)

where Pr(·) is the probability function, d ∈ D = {d1, · · · , dn} is a document,

w ∈ W = {w1, · · · , wt} is a word or term observed in D, and z ∈ Z = {z1, · · · , zk}

is a latent variable or topic. Given a corpus1, the above model can be estimated

by the maximum likelihood estimation using the expectation maximization (EM)

method [26].

In addition to the advantage of the LSI model, the pLSI model results in meaning-

ful outputs like the probability that a document belongs to a latent topic. In practice,

1In text mining, a corpus is referred as a collection of documents.
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it also performs better than the LSI model [52].

Latent Dirichlet Allocation Models

Similar to pLSI, the latent Dirichlet allocation (LDA) model [10] is a popular

probabilistic topic model to model documents. It is a three-level hierarchical Bayesian

model to extract latent variables (or topics) from a corpus. LDA assumes a document

can be considered as a bag of words, where orders between words are negligible. LDA

can be described by the following generative process for each document w in a corpus

D:

1. Draw K topics2 from a Dirichlet distribution: βk ∼ DirV (η);

2. For each document d, draw topic proportions from another Dirichlet distribu-

tion: θd ∼ DirK(α);

3. For each word n in the document d,

(a) Draw a topic: zd,n|θd ∼Multinomial(θd)

(b) Draw a word: wd,n|zd,n, β1:K ∼Multinomial(βzd,n)

By assuming the Dirichlet prior distributions, the resulting estimated topic dis-

tribution θd and word distribution βk would be sparse vectors. This is a desired

property, because a document only relates to a small number of topics and a topic

only includes a small number of unique words in reality. Another good property of

LDA is that it can partly solve the word-sense disambiguation problem by group-

ing the frequently co-occurred words. For example, consider the word “bank” in the

following two sentences:

(2.25) I went to the bank to cash the check.

2Here a topic is a distribution over V terms



28

(2.26) I walked along the river bank.

LDA can associate the above two sentences with two different topics. The first

topic consists of words “bank”, “cash” and “check”. The second includes words

“bank” and “river”. This can be achieved by training the LDA model with a large

amount of documents where each set of words occurred together frequently.

Algorithms for LDA inference include EM algorithm, variational inference, and

Markov chain Monte Carlo (MCMC). The Gibbs sampling algorithm is the most pop-

ular one [95]. There are several open source software programs [44,93] implementing

the LDA model.

Several improvements have been made to LDA. The hierarchical Dirichlet process

(HDP) model [96] is developed to estimate the best number of topics from data. The

nested Chinese restaurant process model (nCRP) [8] can organize topics into trees.

The dynamic topic model (DTM) was developed to analyze the time evolution of

topics [7, 9]. Similar to LDA, these methods still do not fully incorporate semantic

information into the modeling process.

2.3.3 Text Mining Applications

With the increasing availability of text data, the above text mining methods along

with other methods have been widely applied.

Information Retrieval

One of the fundamental problems in text mining is to find the most related text

given search terms, or information retrieval.

Broadly speaking, information retrieval is the science to efficiently search informa-

tion from documents or databases. This section only considers information retrieval

on text. Given a search term, information retrieval methods return the most inter-
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esting and related documents [91]. Google3 is an example of information retrieval:

users enter words, phrases, or sentences in Google, and it returns related information

from the Internet.

Today, computers perform most information retrieval tasks automatically with

different algorithms. Most of these algorithms are based on vector space models,

probabilistic models, inference network models [91], and ranking models [19, 113].

For example, the TF- IDF model, LSI method and pLSI method can all be applied

to information retrieval applications.

Automatic Document Organization

With more and more documents stored electronically, we need efficient methods

to organize them automatically. Text mining provides the following tools for this

need: information extraction, text categorization, document summarization, senti-

ment analysis and so on [59].

Information extraction attempts to extract certain types of information from text.

For example, information extraction algorithms can highlight peoples’ names, times,

vehicle types, and events from a document. Information extraction methods can be

rule-based [22] or statistics-based [106]. Text categorization usually applies unsuper-

vised learning clustering methods to text and then searches the best clusters to orga-

nize documents [32, 53]. Document summarization tries to build automatic systems

to summarize documents based on linguistic rules, statistics, or both [62]. Sentiment

analysis focuses on the classification of a document into either positive attitude or

negative attitude based on extracted subjective information from the documents [72].

For example, sentiment analysis tries to automatically label movie reviews on the

3http://www.google.com
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Internet Movie Database4 and hotel reviews on Tripadvisor5 as positive and negative

accurately.

Prediction Using Text

Recent text mining research focuses on utilizing the rich information within text

for prediction. After structuring text data into numerical vectors, various predictive

statistical models discussed in Section 2.1 can be applied to predict. For example,

Yang, Spasic and their colleagues [116] predicted disease status using clinical discharge

summaries. Schumaker and Chen [87] used breaking financial news to predict stock

market performance.

2.4 Natural Language Processing

Natural language processing (NLP) develops techniques to understand and process

natural human language automatically. Because text is a part of human language,

all the techniques described in Section 2.3 are applicable to NLP problems. In ad-

dition to document processing and understanding, NLP studies speech recognition,

machine translation, video understanding and so on. Similar to text mining, most

NLP methods transform unstructured natural languages into structured data, then

analyze these structured data with mathematical models or algorithms [64]. In this

section, two types of advanced NLP models related to the scope of this dissertation

are described.

2.4.1 Markov Models

One major limitation with the classic text mining models is that the orders be-

tween words are ignored. To solve this problem, NLP researchers developed statistical

4http://www.imdb.com

5http://www.tripadvisor.com
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language models to compute the probability of a word sequence [31,56]. Mathemati-

cally, let W =< w1, · · · , wn > 6 be a sequence of terms, a language model computes

Pr(W ) by the following equation:

Pr(W ) =
n∏
i=1

Pr(wi|w1, · · · , wi−1) (2.27)

One of the most successful language models is the N-gram language model, which

is developed from the Markov chain source model first investigated by Shannon [88].

This model computes the probability of a certain term occurring after observing pre-

vious N terms in the sequence. Therefore, probabilities of sentences can be modeled

by Markov functions with the moving windows of N terms. Formally, it is shown in

Equation 2.28.

Pr(W ) =
n∏
i=1

Pr(wi|w1, · · · , wi−1) ≈
n∏
i=1

Pr(wi|wi−n+1, · · · , wi−1) (2.28)

Another popular Markov model considering the orders between terms is the hidden

Markov model (HMM). Figure 2.1 shows a general process of HMM. A sequence of

observations O =< O1, · · · , OT > is generated as follows. First, choose the initial

state q1 = Statei, i = {1, · · · ,m} by an initial state distribution π = {πi} and set

t = 1. Second, choose observation Ot = vk according to some probability based on

the state Statet: bstatet(k). Third, transit to a new sate qt+1 = Statej according to

the state transition probability for state Statei: aij = Pr(Statej|Statei). Fourth, set

t = t+ 1 and repeat the second and third steps until the end state achieves.

HMM can be applied to several important NLP problems. In the speech recogni-

tion problem, Ot are voice signals and qt are corresponding words. In the information

extraction problem, Ot are terms in the documents and qt are corresponding topics.

6Here W can be a sentence, paragraph, or document. wi can be a word, phrase,

or punctuation mark. This section refers wi as “term”.



32

2 
 

5) Set 1t t , return to step 3) if t T ; otherwise end the procedure.  
This process is described as following diagram: 

 
From this process, we can see that in HMM, the states which have Markov properties 

are not observable. Thus, the model is called hidden Markov model.   
 
2. In what sense is an HMM a model? What are the inputs and outputs? What is 

being described by the input/output relationship? 
Answer:  

The HMM is a statistical model which describes the systems with Markov properties 
with unknown states. In the HMM, mathematical relationships between observations of a 
sequence are described. Thus, the HMM is a model.  

There are three basic problems of HMMs[1]. In the different problem, the inputs and 
outputs are different.  

The first problem is the evaluation problem. The inputs of the model are the 
parameters of the model and the observation sequence 1 2 3, , ,..., TO O O O O , and the 
output of the model is the probability when the sequence occurs: ( | )P O .  

The second problem is to find the hidden states of the sequence. The inputs are the 
observation sequences, and the output is the state set 1 2{ , ,..., }NS S S S  which best 
explains the observations.  

The third problem is to optimize the model parameters to best describe how a given 
observation sequence comes about. The inputs are the observation sequences, and the 
outputs are the parameters of the HMM.  

In the HMM model, the observed stochastic process 1 2 3, , ,..., TO O O O O  is being 
described by the input/output relationship.  
 

3. What is a one-state HMM? Give an example. 
Answer: 

In the HMM, if there are only one state (or N=1 in the model described in problem 1), 
the HMM is a one-state HMM.  

For example, given results from a coin tossing experiment where the number of coins 
used and the bias of each coin are unknown. One of the observations is 
O HHHTTTTHHHTHHTTT , where H represents the head and T represents the tail. If 
we assume only one coin was used in the experiment, the resulting model is the one-state 
HMM.   

   
4. Explain Figure 1. In answering, be sure to include responses to the following 

questions. 
 

a. What does each node and arc represent? 

aqtqt+1 aqt-1qt 
   qt-1    qt    qt+1

   Ot-1    Ot    Ot+1Observations: 

bqt-1(Ot-1) bqt(Ot) bqt+1(Ot+1) 

Figure 2.1: Hidden Markov Model

In the part-of-speech tagging problem, Ot are terms in the documents and qt are

corresponding tags.

2.4.2 Semantic Role Labeling

Humans read sentences by understanding not only meanings of words but also

syntactic structures as well as other semantic information. We usually focus on the

predicate words in sentences and related subjects and arguments surrounding them.

For example, when we read the sentence in Example 2.29, we know an event “sen-

tencing” happened to the subject “Thompson”. This event was about a violent crime

that happened in the October.

(2.29) Thompson was sentenced this morning in the October death of Daniel

Neumeister, a 31-year-old local winemaker.

One approach to analyze text semantically is called semantic role labeling (SRL)

[39]. SRL methods try to identify the verbal and nominal predicates in sentences

and label the roles of surrounding entities. The most recent SRL systems [39,79] use

statistical learning models to achieve this objective. The overall process of these SRL

systems includes two phases. In the first phase, sentences are parsed syntactically.

The outputs of this phase are parse trees. In the second phase, nodes in the parse
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trees are classified into multiple classes using machine learning models. Each class

represents a different semantic role. To estimate parameters of the classification

models, manually labeled corpora such as Penn Treebank [65] and NomBank [68] are

used. The outputs from SRL systems are labeled sentences. For example, applying

the two SRL systems developed by Punyakanok et al. [79] and Gerber and Chai [40],

the sentence in Example 2.29 is labeled as follows.

(2.30) [e1:criminal Thompson] [e1 was sentenced] [e1:temporal this morning] [e1:crime in

the October death of Daniel Neumeister , a 31-year-old local winemaker.]

As we can see, the SRL systems correctly labeled the event of “sentencing” and its

corresponding criminal “Thompson” as well as the criminal incident.

SRL systems provide us with important semantic information about text. Incor-

porating these information should be able to improve the performance of available

text mining and NLP models.



CHAPTER 3

THE LOCAL SPATIO-TEMPORAL GENERALIZED ADDITIVE MOD-

ELS

This chapter describes a feature-based approach to model the spatio-temporal

data and solve the problem described in Section 1.2. There are two models. The first

one, the spatio-temporal generalized additive model (STGAM), is based on gener-

alized additive models and built on spatio-temporal grids. It can take into account

various types of features. It also has good interpretability. The second one, the local

spatio-temporal generalized additive model (LSTGAM), improves STGAM by build-

ing models conditioned on different regions. In addition, this chapter addresses three

issues related to the modeling process. After describing STGAM and LSTGAM, a

randomized least angle regression method (RLAR) is studied to select features for

nonlinear models. Then model estimation methods are described to estimate model

parameters efficiently. Finally, a new method, high risk percentage versus true inci-

dent percentage (HRP-TIP) plot, is developed to evaluate the prediction performance

of spatio-temporal models.

3.1 The Spatio-Temporal Generalized Additive Model (STGAM)

Section 1.2 defined the objective of this dissertation: to develop an efficient method

to perform predictions and classifications over spatio-temporal grids with the consid-

eration of ordinary features as well as textual features. The overall model to solve this

problem is based on a generalized additive model (GAM). GAM is chosen because it

34
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has the following desired properties.

As discussed in Section 2.1, GAM assumes additivity between predictors and

nonlinear relationships between individual predictors and the response variable. The

additivity makes GAM able to take into account many predictors without the problem

of the curse of dimensionality1. As shown in [15, 92], the spatial generalized linear

model (GLM)2 had better predictability than other probabilistic models built on

high dimensions. The nonlinearity makes GAM more flexible in the treatment of the

relationships between predictors and responses. This flexibility is helpful for modeling

certain types of features. For example, consider the spatio-temporal modeling of

criminal incidents. Criminals may prefer to burgle richer houses. However, they

might not choose expensive houses because these houses often have security systems.

This effect cannot be modeled by linear functions as used in GLM. Because of those

two properties, GAM usually performs well for problems having many predictors.

GAM can also easily incorporate interactions between predictors. In addition to

smooth functions fi(Xi) with individual predictors Xi, GAM (as shown in Equation

2.5) can include smooth functions fj(Xj1 , Xj2) with multiple predictors to model the

interaction of Xj1 and Xj2 . For spatial modeling, the smooth function on the multi-

dimensional space can account for the overall spatial trend of the response variable.

Another good property of GAM is its interpretability. The outputs of GAM in-

clude estimated smooth functions, each of which describes the relationship between

a predictor (or predictors) and the response variable when all the other effects from

other predictors are controlled. This is helpful for applications where users are in-

terested in studying the underlying mechanism of spatio-temporal processes. For

1The curse of dimensionality refers to the problem that when the dimensionality

increases, the distance between any two points increases very fast. Therefore, the

data points become sparse in the high dimensional space.

