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PREFACE

The “ Equation of Secular Variations ” plays such an important role in

many analytical investigations, particularly in the determination of the

secular variations of the planets, and in fixing the principal axes of surfaces

of the second degree, that Dr. Hancock suggested I undertake its solution by

“Hermite’s Method.”

This is done in the present paper, which has been developed in three distinct

parts, as follows:

I. A History of the Secular Variations of the Planets, Introducing the

Secular Equation.

II. The Development of “Hermite’s Method.”

III. The Solution of the Equation of Secular Variations and Applications.

The history has been obtained largely from Die Mathematlschen TIzeorien

der Planeten—Bewegungen, von Dr. Otto Dziobek, from Laplace’s Collected

Works, Vol. XI, page 49, and from Moulton’s Celestial Mechanics. N0 special

reference is given in the history to the one of the three authors from whom

the material was obtained, as they were all used throughout. The history

necessarily deals/with the other perturbations as well as the secular terms,

but I have attempted to lay special stress on the history of the secular, rather

than the periodic, terms.

In the development of the form of Sturm’s Theorem known as “ Hermite’s

Method of Solving Sturm’s Theorem ” Weber’s Algebra has been closely

followed. In order to have the method before me in concise form for ready

reference, and to develop the method in logical order, I have tabulated in full

the material needed to derive the Method.

In the third chapter, application is made of the method set forth in Chapter

II, and the equation is solved independently of any previous solution. The

solution is then followed by a few important applications.

Besides the general credit given above for the source of my material, an

attempt has been made to give due credit in footnotes.

I wish to acknowledge here my indebtedness to Professor W. H. Echols,

and Dr. J. M. Page, who labored with me as a student at the University of

Virginia to make it possible for me to pursue further investigations, and also

to thank Dr. Harris Hancock for suggesting the problem. '

UNIVERSITY or CINCINNATI,

M'arch 15, 1916.
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CHAPTER I

A SHORT HISTORY or THE PERTURBATIONS or THE PLANETS, WITH PARTICULAR

ATTENTION To THE SECULAR TERMS

The Equation of Secular Variations, the solution of which is the object of

this treatise, is so named because of its part in establishing the secular terms

in the perturbations of three or more planets.

According to Laplace,* the planetary perturbations divide themselves into

two classes, the periodic and the secular.

The periodic are, for the most part, very small, depend on the positions of

the planets in their orbits, and usually run their course in a few revolutions

of the planet in question.

In the earlier investigations the secular inequalities were not considered,

as their influence is negligible unless exerted over a’ very great period, and

they were not considered until it was demonstrated that over cycles of cen-

turies their influence is enormous. These inequalities are not dependent on

the position of thé/planets in their orbits, but on the relative positions of the

orbits themselves.

The history of the disturbance theories begins with Newton, who explained

the principal irregularities in the movement of the moon in the third book of

his Principia. He developed the theory of perturbations as applied to the

Lunar Theory by the methods of geometry.

Clairaut and D’Alembert made further progress in their memoirs of 1747,

presented to the French Academy of Sciences on the same day, in which

they solved the problem of three bodies when the central force outweighs the -

remaining in importance. Their solution depended on the integration of the

differential equation of motion in series. Clairaut soon made a forceful appli-

cation of his brilliant theory, by studying the perturbations of Halley’s Comet.

This comet had been observed in 1531, 1607 and 1682 and its period fixed as

about seventy-five years. Its return was therefore expected at the latest

toward the end of the year 1758. Clairaut calculated the influence which the

then known planets would exercise on it, and reported to the Academy of

Sciences that the disturbance caused by them would delay its return until the

middle of April, 1759. He later added this might vary about a month due to

small influences he had neglected. While the comet reappeared within the

limit given by him, being first seen on March 12, 1759, still there was a greater

* See Laplace’s Collected Works. 1
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2 SOLUTION OF THE EQUATION 0F SECULAR VARIATION

difference between his calculation and the actual occurrence than there would

have been had the mass of Saturn been more correctly known.

The methods of geometry were succeeded by the more powerful methods

of analysis, and were developed largely by Euler, Clairaut, D’Alembert, La-

grange and Laplace.

Euler (1707—1783) was the pioneer in the applications of analysis to the

perturbations, having to develop the methods which he used in attacking the

problem. He presented three memoirs on the perturbations of the planets,

treating primarily the mutual perturbations of Jupiter and Saturn, which

gained for him the prizes of the Paris Academy of Sciences in the years 1748,

1752 and 1756. In these memoirs he gave the first analytical development

of the method of the variations of parameters. His formulas were not entirely

general because he did not vary many of the constants simultaneously. Still,

in the case of two planets he arrived at the proof of the existence of the secular

variations of the eccentricity, inclination, perihelion, and node. Unfortunately

many mistakes appeared in the numerical calculations, but the results were

later correctly obtained by Lagrange.

Lagrange (1736-1813) pursued the ideas of Euler, and developed still

further the method of the variation of parameters. His contributions to

celestial mechanics were exceptionally valuable, and should insure him a perma-

nent monIiment in all works on astronomy. His first work appeared in the

Mélanges de la Société de Tmin, Tome III, 1766. In this he applied the

methods of the variations of parameters to the perturbations of Jupiter and

Saturn, but his procedure was not precise because he regarded the major

axes and the epochs of the perihelion passages as constants. However, limiting

himself to two planets, he obtained the right final equation for the considera-

tion of the secular periods. This had been given incorrectly by Euler. For

the inclinations and nodes he obtained cCrrect formulas, so that his numerical

results, by the use of the theory of the greatest planets—Jupiter and Saturne

are passably correct.

In the year 1773 Laplace (1749-1827) presented to the Academy of Sci-

ences his first work on the theory of the planetary system, which appeared

in the year 1776 in the Mémoires des Savants étrangers. He fixed with full

accuracy the formula for the diflerential quotient of the elements, though

this did not at first possess its later elegant form. In this memoir he proved

his celebrated theorem that, up to the second powers of theeccentricities and

the inclinations, the major axes have no secular terms.

