
Measurement-Based non-Gaussian
Quantum State Engineering

Miller Thomas Eaton

Colfax, IL, USA

B.S. Southern Illinois University, 2013

A Dissertation presented to the Graduate Faculty of the University of Virginia
in Candidacy for the degree of Doctor of Philosophy

Department of Physics

UNIVERSITY OF VIRGINIA

May, 2022

http://www.phys.virginia.edu/
https://www.virginia.edu/


ii

Abstract
Advances in quantum technologies promise to deliver a great deal of progress in in-
formation science, including applications in sensing, secure communication, and quan-
tum computation. If successfully implemented, an error-corrected universal quantum
computer would deliver an exponential boost in efficiency when solving certain prob-
lems. However, this requires a way to generate and entangle many low-noise quantum
resources in a scalable way. Fortunately, quantum computing with the continuous-
variable nature of light in a quantum-optics setting has recently emerged as a potential
contender due to the experimental availability of massively scalable entangled states.

After connecting continuous-variable and qubit-based quantum computing, this
dissertation introduces several novel proposals to engineer specific non-Gaussian quan-
tum resources using projective measurement. These resources include Schrödinger cat,
Gottesman-Kitaev-Preskill, binomial code, and coherent photon-subtracted states that
would be used to achieve quantum advantages in quantum sensing and quantum com-
puting. Each protocol is designed with current technologies in mind, and a full com-
putational model with realistic imperfections is included to assess the experimental
feasibility.

The second part of this dissertation transitions to experimental implementations
with a specific focus on the transition-edge sensor, which is a highly quantum efficient
photon-number-resolving detector. I detail new methods of processing the output sig-
nal and demonstrate the ability to improve resolving capabilities to up to 30 photons
per detection channel. This has important implications for quantum information ap-
plications, including quantum random number generation and realization of the state
engineering protocols discussed in the first portion of the dissertation. Additionally,
I present variations on recently developed methods to perform full quantum state to-
mography that would lead to a quadratic reduction in the number of required mea-
surement settings to completely characterize an unknown state.

Finally, I discuss experimental progress on the generation and characterization of
exotic states using the protocol of photon catalysis. This process utilizes a single-photon
resource and projection with photon-number-resolving detection to engineer quantum
states with non-Gaussian Wigner functions. Current results indicate that this is a viable
method to generate exotic states if stability and control of experimental conditions can
be improved.
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Preface
The work in this dissertation is part of a series of attempts to bridge the gap between
what is available experimentally and what is theoretically necessary to attain a quan-
tum advantage in quantum information. As such, it brings together several aspects of
theoretical quantum optics, quantum information theory both with discrete qubits and
continuous-variable qumodes (the analog of qubits), and experimental techniques in-
volving nonlinear optics, detection, electronics, and signal processing. This document
assumes familiarity with quantum mechanics, electromagnetism, and principles of op-
tics, but the majority of necessary concepts that are related to quantum information and
quantum optics are presented for those unfamiliar.

Chapter 1 (Quantum Optics and Quantum Computation) begins with a brief in-
troduction to the quantization of the electromagnetic field and presents formalism nec-
essary for treating quantum optical fields, including common state representations and
operators. The beginning attempts to foster a more intuitive understanding of quan-
tum phase space through the use of Wigner functions and how they transform under
common operations. Concepts including non-unitary evolution, such as the decoher-
ence of a quantum state as it interacts with the environment, are also discussed. Once
the basic elements of quantum optics are in place, this chapter transitions to discussion
on quantum computation. Starting from qubit formalism, measurement-based quan-
tum computing with cluster states is introduced, which is a natural segue to continuous
variables. From here, I introduce certain types of states having Wigner function neg-
ativity that would be highly desirable for universal quantum computation and error
correction.

After the background is in place, chapters 2 (Photon Catalysis), 3 (Embedding
Non-Gaussianity in a Cluster State), and 4 (Rotation-Symmetric Code States) focus on
different proposed methods to generate some of the useful quantum states mentioned
in Ch. 1. Each of these methods makes use of the ability to perform projections in the
photon-number basis on a portion of an entangled state through the use of photon-
number-resolving detectors. The ‘quantumness’ of these projective measurements al-
lows for imprinting exotic, non-classical features on the unmeasured portion of the
state. Chapter 5 (Quantum Sensing with Non-Gaussian States) then describes a varia-
tion to the method of Ch. 4, which would allow for the preparation of quantum states
useful for improving interferometric sensitivity.
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Chapter 6 (Photon-Number-Resolving Detection) switches to an experimental point
of view by focusing on how to perform the projective measurements so casually used
in the previous chapters. This chapter details optimal ways of using transition-edge
sensors to achieve maximum photon-number resolution. This is the culmination of the
work of many individuals and several years of detector operation experience, but only
recently has the detector been capable of resolving the 30 photons it can now routinely
see. Chapter 7 (Tomography with PNR Detectors) steps halfway back to theory by
describing methods to characterize unknown quantum states through the process of
tomography. However, it still keeps one foot firmly rooted in the experimental world,
as everything is geared towards ensuring the task is experimentally feasible with the
photon-counting abilities of our detectors.

Chapter 8 (Experimental Design) groups together experimental results with ideas
originating from all previous chapters. The chapter begins by focusing on important ex-
perimental tools and concepts, such as using a pulsed laser system and accessing single
photons produced from cavity-enhanced spontaneous parametric down-conversion in
an optical parametric oscillator. Once the tools and the specific experimental setup are
described, I present results for quantum state tomography from Ch. 7 and quantum
state engineering from Ch. 2. The current results for the quantum state engineering
experiment indicate some aspects of the experimental design may need to be reconsid-
ered, but even this preliminary data hints that the protocol has merit. Finally, Ch. 9
concludes with a summary of the work in context with all current theoretical and ex-
perimental progress.

In addition to the usual tangentially related derivations (Appendices A- D), the
appendices also contain Python code segments. Appx. E presents a guided tutorial
meant to introduce the reader to quantum simulation with continuous variables. If
used in conjunction with the first chapter, this tutorial will aid in the development of
phase-space understanding and quantum state evolution. It will also give the reader
the necessary tools to reproduce various simulations obtained in Chs. 2-5, if desired.
Documented codes for the characterization and processing of transition-edge sensor
data is included in Appx. F and G, and codes to perform overlap tomography are
given in Appx. H. These codes are additionally hosted online with associated data on
GitHub1.

1https://github.com/me3nq/Thesis_docs

https://github.com/me3nq/Thesis_docs
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Chapter 1

Quantum Optics and Quantum
Computation

1.1 Overview

Quantum optics is an exciting field of research where one has the opportunity to de-
velop theoretical predictions with deep physical meaning while also being able to ex-
perimentally test these predictions with a relative ease not afforded to larger physics-
based collaborations. These experiments are able to access fundamental quantum-
mechanical behavior such as wave-particle duality, superposition, and entanglement,
all while having practical applications. Fortunately, because of these practical appli-
cations, quantum optics is enmeshed with the current quantum-technological boom in
quantum information.

As this document aims to develop a variety of quantum optical techniques for en-
gineering certain types of exotic quantum states, I have devoted this chapter to a broad
overview of quantum optics principles and quantum computation. Some sections have
rigorous derivation, but generally this is only the case where it will become useful later.
Several sources have been used to compile the material here, but Refs. [1–5] are specific
review articles and books that I might recommend for a more complete introduction.

1.2 Quantizing the Field

The first step of quantum optics is to arrive at the ‘quantum’ part. This can be achieved
by starting from Maxwell’s equations for classical electrodynamics and quantizing the
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electromagnetic field. This derivation is something that everyone who wishes to under-
stand quantum optics should go through at least once. That said, it is covered in more
detail and elegant fashion elsewhere [4, 6, 7] so I will only hit the main points here. The
general concept is that we assume the classical Hamiltonian has the same form as the
quantum Hamiltonian due to the correspondence principle. For classical fields, we can
write

H =
1
2

∫
dV
[
ε0E2(r, t) + 1

µ0
B2(r, t)

]
, (1.1)

where E and B are the electric and magnetic field vectors.

Now, imagine we wish to write the solution to Maxwell’s equations in a region
of space. The travelling wave is a solution of course, but let’s instead imagine we are
looking inside a perfectly conducting box with fixed dimensions, and then take the
limit of infinite volume later. In this case, lacking the presence of charges or currents,
Maxwell’s equations become

∇× E = −∂B
∂t

, ∇× B = µ0ε0
∂E
∂t

, ∇ · E = 0, ∇ · B = 0, (1.2)

where µ0 and ε0 in the above are the respective permeability and permittivity of vac-
uum. These equations along with the boundary conditions of the conducting box have
a one-dimensional solution along the z-direction given by

Ex(z, t) =
(

2ω2

Vε0

)1/2

q(t) sin (kz), (1.3)

By(z, t) =
µ0ε0

k

(
2ω2

Vε0

)1/2

q̇(t) cos (kz). (1.4)

In the above, V is the volume of the box we introduced, ω is the frequency of the wave1,
and q(t) is a time-dependent factor with dimensions of length that will be thought of
as canonical position. If we use canonical momentum and define p(t) = q̇(t), then the
Hamiltonian of the single-mode field can be reduced to

H =
1
2
(p2(t) + ω2q2(t)). (1.5)

Everything so far is classical, but we can promote position and momentum in the
Hamiltonian to Hermitian operators, q̂ and p̂, such that the canonical commutation

1The boundary conditions allow waves of frequency ωm = mπc
L for integer m > 0 and box of length

L, but for now consider only one frequency.
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relation of [q̂, p̂] = ih̄1 is observed.

This is now recognizable as the quantum harmonic oscillator, so we can perform
exactly the same treatment for quantized light! One can then define creation (â†) and
annihilation (â) operators as usual such that

â =
ωq̂ + i p̂√

2h̄ω
(1.6)

â† =
ωq̂− i p̂√

2h̄ω
(1.7)

with the Hamiltonian taking the familiar form of

Ĥ = h̄ω(â† â + 1
2). (1.8)

We can take one additional step and define dimensionless operators such that

Q̂ =
â† + â√

2
(1.9)

P̂ =
â− â†

i
√

2
(1.10)

where the canonical commutator is given by

[Q̂, P̂] = i1. (1.11)

These canonical operators of Q̂ and P̂ are known respectively as the amplitude and
phase quadrature operators of the field. Since the quantized field is that of a harmonic
oscillator, Q̂ and P̂ can be thought of as dimensionless analogs of position and momen-
tum for a particle in a quantum harmonic oscillator potential.

Using the Hamiltonian and the commutation relations, we can arrive at the single-
mode electric field which takes the form of an operator given by

Ê(r, t) = i
(

h̄ω

2ε0V

)1/2

e(âeik·r − â†e−ik·r), (1.12)

where e is the polarization unit vector and k is the wavevector. The multi-mode field
operator is simply a sum of all individual Êω,k,ej

field operators defined by frequency,
wave-vector direction, and polarization direction. Each of these fields exists in its own
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Hilbert space and does not interact with other modes under the evolution of the ‘natu-
ral’ Hamiltonian given by Eq. 1.8 (light does not interact with itself without a medium
or other influencing particles). Mathematically, this can also be expressed in terms of
commutation — all operators of one mode commute with operators of another mode,

[âj, â†
k ] = δj,k1. (1.13)

Taking the limit of V → ∞ allows for a continuum of frequency modes as solutions to
the wave equations.

Similar to the electric field, a single-mode B̂ field operator is

B̂(r, t) =
i
c

(
k× e
|k|

)(
h̄ω

2ε0V

)1/2

(âeik·r − â†e−ik·r). (1.14)

An important point to note is that the creation and annihilation operators contained
within Eqs. 1.12 & 1.14 have implicit time dependence. Written this way, these opera-
tors can be thought of as operators in the Heisenberg picture that are evolved in time
by the Hamiltonian. This will be discussed more in the next section, but the result
corresponds with the evolution of the classical field as is given by

â(t) = â(0)eiωt; â†(t) = â†(0)e−iωt. (1.15)

Since each mode has its own associated Hilbert space, I will drop all subscripts of ω, k, e
when describing single mode states and operators with the implicit assumption that all
operators pertain to the same mode. When describing multi-mode states and operators,
I will simply label each mode with a single alphanumeric index to differentiate it from
others.

1.3 State Representations

Once one has quantized the field and has a Hamiltonian, it is appropriate to start find-
ing ways to represent a quantum state. As a quantum harmonic oscillator, this pre-
scription is fairly straightforward. A first way to consider representing states is to use
the energy eigenstates of the Hamiltonian, |n〉, such that the creation and annihilation
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operators act on the state as

â |n〉 =
√

n |n− 1〉 (1.16)

â† |n〉 =
√

n + 1 |n + 1〉 , (1.17)

with â |0〉 = 0. These eigenstates determine the number of energy quanta, n, in the
state; thus, n is exactly the number of photons contained in the light mode. We can
then define the photon number operator,

n̂ ≡ â† â (1.18)

such that n̂ |n〉 = n |n〉. Note that just as the ground state of any harmonic oscillator has
nonzero energy, the ground state |0〉, otherwise known as vacuum, has nonzero energy
while also containing zero photons. Despite there being zero photons, the vacuum still
possesses non-zero fluctuations in the field quadratures. When measured, the recorded
quadrature values average to zero, but they do possess a non-zero variance due to the
Heisenberg relation that ∆Q∆P ≥ 1

2 . As an additional oddity, the continuum of modes
means that each has a vacuum state with non-zero energy leading to infinite total vac-
uum energy. This infinity is regularized by some unknown mechanism, leaving the
fundamental nature of the vacuum up for debate [4]. Fortunately, these issues don’t
crop up anywhere in this work as we are only concerned with quadrature distributions
and the number of photons in a particular mode, which are both quantities unaffected
by an arbitrary energy offset.

These energy eigenstates are known as Fock states and form an orthonormal basis
for our Hilbert space. We have both

〈m| n〉 = δm,n (1.19)
∞

∑
n=0
|n〉 〈n| = 1. (1.20)

Thus, any quantum state can be represented as

|ψ〉 =
∞

∑
n=0

cn |n〉 , 〈ψ|ψ〉 = ∑ c∗ncn = 1. (1.21)

This representation allows for a discrete, but infinite, Hilbert space to describe each
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mode. Alternatively, we could use a continuous basis based on eigenstates of the am-
plitude and phase operators. These quadrature eigenstates satisfy

Q̂ |s〉q = s |s〉q (1.22)

P̂ |t〉p = t |t〉p . (1.23)

In the above, s, t ∈ R and the subscript indicates the basis of the eigenstate. These
bases are also orthogonal so that

q〈s|s′〉q = δ(s− s′) (1.24)

p〈t|t′〉p = δ(t− t′) (1.25)
∫ ∞

−∞
ds (|s〉 〈s|)q =

∫ ∞

−∞
dt (|t〉 〈t|)p = 1. (1.26)

Additionally, the eigenstates of these conjugate bases are related by the Fourier trans-
form:

|t〉p =
1√
2π

∫ ∞

−∞
ds eist|s〉q (1.27)

|s〉q =
1√
2π

∫ ∞

−∞
dt e−ist|t〉p. (1.28)

Quadrature eigenstates are quite interesting in that they, just like definite position and
momentum states of a particle in a potential well, are not normalizeable. This means
that only approximate quadrature eigenstates are actually physical, as a true eigenstate
of Q̂ would require an infinite series of Fock-basis components to represent and would
thus require infinite energy. Nevertheless, the quadrature basis is useful to describe the
wavefunction of a normalized state,

ψq(x) = q〈x|ψ〉 (1.29)

ψp(x) = p〈x|ψ〉, (1.30)

so that the quantum state can be described by

|ψ〉 =
∫

dx ψq(x)|x〉q =
∫

dx ψp(x)|x〉p. (1.31)

Occasionally, other texts use tilde notation to denote the Fourier transform of a function,
such as writing ψq(x) ≡ ψ(x) and ψp(x) ≡ ψ̃(x). In some cases, however, it is useful
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to consider a q or p-quadrature wavefunction at the same time as a wavefunction of a
rotated basis in a linear combination of both q and p. Thus, reserving the subscript for
basis (and mode index) generally keeps things more clear.

The Fock state basis can be related to the quadrature basis by using the wave-
function of the energy eigenstates of the harmonic oscillator, which end up involving
Hermite polynomials [8]. As energy eigenstates, the Fock states have no defined phase
and are invariant under the Fourier transform: ψq(x) = ψp(x) ≡ ψn(x). Written out,
the Fock states are given by

ψn(x) =
π−1/4
√

n!2n
e−x2/2Hn(x), (1.32)

and Hn(x) are the physicist’s Hermite polynomials.

When manipulating states, it can be extremely useful to represent any quantum
state as a function of a quadrature operator applied to the zero eigenstate of the con-
jugate quadrature. This arises through Fourier transform and the freedom to alternate
between writing the eigenvalue of an operator applied to an eigenmode and that oper-
ator acting on the same eigenmode. For example, we can write a generic ket as

|ψ〉 =
∫

dx ψq(x) |x〉q

=
∫

dx ψq(Q̂) |x〉q (1.33)

=
√

2πψq(Q̂) |0〉p . (1.34)

In the second line, promoting the wavefunction ψq(x) to a function of an operator,
ψq(Q̂), allows us to pull it out of the integral and use Eq. 1.27 to write the state as a
zero-momentum eigenstate.

1.3.1 Density Operators

This section introduced the Fock and quadrature bases as a way to represent pure states,
but this can be extended to statistical mixtures through the use of the density matrix.
In the Fock basis, the most general density matrix can be written as

ρ = ∑
m,n

ρmn |m〉 〈n| , (1.35)
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where ρmn ∈ C and we have the constraints that ρ is a normalized, positive semi-
definite matrix with

Tr[ρ] = 1; ρ = ρ†. (1.36)

For pure states, we have that ρ = |ψ〉 〈ψ| which implies the additional identity that
ρ2 = ρ, thus Tr[ρ2] = 1. Impure states are statistical mixtures that can be obtained by
performing a partial trace over an entangled state. These mixtures have

ρ = ∑
i

pi |ψi〉 〈ψi| , (1.37)

where pi ∈ [0, 1] are the probabilities of having the pure state |ψi〉 with ∑i pi = 1.

In addition to this matrix representation, ρ can be represented in a continuous
basis as a density operator. In the q-basis, this is written as

ρ =
∫∫ ∞

−∞
dsdt ρst (|s〉 〈t|)q (1.38)

Regardless of representation, the expectation value of an operator Â is calculated as

〈Â〉 = Tr[ρÂ]. (1.39)

1.3.2 Wigner function

The density matrix provides a means to completely describe any quantum state whether
it be pure or mixed. However, there are alternative representations using quasi-probability
distributions that also provide complete state information. Throughout much of this
work, I will make use of the Wigner quasi-probability distribution, or Wigner function,
which is a valuable tool for visual representation of quantum states as well as providing
simple indicators of non-classicality. The Wigner function of a quantum state is defined
from the density matrix according to

W(q, p) =
1
π

∫ ∞

−∞
e2ipy

q〈q− y|ρ|q + y〉qdy. (1.40)

Here, q and p are the eigenvalues of the respective amplitude and phase quadratures
defined earlier. The Wigner function is known as a ‘quasi’ probability distribution due
to the fact that it doesn’t yield probabilities directly, but integrating over one quadrature
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FIGURE 1.1: Wigner functions are plotted for the Fock states |0〉 , |1〉 , and
|4〉.

will result in the probability distribution for the other. Mathematically, we have

∫ ∞

−∞
dp W(q, p) = |ψq(q)|2 (1.41)

∫ ∞

−∞
dq W(q, p) = |ψp(p)|2, (1.42)

which directly implies normalization of

∫∫ ∞

−∞
dpdq W(q, p) = 1. (1.43)

Additionally, as a quasi-probability distribution, the Wigner function has the po-
tential to be non-positive2. This is extremely powerful, as negativity of the Wigner
function is a necessary condition to achieve a quantum advantage over classical sys-
tems [9]. This is a direct result of the fact that continuous-variable states with Gaussian
distributions are efficiently simulable with classical computation [10], and only states
with non-Gaussian distribution can have Wigner functions with any negativity [11].
As an example, Fig. 1.1 shows the Wigner functions for several Fock states with neg-
ative regions shown in red. The vacuum state is the only Fock state with a Gaussian
distribution — thus a solely positive Wigner function. The graphic also shows the as-
sociated probability distribution, P(q) = |ψq(q)|2, which was obtained by integrating
the quasi-probability distribution over the p-quadrature using Eq. 1.41 An important
point to note is that while negativity of the Wigner function is necessary for a quantum

2The Wigner function is bounded by the interval [− 1
π , 1

π ].
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speed-up, it is not sufficient, even for pure states [12].

1.4 Operators and State Evolution

Quantum-mechanical quantities, such as states, follow evolutionary processes that are
coherent and reversible. When a coherent process is well-separated from the environ-
ment such that the state in question has no interaction with a reservoir so is not influ-
enced by dissipation (no partial trace needed), and the state is not subject to quantum
measurement, then both the purity and norm of a state are maintained. Under this
form of evolution, we can operate in the Schrödinger picture, where states evolve with
respect to some parameter (e.g., time) and operators remain fixed. Alternatively, we
can use the Heisenberg picture which allows the operators to change while the state
remains fixed.

Intuitively, the distinction between these two pictures can be understood in rel-
atively simple terms. For any quantum mechanical system, we must eventually be
concerned with a measurement associated with an observable. Having an observable
in mind from the outset of any quantum experiment means we can manipulate our
state by applying different operators (Schrödinger picture) and see how the outcomes
of measurements of the same observable change as the state is evolved. Alternatively,
instead of allowing the state to evolve, we can leave the state alone and perform differ-
ent measurements that correspond to observables that have been evolved by the same
physical process (Heisenberg picture). In both cases the measurement results will be the
same, so effectively both pictures are equivalent. The duality of these pictures comes
about by the physicist asking the questions: Is it easier to modify the state so I can
measure it how I’d like? Or, is it easier to leave the state alone and change the way I
measure so that the result would be the same?

There is actually a third picture, known as the interaction picture, which is just
a compromise where both states and operators evolve. Here, the Hamiltonian is bro-
ken into ‘free’ and ‘coupled’ evolution terms, where state evolution is easier under the
‘free’ terms. The operators are then evolved under the ‘coupled’ terms where the states
would otherwise prove difficult.
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1.4.1 Schrodinger vs. Heisenberg

Begin by considering a quantum state, |ψ〉, subjected to a coherent physical process.
Because the state is pure and a superposition of basis states, the evolution must follow
a linear differential equation. Additionally, because we require that |ψ〉 contains com-
plete information about the state before evolution, the equation must be of only first
order in the parameter t; a higher order equation would mean that derivatives of |ψ〉
are also necessary to define initial conditions [4]. In the Shrödinger picture, we have

ih̄
d |ψ〉

dt
= Ĥ |ψ〉 , (1.44)

where the Hamiltonian, Ĥ, is a linear operator that is related to energy when t is time.
By requiring that the norm of |ψ〉 must be preserved, we find that Ĥ† = Ĥ, so Ĥ is
Hermitian. The Schrödinger evolution of the state can be written as

|ψ(t)〉 = Û |ψ(t0)〉 , (1.45)

and if Ĥ is time-independent3, then we have that the unitary operator Û is given by

Û = e−
i
h̄ Ĥ(t−t0) (1.46)

By examining how expectation values of operators evolve, we can discover the
Heisenberg picture, where only operators evolve. This is found by differentiating
the expectation value of operator Â and using the Hermiticity of Ĥ along with the
Schrödinger equation to arrive at the Heisenberg equation:

ih̄
dÂH

dt
= [ÂH, ĤH] + ih̄

∂Âs

∂t
. (1.47)

The H and S subscripts in the above equation denote in which picture the operators
are represented. If the operator Â has no explicit time dependence in the Schrödinger
picture, then the equation reduces to

ih̄
dÂ
dt

= [Â, Ĥ] (1.48)

3If Ĥ depends on time, then the argument of the exponential in Û is an integral of Ĥ over t0 to t,
which must be time-ordered if Ĥ does not commute with itself at different times. None of this will apply
for this work.
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with the H subscripts dropped. Now, operators can be evolved in the Heisenberg pic-
ture according to

Â = Û† ÂÛ, (1.49)

where Û is the same unitary operator as in the Schrödinger picture. Evolution in this
way ensures that expectation values agree regardless of which picture is used.

For a density matrix in the Schrödinger picture, we have that

ρ(t) = Ûρ(t0)Û† (1.50)

and after evolution, the expectation value of Â is given by

〈Â〉 = Tr[ρ(t)ÂS] = Tr[Ûρ(t0)Û† ÂS]. (1.51)

In the Heisenberg picture, we have

〈Â〉 = Tr[ρ(t0)ÂH(t)] = Tr[ρ(t0)Û† ÂSÛ], (1.52)

which is the same result due to the cyclic property of the trace.

1.4.2 Baker-Campbell-Hausdorff formula

When evolving operators, one can solve the differential equation given by the Heisen-
berg picture. However, one can also make use of the fact that since unitary operators
satisfy Û†Û = 1, it can be easier to simply make use of commutation relations. This
allows one to write

Û†ÔÛ = Û†ÛÔ′ = Ô′, (1.53)

where Ô′ can be found from Eq. 1.47 or the commutation

Ô′ = Ô + Û†[Ô, Û]. (1.54)

This commutator is not always easy to solve, but the Baker-Campbell-Hausdorff (BCH)
formula can be particularly useful. Suppose we have two operators, X̂ and Ŷ. If [X̂, Ŷ]
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is central (i.e. [X̂, [X̂, Ŷ]] = [Ŷ, [X̂, Ŷ]] = 0), then we have the formulas

esX̂Ŷe−sX̂ = Ŷ + s[X̂, Ŷ], (1.55)

et(X̂+Ŷ) = etX̂ etŶ e−
t2
2 [X̂,Ŷ]. (1.56)

The BCH formula extends to non-central [X̂, Ŷ], but this can become quite cumbersome
as often when the commutator of commutators does not vanish, the extended com-
mutators with X̂ and Ŷ must be computed ad infinitum. Occasionally one might be
fortunate and the infinite series will converge to something recognizable, but this is not
always the case. The extended version of BCH is given by the identity

eX̂eŶ = e(Ŷ+[X̂,Ŷ]+ 1
2! [X̂,[X̂,Ŷ]]+ 1

3! [X̂,[X̂,[X̂,Ŷ]]]+··· )eX̂. (1.57)

1.4.3 Rotations in phase space: optical phase shifts

From quantizing the field, we found the form of the evolution Hamiltonian in Eq. 1.8.
When writing this as a unitary evolution acting over time t, we have that

Û(t) = e−iωt
(

â† â+1
2

)
. (1.58)

By parameterizing such that ωt = θ and ignoring the global phase of e−i ωt
2 since it will

not change expectation values, we can redefine this operator as4

R̂(θ) = e−iθa† â = e−
iθ
2 (Q̂2+P̂2+1). (1.59)

For reasons that will soon become apparent, this is known as the rotation operator, and
it can be implemented by performing an optical phase shift on the particular mode.

To see how this operator behaves, let’s see how it transforms the creation and an-
nihilation operators if we use the Heisenberg picture. Using Eq. 1.47 and using natural
units such that h̄ = 1, we have that

i
dâ
dt

= [â, â† â], (1.60)

4Sometimes defined with θ → −θ.
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which leads to

˙̂a = −iâ

â(θ) = e−iθ â(0). (1.61)

Thus, we know that the operator transforms â and â† as

R̂†(θ)âR̂(θ)→ e−iθ â (1.62)

R̂†(θ)â†R̂(θ)→ eiθ â†. (1.63)

Using the definition given by Eq. 1.9, we see that the Q̂ operator transforms as

R̂†(θ)Q̂R̂(θ)→ Â(θ) ≡ Q̂ cos(θ) + P̂ sin(θ), (1.64)

where Â(θ) is a general rotated quadrature. This is why the operator described so far
is known as the rotation operator: it acts to rotate the state in phase space. Since this
is what happens as the field evolves in time under the free Hamiltonian, this operation
can be physically enacted simply by changing the path length of a traveling field, or
by applying an optical phase shift. Note that an optical phase shift is very different
from a shift, i.e., a translation or displacement, of the phase quadrature, which will be
discussed in the next section. The unfortunate naming conventions can be a major
source of confusion if one is not yet accustomed.

1.4.4 Translations in phase space: field displacements

Besides rotations, translations are also a fundamental quantum mechanical operation.
For a given operator, the translation operator is generated by the gradient of that opera-
tor. This means that for a pair of conjugate operators, such as position and momentum,
the translation operator for one is generated by the other. Thus, a translation by s in the
q-quadrature is enacted by

X̂(s) ≡ e−isP̂ (1.65)

X̂(s) |q〉q = |q + s〉q . (1.66)
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FIGURE 1.2: Wigner functions are plotted for the vacuum and displaced
vacuum.

Translations in the conjugate phase quadrature by an amount t is given by

Ẑ(t) ≡ e−itQ̂ (1.67)

Ẑ(t) |p〉p = |p + t〉p . (1.68)

These operators are named as X̂ and Ẑ due to their uses in CV quantum computation as
we will see later. X̂ and Ẑ provide a means to shift quantum states along the quadrature
axis, but often one makes use of a combined displacement operator given by

D̂(α) ≡ eαâ†−α∗ â. (1.69)

Using the BCH formula and Eq. 1.9 reveals that the displacement operator can also be
written as

D̂(α) = e−iRe[α]Im[α]Ẑ
(√

2Im[α]
)

X̂
(√

2Re[α]
)

. (1.70)

This displacement operator acts to push states around in phase space. In terms of the
Wigner function, the distribution remains the same but is merely translated in both q
and p.
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Coherent states

When applied to vacuum, the displacement operator creates coherent states, which are
eigenstates of the annihilation operator. These states are given by

D̂(α) |0〉 ≡ |α〉 = e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 . (1.71)

Coherent states have the property that â |α〉 = α |α〉, which essentially means that co-
herent states remain coherent states after photon loss5. These states are described by
coherent emission of photons with Poissonian statistics and have a defined phase and
amplitude but are the most ‘classical’ of the quantum states. These states are easily
accessible by experiment as they are produced by the output of a phase and intensity-
stabilized laser.

Viewing coherent states as displaced vacuum makes it evident that beyond being
shifted in the quadratures, the uncertainty of Q̂ and P̂ are symmetric and the same as
|0〉. This can be easily calculated as

(∆Q)2 = 〈α| Q̂2 |α〉 − 〈α| Q̂ |α〉2

= 1
2 〈α| (â2 + â†2 + ââ† + â† â) |α〉 − 1

2 〈α| (â + â†) |α〉2

= 1
2(α

2 + α∗2 + 2|α|2 + 1)− 1
2(α + α∗)2 = 1

2 , (1.72)

where in the last line of the above I have used ââ† = [â, â†] + â† â. Because the vac-
uum is symmetric in phase space, the uncertainty in the displaced vacuum will also be
symmetric (can be quickly checked) which leads to ∆Q = ∆P. Thus, vacuum and all
coherent states are minimum uncertainty states as they saturate the Heisenberg uncer-
tainty relation:

∆Q∆P = 1
2 (1.73)

Figure 1.2 plots the Wigner functions for a coherent state and vacuum state. The
phase of the coherent state is determined by the phase of the complex number α =

|α|eiφ, and the distance from the origin is related to the average number of photons
present in the state,

〈â† â〉 = 1
2〈Q̂2 + P̂2 − 1〉 = |α|2. (1.74)

5Albeit with a different amplitude. This is discussed more after introducing Kraus operators for loss.
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1.4.5 Phase-space symmetry

Now that I have introduced the basics of phase-space and state representations with the
Wigner function, it’s worth building a little more intuition into phase-space by looking
at rotational symmetries. Here I give a simple proof demonstrating that quantum state
symmetry in phase space is directly related to its Fock basis support: if a pure state
has N-fold symmetry in phase-space, then the Fock components comprising it are all
separated by multiples of N.

To better quantify phase-space symmetry, we say that a pure state |ψ〉 has N-fold
symmetry if there are exactly N values of θ ∈ [0, 2π) such that the Wigner function
remains unchanged after rotating through the angle θ = 2π

N k, k ∈ Z about the origin of
phase space. For example, a coherent state has symmetry of N = 1 as it must undergo
a full 2π rotation before returning to the initial state, a cat state has symmetry of N = 2,
and the example states in Fig. 1.3 have symmetry of N = 4. Each Fock state is an
eigenstate of the rotation operator, and thus has infinite symmetry. Defined this way,
if |ψ〉 is N-symmetric, then |ψ〉 must be an eigenstate of the rotation operator with a
phase of 2π

N and satisfies

R̂
(

2π

N

)
|ψ〉 = λ|ψ〉, (1.75)

where the rotation operator is defined by Eq. 1.59. Starting with a generic pure quan-
tum state defined as

|φ〉 =
∞

∑
n=0

φn|n〉, (1.76)

applying the rotation operator leads to

R̂
(

2π

N

)
|φ〉 =

∞

∑
n=0

φne−i 2π
N a†a|n〉 (1.77)

=
∞

∑
n=0

φne−i 2π
N n|n〉. (1.78)

Suppose we consider the class of states such that that all φn = 0 unless n = M + kN for
k ∈ Z. Then we have that

R̂
(

2π

N

)
|φ〉 =

∞

∑
k=0

φne−i 2π(M+kN)
N a†a|M + kN〉 = e−i 2πM

N |φ〉. (1.79)
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FIGURE 1.3: The Wigner quasi-probability distribution of binomial states
1
2

(
|0〉+

√
3|4〉

)
(left) and 1

2

(√
3|2〉+ |6〉

)
(right) have π

2 -symmetry in
phase space.

Therefore, |φ〉 has N-fold symmetry in phase space if it is of the form

|φ〉 = φ0|M〉+ φ1|M + N〉+ ... + φk|M + kN〉 (1.80)

for integers M, N, and k.

An example of this type of symmetry is shown in Fig. 1.3, where the states each
have photon number components separated by four, leading to π

2 rotation symmetry.
From this argument, one can simply look at a Wigner function and be able to deter-
mine not only signatures of ‘quantumness’ from Wigner negativity but also information
about photon number through simple symmetry arguments. In fact, if one has a Wigner
function that has rotational symmetry about an axis other than out-of-plane through the
origin, then it is merely a phase-space translation (displacement) away from returning
to a state centered at the origin having support on only a subset of the Fock basis. As
we will see in the next section, the squeezed vacuum has only even photon number.
This could be guessed simply by realizing that while vacuum has unbroken rotation
symmetry (thus a single Fock component), squeezing the vacuum in phase-space acts
to break this symmetry and reduce it to π symmetry only, which means it must have
only every-other photon number in the Fock-basis superposition.
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FIGURE 1.4: Parametric down-conversion. Pump photons excite virtual
energy levels that decay into photon pairs. This process is reversible and
is known as second-harmonic generation when ω1 = ω2 = ω are used to

generate light at 2ω.

1.4.6 Squeezing

While the vacuum and coherent states are both minimum uncertainty states, their un-
certainty is symmetric across the generalized quadrature Â(θ) (defined in Eq. 1.64) in
that ∆Â(θ) = 2−1/2 for all values of θ. Can we instead make a state that saturates the
Heisenberg inequality but is asymmetric in the uncertainty? The answer is yes, as this
is precisely what the squeezing operator does.

The squeezing operator arises from the nonlinear optical process of down-conversion
depicted in Fig. 1.4 where there is a probability for a pump photon at frequency ω0 to
down-convert into two photons such that energy conservation is satisfied:

ω1 + ω2 = ω0. (1.81)

This process must also be phase-matched so that momentum is conserved:

∆k = k0 − k1 − k2 ≈ 0. (1.82)

The phase-matching requirement is written as being approximately zero since the non-
linear process can still occur for nonzero ∆k, where the intensity of the down-converted
light will scale as I ∝ sinc 2(∆k L

2 ) for a crystal of length L. This condition allows for
clever engineering of nonlinear crystal optics that are only quasi-phase matched, which
allows for a compromise to make experimental implementation simpler while also pre-
serving a large enough effective nonlinearity [13].

For now, suppose that we only focus on the degenerate process such that ω1 =

ω2 = ω0/2. In this case and in the regime where a small portion of the pump beam
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is down-converted, known as the undepleted pump approximation, the pump inten-
sity combines with phase matching and intrinsic crystal properties to give an effective
squeezing Hamiltonian of

Ĥsq =
ih̄
2 χ(2)(â†2 − â2). (1.83)

Here, the pump is undepleted and we are considering the degenerate frequency case,
this is a single-mode Hamiltonian for the down-converted field at ω0/2. Parameteriz-
ing as r = χ(2)t leads to the single-mode squeezing operator given by

Ŝ(r) = e
r
2 (â†2−â2) = e−

ir
2 (Q̂P̂+P̂Q̂). (1.84)

As the name suggests, the squeezing operator acts to scale the quadratures by
compressing one axis. To maintain the uncertainty relation, the conjugate axis must
be stretched. This scaling can be understood by determining the effects of Ŝ on the
quadrature operators. Using Eq. 1.47, we find that

Ŝ†(r)Q̂Ŝ(r)→ erQ̂ (1.85)

Ŝ†(r)P̂Ŝ(r)→ e−r P̂. (1.86)

The application of the squeezing operator to vacuum is shown in Fig. 1.5, where
the vacuum is squeezed by 6 dB in the central plot and 12 dB in the plot at right. The
amount of squeezing is often measured in decibels below the vacuum noise leading to
a conversion of

sdB = 20 log10

(
∆P0

∆Pr

)
= 20 log10(e

r). (1.87)

Occasionally in other quantum optics texts, the squeezing operator will be defined with
a complex r so that an arbitrary quadrature can be squeezed. However, here I will sim-
ply leave r as a real parameter where r > 0 means the p-quadrature will be squeezed,
r < 0 means the q-quadrature will be squeezed, and squeezing of an arbitrary quadra-
ture operator Â(θ + π/2) can be achieved by applying the operator R̂†(θ)ŜR̂(θ).

Experimentally, squeezing the vacuum has been the most successful route to pro-
duce the largest squeezing, with levels reaching 15 dB [14]. In the photon-number basis,
we can write squeezed vacuum as

Ŝ(r) |0〉 = 1√
cosh r

∞

∑
n=0

tanhn r

√
(2n)!

2nn!
|2n〉 . (1.88)
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FIGURE 1.5: Theoretical Wigner functions are plotted for the vacuum and
squeezed vacuum. The middle plot is squeezed by 6 dB while the right

plot is squeezed by 12 dB.

This formula is really quite interesting as it shows that regardless of how strongly the
vacuum is squeezed, the state will only ever have even photon numbers! In hindsight,
thinking about the process in terms of down-conversion and examining the Hamilto-
nian in Eq. 1.83 makes this obvious; in the absence of loss and other imperfections, each
pump photon that is down-converted will contribute exactly two photons the field. For
stronger squeezing, many pump photons can be converted simultaneously leading to
pairs of photon pairs, and so on, leading to even photon numbers.

If we instead express squeezed vacuum in the quadrature basis, we can achieve a
deeper understanding in a different way. Here,

Ŝ(r) |0〉 = Ŝ(r)π−1/4
∫

dt e−t2/2 |t〉p
=
√

2π1/4Ŝ(r)e−P̂2/2Ŝ†(r)Ŝ(r) |0〉q

= s1/2π−1/4
∫

dt e−
s2t2

2 |t〉p , (1.89)

where we let s = er. After the first line, we used Eq. 1.34 and then that zero-quadrature
eigenstates are also eigenstates of the squeezing operator:

Ŝ(r) |0〉q = e−
ir
2 (2P̂Q̂+i) |0〉q = e

r
2 |0〉q . (1.90)

If we take the large squeezing limit where r → ∞, then we have that Eq. 1.89 becomes
a normalized version of |0〉p. Thus, large squeezing is the closest physical means of
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approximating the unphysical quadrature eigenstates. Later, we will see how to con-
vert quadrature eigenstates into finitely-squeezed states using non-Hermitian opera-
tors that arise from some physical processes.

1.4.7 Two-mode beamsplitter

Up until now, we have only considered operators that act on a single mode. Quantum
information can only take advantage of scaling when we include multi-mode operators.
One important passive two mode operator is the beamsplitter.

Given annihilation operators â and b̂ for two modes in separate Hilbert spaces,
the beamsplitter operator is given by the unitary operator

B̂ab = eθ(â† b̂eiφ−âb̂†e−iφ), (1.91)

where θ is the beamsplitter angle that determines mode coupling, and φ is the beam-
splitter phase. This can also be written in terms of the quadrature operators as

B̂ab = exp
[
θ sinh φ(Q̂aQ̂b + P̂aP̂b) + iθ cosh φ(Q̂aP̂b − P̂aQ̂b)

]
. (1.92)

Using the Heisenberg picture, operators â and b̂ are transformed according to

˙̂a = b̂eiφ, ˙̂b = −âe−iφ, (1.93)

which lead to
¨̂a = −â, ¨̂b = −b̂. (1.94)

Solving the differential equations with the conditions that

â(θ = 0) = â, b̂(θ = 0) = b̂ (1.95)

leads to the transformation that

B̂†
ab

(
â
b̂

)
B̂ab =

(
b̂eiφ sin θ + â cos θ

−âe−iφ sin θ + b̂ cos θ,

)
(1.96)

where the creation operators transform similarly. Setting the phase φ = π and letting
r = sin θ, t = cos θ leads us to symplectic matrix representation of the beamsplitter
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transformation given by

(
t −r
r t

)(
a
b

)
=

(
ta− rb
ra + tb

)
. (1.97)

Symplectic transformations are the most general linear operations that preserve the
bosonic commutator, [â, â†] = 1.

It is important to note that the phase φ can be changed by applying single-mode
rotations to the states before and after the beamsplitter. For this reason, the beamsplitter
phase can be chosen for convenience with the assumption that an optical phase can be
applied for free as needed. The beamsplitter convention used throughout this text is not
always fixed, but changes are noted as they occur by defining the precise beamsplitter
operator used.

When writing circuit diagrams, it will be useful to represent the beamsplitter in-
teraction between two qumodes as an arrow,

��

j
θ

k
= B̂jk(θ) = B̂kj(−θ) := eθ(aja†

k−a†
j ak). (1.98)

This will almost always be used to represent the balanced beamsplitter where θ = π
4 ,

but the value of θ will be specified in the text if this is not the case.

1.4.8 Two-mode squeezing

The process in Fig. 1.4 is not restricted to a single output mode as the pump photon can
produce photon pairs at different frequencies, thus requiring a two-mode output state.
Alternatively, the process might be degenerate in frequency, but the output photons
may be crossed-polarized, such that they are still each in a separate mode. For these
cases, the single-mode squeezing operator from Sec. 1.4.6 can be extended to multiple
modes.

For output modes â and b̂, the two-mode squeezing operator is given by

Ŝab(r) = er(â† b̂†−âb̂) = e−2ir(Q̂a P̂b+P̂aQ̂b). (1.99)

The photons are emitted in pairs as before, but now they are emitted as one in each
mode. In the Fock basis, applying the two-mode squeezing operator to vacuum leads
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to

Ŝab(r) |0〉a |0〉b =
1

cosh r

∞

∑
n=0

tanhn r |n〉a |n〉b . (1.100)

Alternative to jointly squeezing vacuum modes directly, Ŝab acting on vacuum can also
be decomposed into single-mode squeezing and a passive beamsplitter operation. This
arises from the more general formula [15]

B̂ab(
π
4 , φ)Ŝa(ra)Ŝb(rb) |0〉a |0〉b

=Ŝa

(
1
2(ra + rbe2iφ)

)
Ŝb

(
1
2(rae−2iφ + rb)

)
Ŝab

(
1
2(raeiφ − rbe−iφ)

)
|0〉a |0〉b , (1.101)

which for ra = rb = r and φ = π
2 implies that

B̂ab(
π
4 , π

2 )Ŝa(r)Ŝb(r) |0〉a |0〉b = Ŝab(r) |0〉a |0〉b . (1.102)

Note that the squeezing here is preserved before and after the beamsplitter. Before,
each of the single modes was squeezed by r such that the two squeezed quadratures
are Ŝ†

a P̂aŜa = P̂ae−r and Ŝ†
b P̂bŜb = P̂be−r. After the beamsplitter, there are still two

squeezed and two anti-squeezed quadratures, but these are now linear combinations
of the individual field quadratures. After the beamsplitter, we have that

Ŝ†
ab(r)(Q̂a − Q̂b)Ŝab(r) = (Q̂a − Q̂b)e−r (1.103)

Ŝ†
ab(r)(P̂a + P̂b)Ŝab(r) = (P̂a + P̂b)e−r. (1.104)

The two quadratures that are now squeezed are the phase-sum and amplitude-difference
quadratures, P̂+ = (P̂a + P̂b) and Q̂− = (Q̂a− Q̂b). Similarly, the conjugate quadratures
of P̂− and Q̂+ are anti-squeezed. Because of this, squeezing can be seen to be an irre-
ducible resource that passive transformations such as rotations and beamsplitters just
redistribute [16]. All signs in Eq. 1.103 can be flipped through choice of beamsplitter
phase, which amounts to a rotation of the squeezed quadrature.
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It is also helpful to have the explicit forms for how each quadrature rotates indi-
vidually6. The individual quadratures transform according to a hyperbolic rotation:




cosh(r) 0 sinh(r) 0
0 cosh(r) 0 − sinh(r)

sinh(r) 0 cosh(r) 0
0 − sinh(r) 0 cosh(r)







Q̂a

P̂a

Q̂b

P̂b




=




Q̂a cosh(r) + Q̂b sinh(r)
P̂a cosh(r)− P̂b sinh(r)

Q̂b cosh(r) + Q̂a sinh(r)
P̂b cosh(r)− P̂a sinh(r)




.