2GLM can be considered as a special case of GAM.
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example, law enforcement agencies are interested in not only where and when the

future crimes will be, but also how a specific feature, such as the distance to the

nearest gas station, affects the criminal activity. By plotting the smooth function

of the distance versus the crime probability, law enforcement agencies can study the

effect easily. For instance, they can find out at what distance the crimes are most

likely to occur. Another example is the modeling of the spatio-temporal pattern of a

disease. The interpretable outputs can help doctors to find out the possible causation

of the disease and to prevent the disease in the future.

Furthermore, GAM can be estimated with well developed algorithms. Since for-

mally developed by Hastie and Tibshirani [49,50] in the 1980s, GAM has been studied

thoroughly in statistical sciences. Efficient estimation algorithms have been developed

theoretically [50, 109] and implemented in statistical software [48, 112]. As long as a

model can be formulated as GAM, it can be estimated directly with available algo-

rithms.

The overall model, the spatio-temporal generalized additive model (STGAM),

developed in this dissertation is formulated as follows.

STGAM for Classification

For the classification problem defined in Section 1.2, the major objective is to find

a probability function:

Π[g,t] = Pr[x[g,t,P ] = 1|Xt′6tc , S,T] (3.1)

such that Π[g,t] has high values the for the locations and time where x[g,t,P ] = 1 and

low values for the locations and time where x[g,t,P ] = 0. Here x[g,t,P ] is the feature of

interest XP (or the response variable) at the spatial grid sg and time interval t.

Let Y denote XP . The STGAM for the classification problem has the following
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form:

logit[Pr(yg,t = 1)] = f0(sg) +
N∑
n=1

fn(x[g,t,n]) + κg,t (3.2)

where:

1. logit(p) = log( p
1−p) is a logit link function as used in GLM.

2. f0(sg) is a smooth function built on the entire space S. It accounts for the

overall properties across the space.

3. N is the total number of useful features for the modeling. If all the available

P − 1 features are used, N = P − 1.

4. x[g,t,n] is the nth feature associated with location sg and time t.

5. fn is the smooth function of the nth feature to be estimated from data.

6. To include temporal information of previous incidents3, STGAM applies the

idea of the binary time-series-cross-sectional data (BTSCS) model4 from Beck,

Katz, and Tucker [4], because at a given spatial grid sg, Yg and the correspond-

ing features are essentially BTSCS data. In the above Equation 3.2, κg,t is the

dummy variable indicating the length of the continuous zeros (no incident hap-

pened) that precede the current observation of Y at location sg and time t. An

example of the values of κg,t is shown in Table 3.1. Notice that κg,t is a dummy

3In this dissertation, an incident means the occurrence of the event of interest or

Y = 1.

4The BTSCS model is developed based on the observation that BTSCS data are

equivalent to grouped duration data, which can be modeled by the proportional haz-

ards model [23]. In the BTSCS model, a temporal dummy variable κ is used to

indicate when the last incident happened.
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variable, and its values are factors instead of integers. Usually, κg,t = 1, · · · , K.

Here K is the maximum length of the continuous zeros considered. For example,

if the last incident happened before K time intervals at location sg and time t,

then κg,t = K.

Table 3.1: An Example of the Values of κ

t 1 2 3 4 5 6 7 8 9 10

Yg,t 0 0 1 1 0 1 0 1 0 1

κg,t 1 2 3 1 1 2 1 2 1 2

The STGAM for classification can be extended to model more complex spatio-

temporal patterns in the following two ways. First, higher dimensional smooth func-

tions fh(x[g,t,n1], x[g,t,n2]) can be added to consider interactions between features Xn1

and Xn2 . Second, κg,t can be defined on the values of Yg′ of the neighborhood grids

{sg′}. In this case, κg,t means the time length that no incident happened within the

neighborhood of location sg before time t.

STGAM for Regression

The above model 3.2 can be modified as shown in Equation 3.3 to solve the

regression problem defined in Section 1.2.

E[yg,t] = f0(sg) +
N∑
n=1

fn(x[g,t,n]) + fT (Yg,t−1:t−K) (3.3)

In Equation 3.3,

1. f0(sg), N , and fn(x[g,t,n]) are defined the same as in Equation 3.2.

2. E[yg,t] is the expectation of Y at location sg and time t.
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3. fT (Yg,t−1:t−K) models the temporal effect of the past values of Y at location sg.

fT is a smooth function estimated from the data. Yg,t−1:t−K is a vector of the

response values at location sg during the time period between t− 1 and t−K.

K is the same as defined in the STGAM for classification.

Similar to the STGAM for classification, Equation 3.3 can be extended by includ-

ing higher order smooth functions and utilizing the response values at neighborhood

grids.

The General STGAM

Generally, if the response variable Y is from the exponential family, STGAM can

be formulated as shown in Equation 3.4.

G (E[yg,t]) = f0(sg) +
N∑
n=1

fn(x[g,t,n]) + fT
(
f feature(YNN(g),t−1:t−K)

)
(3.4)

This model is explained as follows:

1. G is a link function. For different distributions of Y , G can have the different

forms as defined in Table 2.1.

2. E[yg,t] is the expectation of Y at location sg and time t.

3. f0(sg) is a smooth function built on the entire space S to model the overall

properties across the space.

4. N is the total number of useful features for the modeling.

5. fn is the smooth function of the nth feature to be estimated from data.

6. x[g,t,n] is the nth feature associated with location sg and time t.
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7. fT is a smooth function to be estimated from data. It models the temporal

effect of the past values of Y .

8. f feature is a predefined function to calculate temporal features from the past

response values of Y . For example, in the STGAM for classification (Equation

3.2), f feature(·) = κg,t.

9. NN(g) includes spatial grids close to sg. It is defined byNN(g) = {g′|dist(sg′ , sg) ≤

δdist, g
′ ∈ G}. Here, dist(sg′ , sg) measures the spatial distance between two grids

sg and sg′ . δdist controls the size of the neighborhood.

10. YNN(g),t−1:t−K are the past values of Y in the neighborhood NN(g) and the time

period between t−1 and t−K. Equations 3.2 and 3.3 are the special case where

δdist = 0 and NN(g) = sg.

3.2 The Local Spatio-Temporal Generalized Additive Model (LSTGAM)

STGAM assumes that all grids in the area S have the same underlying pattern.

A single model is built for the entire area. In reality, this assumption might not

be satisfied. When the entire area S is large, it is likely to have multiple regions

Sr where each one has its own pattern. For example, suppose we have all criminal

incident data of a state, including big cities, small towns and rural counties. Different

types of regions may have different criminal patterns. Even for a small region Sr, the

same feature might impact high risk areas (such as crime hot spots) differently from

low risk areas.

To account for this situation, STGAM is extended to the local spatio-temporal

generalized additive model (LSTGAM) as follows:
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E[yg,t] =
R∑
r=1

I(sg ∈ Sr) · Er[yg,t] (3.5)

G (Er[yg,t]) = fr,0(sg) +
N∑
n=1

fr,n(x[g,t,n]) + fr,T
(
f feature(YNN(g),t−1:t−K)

)
, for all r ∈ {1, · · · , R} (3.6)

Here are the explanations of the above LSTGAM model:

1. Equation 3.5 models the response variable Y over the entire area S with R

regions.

2. R is the total number of regions in S. Sr is the rth region, where {Sr|Sr ⊂ S, r ∈

{1, · · · , R}} satisfies ∪rSr = S and Sri ∩ Srj = ∅ (ri 6= rj).

3. I(·) is an indicator function with values of 0 and 1.

4. Er[yg,t] models the expected value of Y at location sg and time t within the

region r. Equation 3.6 defines Er[yg,t]. As we can see, it has the same form as

Equation 3.4.

5. Notice that there are actually R equations in the form of Equation 3.6 and each

one may have different smooth functions fr,·(·).

LSTGAM can be considered as a two stage model. The first stage is to decide

which region a grid sg belongs to. The second stage is to build different STGAM to

model the expected value of Y for each region. Clearly, STGAM is the special case

of LSTGAM with R = 1.

3.3 Feature Selection

To use the above LSTGAM model, we need to decide what features the model

should use. Simply using all the available features has the following problems. First,
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it requires too much unnecessary computation. For example, LSTGAM uses spatio-

temporal grids. For an area of 16 square miles and a time period of one year, if

we use the resolution of 0.02mile × 0.02mile for the space and 1 day for the time,

there are about 1.46 × 107 records. This means we need to compute more than ten

million data points if we include one additional feature. Second, including irrelevant

features means adding noise to the model estimation process. Such noise will make

predictions less accurate. Third, a model with a large number of predictors is harder

to be interpreted and analyzed than a model with less predictors, because users need

to spend more time to study each individual factor.

Therefore, before applying LSTGAM, we need to select features to be included

in the model. This is the feature selection problem described in Section 2.1.3. As

discussed in that section, among available feature selection methods, least angle re-

gression (LAR) is a fast method to select features for linear regression models with

good performance. This dissertation develops a randomized algorithm based on LAR

to select features for nonlinear additive models. Before introducing the algorithm, let

us first review the basic LAR method and its limitation.

3.3.1 Review of Least Angle Regression (LAR)

For linear regression models, the feature selection problem is equivalent to selecting

the best subset of features with any given size such that the variance of the response

variable is explained the most. Mathematically, it can be formulated as follows:

min
1

n

n∑
i=1

‖
p∑
i=1

βixi − yi‖ (3.7)

s.t.

p∑
j=1

|β̂j| < δ (3.8)
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The above optimization problem is the so-called the Lasso5 model [97]. It is

equivalent to the penalized regression problems defined in Equation 2.12 with γ = 1

and can be solved by the convex optimization methods as used in [37,77,97].

LAR is a computationally efficient method to get the solution equivalent to Lasso.

Algorithm 1 shows the general steps of LAR [17, 30]. As we can see, for a problem

with p features, LAR computes the order of features entering the regression model

within p steps. After getting the order, we can choose the best number q(< p) of

features based on criteria like mean squared errors estimated by cross validation. If q

is the best number, all features entering the regression model before the qth step are

selected. Thus, the order of features entering the regression model can be considered

as the priority of features. The earlier a feature enters the regression model, the more

important it is.

LAR solves the problems with quantitative response variables. If the response

variable is not continuous, the L1−regularization path algorithm [76] can be used

for generalized linear models. Algorithm 2 shows the general steps of this method.

Similar to LAR, the output of this algorithm is the order of predictors entering the

models.

In practice, LAR can not only reduce the size of features for modeling, but also

improve the prediction performance. For example, let us consider the communities

and crime data set6 [82]. In the data set, the response variable is the total number

of violent crimes per 100,000 population. The cleaned data set includes 99 features

related to the incidents of violent crimes. All data were normalized into the range

0.00-1.00. Two-thirds of the data were used for training and the rest were kept as

the test set to compute predicted root mean squared errors (RMSE). Three types of

5Lasso stands for “Least Absolute Shrinkage and Selection Operator”.

6In this example, the data were cleaned by removing columns with “NA”. The first

five columns about community information and the fold number were also removed.
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Algorithm 1 LAR

1: Initialization:

2: standardize the variables;

3: set residuals: Resid = Y ;

4: set initial parameters: βj = 0 for all j ∈ {1, · · · , p} (p is the total number of

features);

5: Find Xj most correlated with Resid and update β̂j as follows:

6: increase β̂j in the direction of sign(corr(Resid,Xj));

7: let Resid = Y − β̂jXj;

8: stop when corr(Xk, Resid) = corr(Xj, Resid) for some Xk;

9: Update both β̂j and β̂k in the joint least squares direction until some variable Xi

has the same amount of correlation with the current residual and enter Xi into

the model;

10: Continue the above step with all the entered predictors until all predictors have

been entered into the regression model or stop when corr(Xj, Resid) = 0,∀j.

Algorithm 2 L1−regularization Path for GLM

1: Initialization: set λ0 = λmax, such that the intercept β0 is the only non-zero

coefficient; (λ is the regularization parameter as defined in Equation 2.12.)

2: For the kth step (k > 0),

3: set λk = λk−1 −∆k such that a new variable enters the model;

4: calculate the linear approximate change in β: β̂k− = β̂k−1 + (λk+1 − λk)∂β∂λ
5: find the exact solution of the estimated parameters β̂k using β̂k+ as the starting

value;

6: check whether the size of predictors must be modified; if so repeat line 5 to

update β̂k;

7: repeat lines 2 to 6 until no predictor can be added.
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models were built: a linear regression model using all 99 predictors, a linear regression

model using the predictors selected by stepwise selection; and linear regression models

using different numbers of predictors ranked by LAR. Each model was estimated by

the training set and the predicted RMSE was computed using the test set. The

variances of the predicted RMSE were estimated by 500 replicates of sampling the

training and test sets. Figure 3.1 shows the results. The x-axis is the number of top-

ranked predictors by LAR used in the linear models to predict violent crimes. It’s

only related to the third type of models. The y-axis is the average predicted RMSE.

The black line shows the predicted RMSE of the full model using all predictors. The

blue line shows the predicted RMSE of the stepwise model. Roughly there were 45

predictors in the stepwise model. The red line shows the predicted RMSE of the LAR

models. As we can see, the full model performed slightly better than the stepwise

model, but with a cost of using about 50 more predictors. The LAR model with

15 predictors performed better than the full model with 99 predictors. After 25

predictors, the performance of LAR models no longer improved.