The theory of the secular variations of the elements arose because in the

customary procedure of the integration through series, terms were produced

which were proportional to the time. Euler, Lagrange and Laplace now

concentrated their reflections on the effort to remove these terms. Soon the
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BY A METHOD DUE TO HERMITE 3

self-evident fact that the theory of absolute disturbances of the planetary

system was not the most suitable, caused the theory of the variations of the

constants to be introduced, not at first fully clear, but mixed with the former

theory.

It was evident that the secular terms must endure, but instead of deter-

mining it directly it was grasped in a roundabout way. This was clearly

seen in Laplace’s Mécanique Celeste where, in the expression for the absolute

disturbance of the coordinates, he ingeniously withdrew the terms which

were proportional to the time, and then after the introduction of the full

theory of the variation of the constants to the integration he found the secular

terms of the disturbance theorem retained.

Poisson proved in 1809, in the treatise “ Sur les inégalités séculaires des

moyens movements des planetes ” (Journal de l’école polytechnique), that

the major axes have no purely secular terms in the perturbations of the second

order with respect to the masses. He arrived at his results by a peculiar

application of the theorem of active forces. Laplace, in his Me’cam'que Celeste,

livre VI, gave another proof, and Lagrange had sought to furnish this proof

but Serret has shown that his procedure suffered a slight mistake in sign.

It was sought to extend this result to the third power of the disturbing

masses. Thus Mathiew, in his “ Memoire sur les inégalités séculaires des

grands axes des orbits des planetes ” (Journal eon Crelle, 1875), began investi-

gations from which he concluded that the secular terms did not appear even

in the consideration of the third powers. But finally, Harétu proved, in his

Dissertation at Sorbonne in 1878, that there are secular variations in the

expressions for the major axes in the terms of the third order with respect to

the masses.

The analytical and numerical development of the disturbance functions,

when considering higher powers of the eccentricity and inclination, led to

such interesting and important computations that the majority of the im-

portant mathematicians have taken pains with it and advanced it. Among

these we find Cauchy, Bessel, Lubback, Hansen, Glyden, Newcomb and

others. Gauss, Airy, Adams, Leverrier and many others have made im-

portant contributions to the planetary theory in some of its many aspects.

Adams and Leverrier obtained particular prominence by demonstrating the

existence of Neptune and calculating its apparent position from the unex-

plained irregularities in the motion of Uranus.

The secular value of the elements had been developed by Laplace and

Lagrange, limiting their discussion to the second power of the eccentricity and

inclination. According to Dziobek it was Leverrier who first attempted to

consider the influence of the neglected terms. Later his investigations were

carried further by the astronomer Lehmann, who, however, died before com-

. .__.. .___.___._ ». —<
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4 SOLUTION OF THE EQUATION OF SECULAR VARIATION

pleting his numerical investigation. It was the opinion of Leverrier and

Lehmann that the influence of these terms is greater than was earlier sup-

posed, and would possibly bring great improvement on the secular periods,

as they would be fixed through the roots of the secular equation.

I

THE SECULAR EQUATION

The way the secular equation enters is shown by the following treatment

taken from Dziobek.*

The secular part of the disturbance functions depends on the quantity

va mu

W=y
r,“

When limiting the secular part, W, of the disturbance function to the terms

of second degree of the eccentricity and inclination, W reduces to

TW = 2m,m,[%10,+ 21,1111 {bi + hi + l: + I: — (p. — pm

— (CIA - '10:} - $11201th +11%]-

The differential equatiOns of motion then become ‘

Tim -.1_ fl
mA dt _ VI-‘AaA alA’

mile- _1_.6_W
*dt‘ aha, all,“

(x 1,2, ---,n).

Substitute the value of W in (2) in these differential equations, limiting to

terms in h and l , and the result can be expressed in two groups, those con-

taining only It, and those containing only l. The two groups are brought

down in final form to a quadratic form in HA and L, (defined in (8), page 225).

These quadratic forms when transformed by linear substitutions into a sum

of squares, finally reduce to the set of equations:

* Dziobek, Planeten—Bewegungen, pages 221 to 227.

I (2): §31r page 224' '

I (20), page 227;
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BY A METHOD DUE TO HERMIT'E 5

0= a1.1([1, 1] ‘91) +012,1l2,11+6¥3.1l3,1l+ +an.1ln,1l

0=0£1,1[1:2l+a2,1([2,2l ‘91) +a3.1l3,2l+ +an,1[ny2]

0 = al.1l1: 31+012.1l2: 3l+053.1(l3: 3] "‘91) 'l‘ +%,1ln:3l

0:011.1[1,nl+012,1l2:fll+as.1l3,fll+ +an,1(ln,nl —gr).

The 9, in these equations give the coefficients of the square terms when ex-

pressed as sums of squares. The n g’s are obtained by eliminating from the

equations (20) the unknown

al.1y all) a3.1, "' 7 an. 1’

when there results

[I’ll—g: [2,1]: [3,117 "'r lnrll

[1,2]: [2’21—92 [312]: "'x [”22]

{[193}: [2:3], [3:31—91 "') [71,3] ’

:

 O=

ill-5n]: [2:771]: [3371]: "'r [nanl-g

the roots of which give us the 9’s.
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CHAPTER II

HERMITE’S METHOD or SOLVING STURM’S THEOREM

§1. Before passing to the solution of our particular problem we shall

develop or tabulate, for convenience of reference, the method known as

“ Hermite’s Solution of Sturm’s Theorem.”* This method leads frequently

to a simpler result than is obtained by direct application of Sturm’s Theorem,

and is closely related to Hermite’s work with the Tschirnhausen’s Trans-

formations. It also depends on the theorem in quadratic forms called by

Sylvesterj' “ The Law of Inertia of Quadratic Forms ” which states:

“ If we express a real quadratic form go (x) as a sum of positive and negative

squares of linear functions (which may be done in an infinite number of

ways) then the number of positive and of negative squares, as also of their

sum, will always be the same, provided there is no linear relation between the

functions.”

§ 2. The Quadratic Form H, . Consider the equation

(1) f(x)=ao:e"+alx"‘1+aax"—2+-~+an——1x+an=0,

whose roots,

$1; 232, "' : may

we shall assume are all unequal.