(1.105)

1.4.9 Controlled gates

The two-mode squeezing operation can be related to other mathematical operations
that are very useful in quantum computation. When considering qubits, one often
defines controlled gates that act to perform an operation on one qubit depending on the
state of the other. This will be discussed more in Sec. 1.6, but it is useful to consider CV
gates that act to perform quadrature shifts, or displacements, on one mode depending
on the state of the other. The naming convention will become more clear in future
sections, but for now, let’s define the CV gates

ĈX(g) ≡ e−igQ̂1P̂2 (1.106)

ĈZ(g) ≡ eigQ̂1Q̂2 . (1.107)

When applied to states, the second qumode is shifted by the scaled eigenvalue of the
first according to

ĈX(g)|s〉q1
|t〉q2

= e−igsP̂2 |s〉q1
|t〉q2

= |s〉q1
|t + gs〉q2

(1.108)

ĈZ(g)|s〉q1
|t〉p2

= eigsQ̂2 |s〉q1
|t〉p2

= |s〉q1
|t + gs〉p2

. (1.109)

6These equations come about as an intermediary step to deriving Eq. 1.103 using the Heisenberg
picture.
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Note that the second qumode in the second line is a momentum ket. We can also use
the BCH formula to see how the quadrature operators transform, where we have

Ĉ†
X(g)P̂1ĈX(g) = P̂1 − gP̂2, (1.110)

Ĉ†
X(g)Q̂2ĈX(g) = Q̂2 + gQ̂1, (1.111)

Ĉ†
Z(g)P̂1ĈZ(g) = P̂1 + gQ̂2, (1.112)

Ĉ†
Z(g)P̂2ĈZ(g) = P̂2 + gQ̂1. (1.113)

The operators Q̂1 and P̂2 both commute with ĈX and are thus unaffected by the action
of the gate. Similarly, ĈZ has no effect on Q̂1 and Q̂2. For both gates, the value of the
coefficient will generally be taken to be g = 1 as it can be tuned through a single-mode
squeezing rotation on either or both modes. When the gate is written denoted without
the argument simply as ĈX or ĈZ, it can be assumed that g = 1.

1.4.10 EPR states

The canonical EPR state is a two-mode state such that one particle, or mode, is perfectly
correlated in position or momentum with the other [17]. Defined in the q-basis, we have

|EPR〉12 =
1√
2π

∫
dt |t〉q1

|t〉q2
=

1√
2π

∫
dt |t〉p1

|−t〉p2
, (1.114)

which is perfectly correlated in position and perfectly anti-correlated in momentum.
Supposed one starts with two zero-quadrature eigenstates, one |0〉p and one |0〉q. These
can be transformed into an EPR state by applying the ĈX gate defined in the previous
section. We have

ĈX|0〉p1
|0〉q2

= e−iQ̂1 P̂2√
2π

∫
dt |t〉q1

|0〉q2

= 1√
2π

∫
dt |t〉q1

|t〉q2
. (1.115)

This can be written as the circuit

• |0〉p
|EPR〉 := 1√

2π
1

= |0〉q
, (1.116)
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where the connection with an open circle represents the ĈX gate, the boxes represent
single-mode operators, and the ended circuit represents an EPR pair. Here and every-
where else I show circuit diagrams7, I adopt the convention that the circuit proceeds
from right to left. This is so that when the circuit is written out mathematically with
operators, it can be written down and read left to right.

One particular use of a diagrammatic approach is that operators can be easily
transferred, or ‘bounced’, from one mode to the other across an EPR pair [18]. This
bouncing can be represented as

O
=

OT
. (1.117)

In the above, the closed off portion on the right of each diagram represents an
incoming EPR pair. The circuit on the left-hand side represents applying operator Ô to
mode one of the EPR state, and the right-hand circuit, which is equivalent, represents
taking an EPR state and applying the transpose of the operator, ÔT, to mode two. It
is important to be aware that the transposed operator is not the same as the daggered
operator. Here, the transpose is taken in the Q-basis, so that Q̂T = Q̂ while P̂T = −P̂.

To see how these relations come about, first consider a single-mode operator that
is a function of Q̂ only, O(Q̂), applied to an EPR state. We have

O(Q̂1) |EPR〉12 =
1√
2π

∫
dt O(t) |t〉q1

|t〉q2

=
1√
2π

∫
dt |t〉q1

O(Q̂2) |t〉q2

= O(Q̂2) |EPR〉12 . (1.118)

7Other than one or two exceptions, namely Fig. 1.8.
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Similarly, for an operator that is a function of P̂ only, we have that

O(P̂1) |EPR〉12 =
1√
2π

∫
dt O(t) |t〉p1

|−t〉p2

=
1√
2π

∫
dt |t〉q1

O(−P̂2) |−t〉q2

= O(−P̂2) |EPR〉12 . (1.119)

We have already discussed how quadrature eigenstates are unphysical. However in
the large squeezing limit, two-mode squeezed vacuum approaches the EPR state. This
arises since

lim
r→∞

Ŝ12(r)|0〉N1
|0〉N2

→
∞

∑
n=0
|n〉N1

|n〉N2
=
∫

dt |t〉q1
|t〉q2

. (1.120)

1.5 Kraus Operator Formalism and the Lindblad equa-

tion

Up to this point, we have only considered evolving states and operators using the meth-
ods in Sec. 1.4; however, a more general formalism is required.

An example: photon loss

FIGURE 1.6: Photon loss can be modeled as a quantum state interacting
with the vacuum at a beamsplitter, where a partial trace is performed over
the reflected mode. The transmitted mode is now a mixture and must nec-

essarily be represented as a density operator.

As an example, consider the process of photon loss. This can be modeled as shown
in Fig. 1.6, where a quantum state interferes with the vacuum at an entangling beam-
splitter and the second of the two modes is ‘thrown away’. This would be achieved by
performing a partial trace over subsystem b, leaving us with a statistical mixture. In
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the specific case where mode a is the pure state |ψ〉 = ∑n ψn |n〉 and mode b is vacuum,
|0〉, our loss-degraded density operator would be [19]

ρ′ = Trb

[
B̂|ψ〉a〈ψ| ⊗ |0〉b〈0| B̂†

]

= Trb

[
∑
n,m

ψnψ∗m√
n!m!

(tâ† − rb̂†)n|00〉ab〈00| (tâ− rb̂)m

]

= Trb




∞

∑
n,m

tn+mψnψ∗m
n,m

∑
k,k′

(
n
k

)1
2
(

m
k′

)1
2
(−r

t

)k+k′

|n− k〉a〈m− k′| ⊗ |k〉b〈k′|



=
∞

∑
k

∞

∑
n=k
m=k

tn+mψnψ∗m

(
n
k

)1
2
(

m
k

)1
2 (r

t

)2k
|n− k〉a〈m− k| . (1.121)

We have managed to write an expression for our state, albeit a cumbersome one, but
it’s there and it makes sense considering what we might expect of loss. If there is no
loss (r = 0) then the state remains pure and ρ′ = ρ = |ψ〉 〈ψ|. As r increases, there is a
higher weighting on the components of the density matrix where the photon number
inside the ket has been decreased, which corresponds to lost photons.

Instead of having to calculate the state evolution through the beamsplitter, in-
volve the ancillary vacuum mode, and perform the partial trace, it would be nice if we
had an alternative means of applying loss directly as an operator, such as in the form

ρ′ =
∞

∑
k=0

K̂kρK̂†
k . (1.122)

Here, the operators K̂k are known as Kraus operators. I will circle back around to the
specific problem of loss, but the desire to write the loss process in the form of Eq. 1.122
brings us to a wider problem: How do we evolve states that potentially interact with
external systems that may then involve non-unitary evolution such as detection or a
partial trace? This is where we can rely on the Kraus operator formalism and the Lind-
blad master equation.

1.5.1 Lindblad master equation

The Lindblad equation describes the general evolution of a density operator that is sub-
jected to open and potentially non-unitary evolution with the environment. Phrased
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differently, it describes the evolution of a subsystem of a larger, more complicated sys-
tem. An excellent introduction and pedagogical derivation of the Lindblad equation,
density matrix evolution, and Kraus operators can be found in Ref. [20]. The ques-
tion of evolving an arbitrary subsystem ρ in Hilbert space H of dimension N through
general physical processes amounts to determining maps V that transform ρ into other
physical density matrices existing in Hilbert space H. More formally, if ρ(H) is the
space of all density matrices within Hilbert space H, we wish to find maps of the form
V : ρ(H)→ ρ(H). These operators necessarily must:

• Preserve the trace; Tr[VA] = Tr[A] for all valid operators Â acting in H

• Be a completely positive map.

With these conditions, V is generally known as a completely-positive trace-preserving
(CPT) map. The first condition is fairly self-explanatory, as all valid density matrices
must have trace 1. The second is a bit more subtle. We need that V acting in H must
map positive, semi-definite matrices to other positive semi-definite matrices, but also
that V⊗ 1n is a positive map for all integers n, where 1n represents the tensor product
of n identity operators. This last bit essentially means that if V is acting on subsystem ρa

of large system ρa ⊗ σb, then the result after taking a partial trace must still be positive
semi-definite: Trb[(Va ⊗ 1b)(ρa ⊗ σb)] ≥ 0.

By the Choi-Kraus theorem, the map V is completely positive and trace-preserving
if and only if it can be expressed as

Vρ = ∑
i

ViρV†
i , (1.123)

where Vi satisfy the condition:

∑
i

V†
i Vi = 1. (1.124)

The operators Vi ≡ Ki are known as Kraus operators. Note that these operators need not
be orthonormal, and furthermore, need not be unique8. Although we will only need
the Kraus operator formalism and not the full Lindblad equation, it is worth providing
the latter for completeness. In the spirit of the Schrödinger equation, the goal is to find
a differential equation

d
dt

ρ(t) = Lρ(t), (1.125)

8It is possible for a physical process to be accurately described by more than one set of Kraus opera-
tors. The set used is determined by the basis of the trace-out mode.



1.5. Kraus Operator Formalism and the Lindblad equation 31

such that we can write our time-dependent map as V(t) = eLt. Choosing an orthonor-
mal operator basis, {Fi}, spanning H such that Tr[F†

i Fj] = δi,j and letting the last one
be proportional to the identity, FN2 = 1√

N
1, allows the Lindblad master equation to be

written as

ρ̇ = − i
h̄ [Ĥ, ρ] +

N2−1

∑
j,k

gj,k

(
FjρF†

k − 1
2(F†

k Fjρ + ρF†
k Fj)

)
. (1.126)

In the above, the Hamiltonian Ĥ and the coefficient matrix g act together to define
the evolution of the system. The coefficient matrix g can be diagonalized by a unitary
transformation, which allows one to rewrite the Lindblad equation in a diagonal form
of

ρ̇ = − i
h̄ [Ĥ, ρ] +

N2−1

∑
k

γk

(
LkρL†

k − 1
2(L†

k Lkρ + ρL†
k Lk)

)
. (1.127)

In this form, γk are the eigenvalues of g and Lk are known as the Lindblad jump oper-
ators for the system,

Lk =
N2−1

∑
j=1

ujkFj, (1.128)

where ujk are the elements of the unitary matrix that diagonalizes g.

One example for the use of the Lindblad equation is cavity dynamics. Imagine a
cavity field with the only interaction being to couple to a zero-temperature bath, mean-
ing that occasionally the cavity field may leak photons into the environment of vacuum
modes, but no additional photons will get back in. For a decay rate of κ and in the ro-
tating frame of the cavity (such that [Ĥ, ρ] = 0), the Lindblad equation for this system
is [21]

d
dt

ρ = κ
(

âρâ† − 1
2(â† âρ + ρâ† â)

)
. (1.129)

The term in the inner parentheses on the right is the unitary portion that describes
the evolution of ρ by the free-field Hamiltonian. The first term after the equal sign,
however, describes the non-unitary interaction with the environment where there is a
potential for photons to be lost, as âρâ† reduces the photon number of ρ by one. This
equation is exactly related to the effects of loss that will be described next.
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1.5.2 Kraus operator for loss

Let us return to the problem of loss discussed at the beginning of this section, and see
if the Kraus operator formalism can make things a bit easier. The goal is to take the
density operator we ended up with in the last line in Eq. 1.121 and turn in into some
sum of operators acting on the initial density matrix. First, we can make use of the
identity

âk |n〉 =
√

n!
(n−k)! |n− k〉 (1.130)

to write that the loss-degraded density operator is given by

ρ′ =
∞

∑
k=0

∞

∑
n=k
m=k

tn+m

k!
ψnψ∗m

(r
t

)2k
âk |n〉〈m| â†k. (1.131)

Next, we can reset the lower limits of the second sum to n = 0 and m = 0 since âk |n〉 =
0 when k > n. Additionally, we can use an eigenvalue trick to promote the coefficient
tn to an operator,

tn |n〉 = tn̂ |n〉 = tâ† â |n〉 , (1.132)

which allows us to pull this term outside of the sum, but only after the factor of âk since
n̂ and â do not commute. This gives

ρ′ =
∞

∑
k=0

1
k!

(r
t

)2k
âktâ† â




∞

∑
n=0
m=0

ψnψ∗m |n〉 〈m|


 tâ† â â†k, (1.133)

which is exactly the form of Eq. 1.122 we wished to find where K̂k are the Kraus opera-
tors associated with loss given by

K̂k =

√
(1− η)k

k!ηk âk e
1
2 â† â ln η, (1.134)

and I have let the overall loss be η = t2 and rewritten the tâ† â term as an exponential.
This derivation started with a pure state, but we could have just as easily begun with an
arbitrary density matrix and arrived at the same result. Thus, these Kraus operators are
general and Eqs. 1.133 & 1.134 completely describe single-mode loss. Multi-mode loss
is a simple extension of this theory, where one sums over tensor products of the Kraus
operators in Eq. 1.134 applied to each mode of the state. Next, I will discuss properties
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and uses of a specific operator that showed up here, e−βâ† â, where β = −1
2 ln η, which

is otherwise known as the damping operator.

1.5.3 The damping operator

The damping operator is a non-unitary operator that acts to symmetrically de-amplify
quantum states and can be defined as

N̂(β) := e−βâ† â = e−
β
2 (Q̂

2+P̂2−1). (1.135)

When applied to a quadrature eigenstate, the damping operator brings the unphysical
state to a displaced finitely squeezed vacuum state. This can be seen by first applying
N̂ to the zero-valued quadrature eigenstate |0〉p. Writing |0〉p in the Fock-basis in the
infinite squeezing limit, we have

|0〉p = lim
r→∞

1√
cosh r

∞

∑
n=0

(tanh r)n
√
(2n)!

2nn!
|2n〉N (1.136)

Applying the damping operator to the above state yields

N̂(β)|0〉p = lim
r→∞

1√
cosh r

∞

∑
n=0

(e−2β tanh r)n
√
(2n)!

2nn!
|2n〉N. (1.137)

Because N̂(β) is non-unitary, this state must now be normalized. Additionally, by re-
placing e−2β tanh r with tanh r′, we have that

N̂(β)|0〉p = N
∞

∑
n=0

(tanh r′)n
√
(2n)!

2nn!
|2n〉N, (1.138)

which is just a finitely squeezed state of squeezing parameter r′ = tanh−1 [e−2β
]

in the
limit r → ∞ with normalization given by

N =

√
1

cosh r′
. (1.139)
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Using these results, we can also examine the effects of applying the damping operator
to a non-zero quadrature eigenstate, |m〉p, in which case we have

N̂(β)|m〉p = N̂(β)Ẑ(m)N̂(−β)N̂(β)|0〉p
= N̂(β)Ẑ(m)N̂(−β)Ŝ(r′)|0〉N, (1.140)

since the inverse of N̂(β) is N̂(−β). Using commutation relations, we can derive that

N̂(β)âN̂(−β) = âeβ (1.141)

N̂(β)â†N̂(−β) = â†e−β (1.142)

which leads to
N̂(β)Q̂N̂(−β) = Q̂ cosh β + iP̂ sinh β. (1.143)

The above equation is useful to determine the transformation of the momentum-shift
operator, which will be used later in Ch. 3, to be

N̂(β)Ẑ(m)N̂(−β) = eim(Q̂ cosh β+iP̂ sinh β) (1.144)

= e
m2
2 sinh β cosh βe−m(P̂ sinh β)Ẑ(m cosh β). (1.145)

Putting everything together, we now have that

N̂(β)|m〉p = Aβe−m(P̂ sinh β)Ẑ(m cosh β)Ŝ(r′)|0〉N, (1.146)

as announced, where
Aβ = e

m2
2 sinh β cosh βN−1. (1.147)

1.5.4 Projective measurement

In Eq. 1.133, we have a nice example where we were able to explicitly derive the opera-
tors that comprise our CPT map from a channel having known loss. But one might ask,
what happens if we don’t perform a partial trace, but instead, place a detector in that
channel to perform a projection in the Fock basis?

This process is otherwise commonly known as photon subtraction, which is when
a beamsplitter is used to direct a small portion of light to a detector where photons are
‘subtracted’ from the main beam. It turns out that the Kraus operator describing the
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process will look much like the loss operators in Eq. 1.134, but the new density matrix
will no longer be a sum of these operators applied to the initial state, but rather just a
single one of them. This will in actuality not preserve the trace, as the trace of the new
density matrix will instead reflect the probability for the specified detection event to
occur. This is due to the fact that we are indeed post-selecting on a specific event, thus
all detections other than the specified one are discarded.

Photon subtraction

Direct application of the annihilation operator in the optical domain remains a chal-
lenge, but we have the capability to probabilistically apply ân followed by unavoidable
damping of both quadratures due to the physical implementation involving a beam-
splitter. This method is shown in Fig. 1.7 and is executed by a beamsplitter and a
photon-number resolved detector (PNRD), where a small amount of one mode is cou-
pled to vacuum and sent to the PNRD. Detecting n photons leads to the approximate
application of ân when beamsplitter reflectivity is low, but we will derive the Kraus
operator representation of this system in general.

FIGURE 1.7: Experimental photon subtraction, where a weakly reflective
beamsplitter is used to direct a portion of the light to a photon counting
detector. The transmitted beam is then the initial state with the number of

detected photons having been removed, or ‘subtracted’.

For a beamsplitter operator given by [19]

B̂ = eθ(â†
1 â2−â1 â†

2), (1.148)

we can use Sec. 1.4.7 to see that the annihilation and creation operators are transformed
to

B̂†

(
â1

â2

)
B̂ =

(
t r
−r t

)(
â1

â2

)
=

(
tâ1 + râ2

tâ2 − râ1

)
, (1.149)
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where r = sin θ and t = cos θ. If we write |ψ〉 = ∑m ψm |m〉, then coupling |ψ〉 to
vacuum with B̂ and detecting n photons in one output leads to the final output

2〈n|ψ′〉12 = 2〈n| ∑
m=0

ψm√
m!

B̂â†m
1 |0〉1|0〉2

= 2〈n| ∑
m=0

ψm√
m!

m

∑
k=0

(
m
k

)
(tâ†

1)
m−k(−râ†

2)
k|0〉1|0〉2

=
1√
n!

(−r
t

)n

∑
m=0

tmψm ân
1 |m〉1

(1.150)

Recognizing that tm |m〉 can be rewritten as an exponentiated number operator acting
on a Fock state, we can replace tm with a damping operator having argument (− ln t)
and arrive at

2〈n|ψ′〉12 =
1√
n!

(−r
t

)n
ânN̂(β) |ψ〉 , (1.151)

where β = − ln t. Using the commutation relation from Eq. 1.141 allows us to write the
Kraus operator representing photon-subtraction for any beamsplitter reflectivity as

Ŝn =
(−1)ne−nβ/2
√

n!
(2 sinh β)n/2 N̂(β)ân. (1.152)

The probability of successfully subtracting n photons from an input density matrix, ρ,
is given by

P(n) = Tr
[
Ŝ†

n Ŝnρ
]

, (1.153)

and the new subtracted density matrix becomes

ρ′ =
ŜnρŜ†

n
P(n)

. (1.154)

As a quick check, we can verify the results of the limiting cases. When t → 1, β → 0,
so the damping term becomes identity and we would have perfect application of the
annihilation operator. Of course, however, this limit also has P(n) → 0 ∀n 6= 0, so no
photons will ever reach the PNRD to be subtracted. In the other limit where t → 0, we
have that β → ∞, so the output is ‘infinitely damped’, which means the output mode
is only vacuum.
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Photon addition

A similar process can be used to effectively enact a photon addition. Rather than leav-
ing the second beamsplitter port empty, one can instead input a single photon, |1〉, and
post-select on an event where the detector didn’t record any photons which amount to
a projection on the vacuum. The derivation follows similarly to the above and results
in the photon-addition Kraus operator of

Â =

√
sinh β

2
eβ/2e−βâ† â â†, (1.155)

where again t = e−β = cos θ is the beamsplitter coefficient.

1.6 Quantum Computation

Quantum computation is often considered the ‘Holy Grail’ of quantum information sci-
ences and has the potential to outclass classical computing on certain problems. First
proposed forty years ago by Feynman as a possible method of simulating other quan-
tum systems [22], the field has made substantial progress in a relatively short period of
time. Once Peter Shor discovered a quantum algorithm that could factor numbers ex-
ponentially faster than a classical computer and destroy RSA security encryption [23],
the field understandably gained attention far beyond the initial scientific curiosity. To-
day, quantum computers have demonstrated an ability to first compete with [24] and
now outclass the world’s largest supercomputers at a few select problems with both
superconducting transmon qubits and photons [25–27]. These quantum supremacy
tasks are generally designed favorably for the quantum computer and involved sam-
pling a random quantum process that is difficult for a classical computer to simulate.
It is now nearly a certainty that real quantum computers will eventually find a niche
in which they either assist or outperform classical computers for certain tasks, but pre-
cisely which technology will prevail, to what extent quantum will overtake classical,
and exactly when this will happen is all up in the air [28, 29].

Scott Aaronson, who maintains an informative — and often entertaining — blog
on quantum computing, recently attempted to put into words why explaining the ori-
gin of a quantum advantage in simple terms is challenging [30]. Without mathematics,
the best that words can generally do is to say that quantum mechanics allows access to
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FIGURE 1.8: (a) The Bloch sphere, where the state of a qubit is represented
by a vector lying on the surface. (b) Deutsch-Jozsa algorithm circuit taken
from Ref. [5] where f(x) is determined to be either constant or balanced.

The ‘/n’ in the top wire of the circuit represents a register of n qubits.

a larger (better scaling than classical) vector space (the Hilbert space) that can be used
to perform calculations through the use of extended superposition across constituent
particles (entanglement) and that the nature of quantum interference of probability am-
plitudes from controllable interactions allows the cancellation of many possibilities,
leading to a high-likelihood to measure the result in a state that answers a problem at
hand. Ignoring the experimental challenges, theoretical difficulties involve attempting
to coerce the ‘wrong’ probability amplitudes to destructively interfere without already
knowing the result in advance. Additionally, even proving that a particular problem is
hard for a classical machine is difficult, and the best one can often do is to demonstrate
that a particular quantum algorithm has a speed-up over the best known classical al-
gorithm. The Quantum Algorithm Zoo9 is an online repository that attempts to catalog
all currently known quantum algorithms with potential speed-ups, including the wider
known algorithms such as factoring, sorting, and optimization.

1.6.1 Qubits

In most cases, introductions to quantum computing begin with the Bloch sphere, de-
picted in Fig. 1.8. Here, we start with the basic building block of the device, the qubit,
which when measured takes on a binary value of 0 or 1. One could equally well use a
qudit that could take on several discrete values of 0, 1, 2, ... etc., but partly due to the

9https://quantumalgorithmzoo.org/

https://quantumalgorithmzoo.org/
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simplicity and partly due to the propensity for classical computing to use binary bits,
the majority of quantum implementations focus on qubits. As a quantum object, the
state of a single qubit can be represented by a superposition of basis vectors |0〉 and |1〉.
An arbitrary superposition for a pure state of this form can be described by

|ψ〉 = a |0〉+ b |1〉 , (1.156)

where a and b are complex numbers. By enforcing normalization such that |a|2 + |b|2 =

1, which is equivalent to saying that when measured |ψ〉 must collapse into either |0〉
with probability |a|2 or |1〉 with probability |b|2, and by ignoring an overall global
phase, the two complex parameters can be reduced to two continuous real parame-
ters. These real parameters, θ and ϕ, give the location of a vector on the surface of the
Bloch sphere (for a pure state). The most general representation of a qubit then, up to a
global phase, is given by

|ψ〉 = cos (θ/2) |0〉+ sin (θ/2)eiϕ |1〉 , (1.157)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π are the two continuous parameters that describe
the state. This state is normalized since cos2 (θ/2) + sin2 (θ/2) = 1, and the probabil-
ity amplitudes are allowed to take on complex values. When working with discrete
quantum information in particular, it is often helpful to use canonical representation
where

|0〉 =
(

1
0

)
|1〉 =

(
0
1

)
. (1.158)

This allows for an intuitive understanding of quantum gates as unitary matrices that
map one state vector to a next so that an arbitrary single-qubit unitary gate can be
represented as

U =

(
u00 u01

u10 u11

)
(1.159)

Some of the most fundamental quantum gates are the Pauli gates, (X, Y, Z), which
give rise to general rotations around the respective x̂, ŷ, and ẑ axes of the Bloch sphere
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when exponentiated, e−
iθ
2 σk where σk ∈ {X, Y, Z}. Explicitly, these matrices are:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
, (1.160)

where their commutation relation leads to σjσk = δjk1 + iεjklσl. This states that a prod-
uct of any two different Pauli matrices yields the third up to a phase, and a product of
two identical Pauli matrices is just the identity. From this, one can collapse any arbi-
trarily long series of Pauli gates into a single Pauli gate multiplied by a phase.

Yet another oft-discussed gate is the Hadamard gate,

H =
1√
2

(
1 1
1 −1

)
, (1.161)

which allows one to convert to the plus/minus basis with H |0〉 = |+〉 and H |1〉 = |−〉,
where

|+〉 = |0〉+ |1〉√
2

|−〉 = |0〉 − |1〉√
2

. (1.162)

The Hadamard gate can be visualized in terms of the Bloch sphere as a π/2 rotation
about the ŷ-axis followed by a reflection through the x̂− ŷ plane [5].

The Pauli and Hadamard gates are very useful and allow rotations of π/2, but
arbitrary rotations are needed to rotate a state vector from one location on the Bloch
sphere to any other. Interestingly, an arbitrary single-qubit unitary operation can be
decomposed into just three operations and only four real parameters [5],

U = eiα

(
e−iβ/2 0

0 eiβ/2

)(
cos(γ/2) − sin(γ/2)
sin(γ/2) cos(γ/2)

)(
e−iδ/2 0

0 eiδ/2

)
, (1.163)

where α, β, γ, and δ are real-valued. It is not always practical to experimentally enact
arbitrary rotation gates, so yet another way to achieve an arbitrary single-qubit U is by
combining the Pauli and Hadamard gates with the ability to apply the T gate,

T =

(
1 0
0 eiπ/4

)
, (1.164)
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which is a π
4 rotation about ẑ. Thus far we have really only been talking about a single

qubit, but the real magic of quantum computation comes from considering multiple
qubits. Unfortunately, while the Bloch sphere is useful for visualizing a single qubit
with two basis vectors, multiple qubit system exist in a higher-dimensional space and
can realistically only be described in the language of linear algebra. For an n qubit sys-
tem, the multi-dimensional Hilbert space is spanned by 2n mutually orthogonal vec-
tors, and the most general pure state can be written as

|ψ〉 =
2n

∑
x=1

ψx |x〉 , (1.165)

where ψx ∈ C and each of the 2n orthogonal component vectors is

|x〉 = |x1〉 ⊗ |x2〉 ⊗ ...⊗ |xn〉 , xi ∈ {0, 1}. (1.166)

Considering normalization and ignoring an overall global phase, |ψ〉 has 2n+1 − 2 in-
dependent real parameters. Note that it is generally more convenient to suppress the
tensor product notation when writing states comprising several qubits, so for example,
one may write |0〉 ⊗ |1〉 ≡ |0〉1 |1〉2 ≡ |01〉12, where in this case the subscript is used to
label which qubit is which.

With a multiple qubit system, we now have the option of applying gates that act
on more than one qubit at a time. This is necessary to build entanglement between
qubits and gain access to the entire Hilbert space. Without entangling interactions, the
best we could do is have a tensor product of qubits of the form |ψ1〉 ⊗ |ψ2〉 ⊗ ... |ψn〉,
and while each individual qubit is in a superposition, the whole tensor product only has
a linear 2n parameters. This provides an argument why entanglement is necessary for
an exponential quantum speed-up, but it is in no way sufficient. Only entanglement can
give rise to states having the full 2n+1 − 2 parameters as opposed to the 2n parameters
of product states.

A particularly common class of two-qubit gates are the controlled gates which are
the equivalent of ‘if-then’ logic statements in traditional computer science. These gates
work by taking a pair of qubits and applying a single-qubit gate to the second qubit
contingent on the state of the first. A general controlled-unitary gate can be written in
block diagonal form as

CU12 =

(
1 0

0 U

)
, (1.167)
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and alternatively as
CU12 = |0〉1〈0| ⊗ 12 + |1〉1〈1| ⊗U2. (1.168)

Under the application of this gate, the state is left unchanged if qubit 1 is in state |0〉
and the unitary U2 is applied to qubit 2 if qubit 1 is in state |1〉. Things become really
interesting, however, when the first qubit is in a superposition. Suppose we were to
start with a tensor product of the two qubits, |ψ〉1 |φ〉2. Applying the controlled unitary
leads to, using Eq. 1.157,

CU12 |ψ〉1 |φ〉2 = cos (θ1/2) |0〉1 |φ〉2 + sin (θ1/2)eiϕ1 |1〉1 U2 |φ〉2 . (1.169)

The above state can no longer be written as a product state10! This is the mathemat-
ical definition of entanglement. Thus, through the use of multi-qubit gates, one can
‘distribute’ a superposition localized on a single qubit to a larger set of qubits.

The problem of universal quantum computation can be simply stated as requiring
one to find a set of operations that can take any multi-qubit state and rotate it into any
other multi-qubit state (of the same dimension). That is, if we have that

U |ψ〉 = |φ〉 (1.170)

for arbitrary |ψ〉 and |φ〉, our task becomes one of determining a set of gates that will
allow us to enact U. Of course, we could always imagine some physical process acting
on the entire system that can be perfectly described by a Hamiltonian to enact U under
Schrödinger evolution, this is highly unlikely to be found for any given U. Thus we try
to find a set of simple gates that only act on a subset of the physical qubits at any given
time which can be combined to create U. Although it is no trivial statement, we can
in fact generate U simply by combining single and two-qubit gates without the need
for three-or-more qubit gates. The problem of determining a universal gate set does
not have a unique solution, and there is much more to be said on the topic than what
is included here [5]. For now, it is sufficient to know that the H, CX, and T gates are
enough to achieve universality. Interestingly, if only has access to H, CX, and T2, then
this amounts to what is known as the Clifford gate set. The Clifford gates are sufficient
for simulating classical computation and for enacting error-correction on qubits, but a

10Slight caveat here: the state can be reduced to a product state under the restricted cases where θ1 =
0, θ1 = π, or when |φ〉2 is an eigenstate of U2.
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quantum computer with only the Clifford gate set will never achieve a quantum speed-
up. Thus much emphasis is placed on the T gate, which we will later find has an analog
in non-Gaussianity for continuous-variables.

1.6.2 Qubit cluster states

Quantum computation is generally formulated in terms of a circuit model such as the
circuit depicted in Fig. 1.8(b). Here, the user begins with a register of qubits on the
left-hand side as inputs, and then a series of gates11 are applied to them followed by
measurements to read out the answer on the right. This is the model of computation
currently employed by machines such as used by Google [24] and IBM [31]. However,
there exists an alternative, but equivalent, scheme of quantum computation where all
entanglement is generated up front in the initial state. Once this state is created, no
more gates need be directly applied, but instead, all qubits are individually measured in
particular bases to enact the computation and read out the result. This method is known
as ’one-way’12 quantum computing [32, 33] and the initial resource state is known as a
’cluster state’ [34].

An example of this is shown in Fig. 1.9. The cluster state is initialized by be-
ginning with qubits in the |+〉 state at every node of the square-grid lattice and then
interacting each of them with their four nearest neighbors using a ĈZ interaction. From
here, a universal gate set can be enacted simply by measuring each qubit in an appro-
priate basis. The whole N-qubit cluster state can thus be written as

∏
j|j∈Nk

ĈZjk

N⊗

k

|+〉j|+〉k, (1.171)

where the set Nk contains all indices for nearest-neighbor qubits to qubit k, excluding
those qubits already connected to qubit k. Because the ĈZ gates all commute, they can
be applied in any order, or even simultaneously.

11Again, any multi-mode unitary can be decomposed into a series of single and two-qubit gates.
12The term ’one-way’ can also mean ’single use’ since the cluster state is used up via measurement to

perform gates on the unmeasured portions.
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FIGURE 1.9: An example of a cluster state formed from two-state qubits
taken from Ref. [33], where qubits have been initially entangled in a
square-grid pattern. Then, single-qubit measurements are applied every-
where to apply gates and teleport quantum information. Circled dots indi-
cate a Z-basis measurement, vertical arrows an X-basis measurement, and

tilted arrows a measurement in the x− y plane of the Bloch sphere.

The simplest example is the two-qubit cluster state:

|C2〉12 = ĈZ12 |+〉1 ⊗ |+〉2
= 1

2 (|0〉1|0〉2 + |1〉0|0〉2 + |0〉1|1〉2 − |1〉1|1〉2) . (1.172)

The two and three-qubit cluster states are maximally entangled and equivalent the Bell
states [35] and GHZ states [36], respectively, when local operators and classical com-
munication (LOCC) are used to relate them. However, all cluster states of higher di-
mension are not LOCC-equivalent to highly entangled states such as the GHZ state
family as local measurements do not have long-range correlations with all qubits in the
cluster. This essentially allows qubits to be ‘trimmed’ without disturbing others, and
for effective single-qubits gates to be enacted through measurement.

The fundamental primitive for cluster state QC is based on teleportation, where
measuring one qubit teleports the information to a neighbor while also applying a local
unitary operator that is determined solely by the measurement basis. Continuing the
two-qubit example, suppose the first qubit was in state |ψ〉 = a |0〉 + b |1〉 instead of
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|+〉. In this case, we have

|C(ψ)
2 〉 = ĈZ12 |ψ〉1 ⊗ |+〉2

= 1√
2
(a|0〉1|0〉2 + b|1〉0|0〉2 + a|0〉1|1〉2 − b|1〉1|1〉2) . (1.173)

To perform a teleportation of ψ from qubit one to qubit two, we first measure qubit one
in the ± basis. Depending on the measurement result, this gives

1〈m|C
(ψ)
2 〉12 = 1√

2
(a|+〉2 + (−1)mb|−〉2) , (1.174)

where m is the measurement result in the ± basis. Thus, the initial state, ψ, has been
teleported to mode two and both a Hadamard gate and a Z gate dependent on the
measurement outcome have been applied (and can therefore be subsequently corrected
for):

1〈m|C
(ψ)
2 〉12 = ĤẐ

m−1
2 |ψ〉2. (1.175)

Since the first state has been teleported to qubit two, the above equation can also be
written by relabeling the ket index without harm, making qubit two become qubit one
(which has been ‘measured out’), as

1〈m|C
(ψ)
2 〉12 = ĤẐ

m−1
2 |ψ〉1. (1.176)

This process can also be written out in circuit form, which we write as proceeding
from right to left:

±〈m| • (in)

(out) • |+〉2
. (1.177)

In the above circuit, the input state to wire two is the qubit |+〉2, the line connecting the
wires represents a ĈZ gate between the two qubits, and the top wire is measured in the
± basis. An important point to note is that this circuit specifies neither the input state
nor the output state as it just leaves open spots blank for and input and output. This is
to leave the form of the input completely general; there is no need to restrict the input
to even a single qubit state as it could be an entangled state with many qubits, such
as the remainder of the cluster state. Because this circuit only connects the two wires
and measures the first, it acts locally on whichever qubit enters, regardless of any other
entanglement present at the input, or even at the output that happens later. Circuits
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like these are known as ‘quantum gadgets’ and can in fact be simplified into a single
effective Kraus operator applied to the input.

The effect of this circuit has already been derived in Eq. 1.176. Thus applying this
circuit to an input state can equivalently be written as applying the Kraus operator

K̂m = ĤẐ
m−1

2 (1.178)

to the input state. By simply applying this same circuit with a different measurement
basis repeatedly on the cluster state, one can perform a universal set of gates up to
measurement-dependent Ẑ and X̂ gates. These can either be fixed by applying gates to
undo the effects, or one can simply plan accordingly with the measurement basis and
by shifting results. Thus the power of cluster state computation is that one only needs
to perform single-qubit measurements.

While this method seems nice, the unfortunate bit is that applying gates through
measurement consumes qubits. This means that cluster-state computing requires an
overhead in the number of qubits to perform gates; yet this is only at worst a poly-
nomial overhead [33], thus preserving a quantum advantage for algorithms with an
exponential speed-up. Nevertheless, as producing many stable qubits is a huge prob-
lem in quantum computation, cluster state computing with qubits is not likely to be a
realistic option. However, this is where continuous-variable systems come in, as large-
scale entanglement is much more feasible [37].

1.7 Continuous-Variable Quantum Computation

So far we have only talked about quantum computing with quantum systems hav-
ing a discrete number of basis vectors, but what happens if we were to try and use
a continuous-variable (CV) system, such as described using the phase and amplitude
quadratures of a quantum-optical field13? Suppose we were able to achieve the infinite
squeezing limit mentioned earlier and had access to p-quadrature eigenstates, includ-
ing the ability to resolve a quadrature measurement to arbitrary precision. In principle,
provided everything were perfect, one could implement any computation using a sin-
gle quantum-optical mode, or qumode.

13Or, perhaps position and momentum of a particle? Really, any CV conjugate variables will do, but
we’ll stick to field quadratures for this discussion.
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The method would proceed as follows: take the qumode and initialize it to have
some predetermined wavefunction,

|ψ〉 =
∫

dxψ(x) |x〉p . (1.179)

Next, program some unitary gate, U, that maps |ψ〉 to a single quadrature eigenstate
and measure the result. Because the CV state has an infinite number of parameters (i.e.,
a dense set of eigenvalues), there would be enough freedom to map any computational
input into the initialized ψ(x). Similarly, if U rotated |ψ〉 into a single quadrature eigen-
state and one had infinite precision on the measurement result, then the continuum of
measurement results would again give an infinite number of parameters as an answer.
Of course, this is infeasible on many practical levels. One must first devise a U and an
encoding scheme for the desired problem in addition to the fact that generating each
specific |ψ〉 and U would likely prove impractical if not impossible. Furthermore, in-
finite measurement precision will never be a reality. Nonetheless, this simple thought
experiment leads one to believe that the continuous nature of qumodes may be bene-
ficial in quantum information. As a practical implementation, let’s look deeper into a
cluster state implementation.

1.7.1 Qumode cluster states

First, as a note of bookkeeping, I will redefine R̂(θ) = eiθa†a for the remainder of this
section, such that

R̂†(θ)Q̂R̂(θ) = Q̂ cos θ − P̂ sin θ (1.180)

R̂†(θ)P̂R̂(θ) = P̂ cos θ + Q̂ sin θ. (1.181)

This is to keep in line with numerous other sources on the topic of CVQC with cluster
states, such as Refs. [18, 38–40], to name a few.

To begin with, assume that we have access to infinitely squeezed states in the
form of |0〉p and |0〉q states. After developing the ideas of QC with ideal quadrature
eigenstates, we will relax the infinite squeezing condition and see that QC is still pos-
sible with finite squeezing provided we have the ability to perform error correction.
Analogous to qubit cluster states, the canonical CV qumode cluster state is formed by
placing qumodes in a lattice and entangling each qumode with its nearest neighbors.



48 Chapter 1. Quantum Optics and Quantum Computation

Each qumode is initialized to the zero-momentum eigenstate |0〉p and then ĈZ

gates of the form of Eq. 1.106 of weight g = 1 are applied to all neighboring pairs. This
results in the cluster state

∏
j|j∈Nk

eiQ̂jQ̂k

N⊗

k

|0〉pj
|0〉pk

, (1.182)

which is analogous to the qubit cluster. Additionally, note that

ĈZ|0〉p1
|0〉p2

= R̂2(
π
2 )ĈX|0〉p1

|0〉q2
, (1.183)

so essentially each neighboring pair in the cluster is an EPR pair up to a single-mode
rotation. The exact form of the qumode cluster state, or any graph state, can be de-
termined through the nullifier formalism [41, 42], which is equivalent to stabilizers in
qubit graph states [43]. These are also valuable tools to verify an experimentally gener-
ated cluster state [37], but here I will focus on what to do with a cluster state once it is
already made.

Although a 2-D cluster state is the minimum substrate required to enact universal
QC, we will start by understanding the 1-D chain, which is enough to demonstrate
all single-qumode operations. From there, extending to 2-D becomes straightforward.
First, let’s start by deriving the analogous circuit to the qubit teleportation circuit in
Eq. 1.177.

Teleportation

As before, consider the simplest two-mode cluster state, which consists of taking arbi-
trary state |ψ〉 and entangling it to state |0〉p with a ĈZ interaction. Next, to complete the
teleportation, we will measure qumode one with a homodyne measurement, which is
a simple form of Gaussian measurement that projects the state into a quadrature basis.
To start, consider performing the homodyne measurement in the p-quadrature basis
and obtaining result m. This circuit will be drawn as:

p〈m| • |ψ〉
(out) • |0〉p ,

(1.184)
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which can be written out as

|φ〉out = p1
〈m|ĈZ12 |ψ〉1|0〉p2

= p1
〈m|eiQ̂1Q̂2

∫
dx ψq(x)|x〉q1

|0〉p2
, (1.185)

where ψq is the amplitude (or position) wavefunction of the input state. Next, we can
move the operator and projector through the integral to apply them to the states to
arrive at

|φ〉out =
∫

dx ψq(x)p1
〈m|eixQ̂2 |x〉q1

|0〉p2

= 1√
2π

∫
dx ψq(x)e−ixm|x〉p2

, (1.186)

where we used

p〈s|t〉q = 1√
2π

e−ist. (1.187)

Next, rotate back to the q-basis by inserting the identity in the form of R̂(π
2 )R̂†(π

2 ), and
then promote the exponential to an operator so it can be pulled out of the integral:

|φ〉out =
1√
2π

R̂2(
π
2 )
∫

dx ψq(x)e−imx|x〉q2

= 1√
2π

R̂2(
π
2 )e
−imQ̂2

∫
dx ψq(x)|x〉q2

= 1√
2π

R̂2(
π
2 )Ẑ†

2(m)|ψ〉2. (1.188)

Thus, we see that the input state |ψ〉 in mode one has been perfectly teleported to mode
two, with an additional measurement-dependent quadrature shift followed by a π/2
rotation. Furthermore, we could now just relabel the modes as mode one has been
projected out, so we could write the whole process as a single Kraus operator applied
to the input,

|φ〉out = K̂m |ψ〉 ; K̂m = 1√
2π

R̂(π
2 )Ẑ†(m). (1.189)

It is also useful to note that the rotation of π
2 is equivalent to a single-mode quantum

Fourier transform as it rotates the q-basis to the p-basis. This is similar to the Hadamard
gate transforming a qubit from the computational basis to the ± conjugate basis — an
analogy that will be further developed later.

Instead of performing the derivation as above, it is instructive to develop the
derivation graphically starting from the circuit in Eq. 1.184. Using the trick from Eq. 1.34
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to write |ψ〉 as a function of an operator acting on a momentum eigenstate and pulling
out the measurement result from the detection, we can write

p〈0| Z†(m) •
√

2πψ(Q) |0〉p

(out) • |0〉p
,

(1.190)

where I will neglect hats on operators in circuit diagrams with the assumption that
a capitalized Q or P indicates an operator while lowercase indicates an eigenvalue.
Because the ĈZ gate commutes with any operators that are functions of Q̂ only, we can
move ψ(Q̂) through the gate. After moving this through, we can transform the ĈZ gate
to a ĈX by using that ĈZ = R̂2(

π
2 )ĈX R̂†

2(
π
2 ). This yields the circuit

p〈0| Z†(m)
√

2πψ(Q) • |0〉p

(out) R(π
2 ) R†(π

2 ) |0〉p
.

(1.191)

The right half of the circuit, from the ĈX gate on can be recognized as the circuit for the
EPR state from Eq. 1.116, so we can close off the end and write

p〈0| Z†(m)
√

2πψ(Q)

(out) 1√
2π

R(π
2 )

.
(1.192)

Finally, we can ‘bounce’ the operators from the top wire to the bottom through the EPR
pair using Eq.1.117 with Q̂T = Q̂, and pull the circuit taut, so to speak, to arrive at the
Kraus operator for teleportation:

(out) R(π
2 ) ψ(Q) Z†(m) |0〉p . (1.193)

Writing down these operators applied to the zero-momentum eigenstate recovers Eq. 1.189.

Disconnecting nodes

We just saw how teleportation works with p-quadrature measurements, but let’s in-
stead change the measurement basis and measure in the q-quadrature instead. How-
ever, when the measurement is a q-eigenstate, the entangling ĈZ gate can equally well
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act to the left instead of the right in the circuit drawings, and in this way the entan-
gling gate only acts to add a single-mode displacement to the unmeasured mode — the
entanglement is broken and thus there is no teleportation. Explicitly, we have that

q1
〈m|eiQ̂1Q̂2 |ψ〉1|0〉p2

=eimQ̂2
q1
〈m||ψ〉1|0〉p2

∝Ẑ2(m)|0〉p. (1.194)

Regardless of the unmeasured state, whether it is a momentum eigenstate or not, per-
forming a q-basis homodyne measurement on a canonical cluster state node will dis-
connect that node and apply local quadrature shifts on the neighboring nodes. Note
that if one had defined the cluster state differently, say with ĈX gate acting on alter-
nating zero q and zero p eigenstates, then the disconnecting and teleporting homodyne
measurement bases would be reversed.