Although LAR can select a small subset of features effectively and efficiently for

linear regression models, if predictors are nonlinearly correlated with the response,

it might not be able to select features correctly. For instance, consider the following

simulation problem. Suppose the response variable y is determined as:

y = (x1 − 0.5)2 + 0 · x2 (3.9)

where x1, x2 ∼ U(0, 1) and U(0, 1) denotes the uniform distribution ranging from 0

to 1. Given Ds = {x1, x2, y}, a good feature selection method should rank x1 with

higher priority than x2. However, applying LAR to Ds, x2 is ordered before x1.

LAR does not work in the above example because y is quadratically related to

x1. The linear correlation between these variables is close to zero as shown by the
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Figure 3.1: Comparison of Full Model, Stepwise Model and LAR Models

horizontal black line in Figure 3.2(a). Because y is independent of x2, the linear

correlation between them is also close to zero. Due to the randomness of x1 and x2,

the linear correlation between y and x2 was slightly higher. Since LAR measures the

linear correlation between predictors and the response, x2 was more important than

x1.

3.3.2 The Randomized LAR (RLAR)

This problem shown in Figure 3.2 might be solved if we sample subsets from Ds

randomly. For example, the grey dashed lines in Figures 3.2(a) and 3.2(b) measure
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Figure 3.2: Relationships between X1, X2 and Y
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the linear relationships between variables using samples of 10% of Ds. As shown,

the slopes of the grey lines are generally greater than the slopes of black lines. Also,

the variance of the coefficients of the linear models for x1 and y is greater than the

variance for x2 and y. Another possible approach to solve the nonlinearity problem

is by transforming predictors. However, it is usually unknown whether we should

transform a specific predictor or not. In addition, it is unknown what the best

transformation is to perform for each individual predictor. Therefore, the sampling

method is better for general data sets.

A randomized LAR (RLAR) method7 is developed to introduce randomness into

the data set to improve LAR when the relationships between variables might be

nonlinear. The method is described as follows.

Instead of applying LAR directly to the data set Dn×p
8, the method first samples

Nsample data sets Ds
m×q from Dn×p, where m < n and q < p. LAR is then applied to

eachDs to rank features. The feature priority forDs is ranks = 〈features1, . . . , featuresq〉.

In the last step, feature priorities are voted on by {ranks}. The complete algorithm

is shown in Algorithm 3. In Algorithm 3, there are two hyper-parameters. The first

one is the number of sampling times Nsample. The larger this number is, the more

stable the final rank is. The second one is the size of each sample Ds or m and q.

A large size of Ds introduces too little randomness, while a small size of Ds requires

more sampling times to ensure all the data points can be sampled. Based on my

preliminary tests, the following setting works well: Nsample ≥ 100, m
n
≤ 2

3
, and q

p
≤ 2

3
.

By applying RLAR to the example given in Equation 3.9, the result was the

desired ranking of x1 higher than x2.

7As shown later in Algorithm 3, RLAR can be applied to the problem with non-

continuous response variables by utilizing L1−regularization path algorithm. For

simplicity, this dissertation still calls it as randomized LAR or RLAR.

8n is the number of observations and p is the number of predictors
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Algorithm 3 Randomized LAR

1: Input: data set D = {x, y}

2: for s from 1 to Nsample do

3: sample Ds from D

4: depending on the type of the response variable, apply LAR or

L1−regularization path algorithm on Ds to get ranked features ranks =

〈features1, . . . , featuresp〉; where featuresi is added in the ith step of LAR

or L1−regularization path algorithm

5: end for

6: for i from 1 to p do

7: for s from 1 to Nsample do

8: if featurei ∈ ranks then

9: votei = votei + rsi, where ranks[rsi] = featurei

10: sample.timei = sample.timei + 1

11: end if

12: end for

13: votei = votei
sample.timei

14: end for

15: Output: ranked features: the smaller votei is, the more important featurei is.

3.3.3 Evaluation of RLAR

This subsection evaluates the performance of RLAR and compares it with LAR

using both simulation data and real data.

Evaluation with Simulation Data

First, consider the following simulation problem:
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y = 1000(x1 − 0.5)2 + 500(x2 − 0.5)2 +
50∑
i=3

0 · xi + ε (3.10)

where y is the response variable; xi (i ∈ {1, · · · , 50}) are predictors; xi ∼ U(0, 1);

ε ∼ N(0, 1) is random noise; U(0, 1) denotes the uniform distribution ranging from

0 to 1; and N(0, 1) denotes the Gaussian distribution with the mean of 0 and the

variance of 1.

As we can see from Equation 3.10, the response variable y depends only on the

two predictors x1 and x2. Let D = {y, x1, x2, · · · , x50} be the data set and apply both

LAR and RLAR on this data set to rank predictors. A good feature selection method

should rank x1 and x2 higher than all the other predictors. Figure 3.3 shows the

ranks of x1 and x2 from both LAR and RLAR methods based on 100 simulations and

each simulation had the data set with 100 observations. The left two box plots show

the ranks from LAR and the right two box plots show the ranks from RLAR. Both

x1 and x2 had higher ranks from RLAR than the corresponding ranks from LAR.

Especially, RLAR ranked x1 with very high priorities, the median of which was 2. On

the contrary, the median of the ranks of x1 from LAR was 22. To see whether the

differences were significant, the one-sided paired Wilcoxon tests were performed. The

p-values were 2.67×10−16 and 0.002928 for x1 and x2 respectively. At the significance

level of 0.05, both differences were significant.

Next, consider a more complex problem:

y =
4∑
i=1

ai(xi − bi)i +
50∑
i=5

0 · xi + ε (3.11)

where y is the response variable; xi (i ∈ {1, · · · , 50}) are predictors; xi ∼ N(0, 1);

ε ∼ N(0, 1) is random noise; ai, bi ∼ U(0, 1); U(0, 1) denotes the uniform distribution

ranging from 0 to 1; and N(0, 1) denotes the Gaussian distribution with the mean of
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Figure 3.3: Evaluation of RLAR on the Two-Variable Selection Problem

0 and the variance of 1.

As defined in Equation 3.11, the response variable y is a polynomial function of

the predictors x1, x2, x3 and x4. Similar to the previous simulation test, both LAR

and RLAR were applied to the data set D = {y, x1, x2, · · · , x50} to rank predictors

with 100 simulations and each simulation with 100 observations. Instead of comparing
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individual ranks9, the following two metrics were used to compare the performance:

µ(rank) =
1

4

4∑
i=1

rank(xi) (3.12)

max(rank) = max{rank(x1), rank(x2), rank(x3), rank(x4)} (3.13)

The first metric measures the mean of the ranks. The second one measures the

maximum of the ranks. The second metric also measures the minimum number of

features to be selected so that all the truly related features can be included. A good

method should have low values for both metrics. Figure 3.4(a) shows the results

on the mean metric and Figure 3.4(b) shows the results on the max metric. As we

can see, RLAR performed better than LAR on either metric. Two one-sided paired

Wilcoxon tests had the values of 0.0003245 and 0.003951. Therefore, the differences

were significant.

Evaluation with Real Data

The task to predict violent crimes as described in Section 3.3.1 can be used to

compare RLAR and LAR. As before, two-thirds of the data were used for training

and the rest were used as test set to compute RMSE.

In the comparison, RLAR and LAR were applied to the training set to rank

features. Next, the linear and additive models with different numbers of features

were built and the RMSE of each model was calculated using the test set. Figure 3.5

shows the result. The x-axis is the number of top-ranked predictors used to predict the

violent crimes. The y-axis is the average predicted RMSE. The black line is from the

linear models using the features selected by LAR; the blue line is from the additive

models using the features selected by LAR; and the red line is from the additive

9This is because we do not care about the ranks among x1, x2, x3 and x4. Instead

we are interested in the overall ranks of them.
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Figure 3.4: Evaluation of RLAR on the Four-Variable Selection Problem
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models using the features selected by RLAR. As shown in the plot, the additive

models performed better than the linear model. Given any number of predictors,

RLAR performed the same or better than LAR. RLAR achieved the lowest RMSE

with 12 predictors whereas LAR achieved the lowest RMSE with 17 predictors.
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Figure 3.5: Comparison of Models with Different Number of Features

Based on the above evaluations, we can conclude that RLAR performed better

than LAR.
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3.4 Model Estimation

3.4.1 Estimation of STGAM

A good property of STGAM is that it has the form of a regular GAM. Therefore,

it can be estimated as a standard GAM. GAM has been studied extensively in many

different research areas. There are well developed methods and algorithms available

to estimate GAM efficiently. Standard statistical softwares, such as R, S-plus and

SAS, also have implements to estimate GAM. This section reviews the method to

estimate GAM based on the work by Wood [109]. Details about this method and

other estimation methods can be found in [50,109].

Review of Estimation of GAM

The fundamental question for the GAM estimation is what the smooth functions

f· are. Intuitively, we need to find smooth curves which describe relationships between

predictors and the response. This is usually achieved by fitting high-order polynomial

functions locally. To estimate the GAM model in Equation 3.4, the smooth function

f·(x) is first represented by a sum of basis functions:

f·(x) =
B∑
i=1

βi · bi(x) (3.14)

where bi(x) is the ith basis function; and β are the unknown parameters to be esti-

mated.

A popular choice of basis functions is the cubic regression spline10. The basis

10A smooth function with more than one predictor, such as f0(sg) with two dimen-

sional predictors in Equation 3.4, can also be represented by a sum basis functions.

A popular choice is the thin plate regression splines [107].
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functions for this spline include:

b1(x) = 1 (3.15)

b2(x) = x (3.16)

bi+2(x) = R(x, x∗i ) (3.17)

where {x∗i |i ∈ {1, · · · , B − 2}} are knots of the spline; and R(x, z) is defined as

follows [45,109]:

R(x, z) =
1

4

[(
z − 1

2

)2

− 1

12

][(
x− 1

2

)2

− 1

12

]

− 1

24

[(
|x− z| − 1

2

)4

− 1

2

(
|x− z| − 1

2

)2

+
7

240

]
(3.18)

By representing all smooth functions f·(x) with basis functions, Equation 3.4

becomes a GLM:

G (E[yg,t]) = β0 +
N∑
n=0

Bn∑
i=1

βn,i · bn,i(x[g,t,n]) +

BT∑
i=1

βT,ibT,i
(
f feature(YNN(g),t−1:t−K)

)
(3.19)

The above GLM can be estimated efficiently by the penalized iteratively re-

weighted least squares method (P-IRLS) [109]. As discussed in [108], P-IRLS might

not be able to converge in some cases. In recent work [111], Wood proposed a method

to approximate the restricted maximum likelihood (REML) by a Laplace approxima-

tion and used Newton-Raphson iteration to fit GLM. This method is more compu-

tationally stable than previous estimation methods and has better convergence prop-

erty. It has a computational cost on the order of O(Mnq2), where M is the number of

smoothing parameters, n is the number of observations, and q is the number of basis

coefficients. The implementation of this method is available in the “mgcv” package
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in R [112].

Subsampling for Classification STGAM

The training data set for STGAM is usually huge, because spaces and time in-

tervals are represented by grids. For example, in our modeling of criminal incidents

in Charlottesville, Virginia11 with the grid size of 32m × 32m and the time interval

of one month, there were 1,062,094 records for the 46 month time period [100]. It

is time consuming to estimate parameters using all the records. For the regression

problem, we can use a random sample to estimate parameters. For the classification

problem, the response variable is usually a sparse vector. For example, in the above

example of criminal incidents modeling, there were about only 1,700 records with the

response of 1. It is very likely to have a random sample with too few incidents. For

the STGAM for classification, the following subsampling method is suggested.

To generate a sample from the records, all the records with the response of 1 and

a random sample from the records with the response of 0 are included. This is a

biased sampling method. Based on the analysis in [57], the effect from this biased

sampling can be approximately corrected by adding an offset term O:

O = log

(
sample size

total number of records

)
(3.20)

in the estimation process. Thus, the subsampling technique can reduce the size of

training set and save estimation time.

However, the subsampling method introduces stochastic effects to parameter es-

timates. If possible, using all of training data to estimate parameters is preferred.

11The total area of the city is approximately 26.6 km2
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3.4.2 Estimation of LSTGAM

There are two components of LSTGAM estimation. The first component is to

estimate the STGAM or Equation 3.6 in each region Sr. This can be done by the

above method of GAM estimation. The second component is to define or estimate

regions {Sr}.

{Sr} can be defined by domain knowledge. For example, if law enforcement agen-

cies believe that criminal patterns are different in different cities, each Sr can be

a different city. When no such knowledge is available, we can estimate {Sr} with

features {X·}. Any unsupervised learning method discussed in Section 2.1.2 can be

applied. For example, for the spatio-temporal classification problem, the region with

high risk usually has different underlying patterns from the low risk region. Algorithm

4 shows how to generate {Sr} based on the observed incident density.

Algorithm 4 Region Generation for LSTGAM

1: Estimate the incident density over the entire area S:

2: {dg|dg ∈ [0, 1], sg ∈ S};

3: Pick threshold points:

4: {d∗1, · · · , d∗R−1|0 = d∗0 < d∗1 < d∗2 < · · · < d∗R−1 < d∗R = 1};

5: {Sr} based on the incident density are:

6: Sr = {sg|d∗r−1 ≤ dg < d∗r, sg ∈ S}.

3.5 Model Evaluation

For spatio-temporal regression problems, models can be evaluated with widely ac-

cepted metrics like predicted mean square errors. However, there is no unique metric

available for the spatio-temporal classification problems. This section describes a new

method to evaluate the prediction performance of the spatio-temporal classification

models. This method can also help users to pick thresholds for the decision function
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such as the one defined in Equation 1.2.