If x is a root of (1) we can build the expression

<2) £9, = trim) + t"‘2f1(x) + + ifH(x)+fn—1(x).

' in which i is an undetermined quantity.

The coefficients of the powers of t are here

fo(93) =00,

f1($)=aox+a1,

(3) f2”) =ao$2+11193+ah

fn—1($)= aox""1+aiir"_2+w2x"_3+ +a,._2x+a,._1.

* Hermite, “ Remarquos sur le théoréme de M. Sturm,” Comples rendus de Paris Akademie,

T. 30 (1853).

T See Philosophical Magazine, 1852.
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BY A METHOD DUE To HEBMITE 7

Now construct the function

(4) y = tn—1f0(x) + twp—2f1($)+ ‘ ' ' + t1fn—2(z) + tofu—10?):

in which to, t1 , - . - , t..-1 are undetermined constants, and are not to be con-

fused with powers of t. However (4) goes into (2) if t}. is changed to t”.

Denoting by

3/1: y2: 3/3: "' , yr»

the values which 3/ takes for

x = ‘131, x2; 373, "'s 937»

respectively and taking a , any fixed real quantity, we next build the expression

(5 H.=(xi—a)yi+(x2-a)y§+---+(xn—a)yi.

This is a quadratic form in the n variables t; , and below it will be shown that

the number of its negative terms, for a constant or, gives the number of real

roots off (:c) = O which are less than a , plus the number of pairs of imaginary

roots off(:e) = 0.

If x1 is a real root, then 3/1 is real, and the term

($1 - 01 ) yi

is positive or negative according as $1 is greater or less than a. When x1

and x2 form a pair of conjugate imaginaries, then 3/1 and y; are conjugate

imaginaries and

($1 — “Mi + ($2 — (1)313

is composed of a positive and a negative square. This is easily seen if we take

  

yn/xl—oz=u+iv, ygwlxg—a=u——ie,

whence ‘

(x1 — any? + (x2 — a)y§ = 2a2 —— 2272.

From the foregoing it follows that the number N, of the negative squares

in H, is equal to the total number of pairs of imaginary roots of f(:c) = 0

plus the number of its real roots which are less than 04.

Take now a second real number {3 > a, and form the function HB , repre-

senting by N,3 the number of negative squares of H,5 . Then the difference

N3 — N, ‘

is equal to the number of real roots of f (x) = 0 lying between or and 6.

§ 3. Some Relations between the Coefiicients. We have thus a means of

determining the real roots of an equation, if we can represent the coefficients

of the t; t, in the function H, as functions of a and of the coefficients of the
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8 SOLUTION OF THE EQUATION OF SECULAR VARIATION

powers of x in f (2:) . After a few expressions, which are used in developing

the process or in its application, are derived, then we shall proceed to deter-

mine these coefiicients. The symbol S in front of an expression is used here

to indicate the expression is to be summed over all the roots of f (x) = 0.

Thus

8(a) = x1+x2+ +a'n,

SUI) =y1+y2+ +yn.

Summing both sides of (2) over the roots of f (as) = 0 there results the

expressions,

Slfo(x)l = nao,

Slf1(x)l = (n - Dar,

(5) Slf2(1)l = (it-2M2,

Slfn—1(x)] = art—1-

The left side of (2) gives

f(t) Jim .7 f(t) MD

(7) 8(m)=t—x1+t—x2+'u+

 

t-xn

d
—1

”—0

=d_tf(t)=naot" +(n—1)a1t -+...+an_1

and the right side of (2) summed gives

(8) S(&) = tn-lsmool + ammo] + + some].
t—x

Comparing coefficients in (7) and (8) the expressions in (6) are found.

§4. Determination of Hermite’s Form H. Represent the product of yf. by

(9) yfs = E0.sf0 + ELsfl + E2.sf2 + "' + En—1.sfn—1

s=0,1,2,-~,n—1.

1V When .3 = 0, comparing coefficients in (9) and yfo obtained from (4), the

set of E5, . for s = O are found to be, since fo(:t) = a0,

(10) Eo.o=ao¢n—1, Ei,o =aotw-2, "'a En—1.o=doto-

The remaining 16,-, ,- functions are determined from the following relations,

which are true in virtue of (3). '
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BY A METHOD DUE To HEmnTE 9

affo = acx=f1—ai,

lfl =f2 " as,

9T2 =f3 ‘03,

(11) - - ~ -

lfn—z = fry—1 — (In—1,

xfn—i =f—an,

= _ an,

Sincef(:c) = O.

From (9) and (11) we have,

M: = E0, sfl + E1, 31“: + ' ' ’ "l” E -—2, sfn—l

(12) -

-a1E0,3_a2-E1.8_ _an—1Ew—2.s_anEn—1.s-

Now define E_1, . by

(13) aOE—I,s+a1'E0.s+a2E1.s+"'+anEn—1,s=0-

Multiply (9) by a and subtract from (12) using (13) and we get

(23 — a)yfs.= (E—I, s "' “E0, s)f0 '1' (E0. 3 — “El. s)f1 + "'

(14) _,

+ (En—2. s _‘ aEm—l, a)fn—1 -

E_1, , may be expressed from the equation

(15) aotrvks+altn+8—1++ants=07

which is obtained by introducing

in, tn+19 tn+2,

through the following equations

.1 aotn+a1tn—1+a2tri-2+"'+ant0=os

(16) aotn+1+a1tn+a2tn_1+---+a,.t1=0,

act.” +a1tn+1 +aez‘n + +ant2 = 0,

Multiply equations (11) through, in order, by

try—1: tap-2: , to

and add, whence

(17) my =tnfo+tn—1f1+ +t1fn—10

Similarly multiply equations (11) through, in order, by

tn, til—1, ”', 751,

add and use (16) and (17), and we have,
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10 SOLUTION OF THE EQUATION OF SECULAR VARIATION

(18) fy=tw1fo+tnf1+“-+t2fn-1-

Continuing this process the following system is obtained:

3/ = tn—lfo + 1511—sz + tksfz + - ' - +tof,._1,

:zy = info + tn—lfl + tit—2f2 + - - ' +t1fn—1:

(19) a323/=25n+1fo+75nfl+15n_1f2'l' +t2fn-1,

553? = tn+2fo + tn+1f1 + tnf2 + - -- + t3fn-1:

x‘y = tIH-S—lfo + tM-S-2f1 + infra—sf} + .. - + tsfn—l-

These relations multiplied through, in order, by

as, (ls—1, (Is—2, "', do

and added give the equation

(9) yf. = E0, st + E1,.f1 + ' ' ' + En—1.sfn-1:

in which the E; , are defined by

E—1.a = (loin-H: +altn+s—1 + +€lain

= _as+1tn_1 .. —dnts,

E0. 5 = do tn-l-s—I + 01 tn-l-s—P. + ' ' ' + as try—1

= — a,+1t,,_2 -— -- - — ant,_1,

E1, 3 = do tn-l—s—‘z + <11 tarts—3 + ' ' ‘ + as try—2

= — a,+1t,,_3 " — ants—2s

Ems = (lotus-ha + aitvl-i-s—i + + (Iain-3

- _aa+1tn—4— _a'nt8—3,

1 (20)

Es—1,s = aotn'l'altw—l'l' +astrv—s

= "—as-i-ltn—s—I— ‘anto,

Es.a = aotn—l‘l'altn—2 + +astn—s—1:

Ea+1.s = (loin—2 +aitn—3 + + as in—s—e,

Ew—1.a=aots+alta—l+ +ast0-

Next introduce a second system of variables r through

(21) Z = Tn—ifo + Tn-2f1 + ' ‘ ' + Tofu—1:
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BY A METHOD DUE To HERMITE 11

from which we have, since by (6) S (1”,) = (n —— s)a,,

Sl($ - 01).?12] = Sl(x - a)y{‘rn~1fo +rn_2f1 + +Tofn-1ll

= S[r,._1(x — OOZ/fo +7’n—2(x - 00.71.73 +

+To($—a)3/fn—1ll

(22) = m. 2 (EA. . — «a, 07......
0I n—l

+ (72 _1)a1°ZI(EO.s _ aEl,s)Tn—s-—I

'l' ail—1 Z (Era—2. s _ “En—1, a)Tn—s—1 -

0. 11—]

On making 1- = t (22) will take the value of H, in (5) being expressed in terms

of the coefficients of f (x) and of a.

§ 5. Illustrative Example. For an example take the case n = 4, for which

we find,

E—I,ov= "alt3 —aeta _a3tl —114to,

-~E-1.1= —l12t3 —asta —a4t1,

E—1.2 = "asts —a4t2,

E—1,3 = —a4t3,

Eo.o = (lots,

Ear = —a2t2 "asti “ado,

130.2 = ‘0312 —atii,

Ema = —a4t2,

E1.o = (lots,

ELI = (10153 + (11752,

E1,2 = — asti — ado,

Ens = _a4t1:

an = 00751.7

E2,1 = a0t2+a1tla

Ea: = aot3+alt2+afltlr

Ear. = — (Iii-o:

E3.o = aoto,

E3.1 = aotl'l‘altO:

Ema = aot2+ait1+aztm

Ems = a0t3+a1t2+aflt1+a3t0-
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12 SOLUTION OF THE EQUATION OF SECULAR VARIATION

These values of E;, ,- substituted in (22) give

S[(x - (1)312] =t3731'1'3,3 +t31-2H3,2 + t311H3,1 +2.70%...

+ thgHg'z + #3721123 + t271H2_1 + thoH2,o

+t173H1,3+t172H1,g+t111H1II+tlroHLo

. _ +tO73H0.3+t072H0.2+t071H0,1+t070HO.0-

If r = tthis goes into

Ha. = 13:33.3 +tafeH3.2 +t3t1H3.1+t3t0H3.0

+t2t3H2.3+tiH2.2+752t1H2.1+t2toHa,o

+t1t3H1.3+t1t2HI.2+tiH1.1+titoH1,o

+tot3Ho.3+tot2Ho,2+tot1Ho,1+tiHo.0o

Where the Hi, ,- are given by

Has = —' “0(a). +4doa),

112.2 = — 30003 — (1102 - a(3ai — 200072),

H1,1 =.- 3a1a4 —aga3 -— 2oz(a§ — alas —2aoa4),

Han ;._d.3a4 “ “(03 —2aad4),

H3.2=H2.a= —2aoa2—3aoa1a,

H3.I=H1,3= —3aoa3-—2aoagoz,

H3,0=Ho.3= —4aoa4—aoaga,

112.1 = HQ: = — 4aoa4 — 20-103 — a(2a1a2 - 3% a3),

Hz,o=Ho,2= -3a1a4—oz(a1a3—4aoa4),

H1.0=Ho.1= —2afla4-a(aflaa—3a1€l4).

To help in the determination of the number of negative terms in H,, we

shall use the determinant of the Hi, j , which determinant we shall now develop.

§ 6. The Determinant of Hermite’s Form. Let us now set

i 5

(23) H=ZZHi,jtitj.

0 n—l

Since H,-_ ,- is the coefficient of t,- t, we see by (21) and (22) it is given by

(24) Hi. i = S (x — a)fn—i—1fn-j-1-

Using this relation we see that the determinant A’ of the n2 quantities H
5.5:
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BY A METHOD DUE TO HERMITE 13

that is the determinant of the quadratic form H, is the determinant obtained

by multiplying the two determinants below by columns,

(951 —Ol)fo(-‘€1) ($1 — (1)1301), , ($1 " “Wu—1W1)!

_(372 —a)fo(x2), (.332 — “VI-(Tel): , ($2 - a)fn—1(1‘2)l

  

lie—«moo (sen—ammo. --~,(xn—a-)fn—1(xn)

f0(x1)rf1(x1)r "':fflF-1(x1)l

x‘f0(x2)’f1(x2)r "'3 n-1(x2) .

(25)

 

lf0(xn)xf1(zn)’ "Ufa—Nb»)!