General homodyne measurement

Next, instead of a q or p homodyne measurement, considering measuring in a general
rotated quadrature. This we will label as pθ where

P̂θ = R̂†(θ)P̂R̂(θ) = P̂ cos θ − Q̂ sin θ, (1.195)

which is the same setting as measuring the scaled operator

P̂θ

cos θ
= P̂− Q̂ tan θ. (1.196)

This happens to be the same effect as applying the shear operator14,

P̂(t) = ei t
2 Q̂2

(1.197)

which acts on P̂ as
P̂†(t)P̂P̂(t) = P̂ + tQ̂. (1.198)

14Which is, unfortunately, referred to as the phase gate/operator in some sources, which further com-
plicates the terminology.
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The above equation is derivable from the BCH formula, but also can be found quite
easily from the Heisenberg equation in Eq. 1.47. If we measure in the rotated basis with
θ = arctan (−t) and scale the outcome, then a measurement of m in the pθ basis is the
same as measuring

|m〉pθ
= e−

i tan θ
2 Q̂2 | m

cos θ 〉p (1.199)

Applying this as the measurement in the teleportation circuit earlier, we find that the
Kraus operator associated with a rotated measurement is

K̂pθ
= R̂(π

2 )Ẑ†( m
cos θ )P̂(tan θ). (1.200)

The reader might note that so far, all of these measurements apply unitary opera-
tors. This might seem strange, as we are in fact performing a measurement to project a
portion of the quantum state, which one associates with non-unitary evolution. How-
ever, in this case, the presence of the ancillary |0〉p state in the second mode and the
entangling operator ĈZ ensure that measurement in the p-basis of the mode after en-
tanglement provides no information at about the input state |ψ〉. The measurement
result is completely and uniformly random without collapsing the wavefunction of the
input state, leading to a perfect teleportation. This is a result of the infinite squeezing
limit, and thus the ideal unitary gate evolution will only approximately be true with
finite squeezing, as will be discussed later.

Feed-forward displacements

It has been mentioned that the effects of the quadrature shifts can be accounted for by
feed-forward. Let’s examine exactly how this can be done by tracking what happens to
the measurement-dependent shift from one measurement to the next. Suppose we have
just performed a teleportation by performing a homodyne measurement on a linear
cluster state, and we would like to make a subsequent homodyne measurement on
the next mode. The Kraus operator applied for a general homodyne measurement in
Eq. 1.200 can be rewritten with the shift operator at the back to read

K̂pθ
= X̂( m

cos θ )R̂(π
2 )P̂(tan θ). (1.201)
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If we push everything except the shift into the state, then we can write the next telepor-
tation gadget as

p〈0| Z†(m2)P(t) • X(m1) (in)

(out) • |0〉p
,

(1.202)

where the effects of the physical measurement result and the scaling on the eigenvalue
from the rotated basis have been combined into general measurement results m1 and
m2 for simplicity. The X̂ shift can now be commuted with the ĈZ gate using

ĈZX̂(m1) = e−im1(P̂1−Q̂2)ĈZ (1.203)

to yield the circuit

p〈0| Z†(m2)P(t) X(m1) • (in)

(out) Z(m1) • |0〉p
.

(1.204)

Using the BCH identities, we can commute the shear gate with the quadrature shift to
find

P̂(t)X̂(s) = ei st
2 X̂(s)Ẑ(st)P̂(t), (1.205)

and commuting two orthogonal quadrature shifts gives

Ẑ†(m)X̂(s) = e−ismX̂(s)Ẑ†. (1.206)

Using the additional fact that X̂(s)|0〉p = |0〉p, we arrive at the circuit

p〈0| e−iφZ†(m2 − tm1) P(t) • (in)

(out) Z(m1) • |0〉p
,

(1.207)

where the picked up global phase is φ = m1(m2− t
2). To proceed, we can simply replace

m2− tm1 with m′2
15, and everything is the same as before up to an additional shift on the

output. Thus, each prior shift can be accounted for at the current measurement by using
the result of the previous measurement value to inform how the user should modify the
current measurement result. This can proceed as measurements are performed all the
way across the cluster state. An important caveat to mention is that this methodology

15If the experimenter measured a homodyne result of m2, he would just subtract tm1 and use the new
value in place of m2 everywhere.
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is less simple when one no longer performs a quadrature measurement.

General measurement

Instead of simply performing a homodyne measurement in the pθ-basis, consider pro-
jecting onto an arbitrary pure state. This can written as projecting onto a bra, 〈M|,
which can written in the q-basis as

〈M| =
∫

dx M(x)q〈x| =
√

2πp〈0|M(Q̂). (1.208)

This will act to replace p〈m| in the circuit in Eq. 1.184, which after following the same
derivation, will yield the circuit

(out) R(π
2 ) ψ(Q)

√
2πM(Q) |0〉p . (1.209)

Since we wrote this measurement operator in the q-basis initially, we can commute
it with the wavefunction operator of the initial state and arrive at the general Kraus
operator for the process of arbitrary pure state measurement as

K̂M = R̂(π
2 )M(Q̂), (1.210)

with the measurement result occurring with probability

PM = Tr[K̂M |ψ〉 〈ψ| K̂†
M]. (1.211)

Suppose we were to use a more general projector that accounted for mixed states. In
this case, the new output state, up to a normalization, would be given by

ρout = ∑
j

K̂Mj
|ψ〉 〈ψ| K̂†

Mj
, (1.212)

where K̂Mj
are Kraus operators associated with the measurement operator diagonal-

ized in the q-basis.

Regardless of what measurement operator is applied, there is always a rotation
operator applied from the teleportation. Supposing that this rotation is unwanted and
one can only apply operations through measurement, this can be removed by commut-
ing the rotation to the back and successively teleporting the state three more times to
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FIGURE 1.10: Measurements on a cluster state teleport quantum informa-
tion and apply gates. Each step can be look at as applying a Kraus operator
with measurement-dependent parameters to the input. Each graph can be

represented by the circuit shown below. More details in the main text.

erase the effects since R̂4(π
2 ) = 1.

1.8 Universal Gate Set

We just saw how performing a measurement on a two-qumode cluster state can be used
to teleport the state and apply an operator. This idea can be extended to an arbitrarily
long 1-D cluster state, where measurements simply act to teleport the state along and
apply gates. This is depicted in Fig. 1.10, where a state at node i is teleported to node
i+ 2 after two measurements. Recall that a universal gate set requires one to implement
any arbitrary unitary gate on the quantum system. We will start by showing how one
can implement the entire Gaussian gate set, analogous to the Clifford gate set with
qubits, simply by performing homodyne detection on the cluster.
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1.8.1 Gaussian gate set

The single-mode general Gaussian unitary can be written as a transformation of phase
and amplitude quadrature operators in the Heisenberg picture,

(
Q̂′

P̂′

)
= Û†

G

(
Q̂
P̂

)
ÛG =

(
a b
c d

)(
Q̂
P̂

)
+

(
e
f

)
, (1.213)

where ad − bc = 1. The affine portion containing e and f describe the effects of dis-
placements, which can be accounted for by shifting homodyne measurement results as
desired [38, 44], so we will only consider the linear portion. We now need a sequence of
gates that can form an arbitrary symplectic transformation to allow us to choose a, b, c
and d. The teleportation circuit with general homodyne measurements allows us to
perform the shear gate, which in symplectic form is given as

(
Q̂′

P̂′

)
= P̂†(κ)

(
Q̂
P̂

)
P̂(κ) =

(
1 0
κ 1

)(
Q̂
P̂

)
, (1.214)

where κ is a real-valued parameter.

We can also perform on-demand Fourier transforms of F̂ = R̂(π
2 ) by measuring

in the p-basis, which are described by

(
Q̂′

P̂′

)
= F̂†

(
Q̂
P̂

)
F̂ =

(
0 −1
1 0

)(
Q̂
P̂

)
. (1.215)

Overall, the linear matrix transformation resulting from a single homodyne measure-
ment on a cluster state is given by

M(κ) =

(
0 −1
1 0

)(
1 0
κ 1

)
=

(
−κ −1
1 0

)
. (1.216)

By combining matrices of this form with suitable choices for κ, it turns out that one
can implement an arbitrary symplectic transformation on a single mode with just four
quadrature measurements [39]. This lets us apply

4

∏
i=1

M(κi) =

(
κ4κ3κ2κ1 − κ4κ3 − κ2κ1 − κ4κ1 + 1 κ4κ3κ2 − κ4 − κ2

−κ3κ2κ1 −κ3κ2 + 1

)
=

(
a b
c d

)
,

(1.217)
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FIGURE 1.11: The cluster state resource can be shaped into a different
graph state by performing homodyne measurements.

where the decomposition is given by

κ2 =
1− d

κ3
, κ3 = c− dκ1, κ4 =

1− a + bκ1

κ3
, (1.218)

and κ1 is a free parameter. Ref. [39] is careful to note that many single-mode symplectic
operations can in principle be realized with only three measurements on the cluster;
however, one cannot in general choose an arbitrarily large value for κi due to finite
squeezing. Using all four operations gives one some freedom to avoid finite-squeezing
noise if done properly.

As an example, suppose we wished to apply a single-mode squeeze gate, Ŝ(r)
which can be decomposed into three operations. This can be achieved by applying

M3(s)M2(s−1)M1(s) =

(
−s −1
1 0

)(
−s−1 −1

1 0

)(
−s −1
1 0

)
=

(
s 0
0 s−1

)
, (1.219)

where s = er.

Two-mode gates

Combining an entangling two-mode operation, such as the native ĈZ gate, with the
ability to perform universal single-mode gates is sufficient to generate a universal gate
set over any number of qumodes16. The cluster state is initialized with ĈZ gates con-
nected to each of the neighboring nodes, but a ĈZ gate can be enacted between non-
neighboring nodes by forming a ‘bridge’ with measurements. This is done by per-
forming p-basis homodyne measurements on all nodes along a path connecting them.
Similarly, any undesired nodes can be disconnected, as depicted in Fig. 1.11.

16We still need non-Gaussianity, of course, which will be discussed in the next section.
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To see how moving around the ĈZ gates works in practice, consider states |ψ〉 and
|φ〉 sitting at two nodes on a cluster state separated by two intermediate nodes. If we
measured out the middle nodes, these two states will now become connected. This is
shown by first taking the initial circuit with four qumodes, where nodes two and three
are the intervening nodes, and measuring node 2:

• |ψ〉1
p2
〈0| Z†(m1) • • |0〉p2

p3
〈0| Z†(m2) • • |0〉p3

• |φ〉4

=

• |ψ〉1
p3
〈0| Z†(m2) • X(m1) F • |0〉p3

• |φ〉4 .

(1.220)

Before measuring the remaining node, we rewrite |φ〉 as |φ〉 =
√

2πφq(Q̂)|0〉p and com-
mute the operator in Q̂ with the ĈZ gate on the bottom wire. After this, we measure the
remaining node to arrive at

• |ψ〉1
p3
〈0| Z†(m2) • X(m1) F • |0〉p3

√
2πφq(Q) • |0〉p4

=

• |ψ〉1
p3
〈0| √

2πφq(Q) X(m2)FX(m1)F • |0〉p4

.

(1.221)
We now commute the Fourier transforms to use that F̂2 = −1, and then commute the
remaining shift operators through the ĈZ gate using X̂2ĈZ = ĈZẐ†

1 X̂2. From here, we
can apply the X̂2 shift on the momentum eigenstate which just results in a global phase.
This lets us write

• Z†(m2) |ψ〉1
√

2πφq(Q) • −X(m2)Z†(m1) |0〉p4

=
• Z†(m2) |ψ〉1

• −eim1m2 Z†(m1) |φ〉4
.

(1.222)

Looking at the above, we see that we have implemented a ĈZ gate between our two
qumodes, up to a global phase and single-mode displacements that can be accounted
for with feed-forward as discussed in Sec. 1.7.1. It is important to measure two ‘empty’
nodes in between the two nodes with the quantum information in order to have the
teleportation-induced Fourier transforms cancel out. Otherwise, the quantum infor-
mation in one mode will be Fourier transformed, and the effects of the measurement
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FIGURE 1.12: Any two-mode Gaussian unitary, up to displacements, can
be implemented by performing up to 10 homodyne measurements. Ad-
ditional q-basis measurements are shown to disconnect nodes that are not
used for implementing the gate, but these measurement results will still

matter in terms of the overall measurement-dependent displacements.

result will no longer be as easily undone.

Combining this mechanism for enacting entanglement between two nodes and
the universal single-mode Gaussian gate means that one can enact an arbitrary two-
mode Gaussian unitary operation by strategically performing at most 10 homodyne
measurements. This is depicted in Fig. 1.12. Note that more than 10 measurements are
used in this figure, as additional q-measurements are used to disconnect the unneeded
cluster state nodes. If one had control over the initial cluster state construction, the
measured-out nodes could have been left out entirely.

1.8.2 Non-Gaussian gates

So far, this section has shown how one can perform arbitrary single and two-mode
Gaussian unitary gates using the cluster state. This allows one to build up arbitrary
multi-mode Gaussian unitaries, but it will never lead to a quantum speed-up as per the
Gottesman-Knill theorem [45]. In order to achieve something non-trivial, it is necessary
to enact a gate or use a state that is non-Gaussian. It is important to note that this is a
necessary criterion and not sufficient, as implementing certain gates sets on classes of
non-Gaussian states can still be simulated efficiently [12, 46].

As all symplectic matrices translate to a Gaussian transformation, this non-Gaussian
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gate will be beyond the symplectic formalism. One way to achieve universality is to
have the capability to enact gates of higher-order polynomials in the quadrature oper-
ators, such as the cubic phase gate

V̂γ = eiγQ̂3
. (1.223)

Applying Gaussian gates that are at most quadratic in the field operators along with the
cubic phase gate allows one to build up unitary gates of arbitrary polynomials. This is
due to the fact that commutators of the form [Q̂k, P̂2] where k ≥ 3 generate polynomials
in the field of degree greater than k. In this way, one can approximate any Hamiltonian
to an arbitrary degree of precision using a polynomial expansion, and enact the unitary
e−iĤt from combinations of lower-order gates. Although this is feasible in principle
with just cubic phase gates and Gaussian operations, the true composition may be quite
cumbersome. Arbitrary gate decompositions can be calculated using Ref. [47].

Gate teleportation

Directly implementing higher-order Hamiltonians optically is an experimental chal-
lenge due to weak higher-order nonlinearities. Instead, an approach that can be taken
is to generate offline resource states and then teleport the wavefunction onto our quan-
tum information as a way to apply the desired gate. For example, suppose our goal is
to apply a cubic phase gate. To do so, we can instead generate a cubic phase state and
teleport our quantum information through it to apply the cubic phase gate. Taking the
cubic phase state defined as [48]

|γ〉 = 1√
2π

∫
dxeiγx3 |x〉q, (1.224)

we can attach this state to our cluster state and implement the circuit

p〈m| • F |ψ〉
(out) • |γ〉 =

(out)
√

2πγq(Q) FZ†(m) F |ψ〉
.

(1.225)

Remember that the Fourier transform in the initial circuit can be implemented by per-
forming a normal teleportation through a |0〉p state. The final result of this circuit, up
to a shift of X̂(m) at the end and global phase, is to apply the operator

Û =
√

2πγq(Q̂ + m) = eiγ(Q̂+m)3
. (1.226)



1.8. Universal Gate Set 61

However, this doesn’t precisely apply the cubic phase gate we wanted due to commut-
ing the measurement-dependent shift through the cubic phase state wavefunction. We
can recover the cubic phase gate of Eq. 1.223 by applying the gate

ÛG = ei[γQ̂3−γ(Q̂+m)3], (1.227)

which is only quadratic in the field. In general, the measurement-dependent shift from
gate teleportation will necessitate a correction operation that is a polynomial of one
degree lower than the gate applied by teleportation. In this way, cubic gates require a
quadratic correction, and as we saw in Sec. 1.7.1, applying the natural quadratic gate
on the cluster (shear and rotation) necessitates a linear correction that can be mitigated
with feed-forward corrections to future measurement bases.

The idea of gate teleportation can be generalized to more general types of oper-
ations beyond unitary gates dependent on the form of the ancillary state. Teleporting
through an ancillary state acts to filter the p-basis wavefunction of the input with the
q-basis wavefunction of ancilla shifted by the homodyne result. This is seen generically
by replacing the momentum eigenstate from the teleportation circuit in Eq. 1.184 with
an arbitrary quantum state, |ψ′〉. This can be rewritten as an operator in Q̂ applied to
a zero momentum eigenstate and commuted through the ĈZ gate to have the general
circuit

|ψ〉out =

p〈m| • |ψ〉

• |ψ′〉
=

p〈0| • Z†(m) |ψ〉
√

2πψ′q(Q) • |0〉p
. (1.228)

Pulling the circuit taught and commuting the resultant Fourier transform to the end,
we have that

|ψ〉out =
√

2πF̂ψ′q(−P̂)Ẑ†(m) |ψ〉 , (1.229)

where the subscript on ψ′q(−P̂) indicates that it is the q-basis wavefunction of the start-
ing ancillary state, even though it is a function of the P̂ operator. Finally, commuting
the displacement through to the left reveals the result of

|ψ〉out =
√

2πX̂(m)F̂ψ′q(−P̂ + m) |ψ〉 . (1.230)

This shows that up to an overall displacement and rotation, the initial P-basis wave-
function for |ψ〉 transforms as ψp(x) → ψp(x)ψ′q(m − x). Thus, in the P-basis, |ψ〉 is
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filtered by the Q-wavefunction of |ψ′〉.
If we had first applied a Fourier transform to the input state as we did for the

cubic phase gate teleportation circuit in Eq. 1.225, the operator applied would be

Ôψ′ = −
√

2πX̂(m)ψ′q(Q̂ + m) (1.231)

If one has the ability to engineer non-Gaussian states offline and then attach them
to the cluster, gate teleportation gives the ability to teleport the non-Gaussianity onto
the quantum information in a given calculation. However, this will in general not be
a unitary operation unless ψ′q(x) is of the form ei f (x). Because of the non-unitarity,
the measurement-dependent shift will not be correctable with unitary operations. For
example, suppose that ψ′ was the wavefunction of a Fock state. In this case, gate tele-
portation would apply the operation (up to normalization and shift)

Ôψ′ = e−
1
2 (Q̂+m)2

Hn(Q̂ + m), (1.232)

where Hn(x) is a Hermite polynomial. This motivates the possibility of applying poly-
nomial gates, which I will explore later in Ch. 3.

1.9 Realistic Cluster States

These cluster states discussed have so far been the canonical cluster, based on the ĈZ

entangling interaction, and have been ideal with the infinite squeezing limit. First, let’s
maintain the infinite squeezing limit for now and briefly discuss experimental cluster
states.

1.9.1 Macronode cluster states

Although the entangling ĈX gate has been implemented optically [49], performing
many ĈX or ĈZ is challenging as they are not passive gates — the energy of the sys-
tem is not conserved. As such, all-optical cluster states to date have been based on
using the beamsplitter as the entangling operator [50–57]
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FIGURE 1.13: The graph state of a dual-rail quantum wire, which is the
macronode equivalent of a 1-D canonical cluster state. Weighted connec-
tions represent entanglement between modes as outlined in the graphi-
cal calculus [42]. Quantum information is distributed between pairs of
qumodes (circled), and teleportations are enacted by performing homo-
dyne measurements on both qumodes in a macronode. Figure adapted

from Ref [54].

These types of cluster states are formed from macronodes, which are a collection
of two or more physical modes containing non-locally distributed information encod-
ing a single logical state [40]. The macronode cluster states are created by beginning
with many entangled resources in the form of two-mode squeezed states, which can be
generated either directly or by interfering two single-mode squeezed states on a beam-
splitter, and then entangled pairs are linked up through more beamsplitter interactions.
An example of the dual-rail quantum wire is shown in Fig. 1.13, which is the equivalent
of a single 1-D chain canonical cluster state. A single node from the 1D canonical clus-
ter state now maps to quantum information distributed between a pair of qumodes,
and quantum information processing can proceed analogously to the canonical case,
where now all physical modes within each macronode are subject to homodyne mea-
surements.

The simplest macronode cluster state, the quantum wire, contains two physical
modes per macronode and has been used to experimentally implement Gaussian oper-
ations [58]. Weaving together quantum wires can produce higher-dimensional cluster
states [59, 60]; the 2D case of this now has four qumodes per macronode and has re-
cently been used to implement a set of universal Gaussian gates [61]. This is a straight-
forward, if cumbersome, extension of the 1D macronode wire.

We briefly review formalism recently developed to treat general teleportation on
a macronode wire, where arbitrary and potentially non-Gaussian ancillary inputs can
be used to impart non-Gaussianity on the cluster through teleportation [18]. Further
details and examples can be found elsewhere [62–66], including a dictionary protocol
that can be used to map operations from macronodes to canonical clusters [40]. The
general teleportation operation can be described by a local teleportation gadget which
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has the circuit form:

pθ1
〈m1|

��

(in)

pθ2
〈m2|

��

|ψ〉
(out) |φ〉

(1.233)

where the down arrow represents the balanced beamsplitter interaction as in Eq. 1.98.
Note that an up arrow would be the daggered operation, which is the same as the
beamsplitter with the mode indices swapped. For the choice of beamsplitter phase in
Eq. 1.98, the ↑ and ↓ operations are not equivalent. The overall effect of this teleporta-
tion circuit is given by [18, 40]

(out) 1
π A(ψ, φ) D(µ) V(θ1, θ2) (in) (1.234)

which is the same as applying the Kraus operator,

K̂m1,m2 =
1
π

Â(ψ, φ)D̂(µ)V̂(θ1, θ2), (1.235)

to the input state. Here, D̂(µ) is a displacement based on the homodyne measurement
with

µ =
m1eiθ2 + m2eiθ1

sin (θ2 − θ1)
. (1.236)

and V̂ is a Gaussian operation that depends only on the measurement basis given by

V̂(θ1, θ2) = R̂(θ+ − π
2 )Ŝ (ln (tan θ−)) R̂(θ+). (1.237)

We have additionally defined

θ± =
1
2
(θ1 ± θ2). (1.238)

This was derived in part using the useful identity [18],

|m1〉pθ1

1√
π

V†(θ1, θ2) D†(µ)OO

|m2〉pθ2

= , (1.239)

where the ended circuit represents an EPR pair.
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The potentially non-Gaussian operation, Â(ψ, φ), comes from non-Gaussianity
within the input states |ψ〉 and |φ〉, and can be determined by

Â(ψ, φ) =
∫∫

d2αψ̃(αI)φ(αR)D̂(α) (1.240)

with complex parameter α = αR + iαI . The respective position and momentum wave-
functions of the ancillary states are given by ψ̃(t) = p〈t |ψ〉 and φ(s) = q〈s |φ〉. In the
case where the input states are Gaussian only, then Â(ψ, φ) is also Gaussian. In the
specific case where the inputs are position and momentum eigenstates, |ψ〉 = |0〉p and
|φ〉 = |0〉q, then the operator Â(ψ, φ) reduces to the identity, and we have the ability
to apply a complete Gaussian gate set as in the canonical case. These methods and the
dictionary protocol will be used more in Ch. 3.

1.9.2 Finite squeezing

Now it is time to at least partially address the realistic nature of finite squeezing. To
show the effects of this alone, I will simply use the canonical cluster state, since every-
thing can be converted to macronodes by using the proper dictionary protocol. The use
of finite squeezing means that every regular node of a cluster state that was a |0〉p must
be replaced with squeezed vacuum given by Eq. 1.89, which can also be represented as

Ŝ(r)|0〉N =
√

2π1/4√
s e−

Q̂2

2s2 |0〉p, (1.241)

where s = er.

With this, the general teleportation circuit is described by

pθ
〈m| • (in)

(out) • e−Q2/2s2 |0〉p
,

(1.242)

where I have neglected the normalization for now. Commuting the Q̂ operators through
the ĈZ and using the ideal teleportation leads to the circuit applying the measurement-
dependent Kraus operator

K̂pθ ,s =
√

2π1/4√
s X̂(m′)e−

(Q̂+m′)2

2s2 F̂P̂(tan θ), (1.243)
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where m′ = m sec(θ) for general homodyne measurement at angle θ. Looking at the
form of this Kraus operator, we see that the Fourier transform and shear operator are
applied exactly the same as in the ideal case, and the measurement-dependent shift
still appears at the back to be undone with feed-forward later. However, we now have
a Gaussian envelope that filters the state in the q-basis centered about the inverse of
the measurement result, −m′. For large enough squeezing, s becomes large and this
envelope has a small impact on the state. For moderate squeezing, however, this can
severely damage the state, and the measurement result will now play an important role.
Before, the measurement result had no impact other than as a parameter to keep track
of to modify future measurement bases. Fortunately, the measurement results will on
average tend to be such that the Gaussian envelope is centered in phase space about
the input quantum state, which we can determine by calculating the expectation value
of the homodyne measurement.

Let’s start with input state |ψ〉, and since the shearing operation only acts to scale
the measurement result, we can commute the shearing through to let |ψ′〉 = P |ψ〉.
Now, given that the measurement is in the p-basis on mode one after the entangling
gate, we can use the Heisenberg picture to see that the measured operator before the
ĈZ gate is in fact

P̂′1 = Ĉ†
ZP̂1ĈZ = P̂1 + Q̂2. (1.244)

With input state of |ψ′〉1 and Ŝ2(r)|0〉N2
, we find that the expectation value is given by

〈P̂′1〉 = 1〈ψ′|P̂1|ψ′〉1 + N2
〈0|Ŝ†

2(r)Q̂2Ŝ2(r)|0〉N2

= 1〈ψ′|P̂1|ψ′〉1. (1.245)

Thus the distribution of measurement results will be centered about the input state.
One might notice that the expectation value here was in the p-basis, but the Gaussian
filter is on the q-quadrature. However, the filter will still be centered since the state is
also rotated with a Fourier transform17.

17Or, alternatively, commuting F̂ to the back of the filter shows that the filter is applied to the p-
quadrature, and then the filtered state is rotated.
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FIGURE 1.14: Potential measurement result distribution obtained by tele-
porting a five-photon Fock state on a finitely squeezed cluster state. This
figure is obtained when the ancilla qumode is a state with 9 dB of quadra-

ture squeezing.

It is also useful to look at the variance of the measurement result, which is given
by

(∆P′1)
2 = 〈(P̂1 + Q̂2)

2〉 − 〈P̂1 + Q̂2〉2

= 〈P̂2
1 〉+ 〈Q̂2

2〉+ 2〈P̂1Q̂2〉 − 〈P̂1 + Q̂2〉2. (1.246)

Since 〈Q̂2〉 = 0, this reduces to

(∆P′1)
2 = (∆P1)

2 + 1
2 e2r, (1.247)

which is simply the sum of the p-variance of the state |ψ′〉 and the q-variance of squeezed
vacuum.

Because of this finite-squeezing induced envelope, all gates applied can only ap-
proximately be unitary, and the build-up of Gaussian noise after several teleportation
steps can cause errors in the calculation. This is where the need for error correction
comes into play. Unfortunately, Gaussian resources cannot be used to correct for Gaus-
sian noise — any attempts to do so will actually make things worse [67]. Thus, we
must find a way to perform error correction using non-Gaussian resources, which is
the subject of Sec. 1.10.1.



68 Chapter 1. Quantum Optics and Quantum Computation

FIGURE 1.15: Wigner function and quadrature probabilities, |ψq|2 and
|ψp|2, for a five-photon Fock state after a cluster state teleportation. The
ancilla state was squeezed by 9 dB, and the measurement result was cho-

sen the result with the maximum probability, mPmax in Fig. 1.14.

Fock state example

To see how finite squeezing effects the teleportation of quantum states, let’s consider an
example with a Fock state. Suppose we take an input state that is a Fock state, |n〉N, and
send it through the teleportation circuit shown in Eq. 1.242 with a p-basis measurement
(θ = 0). Since the Fock state is invariant under rotations, the output state after applying
the operator in Eq. 1.243, disregarding the X̂(m) shift, will be

|ψ〉out ∝
∫

dx e−
1

2s2 (x+m)2
e−

x2

2 Hn(x)|x〉q. (1.248)

To get a better feel for what happens, let’s take the five-photon Fock state as the input
n = 5, and suppose the squeezing in the cluster state is 9 dB at each node, so s ≈ 2.82.
In this case, the likely measurement outcomes are given by the probability distribution
shown in Fig. 1.14. This distribution has a distinct resemblance to the Fock state dis-
tribution by itself, but it has be broadened and smoothed by the contribution from the
q-quadrature distribution of the squeezed ancilla.

This distribution has a standard deviation of σm ≈ 2.5, but let’s let m be the most
likely measurement of mPmax ≈ 2.815, which is just a bit larger than 1σ. If this is the
case, then we can plot the Wigner function and quadrature probability distributions
for the output state, which are shown in Fig. 1.15. As we can see, the Wigner func-
tion and q-distribution fade out on the right side of the plots, which is not surprising
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FIGURE 1.16: Fidelity of the teleported Fock state with the ideal |5〉 state
as squeezing in the ancilla mode and detection results vary. Because the
detection results are dependent on the squeezing level in the cluster, the x-
axis in the figure is scaled linearly with the standard deviation of detection

results, m, for each curve at a given squeezing.

considering that the Gaussian filter is centered about −m. The other quadrature, how-
ever, is not filtered, but broadened, and remains symmetric. This broadening is due to
taking a Fourier transform of Eq. 1.248, which essentially means that the p-quadrature
distribution of the original Fock state (black curve in the figure) is convolved with the
finite-squeezing envelope.

In the ideal case, this state should be exactly the same as our input state, but it is
clearly not. To characterize the difference, we plot the fidelity of the input five-photon
Fock state with the filtered output in Fig. 1.16 over a range of detection outcomes and
at several squeezing levels. Because the probability distribution for the measurement
outcomes is dependent on the squeezing, the x-axis for the plot is scaled in terms of
the standard deviation of the measurement outcome probabilities, σm. For a m = 0
measurement outcome, the teleportation fidelity is quite good for even moderate levels
of squeezing. However, the only case where the fidelity remains above 0.9 over the
entire ±2σm range is the case of 15 dB squeezing.
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1.10 Error Correction and State Encoding

Due to finite squeezing and noise in any physical system, continuous-variable QC, like
all forms of realistically viable QC, will need a way to implement error correction. Error
correction with qubits comes in several forms, but the general idea is to encode quan-
tum information into a subspace of the entire Hilbert space available. This way, the
remainder of the Hilbert space can be used as a resource to track down errors. If we
find that our quantum state has deviated from the subspace used for calculations, we
know that an error has occurred. Furthermore, if we are clever about how we subdi-
vide the Hilbert space, measurement can be used to both determine that an error has
occurred and specifically, which error has occurred without perturbing the quantum
information we care about.

An example of this is the bit-flip protection algorithm that uses redundancy en-
coding with each logical qubit being composed of several physical qubits

|0〉 → |0L〉 ≡ |000〉 (1.249)

|1〉 → |1L〉 ≡ |111〉 , (1.250)

so the general logical qubit would be

|ψL〉 = cos (θ/2) |000〉+ sin (θ/2)eiϕ |111〉 . (1.251)

If we ever find that the physical qubits do not all agree, then we know that an error
has occurred. Unlike classical computing, we cannot check the state to see the values of
the individual qubits without destroying the encoded information, but we can measure
whether the physical qubits are all the same without finding out what they are, and
furthermore, we can measure which qubits agree. Supposing that they didn’t agree
upon measuring and assuming a low enough error rate, it is likely that only one qubit
flipped so we can flip the disagreeing qubit back. There has been a great deal of work
done on error correction with qubits, and an introduction to the field can be found in
Ref. [5].

Continuous-variables quantum states are substantially different from qubits due
to the continuous nature of the Hilbert space. However, we can leverage similar ideas
to qubit-based schemes and attempt to encode information in a subspace of the entire
Hilbert space. The prevailing method of doing this is to section the continuous space
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into discrete sections which effectively amounts to having a logical computation space
of qubits or qudits embedded within the larger continuous Hilbert space. The first
proposal of doing so was aptly called “Encoding a qubit in an oscillator” and works by
separating the Hilbert space into two quadrature ‘combs’ that act as orthogonal qubits
known as Gottesman-Kitaev-Preskill (GKP) states [48]. An alternative method, which
has recently been extended, is to build logical states with a particular symmetry in
phase space [68].

These specific encodings are designed to optimize error correction against certain
types of errors - GKP states are adept at correcting displacement errors while rotation-
symmetric codes are optimized to correct against photon loss and optical dephasing.
With any type of qudit encoding, one can take the discrete QC universal gate set and
map it onto the physical system used. It is still true that a universal gate set will necessi-
tate non-Gaussianity, but specifically how this comes in can be more easily determined.
Interestingly, in the case of GKP qubit encoding, the universal gate set can be achieved
with additional resources being all Gaussian, as the GKP states themselves have the
requisite non-Gaussianity [69]. As a side point, Gaussian operations together with the
cubic phase gate will remain sufficient for universality in any encoding18. However,
this may not be the easiest or best route, as attempting to combine cubic phase gates
with the GKP encoding would spell disaster for error-correctability [70].

Before proceeding to describe these states, it is worth making two additional
points. The first is that these encodings are more than simply mapping CVQC onto
discrete QC. These logical encodings may utilize discrete quantum information, but
they are still embedded into a continuous physical space. This imparts some benefits,
especially against continuous errors. The second and perhaps more important point is
that all encodings are compatible with the CV cluster state where the majority of nodes
are still just finitely squeezed states. This is because the formalism introduced earlier
using teleportation to apply gates is agnostic with respect to the input state, regardless
of its encoding.

1.10.1 GKP states

The GKP states are a family of bosonic code states that attempt to discretize phase
space using Dirac combs. These states were first proposed in Ref. [48], but there has

18This is because these ingredients allow one to enact any arbitrary CV Hamiltonian.
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FIGURE 1.17: Phase-space can be discretized by carving out specific log-
ical states in the form of combs from the continuous-variable space. An
example of this is shown at right for a qubit encoding, taken from Ref. [48].

been a considerable amount of effort extending these codes in recent years. Refs. [71–
73] present good overviews and representations of recent progress.

The ideal states are depicted in Fig. 1.17, where the q-basis wavefunction is a
series of delta functions with spacing 2α. The point of these codes is for each logical
state to be an eigenstate of translations in both quadratures simultaneously, since the
Fourier transform of a comb is yet another comb. The ideal choice for error correction is
to choose α =

√
π, which ensures that the combs are symmetric and are eigenstates of

X̂(2
√

π) and Ẑ(2
√

π). One can define a logical encoding where |0L〉 is the qubit with
the central delta function corresponding to the origin and |1L〉 is a comb shifted by half
the comb spacing,

|µL〉 = (2
√

π)1/2
∞

∑
m=−∞

|(2m + µ)
√

π〉q (1.252)

= (
√

π)1/2
∞

∑
m=−∞

eijπm|m
√

π〉p, (1.253)

where µ ∈ {0, 1}. With this, one can adopt qubit-based formalism, like the± basis with
|±L〉 = 1√

2
(|0L〉 ± |1L〉). Additionally, we have that

X̂(
√

π) |0L〉 = |1L〉 → X̂(
√

π) ≡ X̂L, (1.254)

Ẑ(
√

π) |+L〉 = |−L〉 → Ẑ(
√

π) ≡ ẐL, (1.255)

R̂(π
2 ) |0L〉 = |+L〉 → R̂(π

2 ) ≡ ĤL. (1.256)

These, along with the unit shear (logical phase gate), ŜL ≡ ei 1
2 Q̂2

, give the correspon-
dence of a logical gate set for single-qubit Pauli and Clifford operations, {X̂L, ẐL, ĤL, ŜL}.
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As one can immediately see, any superposition of these logical states only ever
has support in phase space on integer multiples of

√
π, and each state is periodic with

period 2
√

π. Because of this, any small shift in either position or momentum of less
than π

2 can be corrected. If one performs a modulo
√

π quadrature measurement and
finds that the remainder is anything other than zero, then one can be sure that an error
has occurred. If this error is less than π

2 , then one can also know the sign of the quadra-
ture error — otherwise one doesn’t know which direction the state should be shifted to
perform a correction.

Error-correction protocol

Suppose that we use the GKP states for our encoding — this means that the two logical
states will comprise our computational basis, and any |ψ〉 will only have support on
quadratures values that are multiples of

√
π in the absence of errors. Suppose this state

obtains some q-quadrature shift error, δ, which we can model by applying X̂(δ). We
need a way to determine if this δ shift happened, without performing a measurement
that would collapse our quantum state. To do this, we can entangle |ψ〉 to an ancillary
GKP state and perform a homodyne detection on the ancilla. Because the ancilla is a
GKP state with phase-space support only on integer multiples of

√
π, we know that

any remainder from the homodyne measurement modulo
√

π must originate from the
shift error. We can then use this information to apply the opposite shift and fix our
state. This error-correction circuit is described by [48]

• X(δ) |ψ〉

p〈t| • |0L〉
,

(1.257)

where the error, X̂(δ), is included in the circuit.

This circuit is worth deriving in detail. First, consider a pure input state before
the error in the form of the GKP encoding

|ψ〉 = a |0L〉+ b |1L〉 . (1.258)

We can determine the action of this circuit on a single component of state and then
extend the result to the general superposition, |ψ〉. For logical qubit |µL〉, the circuit
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acts as:

p2
〈t|eiQ̂1Q̂2

∞

∑
m=−∞

∞

∑
n=−∞

|(2m + µ)
√

π + δ〉q1
|n
√

π〉p2

=
∞

∑
m=−∞

∞

∑
n=−∞

|(2m + µ)
√

π + δ〉q1 p2
〈t|(n + 2m + µ)

√
π + δ〉p2 . (1.259)

Since n, m, and µ are all integers, t = k
√

π + δ. Thus, we can do one of two things. We
can either apply a shift of X̂†(mod(t,

√
π)) to undo just the error portion, δ, or we can

apply the shift X̂†(t), which still fixes the error but may also require the application of
an additional logical gate X̂(±√π) [69]. Since the circuit in Eq. 1.257 acts the same way
on both GKP states |µL〉, it can be used to correct an arbitrary encoded state, |ψ〉. This
error correction scheme is ideally suited to cluster states, as the ĈZ gate and homodyne
measurements are already native operations. In this way, one can embed GKP states
in the cluster state and perform error-correction [74]. Furthermore, by modifying the
above circuit slightly, one can instead teleport through GKP resources, which allows for
enacting Gaussian gates and quantum error-correction all in one step, which is compat-
ible with realistic macro-node clusters [18]. The error-correcting circuit in Eq. 1.257 only
corrects small shift errors in q, so a second circuit must be used to correct errors in p.
The full error-correction can be done with the circuit

F† • F • Z(δ2)X(δ1) |ψ〉

p〈t1| • |0L〉
p〈t2| • |0L〉

,
(1.260)

where the correction that still need be applied takes the form of Ẑ†(t2)X̂†(t1), up to
a logical operation. Remember, these corrections need not actually be applied with
physical displacements, as they can be taken into account with feed-forward changes
to future homodyne measurement bases. Although the GKP encoding is designed to
protect against errors in the form of quadrature shifts, all sufficiently small errors can be
expanded in terms of shift errors, since the Pauli operators form a complete basis [48].

Finite squeezing

The states in Eq. 1.252 extend infinitely in phase space and are unphysical. We can,
however, acquire physically relevant approximations to the ideal GKP states by using
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a series of narrow-width Gaussian peaks in place of delta functions. There are sev-
eral different equivalent ways to arrive at approximate GKP state [75], but one can be
obtained from the ideal case simply by applying the damping operator,

|µ̃L〉 ∝ e−∆2 â† â |µL〉 . (1.261)

Defined this way, the approximate code states are +1 eigenstates of the nonunitary
operators

X̂∆ = e−∆2 â† âX̂2
Le∆2 â† â, (1.262)

Ẑ∆ = e−∆2 â† âẐ2
Le∆2 â† â, (1.263)

where logical operators in the ideal codespace can be transformed to Ô∆
L = e−∆2 â† âÔLe∆2 â† â

where ÔL = X̂L, ẐL [76]. The approximate states |µL〉 can now be seen as a superposi-
tion of displaced squeezed states with an additional Gaussian envelope. An example
is depicted in Fig. 1.18, where the top panel shows the Wigner functions for the two
logical states, |0̃L〉 and |1̃L〉 with peak width ∆ = 0.3. The |±̃〉 states can be obtained
from this simply by rotating the Wigner function through a π

2 phase. The bottom panel
shows the quadrature probability distributions, |ψ(qµ)|2 for the two states. Note that
the p-quadrature distribution for the two states only differs by a complex phase in
Eq. 1.252, so the probabilities displayed are the same for both logical state.

Because finite squeezing gives an envelope to the ideal states, the two logical
states are no longer orthogonal. The inset in Fig. 1.18 shows the fidelity | 〈0̃L| 1̃L〉|2
between the two logical states as a function of ∆. For the value of ∆ = 0.3 shown in the
rest of the figure, the state overlap is already zero with an error less than 10−6. If one
thinks of realistic GKP states as a superposition of displaced squeezed states, one can
relate the peak width ∆ to the squeezing in dB through the formula

SdB = −10log10(∆
2). (1.264)

Even in the case of finite squeezing, an error-correction circuit of the form of Eq. 1.260
can still be applied; there will just be some remaining residual noise. If the squeezing
is large enough such that the residual error can be made arbitrarily small through re-
peated application of error-correction with noisy states, we say that the error-correcting
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FIGURE 1.18: Top: wigner function for logical GKP states with peak width
∆ = 0.3. Bottom: probability distribution for the above states, where the
p-quadrature distribution is identical for both. The inset shows the fidelity

between the logical states, which tends to zero as ∆ decreases.
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code is fault-tolerant. Fault-tolerant thresholds depend on the specific types of error-
correcting code used since the CV error-correction schemes will also need to be com-
bined, or concatenated, with other qubit-based error-correction to correct for logical
errors. It turns out that cluster-state QC with GKP states can be made fault-tolerant
with finite squeezing [74], and these required squeezing levels have been reached [14].
Furthermore, this threshold has been reduced for certain encoding schemes [64, 66,
77], and in the presence of anti-squeezing in excess of the squeezing [78]. The current
fault-tolerant threshold lies below 10 dB of squeezing [79, 80].

An important point to emphasize is that these fault-tolerant thresholds are all for
a qubit encoding, so the quantum information being manipulated must be encoded in
GKP logical states. Efforts have also been made to develop GKP error correction for
general CV states, where the GKP ancilla qubits are used to correct errors in a state
within the full CV Hilbert space [81]. Unfortunately, fault-tolerance in this context is
ill-defined, as even small errors may be difficult to suppress for complex non-Gaussian
states.

Yet another subtle but important point to note is the relationship between fault-
tolerant thresholds of GKP squeezing and the levels of experimentally achieved vac-
uum squeezing. Although the threshold for fault-tolerance of 10 dB has certainly been
well-surpassed in vacuum squeezing [14], and quality of vacuum-squeezed modes will
very much matter in terms of the amount of Gaussian noise added at a given teleporta-
tion step when applying gates in the cluster state formalism, 10 dB of vacuum squeez-
ing does not equate to 10 dB of GKP squeezing. Methods to synthesize GKP states will
be discussed later in Chs. 2 and 3, but the majority of optical methods require some
squeezed resources, whether it be to generate the supply of precursor cat states which
can be bred into GKP states [82–84]19, or as the Gaussian resource input to a Gaussian
boson sampling (GBS) device [71, 85, 86]. When considering cat state breeding, the in-
put cat states must have sufficient squeezing and amplitude to eventually produce the
target GKP. Although the process of photon subtraction from squeezed vacuum pro-
duces squeezed cat states with roughly the same squeezing, producing a large enough
cat state requires either iterated photon subtraction or the subtraction of a large num-
ber of photons — both of which will degrade the squeezing below the initial squeezed

19Photon catalysis, as presented in Ch. 2, is an exception as it requires no squeezed resources yet still
generates squeezed cat states. However, this does require a supply of single photons, and the output
squeezing is weak which indicates further in-line squeezing may be needed to reach fault-tolerant GKP
states.
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vacuum resource. In the case of GBS devices, the best current parameters for GKP state
synthesis could produce a 10 dB-squeezed GKP resource with > 99% fidelity, but this
requires a 12 dB-squeezed vacuum resource and assumes lossless detection [71]. When
including as little as 0.02 dB of loss (≈ 0.5%), the fidelity is reduced to just above 80%,
which will likely not suffice for error correction. A recent take on iterating layers of GBS
devices claims to be able to synthesize fault-tolerant GKP states [86], but without the
use of quantum memories (which would further degrade a produced state), the over-
all success probabilities are on the order of 10−29. Additionally, the parameters for the
Gaussian resources that optimize this GBS, including squeezing, are not provided. All
this together indicates that the jury is still out on the best way to produce optical GKP
states. Furthermore, one should use caution when relating experimentally achieved
vacuum squeezing to any fault-tolerant threshold based on GKP state squeezing.

Experimental progress

GKP states have been demonstrated experimentally with circuit QED and trapped ion
systems [87–89], but an all-optical approach with traveling fields has remained elu-
sive. Many approaches have been proposed for creating and enlarging cat states and
GKP states optically [71, 82, 84, 85, 90–95], with the majority of these protocols utiliz-
ing photon subtraction to generate cats while GKP states are formed by using higher-
order nonlinearities, non-deterministic boson-sampling devices, or by breeding pairs
of cat states. In spite of the difficulty to demonstrate GKP states optically, several ap-
proaches have successfully generated low-amplitude cat states [96–102]. Unfortunately,
all approaches for cat state generation currently rely on nondeterministic, probabilis-
tic methods with success rates below 10% [93] which demand “repeat-until-success”
approaches [103, 104].