As discussed in Section 1.2, we want to minimize the loss function L(·) de-

fined in Equation 1.3 for the classification problem. The first part of the function∑
g∈G∗,t∈T∗ weight0 · I(δ[g,t] = 0|x[g,t,P ] = 1) is the weighted sum of the times of incor-

rect predictions for the spatial grids and time when incidents actually happen. The

second part of the function
∑

g∈G∗,t∈T∗ weight1 ·I(δ[g,t] = 1|x[g,t,P ] = 0) is the weighted

sum of times of incorrect predictions for the spatial grids and time when no incident

happens. To minimize the first part, the probability model should predict high prob-

abilities for the spatio-temporal grids where incidents actually happen. To minimize

the second part, the total size of the spatio-temporal grids with high probabilities

should be small within a given time period because of the sparseness of incidents over

the entire space S.

Both criteria are important. The first criterion means the model should not miss

a high risk area so that users can know all future locations and times of incidents.

The second criterion is important, because users usually have limited resources and

only a part of an area can be focused on. For example, law enforcement agencies

need to predict high risk areas. They have limited watch units. At a given time,

only a small area can be patrolled. With a good prediciton model, they can better

allocate limited resources to help prevent crimes. Based on these criteria, the high

risk percentage (HRP) versus true incident percentage (TIP) method is developed to

evaluate the performance of spatio-temporal predictions within a given time period.

To measure the performance of a model at location S∗ = {sg} and time period

T∗ = {t}, the method first computes:

HRPδ =

∥∥{(sg, t)|Pr(x[g,t,P ] = 1) > δ}
∥∥

‖S∗ × T∗‖
(3.21)

TIPδ =

∥∥{x[g,t,P ] = 1|(sg, t) ⊂ {(sg, t)|Pr(x[g,t,P ] = 1) > δ}}
∥∥∥∥{x[g,t,P ] = 1}

∥∥ (3.22)
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where {Pr(x[g,t,P ] = 1)|sg ∈ S∗, ti ∈ T∗} are predictions from the model; (sg, t) refers

to the spatio-temporal grid at location sg and time t; ‖ · ‖ is the size of a set; and δ is

a threshold (δ ∈ [0, 1]). HRPδ represents the percentage of high risk area predicted

by the model given δ. TIPδ represents the percentage of incidents (from test set) that

happened within the high risk area given δ.

Two vectors of HRP and TIP can be computed with different thresholds {δi|δi ∈

[0, 1]}. Then, TIP is plotted against HRP. The resulting plot looks like the receiver

operating characteristic (ROC) curve [33]. Ideally, we hope as many as incidents hap-

pen within the high risk area predicted from the model with a given size. Therefore,

the curve from a good model should be close to the upper left corner. An example of

this plot is shown in Figure 3.6. This HRP-TIP plot is also helpful for users to pick

threshold values for the decision functions. With a HRP-TIP plot, users can pick a

HRP value and know how many real incidents can be covered by focusing on the high

risk areas. After having the HRP value, the threshold is the corresponding δ.

Similar to ROC analysis, we can use the area under the curve (AUC) to compare

the performance of different models by a single score. Because a good model has the

curve close to the upper left corner, AUC of a good model should be close to 1. It

is easy to see that a random guess model has the curve along the diagonal. Thus, it

has AUC= 0.5. As a result, AUC of a bad model should be close to or less than 0.5.
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Figure 3.6: An Example of HRP-TIP Plot



CHAPTER 4

THE SEMANTIC ROLE LABELING-BASED LATENT DIRICHLET AL-

LOCATION MODEL

This chapter describes a new text mining model, the semantic role labeling-based

latent Dirichlet allocation model (SRL-LDA), to extract information from unstruc-

tured text. This method improves a well-performed language model, latent Dirichlet

allocation model, by utilizing semantic analysis from semantic role labeling systems.

SRL-LDA can structure high dimensional text features into numerical vectors with a

few dimensions. Structured textual features can then be incorporated into LSTGAM

to model the spatio-temporal data. SRL-LDA can also be applied independently for

other types of text mining tasks.

4.1 Incorporating Unstructured Textual Features into LSTGAM

LSTGAM developed in Chapter 3 can incorporate various features as long as

they can be represented numerically as a vector or matrix. For example, suppose we

have the textual feature Dg,t ∈ Xtxt associated with location sg and time t. If we

can represent Dg,t using a numerical vector X txt
g,t = (xtxt[g,t,1], · · · , xtxt[g,t,m]), we can add

xtxt[g,t,1], · · · , xtxt[g,t,m] into Equation 3.6. Doing so adds the textual information to the

overall LSTGAM model.

Extracting information from text and structuring textual data as numerical vec-

tors are fundamental text mining tasks. As discussed in Section 2.3.2, the most widely

62
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applied method to structure text is the vector space model, where documents1 are

represented by term-document matrices. Weighting schemes such as term frequency-

inverse document frequency (TF-IDF) are often used in conjunction with vector space

models [85]. Applying this method directly to structure text for LSTGAM has the

following problems:

First, this type of model represents a collection of documents2 within a high-

dimensional feature space. For example, a corpus usually has more than 5000 different

words. The standard TF-IDF method requires a vector with more than 5000 elements

to represent a single document. This means we need to include more than 5000

numerical features in the LSTGAM. In most cases, it is extremely hard to estimate

parameters with so many features.

Second, because of polysemy, using a single term3 as a feature might not be able

to represent the meaning of documents correctly. Polysemy means the same word

might have different meaning in different sentences (e.g. “bank” in Example 2.25

and 2.26). For example, if we use the TF-IDF method to structure text, the two

sentences “I went to the bank to cash the check.” and “I walked along the river bank.

” in Example 2.25 and 2.26 will be considered similar because both of them include

the word “bank”.

Third, synonymy might cause the multicollinearity problem for regression models

if a single term is used as a feature. Synonymy means different words might have

the similar meaning (e.g. “car” and “vehicle”). It may cause the multicollinearity

problem for a regression model. For example, both words “gun” and ”weapon” are

likely to appear together in the same criminal reports. In this case, the two vectors

1This section uses “document” to represent a piece of text. It can be a sentence,

a paragraph, or an article.

2In text mining, a collection of documents is usually called a corpus.

3A term can be a word or a phrase.
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which represent these two words will have high linear correlation. This high linear

correlation will result in unstable estimation of the regression models.

Recent text mining research has developed probabilistic topic models such as la-

tent Dirichlet allocation (LDA) [10], which can partly solve the above problems. LDA

performs well for different tasks like document tagging, summarization, and image

labeling [7,95]. LDA can be used to structure text by representing each document as

a vector of K probabilities, which describe the likelihoods of the document belonging

to the K different topics. This dissertation develops a new text model to extract

textual information based on LDA. The following section describes this new model.

4.2 The Semantic Role Labeling-Based Latent Dirichlet Allocation Model

(SRL-LDA)

As indicated by the name, the new semantic role labeling-based latent Dirichlet

allocation model (SRL-LDA) is based on two separate models, the latent Dirichlet

allocation (LDA) model and the semantic role labeling (SRL) model. This section

first reviews the two previous models and discusses the reason why those two models

should be combined. Then, SRL-LDA is described in details.

4.2.1 Review of the Latent Dirichlet Allocation Model (LDA)

Model Description

The standard LDA model can be represented graphically as shown in Figure 4.1.

It is a hierarchical Bayesian model that extracts latent variables from a collection of

documents.

LDA assumes a document d is a bag of words, which means relationships be-

tween words are not considered. Each document can be represented by a set d =

{wd,1, · · · , wd,n}, where wd,n is the nth word in the document d. In total, there are Nd

different words in the document d. In addition, LDA assumes there are T different
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Figure 4.1: LDA Model

topics {βt} in the corpus D = {d}. A topic βt is a distribution over V words, where

V is the total number of different words in the corpus. Each word wd,n is about the

Zth
d,n topic. Zd,n is determined by the multinominal distribution θd. In LDA, both θ

and β are assumed to have Dirichlet priors. LDA can be described by the following

generative process:

1. Draw T topics from a Dirichlet distribution βt ∼ DirV (η);

2. For each document d in the corpus D,

(a) Draw topic proportions from another Dirichlet distribution: θd ∼ DirT (α);

(b) For each word wd,n in the document d,

i. Draw a topic zd,n|θd ∼Multinomial(θd);

ii. Draw a word wd,n|zd,n, β1:T ∼Multinomial(βzd,n).

Mathematically, the above generative process defines the probability of the corpus
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D being observed:

Pr(D) = Pr(w) =
∏
wi∈w

T∑
t=1

Pr(wi|zi = t) · Pr(zi = t) (4.1)

where w = {wd,·|d ∈ D} is a sequence including all the words in the corpus D;

Pr(wi|zi = t) = βwi
t means the probability of the word wi under the tth topic; and

Pr(zi = t) = θtd(wi ∈ d) is the probability that the document d is about the tth topic.

In the above model, α, η, and T are hyper-parameters. The topic number T de-

pends on the specific problems. It is can also be estimated by the hierarchal Dirichlet

process model [96]. It is usually chosen to be from 10 to 100. α and η decide the

sparseness of topic distributions. As suggested in [94], a good choice of these two

parameters is α = 50
T

and η = 0.01. In practice, we can try different values of those

hyper-parameters and select the best values by cross-validation.

In addition to the hyper-parameters, we need to estimate β and θ. Both of these

two parameters are interesting to us. β is the topic distribution describing what each

document is about. It can be used to represent the document numerically. θ is the

word distribution describing what words each topic is related to. It can be used to

explain the meaning of the numerical representation.

Estimation of LDA

To estimate the parameters of interest β and θ, we can use the maximum likelihood

estimation:

(β̂, θ̂) = arg maxPr(D|β, θ) (4.2)

However, the above optimization is intractable [10, 43]. The following two methods

have been developed and applied widely to estimate β and θ approximately.

The first method is the variational expectation maximization (EM) algorithm [10].
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Instead of directly maximizing the likelihood function, the variational EM algorithm

attempts to maximize a lower bound of the log likelihood function. The E-step

estimates the parameters using the current estimation, and the M-step updates the

model parameters by maximizing a lower bound of the log likelihood. The above two

steps are repeated until convergence. It is well known that the EM algorithm can

converge [26]. Therefore, the above estimation algorithm can also converge. However,

a problem with the variational EM algorithm is that it is likely to find local optima

and lead to inaccurate estimates [69].

The second method is the Gibbs sampling (GS) algorithm [43]. This method is

widely applied to estimate LDA, because it is straightforward and converges fast in

practice. Instead of estimating β and θ directly, this method estimates the posterior

distribution of the assignments of words to topics, Pr(z|w), by GS. To use GS, we

need to know the conditional distribution Pr(zi|z−i,w), which can be calculated by

the following equation [43,94]:

Pr(zi = j|z−i, wi, di, ·) ∝
CWT
w,j + η∑W

w=1C
WT
w,j +Wη

·
CDT
d,j + α∑T

t=1C
DT
d,t + Tα

(4.3)

where CWT and CDT are matrices of counts; CWT
wj is the number of times word w is

assigned to topic j (not including the current topic i); CDT
dj is the number of times

topic j is assigned to some word in document d (not including the current topic i);

and W =
∑

d∈DNd is the total number of words in the corpus.

After estimating Pr(z|w), β and θ can be estimated by integrating across the
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entire corpus:

β̂wj =
CWT
w,j + η∑W

w=1C
WT
w,j +Wη

(4.4)

θ̂jd =
CDT
d,j + α∑T

t=1C
DT
d,t + Tα

(4.5)

where β̂wj is the estimated probability of word w under the jth topic; and θ̂jd is the

estimated probability that document d is about the jth topic. As we can see, β̂wj is

the first part of the right hand side of Equation 4.3, while θ̂jd is the second part. β̂wj

is related to how likely word w is for topic j. θ̂jd is related to how dominant topic j

is in document d.

As studied in [20], the Gibbs sampling can generate a Markov chain of random

variables that converges to the distribution of interest after some large number of

iterations. The empirical study showed GS converged relatively fast for LDA esti-

mation, within 500 iterations of sampling [43]. In each GS iteration, we need to

generate a topic assignment for each word from a conditional distribution over T

topics. Therefore, it requires O(WT ) computations for a single iteration, where W is

the total number of words in the corpus; and T is the number of topics. The overall

computation complexity of the GS algorithm with Kgs iterations is O(KgsWT ). In

practice, Kgs is usually fixed to a small number (compared to W ). So the complexity

of GS for LDA estimation is O(WT ).

Different methods have been developed to reduce the computation time required

by the GS algorithm, such as FastLDA [78], approximate distributed LDA algorithm

[71], and parallel LDA [105]. There are also many implements to estimate LDA

models, such as GibbsLDA++ [114] and “topicmodels” [44] and “lda” [21] packages
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in R4.

4.2.2 Review of Semantic Role Labeling (SRL)

Because humans utilize semantic roles of words in sentences in the understanding

of languages, the text models like LDA which treat words as independent tokens

are inadequate to fully extract information from text. NLP researchers have been

developing automatic methods to analyze text semantically. Semantic role labeling

(SRL) is such a type of NLP techniques. SRL automatically extracts the verbal

and nominal predicates (usually called events) mentioned a sentence, the entities

associated with the events, and the roles of the entities with respect to the events

[39, 79]. Mathematically, for a sentence sentence = {w1, · · · , wn}, SRL associates

a label with each word: SRL(sentence) = {(w1, sl1), · · · , (wi, sli), · · · , (wn, sln)},

where sli ∈ SL is either an event or a semantic role for word wi; and SL = {sl·} is a

set of events and all possible semantic roles. An example of the output from SRL is

shown in Example 2.30.