Since ao(:c1 — a)(x2 - a)(x3 — 0t) (xn - 0t) = (- 1)"f(0£), AH“)

 

 

reducesto

fowl), f1(x1), ~., f,._1(a:1)l'-’

(26) Ma) =<__%(_°‘_)fem),
Jam), fwd,” .

 fem). am). -- meal

This last determinant may be expressed as the product of two determinants,

thus

f0(x1)a f1(9:1)) f2(x1)r "'r ffl~1(x1)

fo($2): f1H(1‘2), 7.2072): “n fn—1(-’€2)

 

lfO<xn)a f1(xn): f2(xn): "'b n—1(xn)

 

- 2 1
(2’) do, 0; 0’ "'9 0 1: x19 23}, "'r x1)—

. 2 —1

a1: (10, 0r "'r 0 1: 3:2: $2.: "'7 It; I

= I 2 —1

a2: a1, a0: "'y 0 X 12 "173: (E3, "'s it; i.

2 —li

art—1: art—27 art—3: ...’ a0 '1’ x11) x78] H.) x: l

 

The square of this product is equal to (13 D,* where D is the discriminant of

the function f (x) . We see then that

(28) A146!) = (- 1)"aof(0t)D-

Since, by hypothesis, D is different from zero, A; (a) can only vanish when

we substitute one of the roots of f (x) = O for a.

Since A;(a) is the determinant of the quadratic form H, we can fix the

number Of negative squares in H, if expressed as the sum of squares of linear

terms, by the number of variations in the chain of principal minors of A; ( a) .‘l'

* See (7) § 50, Vol. I, Weber.

1' See V, §89, Vol. I, Weber.
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I4 SOLUTION OF THE EQUATION 0F SECULAR VARIATION

By the principal minors of A; (oz) we mean determinants formed in succession

by starting with A; (a) and leaving off the last row and last column, then

leave off the last row and column of this, and so on down to the last. The

chain of these principal minors would then appear as

A101), Ma). A301), ..., Alla),

when arranged in reverse order.

The number of negative squares in H will then be equal to the number of

variations in sign between the functions

(29) 1,A{(a),A;(a),Ag(a), "':A;(a)'

Since this H, as given in (23), is the same as our H, in (5) with the y’s

expressed in terms of the 15’s, the number of negative squares in H, is obtained

from the variations in the signs between the functions in (29). Call this

number N,, and denote by N,3 the corresponding number of variations in the

chain where B replaces a, B > a.

That is N5 is the number of variations in

1: AI(B): A;(6)r A;(fi)r "'! A;(B)'

Then N,5 — N, will give us the number of real roots off (2:) = O lying between

a and B .
I.
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CHAPTER III

THE SOLUTION or THE EQUATION OF SECULAR VARIATIONS AND

APPLICATIONS

§1. The Quadratic Form (pH—We shall now apply Hermite’s method, as

outlined above, to the solution of the equation of Secular Variations, which

we take in the form:

(11.1—93, 01.2, 111.3, ~-, (11,1;

(12.1, 02.2—95, ($2.3, "a (12.1;

30 A a: = =0.
( ) "( ) 03.1, 03,2, (13.3-33, "', €13.11

amly 071.2, “71.3, "'s an.n“x

In this we take the ag, ,- as real quantities, and further

i=1, 2, ..., n.

at. 2‘ = “1'. 2': j=l,2,...,n.

If this determinant is expanded, we obtain a polynomial of the nth degree

in x, the coefficient of at" being ( - 1 )" . Represent this polynomial as

(31) f(x)=aox"+a1x"‘1+a2:c"‘2+---+a,., ao=(—1)"

and then find the number of roots of

(32) ' f(x) = O.

From (32) form the function H, as shown in (5),

(5) Ha=(x1—a)yi+(x2—a)y§+“- +(xn—oz)yi.

Then the number, N, , of negative squares in this function will give the number

of real roots of f (x) = O, or of A..(x) = O, which are less than or, plus the

number of pairs of imaginary roots of this equation. To enable us to find

this quantity N, , we shall study with the quadratic form H, , another quadratic

form whose determinant is A, (a) .

Consider the quadratic form

(33) (£031,152, "'atn) = HZ: ai.jtitj ai.j=aj,i:

,;1;§::::',Z'.

15
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16 SOLUTION OF THE EQUATION 0F SECULAR VARIATION

whose determinant is

 
 

 

 

a, 1, 01 2, , ‘11.

(34) An = 2-2.1, 02.2, . (12,71!-

lan,1: (111.2, "', an”.

With this form to build the quadratic form,

(35) ¢’=¢-a(ti+t§+---+t§),

the determinant for which is

“1.1—“, 01.2, "n (11.7;

(36) A710,): “2.1, 02.2-01. "', (12,1;

(111,1: 011,2, "', aunt—05

The variations in sign between the terms in the chain

(37) 1,A1(a),A2(a), ---,An(a)

will give the number of negative terms of go’, when expressed as the sum of

squares of linear functions.

In what follows/we‘Shall assume that no two consecutive terms of this

chain (37) vanish for the same value of x, and shall later show we are justified

in making this assumption. The relation (38) below will help us in deter-

mining the number of negative terms in H, from those of the quadratic form go’ ,

(38) Ak(a)Sk — T: = Ak_1(a)Ak+1(a).*

In (38) SL- and T]. are rational integral functions of x, and A]. (a) , Ak_1(oz)

and Aer—1(a) have the same meaning as in the chain above.

Itis evident from (38) that if Ak(a) = 0, Ak_1(oz) and Akin, (a) will

have opposite signs.

§2. Relation between the Negative Squares of H, and 99’. Now let :I: pass

through a real root of A, (x) = 0, say arr. Then take a small quantity, It,

so small that no root of A, (x) = 0 , excepting 33,-, lies in the interval 9:, — h

to x, + h, and let x, — h = 'y and ac, + h = 5. Since 1' passes through a

root of A, (x) = 0 in going from y to 5 there will be one more negative square

in H5 than in H, . H5 and H, are used here, as other subscripts will be used,

to denote the value of H, in (5) when a is made equal to 6 and 7 respectively.