Additionally, it is desirable to have these non-Gaussian states somehow inte-
grated within the Gaussian cluster state to utilize the fully measurement-based ad-
vantages of one-way QC. Current proposals plan to do by generating non-Gaussian
states offline and later coupling the ancillary modes to the cluster [65, 104, 105]. This
method could potentially introduce further errors with the need to perform entangling
operations between the offline GKP resources and the cluster, and additionally non-
deterministic state generation may complicate matters with requirements for quantum
memories if many copies of GKP states are needed. To help address these difficulties,
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Ch. 3 proposes a method to generate Schrödinger cat and GKP states embedded within
a cluster state.

1.10.2 Rotation symmetric codes

The GKP encoding is only one of several types of bosonic encodings [68, 106–108]. In-
stead of discretizing phase-space through periodic repetition of q or p, one can instead
use number-phase symmetry, such as introduced in Sec. 1.4.5. There are actually many
classes of codes that can be developed in this way, and unlike the GKP states, ideal
rotation-symmetric code states are physically realizable. However, the universal gate
set is generally more complicated. Rotation-symmetric codes remain a viable option
and would outclass GKP code error-correction against photon loss under certain con-
ditions [106].

In order for a code to successfully correct errors, the code states must satisfy the
Knill-Laflamme conditions [109]. For a given set of operators describing the interac-
tion with the environment, E = {Ê1, Ê2, ..., Êk} such that ∑k Ê†Ê = 1, a necessary and
sufficient criterion for a faithful error correction is defined as:

〈0L| Ê†
j Êk |1L〉 = 0 (1.265)

〈0L| Ê†
j Êk |0L〉 = 〈1L| Ê†

j Êk |1L〉 . (1.266)

These conditions essentially state that if an error occurs on both or either logical state,
then they must remain orthogonal. Additionally, if an error occurs, it should modify the
coefficients of the logical states in the same way. This way, when we determine that an
error has occurred through syndrome measurement, the recovery operation will correct
the state without altering the superposition.

Binomial code states

One class of states that I will highlight here are the binomial code states, defined as [21]

|µ〉 = 1√
2M

[0,M+1]

∑
p even/odd

(
M + 1

p

)1/2

|p(L + G + 1)〉N . (1.267)



80 Chapter 1. Quantum Optics and Quantum Computation

Depending on the particular parameters, these codes can correct up to L photon loss,
G photon gain, and D dephasing errors, where M = max{L, G, 2D}. These code states
satisfy the Knill-Laflamme conditions for errors in the set

E = {1̂, â, â2, ..., âL, â†, ..., â†G, â† â, ..., (â† â)D}. (1.268)

An example of these states for L = 1, G = 0, and D = 1 is shown in Fig. 1.3. A more
detailed discussion on these states and potential ways to generate them will be found
in Ch. 4.



81

Chapter 2

Photon Catalysis

From Ch. 1, we saw that obtaining a universal gate set for CV quantum information
processing requires non-Gaussian elements with signatures of negativity in the Wigner
function. Wigner function negativity is a required resource for achieving an exponen-
tial speedup [10], for entanglement distillation [110], Bell inequality violation [35], and
for quantum error correction [67]. Because of this, it is very important to develop
techniques to engineering quantum states and measurements with the requisite non-
Gaussianity. Although non-Gaussianity is necessary, it is not sufficient, which means
that finding a prescribed way of introducing the vital ‘quantum-ness’ may vary widely
between use cases for different encoding schemes. In addition to the limited availabil-
ity of non-Gaussian experimental resources, this makes developing universal resources
difficult, but nonetheless, quite important.

This chapter will develop methods of engineering certain non-Gaussian resources
using experimental techniques that are realistic for near-term applications. The main
resource of non-Gaussianity will be photon-number-resolving (PNR) measurements,
which I will show is quite feasible experimentally in Ch. 6. Additionally, for the pho-
ton catalysis scheme, I will make use of other limited non-Gaussian resources such as
single-photons in addition to Gaussian resources in the form of displacements and ro-
tations. This chapter will be based on published work on engineering cat and GKP
states with photon catalysis [84].
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FIGURE 2.1: Various feasible techniques for generating quantum states
with non-Gaussian Wigner functions. Diagram (a) depicts n photon sub-
traction, (b) and (b’) denote variants of n and single-photon additions, re-
spectively, and (c) generalizes the previous cases for an m fock state with

arbitrary beampslitter parameters and n photon detection.

2.1 Overview

Single-photon states, which have been generated and characterized using heralding
detection of downconverted photon pairs [111–114], are excellent non-Gaussian ingre-
dients. Sophisticated techniques such as photon subtraction [90, 91] as discussed in
Ch. 1 and photon addition [115] have led to very promising advances. In photon sub-
traction, Fig. 2.1(a), a nonclassical state of light impinges onto a highly unbalanced, say
transmissive, beamsplitter and a photon-number-resolving (PNR) detector, ideally, or
at least a single-photon sensitive one, detects the reflected light. Conditioned on the
detection of n photons, one can show that the transmitted light is, to a good approx-
imation, the state an |ψ〉, where ψ denotes the initial state of light and a the photon
annihilation operator [91, 116]. This was recently generalized to multimode light [117].
Photon subtraction cannot work on coherent states, of course, but photon addition, Fig-
ures(b,b’), does [115]. In Fig. 2.1(c), a more general process is presented, called photon
catalysis [118]. The Kraus operators for photon addition and subtraction were given in
Sec. 1.5.4

The more general technique of photon catalysis is derived from the “quantum
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scissors” scheme [119] and consists in interfering a quantum input (not necessarily
pure) with a Fock state and performing PNR detection of one beamsplitter output. The
beamsplitter is no longer necessarily balanced, and its coefficients are parameters of
the process as well. Bartley et al. explored this process and showed its potential for
the creation of non-Gaussian coherent state superpositions and squeezed states [120].
By varying the parameters of the beamsplitter, Bartley et. al experimentally performed
single-photon catalysis on a coherent state input to demonstrate the creation of states
exhibiting nonclassical photon statistics. Photon catalysis has also been explored in uti-
lizing multi photon detection [121], with general single-mode Gaussian inputs [122],
and for use as an entanglement enhancer [123]. Note that near-unity efficiency PNR is
now an experimentally available resource, thanks to superconducting transition-edge
sensors [124].

This chapter will explore the use of single-step and sequential photon catalysis to
generate non-Gaussian states of interest to CVQC, in particular exact displaced single-
photon states and phase-symmetric superpositions of squeezed vacuum (SSV) states, of
which squeezed Schrödinger cat states are a subset. By including a PNR-based breed-
ing protocol, we demonstrate the potential to enlarge SSV states and generate GKP
states. In this method, no squeezed states are required, the needed resources being
coherent states and linear optics, single-photon states, and PNR detection. Note that
photon catalysis can be related to a generalized Hong-Ou-Mandel effect, the result of
which has recently been calculated for arbitrary m if the input state, |ψ〉 in Fig. 2.1, is
either a coherent state or a thermal state [125].

2.2 Derivation

For the remainder of this work, we take the restriction of photon catalysis in Fig. 2.1(c)
to m=1, i.e., to single-photon input resource states, but we keep the option of variable
n for PNR detection. For an arbitrary input mode |ψ〉a |1〉b = ∑∞

m=0 ψm|m〉a|1〉b, the
output state is [19, 126]

|out〉ab =
∞

∑
m=0

ψm

m

∑
k=0

(
m
k

) 1
2

rm−ktk
[
t
√

m− k + 1|m− k+ 1
〉

a|k
〉

b− r
√

k + 1|m− k
〉

a|k+ 1
〉

b

]
,

(2.1)
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where the beamsplitter operator is defined by Uab = exp[θ(ab† − a†b)] with the reflec-
tion and transmission coefficients being r = cos θ and t = sin θ. If, say, output a is sent
to a PNR detector which measures n photons, then output b is projected into the state

|φ〉b = a〈n| out 〉ab

=
∞

∑
`=0

ψ`+n−1√
n

(
`+ n− 1

`

) 1
2

rn−1t`−1
(

nt2 − `r2
)
|`〉b .

(2.2)

If the beamsplitter is designed so that destructive quantum interference nt2 =

`r2 occurs, then the corresponding Fock state |nt2/r2〉 is absent from the output. An
application of this situation is given in the next section on exact state displacement
by such Fock-state filtering. Note that the state amplitudes are shifted by n − 1 in
the process. When postselecting on n = 1, this shift disappears and, by setting r2 =

1/(q + 1) for the beamsplitter, one can remove the q-photon amplitude:

|φq̄〉b =
∞

∑
`=0

ψ`

(
q

q + 1

) `+1
2
(

1− `

q

)
|`〉b . (2.3)

If |ψ〉 has a maximum number `max of amplitudes and if q � `max, then the
Fock-state filtering is almost perfect: only ψq is removed and the other amplitudes are
practically unchanged.

However, the number of free parameters allows us to Fock-filter a state in several
different ways. Rather than postselecting n = 1 and tuning the beamsplitter, it would
be much more advantageous, from an experimental point of view, to postselect as little
as possible and use PNR detection to the fullest. Let us also fix r = t = 1√

2
, then

|φ〉b ∝
∞

∑
`=0

ψ`+n−1

(
`+ n− 1

`

) 1
2

2−
`
2 (n− `) |`〉b , (2.4)

thereby removing the n-photon Fock state from the b output if n photons are detected
in port a. Again, one should keep in mind that the state amplitudes ψk are shifted by
n− 1 in the process, hence this operation of photon catalysis is more complex than just
Fock-state filtering. However, as we now show, photon catalysis can nontrivially gen-
erate exact displaced single-photon states, as well as arbitrarily good approximations
of non-Gaussian states that are of interest in quantum information processing, such as
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Schrödinger-cat states and GKP quantum error code resource states. In all the rest of
the paper, we will consider either a coherent-state input, |ψ〉 = |α〉, or inputs derived
from previous photon catalysis steps, |ψ′〉 = |φ〉.

To practically apply photon catalysis to arbitrary quantum states, we developed
a numerical procedure to take an input density matrix, possibly impure, and transform
it by photon catalysis. These calculation details are described in AppendixA.1.

2.3 Exact Displaced Single-photon States

The use of phase space displacements is very important for implementing a variety
of operations in continuous-variable quantum information, since the Weyl-Heisenberg
group of field quadrature shifts is the CV analog of the Pauli group for qubits [10].
These displacements can be experimentally realized by combining the state to be dis-
placed with a coherent state at a highly unbalanced beamsplitter [127]. However, this
method does require a partial trace over the other output port, yielding a statistical mix-
ture that only approaches the exact displaced state as the reflectivity approaches unity,
which in turn limits the amount of displacement. Moreover, as discussed in [128], the
displacement operation becomes less accurate as the energy constraint for the input
states increases. By contrast, photon catalysis is not subject to this limitation and can
generate an exact displaced single-photon state.

2.3.1 Lossless case

We recall the derivation to approximately displace a single-photon where we use |α〉 |1〉
as the input [127]. The photon catalysis output is, before PNR detection,

|out〉ab = Da(rα)Db(tα)(ta† − rb†) |0〉a |0〉b . (2.5)

Performing a partial trace over mode a results in a mixture of displaced single-photon
and weakened coherent given by

ρout = t2 |tα〉 〈tα|+ r2D(tα) |1〉 〈1|D†(tα). (2.6)
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In the limiting case of α → ∞ while t → 0, we recover a pure single-photon state
displaced by tα. In all experimental cases where α is finite and t > 0, we see that
there is unavoidable mixing with a coherent state of the same amplitude as the desired
displacement [127]. Defining the fidelity between ρout and a target state, ρT, by

F =

∣∣∣∣∣Tr
√√

ρoutρT
√

ρout

∣∣∣∣∣

2

, (2.7)

we see that the fidelity of the approximate displaced photon given with the ideal
pure state, ρT = D(tα) |1〉 〈1|D†(tα), is simply F = r2.

However, if we don‘t perform the partial trace and instead send mode a of Eq. 2.5
to a PNR detector and condition on the detection of n photons, we get

|φ〉b ∝ a〈 n | out 〉ab (2.8)

∝ (nt− αr2b†) |tα〉b . (2.9)

We can then evaluate the overlap of |φ〉b with a single-photon state displaced by β:

〈1|D†(β) |φ〉 ∝ nt(tα− β)− αr2[1 + β∗(tα− β)]. (2.10)

Normalizing Eq. (2.9) and taking α, β ∈ R yields the fidelity

F = e−|β−tα|2
∣∣nt(β− tα) + r2α(1 + tαβ− |β|2)

∣∣2

r4|α|2 + t2(n− r2|α|2)2 . (2.11)

Examining this result, we see that if r2|α|2 is specifically chosen to be an integer so
that n = r2|α|2 photons are detected, then F = 1 for β =

√
|α|2 − n = αt. While this

result holds for any value of displacement, β, the specific case of taking an integer value
for |β|2 allows us to view the method of photon catalysis to enact displacements as a
process that removes a single Fock component as per Eq. 2.2. To see this, consider the
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displaced single-photon state,

D(β) |1〉 = D(β)a†D†(β) |β〉 (2.12)

= a† |β〉 − β∗ |β〉 (2.13)

∝
∞

∑
m=1

βm
√

m!

(
m− |β|2

)
|m〉 − |β|2 |0〉 . (2.14)

Clearly, the m = |β|2 Fock-component is absent, which is precisely the component
that was removed from the initial coherent state, α, by the photon catalysis process, i.e.,
the component nt2/r2 = |α|2t2 = |β|2.

Our method gives the same result as the limit case given by Ref. [127]; however,
here, the beamsplitter retains t > 0 and the limit case is not needed to reach exact
displacement. Therefore, we see that by tuning the reflectivity of a beamsplitter and
post-selecting on the desired n detection, it is possible to use photon catalysis with a
coherent state to prepare an exact displaced single-photon state of displacement ampli-
tude β = tα.

2.3.2 Lossy case

If we now consider an imperfect detector of quantum efficiency η < 1, the final state is
no longer pure and the fidelity with the target displaced Fock-state is no longer unity.
However, the fidelity can be improved slightly by modifying the displacement of the
target state, ρT = D(β) |1〉 〈1|D(β)†. In this case, we postulate, and numerically verify,
that the maximum fidelity is achieved when

α =

√
n

ηr2 (2.15)

β =

√
α2 − n

η
(2.16)

and this value approaches unity as t → 0 (r → 1) as illustrated in Fig.2.2(c), where the
Wigner functions for various parameters are evaluated numerically using the open-
source Python modules QuTip [129] and Strawberry Fields [130]. In order to verify
that the codes perform as expected, we computed the above photon catalysis step us-
ing QuTip and confirmed that the output state is identically a displaced Fock state for
correctly chosen parameters.
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FIGURE 2.2: (a): Wigner functions for lossless photon catalysis per
Eq. (2.9). As the amplitude of the initial coherent state approaches the op-
timal ratio, the output Wigner function becomes that of a displaced single-
photon Fock State. When α2 = n/r2, the fidelity between the two states is
unity. (b): Wigner functions for photon catalysis with detector efficiency
η = 0.9. (Amplitudes have the same ratio of optimal values as in (a)) (c):
Maximum fidelity achievable with a displaced Fock-state of displacement
β =

√
α2 − n/η for detector efficiency η when the beamsplitter parameter

r is varied. The black dot-dashed line indicates the fidelity of an ideal dis-
placement with that obtained by the usual technique [127] for r2 = 0.97,

where the PNR detector is replaced by a partial trace.
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Fig.2.2 shows the resulting Wigner functions after photon catalysis as the coherent
state amplitude is tuned. If the PNR detector is perfect (Fig.2.2(a)), then the negativity
of the Wigner function increases and becomes maximal as |α|2 approaches the optimal
value to achieve an ideal displacement. Fig.2.2(b) demonstrates that when |α|2 is the
same fraction of the optimal value as in Fig.2.2(a), but the detector is no longer perfect
(η = 0.9), the Wigner function has the same qualitative shape in each case but exhibits
an overall decreased negativity due to the effective loss at the detector. When compar-
ing to a typical experimental displacement such as using the beamsplitter parameter
r2 = 0.97 [114](black dot-dashed line in Fig.2.2(c)), the addition of even imperfect PNR
detectors improves the attainable fidelity with the ideal displaced single-photon state.

2.4 Schrödinger Cat States

We now turn to Schrödinger-cat coherent superpositions (SCSs), which are of the type

|SCS±(ζ)〉 = N(|ζ〉 ± |−ζ〉), (2.17)

where N is the normalization constant. These non-Gaussian states have been proposed
for quantum computing [131] and small-amplitude optical SCSs have been created by
several methods [91, 96–99, 132], but there has yet to be a reliable approach to generate
larger photon-number SCSs. Methods have been proposed to “breed” SCSs using two
smaller SCSs, a beamsplitter, and conditional homodyne detection to create a larger SCS
of amplitude

√
2ζ [133, 134], including an approach of particular interest involving an

iterative process similar to photon catalysis where the PNR detectors are replaced with
homodyne measurements [135]. These approaches will also require quantum memo-
ries. To our best knowledge, the largest created optical SCS to-date made use of two
squeezed vacuum resources and a breeding step to create a squeezed SCS with ζ = 2.15
and a fidelity of 0.74 (according to the fidelity defined by Eq. 2.7) [102].

As exemplified by the work of Sychev et al. [102], most SCS preparation meth-
ods result in a squeezed cat state, S(r) |SCS±(ζ)〉, where S(r) = exp[r(a† 2 − a2)/2] is
the single-mode squeezing operator. Without loss of generality, we take the squeezing
parameter r ∈ R for the numerical simulations in this work.

Using a procedure of iterated photon catalysis steps with only a coherent state
and single photons as inputs, we show that one can create states that approach exact
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squeezed SCS, where the final amplitude and squeezing of the state increases with the
number of photon catalysis steps. We numerically demonstrate that for low photon
numbers, the final SCS amplitude after photon catalysis increases more rapidly with
each additional step than with the number of steps required by the homodyne detection
based breeding protocol [133].

The general idea to generate squeezed SCS states from multiple photon catalysis
steps is somewhat counterintuitive: consider, for example, the “odd” SCS,

|SCS−(ζ)〉 =
1√

sinh |ζ|2
∞

∑
n=0

ζ2n+1
√
(2n + 1)!

|2n + 1〉 , (2.18)

which only contains odd photon numbers. Naïvely, it would be tempting to consider
using photon catalysis to filter the even Fock components from a coherent state in an
attempt to approximate an odd SCS. However, this approach would require cascaded
stages which would “undo” one another in general because of the shift of the proba-
bility amplitudes by n − 1, at each stage, when n > 1. Thus, the previously filtered
Fock amplitudes in a cascaded scheme do reappear, in general, after the next stage.
Nonetheless, and remarkably, cascaded photon catalysis can be used to generate excel-
lent approximations to squeezed SCSs — which are useful to generate the GKP resource
states crucial to CV quantum error correction, as we will see in the next section.

2.4.1 Cascaded photon catalysis

We turn to the squeezed SCS generation protocol, which consists of photon catalysis
iterated over N steps as shown in Fig.2.3. If we consider allowing the beamsplitter pa-
rameters and PNR measurements to vary at each step, then each iteration gives us two
additional degrees of freedom: the deterministically controllable beamsplitter reflectiv-
ity, ri, and the probabilistic detection, ni. We limit the scope of this paper to measure-
ments that are subsequently performed, which means that after being post-selected for
an outcome ni at the ith step, the output state will be the input to the (i + 1)th step
along with the single-photon as displayed in Fig.2.3. The possibility of using measure-
ment results as feed-forward parameters, so as to optimize protocol efficiency, will be
investigated in future work.
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FIGURE 2.3: Protocol for generating an approximate squeezed SCS using
photon catalysis. The initial coherent state of amplitude α is successively
interfered with single-photon Fock states on a tree of variable beamsplit-
ters, each of which is followed by a PNR detector. These steps are sequen-
tial in that each prior PNR detection occurs before the intermediate state is
interfered at the next beamsplitter in the tree. By tuning the beamsplitter
parameters and initial coherent state amplitude, the output conditioned by
N PNR detection steps is very near a squeezed SCS, up to a final displace-

ment.

Using the general output given by Eq. A.10 for a coherent state, |α〉, we arrive at
the N-catalyzed state given by

|φN〉 ∝
∞

∑
m=0

αm
√

m!

N−1

∏
k=0

tm
k+1

{
nN−kt2

N−k − r2
N−k

[
m +

k−1

∑
j=0

(nN−j − 1)
]}
|m〉 . (2.19)

Following the intuition that filtering Fock components may lead to an SCS, we wish
to compare the fidelity of the state given by Eq. 2.19 with that of a squeezed SCS.
However, in order to simplify the resulting expression and decouple the squeezing
parameter from the SCS amplitude, we instead choose to compare the photon-catalyzed
state with a superposition of squeezed vacuum (SSV) given by

|SSV±(β)〉 ∝ [D(β)± D(−β)] S(r) |0〉 . (2.20)
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Using the property [136]

D(β)S(r) = S(r)D(ζ) (2.21)

ζ = β cosh r + β∗ sinh r, (2.22)

it is easy to see that the squeezed SCS and SSV states are equivalent when

ζ = e−rβ (2.23)

where β is chosen to be real without loss of generality. By allowing for a poten-
tial displacement following the multiple photon catalysis procedure, we can derive an
expression for the fidelity with the N step catalyzed state and the target state,

ρT = D(δ) |SSV〉 〈SSV|D†(δ). (2.24)

Here, δ is the amplitude by which the final catalyzed state must be displaced
back to the origin of phase-space in order to recover the desired |SSV〉 state defined in
Eq. 2.20. The analytical expression for the fidelity with the target state is derived in
Appendix A.3 and given by

F =
C2

SSV±C2
|φN〉

cosh r

∣∣∣∣∣
∞

∑
`,m=0

{
(tanh r)`

(2`− 1)!!αm
√
(2`)!m!

[A(2`, m,−β− δ)− A(2`, m, β− δ))]

×
N−1

∏
k=0

[
tm
k+1

(
nN−kt2

N−k − r2
N−k(m +

k−1

∑
j=0

(nN−j − 1)
)]}∣∣∣∣∣

2

,

(2.25)
where CSSV± normalizes Eq. 2.20, C|φN〉 normalizes Eq. 2.19, and we define A(n, m, γ) ≡
〈n|D(γ) |m〉. This expression can be optimized with respect to all available parameters.
In order to limit the computation time and adhere to realistic PNR detection capabili-
ties, we constrain each ni < 10. For each combination of possible detections subject to
the constraints, we implemented the Nelder-Mead algorithm to perform a multivariate
numerical optimization in Mathematica. Additionally, although all optimizations were
performed with respect to the SSV amplitude, β, we will give the results in terms of an
ideal squeezed SCS amplitude for easier comparison with other work.

We performed the fidelity optimization for a given coherent state passing through
two, three, and four-step cascaded photon catalysis process. We noticed that in each
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FIGURE 2.4: Calculated Wigner functions and density matrix elements for
the approximate squeezed cat states resulting from varying the number of
cascaded photon catalysis iterations with an initial coherent state input.
Row (a) shows the results after two iterations, (b) after three iterations,
and (c) after four. In each separate case (a-c), all beamsplitter parameters,
PNR detections, and the input coherent state amplitude are tuned indepen-
dently to optimize the fidelity with the nearest squeezed cat state. Column
(i) shows the plotted Wigner functions for the photon catalyzed states, and
(ii) gives the density matrix elements. Column (iii) gives the density matrix
elements of the ideal associated squeezed cat, and (iv) shows the magni-

tude of the difference between (ii) and (iii).
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FIGURE 2.5: Photon number probability amplitudes for various states.
Top: distributions for coherent state input and the quantum state after the
first detection step. Bottom: distributions for the quantum state after the
second PNR detection and for the final catalyzed state after a displace-

ment(blue) compared to the target SSV state(red).

case, there are multiple sets of parameters that generate a high-fidelity SSV state. In
hindsight, this may not be a surprise, as the number of free parameters likely under-
constrains the system for low amplitude target states. We selected the results that have
the highest probability of success, which are depicted both in terms of the plotted
Wigner function and density matrix elements in Fig.2.4. We find that we can pro-
duce a nearly ideal SCS with ζ = 1.50 squeezed by 1.91 dB after a two step process
(F > 0.999). Optimizing a three-step process yields an SCS with ζ = 2.18 squeezed
by 4.17 dB (F = 0.984), and using N = 4 results in ζ = 2.67 with squeezing of 4.52
dB (F = 0.977). The full list of optimized parameters for each case is provided in Ap-
pendix A.4. We note that scaling from N = 2 to N = 3 in this procedure already
increases the cat amplitude by a factor of

√
2. This approach only includes a single

additional interference and detection stage whereas the other breeding procedure dis-
cussed earlier requires three additional steps provided that the two smaller cats to be
bred came from an N = 2 photon catalysis procedure. This indicates that an iterative
photon-catalysis process might scale better for larger SCS creation than homodyne-
based breeding.

It is important to keep in mind that each N-step photon catalysis process is op-
timized to produce an approximate SSV state as a final result; simply adding an ad-
ditional catalysis step to any of these final approximate cats will not increase the cat
amplitude or squeezing under the current approach. As an example, consider Fig.2.5,
which shows the photon number distributions before and after each catalysis step for
N = 2. The filtering of Fock components at each step is not perfect due to the numerical
procedure, but it is easy to see that the first projective PNR measurement, |1〉〈1|, acts
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to nearly eliminate the |2〉 component from the initial coherent state, while the second
step effectively shifts and re-scales the distribution. A final displacement of the Wigner
function back to the origin of phase-space results in a very near approximation to the
target state as shown by the comparison of probability amplitudes in the rightmost
panel of Fig.2.5. Although the first catalysis step acts to de-Gaussify the coherent state,
applying the displacement at this point would result in poor overlap with any class of
SSV.

2.4.2 Loss tolerance

Experimental imperfections and associated optical losses will contribute to non-ideal
single-photon resources, in which case we must consider a mixture of single-photon
and vacuum as the realistic input at each interference beamsplitter [111, 114]. This can
be modeled by sending each pure single photon through a lossy channel with trans-
mission γ, so that each input is now

ρmix = γ |1〉 〈1|+ (1− γ) |0〉 〈0| . (2.26)

By using the optimized parameters for the ideal procedure and replacing the pure
single-photons with ρmix at each step, we see in Fig.2.6 how including a vacuum con-
tribution adversely affects the fidelity with the target states in each case. The decreased
purity more greatly harms the procedures with larger N, unsurprisingly.

However, we note that just as in Ref. [135], our protocol in of itself adds little
imperfection to the result, which can be seen directly in Fig.2.6 by comparing the drop
in fidelity between neighboring values of N. For purities above γ = 0.8, the decrease
in the fidelity of our output state with the target between N = 2 and N = 3 step
processes is nearly equivalent to the fidelity difference between N = 3 and N = 4 step
procedures, which indicates the change in fidelity is nearly linear with the number of
impure single-photon inputs.

Fig.2.6 indicates the importance of pure single photons for our protocol; fortu-
nately, there has been much work in the area of on-demand, highly efficient single-
photon emitters using solid state devices [137–139]. On-demand quantum dot emit-
ters have already demonstrated single-photon purities above 99% [140], and a recent
proposal making use of quantum feedback control suggests that on-chip sources with
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greater than 99% on-demand extraction efficiency are possible with current technol-
ogy [141]. As in Sec. 2.3, we consider the effects of imperfect detectors in each step,

FIGURE 2.6: The effects of vacuum mixing due to (a) impure single-photon
input and (b) imperfect detectors are shown separately for N-step photon
catalysis with N = 2, 3 and 4. The fidelity is calculated with respect to the

same target SSV states as for the optimized procedure shown in Fig.2.4.

where we assume identical detector efficiencies of η ≤ 1. Similarly to having impure
single-photons, each additional imperfect PNR measurement acts to further decrease
the fidelity with the target state in a way that appears linear with increasing photon
catalysis steps. We see from Fig. 2.6 that generating high-fidelity cat states would re-
quire the use of highly efficient PNR detectors, as η ≤ 0.85 prohibits even N = 2
step procedures from yielding states above a fidelity of 0.9. Thanks to recent advances,
high efficiency PNR is achievable with current transition-edge sensors [124] and su-
perconducting nanowire single-photon detector arrays [142], which have been recently
reported to have PNR capabilities [143].

2.4.3 Success probability

For methods of non-Gaussian state engineering that use homodyne detection as in
Ref. [135], one can select a confidence window of ∆x on acceptable post-selection mea-
surement results that allow for an increase in procedure success probability at the cost
of decreasing fidelity. In our case, however, the projective operator of PNR detection
lies in a discrete subspace, so we cannot allow for continuous deviations from the ideal
detection scheme. Nonetheless, we can still examine the fidelity and success probabil-
ity in cases where the initial coherent state amplitude and N deterministic beamsplitter
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parameters are held fixed at values optimized for SSV generation, but some ni deviate,
necessarily in integer steps, from the ideal scenario.

For each combination of detection events that deviates, we can re-optimize the
fidelity from Eq. 2.25, where now only the target state parameters are allowed to vary
(SSV amplitude, squeezing, and the displacement amplitude). In this way, it is possible
to generate a finite list of PNR detection combinations that differ from the combination
that best approximates an ideal SSV state, yet still yields a final state above a given
threshold fidelity, Fthr, with a target state. This suggests that approaches involving
feed-forward based on measurement results might also be fruitful. If one only discards
the photon-catalyzed states where the detected combination {n1, n2, . . . , nN} is outside
of the acceptable list, then the photon-catalyzed state is guaranteed to have a fidelity
F ≥ Fthr with an appropriate SSV state. This target state may vary slightly in ampli-
tude and squeezing from the SSV target for the optimal detection scheme (removing a
different total photon number changes the total energy of the state), but the target is
still required to be an SSV state, and we show later how two similar SSV states can be
enlarged by utilizing PNR detection. By decreasing Fthr, more combinations of possible
PNR detections are included in the “accept” list, thereby increasing the probability of
successfully generating an SSV state. The effects of lowering Fthr for the two, three, and
four-step photon catalysis procedures considered in the previous section are depicted
in Fig.2.7. For the N = 2 and N = 3 cases, we see that setting Fthr = 0.9 yields nearly an
order of magnitude increase in success probability from the perfect detection scenario,
while the N = 4 case shows an increase of nearly two orders of magnitude for the
same fidelity threshold. Paired with state-of-the-art technology in deterministic single-
photon sources [140, 144] with emission rates on the order of 106 counts/sec [137], an
N = 3 step photon catalysis process would yield nearly perfect SSV states at rates in
the kilohertz regime.

2.4.4 Higher-symmetry SSV states

The versatility of cascaded photon catalysis allows us to examine classes of SSV states
that exhibit beyond two-fold phase space rotational symmetry. These states can be
more generally expressed as superpositions in the form of

|SSV(M)〉 ∝
M−1

∑
n=0

D(βe
2n
M iπ)S(re

4n
M iπ) |0〉 , (2.27)
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FIGURE 2.7: The success probability to generate an approximate SSV state
with at least a given threshold fidelity is shown for a cascaded photon
catalysis procedure of two(green), three(red), and four(blue) steps. Allow-
ing the PNR detection results to deviate from the optimized values yields

an increased probability of success at a cost to fidelity.

where M is the number of components in the superposition and degree of rotational
symmetry. Each component consists of squeezed vacuum that has been displaced with
an integer multiple of phase increment of 2π/M, where the squeezer anti-squeezes the
vacuum perpendicularly to the axis of the subsequent displacement. Although there is
no restriction on r for this class of states, we consider r < 0, as this corresponds to the
states we generated with cascaded photon catalysis. While we only explicitly consider
protocols to generate states with M = 2 and M = 3 in this work, we expect that it
is possible to further generalize the generation of SSV(M>3) by optimizing photon-
catalysis.

For the next highest symmetry state (three-fold symmetry), we can again use the
protocol depicted in Fig.2.3 with three photon catalysis steps, but with different input
coherent state amplitude and beamsplitter parameters, to create the state

(
D(β)S(r) + D(βe

2πi
3 )S(re

4πi
3 ) + D(βe

4πi
3 )S(re

2πi
3 )
)
|0〉 , (2.28)

where r = −0.24, β = 1.255, and the fidelity is greater that 0.99. This is achieved with
detection events of {n1, n2, n3} = {6, 4, 2}, which were found serendipitously. The
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comparison of the ideal and procedurally generated states is depicted in Fig.2.8(a), and
Fig.2.8(b) demonstrates the 120◦ rotational symmetry of the Wigner function. As this
state is created with a cascaded photon catalysis procedure, the success probability and
dependence on purity of single-photon inputs and detector efficiency is very similar to
the other N = 3 case considered earlier. The utility of the M = 3 SSV state is developed
further in the next section.

FIGURE 2.8: Photon-number distribution, (a), and Wigner function, (b), of
the approximate SSV(3) state generated by a three-step photon catalysis
protocol, where the squeezing parameter is r = −0.24 and amplitude is
β = 1.255. The Wigner function nicely displays 120◦ phase-space rotational

symmetry.

2.5 Breeding Protocols

Methods to combine SCS with breeding protocols have been widely explored to gen-
erate larger amplitude SCS states [99, 102, 133, 134, 145] and other classes of comb
states [82, 135]. A recent work shows how feed-forward displacements can allow
for deterministic creation of optical GKP states from a supply of squeezed SCS [83].
Here, we motivate the extension of these breeding protocols to PNR detection as op-
posed to traditional homodyne measurements. Additionally, we make use of the phase-
insensitivity of direct photon-counting measurements to demonstrate how PNR detec-
tors can be used to breed higher symmetry states.

2.5.1 SSV states

First, we begin by examining a procedure with the aim to take two lower amplitude
Mth-order SSV states and produce a larger SSV state of the same order of symmetry.
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Taking two identical states given by Eq. 2.27 and interfering them on a balanced beam-
splitter, we have the state

|φ〉 ∝ Uab

M−1

∑
n=0

Da(βn)Sa(ξn) |0〉a ⊗
M−1

∑
n=0

Db(βn)Sb(ξn) |0〉b , (2.29)

where βn = |β|e 2n
M iπ and ξn = re

4n
M iπ, with the beamsplitter operation given by Uab =

e
π
4 (ab†−a†b) . Developed further in Appendix A.5 and numerically verified for the first

few SSV states, it can be seen that for finite squeezing and relatively larger values of
|β|, a PNR measurement of zero photon, |0〉〈0|, on output mode b leads to

b〈0 |φ〉ab ≈
M−1

∑
n=0

Da(
√

2βn)Sa(ξn) |0〉a . (2.30)

FIGURE 2.9: Fidelity and success probability of the PNR detection-based
breeding protocol for various initial amplitudes, β, and squeezing, ξ. The
colors bars indicate fidelity (top panel) and success probability (bottom
panel) for the respective plots, where dark green is unity. M = 2 (a), M = 3
(b), and M = 4 (c) symmetric SSV states are bred into larger states in the

same class with amplitude
√

2β and the same squeezing parameter.

This means that using PNR detectors, SSV states can be bred into states with the
same squeezing, but with increased amplitude |β| →

√
2|β|. The factor of

√
2 increase

is the same result as achieved for SSV states with M = 2 using homodyne detection-
based breeding protocols, but the nature of performing a homodyne measurment along
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a particular axis in phase-space means that higher symmetry features are not preserved,
thus indicating that PNR-based protocols such as this will be necessary to breed general
SSV-type states. The fidelity of the bred states with the enlarged target states as well
as success probabilities are shown in Fig.2.9. In all cases examined, the fidelity quickly
approaches unity for values of |β|2 ' M. Additionally, the success probabilities are
greater than 10−1 in all regions where fidelities are numerically indistinguishable from
one, and the probability for success in the M = 2 case holds steady at 0.5 for squeezing
|ξ| / 0.3 and |β|2 > 4.

2.5.2 Square-lattice GKP states

Here, we adapt the experimental proposal of Vasconcelos et al. [82] to our cascaded
photon catalysis method of producing SCSs followed by PNR detector-based breeding.
The essence of their original idea is as follows: by entangling two squeezed SCS on
a balanced beamsplitter and performing a homodyne measurement of p = 0 on one
output, the output of the other port is projected into a state exhibiting a series of evenly
spaced Gaussian peaks along the x-quadrature axis where the peak amplitudes follow
a binomial distribution about a central peak at x = 0, and the peak width is determined
by the SCS squeezing. Repeating an identical protocol with two of these outputs serves
to increase the number of peaks by elevating the order of the binomial distribution.
Recently, Weigand et. al have shown that including feed-forward displacements based
on the homodyne measurement results makes this process deterministic [83]. After
many iterations and in the limit of large initial SCS squeezing, this method accurately
approximates an ideal square-lattice GKP state, which can be explicitly written as [48]

|µsqr〉 ∝
∞

∑
n1,n2=−∞

e−i p̂
√

2π
d (dn1+µ)eiq̂

√
2π
d n2 |0〉, (2.31)

where d is the dimensionality of the code space and µ = 0, . . . , d− 1 labels the specific
GKP state in the code space. To make the state physically realizable in the case of finite
energy, the state can be modulated by a Gaussian envelope [146]. The finite energy
GKP state is thus given by

|µ∆
sqr〉 ∝ e−∆2N̂ |µsqr〉 (2.32)

where N̂ = a†a is the photon-number operator. These finite-energy GKP states
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compose a periodic square-lattice grid in phase-space, where each peak has width ∆.
The result of following this homodyne-detection based procedure with two states gen-
erated by our four-step photon catalysis procedure is shown in the top left plot of
Fig.2.10.

If we perform PNR detection on one mode following the entangling beamsplitter
instead of a homodyne measurement, we can obtain different final states according to
the selected measurement result that each exhibit the periodic comb-like structure of a
GKP state as demonstrated in Fig.2.10. Using a balanced beamsplitter, Uab, and phase-
shift operator R(Θ) = eiΘa†a, the overall result can be concisely written as

|φ〉 ∝ b〈n|UabRa(Θ) |SSV(2)〉a |SSV(2)〉b . (2.33)

This is exactly the process that we used earlier to breed SSV states, but with two im-
portant changes. Because PNR detection is phase-insensitive, precisely controlling the
relative phases between the states impinging on the entangling beamsplitter becomes
vital, and here we set the phase difference to Θ = π

2 to achieve the square-grid comb-
like periodicity. Additionally we allow for PNR detection other than vacuum.

As a concrete example, if we entangle two SSV states generated from photon
catalysis (Fig.2.4(c)) and detect n = 4 photons in one mode, we achieve a state that has
a fidelity of F = 0.996 with a finite-energy square GKP state of width ∆ = 0.545. This
single event occurs with a success probability of 0.09, but the probability to achieve at
least one of the comb states shown in Fig.2.10 exceeds 0.60. It has recently been shown
that in the absence of squeezing, the processes of breeding a pair of cat states as per
Eq. 2.33 deterministically produces one of a family of four-component cat states, other-
wise known as compass states [147]. Under certain conditions, low-amplitude compass
states are very close to approximate GKP states, which is precisely what is shown in
Fig. 2.10.

Since finite-energy GKP code states are no longer orthogonal within the d-dimensional
code space, error correction protocols become probabilistic due to the non-zero overlap
between the logically encoded states. In the original work, the probability to success-
fully correct an error hinges solely on the ability to accurately distinguish code states,
leading to a 99% success rate for ∆ ∼ 0.5 [48], such as is the case for our states. How-
ever, a more realistic error-correcting protocol considers potential shift errors on the
ancilla qubits as well as the encoded qubit to be corrected, leading to a more stringent
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FIGURE 2.10: Wigner functions of bred two-fold symmetry SSV states
(squeezed SCS states) achieved by the photon catalysis protocol after var-
ious detector measurements. The homodyne plot demonstrates the grid
state of the result after a p = 0 quadrature measurement, while the other
plots show the resultant state after a PNR detection of n photons. The
n = 4 case has a fidelity F = 0.996 with a square-grid GKP state with

finite-energy peak-width ∆ = 0.545.

requirement of ∆ < 0.15 to achieve the same success rate [148]. Utilizing more pho-
ton catalysis iterations to increase the initial SCS squeezing and performing multiple
breeding operations as in [83] will result in suitable states for realistic quantum error
correction.

2.5.3 Hexagonal GKP states

One principle advantage exhibited by the GKP encoding scheme is an inherent resis-
tance to shift errors in the conjugate position and momentum quadratures x and p. The
hex GKP state, formulated in the original work [48] and recently expanded upon in
greater detail in Refs. [146] and [106], improves upon the initial square lattice state by
being able to correct larger displacement errors. As a hexagonal lattice in phase space,
the hex GKP state can now account for shift errors with a new upper-bound phase
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space radius of r ≤
√

π√
3d

, as opposed to r ≤
√

π
2d intrinsic to the original, where d is

the dimensionality of the code space. This hex GKP state can be explicitly written as

|µhex〉 ∝
∞

∑
n1,n2=−∞

e
− i

2 (q̂+
√

3p̂)
√

4π
d
√

3
(dn1+µ)

e
iq̂
√

4π
d
√

3
n2 |0〉, (2.34)

where as in the square-lattice case, applying the non-unitary operator e−∆2N̂ makes
the state physically realizable [146]. Fig.2.11 shows the Wigner function for a linear
combination of hex GKP states of dimension d = 2 plotted with different peak-widths.

FIGURE 2.11: Comparison of finite energy hex GKP states to that of two
120◦ rotationally symmetric SSV states after breeding. (a) and (b) show the
Wigner function of a mixture of hex GKP states of code dimension 2 with
peak widths ∆ = 0.2 and ∆ = 0.46, respectively. (c) shows the Wigner
function of bred SSV states each developed by an N = 3 photon catalysis

protocol.

Noting that the SSV(2) states (squeezed SCS) can be bred into square-lattice GKP
states, we are motivated to examine what happens when breeding SSV(3) states, such
as those generated in Sec. 2.42.4.4. Because the states have 2π/3 rotational symmetry,
we fix the phase difference of the two initial states to be Θ = π/3 at the entangling
beamsplitter, and send one output mode to a PNR detector. Just as with the SSV(2)

breeding protocol, we find that several possible measurement results lead to a final state
exhibiting the desired hexagonal symmetry. Fig.2.11(c) shows the result of breeding
two of the states depicted in Fig.2.8 after post-selecting on a PNR measurement of n = 0
with a probability of 0.31. While only having a fidelity of 0.8 with the mixed hex GKP
state in Fig.2.11(b), the visual similarity and relatively high success probability indicate
that there may be a suitable SSV(3) for more realistic hex GKP synthesis.
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2.6 Summary and Goals

This chapter further explored the photon catalysis process [118] where interfering a
single-photon with an input state on a beamsplitter can result in specifically engi-
neered non-Gaussian quantum states contingent upon beamsplitter parameters and
conditioned by PNR detection. By using a coherent state as an input, we demon-
strated that one photon catalysis step can implement arbitrary displacements on the
single photon Fock state and preserve state purity. Further, by cascading the photon
catalysis process, we are able to filter out multiple photon number components and
accurately approximate relatively large superpositions of squeezed vacuum, including
what is to our knowledge the largest proposed optical SCS without the need for large-
number Fock states or breeding. Furthermore, we adapted breeding protocols based on
homodyne detection [102, 133–135, 145] to a PNR-based scheme that allows for breed-
ing M-fold symmetry SSV states. By changing the phase between input modes of the
PNR-based breeding, we showed that it is possible to reconstruct square and hexago-
nal lattice comb-states that exhibit the structure of finite-energy GKP-class code states.
Future avenues of exploration may include utilizing PNR measurement results to im-
plement feed-forward modifications to subsequent photon catalysis steps in the hopes
to increase protocol success rates.

As mentioned previously in Ch. 1, it was shown that combining a supply of
GKP states with Gaussian QC alone is sufficient for fault-tolerant universal QC; there-
fore, developing a technique to synthesize GKP states is vital [69]. Machine learning
optimization algorithms have demonstrated the potential to create high-fidelity GKP
states [149], but these methods require in excess of 100 gate operations. The method of
photon catalysis and PNR-based breeding we describe here provides an experimentally
feasible approach to generate various nonclassical states, including GKP, important for
quantum information and quantum computing.

Future work may focus on optimizing and extending the protocol discussed, such
as perhaps compacting the design or including machine learning methods along with
tunable parameters from step to step of the catalysis process. For example, consider
Fig. 2.12. Provided one has a supply of single photons, one may use an optical cavity
with tunable beamsplitters to apply many steps of photon catalysis until a desired re-
sult is achieved. At each step, i, the coherent state |αi〉 can be tuned to apply a displace-
ment of tαi, which then interferes with the input photon at a beamsplitter with tunable
parameters. The result of the PNR detection, ni, along with the displacement value can
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FIGURE 2.12: Multi-stage photon catalysis may be ‘folded’ into a loop,
where the round-trip time of the loop corresponds to the single-photon
pulse separation time. On each step, the single photon interferes with the
displaced outcome of a previous catalysis step at a beamsplitter. The dis-
placement and beamsplitter parameters could be controlled based on prior

round detection outcomes.

be used as feed-forward parameters that determine the future displacement αi+1 and
values of the beamsplitter parameters, ri+1, ti+1. This is an example of a Markov pro-
cess as the output of a photon catalysis step depends only on the previous output state
and the current modifiers,

|φi〉 = 2〈ni|B̂12(ri, ti)D̂(αi)|φi−1〉1|1〉2. (2.35)

Two things can happen:

• The output state can converge to a desired target state, at which point the state
can be released from the loop on the k-th step and used as desired.