Modern SRL systems use statistical learning models to label words. The first step

of these systems is to analyze the syntactic structures of sentences. The syntactic

structures are usually represented by syntactic parse trees. Figure 4.2 shows the

syntactic parse tree of the sentence “Casey throws the ball.”5. In the figure, blue

square nodes are phrase types. ‘S’ stands for “sentence”, the top-level of the sentence

structure. “NP” stands for “noun phrase”; and “VP” stands for “verb phrase”, which

serves as the predicate in this example. A popular method to generate syntactic parse

trees from sentences is by probabilistic context free grammars (PCFG) [64]. A PCFG

G defines a set of nodes (e.g. words and phrase types), a set of rules (e.g. VP→ V NP,

4Additional implements can be found at http://www.cs.princeton.edu/~blei/

topicmodeling.html

5This example is from Penn Treebank [6].
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which means a verb plus a noun phrase is a verb phrase.), and a corresponding set of

probabilities (e.g. Pr(VP→ V NP) = 0.7). Given G, a sentence is parsed such that

the probability of the corresponding parse tree being observed is maximum. This

solution can be generated by a popular dynamic programming algorithm, Cocke-

Younger-Kasami (CYK) algorithm. Its running time is O(n3), where n is the length

of the sentence.

S

NP VP

Casey throws NP

the ball

Figure 4.2: An Example of Syntactic Parse Tree

After getting syntactic representation of sentences, SRL classifies nodes in the

parse trees into labels in SL. This is a classic supervised learning problem as discussed

in Section 2.1.1. For example, a recent SRL system developed by Gerber [39] used

a feature-based GLM to classify the nodes. The features used in his model included

positions of nodes, head words, paths between two words, syntactic categories and so

on. As we can see, this method well considered the orders between words and other

syntactic rules. To estimate the parameters of the classification models, manually

annotated corpora like Penn Treebank [65] and NomBank [68] can be used.
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4.2.3 The Semantic Role Labeling-Based Latent Dirichlet Allocation

Model (SRL-LDA)

The generative LDA model regards each document as a bag of words that con-

tains no information beyond the words themselves. The SRL method provides such

semantic information, but does not provide a directly numerical representation of

unstructured textual data. This dissertation proposes to use SRL to incorporate ad-

ditional semantic information into the LDA model. In this way, SRL can extract

useful words, such as events, mentioned in a document. LDA then can extract nu-

merical latent variables about only the important words in the documents. Such

a semantic role labeling-based latent Dirichlet allocation (SRL-LDA) model can be

represented graphically as shown in Figure 4.3.
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Figure 4.3: SRL-LDA Model

In Figure 4.3, the LDA part is defined the same as in Section 4.2.1, except for

βt. In the SRL-LDA model, the topic distribution βt is defined in terms of both the

words in the corpus D and the labels of the words from SRL. Only the words with

certain labels in SL∗ ⊂ SL6 are assumed to be related to βt. In other words, β is no

6For example, we know the predicates have the most important information about

sentences. In this case, SL∗ includes both nominal and verbal predicates.
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longer defined on the entire set of words w7 in the corpus. It is defined on a subset

w∗ = {wi,d|sli,d ∈ SL∗, wi,d ∈ w}, where sli,d is the label assigned to word wi,d by

SRL. The block “Semantic Role Labeling” means any available SRL systems8 . D∗’s

are corpora used to build SRL systems. D∗ is usually different from D and has larger

size than D.

Mathematically, SRL-LDA can be formulated as follows:

Pr(D) = Pr(w) =
∏

wi∈w∗

T∑
t=1

Pr(wi|zi = t) · Pr(zi = t) ·
∏

wi∈w−w∗
Pr(wi|SRL) (4.6)

where w∗ is a sequence including all the important words in the corpus D determined

by SRL; Pr(wi|zi = t) = βwi
t means the probability of the important word wi under

the tth topic; Pr(zi = t) = θtd(wi ∈ d) is the probability that document d is about

the tth topic; w − w∗ is a set of words not included in w∗; and Pr(wi|SRL) means

these words not in the set w∗ are decided by syntactic rules and not related to topics.

Similar to LDA, we are interested in the estimates of β and θ.

SRL-LDA assumes a corpus D is generated as follows:

1. Draw T topics from a Dirichlet distribution βt ∼ DirV (η); topics are only

related to a small number of important words;

2. For each document d in the corpus D,

(a) Draw topic proportions from another Dirichlet distribution: θd ∼ DirT (α);

(b) Draw topic-related words {w∗d,i}:

i. Draw a topic zd,i|θd ∼Multinomial(θd);

ii. Draw a word w∗d,n|zd,n, β1:T ∼Multinomial(βzd,n).

7w is defined as a sequence including all the words in the corpus D.

8This dissertation uses the SRL systems developed by Punyakanok et al. [79] and

Gerber and Chai [41].
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(c) Given {w∗d,i}, fill other words in the document according to syntactic rules.

SRL-LDA has the following desired properties to be applied to structure textual

data for the LSTGAM model:

1. Compared to vector space models, SRL-LDA can represent unstructured textual

data with meaningful vectors with lower dimensions. Fundamentally, SRL-LDA

is an LDA model. It has all the good properties of LDA. SRL-LDA extracts topic

distributions as the numerical representation of the documents. The number

of topics is usually much less than the number of words. Therefore, SRL-LDA

requires much less dimensions than vector space models.

2. SRL-LDA can partly solve the synonymy and polysemy problems by represent-

ing documents with topic distributions. This is possible because of the following

two properties of LDA: synonyms which frequently appear together can be as-

signed to the same topic by LDA; and because a topic is determined by more

than one words, a word can appear in different topics.

3. By incorporating SRL, SRL-LDA can utilize semantic information of words in

documents. Because SRL well considers the orders between words and syntax,

SRL-LDA can extract information from text with the consideration of semantics

and syntax.

4. Compared to LDA, SRL-LDA provides more meaningful topics. LDA learns

topics from a corpus using all the words. As we know, not all of the words

can be assigned to topics. For example, the article words, like “the”, “an”, “a”

and so on, can appear in a document with any topic. Even content words, like

“car”, “ball” and so on, might not be important for topic discovery in some

cases. By focusing on only important words labeled from SRL, SRL-LDA can

provide more interpretable topics.
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5. SRL-LDA is more suitable to be applied to the problems with a limited number

of documents. LDA learns the topics with only the documents in the corpus D.

When the number of documents in D is small, LDA can hardly discover mean-

ingful topics. This is because LDA learns topics by computing the occurrences

of a word in a specific topic and the co-occurrences of words in a document9.

When the number of documents is small, occurrences and co-occurrences are

more likely to be random. The performance of LDA is limited by the existence of

unimportant words. On the other hand, SRL-LDA uses the knowledge learned

from the large corpora D∗’s to reduce the number of words to be considered.

This can improve the performance of LDA.

6. As will be discussed in the later of this section, SRL-LDA can be estimated

easily and efficiently with current algorithms. With the development of SRL

and LDA, the performance of SRL-LDA can also be improved.

4.3 Estimation of SRL-LDA

For SRL-LDA, we are interested in two parameters β and θ. θd is the numerical

representation of the document d, describing what topics d is about. β are useful to

interpret the meaning of topics.

To estimate these two parameters, we first need to decide w∗. Because we have

the knowledge of what types of semantic labels are important, this step is straight-

forward: apply SRL to the corpus, define important label set SL∗ by experts, and w∗

is then decided.

With w∗, SRL-LDA can be easily estimated by available LDA algorithms. Similar

9This can be seen by examining Equation 4.3.
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to LDA, we use maximum likelihood estimation by solving:

(θ̂, β̂) = arg maxPr(w|θ, β) (4.7)

As shown in Equation 4.6, θ and β are only related to the first part of the right hand

side. So, the problem in the above Equation 4.7 is equivalent to:

(θ̂, β̂) = arg maxPr(w∗|θ, β) (4.8)

This is the LDA problem defined on w∗. Therefore, we can use Algorithm 5 to

estimate SRL-LDA by using available SRL systems and LDA estimation methods.

Algorithm 5 Estimation of SRL-LDA

1: Apply SRL to corpus D;

2: Keep only the words with labels sl ∈ SL∗; call the filtered corpus DSRL;

3: Apply the standard LDA estimation algorithm (e.g. Gibbs sampling algorithm)

to DSRL to estimate θ and β.

The complexity of the above algorithm depends on the choice of SRL and LDA

methods. This dissertation uses the SRL systems by Punyakanok et al. [79] and

Gerber and Chai [41] as well as the Gibbs sampling method for LDA estimation. The

complexity of SRL is O(n2
sW ), where ns is the average of sentence length; and W

is the total number of words in the corpus. The complexity of LDA estimation is

O(WT ), where T is the number of topics. Therefore, the complexity of Algorithm 5

is O(n2
sW +WT ).



CHAPTER 5

MODEL EVALUATION AND APPLICATIONS

This chapter shows the applications of the models developed in Chapter 3 and 4

to four real problems. The first application is the modeling of the spatio-temporal

patterns of breaking and entering incidents with numerical features. The second

application is the prediction of hit and run incidents with information extracted from

Twitter posts. The third application is the modeling of the spatio-temporal patterns

of criminal incidents with both numerical and unstructured textual features. The

last application is the prediction of equipment damages of train accidents using both

spatio-temporal and textual features. In addition, each application evaluates the

performance of the models developed in this dissertation and compares them with

several previous models.

5.1 The Spatio-Temporal Modeling for Breaking and Entering Incidents1

5.1.1 Introduction

As discussed in Chapter 1, law enforcement agencies have the need to study the

spatio-temporal patterns of criminal incidents. A good mathematical model of crim-

inal incidents can help them in at least two ways. First, they can find out the factors

which affect crimes and study the causality of crimes with those factors. Second, they

can predict the locations and time of future criminal activity. If the model can pre-

1Most of the material in this section has been published in previous papers [100,

101].
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dict future crimes accurately, law enforcement can deploy limited resources, such as

walking and driving patrols, surveillance systems, and neighborhood watch programs,

to improve security and reduce threats.

Many types of data are available to assist building such models. Law enforce-

ment agencies in the United States usually monitor criminal incidents as they occur.

For example, they have locations and times of criminal incidents, as well as victim

and perpetrator information. In addition to criminal incident data, most agencies

can also acquire spatial information from geographic information systems (GIS) and

demographic and economic data from the census.

Several techniques and models have been developed to meet the need for predic-

tive policing with available data. One of the most popular methods is spatial hot

spot models. In hot spot models [29], current criminal incident data are collected

and clustered over spaces. The locations of such clusters are so-called hot spots. The

models assume the current crime clusters to persist over the forecast horizon. Future

criminal incidents are predicted to occur in these same areas. Methods to gener-

ate hot spots include spatial histograms, clustering, mixture models, scan statistics,

and density estimation. Hot spot models only utilize criminal incident data, such as

types of crimes, locations and time of criminal incidents. They only show the cur-

rent patterns of crimes without the insight into the relationship between crimes and

environment over time. As the local environment changes, hot spot models cannot

indicate changes of crime patterns.

To address this problem, more sophisticated statistical models using both crimi-

nal data and environmental data have been built by researchers. Liu and Brown [60]

applied a point pattern density model to criminal incidents. The spatial density of

criminal incidents was assumed to be conditioned on features associated with loca-

tions. These features included geographic features, such as distances to the nearest

interstate highways, demographic features and consumer expenditure features. Xue
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and Brown [115] developed a spatial choice model. They assumed criminals made

choices to pick places that could be modeled by random utility maximization. This

utility maximization was over all alternatives, where the utility was defined by the

gain from crimes and the risk of being caught. Brown and his colleagues [15,92] then

discussed a method that used generalized linear models (GLM) to compute the risk

over a territory. They first partitioned the space into grids. Each grid was associated

with a response indicating whether incidents happened and features about the grid.

Then, a spatial GLM was built with all grids. They applied the spatial GLM to

predict terrorist events. Results showed the spatial GLM had better prediction per-

formance than the density models. Rodrigues and Diggle [84] combined point process

models and GAM to build a semiparametric point source model. In their model,

features affected the risk nonlinearly. They applied the model to study the effect of

installed security cameras on crimes.

None of the above models directly incorporate the temporal information of crimi-

nal incidents. For instance, Liu and Brown used a Bayesian approach to model build-

ing that can include a variety of time series but no specifics is recommended or tested.

Other models usually estimated different parameter sets based upon coarse divisions

of time. For example, these models used criminal incidents that happened within

the most recent year to generate hot spots for this year. Another intuitive method

discussed by Ivaha, Al-Madfai, Higgs, and Ware [54] first modeled the temporal be-

haviors of crimes with time series models and then modeled the spatial behaviors

given the predicted number of incidents at a certain time. However, this approach

did not model interactions between space and time.

In this application, we applied the feature-based spatio-temporal model developed

in Chapter 3 to utilize a variety of data types, such as spatial, temporal, geographic,

and demographic data, to model criminal incidents.



79

5.1.2 Data Description

We used three data sets for this study. The first data set included breaking and

entering incidents in Charlottesville, Virginia from April 2001 to February 2005. In

total, there were 1,795 incidents2. Each incident in this study had coordinates of the

incident and the time of when it happened. The second data set was the geographic

information of the city in the form of GIS layers, such as locations of roads, interstate

highways, small businesses and schools. The third data set had demographic data

of Charlottesville measured in census block groups, including population, median

values of all houses, races, marriages and so on. Figure 5.1 shows a small number of

geographic features of Charlottesville with all the breaking and entering incidents.

Figure 5.1: Criminal Incidents in Charlottesville, Virginia

258 incidents without exact coordinates were excluded.
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5.1.3 Model Construction and Estimation

The overall modeling process is shown in Figure 5.2. In the figure, blue solid lines

represent the steps to build the model, while red dotted lines represent the steps to

predict when the model was built.
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Figure 5.2: Overall Process of the Spatio-Temporal Modeling of Criminal Incidents
in Charlottesville, Virginia

To model criminal incidents in Charlottesville, we first partitioned the city into

spatial grids with the size of 32m× 32m. The total number of grids covering the area

was 23,089. We used the time interval with the length of one month and there were 46

months in the data set. Therefore, we had 1,062,094 (= 23, 089× 46) records. Each

record had a response variable indicating whether at least one incident happened

within the grid and the time period. There were also two types of features associated
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with each record as explanatory variables. The first type was the distance feature.