Correspondingly if, in the chain of functions (37), we let a: pass through

the root 2;, there will be one more variation in sign between the functions of

the chain for a: slightly larger than x, , than there is in the chain for x slightly

* See §88, page 291, Weber, Vol. I.
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BY A METHOD DUE TO HERMITE 17

less than x,. That is in

1: A1(6): A2(6): "‘2 Afl(5)

there is one more variation in sign than there in is the chain

1. Aim, AM), AM).

The fact just stated is true because as 9: passes through 9:, A..(9:) changes

sign, while A7...1(9:) does not, and there will be a variation introduced be-

tween these two terms in our chain. At the same time there will be no other

variation introduced in the chain of functions. If there could be another

variation introduced one of the terms, say Ap(9c) , would have to change Sign,

and hence would have to pass through zero. But as Ap(z) passes through

zero no variation in sign is introduced since by (38) when A, (2:) = 0 , A,,_.1(x)

and AH1(9:) have opposite signs. AI, (9:) will then have the same sign as

one of them, say Ap_1(9c) and the opposite sign from the other one Ap+1(x),

before passing through 2;, while after passing through an, A, (x) will have

opposite sign to Ap_1 (9:) , and same sign as Am (9:) and will, therefore, keep

the number of variations between the three consecutive functions the same.

This discussion also shows there will be no variation lost in this interval.

There will, therefore, be no variation in sign introduced or lost in the chain

of functions as a: pisses through the root, excepting one variation introduced

between A.._1(9:) and A,(9:) . And similarly as 9: passes through each of

the roots of A, (9:) = 0 , there will be one variation in sign introduced between

the functions of the chain (37).

Since, at the same time, as 9: increases through each of the roots of

An(x) = 0:

there is one negative square introduced in H, , the number of negative squares

introduced in H, as 0: passes from a to 6 will be the same as the number of

variations in sign introduced in the chain (37) as 9: passes from a to [3 . Conse-

quently to count the difference in the number of negative squares in H5

and H, we can find the difference in the number of variations in the two

chains

1: A1(B): A2(B)y "'7 An(.8)

1: A1(a),A2(a), "':An(a) B>a'

But this is the same as finding the difference in the number of negative

squares of 99’, when a is replaced by B, and in 99' when a is equal to a.

Before we proceed to use the quadratic form go’ to determine the quantity

NB -— N, , which gives us the number of real roots of A, ( 9:) = 0 lying between

or and [3, we shall show we were justified in assuming no two terms of the

chain (37) would vanish for the same value of x .

and
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18 SOLUTION OF THE EQUATION 0F SECULAR VARIATION

First, it is obvious that if Ap_1(a:), Ap(a:) and Ap+1(a:) all three pass

through zero and change sign for the same value of 2;, there will be no change

in the variations or permanences in the three functions before and after a:

passes through this value.

Suppose, then, for some value of a: in the interval in question AP (3:) and

Ap+1(a:) both vanish, but Ap_1(a:) does not. In this case we can so choose

the (1,44, 2', which occur in Ap+1(a:), but not in AP (21:), that Ap+1(x) will

not vanish when AP (x) vanishes. This is true because Afil (9:) cannot vanish

identically for all values of ab“, ,- since it contains the term—oi“, ,, Ap_1(z),*

which can only vanish if up“, 9 = O .

We can then build a new function A, (x) , in which the (12,,- are chosen to

differ by less than an arbitrarily small amount, 5, from the corresponding

(1,; ,- terms of An(x_), but so that no two consecutive terms in the chain of

principal minors of A, (x) will vanish for the same values of a: . 6 can be made

so small that the roots of A, (x) = 0 and A, (x) = 0 will differ by less than

any assigned arbitrarily small quantity, and consequently a variation will be

introduced between An..1'(x) and An (9:) , and between Zip—10:) and A, (9:)

within the neighborhood of the same quantity. Then the two quantities

a and [3 can be so chosen that in the two chains

6) _,— .1,A1({E), A2(x): "':An(x)

and ' _ _ __

(ii) 1,A1($),A2(2§), "':An(x)

none of the terms will vanish for x = a or for x = B. The corresponding

members of the two chains will then have the same signs. Since no two

consecutive terms of the chain (ii) vanish for the same value of x, then the

discussion above, regarding the variations in sign introduced as :1: passes

through a root of A, (x) = O , holds for this chain. But the difference in the

number of variations in sign of the functions of the chains for a: = [3 and for

a: = a will be the same for both chains, and may be determined from either.

The assumption, therefore, that no two consecutive terms of the chain (37)

would vanish for the same value of :1: did not lead to false conclusions, and the

quantity NB — N, can be found by determining the number of negative

squares in ga’ for x. = a and x = B.

This is done by determining the number of variations in signs between the

principal minors of its determinant when arranged in the form of the chain (37) .

Since this at the same time gives the difference in the number of negative

squares between H5 and H,, and consequently the number of roots of

An(x) = O

lying in the interval from a to 13 , we shall use it immediately for that purpose.

* See § 62, “Theory of Determinants,” by Thomas Muir.
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BY A warrior) DUE TO 3331\an 19

§ 3. Solution of the Equation. Since

AP(O‘) = ("‘ 1V0!" +P1ap—1 +p3aP—2 + +1,“

( p1 , 2 , - - - , p, being constants) we note that for at sufficiently large in

absolute value, the sign of A1, (a) will be the sign of the leading term ( —— 1 )Pa" .

In the chain

(37) 1:A1(a)1A2(a)1 °":An(a)

for a = — 00 each member of the chain is positive [(— 1)? ( — co )9 being

positive whether p is even or odd], there are no variations in sign between

these members and

N_.,, = O.

For a = + co , on the other hand, there is a variation between each suc-

cessive term, as the sign of each term, beginning with the second, is deter-

mined by (— 1)P, which makes A1(+ 00) negative and each member of

the chain after that alternately positive and negative. There are then 7;

variations in the chain of functions for a = + no or

1‘74.” = n.