• The output state of the k-th step is determined to be unable to converge to a de-
sired result regardless of future steps and must be thrown away.

This is still an ongoing area of research, but preliminary results suggest that machine
learning models used to determine feed-forward beamsplitter and displacement pa-
rameters may drastically increase state generation success probability and allow for
convergence to a desired resource, such as a cat state, in a reasonable amount of time.
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Chapter 3

Embedding Non-Gaussianity in a
Cluster State

The previous chapter focused on a means to design some gadget that would generate
a useful non-Gaussian resource. Once generated, the user would have the freedom
to use the resource state as desired. However, the probabilistic state generation and
challenge of integrating the resource state with another quantum information platform
could pose difficulties. Additionally, single-photons are themselves a non-Gaussian
resource, and while photon emitters have seen tremendous advances, they still pose
challenges to produce on-demand [137]. With this in mind, this chapter proposes a
new method to generate cat states embedded directly within a cluster state [150].

3.1 Overview

We present a near-deterministic approach to generating non-Gaussian states, such as cat
and GKP states, directly embedded in a CV cluster state, by fully leveraging the cluster
state’s measurement-based QC capability. This approach, which we dub the Photon-
counting-assisted Node-Teleportation Method (PhANTM), allows us to build polyno-
mial gates and use them to generate cat states. An essential feature of this method is
that it also stabilizes cat states against Gaussian noise and prevents amplitude decay.
As such, this protocol preserves non-Gaussianity in the CV cluster, which was previ-
ously thought only possible through the use of GKP error-correction [44].

Practically, all PhANTM requires is an initial CV cluster state and its standard
QC tools that are balanced homodyne field measurements and field displacements, to
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which we adjoin photon-number-resolving (PNR) measurements in the small number
regime by way of photon subtraction.

This chapter is organized as follows: section 3.2 describes the PhANTM algorithm
and how it can be applied by performing measurements on a cluster state to generate
cat states. The process is first motivated with ideal cluster states and subsequently ex-
tended to realistic cases with finite squeezing and amplitude damping introduced by
experimental photon subtraction. Section 3.3 presents numerical results demonstrating
how a 1D cluster state can be reduced to a large amplitude cat state with high prob-
ability and additionally shows that the PhANTM algorithm can be used to preserve
cat states already present within a cluster state. Section 3.4 applies previous results on
breeding cat states with beamsplitters and homodyne detection [82, 83, 133, 135, 151] to
breeding cat states within the cluster state for generating enlarged cats and grid states,
the later of which can be produced without post-selection [83] and used as a resource
for universal QC [69]. We also make the connection to phase-estimation protocols and
show how they can be implemented with cat states in the cluster. Section 3.5 motivates
an extension to macronode-based cluster states, which are the predominant form of
current CV cluster-state architectures [53, 54, 56, 57], and in Sec. 3.6 we conclude.

It should be emphasized that this approach utilizes feed-forward Gaussian quan-
tum information processing steps on the cluster state interspersed between PNR de-
tection events, and as such is beyond the scope of Gaussian Boson Sampling (GBS)
machines previously proposed for non-Gaussian state generation [85], in which PNR
detection acts terminally. Note also the recent negative result concerning the impossi-
bility of generating general entangled cat states with a GBS-type machine where dis-
placements are neglected[152].

3.2 PhANTM

3.2.1 Ideal teleportation

As mentioned in Ch. 1, measurement-based CVQC with cluster states is fundamentally
based on CV teleportation, where Gaussian measurements in the form of homodyne
detection teleport quantum information between neighboring nodes of a graph. The
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freedom to choose the measurement basis of the the homodyne detection by control-
ling a classical local oscillator phase additionally allows for performing Gaussian oper-
ations on the teleported state [38, 44]. The ideal teleportation circuit in canonical form
is described by

P〈m| • (in)
(out) • |0〉P

, (3.1)

where P-subscripts indicate the quadrature basis. In this circuit, quantum information
enters from the right and is coupled to a zero momentum eigenstate, |0〉P, with the
control-Z gate defined as ĈZ = eiQ̂1Q̂2 . A homodyne measurement is then performed in
the P basis on the top wire yielding result m. We adopt the convention that circuits pro-
ceed from right-to-left, so as to coincide with the order of operator action when writing
out the mathematics. The result of this circuit is simply to teleport the input quantum
information in the top wire to the bottom wire with an additional Fourier transform (ro-
tation of π/2) and a displacement that depends on the measurement result; that is to
say, the operator X̂(m)R̂(π

2 ) is applied to the input. Here, we have defined the rotation
and quadrature shift operators as

Ẑ(y) = eiQ̂y (3.2)

X̂(x) = e−iP̂x (3.3)

R̂(θ) = eiθ â† â, (3.4)

where a general displacement is expressed as

D̂(α) = eαâ†−α∗ â = Ẑ
(√

2Im[α]
)

X̂
(√

2Re[α]
)

e−iRe[α]Im[α]. (3.5)

By varying the measurement phase, all Gaussian operations on cluster states can be
realized with homodyne measurement alone[38] up to a displacement.

However, in order to achieve a quantum speed-up, non-Gaussianity must be in-
troduced; and furthermore, this non-Gaussianity must not be efficiently simulable clas-
sically [12]. This can be done by introducing the ability to perform photon addition
or subtraction, which introduces negativity into the multi-mode Wigner function [153,
154]. In our approach, we examine the effects of applying PhANTM, which utilizes
PNR detection to perform photon-subtraction within the teleportation circuit.

Suppose we wish to perform a photon subtraction of n photons immediately prior
to the homodyne detection step of the teleportation circuit. This circuit, including finite
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squeezing on the ancillary mode, is represented by

p〈m| Sn • (in)

(out) • S(r) |0〉N
, (3.6)

where realistic photon subtraction of n photons is implemented by applying the Kraus
operator

Ŝn =
(−1)nenβ/2
√

n!
(2 sinh β)n/2 ânN̂(β), (3.7)

where

N̂(β) := e−βâ† â = e−
β
2 (Q̂

2+P̂2−1) (3.8)

is the damping operator with β ∈ R. Here, a squeezed momentum state is achieved by
applying the squeezing operator

S(r) = e
r
2 (â†2−â2) (3.9)

to the vacuum state, denoted as a zero-valued ket with subscript N denoting the photon-
number eigenbasis. Eq. 3.7 can be implemented by coupling the top wire to a vacuum
mode with a beamsplitter of transmissivity t = e−β and then performing PNR detec-
tion on the reflected mode as derived in Sec. 1.5.4. Additionally, Sec. 1.5.3 gives further
information about the non-unitary damping operator.

Before analyzing this circuit in depth, we wish to simplify it to a mathematically
idealized case where its usefulness is more readily apparent. First, we take the high
squeezing limit such that we can approximate the squeezed vacuum as a zero mo-
mentum eigenstate, Ŝ(r)|0〉N ≈ |0〉p. Next, consider taking the limit β → 0 in Eq. 3.7,
which is physically equivalent to tuning the subtraction beamsplitter to have vanish-
ing reflectivity. Measuring n photons in the weakly reflected mode will result in the
application of Sn ≈ ân, up to a normalization. In this limit, the probability to mea-
sure photon numbers with n > 0 vanishes; however, when properly combined with
the high squeezing limit such that the beamsplitter reflectivity becomes small as the
energy in the input state becomes very large, the probability to subtract zero photons
can also vanish. Later, we will relax both constraints on the squeezing and beamsplitter
reflectivity (value of β) to demonstrate that our method can perform successfully in a
realistic scenario.



3.2. PhANTM 111

For now, consider the idealized non-Gaussian subtraction and teleportation cir-
cuit given by

P〈m| an • (in)

(out) • |0〉p
.

(3.10)

Writing the annihilation operator as â = 1√
2
(Q̂ + iP̂) and commuting this with the ĈZ

gate, we have that the operator applied to the output state is given by

1P〈m|
ĈZ√

2n

(
Q̂1 + iP̂1 + iQ̂2

)n |0〉2P

=1P〈m|
ĈZ√

2n ∑
k=0

(
n
k

) (
iQ̂2
)k

(Q̂1 + iP̂1)
n−k|0〉2P. (3.11)

Since the ĈZ gate commutes with Q̂, we can graphically represent each term in the sum
as the circuit

P〈m| • (Q + iP)n−k (in)

(out) (iQ)k • |0〉p
, (3.12)

which is simply the teleportation circuit applied to a modified input followed by the
application of Q̂ to a power. Representing the action of this circuit as a Kraus operator
applied to the input, we see that the resultant operator would be

K̂m,n =
1√
2n

n

∑
k=0

(
n
k

) (
iQ̂
)k R̂(π

2 )Ẑ†(m)(Q̂ + iP̂)n−k

= X̂(m)R̂(π
2 )

1√
2n

n

∑
k=0

(
n
k

) (
−iP̂ + im

)k
(Q̂ + iP̂)n−k. (3.13)

The position shift of X̂(m) at the end can be effectively ignored, as its effect can be
removed with feed-forward displacements or accounted for by shifting the result of
subsequent homodyne detections [38]. Surprisingly, the P̂ contribution in the sum van-
ishes and the operator can be written as K̂m,n = X̂R̂ fn(Q̂), where fn(Q̂) takes the form
of a polynomial with generally complex coefficients. This can be seen by examining the
commutator of K̂n with Q̂. Furthermore, in the specific case where m = 0, Eq. 3.13 can
be written in terms of a Hermite polynomial in Q̂ as

K̂0,n = R̂(π
2 )Hn(

Q̂√
2
), (3.14)
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where Hn(x) is the n-th order physicist’s Hermite polynomial. This is derived in Appx. B.2.
By iterating this procedure M times successively, actively undoing the displacements
between steps, and applying a regular teleportation at each intervening step to enact a
Fourier transform and keep the overall operator a function of Q̂ only, we can build up
powers of Q̂ to form the overall operator

K̂M = R̂(Mπ)∏
k

fk

(
(−1)kQ̂

)
, (3.15)

which is a polynomial in Q̂ follow by a rotation of Mπ. The degree of this polynomial is
equal to the total number of photons subtracted over all steps. It is worth pointing out
that while we have presented this analysis from the standpoint of the idealized circuit
in Eq. 3.10, including realistic effects will still result in the application of a polynomial
in Q̂ of the same order, but with additional Gaussian noise. Before continuing on to
the full treatment, we wish to further motivate the use of applying polynomials of this
form. Developing polynomial gates can be used to approximately implement non-
Gaussian unitaries and the cubic phase gate [155, 156], but when specifically applied to
squeezed vacuum, they can give rise to cat states [96], which is our main interest here.

Polynomial operator applications

As a segue to a fully realistic implementation, consider applying this idealized overall
K̂M operator to a cluster state node with finite squeezing, and consider the case where
all homodyne measurements are null-valued (a constraint we will relax later), in which
case fn(Q̂) is a Hermite polynomial. For moderate to large squeezing on the state to
which the polynomial operator is applied, the leading power of Q̂ in each Hermite poly-
nomial will dominate as the anti-squeezing gives support over a large range of position
in phase-space, thus eliminating the contribution of lower order terms upon normaliz-
ing the state after the operator is applied. This is demonstrated in Fig. 3.1, where the
fidelity of Hn(Q̂/

√
2)S(r)|0〉N and Q̂nS(r)|0〉N is plotted as a function of squeezing. We

use the fidelity between two density matrices ρ and σ defined as

F = Tr
[√√

σρ
√

σ

]2

. (3.16)

For n = 1, the cases are trivially the same, and for larger n, the fidelity approaches one
as squeezing increases. Thus, for the immediate sake of illustration, we can examine
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the effects of applying only Q̂M to a squeezed state, where M is now the total number
of photons subtracted over all iterations of the process.

FIGURE 3.1: Application of Hermite polynomials in Q̂ compared to lead-
ing order powers of Q̂. Fidelity approaches unity as squeezing increases.

The Wigner functions of the resulting states after applying Q̂M to squeezed vac-
uum for several values of M are plotted in Fig. 3.2. As one can see the results resemble
anti-squeezed Schrödinger Cat states, where increasing the power of Q applied to the
squeezed state increases the amplitude of the approximated cat. The closeness to cat
states can be seen by looking at the form of the wavefunction. In the Q−basis, the state
wavefunction is given by

ψQ(v) = q〈v|QMS(r)|0〉N = Ne−(
v2

2s2 )vM, (3.17)

where s = er and the normalization is given by

N = s−M

√
1

s(M− 1
2)!

. (3.18)

Transforming to the P−basis, we have

ψP(t) = N′e(−
s2t2

2 )HM( st√
2
), (3.19)

where N′ = (−2)−
M
2 sM+

1
2N and HM(x) are Hermite polynomials. This wavefunction

resembles that of a squeezed M−photon Fock state, but with the subtle difference that
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FIGURE 3.2: Idealized PhANTM steps with null homodyne measurement
results iteratively apply powers of Q̂ to an input state based on the total
number of subtracted photons over all rounds of teleportation. Here, the
input is a squeezed vacuum state with squeezing of 6 dB (r = 0.7). The
final state is a nearly perfect match to an even (odd) squeezed cat state

when an even (odd) number of photons was subtracted.

the argument of the Hermite polynomial is scaled by a factor of 2−1/2. No additional
squeezing operation will transform it back to a Fock state as scaling the argument of
the exponent will also scale the argument of the Hermite polynomial. Furthermore, this
scaling is independent of the power of Q applied. Examining this wavefunction shows
that the number of ripples is determined by the order of the Hermite polynomial, which
is based on the total photon subtraction counts. As shown in Fig. 3.2, a nearly identical
anti-squeezed cat state can be found for each of these, where fidelities with cats having
numerically optimized parameters are above 0.999. Additionally, it has previously been
shown that the wavefunction in Eq. 3.17 asymptotically approaches a cat state as M
becomes large [96].

As a final step before proceeding to the full treatment, we relax the restrictions
imposed on homodyne measurement and allow for arbitrary quadrature detection re-
sults. This leads us to the slightly more general operator given by a product of Her-
mite polynomials in Q̂ with arguments shifted by the measurement result, which arises
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from a limiting case of the general derivation that will be discussed later (Eq. B.38 in
Appx. B.1). However, random homodyne measurement results do not pose a signifi-
cant obstacle for cat state generation. This effect leads to producing cat states with a
general phase between the ‘classical’ displacement components of the form:

|cat〉 = N
(

D(α) + eiφD(−α)
)

S(r)|0〉N. (3.20)

As shown in Fig. 3.3, protocols with stochastic homodyne detection generate cat states
with a phase-space interference fringe that has been scanned in a direction perpen-
dicular to the displacements. The Wigner functions plotted in Fig. 3.3 depict typical
results of a multistage process where finite squeezing of 6 dB has been used for all an-
cillary inputs, and a single photon was subtracted in each teleportation iteration before
a stochastic homodyne measurement.

FIGURE 3.3: Typical results from iterated subtracted teleportation ap-
plied to squeezed vacuum with one photon subtracted each instance and
stochastic homodyne results. The dotted black line is added as a guide to
show the phase of the resultant cat state. Note that the figures have been

rescaled to better visualize the fringes.

3.2.2 Realistic teleportation

Until now, we have only described an idealized case where teleportation proceeded
with infinite squeezing and photon-number subtraction was modeled as a perfect ap-
plication of the annihilation operator. The true circuit that represents realistic photon-
subtraction during a cluster-state teleportation will instead appear as

N〈n|
��

|0〉N
P〈m| • (in)

(out) • S(r′) |0〉N

,

(3.21)
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where the application of the annihilation operator is instead replaced by an additional
circuit component to couple the input state in the middle wire to vacuum in the top
wire with a beamsplitter,

B̂ = eθ(â1 â†
2−â†

1 â2), (3.22)

which is represented by the down arrow in the diagram. We take the beamsplitter
to have real reflectivity and transmissivity such that r = sin θ and t = cos θ. The
momentum eigenstate in the third wire has also been replaced with a finitely squeezed
vacuum state. In the limit of weak beamsplitter reflectivity, projecting the top wire into
an n-photon Fock state after the beamsplitter effectively acts to apply ân, although the
probability to successfully measure n photons vanishes as the reflectivity drops to zero.
Away from this limit, this portion of the circuit acts to apply non-unitary damping to
the state in addition to a factor of ân, as discussed in Sec. 1.5.4.

The top portion of the circuit in Eq. 3.21 can be simplified to

N〈n|
��

|0〉N
P〈m|

= P〈0| fn(Q) , (3.23)

where f is a function in Q̂ only. On the bottom wire, we can write the input momentum-
squeezed state as

Ŝ(r′)|0〉N = π−1/4
∫

dte−t2/2s2 |t〉q

= π−1/4e−Q̂2/2s2
∫

dt|t〉q

= π1/4

√
2
s

e−Q̂2/2s2 |0〉p, (3.24)

where s = er
′
. This allows us to commute all operations in Q̂ to either the back or front

of the circuit to arrive at

P〈0| • fn(Q) (in)

(out) e−Q2/2s2 • |0〉p
,

(3.25)

which is recognizable as the same form as Eq. 3.1 with additional operators before and
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after the teleportation. We can now directly write down the Kraus operator representa-
tion of the action of the circuit on the input state as

K̂n = π1/4

√
2
s

e−Q̂2/2s2
R̂(π

2 ) fn(Q̂). (3.26)

The function fn(Q̂) contains a displacement from the measurement result that
may be useful to keep track of separately, so f can be decomposed into a displacement
term, a quadrature damping term, and a polynomial in Q̂. Commuting the displace-
ment term through the Fourier transform allows us to arrive at

K̂n =π1/4
√

2√
s e

m2

s2 σ2
X̂(mσ)R̂(π

2 )

× e−
1

2s2 (P̂−mσ)2
e−Q̂2 σt(1−t2)

4 f ′n(Q̂), (3.27)

where we define σ = 2t
1+t2 . This is derived in detail in Appx. B.1, where we find that

f ′n(x) = in√
2n−1n!(1+t2)n+1 ∑n

k=0 ∑
b n−k

2 c
j=0 (n

k)(
n−k

2j )
(2j)!r2j

2j j!

(
1+t2

2

)k/2
(−i)k+2jHk(

−x
√

2rt2

1+t2 )Hn−k−2j(
−mr

t
√

1+t2 )

(3.28)
is a polynomial of degree n. In the limit of weak beamsplitter reflectivity and large
squeezing so that r → 0, t→ 1 and s→ ∞, the Kraus operator reduces to

K̂n ∝ X̂(m)R̂(π
2 )Hn

(
iQ̂−m√

2

)
. (3.29)

Subtracting photons during the teleportation process is stochastic in nature, where the
probability of any particular n-photon subtraction and m homodyne measurement oc-
curring is given by

Pn = Tr[K̂nρinK̂†
n], (3.30)

where ρin is the general quantum state being sent through the PhANTM gadget, and
the final state is evolved to

ρout =
K̂nρinK̂†

n
Pn

. (3.31)

As in the idealized case, we assume that one has the ability to undo the accu-
mulated displacement operations. If the photon subtraction was successful, then any
Gaussian input has been de-Gaussified. If, however, no photons were subtracted, the
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state will accrue additional Gaussian noise due to the finite squeezing in the cluster
state and the non-vanishing beamsplitter reflectivity used to perform the subtraction.
For large enough squeezing and low beamsplitter reflectivity, this additional Gaussian
noise can be made small.

Whether subtraction was successful or not, teleporting the resultant state through
the next node of the quantum wire without attempting to subtract will enact another
π/2 rotation and re-align the squeezed-axis of the state, at which point another PhANTM
step can be performed. Provided there is sufficient squeezing in the cluster state, this
process of subtracting photons through teleportation can build up non-Gaussianity
faster than the Gaussian noise at each step can degrade the state and result in large,
high-fidelity cat states.

FIGURE 3.4: (a) Solid lines show the average cat amplitude obtained from
numerical simulations of performing M iterations of the subtraction pro-
tocol on a 1D cluster state where the homodyne and PNRD measurements
were randomly sampled from the state distribution at each step. The
shaded regions shows ±2σ from the sampled data and squeezing values
indicate the squeezing level of each node in the initially prepared cluster
state. (b) Cat states with respective amplitudes of |α| = 2 and |α| = 4 intro-
duced to a cluster state can be protected as they are teleported through the
cluster if subtraction is attempted every other teleportation step to prevent

state decay. Shading shows ±1σ.
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3.3 Results

3.3.1 Cat states

In this section, we present the results of numerical calculations demonstrating that iter-
atively performing the PhANTM algorithm on cluster states can generate and stabilize
large cat states. Even when considering finite squeezing effects and the probabilistic na-
ture of the Kraus operator given by Eq. 3.27, repeatedly applying operators of this form
gradually shapes the teleported quantum information into cat states and preserves cat
states already present in the cluster.

For these calculations, the python packages of QuTip [129, 157] and Strawberry
Fields [130, 158] were used to perform simulations of quantum state evolution using
the Rivanna high-performance computing system at the University of Virginia. A sin-
gle step of the PhANTM along a 1D cluster state was first simulated by sampling the
probability distribution for detection outcomes from the circuit shown in Eq. 3.21, and
then the input state was updated accordingly by applying the corresponding Kraus
operator from Eq. 3.26. This protocol was applied in succession, with a regular tele-
portation to reapply a π/2 rotation occurring between PhANTM steps to simulate the
algorithm along several nodes of a cluster state. Cluster states with different squeez-
ing parameters were examined, and statistics were collected by simulating the entire
procedure repeatedly.

In each case, the value of beamsplitter reflectivity for the photon subtraction step
was chosen so that the added Gaussian noise from subtraction effectively adds the same
amount of noise as finite squeezing in the cluster. The condition is given by

cos2 θ = tanh |r′| (3.32)

where r′ is the squeezing parameter for the cluster state nodes. This condition arises by
realizing that applying the damping operator, N̂(β), to a zero-momentum eigenstate is
equivalent to finitely squeezing the vacuum state, as has been derived previously [18]
and discussed further in Appx. 1.5.3. Because squeezing can instead be thought of as
applying the damping operator to a momentum eigenstate and the damping operator is
also what separates the realistic photon subtraction operator Ŝn from ideally applying
annihilation operators, implementing the above condition essentially makes the real
circuit in Eq. 3.6 different from the idealized circuit in Eq. 3.10 only by the inclusion of
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damping operators applied both to the ancilla and before homodyne detection.

For each trial, we started with a fresh 1-D cluster state and applied many steps of
the PhANTM along the cluster while allowing stochastic measurement results. After
each step in the simulation, the evolved state was fitted to the nearest cat state of the
form of Eq. 3.20 by optimizing the fidelity. Fidelity and fit values for all trials with a
given set of initial cluster state squeezing parameters were averaged at each step, M,
and compared to trials with different squeezing parameters.

The results are depicted in Fig. 3.4(a) for cluster states with 11− 17 dB of squeez-
ing at each node. The average fitted value of the nearest cat state amplitude (solid lines),
|α|, is plotted against the number of times that a PhANTM had occurred, where each
step corresponds to consuming two physical nodes of the cluster due to the necessary
intervening teleportation step between PhANTMs to apply a Fourier transform. After
M = 10 steps, the average fidelities with the associated cats are greater than 0.98 in all
cases examined. The shaded regions indicate two standard deviations in the spread of
obtained values from 100 trials.

FIGURE 3.5: Typical results from iterated PhANTM where measurement
results are stochastic. Each Wigner function plotted shows what state is
now ĈZ’ed to the cluster after the M-th step (black numbering) where the
number of subtraction photons from the corresponding step is shown in

red.
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An example evolution of a single trial as quantum information is teleported along
the canonical cluster state is shown in Fig. 3.5. Steps without attempting photon sub-
traction are used for teleporting the state and applying a π/2 rotation to reorient the
state. The Wigner function for the state at each step where subtraction was attempted is
shown, with the number of actual photons subtracted listed in red. Each teleportation
takes into account finite squeezing of 15 dB in the cluster state, randomly sampled ho-
modyne and subtraction measurement outcomes, and a subtraction beamsplitter with
reflectively chosen to have the same order damping effect as finite squeezing.

After just a few steps, it is possible to generate a strongly anti-squeezed cat state
of weak amplitude, but this is highly probabilistic and dependent on the precise sub-
traction measurements. However, if there is sufficient squeezing in the cluster state,
each PhANTM on average succeeds in adding more non-Gaussianity than is washed
away by Gaussian noise, and thus there is a high probability of obtaining a cat state
with reasonable amplitude after several measurement steps. For 17dB of cluster state
squeezing, 30 steps of PhANTM are sufficient to succeed in generating a high-fidelity
cat state with amplitude |α| > 1 with a 95% success rate. It should be noted that al-
though anti-squeezed cats are obtained in the idealized case of Fig. 3.2, the effects of
finite squeezing in the cluster and overall stochastic nature of the photon subtraction
result in cat states very low anti-squeezing (< 3 dB) beyond the first few steps, which
is the region of interest.

Stabilization of cat states

In addition to generating cat states from a Gaussian resource using only local mea-
surements, the PhANTM protocol can also be used to protect cat states already present
within the cluster state. Suppose one has a cat state embedded in a cluster state, ei-
ther generated through the PhANTM as detailed above or offline through some other
means, and entangles it to a cluster state with a ĈZ interaction for later use. If this
state needs to be moved through the cluster to a suitable location, it will suffer ampli-
tude decay from Gaussian noise at each teleportation step, as shown by the red lines
in Fig. 3.4(b). If one applies the PhANTM algorithm in place of regular teleportation at
every-other node, then the cat state can instead be preserved (green curves) to a level
dependent on the squeezing present in the cluster.
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FIGURE 3.6: Alternate representation of the data in Fig. 3.4b for 80 tra-
jectories at each initial condition, where the radial direction indicates cat
state amplitude, |α|, the polar coordinate gives cat state phase, φ, and the
color shows the number of node-teleportations from the the initial condi-
tions (black dots). (a) and (c) depict regular teleportation through a cluster
state where cat states have initial amplitude α = 2 and α = 4, respectively.
(b) and (d) have the same initial conditions as at left, but now PhANTM
is performed as opposed to regular teleportation. A random (but known)
phase kick is applied at each step by homodyne measurement in all cases,
but one can see that PhANTM preserves cat state amplitude up to a level

dependent on cluster-state squeezing (here 15dB).

Under this paradigm, including the PhANTM with a Gaussian cluster state can
be seen as a machine that perpetuates non-Gaussianity even in the presence of Gaussian
noise. There exists a stable equilibrium at which some amount of non-Gaussianity will
remain, which was previously only formulated for CV cluster states with fault-tolerant
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GKP error correction [74]. This protocol can thus work as a pseudo quantum mem-
ory for cat states when paired with a time-domain cluster state, as an input cat state
can be teleported through many time-separated cluster state nodes and retrieved later.
The retrieved state will have randomized but known parameters dependent on specific
measurement results at each step, and the retrieved state will remain within the cat-
state manifold.

This is demonstrated more clearly in Fig. 3.6, which depicts the same data as
shown in Fig. 3.4(b). Fig. 3.6 shows the evolution of the phase, φ, as the polar coordi-
nate and amplitude, |α|, as the radial value according to the fit with a cat state of the
form of Eq. 3.20 for cat states as they are teleported across a cluster state. In each plot,
the large black dot shows the parameters of the initial cat state introduced to the cluster
which was taken to be an even cat (φ = 0) with no squeezing and amplitude of α = 2
(a and b) or α = 4 (c and d). In Figs. 3.6(a) and (c), the cat states were simply teleported
normally using P−basis homodyne measurements. Figs. 3.6(b) and (d) begin with the
same initial cat state but depict the effects of including PhANTM during teleportation
across the cluster. As the states were teleported further along the cluster state, as in-
dicated by color to represent node-distance, the amplitude of the cat states decayed as
seen by the final magenta dots being clustered about the origin in Figs. 3.6(a) and (c).
When the PhANTM was included, the cat state amplitudes at no point spiraled to the
center, but instead became clustered about an orbit at radius |α| ≈ 1.5, thus preserving
the cat state and the associated non-Gaussianity.

At each teleportation, finite-squeezing effects introduce Gaussian noise that damp-
ens the amplitude of the cat state and introduces measurement-dependent randomiza-
tion to the phase, which is also dependent on the amplitude of the cat state. This effect
can be understood by realizing that as the cat state amplitude increases, the interfer-
ence fringes between the classical coherent state portions that determine the phase, φ,
oscillate at a higher frequency. Due to finite squeezing, the teleportation step applies
a Gaussian envelope not centered about the origin in phase space, but instead cen-
tered about the measurement outcome. Shifts to this Gaussian envelope cause a slight
‘scanning’ effect of the interference fringe, which changes the phase at each step more
drastically for larger cat states. Because this phase-randomization is known from pre-
vious homodyne measurement results, a feed-forward displacement can be applied to
shift the cat and realign the fringes to reset the phase.

Examining Fig. 3.6(a) and (c), we can also see that the amplitude decays to zero
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through the poles of the plot when φ = 0 or φ = π. This can be understood by realiz-
ing that as the cat shrinks, the interference fringes become dampened and very wide, so
that a phase cannot be easily determined when the oscillations begin to vanish. These
are the two extremes of shrinking cat states: either the even (φ = 0) cat, which must
tend toward the vacuum state as |α| << 1, or the odd (φ = π) cat, which tends toward
a squeezed single photon.

Additionally, it is important to note that finite squeezing dictates a threshold at
which the cat state amplitude saturates. If one wishes to achieve non-Gaussianity be-
yond this threshold in a given cluster, e.g., larger amplitude cats, it will be necessary
to make use of distillation-type protocols. Many such protocols exist to take cat states
and breed them to generate more non-Gaussianity [82, 83, 99, 102, 133, 135, 145, 159],
and we will show later how analogous protocols can be developed to breed cat states
within the cluster state architecture.

Higher-dimensional clusters

As demonstrated above, the PhANTM can be used to transform a 1-D quantum wire
of sufficient length into a cat state. A simple extension of this idea is to apply the al-
gorithm on any 1-D topological wire connected to a higher dimensional cluster state to
produce a cat state embedded within the remainder of the cluster. With this method,
the algorithm can be performed simultaneously on many quantum wires to engineer
a non-Gaussian cluster state with cat states embedded at strategic locations. Each of
these cat states will have an average amplitude dependent on the initial cluster state
squeezing and the number of nodes in each 1-D wire consumed by the PhANTM al-
gorithm. Gaussian operations can then be performed as per the usual cluster state
formalism with homodyne measurements to manipulate the exotic quantum states as
desired, such as perhaps breeding the cat states as we will discuss further in the next
section.

The process of embedding cat states in a higher-dimensional cluster can be visu-
alized by Fig. 3.7, where a 2D cluster state is reduced to a 1-D cluster peppered with cat
states. The PhANTM can be applied to all chains simultaneously, but measurements
within each chain must proceed in the correct order — top down in this example.
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FIGURE 3.7: Measurements on 1-D quantum wires can be used to gener-
ate cat states embedded within a higher-dimensional cluster state. Orange
blocks indicate a step of the PhANTM algorithm (attempted photon sub-
traction, homodyne detection, and feed-forward displacement) and black
rings indicate P-basis homodyne measurements. The red nodes represent

fully de-Gaussified cat states.

3.4 Breeding Cat States

It has long been known that cat states can be probabilistically bred into larger amplitude
cat states [99, 102, 133, 135, 145, 159], and recently it was demonstrated that a supply of
squeezed cat states can be deterministically bred into a class of grid states [83]. These
procedures were formulated in terms of beamsplitter interactions, but each method can
proceed analogously by performing homodyne measurements on cat states embedded
in a cluster state. Instead of teleporting through a momentum eigenstate, each cat state
is teleported through another cat state to produce the desired effect. Just as teleporting
through a finite squeezed state leads to filtering of the teleported state with a Gaussian
envelope [40, 44], teleporting through an ancillary squeezed cat state filters the P-basis
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wavefunction of the input with the Q-basis wavefunction of ancilla shifted by the ho-
modyne result. This is seen generically by replacing the momentum eigenstate from
the teleportation circuit in Eq. 3.1 with an arbitrary quantum state, |ψ′〉. This can be
rewritten as an operator in Q̂ applied to a zero momentum eigenstate and commuted
through the ĈZ gate to have the general circuit

|ψ〉out =
P〈0| • Z†(m) |ψ〉

√
2πψ′Q(Q) • |0〉P

. (3.33)

Pulling the circuit taught and commuting the resultant Fourier transform to the end,
we have that

|ψ〉out =
√

2πR̂(π
2 )ψ

′
Q(−P̂)Ẑ†(m) |ψ〉 , (3.34)

where the subscript on ψ′Q(−P̂) indicates that it is the Q-basis wavefunction of the start-
ing ancillary state, even though it is a function of the P̂ operator. Finally, commuting
the displacement through to the left reveals the result of

|ψ〉out =
√

2πX̂(m)R̂(π
2 )ψ

′
Q(−P̂ + m) |ψ〉 . (3.35)

This shows that up to an overall displacement and rotation, the initial P-basis wave-
function for |ψ〉 transforms as ψP(x) → ψP(x)ψ′Q(m− x). Thus, in the P-basis, |ψ〉 is
filtered by the Q-wavefunction of |ψ′〉.

For the sake of illustration, supposed we input two equivalent squeezed cat states
into the circuit but with one Fourier transformed with respect to the other, so that their
wavefunctions are each proportional to the sum of two Gaussian peaks,

ψP(x) = ψ′Q(x) = N
(

e−
1
2s (x−α)2

+ e−
1
2s (x+α)2

)
, (3.36)

where

N =
π−1/4√s√
2 + 2e−2|α|2

. (3.37)

Supposing the measurement result is m = 0, we have that up to an overall rotation, the
new wavefunction, φ, is

φP(x) = ψP(x)ψ′Q(x)

∝ e−
1
s (x−α)2

+ e−
1
s (x+α)2

+ 2e−
1
s (x2+α2). (3.38)
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For peak separations of α & 1, the third term becomes negligible, and the wavefunction
is the same as the initial wavefunction ψ, but with narrower peaks. If we were to apply
a squeezing operation to bring the peak widths back to the starting width, the peak
separation would increase, and it is evident that this is just a larger cat state than what
we started with. The above process is an example of breeding to enlarge cat states.

Now, suppose the inputs were the same cat states as above, but first each mode
was Fourier transformed so that

ψP(x) = ψ′Q(x) = Ne−
1
2 s2x2

(2 cos αx). (3.39)

Again taking a measurement outcome of m = 0 for illustration, the output wavefunc-
tion, φ, from this process before the rotation would be

φP(x) ∝ e−s2x2
cos αx2, (3.40)

which in the Q-basis is

φQ(x) ∝
(

e−
1
s (x−α)2

+ e−
1
s (x+α)2

+ 2e−
1
s x2
)

. (3.41)

The above equation shows that with this case, the final state is now a superposition of
three peaks with a binomial distribution as opposed to the two-peak superposition of
the starting cat states. One can see how repeating this process can eventually give rise
to a state with many peaks in the superposition which can approximate a grid state.
These two cases are depicted in Fig. 3.8, where the process at left breeds to enlarge cats
and the process at right breeds to create grids.

FIGURE 3.8: Cat states can be bred by teleporting one through the other to
produce larger amplitude cat states as shown in (a) or grid states as shown
in (b). The type of bred state is dependent on input cat state orientation.
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As one can see, the output state depends on the phase of the input cat states,
which is known from the iterated preparation method and can be controlled by per-
forming regular teleportations to enact R̂(π/2) gates. Cat state breeding has been de-
scribed in detail elsewhere [82, 83, 99, 102, 133, 135, 145, 159], but the point of interest
here is that it can be done within the cluster state using only Gaussian measurements
once all initial cats have be embedded within the cluster. Previous methods have exam-
ined breeding with beamsplitters and homodyne measurements in great detail, and we
show in Appx. B.3 how the beamsplitter breeding maps directly to breeding with ĈZ

gates, where the only difference is that one input must be first Fourier transformed and
the output has an additional Gaussian operation that can be undone with feed-forward
displacement and Gaussian information processing on the cluster state. This mapping
implies that all previous results based on breeding cat states with beamsplitters holds
within the canonical cluster state.

One may ask why including a probabilistic scheme to enlarge cats is necessary
when we have already demonstrated a scheme to generate cat states with near-unity
success after enough iterations. However, it is important to remember that the mean
amplitude of cat state produced by the PhANTM protocol is limited in part by the
squeezing present in the cluster state. Breeding, however, allows for one to have a
chance at sacrificing pairs of smaller cat states to enlarge them. By performing PhANTM
in paralell on several 1-D chains, one could foreseeable have enough weak cats that it
would be advantageous to attempt breeding them into larger resource states.

3.4.1 GKP states

Instead of taking a pair of cat states and breeding to generate a larger cat state, one can
breed with a different outcome in mind, such as the generation of grid states. For this
purpose, we more closely examine the case at right in Fig. 3.8, which when repeated,
can succeed without post-selection as described previously [83]. Next, we will provide
the Kraus operator and resultant state after an arbitrary breed step.

Breeding on the cluster state

Grid state breeding with beamsplitters has been discussed in detail in Ref. [83]. Here we
provide the analogous derivation for cluster states. Suppose we have a superposition
of evenly spaced Gaussian peaks, which can generally be described by a product of
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cat-like operators acting on squeezed vacuum as

|Ψα,ϕ,r〉 ∝ D̂(α,ϕ)Ŝ(r) |0〉 . (3.42)

where we define

D̂(α,ϕ) :=
N

∏
k

(
Ẑ(α) + eiϕk Ẑ†(α)

)
. (3.43)

If one teleports through this state as opposed to the normal momentum squeezed state,
then the circuit will appear as

P〈m| • |ψ〉1
• |Ψα, ϕ, r〉2

. (3.44)

Writing the squeezed vacuum of mode two as an operator in Q̂ applied to a momentum
eigenstate as in Eq. 3.24 and commuting all remaining operators on mode two through
the ĈZ reveals that the effect of this circuit is to apply the operator

Ĝ = D̂(α,ϕ)e−Q̂2/2s2
R̂(π

2 )Ẑ†(m), (3.45)

where s = er. Suppose the input to this circuit was of the same form as Eq. 3.42, but
first having undergone a Fourier transform. The transformed state would then be

|φ〉 ∝ ĜR̂(π
2 ) |Ψα′,ϕ′,r′〉

∝ D̂(α,ϕ)e−Q̂2/2s2
X̂(m)R̂(π)D̂(α,ϕ′)Ŝ(r′) |0〉 . (3.46)

Making use of the relations that

Ẑ(αk)X̂(αj) = eiαkαj X̂(αj)Ẑ(αk), (3.47)

e−Q̂2/2s2
X̂(m) = em2/2s2

X̂(m)e−
1
s2 (mQ̂+Q̂2), (3.48)

we can write the evolved state as

|φ〉 ∝ X̂(m)D̂(α,ϕ− 2mα)D̂(−α,ϕ′)e−
1
s2 (mQ̂+Q̂2)Ŝ(r′) |0〉 , (3.49)

where ϕ− 2mα indicates that each phase in the expanded product has been shifted
by the measurement result and the value of α to be ϕk → ϕk − 2mα. With the help of
Eq. 3.24, the exponentiated quadratic in Q̂ applied to squeezed vacuum can be rewritten
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as

e−
1
s2 (mQ̂+Q̂2)Ŝ(r′) |0〉 = e−

1
s2 (mQ̂+Q̂2)− 1

s′2 Q̂2 |0〉P
= X̂(B)e−AQ̂2

X̂†(B)|0〉p
= X̂(B)e−AQ̂2 |0〉p (3.50)

where s′ = er′ and

A =
1
2
(

1
s2 +

1
s′2

) (3.51)

B =
ms2s′

s2 + s′2
. (3.52)

Commuting the obtained position-quadrature shift to the left and converting the expo-
nentiated Q̂2 back to a squeezer applied to vacuum, we have

|φ〉 ∝X̂(m + B)D̂(α,ϕ− 2(m + B)α)

× D̂(−α,ϕ′ + 2Bα)Ŝ(r′′) |0〉
∝X̂(m + B)D̂(α,ϕ′′)Ŝ(r′′) |0〉 , (3.53)

which is exactly a state of the form of Eq. 3.42 with an additional displacement and
modified squeezing

r′′ = r + r′ − 1
2

ln
(

e2r + e2r′
)

(3.54)

The process of performing alternating PhANTM steps as detailed in the previous sec-
tion acts to produce cat states on the cluster state, but breeding useful grid states will
require squeezed cats. This is no obstacle, however, as any single-mode Gaussian op-
eration can be implemented with a series of four homodyne measurements on the clus-
ter [39]. For the specific case of squeezing, it suffices to apply three successive shear

gates of e
iγk
2 Q̂2

with properly selected γk to effectively apply the gate Ŝ(r). For squeezed
parameter r, the values of γk are γ1 = γ3 = r and γ2 = r−1 Note that the maximum
squeezing operation that can be applied in this way is limited by the squeezing level of
the cluster.

Suppose we begin with a cluster state consisting of several quantum wires and
perform many steps of the PhANTM protocol on each quantum wire until we have
successfully generated a cat state, which is now entangled to the remaining portion of
the cluster state. Each of these can be squeezed through a series of three homodyne



3.4. Breeding Cat States 131

measurements, and then pairs can be bred to make grid states without post-selection.
An example of the resultant grid state is shown in Fig. 3.9(a), where we have used
states generated from average results after M = 35 steps of the PhANTM protocol in a
cluster of 17 dB squeezing, squeezed each one with three shear operations, and bred the
result. Gaussian noise due to finite squeezing is included in all parts of the calculation
to simulate realistic application of information processing on the cluster state.

To have a benchmark with some consistency, the target state was chosen to be the
GKP qunaught, which is the GKP state with equal grid spacing in both quadratures.
In order to make this state, the spacing of the initial cats must be correctly chosen so
that the final spacing of the grid will be symmetric. This was achieved by tuning the
shearing parameters used for the applied squeeze operation.

The asymmetries in the Wigner function shown arise from the stochastic homo-
dyne measurements used when applying the squeezing with cluster state process-
ing. The final homodyne measurement for the breed step was post-selected on zero
to achieve consistent states within the approximate GKP family to be used for direct
comparison of the quality of the state. Varying the measurement result will not change
finial grid spacing or width in the Q-quadrature, but the introduced phase will alter the
symmetry between the quadratures. Nevertheless, a grid state will always be created
under asymptotic breeding regardless of measurement results [83]. We repeated this
procedure for each cat state created with the PhANTM algorithm using the same data
as shown in Fig. 3.4(a). Each cat state was squeezed with quantum information process-
ing on the cluster state, and then bred with a copy to produce a similar grid state to the
one shown. The resultant state was then fitted to a GKP qunaught with varying peak
widths, ∆. The resulting histogram is shown in Fig. 3.9(b), where the fidelity with the
matched grid state averaged above 0.95, but was above 0.98 for all states with ∆ < 0.6.

With sufficiently large cat states and high squeezing in the cluster state, breeding
within the cluster allows for the generation of a supply of GKP states that are embedded
within the computational resource. These can then be teleported throughout the cluster
where they can then be used for fault-tolerant error correction [74, 160] and universal
QC [69], or alternatively, states can be teleported through the embedded GKP state
to enact error correction directly [161]. Thus, while GKP states may be essential for
error correction on cluster states, cluster states may also be valuable ingredients for the
synthesis of GKP states.
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FIGURE 3.9: (a) Average GKP qunaught obtained by performing Gaussian
operations and measurements within the cluster state on a pair of states
generated from the PhANTM algorithm. (b) Histogram of ∆ fit parame-
ters for the GKP qunaughts bred from all states obtained by the PhANTM

algorithm.

3.4.2 Phase estimation

Quantum phase estimation for unitary operator Û is a procedure to measure the eigen-
value of the operator, eiθ, and project the input state into the corresponding eigenstate,
Û |ψθ〉 = eiθ |ψθ〉. Phase estimation, which can proceed through several methods [162],
was proposed to be implemented with ancilla qubits to generate GKP states [163].
This has been successfully demonstrated with microwave cavity fields and transmon
qubits [164]. A similar phase-estimation scheme without qubits was developed to cre-
ate GKP states from cat states [83], which is the method we connect to above for breed-
ing cat states. We now complete the connection to phase-estimation on a cluster state
for unitary operators that are phase-space displacements.

For a general unitary operation Û = eiT̂, a single round of phase estimation can
be implemented using an ancillary qubit described by the circuit

(out) Ueiϕ (in)

qubit〈±| • |+〉qubit
. (3.55)

Here, a controlled-Ueiϕ is applied to the input state state in mode one where a qubit
initialized to the |+〉 state is used as a control. This controlled unitary can be applied
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by implementing the operator

CU12 = e
i
2 (T̂1+ϕ)e−

i
2((T̂1+ϕI1)⊗σ̂z2)

= e
i
2 (T̂1+ϕ)

(
cos( T̂1+ϕ

2 )⊗ I2 − i sin( T̂1+ϕ
2 )⊗ σ̂z2)

)
. (3.56)

The ancilla qubit is then measured in the ±-basis. Consider the case when the applied
unitary is a displacement. Without losing the generality of arbitrary displacements, we
can take

Û = eiαP̂, (3.57)

and note that rotating the input state before and after applying Û will give the desired
freedom for arbitrary displacements. In this case, the effective measurement-based op-
erator applied to the input state to the circuit in Eq. 3.55 is given by

M+ = e
i
2 (αP̂1+ϕ) cos( αP̂+ϕ

2 ) (3.58)

M− = ie
i
2 (αP̂1+ϕ) sin( αP̂+ϕ

2 ). (3.59)

Thus up to a global phase and a displacement, a single round of phase estimation ap-
plies a sinusoid in P̂ with an additional measurement-dependent phase shift of either 0
or π

2 .