We calculated the shortest distance between the centroid of a grid and a certain

geographic landmark, such as the distance to the nearest road. This calculation was

done by a toolkit programmed in Visual C#3 and PostGIS4. The second type was

the demographic feature, such as population, marriage status, house values. Because

we used the demographic data measured in census block groups, the demographic

features of a grid actually measured the properties of the neighborhood where the

grid was located. There were 14 distance features and 20 demographic features. For

this study, we only kept the most important 11 features out of 34 features. These

11 features were selected by the stepwise selection of GLM. Table 5.1 shows the

description of the features for modeling.

To test our models, we kept the incident data that happened in the last 12 months

as the test data. Thus, the training data set included incidents between April 2001

and February 2004. The test data set included incidents between March 2004 and

February 2005.

We first built the following STGAM:

logit [Pr(incig,t = 1)] =
N∑
n=1

fn(x[g,t,n]) + κg,t (5.1)

and LSTGAM:

Pr(incig,t = 1) =
2∑
r=1

I(sg ∈ Sr) · Prr(incig,t = 1) (5.2)

logit[Prr(incig,t = 1)] =
N∑
n=1

fr,n(x[g,t,n]) + κ[r,g,t], for all r ∈ {1, 2} (5.3)

where logit(p) = log( p
1−p) is a logit function; incig,t = 1 means at least one

3http://www.microsoft.com/visualstudio/en-us

4http://www.postgis.org
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incident happens at grid sg and time t; N is the total number of features; x[g,t,n] is

the nth feature associated with location sg and time t; fn is the smooth function of

the nth feature to be estimated from data; κg,t = {1, · · · , K} is the dummy variable

indicating the length of the continuous zeros (no accident happens) that precede the

current observation at location sg and time t; I is an indicator function; Prr models

the incident probability in the rth region; and fr,n and κ[r,g,t] are the same as defined

above, but different for the different regions.

To build the above STGAM and LSTGAM, we chose the parameter K = 13,

which means incidents happened before one year would not be considered. To build

the LSTGAM, we defined two regions, S1 and S2, using Algorithm 4 discussed in

Section 3.4.2. The high risk region S2 included 10% of the area with the highest

incident density. The low risk region S1 included the other 90% of the area. We used

the package “mgcv” in R [112] to estimate the smooth functions and parameters in

STGAM and LSTGAM. To avoid stochastic effects from subsampling, we used all

the training data to estimate models.

To compare the STGAM and LSTGAM models with the previous work, we also

built a spatial GLM and a hot spot model. The spatial GLM used the same features

in Table 5.1 and parameters were estimated with all the training data. The hot

spot model estimated the density with all the incidents in the training data set using

Gaussian kernels. Both models were estimated by the software R [81].

5.1.4 Results

Prediction Performance

We applied STGAM, LSTGAM, the spatial GLM and the hot spot model to

predict the probability of criminal incidents in Charlottesville from March 2004 to

February 2005 using the test data set. Then, we compared those four models with

the metrics described in Section 3.5.
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Figure 5.3 shows the AUC of the twelve-month predictions using the four models.

The larger the AUC value is, the better the model predicted. STGAM and LSTGAM

performed better than the previous work, the spatial GLM and the hot spot model.

The performance of LSTGAM was a little better than the performance of STGAM.

To test whether the difference between any two curves in Figure 5.3 was significant, we

performed paired Wilcoxon significance tests on the groups of AUC values. Table 5.2

shows the test results. Small p-values mean the differences are significant (p < 0.05).

Because all of the p-values were less than 0.05, the difference between any two curves

was statistically significant at the level of 0.05. For example, the p-value of the test for

the difference between LSTGAM and STGAM was 0.02686. Although the two curves

for LSTGAM and STGAM are close in Figure 5.3, LSTGAM was still significantly

better than STGAM in this evaluation. In addition, we can see both LSTGAM and

STGAM were significantly better than the spatial GLM and the hot spot model.

Table 5.2: Wilcoxon Significance Test Results for AUC Comparisons

Models Hot Spot Model Spatial GLM STGAM LSTGAM

Hot Spot Model - 0.0009766 0.0004883 0.0004883

Spatial GLM 0.0009766 - 0.0004883 0.0004883

STGAM 0.0004883 0.0004883 - 0.02686

LSTGAM 0.0004883 0.0004883 0.02686 -

Figure 5.4 shows the HRP-TIP plots for the predictions in March 2004, July 2004,

November 2004 and February 2005. In the plots, HRP and TIP are the percentage

of high risk area and the percentage of incidents happened within the high risk area

respectively, as defined in Section 3.5. From these plots, we can confirm that STGAM

and LSTGAM had better prediction performance in these four months. Especially,

STGAM and LSTGAM can capture about half of the real incidents that happened

in a very small high risk area in each case. For example, about 50% of real incidents
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Figure 5.3: AUC from Different Models

happened within the top 2% area with the highest risk predicted from LSTGAM in

July 2004.The police department can use this prediction to patrol more efficiently.

Predictions from STGAM and LSTGAM are probabilities on spatio-temporal

grids. These type of data can be visualized easily with available GIS softwares. Figure

5.5 shows the heat map of the prediction from STGAM in February 2005 generated

by Quantum GIS [80]. We used a kernel density with 3 standard deviation to smooth

the prediction. On this map, red color means high predicted probabilities while the

light blue color means low predicted probabilities. The red stars are the real criminal

incidents happened in February 2005. As we can see from this map, most of the real
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criminal incidents are located within the predicted high probability area.

Figure 5.5: Heat Map of the Prediction of Criminal Incidents in 2005-02 by STGAM

Model Interpretation

Table 5.1 shows feature significance in different models. As we can see, the tem-

poral dummy variable κ was significant in both STGAM and LSTGAM. The signifi-

cance means if the variable was removed from the models, the performance of these

two models would be worse. Therefore, it was helpful to predict the criminal incident

probability. All selected features were significant in at least one model, except for

the feature widowed. Features roads all dist, small businesses, and divorced were

significant in all the models. Comparing the features in LSTGAM in S1 and S2, we

can see the different regions had different sets of significant features. For example,

median val was important to predict the probability in the low risk area S1, but not

in the high risk area S2.

Figure 5.6, 5.7 and 5.8 show the estimated parameters and smooth functions
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of STGAM, LSTGAM in region S1 and LSTGAM in region S2 respectively. Only

significant features were plotted. In the figures, solid lines represent the estimated

smooth functions while the dotted lines are 95% confidence intervals. Clearly, we can

see the nonlinear effects of features on the crime probability.

Based on Figure 5.6, locations with no incident happened in the previous year were

less likely to have a new incident. Out of the locations where incidents happened in

the previous year, the locations with incidents just happened in the past half year

were more likely to have a new incident. Incidents were more likely to happen at

locations closer to schools, roads, and small businesses. The neighborhoods with the

least and the most expensive median house values were less likely to have breaking

and entering. The neighborhood with the median house value of about $60,000 was

the most likely to have such incidents. The number of males in the neighborhood also

impacted crimes. For the neighborhoods that had less than 350 males, it was more

likely to have incidents in the neighborhoods with less males. For the neighborhoods

that had more than 350 males, there was no such effect. In addition, breaking and

entering incidents were less likely to happen in the neighborhoods with less divorced

people and more owner occupied houses.

Figure 5.7 and 5.8 shows the different patterns in the different regions. In the

low risk region S1, the features had similar effects on crimes as in the STGAM, but

the number of significant features was less. In the high risk region S2, locations

with no incident happened in the previous year were still less likely to have a new

incident. However, out of the locations where incidents happened in the previous

two months, the locations with incidents just happened in the past month were less

likely to have a new incident in the following month. In addition, the effects of the

number of divorced people and owner occupied houses in the high risk region were

different from the effects of the same features in the low risk region. In the high risk

region, incidents were more likely to happen in the neighborhoods with less divorced
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Figure 5.6: Estimation of STGAM
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Figure 5.7: Estimation of LSTGAM in S1



91

Figure 5.8: Estimation of LSTGAM in S2

people; and incidents were less likely to happen in the neighborhoods with more owner

occupied houses .

5.1.5 Conclusion

Based on our assessments with the real criminal incident data in Charlottesville,

Virginia, both STGAM and LSTGAM models can predict future incidents accurately.

Results showed that the two models outperformed the previous spatial GLM and the

hot spot model. Compared with STGAM, LSTGAM had better performance in pre-

diction. Law enforcement agencies can use STGAM and LSTGAM to model criminal

incidents, predict future incidents and prevent crimes. In addition, those two models

can be applied to other areas with the need to study the spatio-temporal patterns
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and predict future incidents. For example, we can use STGAM and LSTGAM to

predict terrorist events and car accidents.

5.2 Automatic Crime Prediction using Events Extracted from Twitter

Posts5

5.2.1 Introduction

Traditional crime prediction models (e.g., the ones described in Section 5.1) make

extensive use of numerical features, like historical incident patterns as well as layers

of information provided by geographic information systems (GISs) and demographic

information repositories. Although crucial, these information sources do not account

for the rich and rapidly expanding social media context that surrounds incidents of

interest. Without utilizing those context, prediction of criminal incidents might not

be possible.

For example, in the attempt to predict the daily numbers of hit-and-run crim-

inal incidents in Charlottesville, Virginia, we tried to build a classic autoregressive

integrated moving average model (ARIMA) of the time series data. After plotting

the autocorrelation (ACF) plot and partial autocorrelation (PACF) plot as shown in

Figure 5.9, we found no interesting significant autocorrelation. The prediction based

on the historical data would be the average of daily incidents or 1.2 incidents. We

studied the incidents further and found that the likelihood of incidents might be able

to be predicted by surrounding events. For example, there were 5 hit-and-hun inci-

dents on August 16th, 2011. The local news showed that the area was hit by severe

storms on the night of August 14th and many roads were closed in the following week.

The question is how to collect all the events in the area efficiently and automati-

5Most of the material in this section has been published in the previous paper [104].
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Figure 5.9: Time Series Plots of Hit-and-Run Incidents in Charlottesville, Virginia
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cally. The expanding social media, such as Facebook6 and Twitter7, provide us with a

possible solution. These social media services allow users to instantly create, dissem-

inate, and consume information from any location with access to the Internet. For

example, we found the following Twitter posts8 from CBS19 on August 15th, 2011:

(5.4) JessicaJaglois reports 2 major roads still closed due to storm debris: Park St.

and McIntire Rd. at 250 Bypass.

(5.5) Traffic Alerts: McIntire Road now open. Park Street partially open, but

drivers advised not to use it as a way out of town.

(5.6) Bus Routes Adjusted Due to Storm Damage.

All these tweets provide evidence of an increased hazard level along roadways, which,

in turn, might lead to an increased number of accidents or hit-and-run crimes.

There is a surge of interest in using the Twitter data for various predictive pur-

poses. For example, Twitter posts have been used in models that predict weekend box

office results [3], election results [5], and stock market trends [12]. Popular techniques

in these studies include keyword volume analysis (e.g., the frequency of a movie title)

and sentiment analysis (e.g., whether tweets about a movie are favorable). These

methods have proven useful for the tasks described above; however, these methods

lacked a deep semantic understanding of tweets as our study to predict discrete crim-

inal incidents.

This study presented a preliminary investigation of the predictive power of social

media information, in particular information produced by the Twitter service. We

hypothesized that information extracted from the Twitter service would provide indi-

cators about the likelihood of future incidents. We focused on the use of tweets pulled

6http://www.facebook.com

7http://www.twitter.com

8Twitter posts are also called tweets.
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from the Twitter feed of a news agency covering the city of Charlottesville, Virginia

and its surrounding areas. The goal of our investigation was to build a predictive

model of criminal incidents that leverages the type of evidence shown in Example 5.4

to 5.6. The SRL-LDA model described in Chapter 4 was used to extract information

from the tweets. Then a GLM, a simplified version of LSTGAM, was build to predict

future occurrences of criminal incidents.

5.2.2 Data Collection and Modeling

Figure 5.10 shows the overall operation of our Twitter-based predictive model.

We first collected a corpus of tweets from Twitter. We then extracted events from

the main textual content of each tweet using SRL. Next, we applied latent Dirichlet

allocation (LDA) to identify salient topics within the extracted events. A predictive

model was then built upon these latent topics. These steps are described in details

as follows.

Social'
Media:'
Twi.er'

Data'
Collec3on'

Seman3c'
Role'
Labeling'

'
'
'
'

' ''''''''''' ' ' 'Model'Training'

Topic'
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'
'
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' '''''''''''''' ' 'Predic3on'

Topic'
Extrac3on'
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Model'

Incident'
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Figure 5.10: Overall Process of Criminal Incident Prediction Using Tweets
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Data Collection

The user base of Twitter comprises a vast community of news agencies, journal-

ists, and casual users who post tweets from their Internet-connected devices. Each

tweet is restricted to 140 characters and can be observed by those who subscribe to

the poster’s Twitter feed. As of March 11, 2011, Twitter was processing approxi-

mately 140 million tweets per day, with approximately 460,000 new accounts being

created daily9. Traditional news stations and newspapers actively use Twitter to pub-

lish breaking news in real-time. For example, CBS1910 in Charlottesville, Virginia

published 3,659 tweets during the period of February 22, 2011 through October 21,

2011 (approximately 15 per day). We collected these tweets using the public interface

provided by Twitter.

In addition to Twitter data, our investigation required ground-truth criminal in-

cident data, which we used to estimate the parameters of our predictive model and

evaluate its performance. We obtained these records from local law enforcement

agencies11, focusing on hit-and-run incidents during the same period covered by the

Twitter data. In total, we collected records for 290 hit-and-run incidents (1.2 per

day).