Hence we have

Nw — N_,, = n

and we see that all of the roots of the equation of secular variations are real.

§4. Condition for All of the Roots- to be Positive. In order to fix the con-

ditions to be satisfied in order that all the roots of A, (x) = 0 may be posi-

tive, make a take the value 6, where 5 is a positive quantityso small that

there are no positive roots of A,L (x) = 0 that are less than 6.

Since the number of variations in sign in the chain of functions A,- (oz) for

a = + cc is n, in order to have all the roots of A,(a:) = 0 positive it is

necessary that, when a = 6, there should be no variations in sign in the func-

tions

1: A1(5): A2(6): A3(5): "'a An(5)1

that is, they must all be positive. By taking 6 sufficiently small the sign

of these functions will be the same as the corresponding principal minors of

(11.1, “1.2: "‘: (11.1:

a (122 (12,An: 2.1, . r a n

“11.1: amfl, "', amn

orof

1: A1, A2, A3, "', An
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20 SOLUTION or THE EQUATION or SECULAR VARIATION

where

_ l (11. 1, (11.

A1 = a A01.1: .. “2’1, (22' 2 , etc.

Hence if the roots of the given equation A, (9:) ,= 0 are all to be positive then

A1, A2, - - - , A, must all be positive.

§5. Principal Planes of Surfaces of Second Degree. As a particular appli-

cation we shall consider an equation used in finding the principal planes of

surfaces of the second degree. The equations of these principal planes depend

on the solutions of the equation*

a—x; h: g

h: b—x; f =0-

9, f, c—h

We see this is the equation A, (x) = 0 with n = 3 , and it follows, therefore,

that its roots are all real.

§6. Relation between the Roots of A,(x) = 0 and A,+1(a:) = 0. Let us

locate the roots of A,H(x) = 0 in relation to those of A, (2:) = 0. Note

that, since all the roots of A, (x) = 0 are real, and there are no variations in

sign in the chain (37) for a = — co , the number of variations in sign of the

chain (37) will give the number of roots of A, (x) = 0 that are less than 0:.

Take for a general investigation n = r .

Let the roots of A, (x) = 0, arranged in order of magnitude, beginning with

the smallest, be

0&1: a2, 013, "V', Ctr—1, an

and examine the chains of principal minors of

. A,(x) and A,+1(a:).

In the chain of principal minors

_ 1; A1(CYr-): A201,), .v Ar—1(ar): Ar(ar): Ai'+1(051')

Since

Ar(ar) = 0,

then

have opposite signs, by (38). Increase 04, by a small amount 12, where, as

previously used, It is a small positive quantity, so small that none of the

functions A, (a) will change sign in the interval a, — h to a, + h, excepting

Art“)-

* See Echols’ Calculus, page 361.
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By A METHOD DUE TO nnnmrn 21

In the two chains of principal minors

(i) 1: A103“): A2010: "'a Ar—1(ar): Ar(ar)

and

(ii) 1, A1(a,+h), A2(ar+h): "': Ar—1(ar+h): Ar(ar+h)

all of the corresponding functions will have the same sign excepting the last

one, which in the first chain is zero, but in the second chain may be either

positive or negative. The second chain (ii) will have T variations, since all

of the roots of A, (2:) = 0 are less than a, + h , having taken a, as the greatest

root. Having r variations there will be a variation between each pair of

successive functions, and consequently a variation between A,_1(oz, + h)

and A,(oz, + h) . Since A,_1(oz,) and Ar+1(a,) have opposite signs so will

A,_1(a, + h) and A,+1(a, + b) have opposite signs and from above

A,(a,.+h) and A,+1(a,+h)

will have the same sign. Then the chain

(Ill) 1, A1(a,. +12), A2(0lr + It), "', Aft—10L- + ll), A,(a, + It),

Ar+1(ar 'l' h)

will have only r variations, the same as in (ii). Hence there are r roots of

A..+1(.t) = 0 less than a, + h, and since A,+1(x) = 0 has 7' + 1 roots there

is one root of A,+1(a:) = 0 which is greater than a, + It. That is, there is

one, and only one, root of Ar+1(x) = 0 greater than the greatest root of

A,(:c) = 0.

Next consider the root 05-1 , which is the second largest root of A, (x) = 0 .

In the chain

1: A1(0‘r-1): A2(¢Xr—1)’ , Ar-1(¢3Yr-1): Ar»(05r—1): Ar+1(ar—1):

since A, (04.1) = 0, then by (38) A,._1(oz,.1) and Ar+1(a,_1) have opposite

signs. ' From this it follows that

(A) Ar—1(ar—1 2t h) and Ar-q-l.(a1'--1 2!: h)

have opposite signs, as they have the same sign as A,_1(a,_1) and A,+1(a,_1)

respectively.

The chain

(lV) 1: A1(CVr—1 + h) : A2(‘1‘5—1 'l" h): ' ' ' 3 Ar—1(ar-—1 ‘l' h), Ar(CVr-l1 'l' 1‘)

will have 1' — 1 variations, since there are r — 1 roots of A, (a) = 0 less than

a,-1 + It. On the other hand there will be only 1' — 2 variations in

(V) 1: A1(CKr—-1 '_ h): A2035—1 — h), "‘a Ar—1(ar—1 —k)a Ar(ar—1—h)-

As there is a variation gained in (iv) over (v) and is gained by the last function
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of the chain, A,(a) , changing sign on passing through the root a,.1, then

in (v) the last two functions have the same sign, but in (in) they must have

opposite signs. That is

(B) Ar—1(ar—1 ‘l' h) and Ar (“r—1 + h)

will have opposite signs.

In the chain

1, A1(a,_1 +11), Ag(a,_1 + ll), "' , Ar—1(ar—1 + h)!