We can now compare the result of this circuit to teleporting an input through a
squeezed cat state on a cluster state using the circuit

P〈m| • (in)

(out) • |cat〉 . (3.60)

If the cat state is oriented such that the fringes are along the P-quadrature, that is if

|cat〉 ∝
∫

dxe−x2/2s2
cos(αx)|x〉q (3.61)

where s = er is the squeezing, then using the results of the general teleportation circuit
given by Eq. 3.35, shows that this circuit applies the operator

Mm =
√

2πX̂(m)R̂(π
2 )e
−P̂2/2s2

cos(αP̂−m). (3.62)
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After undoing the measurement-induced displacement and rotation with further clus-
ter state processing, and for large enough squeezing, this operator reduces to

Mm ≈
√

2π cos(αP̂−m), (3.63)

which is identical to the qubit-based phase estimation up to an overall displacement,
where the applied sinusoid operation now has a phase shift that is continuous based on
the measurement result. By performing Fourier transforms before and after this circuit
(through teleportation on the cluster state), the operator can instead be transformed to
a sinusoid in Q̂.

Inserting another cat state for the input state in Eq. 3.60 is exactly the method
of GKP systhesis as described in the previous section and completes the connection to
Ref. [83] where repeated phase-estimation is used to make grid states. More generally,
we can borrow ideas from other bosonic phase-estimation schemes and enact them
using cluster states and PhANTM generated cat states.

3.5 Macronode Extension

Many experimental implementations of cluster states have not generated the canonical
cluster based on ĈZ entangling gates, which would require inline squeezing, but in-
stead rely on linear optics with all squeezing generated up-front [53, 54, 56, 57]. These
types of cluster states are formed from macronodes, which we introduced in Sec. 1.9.1.
Here, we develop a dictionary protocol that maps photon subtraction on a macronode
cluster onto the canonical cluster that we have been discussing. In this way, the details
of the operators change, but the same general result allowing the embedding of cat
states into the cluster remains.

3.5.1 Dictionary protocol

Consider a macronode teleporation circuit where we have applied some operator Ô
before the first homodyne measurement, and the measurement angles are chosen such
that we perform respective P and Q−basis measurements (θ1 = 0, θ2 = π

2 ). With the
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inclusion of finite squeezing, this circuit will appear as

p〈m1| O

��

(in)

q〈m2| • S(r) |0〉N

(out) R(π
2 )

tanh 2r0

• S(r) |0〉N

. (3.64)

Note that for the formation of the finite-energy EPR pair in the bottom two modes we
have used a weighted ĈZ gate of ei tanh 2r0Q̂2Q̂3 , which is the same as the finite-squeezing
version of the beamsplitter case in Eq. 1.233, up to a rotation on the output and the
second input squeezed state, and a re-scaling of the initial squeezing. If the single-
mode squeezed states before the entangling beamsplitter have squeezing r0, then the
effective squeezing before the weighted ĈZ gate will be r = ln

√
sech2r0. The weighting

on the ĈZ gate can be returned to one by noting that

ei tanh 2r0Q̂2Q̂3 = Ŝ†
3(ln[tanh 2r0])eiQ̂2Q̂3 Ŝ3(ln[tanh 2r0]). (3.65)

With this, the circuit becomes

p〈m1| O

��

(in)

q〈m2| • S(r) |0〉N

(out) R(π
2 ) S† (ln(tanh 2r0)) • S(r′) |0〉N

, (3.66)

where r′ = ln
(
tanh 2r0

√
sech2r0

)
. We now derive the specific dictionary protocol that

will determine the effect of applying Ô as if it were applied to a canonical cluster. We
start by commuting the beamsplitter with the ĈZ gate using the identity

B̂12(
π
4 )ĈZ23 B̂†

12(
π
4 ) = e

i√
2
(Q̂2−Q̂1)Q̂3 , (3.67)

which is just two weighted ĈZ gates. We can act this to the left on the measurement
on mode two and fix the weight of the remaining ĈZ by rotating the operator in the
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Heisenberg picture with squeezing operators. This is written as

2Q〈m2|e
i√
2
(Q̂2−Q̂1)Q̂3

= 2Q〈m2|Ẑ3(
m2√

2
)e
− i√

2
Q̂1Q̂3

=2Q〈m2|Ẑ3(
m2√

2
)R̂3(π)Ŝ3(

1
2 ln 2)ĈZ13 Ŝ†

3(
1
2 ln 2)R̂†

3(π). (3.68)

The rotations can both be pushed to the outer edges of the circuit, where a rotation
of R̂†

3(π) to the right has no effect, and the rotation of R̂3(π) on the left changes the sign
of the P-quadrature displacement and combines with the end rotation. This results in
the circuit

p〈m1| O •

��

(in)

q〈m2| S(r) |0〉N

(out) G • S(r′ − 1
2 ln 2) |0〉N

, (3.69)

where the Gaussian operation Ĝ is

Ĝ = R̂†(π
2 )Ẑ†( m2√

2
tanh 2r0)Ŝ†

(
ln( 1√

2
tanh 2r0)

)
. (3.70)

From the above circuit, it is easy to see that if we can reduce the beamsplitter and
measurement on the second wire to a single Kraus operator acting on the top wire, then
we have a macronode teleportation circuit with some additional operator acting on the
input and a Gaussian operator Ĝ on the output. To do this, we need to find the operator
for

2Q〈m2|B̂12(
π
4 )Ŝ2(r)|0〉2N. (3.71)

Using Eq. 3.24, the fact that B̂12(θ) = B̂†
12(−θ) = B̂21(−θ), and the beamsplitter decom-

position given in Ref. [18] of

B̂j,k(
π
4 ) = eiP̂jQ̂k Ŝj(

1
2 ln 2)Ŝ†

k(
1
2 ln 2)e−iQ̂j P̂k , (3.72)

we can rewrite Eq. 3.71 as

π1/4
√

2
s X̂†

1(m2)Ŝ1(
1
2 ln 2)×

2Q〈m2|Ŝ†
2(

1
2 ln 2)e−iQ̂1P̂2e−Q̂2

2/2s2 |0〉2P, (3.73)
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where again s = er. The operators between the bra and ket in Eq. 3.73 can be commuted
to have all operators in Q̂2 to the left and all operators in P̂2 to the right, which gives

e−Q̂2
2/s2

e
√

2Q̂1Q̂2/s2
Ŝ†

2(
1
2 ln 2)e−Q̂2

1/s2
e−iQ̂1P̂2 . (3.74)

When acted on by the Q-basis bra and P-basis ket, along with noting that squeezing a
quadrature eigenstate of zero has no effect, this reduces to an operator acting on wire
one only; Eq. 3.71 becomes

π1/4
√

2
s X̂†

1(m2)Ŝ1(
1
2 ln 2)e−

(Q̂1−
√

2m2)
2

2s2 . (3.75)

This expression is the same result as Eq.(23) in Ref. [60], where the wavefunction of the
input state used here from mode two is that of a squeezed vacuum state.

Taking Eq. 3.75 and using Eq. 3.24 on the third wire in the circuit to commute the
effect of finite squeezing with the ĈZ gate, we have that our circuit becomes

P〈m1| O • X†(m2) S( 1
2 ln 2) e−

(Q̂−
√

2m2)
2

2s2 (in)

(out) G • e−Q2/s′2 |0〉p
,

(3.76)

with s′ = er
′
. For high initial squeezing, this circuit reduces to

P〈m1| O • X†(m2) S( 1
2 ln 2) (in)

(out) G • |0〉p
.

(3.77)

Thus, up to a Gaussian operation on the output, we can see that the result of applying
any operator Ô before the first homodyne measurement in the macronode teleportation
circuit is equivalent to applying Ô before the homodyne measurement in the canonical
cluster-state teleportation, but first squeezing and displacing the input state. For finite
squeezing, the input state also undergoes Q-quadrature damping.

Suppose Ô is the operator for photon subtraction of n photons, Ŝn, given previ-
ously by Eq. 3.7. This is exactly the process described earlier in terms of the canonical
cluster, and when followed by homodyne detection, can be written as an operator in Q̂.
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Using Eq. 3.23, photon subtraction and homodyne detection becomes

p〈m|Ŝn = p〈0| fn(Q̂), (3.78)

where fn(x̂) is the same function derived previously, and is given by Eq. B.25 in the
Appendix. It is now clear that the macronode equivalent of the canonical case Kraus
operator is just a slight modification of Eq. 3.27, and is given by

K̂mac
n =

√
2π1/2

s ĜR̂(π
2 )K̂nX̂†

1(m2)Ŝ(1
2 ln 2)e−

(Q̂−
√

2m2)
2

2s2 . (3.79)

For large squeezing and weak subtraction beamsplitter reflectivity, we can use Eq. 3.29
and this becomes

K̂mac
n ∝

R̂(π
2 )Ŝ

†
(

ln( 1√
2

tanh 2r0)

)
Ẑ†( m1√

2
)Hn(iQ̂− m1+im2√

2
). (3.80)

Just as before, subtracting photons before the homodyne measurement will apply a
polynomial in Q̂ to the teleported quantum information. Here, however, the measure-
ment dependent shift has both real and imaginary components. Additionally, there is
a residual squeezing term due to the use of beamsplitters as the entangling gates in the
macronode implementation from Eq. 1.233. Failing to subtract any photons will only
act to damp the state slightly and teleport it further along the cluster state, just as in the
canonical case.

An important point to note is that the subtraction must only be attempted on
one wire of the macronode for the above derivation to hold. We have derived the
results for applying the subtraction to the top wire before detection, but the derivation
remains the same if the subtraction was instead performed on the middle wire, up to a
rotation on the input. Because of this, there is no need to waste an intermediate step in
applying an ‘empty’ teleportation to enact a Fourier transform and reorient the state, as
simply alternating which wire the subtraction is performed on will effectively apply the
necessary rotation and allow for operators of the same quadrature to build up through
several repetitions of the modified teleportation gadget.
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3.5.2 Effects of m2

We have shown how the PhANTM protocol can be translated from the canonical cluster
state to a macronode implementation using the dictionary protocol, but we will leave an
in-depth analysis on cat state breeding and generation to future work. However, here
we motivate the main differences created by the measurement-induced Q- quadrature
shift by m2. Sec. 3.2 demonstrated that the overall effect of m1 is to shift the phase
between the components of the resulting cat state. Here, consider the case where m1 =

0, so that the measurement results of m2 can be dealt with separately. Instead of making
a cat state that is a balanced superposition of coherent states as per Eq. 3.20, Hn(iQ̂−
im2√

2
) applied to squeezed vacuum will result in the weighted superposition

|cat〉A,B ∝
(

AX̂(α)± BX̂†(α)
)

S(r)|0〉N, (3.81)

where A2 + B2 = 1 are the coefficients weighting the different components in the su-
perposition. When m2 = 0, we have the case illustrated previously in Figs. 3.1 and 3.2,
which corresponds to weighting coefficients of A2 = B2 = 1

2 . For nonzero m2, the
coefficients become unbalanced. This is shown in Fig. 3.10(a) for the case of apply-
ing H4(i

√
2Q̂− im2) to vacuum squeezed by 6 dB. The fourth-order Hermite polyno-

mial was chosen since Q̂4 and higher polynomials applied to squeezed vacuum become
nearly indistinguishable from cat states in the idealized case, as illustrated by Fig. 3.2.
For each value of m2, a weighted cat state of the form of Eq. 3.81 was selected and nu-
merically optimized to fit the resultant state, and we plot the fitted value of B2 against
m2. Each optimized weighted cat had fidelity greater than 0.99 with the resultant state,
and it can be seen from the figure that the value of B monotonically increases as m2

increases.

Once the state becomes unbalanced, one can ask what happens when it is sent
into future rounds of the PhANTM algorithm. To explore this, we consider input states
to the circuit in Eq. 3.64 that are small weighted cat states of the form of Eq. 3.81, and
calculate the probability P(m2) of performing a homodyne measurement in mode two
and obtaining outcome m2. The probability of the Q-quadrature homodyne measure-
ment m2 in the macronode circuit from Eq. 3.64 is given by

P(m2) ∝
∫ ∞

−∞
dy
∣∣∣q1
〈y|q2
〈m2|B̂12e−Q̂2

2/2s2
2 |ψ〉1|0〉p2

∣∣∣
2
, (3.82)
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FIGURE 3.10: (a) The effects of the Q-basis homodyne measurement re-
sult in the macronode teleportation scheme with photon subtraction oc-
curring before the P-basis measurement. As m2 increases, the negative
displacement in the resulting cat-state superposition becomes more heav-
ily weighted. (b) Sending a weighted cat state into one round of PhANTM
tends to reduce the more strongly weighted component. Here the initial
state is set with A2 = 4

5 , α = 4, and s1 = 0 while the cluster state is
squeezed by 15 dB.

where here B̂12 is a balanced beamsplitter, s2 = er2 is the squeezing in the cluster state,
and |ψ〉1 is the input quantum state. This can be seen more easily by looking at the
reduced circuit in Eq. 3.69, where the m2 homodyne measurement can be seen as occur-
ring immediately after the first beamsplitter. Suppose the input state has the form of a
weighted cat state

|ψ〉1 ∝
(

AX̂(α) + BX̂†(α)
)

Ŝ(r1) |0〉 , (3.83)

where we take A2 + B2 = 1 and let α ≥ 0 without loss of generality. Using this form of
ψ, we have that

B̂12e−Q̂2
2/2s2

2 |ψ〉1|0〉p2
= e
− (Q̂2−Q̂1)

2

4s2
2 ψQ(

Q̂1+Q̂2√
2

)|0〉p1
|0〉p2

(3.84)

and so the integrand is, in the Q-basis,

∫∫
dxdx′e

− (x−x′)2
4s2

2 ψQ(
x+x′√

2
)|x〉q1 q2

〈m2|x′〉q2 . (3.85)

Thus, up to a normalization,

P(m2) =
∫ ∞

−∞
dx
∣∣∣e
− (x−m2)

2

4s2
2

(
Ae
− x+m2−α

√
2

4s2
1 + B

− x+m2+α
√

2
4s2

1

) ∣∣∣
2
. (3.86)
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Performing the integral leads to

P(m2) = C
(

A2e
− (α−

√
2m2)

2

s2
1+s2

2 + B2e
− (α+

√
2m2)

2

s2
1+s2

2

+ 2ABe
−α2

s2
1
− 2m2

2
s2

1+s2
2

)
, (3.87)

where s1 = er1 is the squeezing in the input weighted cat state, s2 = er2 is the squeezing
in each physical mode of the macronode cluster state, and the coefficient is

C =

(√
π
2

√
s2

1 + s2
2

(
1 + ABe

− α2

s2
1

))−1

. (3.88)

This distribution is just two Gaussians originating from the input weighted cat state
with broadening dependent on both the squeezing of the input state and the squeezing
in the macronode cluster. The expectation value for a Q-basis homodyne measurement
of mode two is given by

〈Q̂2〉 =
∫ ∞

−∞
dm2P(m2)m2

=
α(2A2 − 1)√

2(1 + ABe−α2/s2
1)

, (3.89)

which for α > 0, is always positive when A2 > 1
2 . This indicates that for an input

cat state weighted more strongly toward the positive displacement (α > 0, A > 0),
the measurement result m2 is likely to be positive, and thus the current round of the
PhANTM algorithm will tend to increase B and re-balance the weighting in the coher-
ent state superposition.

The re-balancing can be thought of as a ‘restoring force’ tending to prevent either
coherent state term from dominating the other, and is shown for a particular example
in Fig. 3.10(b), where an unbalanced cat state with amplitude α = 4 and A2 = 4

5 is sent
through a macronode teleportation circuit with a single photon subtraction occurring.
The measurement result m2 is varied while m1 is fixed to be zero to highlight the effects
of changing m2, and the output state is then numerically optimized to a fidelity above
0.99 with a weighted cat of the form of Eq. 3.81. The blue curve plots the final value
of A2 against the measurement result where the probability distribution is shown as
a red-dashed curve with the expectation value given by the solid vertical line. The
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figure insets display the Wigner functions for the output state and demonstrate that as
m2 increases, the weighting shifts from favoring the positive displacement (A > B) to
favoring the negative displacement (A < B). As shown by the figure, the value of A
is likely to decrease. If the weighting remains unbalanced after the teleportation, then
the process can be repeated until the output state has displacement components with
weightings that are within a predetermined acceptable range.

A salient point of this process is that runaway affects will not occur; as shown by
Eq. 3.89, the measurement result m2 will be such that unbalancing is, on average, not
exacerbated in the same direction. Overshooting is possible, but a strongly weighted
coefficient will not progressively become larger until only one displacement remains in
the superposition.

3.6 Summary

Starting with a Gaussian cluster state, we have presented PhANTM, a method for using
PNR detection and feed-forward Gaussian operations to locally de-Gaussify the clus-
ter state to systematically generate Schrödinger cat states. Although each individual
photon-subtraction event is probabilistic, teleporting quantum information along the
cluster state and repeatedly applying steps of PhANTM leads to the production of cat
states with high probability and mean amplitude dependent on the squeezing present
in the cluster state. This process can be thought of as an adiabatic ‘cooling’ toward a
cat state basis, as additionally seen by the ability for PhANTM to preserve embedded
cat states as they are teleported throughout the cluster, preventing the build-up of ex-
cess Gaussian noise. The phase of the teleported cat will be randomized by homodyne
measurement, but this randomization can be tracked by recording the measurement re-
sults at each step and fixed by performing a feed-forward displacement to align the cat
fringe. This therefore allows a cluster state with PNR measurement capabilities to be
used as a way to perpetuate a particular class of non-Gaussianity (cat states), without
the need for GKP error-correction.

Portions of 1-D quantum wires can each be converted into a cat state by repeat-
edly applying PhANTM to embed multiple cat states within a large cluster state, mak-
ing this process compatible with state-of-the-art massively scalable 2D cluster states [56,
57]. Additionally, the photon-subtraction style measurement only requires low photon-
number resolution, which is well within the current experimental capabilities of both
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TES systems [124, 165] and number-resolving silicon nanowire detectors [166, 167].
Note that semiconductor detector technology, e.g. avalanche photodiodes, can be used
in multiplexed detection schemes to achieve PNR [168–170], though this requires large
numbers of multiplexed detectors since the individual detectors aren’t PNR. While
error-correction and universal QC with cat states alone is possible [131, 171], we show
how breeding protocols are compatible with cat states embedded within the cluster
state solely by performing Gaussian measurements and feed-forward displacements
locally on the cluster. This eliminates the need for offline resource-state generation
as in current CV one-way error-corrected QC proposals [65, 104], and allows for cat
state enlargement and GKP state synthesis. Taken together with the PhANTM cat-state
generation protocol, we have provided a means to take Gaussian cluster states and
transform them into universal quantum-computational resources by performing local
homodyne detections, PNR measurements, and feed-forward displacements.
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Chapter 4

Rotation-Symmetric Code States

As mentioned in the first chapter, the GKP encoding is only one way in which one can
build qubits into a CV Hilbert space. Another is the family of rotation-symmetric en-
codings. In this chapter, I will discuss work that aims to use squeezed resources and
PNR measurements to engineering specific rotation-symmetric states [172]. It should
be noted that like photon catalysis from Ch. 2, the scheme proposed here can be gen-
eralized as a type of Gaussian boson sampling, where performing PNRD on several
modes of a multimode Gaussian state allows for the projection of the remaining modes
into non-Gaussian resources [85]. Machine-learning methods have been proposed to
optimize fidelity and success probability with desired target states [85, 173, 174], but
the nature of Gaussian to non-Gaussian conversion may not be unique, therefore a
global minimum to such optimization problems may not exist and it may be difficult to
optimize for many realistic scenarios including resource efficiency. Thus, devising spe-
cific protocols may still prove more useful that an arbitrary brute-force boson sampling
device.

4.1 Overview

The rotation-symmetric codes are a promising avenue to exploit non-Gaussianity and
include include quantum states that are rotationally symmetric in phase space in analog
to translation phase space symmetry in GKP states. Error correcting codes designed
with such states take advantage of the fact that states with K-fold rotational symmetry
have decompositions over the Fock-basis with K-periodic spacing, making it easier to
ascertain when photon loss and dephasing errors occur. Such codes include binomial
codes and cat codes, and Pegg-Barnett codes [21, 68, 175]. While binomial and cat codes
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have been recently demonstrated in superconducting quantum circuits [176, 177], their
implementations in the optical domain have remained elusive.

In this work, we introduce an all-optical method to generate rotationally sym-
metric states with 2-fold and 4-fold-symmetry, in particular, binomial code states and
truncated cat code states. Our method requires resources as minimal as a two-mode
squeezed vacuum (TMSV) state, easily accessible linear optics, and PNRD at low pho-
ton numbers. Our proposal requires squeezing levels below what has already been
demonstrated [14], and low PNR detection which is now feasible due to advances in
highly efficient transition-edge sensors [124] and number-resolving superconducting
nanowire single-photon detectors detectors [143, 166, 167], and time-multiplexed de-
tection schemes [169].

We show that by tuning the initial available resource squeezing and post-selecting
on desired the PNR outcomes, our method can generate a variety of states in addi-
tion to exact binomial states and approximated cat states with the generation rates in
the KHz-MHz depending on the detection scheme using state-of-the-art PNR detectors
with high count rates. Moreover, these rotationally symmetric states can be exactly pro-
duced as opposed to GKP states, which are only approximated due to available finite
squeezing limit.

Our paper is structured as follows. In Section 4.2, we provide an overview of
bosonic quantum error correction with binomial codes. Section 4.3 discusses the gen-
eral framework of our method to generate a various rotation-symmetric non-Gaussian
states. In Section 4.5, we focus on generating binomial and cat-like codes in the ideal
case as well as in the presence of experimental imperfections. In Section 4.6, we derive
the conditions for desired detection efficiency for faithful error correction. Section 4.7
concludes and offers a brief outlook.

4.2 Rotation-symmetric Bosonic Codes: Recap

A detailed discussion on rotationally symmetric quantum error-correcting codes can
be found in Refs. [21, 68, 178, 179]; here we briefly summerize the main concepts. The
rotation-symmetric bosonic codes include the bosonic encodings that remain invari-
ant under discrete rotations in phase space in the same manner as GKP encodings are
invariant under phase space translations. Some representative examples of rotation-
symmetric bosonic codes are binomial codes and cat codes, which have been recently
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demonstrated in circuit quantum electrodynamics (cQED) architectures [21, 106, 177].
The logical code words are stabilized by the photon-number super parity operator de-
fined as

Π̂K := e
i2πn̂

K , (4.1)

where n̂ = â† â is the photon-number operator. Therefore, in order to satisfy Π̂K|ψ〉 =
|ψ〉, the state |ψ〉must have support on every K-th Fock basis.

For a given error set E = {Ê1, Ê2, ..., Êl}, a necessary and sufficient criterion for
a faithful error correction is known as the Knill-Laflamme condition, mathematically
defined as:

P̂C Ê†
l ÊmP̂C = αl,mP̂C; ∀ Êl, Êm ∈ E, (4.2)

where P̂C is the projector defined over the code space C and αl,m are entries of a Her-
mitian matrix [109]. For example, let’s consider the (4-fold symmetric) binomial code
words

|0L〉 =
1
2
|0〉+

√
3

2
|4〉 , |1L〉 =

√
3

2
|2〉+ 1

2
|6〉 , (4.3)

whose amplitudes are the square roots of binomial coefficients. One can easily see that
these code words are able to detect and faithfully correct the errors given by error set
E = {I, â, â† â} as per Knill-Laflamme condition.

Physically, the Knill-Laflamme conditions ensure that the probability for a single-
photon loss or a dephasing error to occur are the same for each code word, making it
impossible for the environment to distinguish between the logical basis states |0L〉 and
|1L〉. This preserves the encoded quantum information (the state’s amplitudes in the
logical basis), as it is not deformed as a result of the error and can thus be recovered
by means of unitary operations. To understand this further, let us consider a single-
photon loss error for quantum state |ψ〉 encoded using the code words defined in 4.3.
The logical state |ψ〉 = α|0L〉 + β |1L〉 is an even photon-number parity state which
transforms to odd parity state |ψ′〉 =

√
3α |3〉+

√
3/2β(|1〉+ |5〉) under a single-photon

loss error. Thus we get:
â |ψ〉 → |ψ′〉 = α |0̃L〉+ β |1̃L〉 , (4.4)

where |0̃L〉 = |3〉 and |1̃L〉 = 1/
√

2(|1〉 + |5〉) are the error words, which are orthog-
onal to the original code words. We note that the quantum information encoded in
the complex amplitudes α and β is preserved and can be faithfully recovered by map-
ping the error words {|0̃L〉 , |1̃L〉} to code words {|0L〉 , |1L〉} by means of unitary op-
erations [21]. Since the single-photon loss changes the photon-number parity of the
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original state from even to odd, the parity measurements can be used as an error syn-
drome measurement. In optics, error syndrome measurements can be performed using
highly efficient photon-number-resolving transition-edge sensors [114, 124, 165].

In general, the photon loss process can be viewed more precisely by subjecting
a quantum state to a completely-positive and trace-preserving (CPTP) bosonic channel
with non-unity transmission. In this case, the effect of the channel is given by the Kraus
operator-sum representation formulated as

ρ′ = L(ρ0) =
∞

∑
k=0

Êkρ0Êk
†, (4.5)

where ρ′ and ρ0 are the output and input states, respectively, and to ensure the CPTP
channel, one needs ∑∞

k=0 E†
k Ek = I. In this work, we treat loss as an amplitude-damping

Gaussian channel, which can be modeled as an optical mode traveling a distance L
through a medium with loss coefficient κ dB/cm. The Kraus operator associated with
losing k photons is

Êk =

√
(1− e−γ)k

k!
e−

1
2 γâ† â âk, (4.6)

where we define γ = κL. A k-photon loss to ρ occurs with the probability of

Pk = 〈Êk
†Êk〉 =

γk

k!
Tr[âkρ â†k] + O[γk+1]. (4.7)

With this in mind, QEC codes with the ability to correct up to k-photon losses can
be reframed as codes that correct operators Ek up to k-th order in γ. As a result, the
code words we propose to create in Eq. 4.3 have 4-fold-symmetry in phase space with
the ability to correct single photon losses, making it effective up to first order in γ and
corrects for E0 and E1 corresponding to ‘no-jump’ and ‘single-jump’ errors, respectively.

Along with the error-correcting capabilities, a universal gate set for quantum
computation with rotation-symmetric codes has recently been described that is agnos-
tic with respect to the type of code used, and depends only on the degree of rotational
symmetry [68]. The set of Clifford gates can be implemented with a controlled-rotation
gate, which can be tuned to enact a logical control-Z gate, and a single-mode phase
gate. These respective gates can be enacted optically through the use of cross-Kerr and
self-Kerr interactions. The universal gate set is then completed through gate teleporta-
tion and logical code-basis measurements. Fault-tolerance with these gates is possible
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by concatenating number-phase codes with the Bacon-Shor subsystem codes [68, 180–
182]. As the gate set and error-correct schemes have been sufficiently described previ-
ously, we focus here on methods for state generation.

4.3 Proposed Method: Analytical Model

In this section, we detail the proposed method displayed in Fig. 4.1. Our method starts
by preparing by a two-mode squeezed vacuum (TMSV) state by interfering two or-
thogonal single-mode squeezed vacuum (SMSV) states produced by optical parametric
amplifiers (OPAs) at the first balanced beamsplitter labeled as BS1 in Fig. 4.1. This is
followed by two highly unbalanced beamsplitters (BS2) used for photon subtractions
from each mode of the TMSV state. Next, a balanced beamsplitter (BS1) is placed to
interfere the subtracted photons in order to erase the information about from which
mode the subtracted photons came from. As a result, this combination of photon sub-
tractions and the balanced interference allows one to coherently subtract photons from
the TMSV state. Finally, photon-number-resolving (PNR) measurements are performed
on three output modes prepares the desired state |ψ〉 in the fourth mode for a certain
combination of PNR measurement outcomes.

Interfering two SMSV states at a balanced beamsplitter is equivalent to preparing
a TMSV state by action of the two-mode squeezed operator S(z)ab = e[zâ† b̂†−z∗ âb̂] on
two-mode vacuum, where z = Reiφ with real squeezing parameter R and phase φ. In
the photon-number basis, the TMSV state prepared in modes ‘a’ and ‘b’ after the first
BS1 is given as [136]

|0, R〉ab =
1

cosh R

∞

∑
n=0

einφ tanhn R|nn〉ab. (4.8)

After encountering the highly unbalanced beamsplitters (BS2), the state interferes with
vacuum modes ‘c’ and ‘d’, which leads to the four-mode state

|ψ〉abcd = Ûac(θ)Ûbd(θ)|0, R〉ab|00〉cd, (4.9)

where Ûac(θ), Ûbd(θ) are beamsplitter unitary operators where (t, r) = (cosθ, sinθ) are
the transmission and reflections coefficients, respectively. We first consider the simplest
case where the probability of subtracting more than one photon is negligible, i.e., at



4.3. Proposed Method: Analytical Model 149

most one photon is subtracted from each mode. For single photon subtraction, we set
both beamsplitters such that t → 1 (θ << 1) which allows one to approximate the
unitary operators as

Ûac(θ) = exp[θ(â† ĉ− âĉ†)] ≈ I + θ[â† ĉ− âĉ†] + O(θ2),

Ûbd(θ) = exp[θ(b̂†d̂− b̂d̂†)] ≈ I + θ[b̂†d̂− b̂d̂†] + O(θ2), (4.10)

where we consider O(θ2) terms negligible to ensure that mostly single photons are
subtracted from each mode. From Eq. 4.9 and Eq. 4.10, we get the unnormalized four-
mode state

Ûac(θ)Ûbd(θ)|0, R〉ab|00〉cd ∝
∞

∑
n

einφtanhnR[I + θ(â† ĉ− âĉ† + b̂†d̂− b̂d̂†)]|nn〉ab|00〉cd,

(4.11)
Finally, the action of last balanced beamsplitter, Ûbd(

π
4 ), which is the second BS1 in the

figure, acts to transform the operators ĉ† → 1√
2
(ĉ† + d̂†) and d̂† → 1√

2
(d̂† − ĉ†). This,

along with the observation that any terms with ĉ or d̂ vanish when acting on vacuum,
leads to the resulting state

|ψ〉abcd ∝
∞

∑
n

einφtanhnR
[
|00〉cd −

θ√
2

[
(â− b̂)|10〉cd + (â + b̂)|01〉cd

]]
|nn〉ab. (4.12)

We now perform the PNR measurements on three output modes as depicted in
Fig. 4.1. Looking at the state in Eq. 4.12, it can be immediately seen that for n1 = n2 = 0,
the initial TMSV state is unchanged as one expects. We now consider two cases of
n1 = 1, n2 = 0 and n1 = 0, n2 = 1, i.e., only one of the two detectors detects a single
photon. The two orthogonal output states in these two cases are

|ψ〉±ab ∝
∞

∑
n

√
neinφtanhnR[|n− 1, n〉 ± |n, n− 1〉], (4.13)

where the positive (negative) sign corresponds to [n1, n2] = [1, 0] ([n1, n2] = [0, 1]).

It is worth mentioning that states like |ψ〉± have been shown to achieve Heisenberg-
limit of phase measurements in quantum interferometry [183, 184]. We now consider a
third PNR detector placed in the path of mode ‘b’ to detect n3 photons. The third PNR
measurement projects the |ψ〉± to the pure state given by
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FIGURE 4.1: The proposed scheme for generating rotation-symmetric
error-correcting codes. A two-mode squeezed vacuum (TMSV) state is
generated by combining two orthogonal single-mode squeezed vacuum
(SMSV) states at the first balanced beamsplitter (BS1). Photons are then
subtracted from each modes of the TMSV state using highly unbalanced
beamsplitters (BS2). The subtracted photons are interfered at the second
balanced beamsplitter followed by PNR measurements on three output
modes, which prepares the fourth mode in the desired code for a certain
measurement combination of n1, n2, and n3. The dotted red box represents
the coherent photon subtraction process. A particular case shown here
considers [n1, n2, n3] = [1, 1, 4], resulting in |ψ〉 ∝ |2〉+ |6〉 with 4-fold ro-
tational symmetry as evident in the displayed Wigner function. OPA: Op-
tical parametric amplifier. BS1: Balanced beamsplitter. BS2: Unbalanced

beamsplitter for photon subtraction. EOM: Electro-optic modulator.

|ψ〉±a =N[
√

n3cn3,n3 |n3 − 1〉

±
√
(n3 + 1)cn3+1,n3+1|n3 + 1〉], (4.14)

where
N =

√
n3cn3,n3 + (n3 + 1)cn3+1,n3+1 (4.15)

cn,n′ = eiφ(n+n′) tanhn+n′ R/cosh2 R (4.16)

From Eq. 4.14, one can see that for n3 = odd (even), the final state has two con-
secutive even (odd) Fock components corresponding to n3 − 1 and n3 + 1. We note
that this particular task of coherent single-photon subtraction with highly unbalanced
beamsplitters can be performed with click detectors by ensuring that the probability of
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reflecting more than one photon is vanishing. However, the third detector needs to be
PNR detector. In Section 4.5, we show how one can generate rotation-symmetric states
with 2-fold and 4-fold phase space symmetry in the Wigner function.

We now generalize the proposed method for arbitrary detection of n1 and n2 pho-
tons. In this case, to the leading order approximation, only the terms involving up to
θn1+n2 will contribute in the expansion of unitary operators of the photon subtracting
beamsplitters (BS2 in Fig. 4.1) in Eq. 4.11. As a result, the Taylor expansion can be
approximated to

Ûac(θ)Ûbd(θ) ≈
N

∑
k=0

θN

k!(N − k)!
(â† ĉ− âĉ†)N−k(b̂†d̂− b̂d̂†)k, (4.17)

where N = n1 + n2 is the total number of photons detected after the photon subtraction
step. Since we have vacuum inputs to modes c and d, and as a consequence of detecting
N photons in total, Eq. 4.17 reduces to

Ûac(θ)Ûbd(θ) ≈
N

∑
k=0

(−θ)N

k!(N − k)!
(âĉ†)N−k(b̂d̂†)k. (4.18)

This approximation can now be transformed by the second balanced beamsplitter, Ûcd(θ),
into

ÛcdÛac(θ)Ûbd(θ)Û†
cd ≈

(−θ√
2

)N N

∑
k=0

âN−kb̂k

k!(N − k)!
(ĉ† + d̂†)N−k(−ĉ† + d̂†)k. (4.19)

The action of these beamsplitters to the TMS resource state and vacuum modes c and d
followed by detecting n2 and n1 photons in the transformed modes c and d, respectively,
leads to the final state

|ψ〉ab = ÛcdÛac(θ)Ûbd(θ)Û†
cd|0, R〉a,b ⊗ |0, 0〉c,d ∝

N

∑
k=0

An1,n2,k âN−kb̂k|0, R〉ab, (4.20)

where the coefficient An1,n2,k is

An1,n2,k =
imax

∑
imin

(−1)i+k−n>
√

n1!n2!
i!(i + k− n>)!(n> − i)!(N − i− k)!

, (4.21)

and the summation goes from imin = Max(0, n> − k) to imax = Min(n>, N − k), where
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n> = Max(n1, n2). The overall success probability of this combination of PNR mea-
surements is

P([n1, n2]) =
( θ√

2

)2N
Tr
[ N

∑
k=0

N

∑
j=0

An1,n2,k An1,n2,j âN−kb̂k|0, R〉ab〈0, R|â†N−j
b̂†j
]
. (4.22)

One salient point to note about the coherent photon subtraction is that the approx-
imation of weakly reflective subtraction beamsplitters used in Eq. 4.18 is not strictly
necessary. In fact, the full treatment of perfect coherent photon subtraction from a
TMSV state with arbitrary beamsplitter parameter θ reduces to the same two-mode
state in Eq. 4.20, but with a different effective squeezing parameter. If the initial ex-
perimental squeezing parameter is R, then the nonzero beamsplitter reflectivity acts to
replace R in Eq. 4.20 with an effective squeezing parameter of R′ = tanh−1(t2 tanh R),
where t2 = cos2 θ is the transmission of each subtraction beamsplitter.

4.3.1 Perfect coherent photon subtraction

In a laboratory setting where beamsplitters with non-vanishing reflectivity are used,
we can recover the ideal subtraction case with a modification to the value of initial
squeezing. In the case where subtraction beamsplitters are given by the operators
Uac = Ubd = e−θ(a†b−ab†) and the third beamsplitter to make the subtraction coherent is
balanced,Ucd = e−

π
4 (a†b−ab†), applying these operators to a TMS vacuum yields

UcdUacUbd|0, R〉ab =
∞

∑
n=0

(eiφ tanh R)n

n!

(
ta† +

r√
2
(c† + d†)

)n (
tb† +

r√
2
(−c† + d†)

)n
|0〉abcd,

(4.23)

where r = sin θ and t = cos θ are the real reflectivity and transmissivity coefficients of
the subtraction beamsplitters. Detecting n1 photons in mode c and n2 photons in mode
d leads to the unnormalized output state of

|φ〉 =
∞

∑
n=0

n1+n2

∑
k=0

B
(t2 tanh R)n

k!(n1 + n2 − k)!
an1+n2−kbk|nn〉ab

=
N

∑
k=0

BaN−kbk|0, R′〉ab, (4.24)
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where N ≡ n1 + n2 and B = An1,n2,k from Eq. 4.21. The above equation is then exactly
the same as the perfect coherent subtraction case of Eq. 4.20 with an effective decreased
squeezing parameter of

R′ = tanh−1(t2 tanh R). (4.25)

This shows that the idealized states discuss ed are in fact equivalent to realistic states
with modified squeezing. Furthermore, this fact can be used to increase the overall
success probability of a protocol if one has the ability to generate an initial TMS vac-
uum state with squeezing in excess of what is required to produce a specific target. By
beginning with a large squeezing parameter, R, one can increase the reflectivity of the
subtraction beamsplitters to increase the likelihood of successfully subtracting n1 and
n2 photons until the effective squeezing has been reduced to the R′ value required to
produce the target.

Later we show how one can utilize this feature of coherent photon subtraction to
increase the success rates of preparing the desired states.

We now investigate the third PNR measurement on the coherently photon-subtracted
state represented by Eq. 4.20. A measurement outcome of n3 photons projects the two-
mode state |ψ〉a,b to the following parity state

|ψ〉a = N

N+n3

∑
k=kmin

A′n1,n2,k|2k− N − n3〉a, (4.26)

where we have

A′n1,n2,k = An1,n2,(k−n3)
(eiφ tanh R)kk!√
(2k− N − n3)!

, (4.27)

and kmin = Max(n3, d1
2 N + 1

2 n3e) with d.e being the ceiling function. The normalization
coefficient is given by

N =

(
1
2 θ2
)N

n3!(cosh R)2
√

Psucc
, (4.28)

where Psucc is the overall success probability of the measurement outcome configura-
tion [n1, n2, n3] given as

Psucc =

(
1
2 θ2
)N

n3!(cosh R)2

N+n3

∑
k=kmin

(A′n1,n2,k)
2. (4.29)
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This completes the generalized derivation for coherent photon subtraction scheme for
generating rotation-symmetric error correcting codes.

Examining Eq. 4.26, we see that in addition to the state having definite photon-
number parity, the number of Fock components in the superposition is determined
by the number of subtracted photons to reach a maximum of N + 1 when n1 6= n2 and
n3 > N. When n3 < N, the maximum number of components drops to b 1

2 N + 1
2 n3c+ 1.

A particularly interesting case occurs when n1 = n2. In this case the coefficient An1,n2,k

vanishes for k = odd as seen below:

An1,n2,kodd
=

n2− k−1
2

∑
i=0

(−1)n2+k−i[(2n2 − k− i)!(k + i− n2)!i!(n2 − i)!)
]−1

+ (−1)−n2−i[i!(n2 − i)!(2n2 − k− i)!(k + i− n2)!)
]−1

= 0. (4.30)

Therefore, only the terms where k = even contribute to the state in Eq. 4.26 meaning
that the final state has half as many Fock-basis components as the n1 6= n2 case, and
each of these components is separated by integer multiples of 4. Indeed, this is a conse-
quence of extended Hong-Ou-Mandel (HOM) type interference between the subtracted
photons [185]. Since we are considering only the case where n1 = n2, the subtracted
photons from each mode of the TMSV can only occur in even numbers. The simplest
case of such scenario is n1 = n2 = 1, which means both the subtracted photons came
from either mode ‘a’ or ‘b’, as one expects in a typical HOM experiment. As we show
later, this extended HOM interference property can be used to prepare rotationally-
symmetric states which can be used in bosonic quantum error correction schemes [21,
68].

4.4 Numerical Experiments

In general for arbitrary n1, n2, and n3, we show in Fig. 4.2 how the probability to suc-
cessfully generate any non-Fock state with either 2-or 4-fold phase space symmetry
can be optimized by varying the subtraction beamsplitter (BS2 in Fig. 4.1) reflectivies
based on the initial resource squeezing level. Since changing the subtraction beam-
splitter reflectivity has no effect on the form of the output state other than to reduce the
original TMS state squeezing parameter to a smaller effective squeezing, this feature
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FIGURE 4.2: (a) The probability to successfully generate any non-Fock par-
ity state (2-fold or 4-fold-symmetry) as the subtraction beamsplitter reflec-
tivity is changed for many values of initial two-mode squeezing. (b) Prob-
ability to successfully generate only 4-fold-symmetry states. (c),(d) The
average of the mean-photon number of the successfully generated states.
The large dots indicate the mean photon number of a single mode of input
state at each respective squeezing. Regions on the curves to the left of the
dots show it is likely to increase the average energy of the mode when the

state is successfully generated.

can be used as an external experimental knob to tune the mean output state energy
and boost the generation rates. The ‘non-Fock’ qualifier means we exclude generated
states that are composed of only a single Fock-basis component. Thus, the probabil-
ities plotted simply sum the probabilites to obtain any interesting superposition state
of the desired symmetry for a given subtraction beamsplitter reflectivity at each initial
squeezing. Additionally, 4-fold rotation symmetric states also possess 2-fold symmetry,
and thus Fig. 4.2(a) shows the probability to generate either type of states. In Fig. 4.2(b),
we exclusively show the case of n1 = n2 where 4-fold symmetric states are generated.

The plots demonstrate that there is a threshold value for the beamsplitter re-
flectivity beneath which the generation probability drops precipitously, but increasing
the reflectivity beyond about 10% (r2 = 0.1) gives limited returns. Furthermore, in
Fig. 4.2(c) and 4.2d we show the expected mean photon number, 〈a†a〉exp of the output
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state given the specified initial conditions. These values are obtained by averaging over
the mean photon number of each output state weighted by the probability of obtain-
ing that state while excluding the non-superposition states. As one can see, the value
of 〈a†a〉exp for the generated states only decreases as reflectivity increases, which intu-
itively follows considering more of the original TMS state energy is diverted toward the
subtraction detectors. In all cases however, it is interesting to see that for all values of
squeezing considered, the energy of the generated state can be increased beyond what
was present in a single mode of the initial TMS state.

The large dot corresponding to each squeezing curve in the plots shows the mean
photon-number of each single mode of the initial resource state and thus the regions to
the left of this point indicate that on average, successfully generating the desired sym-
metry state with the indicated squeezing and beamsplitter reflectivities will increase
the mean photon-number of the output state. This effect is attributable to subtract-
ing photons from two-mode squeezed vacuum, and has been noted previously in the
context of quantum state interferometry [186].

4.5 State Engineering for Bosonic Error Correcting Codes

In this section, we show how the proposed scheme can be tuned to generate exact
binomial- and truncated cat-like codes by choosing certain combinations of PNR mea-
surements. We provide a detailed analysis on required resource squeezing, success
probabilities, and how lossy PNR detection affects the quality of the generated bosonic
codes.

4.5.1 General two-component states

As mentioned earlier in Sec. 4.3, simply by tuning the initial squeezing parameter and
post-selecting for either n1 = 1, n2 = 0 or n1 = 0, n2 = 1 produces any 2-fold symmetric
two-component state of the form

|ψπ〉 ∝ |m− 1〉+ ξ |m + 1〉 , (4.31)

where the only requirement is that |ξ| <
√

m+1
m , and we let ψπ indicate a state whose

Wigner function possess π rotation symmetry (2-fold symmetric). Similarly, detecting
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one photon in each of modes c and d (n1 = n2 = 1) allows the production of arbitrary
4-fold symmetric two-component states of the form

|ψπ/2〉 ∝ |m− 2〉+ ζ |m + 2〉 , (4.32)

where |ζ| <
√

(m+1)(m+2)
m(m−1) and ψπ/2 indicates a state with π

2 rotation symmetry (4-fold
symmetric). In the above formulas, ξ and ζ are complex numbers determined by the
amplitude and phase of the squeezing parameter for the initial resource TMSV state. If
the initial squeezing parameter is written in complex form as z = Reiφ, then beginning
with a state that satisfies

eiφ tanh R = −ξ

(
m

m + 1

) 1
2

(4.33)

and performing a PNR detection of n3 = m after the coherent subtraction leads to the
creation of the 2-fold-symmetry state with parameter ξ in Eq.4.31. In order to generate
the 4-fold symmetric state in Eq. 4.32, the condition on the initial squeezing is

eiφ tanh R =
√
−ζ

(
m(m− 1)

(m + 1)(m + 2)

) 1
4

, (4.34)

where again a PNR detection of n3 = m must follow the coherent photon subtraction
of the n1 = n2 = 1 case.