Semantic Role Labeling (SRL)

Our approach to Twitter-based crime prediction relied on a semantic understand-

ing of tweets. Such an understanding can be derived from SRL, which extracts the

events mentioned in tweets, the entities involved in the events, and the roles of the

entities with respect to the events. An example of the SRL analysis of a tweet is

9http://blog.twitter.com/2011/03/numbers.html (accessed November 1,

2011)

10http://www.newsplex.com

11http://www.charlottesville.org/index.aspx?page=257
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shown below:

(5.7) [e1:warning TRAFFIC] [e1 ALERT]: [e2:entity Rt. 20] [e2 closed] [e2:cause due to a

wreck].

Two events were extracted from Example 5.7: (1) an alert event in which traffic is

being brought to the reader’s attention, and (2) a close event where a road is closed

due to a wreck. In our study, we used the system created by Punyakanok et al. to

analyze verb-based SRL structures [79] and the system created by Gerber and Chai to

analyze noun-based SRL structures [41]. The SRL output from these systems formed

the basis for event prediction, since it informed the model about current events, which

might correlate with future criminal incidents.

Event-based Topic Extraction via Latent Dirichlet Allocation (LDA)

After processing the tweets with the SRL systems, we had multiple events ei

associated with each day. In topic modeling terms, each day t was associated with

an abstract “document” doct that contained “words” {e1, e2, . . . , ent}, where nt is the

length of doct. These words described what happened on day t.

As with topic modeling of actual textual documents, we hypothesized that a day’s

events would be related in a particular (though hidden) way. Thus, instead of using

doct directly to predict future incidents, we further extracted topics {T1, T2, . . . , Tk}12

from doct using latent Dirichlet allocation (LDA)13. As discussed in Section 4.2.1,

LDA is a probabilistic language model that can be used to explain how a collection

of documents is generated from a set of hidden (or latent) topics. LDA efficiently

discovers word-based topics and reduces the dimensionality of documents to lie within

12In this section, we used Tk to denote topic distributions, because β is commonly

used to denote the coefficient of a linear regression model, which was used in this

study.

13We used GibbsLDA++ [114] in this experiment.
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the k-dimensional space of topics. Given the number of topics k, LDA can estimate

the topic-document distribution {Tt,1, Tt,2, . . . , Tt,k}, where Tt,i is the probability that

document doct is related to topic i.

We applied LDA to derive {Tt,1, Tt,2, . . . , Tt,k} for the events described in tweets

on day t. Intuitively, this analysis can tell us about the relationship between the k

major (latent) events on day t and the observable events ei that were reported by

the news agencies. This reduced the dimensionality of doct and provided meaningful

structured data for our predictive model.

Predictive Model

doct contains the events that occurred on day t. Our goal was to use doct to make

predictions about incidents in the future. Formally, we needed a function yt+1 =

f(doct), where yt+1 is a binary random variable indicating whether an incident will

occur on day t+ 1. We used the following generalized linear regression model (GLM)

to meet this need14:

log

(
p[yt+1 = 1]

1− p[yt+1 = 1]

)
= β0 + β1Tt,1 + · · ·+ βkTt,k (5.8)

where each Tt,i is derived via LDA. Parameters {β0, . . . , βk} can be estimated using

the set of prior criminal incidents.

With both the estimated LDA model and GLM model, we can make a prediction

using new tweets. To make a prediction, we first processed tweets on day t′ using the

SRL systems described above. Then, the LDA model was used to infer the event-

based topic distribution {Tt′,1, Tt′,2, . . . , Tt′,k}. Lastly, the predictive model (Equation

5.8) used this distribution to predict the likelihood of an incident occurring on day

t′ + 1.

14This GLM is a STGAM built on a single grid: the entire Charlottesville city.
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5.2.3 Evaluation and Results

We evaluated our predictive model using Twitter data and actual hit-and-run

incidents that occurred in Charlottesville, Virginia. As described in Section 5.2.2,

our data covered the period of February 22, 2011 through October 21, 2011. We

studied the hit-and-run incidents per day using traditional time series methods, but

discovered no trend, seasonality, or autocorrelation. Thus, without any additional

information, a baseline system would assign a uniform probability of incidents to all

future days.

We used the data before September 17, 2011 to train the LDA and predictive

models, setting k (the number of latent topics) to be 10. Table 5.3 presents the top

10 words for each topic. Some structures can be found in the topics. For example,

topic 1 appears to be related to crashes, whereas topic 3 appears to be related to

shootings and their associated criminal processes.

We trained the GLM on these topics as described in Equation 5.8, using stepwise

selection to identify the most informative features. The resulting GLM is shown

below:

log

(
p[yt+1 = 1]

1− p[yt+1 = 1]

)
= 0.4 + 0.71Tt,1 + 0.88Tt,4 + 0.72Tt,6 + 0.61Tt,8 (5.9)

In Equation 5.9, p[yt+1 = 1] denotes the probability of at least one hit-and-run incident

occurring on day t+ 1. Tt,· is the topic distribution on day t. As shown, the topics 1,

4, 6, and 8 were positively related to the future hit-and-run incidents. This means if

the events emphasized in those topics occurred, the likelihood of incidents increased.

We applied this model to predict hit-and-run incidents during the period of

September 17, 2011 to October 21, 2011. Figure 5.11(a) shows the ROC curve of

the prediction performance. Vertical bars are 95% confidence intervals derived with

a bootstrap resampling procedure. The ideal ROC curve stretches toward the upper-
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Table 5.3: Top 10 Most Likely Words for Each of the 10 Topics to Predict Hit-and-Run

Incidents

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

close say arrest plan report

fire make suspect kill say

crash hanchettjim death use student

look search murder ask vote

delay confirm shoot plead tell

come run rsb life hear

reopen start hear sell work

stay move protest convict speak

watch begin report visit head

driver end need statement call

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

expect report say trial come

remain close found make cbs

rsb open die break help

cancel confirm crash set start

follow block fall traffic lead

close wreck want begin look

warn follow find hope check

make accord kill bring lawsuit

price move shut hit arrest

list check come stop left
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left corner. A curve along the diagonal indicates no predictive power. As shown by

Figure 5.11(a), our GLM model using SRL-LDA was able to predict future hit-and-

run incidents; although, due to the limited amount of testing data, we observed fairly

wide confidence intervals.

We also tested whether SRL-LDA can perform better than the standard LDA

model. In order to compare the two models, we re-trained the predictive model with

the topic distributions extracted by a standard LDA model with the same hyper-

parameters as the SRL-LDA. The remaining experimental conditions were held con-

stant, resulting in the ROC curve shown in Figure 5.11(b). As shown in the figure,

the model using LDA had minimal predictive power. Based on this test, SRL-LDA

outperformed LDA.

5.2.4 Conclusion

This application has presented a preliminary investigation into the use of unstruc-

tured textual data for criminal incident prediction. Our approach was based on the

automatic semantic analysis and understanding of natural language tweets, combined

with dimensionality reduction via latent Dirichlet allocation and prediction via linear

modeling. Evaluation results demonstrated the model’s ability to forecast hit-and-

run crimes using only the information contained in the training set of tweets. This

application also showed that SRL-LDA indeed performed better than the standard

LDA model.
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5.3 The Spatio-Temporal Modeling for Criminal Incidents using Textual

Information15

5.3.1 Introduction

As reported by the Bureau of Justice and Statistics [67], there were 22,879,720

personal and property crimes with an estimated economic loss of 18 billion dollars

in the United States in 2008. One approach to preventing crimes is to predict the

location and time of future criminal activity. The previous two sections have shown

that STGAM and SRL-LDA developed in this dissertation can predict the spatio-

temporal patterns of criminal incidents separately. This section combines the two

models and tests whether incorporating unstructured textual data can improve the

predictability of STGAM. This section also illustrates how to build spatio-temporal

models using different types of features, especially unstructured textual data.

5.3.2 Data Description

We used four datasets in this study. The first dataset contained breaking and

entering crimes that occurred in Charlottesville, Virginia during the period of March

1st - October 31st, 2011. In total, there were 88 incidents. The dataset was obtained

from local law enforcement agencies.16 Each incident was associated with a street

address and time. Each street address was mapped to geographic coordinates using

the Mapquest API17. The second dataset was a collection of Twitter posts downloaded

using Twitter’s publicly accessible API. We used all tweets posted by the CBS19

news agency as used in Section 5.2. On average, there were 15 tweets per day. The

last two datasets contained the geographic and demographic information used in

15Most of the material in this section is to be appeared in [102].

16http://www.charlottesville.org/index.aspx?page=257

17http://developer.mapquest.com
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Section 5.1. The geographic dataset contained information layers such as locations of

roads, small businesses, and schools. The demographic dataset measured features of

Charlottesville in census block groups, including population and race.

To build spatio-temporal models, we used a grid size of 0.02 miles × 0.02 miles and

a time interval of 24 hours. There were 23,089 grids within the area of Charlottesville

and 5,656,805 spatio-temporal records. Each record had a response variable indicat-

ing whether at least one incident occurred within the grid and time interval. Each

record also had three types of features describing characteristics of the space and

time. The first feature type captured the minimum distances between the centroid of

a grid and certain geographic landmarks. The second feature type captured demo-

graphic properties of grids’ neighborhoods. The last feature type contained textual

information describing the day’s news in Charlottesville. All the records located on

the same day were associated with the same textual feature. In total, there were 14

distance features, 20 demographic features, and 1 textual feature. A subset of the

distance and demographic features is shown in Table 5.4. Features with names ending

in “ dist” are distance features and the rest are demographic features. The textual

feature contained Twitter posts from CBS19 grouped by date and analyzed using the

SRL-LDA method described earlier. To test the model’s prediction performance, we

used the incident data between October 1st and October 31st. We used the remaining

data to estimate the model’s parameters.

5.3.3 Modeling and Results

Feature Selection by RLAR

We first applied the feature selection method developed in Section 3.3 to select

distance and demographic features. Because of the large size of the training set, we

used the sub-sampling technique described in Section 3.4 with RLAR. The top 20

features with ranks are shown in Table 5.4. To decide the number of features to use,
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we built STGAM for each different number of features and computed the restricted

maximum likelihood (REML) score of each model. The smaller the score, the better

the model is. Figure 5.12 shows the result. The x-axis indicates the number of

features used in STGAM. For example, “5” means the STGAM used the five top-

ranked features in Table 5.4. The y-axis is the REML score of the corresponding

STGAM. The variances of REML scores were estimated by 100 replicates of the

model estimation. The grey vertical bars show the 95% confidence intervals of REML

scores based on the estimated variances. Based on this figure, we chose 18 features

to model the criminal incidents within Charlottesville.
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Table 5.4: Ranked Features by RLAR for the Spatio-Temporal Modeling of Criminal
Incidents using Textual Information

Rank Feature Description

1 small business dist distance to the nearest small business

2 nursehomes dist distance to the nearest nurse home

3 nevermarry number of people who are never married

4 roads dist distance to the nearest road

5 vacant count of vacant houses

6 rivers dist distance to the nearest river

7 renter occ count of renter-occupied households

8 married number of people who are married

9 it hardware dist distance to the nearest IT hardware

10 roads interstates dist distance to the nearest interstate highway

11 telecom services dist distance to the nearest telecom services

12 medianrent median rent charged for all housing units that are

rented

13 separated number of people who are separated

14 telecom products dist distance to the nearest telecom products

15 females number of females

16 black number of African American persons

17 hispanic number of hispanic persons

18 elect trans dist distance to the nearest electricity transmission

lines

19 it services dist distance to the nearest IT services

20 owner occ count of owner-occupied households
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Extracting Textual Features by SRL-LDA

Next, we extracted textual information from the Twitter posts using SRL-LDA,

which was described in Chapter 4. This process was similar to the process we used in

Section 5.2 to predict the likelihood of daily criminal incidents by Twitter posts. We

grouped Twitter posts by date. Thus, each day was associated with a “document”

containing the day’s news tweets. We processed all tweets with the verb-based SRL

system of Punyakanok et al. [79] and the noun-based SRL system of Gerber and

Chai [41]. We filtered out all twitter words that were not events, as indicated by the

SRL systems. After the SRL analysis, we trained a 10-topic LDA model using the

“topicmodels” package in R. The top 15 most likely words for each topic are shown

in Table 5.5. Again, we can find interesting groups of words. For example, topic

1 was about the trail of violent crimes; topic 3 was related to road conditions; and

topic 8 seemed to be related to the occurrence of violent crimes. We used the topic

distributions as the numerical representation of the textual information.

Prediction of Criminal Incidents by STGAM

Using textual features as well as distance and demographic features, we built the

STGAM to model the criminal incidents and predict on the test set. To see whether

including text information can help to improve the prediction performance, we also

built a STGAM without using textual features. In addition, we built a STGAM

using distance and demographic features as well as textual features extracted by

LDA without SRL. In all three models, we used K = 8 for the temporal dummy

variable κ. To compare the models, we used the HRP-TIP plot described in Section

3.5.

Figure 5.13 shows the prediction result. In the figure, HRP and TIP are the

percentage of high-risk area and the percentage of incidents that occurred within

the high-risk area, respectively. Overall, we can see that STGAM using textual
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information from SRL-LDA performed better than the other two models. More than

60% of actual incidents occurred within the top 20% of the area predicted using

STGAM with SRL-LDA. This is compared to the 50% of actual incidents captured

by STGAM in the same area when not using textual information. The STGAM with

LDA had better performance than the simple STGAM. It also performed better than

the STGAM with SRL-LDA when HRP > 0.5. The AUC of the three models was

0.7616, 0.7235, and 0.7394 for STGAM with SRL-LDA, STGAM without textual

information and STGAM with LDA, respectively. Based on this criterion, STGAM

with SRL-LDA performed the best. In addition, we tested the significance of the

difference between any two curves by computing the differences between points on the

curves at 100 different HRP values. The one-sided paired Wilcoxon significance test

indicated a p-value of 3.806×10−6 for the difference between STGAM with SRL-LDA

and STGAM without textual information. The p-value was 0.008018 for the difference

between STGAM with SRL-LDA and STGAM with LDA. At the significance level of

p < 0.05, STGAM with SRL-LDA performed significantly better than the other two

models.