A,(Ol,_1 + h), Ar+1(ar—1 'l' h):

the functions up to and including A, (a,_1 + h) are the same as in (iv) above,

and hence there are r — 1 variations in this part of the chain (vi) and, in fact,

we shall show there are only 1' — 1 variations in the chain (vi). There is no

variation between A,(a,_1 + h) and A,+1(oz,_1 + h) , because by (A)

A,_1(o:,_1 + h) and A,+1(a,_1 + h) have opposite signs, and by (B)

A,._1(oz,_1 + h) and A,(a,_1 + h) have opposite signs, hence A,(cv,_1 + h)

and A,+1(a,_1 + h) have same sings. Therefore there are r — 1 variations

in sign in the chain (vi), and therefore r — 1 roots of A,+1(x) = 0 less than

a,_1 + h, or less than a,_1. The remaining two roots of A,+1(a:) = 0 are

then greater than 'oz,_1 and since we have shown that one, but only one, of

these is greater than 0:, , then the other one falls between oz,_1 and 01,.

Continuing this process it is easy to show that each root in succession of

A,(:z:) = 0 falls between successive roots of A,+1(x) = 0, going down in

order of magnitude.

Finally for an, in the chain

(vi)

1: A1(0l1), A2(0£1), "'2 AT—1(a1)1 Ar(a1): Ar-l—1(""1)

A,_1(a1) and A,+1(oz1) have opposite signs, since A, (a1) = 0 .

1 This is likewise true of A,_1(a1 :h k) and A,+1(ar1 i h) as they have the

same sign as A,_1(oz1) and A,+1(oz1) respectively.

In the chain

(Vii) 1: A1(051 “11): A2(011 -h), °", Ar—1(a1 ‘11), Ar(0£1— 11)

there are no variations, on — It being smaller than any root of A,(x) = 0.

However, in the chain

(VIII) 1, A1(0£1+h), A2<d1+h), "', A,_1(oz1+h), A,(a1+h)

there is one variation, one root m, of A,(x) = 0 being less than :21 + h.

Being no variation in (vii), while there is one in (viii), which occurs between

the last two functions, then A,_1(a1 -— h) and A,(oz1 — h) have the same,

sign, While A,_1(oz1 + h) and A, (on + h) have opposite signs.
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Next in the chain

1, A1(0£1 — k), A2(a1 - h), “H, A,_1(CX1 — It), A,(0£1 — ll),

(1X) Ara-1011 — h)

the functions up to and including A, (a1 — h) are identical with those in the

chain (vii), and there will be no variations in that part of the series (ix).

However, since A,_1(oz1 - h) and A,+1(a1 — 1:) have opposite signs, and

A,_1(a1 — h) and A,(oz1 — h) have same signs, then A,(a1 — h) and

A,+1(oz1 — h) have opposite signs, there is one variation between the last

two functions in (ix) and hence one variation for the chain.

It follows, then, that one, and only one, root of A,+1(x) = O, is smaller

than on the smallest root of A, (a) = 0 . In the set of equations,

A1(x) = 0,

A201.) = 0,

A3(1)= 0:

. Ar—1(z) =0:

(0) " mm = 0.

Ari-1(1) = 0)

Art-ICC) = 0)

A,(x) = O,

A, (x) = 0 is our equation of secular variations shown in (30), Art—1W) = 0

is found from A, (x) = 0 by leaving off the last row and column, and so on

down for all of the equations to

and A1(x) = a1, 1 — x = 0, that is, the several equations are the principal

minors of A, (x) equated to zero. By our work above, the roots of all of

these equations are real, the roots of A,._1(x) = 0 lie one by one~ between

successive pairs of roots of A, (.r.) = O, the roots of A,_.2 (at) = 0 lie similarly

between each adjacent pair of roots of A,,.1(x) = 0, and so on down until

finally the root Of A1(x) = 0 lies between the two roots of A2 (2:) = 0. In

other words, the set of equations (0) form what is called limiting equations.*

* See Burnside and Panton, 1904, Vol. I, page 187.
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The roots of the equations (0) when indicated by points of a straight line

would be represented by the following scheme,

An(:c) = 0

A,_.1(:c) = 0

A,_g(x) = 0

A4(a:) = 0

A3(x) = 0

A2(x) = 0

A1(x) = 0

n roots

n - 1 roots

n — 2 roots

4 roots

3 roots

2 roots

1 root

We shall conclude by taking a specific example with numerical coefficients.

§ 7. Illiwtrative Example.

following values for a, ,- .

al.1=2, (11.2=3:

az.r=3,_/‘ 92.2=3,

as.1=5, €13.2=7:

t14.1:6, (14.2:2:

05.1=1, as,2=3,

Thisgives

2—20,

3,

ASCII) = 5’

6,

1:

from which we see

Take as illustrative example n = 5, with the

(11, 3

(12. 3

as. 3

(14.3 _

as. 3

al.4=6, a1,5=l:

024:2; a2,5=3,

a3_4=5, 03'5=1,

04.4 =4, 04.5 =2,

(15.4 =2, a5,5=2.

6, 1

2, 3

5, 1 ,

4—x, 2

2, 2—9:

A5(:c) = —x5+12x4+1089:3 -215x~° —993x+1217,

A4(:c) =14—1013—113x2+23x+811, '

A3(:c) = —xs+6x2+72x+34,

A2(a') =x2—5x—3,

A1023) =2 —.’.’C.
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The roots of the equations formed by equating each of these to zero are

Equation Roots

A103) = 0 2

Ag (:6) = 0 - 0.54138 + 5.54138

A3 (2:) = 0 — 5.659 — 0.494 + 12.15

A, (z)‘= 0 — 5.88 - 3.24 + 2.56 + 16.56

A5(x) = O — 6.14 — 3.35 + 1.12 + 3.03 + 17.32

It is seen here that all the roots are real and that the roots of each equation,

one at a time, lie between adjacent pair of roots of the equation which suc-

ceeds it. This last fact is more obvious from the diagrammatic representa-

tion of the roots shown below.

In the diagram, on the next page, the graphs of the different functions are

shown. No attempt has been made to represent the ordinates accurately,

on account of the variation in size between the different curves, which would

necessitate a different vertical unit for each curve. The relative size of the

ordinates are shown and the point of crossing the axis is accurately given.

From‘these points of intersection with the axis of x, we see very clearly that

the relation between the roots of one equation and those of the equation of

next higher degree is that stated above.
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