4.5.2 Binomial code state generation

We now consider two particular cases of 4-fold symmetric two-component states, in
particular the binomial code words of Eq. 4.3. These binomial code words |0L〉 and |1L〉
can be exactly created by coherently subtracting n1 = n2 = 1 photons and performing
respective PNR measurement of n3 = 2 and n3 = 4, provided the effective squeezing
is chosen to satisfy the relation in Eq. 4.34 for ζ|0L〉 =

√
3 and ζ|1L〉 = 1/

√
3. In or-

der to satisfy these requirements, the experimental resources must achieve squeezing
thresholds of 10.63 dB to perfectly create the |0L〉 state and 6.08 dB to create the |1L〉
state. Note that for experimental squeezing above these thresholds, the beamsplitter
reflectivity must be tuned to decrease the effective squeezing back to these quantities.
However, squeezing below these thresholds does not mean that QEC with rotationally-
symmetric code words is no longer possible. Lower squeezing means that the lower
Fock-components of the code states will contribute more to the superposition, but as
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long as the coefficients for the two code words are chosen such that they have the equal
photon number moments, error correction is still possible as in accordance with Knill-
Laflamme condition. In fact, the coefficients deviating from a binomial distribution
may prove beneficial in specific circumstances if they are optimized to reduce specific
error rates [21].
For the present discussion, we limit our focus to the binomial code states of Eq. 4.3. We
show in Fig. 4.3(a) how the probability to successfully generated the binomial code
states varies with initial resource squeezing. When the squeezing is exactly at the
thresholds (10.63 dB for |0L〉 and 6.08 dB for |1L〉) to generate the desired state, the
subtraction beamsplitters must have vanishing reflectivities, resulting in small success
probabilities as shown on the left most parts of the plots in Fig. 4.3. For larger avail-
able initial squeezing, however, increasing the subtraction reflectivity until the effective
squeezing is at the required thresholds boosts the success probability by three orders of
magnitude for both code states. Note that these larger squeezing values for optimized
success probability are within the realm of realistically achievable squeezing [14].

FIGURE 4.3: (a) Probability to successfully generate the code states |0L〉
and |1L〉 as initial squeezing is increased. The subtraction beamsplitters
are tuned to satisfy Eq. 4.34. (b) Probability to successfully generate any 4-
fold symmetric state and (c) any 2-fold symmetric state with k Fock-basis
components in each superposition as subtraction beamsplitter reflectivity

is increased given an initial squeezing of 12 dB.

In Fig. 4.3(b), we display the success probability to generate multi-component
4-fold symmetric states with k Fock-basis components in the superposition given an
initial resource squeezing value of 12 dB as the subtraction beamsplitter reflectivity
varies. Generating states with k components in the superposition is a higher order
process in the beamsplitter reflectivity as it requires n1 = n2 ≥ k− 1, so the two com-
ponent state described by Eq. 4.32 is the most common result. It is worth mentioning
that the growing number of components in the superposition is a consequence of ex-
tended HOM interference. The post-selection is done for the particular case of n1 = n2
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FIGURE 4.4: Wigner function visualization of binomial codewords. (a) and
(c) are the ideal codewords generated for |0L〉 and |1L〉 when no losses are
considered in our protocol. (b) and (d) are in the presence of 10% losses
in the PNR measurement of n3 photons. We see that the features such as
phase space interference and the negativity of the Wigner functions are

preserved with 10% losses.

after the HOM interference, but this can happen in many ways as long as we have
n(−)

1 = N− 2l, n(−)
2 = 2l; l ∈ [0, N/2], where n(−)

1 and n(−)
2 denotes the number of pho-

tons subtracted from modes ‘a’ and ‘b’, respectively before the HOM inferences at the
second balanced beamsplitter, BS 1. Likewise, Fig. 4.3(c) shows the success probability
to generate k-component 2-fold-symmetry states with an initial 12 dB of squeezing.

In Fig. 4.4, we plot the Wigner functions of the generated binomial code words
with the optimal effective squeezing of 10.63 dB and 6.08 dB for |0L〉 and |1L〉, respec-
tively. On the left, the resultant Wigner functions (a) and (c) are for the case of perfect
detection (η = 1) for all three PNR detectors. As expected, the Wigner functions dis-
play 4-fold symmetry owing to the photon-number support on every 4th Fock state. In
an experimental realization of such state engineering protocol, the photon losses due
to propagation though lossy optical components and inefficient PNR detections are in-
evitable and lead to decoherence of the desired state.

Next, we investigate the effects of imperfect detection (η = 0.90) for n3 mea-
surement for generating both the binomial code words. As evident from the Wigner
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functions in Fig. 4.4 (b) and (d), the negativity of the Wigner functions is reduced while
the phase space symmetry is still preserved. Note that we have considered the ideal de-
tection for n1 and n2 PNR measurements since the deleterious effects of their imperfect
detection can be reduced by lowering the reflectivity of the subtracting beamsplitters
to ensure that the probability of subtracting more than one photon is negligible. While
this prevents the decoherence of the generated code words caused by imperfect detec-
tion of n1 and n2, it lowers the overall success rate. Therefore, the PNR detectors with
high detection efficiency are desired in such state engineering protocols.

We then evaluate the state Fidelity, Wigner Negativity, and Wigner Log Negativ-
ity (WLN) against the imperfect detection efficiency, η for n3 detection. The losses are
modeled by setting up a fictitious beamsplittier of transmissivity η in the path of n3

photons.

Numerical simulations are displayed in Fig. 4.5. The generated state fidelity, de-
fined as F(ρ, σ) =

(
Tr[
√√

ρσ
√

ρ]
)2, with the ideal binomial code words in Eq. 4.3 is

plotted against the overall detection efficiency in Fig. 4.5(a). We see that for a given
detection efficiency, |1L〉 performs better than |0L〉, as evident from the larger fidelity
difference at lower overall detection efficiency. In CV resource theories, the Wigner

FIGURE 4.5: Effects of lossy PNR detection for n3 photons. (a) State Fidelity
with the ideal codewords. The minimum Wigner function amplitude and

Wigner Log Negativity (WLN), (b) and (c), respectively.

Negativity (WN), i.e., the minimum value of the negativity of Wigner function, and
Wigner Log Negativity (WLN) are the key measures to quantify the non-Gaussian na-
ture of quantum resources which are essential for quantum computational advantages
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and fault-tolerance [187]. The WLN is defined as

WLN := ln
[ ∫
|W(q, p)|dqdp

]
, (4.35)

and it immediately follows that a non-negative Wigner function has zero WLN. The
WN and WLN are plotted in Fig. 4.5(b) and Fig. 4.5(c), respectively.

We found that the non-Gaussian nature of the code words is preserved even for
the detection efficiency as low as η = 0.5, as seen from the negative minimum am-
plitude of the Wigner function, W(Q, P)min and non-zero value of WLN. It is worth
pointing out that the PNR detection efficiency of 98% is a experimentally feasible with
state-of-the-art transition-edge sensors [188], and methods to obtain > 99% are possi-
ble [189]. This concludes the realistic implementations of our state engineering scheme
for binomial codes.

4.5.3 Truncated cat code state generation

In this section, we investigate the feasibility of generating code words having sup-
port on higher photon-number. We show that such codes satisfy the Knill-Laflamme
condition for faithful error correction against single-photon loss. Consider two events
where we perform the detection combinations of [n1, n2, n3] = [0, 1, m] and [n1, n2, n3] =

[0, 2, m] with m ≥ 2, which we denote as |ψ0,1,m〉 and |ψ0,2,m〉, respectively. Using the re-
sults from Eqs. 4.26 and 4.27, the former case yields a two component 2-fold symmetric
state of the form

|ψ0,1,m〉 ∝ e−i φ
2 (tanh R)−

1
2
√

m |m− 1〉 − ei φ
2 (tanh R)

1
2
√

m + 1 |m + 1〉 , (4.36)

while the latter case gives us

|ψ0,2,m〉 ∝ e−iφ(tanh R)−1
√

m√
m + 1

|m− 2〉+ 2
√

m + 1√
m− 1

|m〉+ eiφ tanh R
√

m + 2√
m− 1

|m + 2〉 .

(4.37)
By inspection, it is easy to see that these states are mutually orthogonal where |ψ0,2,m〉
has parity of m and |ψ0,1,m〉 has the opposite parity. As seen from the Wigner function
plots of the example cases of m = 5 and m = 7 in Fig. 4.6, these types of states resemble
truncated cat-like states with the associated fast interference fringes near the origin in
phase-space. If we can arrange for the states to satisfy the Knill-Laflamme condition
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FIGURE 4.6: Wigner functions and photon-number distributions of code-
words with 2-fold phase space symmetry. (a) and (b) are two orthogo-
nal codewords with mean photon-number n̄ ≈ 4.6 for the measurement
outcomes of [n1, n2, n3] = [0, 2, 5] and [n1, n2, n3] = [0, 1, 5], respectively.
Likewise, (c) and (d) are for [n1, n2, n3] = [0, 2, 7] and [n1, n2, n3] = [0, 1, 7]
with mean photon number n̄ ≈ 6.7. Insets show the photon-number dis-
tributions having support on odd and even photon numbers. The effective

squeezing for (a) and (b) is 6.42 dB and 8.30 dB for (c) and (d).

defined in Eq. 4.2
〈ψ0,1,m| â† â |ψ0,1,m〉 = 〈ψ0,2,m| â† â |ψ0,2,m〉 , (4.38)

then the two states can be used as code words to protect against single dephasing errors.

Using the level of squeezing as a tuning experimental knob, the Knill-Laflamme
condition can be exactly satisfied. In Fig. 4.7, we show how each pair of states can be
made with the same experimental scheme without changing the subtraction beamsplit-
ter reflectivities, and that for the correct squeezing (indicated by the solid dot where
the solid and dotted lines cross in Fig. 4.7(a) ), the two orthogonal states each have the
same mean photon number. This means that the scheme can be set with some initial
squeezing and beamsplitter parameters and is capable of generating either of the pair
of orthogonal states. For higher detected m, the two orthogonal states have nearly the
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FIGURE 4.7: (a) Mean photon number of the orthogonal states generated
by detecting [0, 1, m] (dashed lines) and [0, 2, m] (solid lines) photons as ini-
tial squeezing increases for a fixed subtraction beamsplitter reflectivity of
10%. For each m, there is a squeezing value that yields orthogonal states
with the same mean photon number (indicated by solid dots) which is nec-
essary to satisfy the Knill-Laflamme criteria. (b) The probability to gener-
ate the [0, 1, m] or [1, 0, m] states, which differ only by an optical phase, and

(c) the probability to generate the [0, 2, m] or [2, 0, m] states.

same mean photon number for values of squeezing past the exact point as well, lead-
ing to slightly larger success probabilities for both |ψ0,1,m〉 and |ψ0,2,m〉 as shown in the
respective plots in Fig. 4.7(b) and 4.7(c).

The relevant data associated with the intersection points in Fig. 4.7 is shown in
Table 4.1. For each end detection of n3 = m, we give the squeezing of the input state,
the overall probability to successfully generated the states |ψ0,1,m〉 and |ψ0,2,m〉 at that
input squeezing, and the mean photon number, 〈â† â〉, which is the same for both output
states.

The general form of Eq. 4.26 can be used to find other pairs of orthogonal trun-
cated cat-like states with more terms in the superposition beyond the simple case of
measuring only zero and one or zero and two photons in the subtraction step. How-
ever, states created by subtracting larger numbers of photon generally arise less fre-
quently due to decreasing success probabilities with unbalanced beamsplitters, and for
arbitrary subtractions of n1 and n2, cat-like state production may not happen for every
end PNR detection of n3. In Sec. 4.5.5, we will consider how to enlarge the success
probability by using multiplexing techniques.
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m 〈a†a〉 Squeezing
(dB)

Prob. [0,1,m] Prob. [0,2,m]

2 1.21 2.78 1.39× 10−3 8.46× 10−5

3 2.36 4.22 1.41× 10−3 1.82× 10−4

4 3.47 5.40 1.51× 10−3 3.08× 10−4

5 4.56 6.44 1.53× 10−3 4.32× 10−4

6 5.62 7.40 1.72× 10−3 6.28× 10−4

7 6.68 8.30 1.86× 10−3 8.34× 10−4

8 7.72 9.12 1.94× 10−3 1.03× 10−3

TABLE 4.1: Numerical data for the experimental parameters when the
mean photon-number is equal for both the code words in Fig. 4.7

4.5.4 Arbitrary superposition states

True quantum information process will require the need to encode not only the logical
states in the given code space, but also arbitrary superpositions of the two. This be-
comes challenging if generating the two logical states requires different experimental
settings, such as when the initial squeezing is different for each of the states. When con-
sidering the class of binomial code states, however, there are several codes to choose
from. Rather than the code words from Eq. 4.3, we could instead use code words

|0̃L〉 = |2〉 , |1̃L〉 =
1√
2
(|0〉+ |4〉) , (4.39)

which can faithfully correct against single-photon loss errors [21]. Our proposed scheme
can be modified slightly in order to generate the arbitrary superposition |ψ〉 = u |0̃L〉+
v |1̃L〉 using the design shown in Fig. 4.8(a), where we make use of an additional an-
cillary state, A |0〉 + B |2〉, where A and B are complex numbers. This ancillary state
can be generated with a secondary device as described in the previous section, where
a single photon was coherently subtracted from the TMS state and a single photon was
detected and the end step for m = 1. As shown by Eqs. 4.31 and 4.33, the values of A
and B for this ancilla can be tuned by changing the input squeezing to this secondary
device.

Considering Fig. 4.8(a), let |ψ〉ab be the two-mode state after coherent-photon sub-
traction has occurred with n1 = n2 = 1. The output state after interfering with the
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FIGURE 4.8: (a) Schematic to generate an arbitrary superposition of logi-
cal binomial code states. After performing a coherent-photon subtraction
of n1 = n2 = 1, an ancillary state generated by a secondary device can be
coupled to the system with an additional beamsplitter. The ancilla state co-
efficients and beamsplitter parameters can be tuned to control the weights
of the output superposition obtained by successfully measuring n3 = 2
and n4 = 0. (b) Similar scheme for generative superpositions of orthog-
onal cat-like states |ψ0,1,m〉 and |ψ0,2,m〉. Here the ancilla state is injected
prior to one of the photon-subtraction detections in order to generate the

desired superposition.

ancilla state and subsequent detections is then given by

|ψ〉out = a〈2| c〈0| Ûab(θ) |ψ〉ab ⊗ (A |0〉+ B |2〉)c

= a〈0| c〈0| 1√
2
(tâ + rĉ)2 |ψ〉ab ⊗ (A |0〉+ B |2〉)c

= At2
a〈2|ψ〉ab + Br2

a〈0|ψ〉ab. (4.40)

Using Eqs. 4.32 and 4.34, we have that

a〈0|ψ〉ab = |0̃L〉 (4.41)

a〈2|ψ〉ab = |1̃L〉 (4.42)

when the initial squeezing parameter is R = 0.756 which corresponds to 6.51 dB of
squeezing. Thus, by tuning the coefficients of the ancillary state in concert with the
final beamsplitter parameters, it is possible to generate any arbitrary superposition of
the logical states of the form |ψ〉 = u |0̃L〉+ v |1̃L〉 where u = Br2 and v = At2.

A similar procedure can be applied to the truncated cat code scenario. As discus-
sion in Sec. 4.5.3, it is possible to generate two orthogonal cat-like code states through
a single device with the same input squeezing. For the same post-selection on n3 = m,
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different values recorded on the coherent photon-subtraction detectors can lead to or-
thogonal parity states. However, if we make the addition shown in Fig. 4.8(b) by in-
cluding the ancillary state A |0〉+ B |1〉, we can make arbitrary superpositions between
the two possible orthogonal states for any given m. This type of superposition can
be approximated with a very weak coherent state or generated by other means [118,
190]. The result can be seen by examining the projective measurement that is made
by the detectors. Using the mode indexing shown in the figure, the measurement is a
projection on the Fock states |m〉a |0〉b |2〉c′ |0〉d′ . Note this mode indexing differs from
previous mode indexing, but is used here for the sake of visual continuity. This mea-
surement can be evolved backwards to one step before the the ancillary input and final
beamsplitter, to give the effective measured state of

|φ〉 = (A |0〉+ B |1〉)d Û†
c′d′ |m〉a |0〉b |2〉c′ |0〉d′

= |m〉a |0〉b 1
2(tc

† − rd†)2) |0〉c |0〉d
= |m〉a |0〉b

(
At2 |2〉 − 2Brt |1〉

)
c

. (4.43)

From earlier, we found that taking the TMS state, sending in through the subtraction
beamsplitters and projecting on |n3 = m〉a |n1 = 0〉b |n2 = 1〉c led to the state |ψ0,1,m〉,
while projecting on |n3 = m〉a |n1 = 0〉b |n2 = 2〉c led to the orthogonal state |ψ0,2,m〉.
With the modified scheme that effectively projects onto |φ〉, we now have an experi-
mental scheme to generate classes of states given by

|ψ〉 = At2 |ψ0,2,m〉 − Brt |ψ0,1,m〉 . (4.44)

Tuning the new beamsplitter’s phase and reflectivity allows for the creation of states
with arbitrary coefficients in the superposition.

4.5.5 Success probability enhancement by resource multiplexing

Thus far, we have considered the generation of bosonic codes using only one setup
presented in Fig. 4.1. To boost the success probability of generating a particular code
one can employ multiplexing schemes, which have been used to enlarge the herald-
ing probability of single-photons [191–193]. For a given success probability Psucc per
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state generation setup, the probability of generating the desired code with NMUX mul-
tiplexed resources is

PMUX = 1− (1− Psucc)
NMUX . (4.45)

For a given success probability tolerance δ = 1− PMUX, one can estimate the number
of multiplexed sources as

NMUX =

⌈
log10(δ)

log10(1− Psucc)

⌉
, (4.46)

where d.e is the ceiling function. In Fig.4.9(a), we plot the success probability against the
number of multiplexed sources for states with both 2-fold (solid line) and 4-fold (dotted
line) symmetry at assumed experimental squeezing values of 15 dB (red) and 6 dB
(blue). The probabilities are calculated using beamsplitter parameters that maximize
the single-scheme success probabilities for each case according to Fig. 4.2. Fig. 4.9(a)
also shows the the multiplexed probability to generate the |0L〉 (dashed green) and
|1L〉 (dashed black) states where again the other parameters are chosen to maximize
individual scheme success probabilities. The figure inset zooms in to show where the
multiplexed probabilities exceed 0.90. For respective probability tolerances of 0.1 and
0.01, only NMUX = 4 and 8 schemes are needed to successfully generation a 2-fold
symmetric superposition when initial squeezing is 15 dB.

The second panel of the figure, Fig. 4.9(b) performs the same multiplexing anal-
ysis on the truncated cat-like states whose Wigner function are shown in Fig. 4.6. The
solid lines show the PMUX for the cases where the initial squeezing is chosen such that
the mean photon number of orthogonal pairs (|ψ0,1,m〉 and |ψ0,2,m〉) is the same. How-
ever, the success probability can be significantly increased when larger initial squeezing
is available, and orthogonal states still have approximately the same mean number of
photons as seen in Fig. 4.7. The dotted lines in Fig. 4.9(b) show PMUX when the input
squeezing is 12 dB.

4.6 Imperfect Binomial Code Words

In order to engineer the states |0L〉 and |1L〉, the final PNR detector must register two
and four photons, respectively. However, when the detector is imperfect and has effi-
ciency η < 1, this leads to mixtures instead of ideal code words. We wish to evaluate
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FIGURE 4.9: Including NMUX multiplexed protocols increases the overall
success probability, PMUX. (a) Curves are shown for the probability to gen-
erate any superposition 2-fold symmetric state using 15 dB and 6 dB initial
squeezing (solid red and blue, respectively), any 4-fold symmetric at 15
and 6 dB (dotted red and blue), and the binomial code words |1L〉 and |0L〉
(dashed black and green) when initial squeezing maximizes the single-shot
success probability. (b) The PMUX values are plotted for the truncated cat-
like states of the Wigner functions shown in Fig. 4.6. Solid lines correspond
to states generated from initial squeezing values that ensure the mean pho-
ton number is the same for each orthogonal state in the pair of |ψ0,1,m〉 and
|ψ0,2,m〉. Dotted lines assumed a flat 12 dB of initial squeezed, and the mean
photon numbers of the pairs of states are now only approximately equal.
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how well error correction can proceed and try to find a bound on the detector ineffi-
ciency beneath which QEC is still possible. In our analysis, we ignore the dark counts
of the detector which is a reasonable assumption for superconducting single-photon
detectors. Let’s begin with the state after coherent photon subtraction where a single
photon was measured in each of the subtraction detectors, i.e., n1 = n2 = 1. The state
after photon subtraction is

|ψ〉 ∝ (â2 − b̂2) |0, R〉ab , (4.47)

Note that this process can be assumed to be ideal, as slight inefficiencies in the sub-
traction detectors are less important than the end PNR efficiency since the probability
to detect values of n1 and n2 larger than one is an order of magnitude smaller than
n1 = n2 = 1 due to highly unbalanced beamsplitters. It is, however, desirable to have
near-unity efficiency in order to subtract photons at higher rates.

For the |0L〉 code word, performing lossy PNR detection of two photons on mode
‘a’ of Eq. 4.47 yields the mixtures

ρ0L =
Tra [Π2 |ψ〉 〈ψ|]
Tr [Π2 |ψ〉 〈ψ|]

∝ Tra

{
∞

∑
n,n′=0

eiφ(n−n′)(tanh R0L)
n+n′

(
〈2|a (a2 − b2) |n, n〉 〈n′, n′| (a†2 − b†2

) |2〉a

+ 3(1− η) 〈3|a (a2 − b2) |n, n〉 〈n′, n′| (a†2 − b†2
) |3〉a + O[(1− η)2]

)}
,

(4.48)

where Πn = ∑m=n p(n|m)|m〉〈m| is the POVM for ‘m’ photons detection from a PNR
detector with efficiency η and p(n|m) = (m

n)η
n(1− η)m−n is the conditional probability

of detecting ‘n’ photons out of ‘m’ photons incidented to the detector. For high effi-
ciency PNR detectors with near unit efficiency, we can neglect orders of (1− η)2 and
higher. If we assume that the effective squeezing was chosen properly to for the desired
state, then we can write the final output as the mixture

ρ0L = (1− δ0L)|0L〉 〈0L|+ δ0L ρE0L
, (4.49)

where the erroneous component is

ρE0L
=

1
8

(√
3 |1〉+

√
5 |5〉

) (√
3 〈1|+

√
5 〈5|

)
(4.50)
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and the ratio
δ0L

1− δ0L

= 3
√

2(1− η). (4.51)

Similarly, one can go through the same procedure for the other code word with a
lossly PNR detection of four photons. In this case we have

ρ1L = (1− δ1L)|1L〉 〈1L|+ δ1L ρE1L
,

ρE1L
=

1
32

(
5 |3〉+

√
7 |7〉

) (
5 〈3|+

√
7 〈7|

)
,

δ1L

1− δ1L

=
8
√

2√
15

(1− η). (4.52)

The Wigner functions plotted in Fig. 4.4(b) and 4.4(d) show the effects the detector
inefficiency when η = 0.90. Additionally, Fig. 4.5 plots the fidelity and Wigner log
negativity of the imperfect code states as efficiency deviates from unity.

Now, we wish to examine how the error and recovery process is affected by the
imperfections introduced by the non-ideal detector. Because the chosen code only pro-
tects against single photon loss, we need only consider effects up to first order in γ from
the Kraus operators describing the loss. We will use the approximate code word of ρ0L

as an example and treat the effects of no-jump errors (E0) and single-jump errors (E1)
separately.

No-jump errors

Expanding in factors of γ, the Kraus operator for a no-jump event is

E0 = 1− 1
2

γâ† â + O[(γ)2]. (4.53)

To leading order in γ, this error acts on ρ0L to give

E0ρ0L E†
0 =(1− δ0L)E0|0L〉 〈0L| E†

0 + δ0L ρE0L

− 1
2 δ0L γ

(
â† âρE0L

+ ρE0L
â† â
)

. (4.54)

The first term in the above expression is the ideal code word transformed by E0
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and is proven to be correctable with unitary operations [21]. The middle term con-
tains the error from state generation and is orthogonal to the ideal code word. Due to
the trace preserving nature of unitary matrices and the orthogonality of the first two
components in the mixture, applying the unitary recovery operations will preserve the
probability ratio of the error component with the desired corrected component. This
means that after the recovery, the error from this term will not grow in magnitude but
have the same contribution as the original state preparation error. Thus, if we can ne-
glect the last term in Eq. 4.54, then error in the final code word after error and recovery
will be the same as that of state generation and not grow in magnitude. In order to
neglect this final term, we need δ0L to be of the same order as γ. From Eq. 4.51, we can
determine a condition on the PNR detector efficiency in order for the error correction
to be feasible up to O(γ). This condition is

1− η ∼ γ. (4.55)

Single-jump errors

The expanded single-jump Kraus operator is

E1 =
(

γ− 1
2(γ)

2
) 1

2 a + O[(γ)
3
2 ], (4.56)

and acts on ρ0L to yield

E1ρ0L E†
1 = (γ− 1

2(γ)
2)
[
(1− δ0L)â|0L〉 〈0L| â†

+ δ0L âρE0L
â†
]
. (4.57)

The photon loss error is detected by measuring the photon number mod two for our
chosen code space, which in this case, is a parity measurement. The error portion of the
mixture, ρE0L

, is orthogonal to the ideal state |0L〉 〈0L|, so a measurement after a photon
loss might incorrectly yield an even parity result since âρE0L

â† has the same parity as
|0L〉 〈0L|. The probability to incorrectly diagnose the loss is thus given by the ratio

Pinc =
Tr[δ0L âρE0L

â†]

Tr[(1− δ0L)â|0L〉 〈0L| â†]
≈ 9δ0L

10(1− δ0L)
. (4.58)

Again, since the accuracy of our error correcting code is only up to first order in
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γ, if the probability to incorrectly diagnose the error is negligible compared to γ then
our code still has efficacy. Using Eq. 4.51, this leads to the slightly stronger condition
on the detector efficiency of

η � (1− γ). (4.59)

This condition states that in order for the QEC to be effective, the losses from detector
inefficiency must be considerably smaller than the expected losses the code words will
protect against.

4.7 Summary and Outlook

This chapter explored the coherent photon subtraction from a two-mode squeezed vac-
uum to generate non-Gaussian quantum states with 2-fold and 4-fold phase space sym-
metry in the Wigner function, including exact binomial code states and truncated cat-
like states. Such states have the desired Wigner function negativity required for quan-
tum advantages in CV quantum information processing. While the proposed method
is not deterministic, desired codes can be generated with rates of KHz-MHz by pairing
up with state-of-the-art PNR detectors with high count rates. Furthermore, the success
probabilities can be enlarged by starting with higher initial resource squeezing and
multiplexing schemes, which could be achieved by monolithic integration on the same
nanophotonic chip.

Moreover, this protocol can be extended to increase the rotation symmetry by uti-
lizing PNR based breeding methods [68]. Higher rotation symmetry leads to enlarged
spacing in the photon number basis, offering to correct for larger photon loss, gain, and
dephasing errors. The truncated finite dimensional Hilbert space makes these codes
hardware efficient and amenable for high fidelity unitary operations, thereby open-
ing promising avenues for their applications in some other areas, in addition to fault-
tolerant quantum computation, such as quantum metrology and quantum communi-
cation in optical quantum information processing. An important direction of future
research is to further investigate such state engineering protocols to generate higher
order codes allowing for correction of higher photon loss, photon gain, and dephasing
errors.



173

Chapter 5

Quantum Sensing with Non-Gaussian
States

Other than quantum computation and communication, quantum mechanics offers sev-
eral routes to improve our abilities to perform measurements through quantum metrol-
ogy. In terms of a phase-space perspective, the best classical physics can do is to reach
a symmetric Heisenberg limit, such that uncertainty is equally small in two canonical
observables, such as position and momentum. The majority of the field of classical
metrology is concerned with optimizing technology to consistently achieve this sym-
metrized limit. In terms of measurement with light-based interferometers, the ’shot
noise’ arises from quantum mechanical vacuum fluctuations and provides the limit for
classical physics.

However, with quantum mechanics and in particular squeezed light, we have the
ability to asymmetrize the uncertainty such that, while the Heisenberg limit is main-
tained, one observable is more accurately measured while the conjugate acquires the
excess noise. This is particularly of use when one is only interested in on of the ob-
servables, such as the phase of an optical beam, for instance. While squeezed light has
been used in interferometry to reduce measurement noise below classical levels, this
method will never attain a truly Heisenberg-limited sensitivity. To get to the limit, one
must employ non-Gaussian states in some form.

This Chapter motivates a potential design of using photon-number-resolved de-
tection to engineer a particular class of non-Gaussian states that would achieve Heisenberg-
limited sensitivity [184]. The protocol design is similar to the coherent photon subtrac-
tion from the previous chapter, but the scheme is modified slightly to use only a single
PNR detector.
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5.1 Overview of Quantum-Enhanced Interferometry

A general interferometer, typified by the Mach-Zehnder interferometer (MZI) of Fig.5.1,
measures the phase difference between two propagation paths by probing them with
mutually coherent waves. From a purely undulatory standpoint, a sure way of en-
suring such mutual coherence is to split an initial wave into two waves, for example
by use of a beamsplitter. However, the unitarity of quantum evolution mandates that
any two-wave-output unitary have a two-mode input as well — rather than a classi-
cal, single-mode input. Thus, the quantum description of a “classical” interferometer
must feature an “idle” vacuum field in addition to the initial wave, and the quantum

FIGURE 5.1: A Mach-Zehnder interferometer with phase difference φ be-
tween two optical paths. Both beamsplitters are balanced. Quantum split-

ting of input field a implies interference with the vacuum field b.

fundamental limit of interferometric measurements is then dictated by the corpuscu-
lar statistics of the interference between the two inputs of the beamsplitter (Fig.5.1).
In a classical interferometer, the vacuum fluctuations at the idle input port limit the
phase difference sensitivity between the two interferometer arms to the quantum limit
of classical interferometry [126], the input beamsplitter’s shot-noise limit (SNL)1

∆φSN ∼ 〈N〉−
1
2 , (5.1)

where φ is the phase difference to be measured and N = Na + Nb is the total photon
number operator. This limit is that of phase noise inside the interferometer and has noth-
ing to do with, say, the single-mode properties of a coherent state (e.g., laser) input |α〉
of photon-number deviation ∆N = |α| = 〈N〉1/2 and phase deviation 2 ∆θ ∼ 〈N〉−1/2

1The SNL is often called “standard quantum limit.” However, the latter was initially defined with a
different meaning, in order to address the optimum error of quantum measurements in the presence of
back action, such as radiation pressure on interferometer mirrors. [194, 195].

2From the number-phase Heisenberg inequality ∆N∆φ > 1/2, easily derived from the energy-time
inequality [196].
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before the interferometer. In fact, Caves showed that a Fock-state input |n〉, for which
∆N = 0 and hence ∆θ → ∞, still yields the SNL of Eq. (5.1) [126].

When both input modes of the interferometer are properly “quantum engineered,”
one can, in principle, reach the ultimate limit, called the Heisenberg limit (HL),

∆φH ∼ 〈N〉−1 , (5.2)

which can clearly be many orders of magnitude lower than the SNL when 〈N〉 � 1.
A recent comprehensive review of quantum interferometry can be found in Ref. [197].
The first quantum engineering proposal to break through the SNL was Caves’ idea
to replace the vacuum state input with a squeezed vacuum [198], which has since
been shown to optimize the quantum Cramér-Rao bound when the input field is a
coherent state [199]. This was demonstrated experimentally [200, 201] and is now the
approach adopted for high-frequency signals (above the standard quantum limit) in
gravitational-wave detectors [202, 203]. Many other approaches have been investi-
gated [204, 205], such as twin beams [206–211], N00N states [212–216], or two-mode
squeezed (TMS) states. These different schemes were recently compared in terms of
the quantum Cramér-Rao bound on their phase sensitivity [217].

It is important to recall here the essential result of Escher, de Matos Filho, and
Davidovich: operating a realistic, i.e., lossy, interferometer at the HL requires losses to
be no greater than 〈N〉−1 [218], i.e., the grand total of the loss can never exceed one
photon, on average. This result had been obtained earlier by Pooser and Pfister in the
particular case of Holland-Burnett interferometry [219]: using Monte Carlo simulations
for up to n = 10 000 photons, it was shown that the phase error of a non-ideal Holland-
Burnett interferometer scales with the HL if the losses are of the order of n−1, and that
larger losses degrade the scaling to a limit proportional to the SNL of N−1/2, staying
sub-SNL as long as photon correlations are present in the twin Fock input. This is
consistent with the general result of Escher, de Matos Filho, and Davidovich for phase
estimation [218]. Additionally, in the case of loss, optimal input states have been nu-
merically calculated whose form generally depends on the interferometric efficiency
and average photon-number input [220].

A direct consequence is that, if the total photon number is too large, ultimate-
sensitivity interferometry cannot be Heisenberg-limited in the current state of tech-
nology: the most sensitive classical interferometer to date, the Laser Interferometer
Gravitational-wave Observatory (LIGO) before the introduction of squeezed light boasted
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∆φSN ∼ 10−11 rad and is shot-noise-limited in some spectral regions, therefore featur-
ing 〈N〉 ∼ 1022 photons. While a Heisenberg-limited version of LIGO would only
require 〈N〉 ∼ 1011 photons to reach the same sensitivity, it would also require an
unrealistic loss level of 10−11, the optical coatings on LIGO’s mirrors “only” reaching
already remarkable sub-ppm loss levels [221].

However, the maximally efficient use of photons by Heisenberg-limited interfer-
ometry can still be interesting provided we take into account this constraint of an ulti-
mate loss level of 10−6. At this level, a 1064 nm interferometer with (arbitrarily chosen)
10 ms measurements would be allowed to reach the 106-photon HL of 1 µrad with only
200 pW, whereas a classical interferometer would need 1012 photons, i.e., 200 µW, to
have its SNL at 1 µrad. This can be of interest in situations where low light levels are
beneficial, such as phase imaging of living biological tissue.

5.1.1 SU(2) interferometry

In order to motivate the approach of this paper, we review and compare and contrast
some different quantum-enhanced sensing proposals in Table 5.1. The key points we
examine are:
(i), whether the input state enables performance at the HL;
(ii), whether a direct interference fringe is observable;
(iii), whether the 〈N〉 � 1 regime is experimentally accessible. As will be shown, the
new input state we propose in this paper is the only one that fulfills all three criteria.

The first two cases are interferometry with the vacuum field in one beamsplitter
input port, leading to no quantum enhancement.

The third case makes use of Caves’ squeezed input [198] into the previously un-
used port of the beamsplitter. This benefits from mature, high-level laser and quantum
optics technology, with large average photon numbers from well stabilized lasers [222].
Case 3 benefits from the recent 15 dB squeezing record [14], but it does require that the
phase difference between the squeezed state and the coherent state be controlled [223].
The gravitational-wave observatories of Advanced LIGO, Advanced VIRGO, and GEO600
all currently utilize squeezed light to improve sensitivity [224–226], and Advanced
LIGO will soon implement frequency-dependent squeezing to improve sensitivity over
a larger bandwidth [227].
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TABLE 5.1: Characteristics and performance of different input states —
except the N00N state∗ which is a state specified inside the interferometer.
Also the fringe signal for the N00N state requires n-photon detection(‡).
The phase error ∆φ is the quantum Cramér-Rao bound [217]. The state

whose use we propose in this paper is the last one.

Input∗ state Ref. (i) ∆φ (ii)fringe 〈Na − Nb〉 (iii) 〈N〉 � 1?

1. |n〉a |0〉b [126]
1√
n

SNL n cos φ yes

2. |α〉a |0〉b [126]
1√
〈N〉

=
1
|α| SNL |α|2 cos φ yes

3. |α〉a |0, r〉b [198] ' e−r

|α| sub-SNL |α|2 cos φ yes

4. |n〉a |n〉b [206]
1√

2n(n + 1)
HL 0 yes [210]

5. |n〉a |n− 1〉b [217]
1√

2n2 − 1
HL

1
2

cos φ possible

6.∗
1√
2
(|n〉a |0〉b + |0〉a |n〉b) [212, 213]

1
n

HL ∼ cos(nφ)(‡) unknown

7.
1√
2
(|n〉a |n〉b + |n + 1〉a |n− 1〉b) [204]

1√
2n(n + 1)− 1

HL cos φ
2 −

sin φ
4

√
n(n + 2) unknown

8.
Z

∑
k=0

ck |n− Z + k〉a |n− k〉b '
√

Z
n

HL ∼ n
2

sin φ possible

Case 4 in Table 5.1 is the twin Fock state input first proposed by Holland and
Burnett [206], and which is implementable, to a good approximation, with large photon
numbers by using an optical parametric oscillator above threshold [210, 211, 228–230].
The input density operator is then of the form, in the absence of losses,

ρ = ∑
n,n′

ρn,n′ |nn〉 〈n′n′| , (5.3)

which can be a pure state (ρn,n′ 7→ ρnρ∗n′), e.g. the TMS state emitted by a lossless optical
parametric oscillator (OPO) below threshold, or can be a general statistical mixture as
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emitted by a lossless OPO above threshold 3. It thus also benefits from the same ma-
ture OPO-based squeezing technology, with a record 9.7 dB reduction on the intensity-
difference noise [230]. Moreover, the phase difference between the twin beams is irrel-
evant (being actually very noisy from being anti-squeezed) and thus need not be con-
trolled before the interferometer. The generalized [231] Hong-Ou-Mandel [185] quan-
tum interference responsible for twin beams breaking the SNL was demonstrated ex-
perimentally in an ultrastable phase-difference-locked OPO above threshold [210, 232,
233], with several mW of CW power.

An inconvenient feature of the Holland-Burnett scheme, however, is that the di-
rect interference fringe disappears (〈Na − Nb〉 = 0 in Table 5.1, a property also shared
by the classical input |α〉a |α〉b) in contrast to all previous cases for which the fringe sig-
nal is proportional to the total photon number. This inconvenience can be circumvented
by the use of Bayesian reconstruction of the probability distribution [206, 208, 219].
Although recently demonstrated for low photon numbers [234], this requires photon-
number-resolved detection, which has yet to be experimentally accessible for large
photon numbers. Another workaround is to use the variance of the photon-number
difference, which is sensitive to φ [207] but whose signal-to-noise ratio is bounded by√

2 [208]. Another idea is to use a heterodyne signal, which presents high visibility but
is restricted to phase shifts ever closer to zero as the squeezing increases [235]. This was
demonstrated experimentally as heterodyne polarimetry 4.8 dB below the SNL [211].

Case 5 in Table 5.1 is a variant of the twin Fock state, the “fraternal” twin Fock
state [217], which does provide a direct fringe signal which being Heisenberg-limited,
but the fringe signal is still extremely small as it does not scale with the input photon
number. Recently, other variants of this state in the family |n〉a|m〉b have been shown
better performance than Holland-Burnett and N00N states in the presence of loss [236].

Case 6 stands out for several reasons. The N00N state refers not to an interfer-
ometer input state but to a state inside the Mach-Zehnder interferometer [212, 213].
While it yields performance at the HL, its experimental generation is experimentally
inaccessible for n� 1; previous experimental realizations have used post-selected out-
comes for n = 3 [214] and 4 [215], a method which fails to scale up to large photon
numbers, though a more scalable method using coherent state displacement was also
demonstrated [216]. Furthermore, N00N states are extremely vulnerable to loss [237],

3This is the most general mixture for which 〈Na − Nb〉 = 0 and ∆(Na − Nb) = 0.
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although experimental efforts have attempted to side-step the issue by using more loss-
tolerant techniques [101]. Last but not least, the use of a N00N state with n photons
requires n-photon detection, which is currently inaccessible in optics experiments with
n� 1 (but may be easier to reach in atomic spectroscopy [212]).

Case 7 is the theoretical proposal of Yurke, McCall, and Klauder (YMCK) [204].
It features both performance at the HL and a strong fringe signal, but an experimental
realization has yet to be determined.

Case 8 features the input proposed in this paper; it is the only one of the table
that features HL performance, a clear interference fringe signal, and is experimentally
feasible with demonstrated technology for large photon numbers. The state can be
generated by using bright twin beams from which one or multiple photons have been
coherently subtracted.

In addition to the above cases, photon subtraction has been suggested to be used
in other interferometry schemes, such as interfering a coherent state and photon-subtracted
squeezed vacuum [238] or subtracting a photon from each mode of a TMS state [186]
(distinguishable subtraction, unlike what we propose here), but these schemes would re-
quire either a parity measurement or large photon-number resolving (PNR) measure-
ments for end-detection, both of which are currently unfeasible for large photon num-
bers and will be discussed further in Sec. 5.7. As will be demonstrated, our method can
make use of bright twin beams, thus scaling to large numbers of photons, and provides
a directly measurable fringe with conventional photo-diodes. As mentioned, the pres-
ence of a strong fringe mitigates the need for numerically intensive reconstruction of
the measured distribution.

5.1.2 A note on SU(1,1) interferometry

We have to our knowledge covered many of the basic approaches to quantum-enhanced
optical interferometry with SU(2) based interferometers, but it is also important to men-
tion SU(1,1) interferometry where the traditional passive beamsplitters are replaced by
nonlinear two-mode squeezers. These devices do not work with intensity difference
measurements [239], but must instead rely on other techniques, such as parity detec-
tion, which requires a PNR detector and is highly susceptible to loss [240]. This weak-
ness to loss can be mitigated by seeding the input with a coherent state [241] and the
PNR detector can be replaced with a click detector [242], but in neither case will the
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detection sensitivity achieve the HL scaling. Alternatively, both the full SU(1,1) inter-
ferometer and a truncated version [243] can reach the HL with homodyne detection.
Sensitivity below the SNL has been experimentally demonstrated [244] and this idea
has been used to propose measuring angular displacement [245]. However, the use
of homodyne detection on each mode means that the local oscillator phases on two
auxiliary beams must be carefully controlled. Even if they are well phase-locked, an
overall additive phase inside the interferometer may be disguised as the differential
phase we wish to measure with the traditional SU(2) interferometer. In fact, the use
of dual homodyne detection in SU(1,1) interferometric devices actually lends them the
ability to more generally detect displacements, which prompted Caves to propose re-
naming them SU(1,1) displacement sensors [246]. In this work, we suggest using a
squeezer in Sec. 5.5 as part of the state generation process which is reminiscent of the
non-linearity present in SU(1,1) interferometry. However, this is just for convenience,
as any twin-correlated source will work as stated in Sec. 5.6.C. Squeezing has also been
used post-interferometer as a means to amplify the quantum signal to a classical one
before detection in order to mitigate problems with inefficient detection [247]. From
this point on, we restrict our study to that of SU(2) interferometry.

This paper is organized as follows. In section 5.2, we introduce the Schwinger-
spin representation and calculate the Cramér-Rao bound by way of the quantum Fisher
information for our proposed state. Section 5.3 demonstrates that the Z-photon coherently-
subtracted twin-beam state has phase-sensitivity scaling with the HL when imple-
mented with a traditional MZI. We then propose an experimental scheme to generate
the desired state in section 5.4 and derive the result from a twin-beam input. Section 5.5
shows the results of numerical calculations when all approximations are disregarded,
and section 5.6 discusses practical considerations of loss, detection imperfections, and
the use of click detectors in place of PNR detectors during state generation. Section 5.7
compares cases with distinguishable subtraction in place of coherent subtraction, and
then we conclude.

5.2 Quantum Fisher Information

The Fisher information is a well-known parameter that provides a means to quantify
the amount of information contained by a parameterized random variable, and the
Cramér-Rao inequality formulates an upper bound on the precision of an estimator in
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terms of the Fisher information [248, 249]. This inequality has been extended to the
quantum case [250] which is very useful in determining the bounds on the sensitivity
for quantum interferometry given a specified input state [199], and is independent of
the nature of the estimator. For a standard MZI, the estimator of interest is the phase
difference between the two arms of the interferometer, for which the quantum Fisher
information of a general pure input state is given by [199, 251]

F = 〈ψin|U†
BSN2

d UBS |ψin〉 − 〈ψin|U†
BSNdUBS |ψin〉2 , (5.4)

where UBS = exp( iπ
4 (a†b + ab†)) is a balanced beamsplitter and Nd = a†a − b†b is

the photon number difference operator. For the sake of convenience, we adopt for our
calculation the Schwinger-spin SU(2) representation [252] initially proposed by Yurke
et al. for quantum interferometers [204]. A fictitious spin J is defined from a pair of
bosonic modes (a, b) as

Jz =
1
2
(a†a− b†b) (5.5)

Jx =
1
2
(a†b + ab†) (5.6)

Jy = − i
2
(a†b− ab†), (5.7)

where a and b are the annihilation operators of each mode. These operators satisfy the
canonical angular momentum commutation relations of the SU(2) algebra

[Ji, Jj] = iεijk Jk. (5.8)

The operator Jz represents the photon number difference operator between the two
modes whereas Jx,y are interference terms. The ease of working with Schwinger opera-
tors is further simplified by noting that the common eigenstates of Jz and J2, |j, m〉, take
the form of two-mode Fock states:

|j, m〉 = |na〉a |nb〉b , (5.9)
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where we have

j =
1
2
(na + nb); (5.10)

m =
1
2
(na − nb). (5.11)

We can then see that the Fisher information can be expressed as

F = 4 〈ψin| e(−i π
2 Jx) J2

z e(i
π
2 Jx) |ψin〉

− 4 〈ψin| e(−i π
2 Jx) Jze(i

π
2 Jx) |ψin〉2 (5.12)

= 4 〈ψin| J2
y |ψin〉 − 4 〈ψin| Jy |ψin〉2 (5.13)

= − 〈(a†b− ab†)2〉+ 〈a†b− ab†〉2. (5.14)

This quantity is related to the phase estimation bound by

(∆φd)
2 ≥ 1

F
. (5.15)

It is important to note that ∆φd is the general phase difference measurement whereas
the quantum Fisher-limited phase error, i.e., when the inequality achieves equality, can
be achieved for the correct estimator when φ deviates from an initially specified optimal
value.