Figure 5.14 shows several estimated smooth functions of the STGAM using SRL-

LDA. The first two plots about road dist and females show similar crime patterns as

presented in the study in Section 5.1: the houses closer to roads were more likely to be

entered; and the crimes were more likely to happen in the neighborhoods where there

were more females. The last plot is about topic 3 extracted from tweets. The more

a day was related to this topic, the less likely the crimes happened on the day. As

shown in Table 5.5, this topic was about road conditions, especially bad conditions.

5.3.4 Conclusion

This section presented the work that brought together STGAM and SRL-LDA

models to criminal incident modeling. We evaluated the combined models using actual
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Figure 5.13: Prediction in October 2011

criminal incident data for Charlottesville, Virginia. Our results indicated that the

STGAM using textual features extracted from SRL-LDA model exhibited improved

prediction performance versus the standard STGAM. The hybrid STGAM+SRL-

LDA model can be generalized to other application areas where unstructured textual

information contains indicators relevant to the spatio-temporal properties of events.
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Figure 5.14: Selected Estimated Smooth Functions of STGAM using SRL-LDA

5.4 Prediction of Equipment Damage in Train Accidents using Spatio-

temporal and Textual Features

5.4.1 Introduction

Federal Railroad Administration keeps track of train accidents in the United

States [34] . For each train accident, they record the location and time of the train

collision, accident damages, fatalities, attributes of trains, weather condition, and

narratives about the accident. These data provide us the resources to study rela-

tionships between train damages and environmental, operational and other factors,

which can support important decision making like how to prevent train accidents. For

example, we studied whether positive train control technologies can reduce damages

involved in train accidents [18].

These data are also helpful for building predictive models, which can quickly esti-

mate final damages given the description of accidents. The objective of the study
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in this section was to build such a model using all types of features. Different

from the previous three applications which built spatio-temporal classification mod-

els, this study built a spatio-temporal regression model. Especially, we’re interested

in whether using spatio-temporal and textual features can improve the prediction

performance of the regression model.

5.4.2 Data Description

The data sets used in this study were the train accident data from Federal Railroad

Administration (FRA) in 2007 and 2008 [34]. We used 2008 data to build and test the

model and used 2007 data to compute spatio-temporal features. In total, there were

3346 accident records18. In this study, we focused on the prediction of equipment

damage. The histograms of this response variable are shown in Figure 5.15. Figure

5.15(a) shows the variable in its original scale. As we can see, most of accidents

had very small cost. The distribution is highly skewed. Figure 5.15(b) shows the

variable with a logarithm transformation19. The distribution is more symmetric. In

the modeling, we used the log transformed damage as the response variable.

For each record, we had three types of features. The first type was ordinary fea-

tures as shown in Table 5.6. These features were available in the data sets from FRA

directly. The second type was locations of collisions. Because no exact geographic

coordinate was available in the data sets, we extracted county names from the data

sets and used coordinates of centroids of the counties where accidents happened as

18Some accidents had multiple accident records, each record for a different train

involved.

19Because some damages were with the value of zero, we added 1 to the variable in

the log transformation. In this section, all log transformations of equipment damages

were performed in the same way.
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locations20. The third type was narratives about accidents in the data sets21.

Table 5.6: Ordinary Features for Equipment Damage Modeling

Feature Description

CARS number of cars carrying hazardous materials and items

AMPM am or pm when the accident happened

TYPE type of accident

TEMP temperature

WEATHER weather conditions

TRNSPD speed of train in miles per hour

TONS gross tonnage (excluding power units)

CAUSE primary cause of incident: signal failure, human errors, elec-

tronic failure, track failure, or miscellaneous failure

VISIBLTY daylight period: dawn, day, dusk, or dark

TYPEQ type of train

HIGHSPD maximum speed reported for equipment involved

5.4.3 Modeling and Results

A spatio-temporal regression model was built to predict equipment damages based

on STGAM described by Equation 3.4. We specified the model as follows:

20Coordinates of counties were from [98].

21Misspelled words were corrected by the public interface from http://www.

spellcheck.net/
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E [log(yg,t)] =

PO∑
p=1

fp(x[g,t,p]) +

PST∑
q=1

fST,q
(
f featureq (yg,t, y·,t−1)

)
+

T∑
k=1

ftxt,k(β[g,t,k])

(5.10)

f featureq (yg,t, y·,t−1) = ‖stg − st−1HCAq
‖ (5.11)

In the above model,

1. yg,t is the response variable equipment damage. In this study, we considered

equipment damages grouped by years. Therefore, t refers to year 2008 and t−1

refers to year 2007. g means the gth accident record and the accident happened

at the location sg.

2. The smooth functions fp, fST,q, and ftxt,k are corresponding to ordinary features,

spatio-temporal features and textual features respectively.

3. For ordinary features, there were PO = 11 different features as shown in Table

5.6. For categorical variables, we used dummy variables for coding.

4. Equation 5.11 defines the qth spatio-temporal feature by the distance to the qth

highest cost accident in the previous year. ‖ · ‖ means the distance between

two locations. stg is the location of the accident described in the gth record in

t = 2008. st−1HCAq
is the location of the qth highest cost accident in t− 1 = 2007.

To decide the maximum number of the highest cost accidents to be considered

PST , we plotted damages in 2007 as shown in Figure 5.16. There was a cut-off

at the damage of two million dollars, corresponding to the top ten highest cost

accidents. Therefore, we chose PST = 10.

5. To structure narratives, we used a 10-topic LDA model. SRL-LDA was not

applied in this application because the narratives about train accidents were
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Figure 5.16: Equipment Damages of Train Accidents in 2007

not well-formed sentences. Instead, these narratives included individual words

and phrases. We cleaned the narratives by removing stop words and correcting

misspellings. The cleaned narrative of each accident report was considered as

a document. The top words of each topic from the LDA model are shown

in Table 5.7. These topics might not be interpreted easily. Generally, they

described different situations about accidents. In the above equation, T = 10

is the total number of topics; and β[g,t,k] represents the probability that the

narrative of the gth accident at time t was about the kth topic.

We built the above model with 2008 accident data. To test whether including

spatio-temporal and textual data can improve the predictability, we also built three
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Table 5.7: Top 10 Most Likely Words for Each of the 10 Topics to Predict Equipment

Damages Involved in Train Accidents

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

cars track switch track train

shoving lead conductor cars main

hazardous end engineer out went

two yard movement cut rear

derailed west pulled rolled emergency

one east lined switching found

leaking south move standing line

loaded north point left traveling

three shoved shove back mph

empty job stopped kicked approximately

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

side crew struck car derailed

loads not damage causing rail

out locomotive crossing bnsf due

head derailment unit derail pulling

derailing consist engine caused broken

units did cwr set wheel

failed moving truck released under

pulling cause stop wheels account

resulting power equipment other curve

empties speed lead between gauge
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models using different sets of features: a model using only ordinary features, a model

using ordinary features and spatio-temporal features, and a model using ordinary

features and textual features. For all four models described above, we computed

predicted root mean squared errors (RMSE) in the original scale by 10-fold cross-

validations. Then the models with non-ordinary features were compared to the model

using only ordinary features by one-sided Wilcoxon paired tests to test whether the

differences between predicted RMSE were significant. Table 5.8 shows the results.

Based on this test, we can see the model with all three types of features performed

better than the other models. Including spatio-temporal features or textual features

can improve the model with only ordinary features. At the significance level of p <

0.05, both of the models using spatio-temporal features were significant better than

the model with only ordinary features.

Table 5.8: Predicted RMSE of Equipment Damages

Features Ordinary Ordinary+Spatio-Temporal Ordinary+Textual All

RMSE 183546.2 182261.5 180408.8 179346.5
P-Values - 0.04199 0.05273 0.001953

5.4.4 Conclusion

In this study, we applied STGAM to a regression problem to predict equipment

damages in train accidents. We showed a method to compute the spatio-temporal

feature based on the distances to the highest cost sites in the previous year. Based

on the evaluation with real data from FRA, we can see including spatio-temporal

and textual features discussed in this dissertation can indeed improve the prediction

performance.



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation described a spatio-temporal generalized additive model (STGAM)

and its extension the local spatio-temporal generalized additive model (LSTGAM) to

model spatio-temporal data. Both STGAM and LSTGAM can fully utilize many dif-

ferent types of data, such as spatial and temporal data, geographic data, demographic

data, textual data, etc. Both models can be easily estimated by available algorithms

and has good interpretability. Based on our assessments with real criminal incident

data and train accident data, both models can predict accurately. Results showed

that these two models outperformed several previous models, such as spatial GLM

and hot spot models. These two models can be applied to other areas with the need

to study spatio-temporal patterns and predict future incidents. For example, we can

use STGAM and LSTGAM to predict terrorist events and car accidents.

In addition, this dissertation developed a new semantic role labeling-based latent

Dirichlet allocation (SRL-LDA) model to extract key information from unstructured

textual data. This model is based on the automatic semantic analysis and under-

standing of natural languages, combined with dimensionality reduction via latent

Dirichlet allocation. The outputs from SRL-LDA are structured numerical vectors.

These vectors are meaningful: they describe the probabilities of a document being

related to different topics. It can also partly solve synonymy and polysemy problems

which prevent many text mining methods from being used for prediction. The disser-

119
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tation applied and tested SRL-LDA with two real problems about criminal incidents.

In both problems, SRL-LDA were used to extract information from Twitter posts.

Based on the tests, information extracted by SRL-LDA had the ability to predict

criminal incidents. Compared to LDA, SRL-LDA performed better to predict hit-

and-run incidents. These two applications also revealed interesting sources of data

for criminal prediction: social media services.

This dissertation showed how to combine STGAM with SRL-LDA. The hybrid

model was evaluated using actual criminal incident data for Charlottesville, Virginia.

The results indicated that the hybrid model exhibited improved prediction perfor-

mance versus the standard STGAM model. The hybrid model can be generalized to

other application areas where unstructured textual information contains indicators

relevant to the spatio-temporal properties of events.

In addition to the above models, this dissertation has described a new feature

selection algorithm. Tests with simulated data and real data showed the algorithm

performed better than a classic penalized linear regression model. This algorithm can

be applied independently to choose features for nonlinear models.

6.2 Contribution

This dissertation has the following contributions to spatio-temporal modeling,

supervised learning algorithms as well as text modeling:

1. It developed a methodology to model spatio-temporal data with numerous fea-

tures. Particularly, it formalized an important class of problems related to

spatio-temporal data. It built and analyzed an effective mathematical model,

the local spatio-temporal generalized additive model(LSTGAM), incorporat-

ing spatio-temporal features, numerical features, categorical features, as well

as textual features. It showed how to estimate the model with most recently

developed algorithms.
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2. It developed a new feature selection algorithm, randomized least angle regres-

sion (RLAR). Based on the test of both simulation data and real data, RLAR

can select features efficiently and effectively for nonlinear regression models.

3. It designed a semantic role labeling-based latent Dirichlet allocation model

(SRL-LDA) to combine a successful natural language processing method and a

popular text mining method to extract key information from high dimensional

unstructured textual data. Especially, SRL-LDA can consider both semantic

information and syntax of the English language in the modeling process.

4. It showed the applicability of models to real problems, such as law enforcement,

risk analysis, etc. In the law enforcement applications, it showed demographic

features, distance features and textual features extracted from Twitter had the

ability to predict spatio-temporal patterns of criminal incidents. The models

also provided interpretable results to help law enforcement agencies to identify

possible causal factors for criminal incidents. In the application of train damage

prediction, it showed utilizing both structured data and unstructured textual

data can quickly estimate final damages given the description of accidents. It

demonstrated the validity of model estimates based on data sets from the real

world. It also discussed how to extend the methods to a broader class of real

problems.

5. It explored new sources of textual data, social media services like Twitter, for

criminal incident prediction. It showed how to access those data and how to

utilize them. With further investigation, these types of data are possible to be

applied to enhance the predictability in many different areas.
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6.3 Future Work

In the future, the research in this dissertation can be extended in the following

ways:

1. For STGAM, more sophisticated penalized regression methods like group Lasso

can be incorporated into STGAM estimation process to choose features auto-

matically. This process requires fast algorithms to solve large-scale optimization

problems. It is also possible to be realized with the development of computation

powers.

2. For LSTGAM, only one method based on incident density was discussed in this

dissertation. Better methods can be developed to generate optimal regions.

3. For RLAR, it was evaluated with a limited number of examples. Further tests

and comparisons are required to fully conclude that it indeed performs better

than any other feature selection methods. The theoretical study of why it works

is also interesting.

4. For SRL-LDA, one could take advantage of the spatial and temporal extraction

capabilities of the SRL systems. The current SRL-LDA model ignores textual

information describing an event’s spatial and temporal location. This informa-

tion could be used to map tweets to particular spatio-temporal grid locations.

This would improve the model’s ability to identify textual information that

correlates with spatio-temporal patterns.

5. There is another way to improve SRL-LDA model. Instead of manually deciding

what types of words are important, one could use a model to select important

words labeled by the SRL systems automatically.

6. The dissertation showed three applications to test and evaluate the newly de-

veloped models. All these applications were based on data from Charlottesville,
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Virginia. A comprehensive comparison including additional models with more

data sets in different geographical locations and for longer periods of time should

be performed.

7. The textual data used in this dissertation were still limited. Instead of just

using tweets from one user, additional textual data can be collected online. A

large scale text analysis system can provide much information about our world.

With these information, the ability of modeling and prediction can be greatly

enhanced.
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