For an interferometry scheme using solely a coherent state input, the Fisher infor-
mation can be easily calculated to yield exactly the expectation value of the input pho-
ton number, F = 〈N〉. This leads to a maximum phase sensitivity of ∆φd = 〈N〉−1/2,
which is the well-known limit to interferometric measurement due to quantum noise
with a classical input shown in Table 5.1, Case 2. In order to beat this limit, it becomes
necessary to include something other than coherent states and vacuum as input, such
as squeezed light addressed by Case 3 of Table 5.1. Although this will beat the 〈N〉−1/2

scaling, it still cannot achieve the HL and has a maximum scaling of ∼ 〈N〉−2/3, which
is only achievable with large squeezing (∼ |α|2/3 photons in the squeezed field for |α|2
photons in the coherent state) [126]. Because of this, reaching the HL requires the use
of other types of quantum states. As a start, consider the simplest case of the final state
in Table 5.1, (Z=1 case), the state given by

|ψ(i)〉 = A |n− 1〉a |n〉b + B |n〉a |n− 1〉b , (5.16)
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where |A|2 + |B|2 = 1. Calculating the quantum Fisher information for ψ(i) in Eq. 5.16,
gives

F(i) = 2n2 − 4n2Im[A∗B]− 1, (5.17)

which leads to the inequality

(∆φ
(i)
d )2 ≥ 1

2n2 − 1
(5.18)

when A = B = 1√
2
. In general, it is possible to achieve the Cramér-Rao bound by

judiciously choosing the ideal measurement scheme [253]. If the ideal measurement is
physically realizable, such as photon-number difference or single-mode parity, Eq. 5.18
demonstrates that the maximum sensitivity of ∆φd can achieve a Heisenberg-limited
scaling of 〈N〉−1.

We now consider the most general state with arbitrary Z:

|ψ〉 =c0 |n− Z〉a |n〉b + c1 |n− Z + 1〉a |n− 1〉b
+ . . . + cZ |n〉a |n− Z〉b

=
Z

∑
k=0

ck |n− Z + k〉a |n− k〉b , (5.19)

where some initial |n〉a |n〉b has been subjected to a coherent Z photon subtraction,
where the Z photons could have been removed from either mode in any given combi-
nation. Derived in Appx. C.4, the Fisher information when all ck are the same and the
mean photon number of the state is much larger than the number of photons subtracted
is determined to be

F
(i)
=

N2

Z
, (5.20)

where (i) represents the use of the condition that N = 2n − Z � Z. This leads to a
bound on the phase sensitivity to be

(∆φd)
2 ≥ Z

N2 , (5.21)

which shows the potential to achieve scaling that is proportional to HL. Although the
bound given by the Fisher information is general, true infererometric performance is
dependent upon the measurement scheme. We will now demonstrate that the class of
states given by Eq. 5.19 follows the N−1 scaling in a realistic MZI implementation when
subtracting the resultant photo-detection currents, and will also yield a measurable
interference fringe scaling with input photon number. From there, we will provide
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a feasible experimental scheme based on correlated twin-beams and a single multi-
photon subtraction event.

5.3 MZI Implementation Sensitivity

The above discussion demonstrated that the generalized photon-subtracted states are
potentially viable for Heisenberg-limited interferometry as verified by the quantum
Fisher information, but now it is important to ensure that the same 〈N〉−1 scaling can
be reached with a realistic implementation, such as subtracting photocurrents, and that
there is a measurable fringe also scaling with 〈N〉 to ensure a sufficient signal above any
electronics noise floor. The standard MZI is shown for reference in Fig. 5.1, where ∆φ

is the phase difference between the arms of the interferometer and the end detectors
measured the respective mean photocurrents, Na and Nb. The input state, |ψ〉ab, is
transformed using the Schrödinger Picture by the interferometer to

|ψ′〉ab = U†
BSP∆φUBS |ψ〉ab , (5.22)

where P∆φ applies the relative phase shift ∆φ. This is equivalent, in the Schwinger
representation, to applying the rotations

|ψ′〉ab = e−i π
2 Jx eiφJz ei π

2 Jx |ψ〉ab . (5.23)

However, in order to determine if there is a measurable fringe, it is necessary to find
〈Na − Nb〉, which is much easier to find when working in the Heisenberg Picture, as it
simply corresponds to the transformed rotation operator, 〈J′z〉, where any operator, O,
is transformed by the MZI to become

O′ = e−i π
2 Jx e−iφJz ei π

2 JxOe−i π
2 Jx eiφJz ei π

2 Jx . (5.24)

Using the transformation, we find

J′z = cos φJz − sin φJx. (5.25)
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Making use of Eq. 5.9-5.11, we can rewrite the state of interest from Eq. 5.19 in the
Schwinger representation to be

|ψ〉 =
s

∑
m=−s

cm |jm〉 , (5.26)

where s = 1
2 Z, j = n− s, and from this point forward we consider all coefficients real

and symmetric such that
c∗m = cm = c−m, (5.27)

which is the case for the physical state as derived in Appx. C.1. Supposing condition
(i) that the number of photons removed from the state by the subtraction process is
considerably smaller than the number of photons remaining, i.e. j� s, the measurable
fringe for the state in Eq. 5.26 is given by

j
s
| sin φ|

(i,ii)
≤ 2|〈J′z〉|

(i)
≤ 2j| sin φ|, (5.28)

with (ii) denoting the use of results from Appx. C.3 where we bound the closeness
of neighboring coefficients cm, cm+1 obtained from the experimental design. Eq. 5.28
shows that there is a direct measurable fringe scaling with j. Now, in order to determine
the phase sensitivity when using J′z as a phase estimator, it is necessary to calculate the
quantity

(∆φ)2 =

[
∆J′z

(
∂d

∂dφ
〈J′z〉

)−1
]2

. (5.29)

FIGURE 5.2: (a) Scheme using two click detectors to indistinguishably sub-
tract a single photon from two squeezed modes. (b) Simplified version us-
ing a single detector that includes the case of coherent single-photon sub-
traction, but also extends the method to include coherent Z-photon sub-

traction when a PNR detector is used.
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Derived in Appx. C.5, ∆φ takes on a minimum value about the angle φ = 0,
yielding an upper bound on the phase-sensitivity of

√
s

j

(i)
≤ ∆φmin

(i,ii)
≤ 2s2

j
. (5.30)

We note again that s is a small number based on the number of photons subtracted,
so is simply a constant factor that does not affect scaling. Together, Eqs. 5.28 and 5.30
show that the general Z-photon subtracted state has sensitivity proportional to the HL
and has a measurable fringe that scales with photon number, meaning that this class of
states is potentially useful for quantum-enhanced interferometry, provided a physical
realization can be found. Such a realization is provided in the next section, along with
a detailed analysis of the possible performance.

5.4 State Generation

The specific case of Z = 1 has been previously examined in Ref. [183], where the pro-
posed experimental design is shown here in Fig. 5.2(a). By sending each mode of a TMS
state to a highly unbalanced beamsplitter, a single photon is subtracted from one of one
of the modes. However, before the detection occurs, a third balanced beamsplitter is
cleverly placed to erase the identifying path information about from which mode the
photon came. By detecting exactly one photon on the combined two detection modes,
the scheme implements a superposition of performing the subtraction on each mode to
create a superposition of the type of states given in Eq. 5.16, which has the form of

∑
n

cn(|n〉a |n− 1〉b + |n− 1〉a |n〉b), (5.31)

where the coefficients cn depend on the strength of the initial TMS state.

Here, we demonstrate that this state, along with all classes of state given by
Eq. 5.19 can be generated using only a single detector as per the scheme shown in
Fig. 5.2(b). In this implementation, instead of mixing both modes with vacuum to per-
form the subtraction, an asymmetric scheme is used where only one mode mixes with
vacuum while the other is mixed with the siphoned-off portion of the first beam. By
tuning the beamsplitter coefficients, it is possible to make a variety of interesting en-
tangle states beyond the scope of Eq. 5.19, but we will show that utilizing beamsplitters
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with high transmissivity will preserve higher mean photon numbers of the outputs for
any given detected number of photons, Z.

The first step of Fig. 5.2(b) starts with a TMS input state given by

|φin〉 = |0, r〉ab |0〉c =
1

cosh r

∞

∑
n=0

(tanh r)n |n〉a |n〉b |0〉c , (5.32)

where r the squeezing parameter. The state is sent to the beamsplitters each with real
reflectivity and transmissivity coefficients such that t2

i + r2
i = 1. Next,the mode c is

sent to a PNR detector to measure Z photons and project the remaining modes into the
desired state. The output state for the general case is derived in Appx. C.1 and may
be useful for engineering interesting two-mode quantum states, but the most desirable
case for use in sensitive interferometric measurements occurs when both beamsplitters
are highly transmissive such that t � r. This leads to the approximate output state,
conditioned on a detection of Z photons, to be

|φout〉 ∝
∞

∑
n=0

(t2 tanh r)n
Z

∑
kmin

√(
n
k

)(
n

Z− k

)(
Z
k

)

× eikϕ |n + k− Z〉a |n− k〉b , (5.33)

where ϕ is the phase difference between the two input modes to the second beamsplit-
ter (t2, r2) and kmin = Max(0, Z− n). This state is simply a superposition of the general
class of states given in Eq. 5.19, where for each |nn〉 term, the Z photons have been
coherently subtracted from both modes in every possible configuration. When ϕ is set
to zero, the coefficients exactly follow the properties specified above in Eq. 5.27. An
important point to note is that the value of n in each input |nn〉 term is determine by
the initial squeezing, but modified by the beamsplitter transmissivity to yield a new
decreased effective squeezing, tanh r → t2 tanh r. Regardless of the initial squeezing
value, this reduction in squeezing means that only values of t ≈ 1 will allow for useful
interferometric measurements as large n is desirable. Cases with t deviating from unity
may still work for interferometry applications if a large value of Z is measured; how-
ever, this is prohibited by challenges in performing such a large PNR measurement.
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5.5 Squeezed Input

Numerical simulations were performed using the Python package QuTip [129] to de-
termine the minimum resolvable fringe from an MZI according to Eq. 5.29, where the
input state was a TMS state that had undergone photon-subtraction as per Fig. 5.2b.

FIGURE 5.3: Minimum phase sensitivity for a photon-subtracted state
where a PNR detector has detected Z photons during state generation
where beamsplitter reflectivities are r1 = r2 = 0.1 (a) and r1 = r2 = 0.2
(b). States are normalized to their respective HL (lower dotted line) with
upper dotted lines showing the respective shot-noise levels. Probability to
successfully detect Z photons vs input state squeezing for the beamsplitter

coefficients r1 = r2 = 0.1 (c) and r1 = r2 = 0.2 (d) are also shown.

The results are shown in the top panel of Fig. 5.3, where Z varies from one to
three photons as the initial squeezing is increased, and both beamsplitters are taken
to be equivalent with reflectivity r1 = r2 ≡ r. All cases beat the shot-noise limit, but
it is clear that decreasing the reflectivity leads to a larger quantum-enhancement, and
larger values of Z increase the overall phase-sensitivity. This behavior may seem odd,
as looking at Eq. 5.30 shows that the overall scaling of the sensitivity is slightly worse
as Z increases; however, detecting a larger number of photons acts to increases the
mean photon-number of the resultant state before the interferometer, and higher-order
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error terms from the use of beamsplitters with non-vanishing reflectivity drop off more
quickly with increasing Z. For input states with lower mean-photon number, post-
selecting on a larger Z can actually beat the HL set by the states heralded at smaller Z.
However, this comes at the cost of diminishing success rates.

By comparing Fig. 5.3a and b, it is clear that for the relatively large value of r = 0.2
the weak beamsplitter approximation employed earlier is no long valid for smaller Z,
as the state with Z = 1 is only marginally better than the classical case. However,
decreasing the reflectivity to r = 0.1 suffices to give a quantum advantage that scales
when increasing the input energy for all detected values of Z. This highlights the im-
portance of choosing an optimal beamsplitter coefficient that pairs with the desired
post-selection value, Z, to yield increased sensitivity while balancing success rates for
a given input state.

5.6 Practical Considerations

5.6.1 PNR detector loss

In a realistic implementation, one might think that the state generation is highly sensi-
tive to PNR detector efficiency. However, provided any imperfections in the detector
are not too drastic, the present scheme is tolerant to this inefficiency. Instead of pro-
jecting mode c of the intermediate state following the beamsplitters onto an ideal mea-
surement of Z photons, consider a detector positive-operator valued measure (POVM)
given by

D(Z) =
∞

∑
l=Z

(
l
Z

)
ηZ(1− η)l−Z |l〉 〈l| , (5.34)

where the detector has efficiency η and the device registers a detection of Z photons.
The output density matrix will be given by

ρ ∝ Trc [Dc(Z) (|ψ〉 〈ψ|)abc] , (5.35)

where |ψ〉 is the state following both beamsplitters given by Eq. C.4. This leads to

ρ ∝
∞

∑
l=Z

(
l
Z

)
ηZ(1− η)l−Zρl, (5.36)
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where ρl is the density matrix of the pure state for an l-photon detection given in
Eq. C.5. However, taking r1 = r2 ≡ r and r � 1 yields

ρ ≈
∞

∑
l=Z

(
l
Z

)
ηZ(1− η)l−Z

(r
t

)2l
ρ′l (5.37)

∝
∞

∑
l=Z

(
l
Z

)(
r2(1− η)

t2

)l

ρ′l, (5.38)

where ρ′l = |ψ′l〉 〈ψ′l | is an unnormalized pure state with

|ψ′l〉 =
∞

∑
n=0

(t2 tanh r)n

cosh r

l

∑
kmin

√(
n
k

)(
n

l − k

)(
l
k

)

× eikϕ |n + k− l〉a |n− k〉b . (5.39)

Eq. 5.38 reveals that even for values of η deviating significantly from unity, we have
a final state that is approximately pure, i.e., ρ ≈ ρ′Z when r2(1 − η) � 1, since all
terms with l > Z in the sum can be neglected. This regime can always be reached by
decreasing r until the approximation holds. However, it is important to note that an
imperfect detector reduces the success probability of the scheme by a factor of ηZ.

5.6.2 Click/no-click detector

In a similar manner to the above discussion, the PNR detector can be safely replaced
with a click/no-click detector without ill-effect. Since we showed above that the effects
of losses during state generation can be considered negligible if the beamsplitter reflec-
tivity is tuned correctly, here we consider an ideal click detector with perfect efficiency.
In the case where the detector reads no signal, then the POVM is simply the vacuum as
before. In the case of a registered click, the POVM is given by

Dclk =
∞

∑
l=1
|l〉 〈l| . (5.40)

Now, the output density matrix is simply a mixture of all possible detected states
with Z ≥ 1,

ρ ∝
∞

∑
l=1

P(l)ρl, (5.41)
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where each of the pure state in the mixture is weighted by the probability of the number
of photons that actually went to the detector. Since the quantities of interest are 〈J′z〉 and
∆J′z, we can use the linearity of Eq. 5.41 along with the results of Appx. C.5 to see that

〈J′z〉 = − sin φ
∞

∑
l=1

Tr [Jxρ] (5.42)

∝
− sin φ

n
(5.43)

for each component state in the mixture, ρl. We also know that the maximum phase
sensitivity is achieved about the angle of φ = 0, so the only necessary term from ∆J′z is
∆Jz. Thus, we can find that

(∆Jz)
2 =

∞

∑
l=1

Tr[J2
z ρ] (5.44)

(i)
≤

∞

∑
l=1

l2

4

(r
t

)2(l−1)
, (5.45)

which leads to a phase sensitivity about φ = 0 of

∆φ ∝
1
n

. (5.46)

FIGURE 5.4: Minimum phase sensitivity (blue) for a photon-subtracted
state with beamsplitter reflectivities r1 = r2 = 0.1 and input state |n, n〉,
where the PNR detector has been replaced by an ideal click detector. Effi-
ciency η determines the combined transmission of the interferometer and
end detector efficiencies and is η = 1 (a), η = 0.95 (b), η = 0.9 (c). The shot-
noise and HL bound the shaded region, and the red dotted line shows the

Cramér-Rao bound for the large N limit with Z = 1 given by Eq. 5.18.

These results can be easily understood by realizing that each of the possible pure
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state components in the mixture that results from the click detection has phase sensi-
tivity scaling with the HL around the same reference phase of φ = 0. Additionally, the
high unbalancing of the beamsplitters makes the components in the mixture diminish
with increasing l.

The results from this section are experimentally significant in that not only does
the detector not need the ability to resolve photon-numbers, but the imperfect efficiency
negligibly degrades the purity of the resultant state, provided that there is precise con-
trol in ensuring the beamsplitter reflectivity is small.

5.6.3 General OPO output

The general output of an arbitrary twin-beam source, such as obtained from an above-
threshold OPO, can be described as a mixture of the form

ρ = ∑
n,n′

ρn,n′ |nn〉 〈n′n′| . (5.47)

Despite being a mixture, we show in Appx. C.6 that the indistinguishable multi-photon
subtraction protocol also works for this input and leads to a Heisenberg-limited output
with phase sensitivity scaling as ∆φ ∼ 〈N〉−1. The intuition behind this result follows
similar reasons for why a click/no-click detector also fails to ruin Heisenberg-limited
sensitivity; although the input is a mixture, each |ni, ni〉 component from the initial
twin-beam is formed into a superposition with phase sensitivity of ∼ n−1

i about the
reference angle of φ = 0. Since all of the components of the mixture are Heisenberg-
limited at the same reference phase, then so is the entirety of the mixture. As such,
when considering imperfections such as loss, simulations with the input state |n, n〉
can be reliably used to gauge to effectiveness of the process for an arbitrary twin-beam
source with mean photon number n.

Fig. 5.4 compares the phase sensitivity of a photon-subtracted state with an |n, n〉
input for the realistic scenario of a heralding PNR detector replaced by a click detector,
and when the interferometer has losses. As shown in the previous section, inefficien-
cies in the click detector channel can be accounted for by choosing a small enough
beamsplitter reflectivity, so the click detector here is considered ideal for simplicity.
Additionally, if we assume that losses on both interferometer arms are identical, then
the losses can be commuted and combined with detection losses to result in a single
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overall efficiency of η in each arm [254].

Each plot shows the phase sensitivity along with the large n limit given by the
Cramér-Rao bound for a single photon-subtraction given by Eq. 5.18 (red dotted line).
When the beamsplitter reflectivities are small enough for the approximation to apply,
as in Fig. 5.4a, it can be seen that the phase-sensitivity readily follows the Cramér-Rao
bound, which scales with the HL up to a constant factor. This constant factor comes
from the fact that since each mode in the twin beam has n input photons, the total
number of photons in the system is 2n leading to a HL of (2n)−1; however, the ideal
scaling with the single-photon subtracted state goes as n−1. The second and third pan-
els demonstrate that realistic interferometric losses do not drastically reduce the phase
sensitivity, such as occurs with states less resilient to loss, such as N00N states. As
shown in Fig. 5.4b, the slope of the phase sensitivity still scales better than 〈n〉−1/2 for
η = 0.95, and it is possible to achieve considerably larger overall η in practical ex-
periments with advanced low-loss optical coatings and highly efficient detectors [221].
Fig. 5.4c, with η = 0.9, shows how larger losses on the order of 〈N〉−1 bring the re-
sultant phase-sensitivity away from the HL and back to scaling with the shot-noise, in
agreement with the general result of Escher, de Matos Filho, and Davidovich [218].

5.7 Distinguishable Subtraction without Coherence

Thus far we have focused solely on the state we propose, the Z-photon coherently-
subtracted twin-beam state. However, it is illustrative to compare with the case where
Z photons have been distinguishably subtracted from a twin-beam state without pre-
serving coherence. One example of this is the case explored previously by Carranza
and Gerry [186], where a single photon had been subtracted from each mode of a TMS
state. As discussed in Sec.5.6, the coherent photon subtraction presented in this article
will yield a state with HL sensitivity for any twin-beam correlated photon input, but
for the comparison here, we consider the input to be a TMS state and the subtraction
process to be ideal with beamsplitter reflectivity r→ 0. In this case, the beamsplitter
operator can be approximated to first order be

UBS = eθ(a†b−ab†) ≈ 1 + θ(a†b− ab†), (5.48)
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where r = sin θ << 1. A distinguishable subtraction of z1 photons in mode a and z2

photons in mode b transforms the TMS input to

|φout〉 ∝

c〈z1| d〈z2|
(

1 + θ(a†c− ac†) + θ(b†d− bd†)
)
|0, r〉ab |00〉cd

∝
∞

∑
n=0

n!(tanh r)n
√
(n− z1)!(n− z2)!

|n− z1〉a |n− z2〉b . (5.49)

Although subtracting photons from the TMS state has the interesting effect of increas-
ing the average photon number of the remaining distribution as noted previously [186,
255], each term of the superposition has only one Fock-basis component in each mode.
Each term takes the form of cnm |n〉 |m〉, which does not yield an intensity difference
fringe scaling with the photon number unless n >> m, which is experimentally un-
feasible with photon-subtraction due to the low probability of subtracting large num-
bers of photons. Because of this, states of the form of Eq. 5.49 will require a different
measurement scheme to reach the HL scaling. Introduced by Bollinger et al. [212] for
trapped ions and later for optical interferometry by Gerry [256], measuring the parity
of one output mode, Πb = (−1)b†b, allows for reaching HL sensitivity with these types
of input states. With the parity detection scheme, the phase uncertainty becomes

(∆φΠ)
2 =

1− 〈Πb〉2
|∂〈Πb〉/∂φ|2

. (5.50)

Optical parity detection is currently an experimental challenge and requires large PNR
measurements unless the measured state is of Gaussian nature [257]. Even without this
obstacle, the nature of parity predisposes the measurement to be highly susceptible to
loss and external noise as the presence or absence of just one photon flips the value
of the measurement. This effect is shown in the top panel of Fig. 5.5, where the phase
sensitivity is normalized to the Heisenberg limit (black dot-dashed line) and plotted for
several states as the overall interferometric efficiency decreases from η = 1 to η = 0.90.
Solid curves show the phase sensitivity for the state in Eq. 5.49 with squeezing param-
eter r = 0.9 where no photons were subtracted (blue), a single photon was subtracted
from one of the two modes (red), and the case where one photon was subtracted from
each mode (green). The SNL for each curve is shown as a dashed line in the correspond-
ing color. Additionally, Fig. 5.5 shows the phase sensitivity of the coherently subtracted
TMS states with r = 0.9, Eq. 5.33, in fine dotted lines with colors corresponding to the
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FIGURE 5.5: Minimum phase uncertainties for TMS states of squeezing
parameter r = 0.9 with coherent and distinguishable photon subtraction
where Z total photons have been subtracted. Solid lines indicate distin-
guishable subtraction with Z = 1 (red triangles) indicating a photon was
subtracted from just one of the two modes and Z = 2 (green circles) show-
ing the case where one photon was subtracted from each mode. Dotted
lines with markers indicate coherent subtraction between the two modes.
Phase sensitivity was calculated using Eq. 5.50 (parity detection) for cases
with distinguishable subtraction and with Eq. 5.29 (intensity different de-
tection) for coherent subtraction. Top: Sensitivities normalized to HL
(black dot-dashed line) where the dashed unmarked lines show the cor-
responding SNL for each corresponding color. Bottom: Raw phase sensi-

tivity comparison.

total number of subtracted photons (red for Z = 1, green for Z = 2). For these states,
the phase sensitivity is evaluated with intensity difference detection as per Eq. 5.29.
Note that the state for Z = 0 is unchanged from the input TMS state to leading order
in r. When there is no loss (η = 1), it can be seen that all of the states considered have
phase sensitivity nearing the HL, and in fact, parity detection with a pure TMS state can
actually beat the HL as noted by Anisimov et al. [258]. However, even for small losses
well below 〈N〉−1, the states with parity based detection veer from the HL and quickly
become worse than the classical sensitivity bound, unlike the class of states proposed
in this article. This behavior is well in line with the results of Ref. [240]. The bottom
panel of Fig. 5.5 shows the phase sensitivity for each state on a true scale without nor-
malization and demonstrates three key points:
(i), increasing the number of subtracted photons acts to increase the overall mean pho-
ton number of the remaining distribution and thus increase phase sensitivity;
(ii), in the absence of loss, both types of states achieve HL sensitivity if the correct mea-
surement scheme is used;
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(iii), finally, for nonzero losses the phase sensitivity of schemes relying on parity detec-
tion is quickly degraded whereas the states utilizing an intensity difference measure-
ment retain much of their sensitivity.

5.8 Summary

This chapter proposed and studied a nontrivial modification of the twin-beam input for
Heisenberg-limited quantum interferometry, which features coherently indistinguish-
able multi-photon subtraction that leads to a superposition of photon-subtractions.
This modification brings about a strong fringe signal — absent from the unmodified
twin-beam input — while preserving Heisenberg-limited operation. The loss behavior
is consistent with what is now well known about Heisenberg-limited interferometry.
The experimental implementation should be feasible with state-of-the-art technology,
for example using a stable OPO above threshold [210, 232, 233] and photodetectors
with single-photon sensitivity. Detectors with PNR capability may improve the phase-
sensitivity of the resultant photon-subtracted state by detecting Z > 1, but this is not
a requirement, and reasonable experimental losses still result in phase-sensitivity beat-
ing the standard quantum limit. We believe it is possible to operate at no more than
106 photons per detection time bin, so as to be compatible with the lowest achievable
optical losses and splitting ratios.
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Chapter 6

Photon-Number-Resolving Detection

In order for a quantum optics-based implementation to achieve a quantum speed-up
in QC, reach the Heisenberg limit in quantum sensing, or provided error correction
against Gaussian noise (such as a lossy channel), it is necessary to have access to non-
Gaussian states and operations. Although directly engineering a higher-order Hamil-
tonian would allow for deterministic non-Gaussian state generation, the relative weak-
ness of available third-order and higher non-linearities make alternative options more
appealing. One option is to pursue single-photon sources, and there has been a great
deal of experimental progress in this area [137, 259, 260]. These sources are seen partly
as an ‘engineering problem’ and are likely to continue to improve. However, end-to-
end efficiencies of on-demand pure single photons have yet to eclipse 60%, and build-
ing up arbitrary non-Gaussianity from single photons remains difficult.

Alternative to directly producing non-Gaussian states, one of the most powerful
tools in an experimentalist’s toolbox is detection, which gives access to large projection-
based nonlinearities. Any detection result is, of course, probabilistic, but we saw in
each chapter thus far that projecting part of an entangled state can give rise to a vari-
ety of potentially interesting non-Gaussianity. Due to the repeated focus on the use of
photon-number-resolving (PNR) detection, this chapter will focus on a more detailed
description of PNR detectors and experimental implementations. Low PNR detection is
feasible with several schemes including time-multiplexed detection [169] and number-
resolving superconducting nanowire single-photon detectors detectors [143, 166, 167],
but the highly efficient transition-edge sensor (TES) remains the detector with the abil-
ity to resolve the most photons at the highest quantum efficiency [124, 165], although
with detection speed considerably slower than the 100 MHz repetition rates made pos-
sible by SNSPDs [261].
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In this chapter, I will first outline the basic theory of positive-operator-valued
measures for PNR detectors, which is a way to completely characterize the detector
response. From here, I will delve into the specifics of PNR detection with a TES system.
These detectors have been chosen for this work due to their high quantum efficiency,
extremely low dark count, and ability to resolve high photon numbers. I will discuss
experimental methods of optimizing detection signal and show how applying similar
methods as outlined in Ref. [165] can lead to even high PNR capability, with up to 30
photons resolvable per detection channel. These results usher in a new mesoscopic era
of quantum detection, where goals such as the 50 photon-number detection required
by the well-known cubic-phase generation protocol are nearly within reach [48].

6.1 Detector POVMs

Quantum detectors can be completely described by their positive-operator-valued mea-
sure (POVM), which is a way to write all possible measurement outcomes as eigenstates
of some Hermitian observable [262]. Each measurement outcome, k, is associated with
the Hermitian operator that is the POVM element Π̂k. These operators are complete,

∑k Π̂k = 1̂, and for a detector insensitive to phase (such as ones that measures photon-
number), can be written as

Π̂k =
∞

∑
n=0

P(k|n) |n〉 〈n| . (6.1)

Here, P(k|n) is the conditional probability that a detector will register k events for an
input of n photons. For an ideal detector, such as one that registers k counts if and only
if there was a true k photon measurement of the quantum state, we have that the ideal
POVM elements are

Π̂k =
∞

∑
n=0

δn,k |n〉 〈n| = |k〉 〈k| . (6.2)

Unfortunately, few detectors can be approximated as ideal, even though it it possi-
ble to measure large numbers of photons with high quantum efficiency using TES de-
vices [124, 165]. One main imperfection to consider is detector inefficiency. This in-
formation can be directly incorporated into the POVM by examining the conditional
probability, P(k|n). For a detector of efficiency η ≤ 1, this conditional probability is
given by

P(k|n) =
(

n
k

)
ηk(1− η)n−k. (6.3)
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The above formula can be simply understood as follows: suppose we send n photons
to a detector, but it only registers k < n events. In what way could this happen? Well,
each of the n photons has a probability of η to successfully reach the detector, and a
probability of (1 − η) to be lost. Thus, if we measured k, we know k photons made
it to the detector and n− k photons were lost, and hence the ηk(1− η)n−k factor. The
binomial coefficient comes because we have no way of knowing which of the n pho-
tons were the k that actually made it to the detector, so we must consider all possible
combinations. Thus, the POVM for a detector with loss is

Π̂(η)
k =

∞

∑
n=0

(
n
k

)
ηk(1− η)n−k |n〉 〈n| . (6.4)

Detector inefficiency can be equivalently modeled as subjecting the quantum state
to be measured to a beamsplitter and tracing out over the reflected mode before sending
what remains to an ideal detector, but this has the potential to be more computationally
complex, as one must calculate the evolution of the quantum state through the beam-
splitter including interference with an ancillary vacuum mode and a partial trace (or
use the Kraus operator formalism for loss). The scaling of this problem fairs worse as
more modes are considered. Depending on the experimental situation or calculation
being performed, having both the beamsplitter and POVM methods at one’s disposal
to model reality can be quite useful.

Now, consider the additional inclusion of external noise, such as dark counts.
These effects can be modeled by imagining that in addition to the signal we attempt to
measure, there is some other aspect of the environment also contributing to the mea-
sured signal. Suppose the noise is described by a photon-number distribution with
probabilities given as Penv(m). For each registered event of k photons, some number
may have come from the n photons in the true distribution and some may come from
the m photons in the environment. Because additional noise photons may be registered,
k is no longer necessarily smaller than n. The conditional probability with noise is then

Penv(k|n) = P(k|n)Penv(0) + P(k− 1|n)Penv(1) + ... + P(0|n)Penv(k)

=
k

∑
j=0

P(k− j|n)Penv(j), (6.5)

where P(k − j|n) is just the conditional probability from Eq. 6.3. In fact, the above
equation is simply a discrete convolution between the noiseless conditional probability
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distribution and the distribution of the environmental noise alone. Suppose the envi-
ronmental noise is given by a thermal distribution,

Penv(m) =

(
1

m̄ + 1

)(
m̄

m̄ + 1

)m
, (6.6)

where m̄ is the average photon number registered by the detector of the environment.
In this case, the conditional probability becomes

Penv(k|n) =
1

m̄ + 1

k

∑
j=0

(
m̄

m̄ + 1

)j ( n
k− j

)
ηk−j(1− η)n−k+j. (6.7)

The detector POVM element including loss and environmental noise is thus given
by

Π̂env
k =

∞

∑
n=0

k

∑
j=0

P(k− j|n)Penv(j) |n〉 〈n| . (6.8)

The above are all conditional probabilities based on an n photon input, but we can now
calculate the probability to register k photons for a given signal density matrix, ρs, by

P(k) = Tr
[
Π̂env

k ρs
]

. (6.9)

Alternative to the above, one can instead view environmental noise on the detec-
tor as measuring the photon number of two independent density matrices, and then
only recording the sum of the two measured outcomes. This is exactly how one would
treat sending separate optical modes to a bucket detector, where the detector cannot
distinguish between the pair of modes [117]. In this case, the probability to detect k
overall photons can be written as

P(k) =
k

∑
j=0

Tr
[
(Π̂(η)

j ⊗ Π̂(η)
k−j)ρ

]
, (6.10)

where ρ is the two-mode density matrix comprising the signal and the environment.
When the signal is in a product state with the environmental noise, ρ = ρs ⊗ ρenv,
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Eq. 6.10 becomes

P(k) =
k

∑
j=0

Tr
[
Π̂(η)

j ρs ⊗ Π̂(η)
k−jρenv

]

=
k

∑
j=0

Tr
[
Π̂(η)

j ρs

]
Tr
[
Π̂(η)

k−jρenv

]

=
k

∑
j=0

Ps(j)Penv(k− j), (6.11)

which is again just a convolution of the two independent probability distributions.

Fortunately, TES systems have dark counts of less than 1 Hz, so these effects can
be neglected for our PNR detectors. Thus the POVM for a detector with loss given by
Eq. 6.4 is sufficient when modeling the TES.

6.2 Transition-Edge Sensor

A TES is a PNR detector that makes use of the extremely temperature-dependent resis-
tance of a superconductor near the phase transition. Our detection system is comprised
of superconducting tungsten wafers that operate with a critical temperature near 100
mK. When light is incident on the chip, the thermal energy of an absorbed photon acts
to locally break the superconducting state and induce a spot of non-zero resistance.
Near the critical temperature, the resistivity of the superconductor is nearly linear with
temperature, as shown in Fig. 6.1(a). These detectors are optimized to be highly ab-
sorptive at the desired wavelength, and while our detectors achieve above 90% quan-
tum efficiency at the target wavelength of 1064 nm, TES systems can achieve higher
efficiencies of η = 0.95 [124] or even η = 0.98 [188].

Each TES chip is connected to an induction loop in parallel with a reference resis-
tance and fed a biasing current as shown in Fig. 6.1(b). Once a photon is absorbed by
the detector, the resistivity of the chip increases linearly and causes the current flowing
through the inductor to drop. This is then picked up and amplified by the extremely
sensitive Superconducting Quantum Interferometric Device (SQUID) magnetometers
to be read out as a classical signal. These SQUIDs themselves must be properly biased
to achieve maximum sensitivity. When testing the sensitivity with an external input,
the SQUID fringe should be clearly visible and reach maximum amplitude as shown
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FIGURE 6.1: Figure taken from Ref. [189]. (a) Resistivity of TES as tem-
perature increases near the superconducting phase transition. (b) Readout
circuit with SQUID magnetometer for detecting changes in resistance. (c)
SQUID fringe tuned such that all SQUID signals are in-phase and construc-

tively interfere.

in Fig. 6.1(c), which is achieved by tuning the SQUID bias setting on the cryostat. Tun-
ing the ‘flux bias’ (FB) allows one to set the baseline location along the SQUID fringe,
which should be set to the steepest part of the slope to achieve maximum responsivity.
A full biasing procedure can be found in the externally hosted PowerPoint tutorial1.
Extensive details on the TES detectors, their design, and several selected applications
can be found in Ref. [189]. The detectors used for this work were obtained from the Sae
Woo Nam group at the National Institute of Standards and Technology (NIST).

6.2.1 Basic TES response

Once the TES has been cooled to base temperature and has been properly biased, it is
ready to receive signal and detect photons. It should be emphasized that each TES is
a different detector, so the bias settings and even critical temperature vary slightly for
the devices. The parameters can all be tweaked to elicit various responses, but I have
found that the optimal base temperature to achieve maximum sensitivity for several
TES channels at once is around 95-100 mK. The TES channels will begin to respond to
external signal around 80-85 mK, but it becomes more difficult to resolve differences
between vacuum and single-photon events. Similarly, on the high end, some detec-
tors still work all the way up to 115-120 mK. However, at this temperature, very few
photons can be resolved before the detectors saturate. Thus the operating temperature

1https://github.com/me3nq/Thesis_docs

https://github.com/me3nq/Thesis_docs/blob/main/Biasing%20to%20Count%20Large%20Photon%20Numbers.pptx
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should remain just below or around 100 mK, but some experimentation is encouraged
when using a new or less frequently used detection channel.

An important point to note is that the TES cannot easily respond to continuous-
wave (CW) laser input. In addition to having a very slow cool-down time (1-20 µs,
depending on biasing), there is also no ‘reset time’ in that the TES can always pick up
an additional signal. When CW light is incident on the detector, there is always some
probability to detect an event at any given time, and if more than one event occurs
within a given time window, this can lead to pile-ups that complicate photon-number
discrimination [114, 263]. In spite of these difficulties, low-flux CW light is still com-
patible with the TES, especially in the case of heralding experiments where pile-ups
are quite rare [114, 264]. To avoid the pile-up problem, we implemented a controllable
pulsed scheme (see Ch. 8) which allows for tuning the time between pulses to allow the
TES to entirely cool to base temperature before the next laser pulse arrives.

When a pulsed signal is sent to the detector, the TES samples the probability dis-
tribution in the Fock basis; that is, it implements a phase insensitive projector given
by Eq. 6.4. An example of this signal is shown in the top panel of Fig. 6.2, where an
external 14-bit digitizer (AlazarTech ATS9440) is used to acquire the output signal. Af-
ter collecting many pulses, the height obtained by each peak can be used to generate a
histogram, as shown in the bottom panel of the figure. Once the histogram is created,
it is clear that there are distinct values of heights that the peaks attain and these height
values fit nicely into bins. Because we are working at a single wavelength, each dis-
crete bin corresponds to the number of quanta of energy absorbed by the TES during
a pulse window, which is exactly the number of photons in that pulse. In this case, for
a coherent state input signal, binning the peak heights and constructing a probability
distribution from the histogram yields the Poissonian distribution shown in the inset
of Fig. 6.2.

Although the PNR capability with peak heights alone is impressive, the top pho-
ton resolvability saturates around 8 or 9 photons, depending on the TES channel used.
However, it was recently demonstrated that by post-processing the data in a different
way to calculate peak areas, up to 16 photons could be resolved per detection chan-
nel [165]. We further develop this method in collaboration with Jefferson Lab and have
been able to demonstrate PNR capabilities beyond 30 photons. This requires special-
ized external electronics and hardware to properly sample the output signal.

The motivation for switching to area measurements is clearly seen by looking
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FIGURE 6.2: Raw TES signal obtained from a pulsed coherent state. The
signal heights can be converted to a histogram, which can then be binned
to determine photon number. The inset depicts the Poissonian probability

distribution for the input coherent state.
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at the persistence measurement in Fig. 6.3. This figure shows an overlay of many laser
pulses (red) as they occur after a trigger signal (blue). Although the distinction between
the height of events washes out around 8 photons, many more discrete signal ‘tracks’
are clearly visible. This image beautifully captures the quantized nature of light —
events clearly follow well-defined paths and no signal falls between event groupings!

6.3 TES Data Acquisition

In order to calculate the area of each peak and improve the PNR ability of each TES,
it is necessary to quickly sample the output signal to achieve high resolution. From
there, the area could be computed in post-processing, but this must be done for po-
tentially hundreds of thousands or millions of separate events, and is thus computa-
tionally intensive. To avoid this, Jefferson Lab provided us with a fast, Ethernet-based
flash analog-to-digital converter (EFADC) that would acquire data and calculate pulse
parameters on the fly.

6.3.1 Hardware and firmware

The EFADC device was custom-built to collect and process TES signals for up to 8 chan-
nels. The device is based on a field-programmable gate array (FPGA) which samples a
signal with 12-bit resolution at a rate of 250 MHz (once every 4 ns). The internal mem-
ory and processing speed allows the device to collect up to 32 µs worth of signal points,
perform rudimentary calculations on the data to determine key parameters, and trans-
fer the calculated parameters to a hard disk all before the next signal pulse arrives. In
this way, the EFADC can collect and save up to 107 pulses at a time. The limitation is in
fact not on the hardware, but on a file size limit within Windows and the C-code used
to operate the hardware.

The interface between the TES, EFADC, and lab computer is shown in Fig. 6.4.
For each pulse, the EFADC begins to look for data when a trigger signal between 2− 4
V is received. This trigger should be the same signal used to pulse the laser, and in
this implementation is the signal used to quickly switch the acousto-optic modulator
on and off. The EFADC has a 50 Ohm input impedance and digitizes an analog signal
in the range of 0-500 mV. Note that if the input signal exceeds 500 mV, the EFADC will
simply report the highest value while the input remains above 500 mV. This can be
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FIGURE 6.3: A coherent state laser is pulsed and sent to the TES. The pulse
is triggered by the signal in blue, and the TES response after external am-
plification is given in red, where the signal is allowed to build up over
time. The photon number differentiation based on height alone becomes
poor beyond about 8 photons, but higher number photon incidents clearly
follow well-defined signal traces. This allows for PNR of many more pho-
tons if peak area is used. Here, 0 to 17 photons are clearly resolvable (a 16

photon event did not occur).
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FIGURE 6.4: Diagram of data collection. An external trigger is synced to
pulse the laser and prepare the EFADC to look for TES output pulse data.
Each pulse is temporarily stored while calculations are performed on the

hardware, then key parameters are permanently stored.

quite useful when characterizing PNR values, as the tip of the peak has a small impact
on the area, so in actuality, tuning the input signal such that it may occasionally exceed
the saturation threshold is not a bad thing. This point will be covered in more detail in
the next section. Additionally, the EFADC has a user-programmable DAC offset value.
This must be set with some trial and error for each channel to ensure that the baseline
noise fluctuates around the zero point on the digitized data. Furthermore, the DAC
inverts the analog signal before digitization, thus the true input signal should consist
of peaks spiking negative in the range of 0 to -500 mV. The programmable DAC value
allows for compensating for small offset voltages on the input signal.

Once the EFADC receives a signal, the internal firmware is programmed to calcu-
late and output several important parameters, including the peak height, area, trigger
timestamp, timestamp of peak with respect to the trigger, and several other parame-
ters. The calculations performed are also dependent on several user input parameters.
Full operational details of the EFADC data acquisition system include format of output
data can be found in external documentation on the associated firmware2, but the main
operation can be summarized by examining Fig. 6.5

The user first programs trigger thresholds (TET) such that the device will only
integrate the signal if it first crosses the upper threshold, TETHI, and it will continue to
calculate the pulse parameters until either the signal drops below the lower threshold,
TETLO, or the signal continues beyond the maximum duration specified by the user.

2https://github.com/me3nq/Thesis_docs

https://github.com/me3nq/Thesis_docs/blob/main/LDRD_QIS_Firmware_ver0x3800_NEW.docx
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FIGURE 6.5: A basic depiction of the response of the EFADC firmware. For
an incoming trigger signal (red), the firmware decides whether to acquire
the signal (blue) based on user-defined controls. Further details can be

found in the main text.

After the device receives a trigger, if the signal rises above TETHI for a user-specified
number of ADC samples (NSAT), and if this occurs within a certain number of samples
from the trigger define by the lookup time (LUT), the device will behave as follows:

• A Y user-programmable number of samples (PedNumOfAdcSamp) starting at
the Trigger time will be averaged to be reported as a Pedestal for this trigger. Y
is restricted to be 1,2,4, or 8. If any of these ADC samples is above TETHI, the
Pedestal quality bit will set to TRUE. If an ADC sample within PedNumOfAd-
cSamp is greater than the user-programmable value (MAXPED), MaxPedDetect
bit is set to TRUE.

• If a pulse started within PedNumOfAdcSamp, PulseInPed is set to TRUE

• The samples (including the Pedestal samples) in that channel will be summed
until a sample drops below TETLO (the final sample below TETLO). In other
words, the samples within the integration window (IW) will be summed. If an
ADC sample is either above or below the limits set by the input signal, then either
an Overflow (Ov) or underflow (Uv) bit will be set to TRUE and recorded in the
output file. The sum is terminated either when the EFADC receives a new trigger
or if the value for Twin is reached. Twin is a user-programmable quantity that
determines how long, in ADC samples, the sum should continue as measured
from the start of the trigger.
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• Twin must be less than the minimum time between pulses. If Twin is greater than
the time between pulses, the second pulse will not be recognized, i.e., if more
than one pulse occurs within Twin, only the parameters of the first pulse will be
processed.

• The time that the 1st sample is above TETHI (Tr) and the time that the 1st sample
falls below TETLO (Tf) will be reported. This time is relative to the rising edge of
the trigger signal.

• The peak ADC sample (Vp) and the time (Tp) will be reported.

• If after a Trigger signal, no NSAT number of samples is larger than TETHI within
the specified LUT, only the time of the trigger is stored in the output file.

• The difference between TETHI and TETLO is essentially hysteresis. As such the
user should not set TETHI and TETLO to the same value. The difference should
be set to be equal to or greater than the baseline noise of the signals.

Of the three triggers shown in Fig. 6.5, only T#1 has data to report. T#2 does not
have data to report because samples cross TETHI after LUT time. Similarly, T#3 does
not have data to report because no or not enough sample(s) cross TETHI. It should be
noted that all quantities, whether it be a measure of voltage or time, are stored in terms
of ADC samples. For example, if one wishes to specify a time of 800 ns for LUT, the
user would set LUT = 200 since the device performs one sample every 4 ns.

6.3.2 External amplification

The magnitude of the analog output signal from the TES is dependent on several factors
including bias and temperature in addition to the number of photons actually absorbed.
Even for large PNR signals, this voltage remains on the order of 0-25 mV. Because the
EFADC digitizes a 0-500 mV range with 12-bit accuracy, the best peak differentiation
will occur if the input signal is designed to occupy the majority of the available voltage
input range. In order to do this, I designed an amplifier circuit based on the ultra-low-
noise OPA818 op-amp.

In order to design the circuit to properly amplify the photon peaks and reduce
noise, it is useful to first examine the frequency-domain spectrum of the signal. This
is shown in Fig. 6.6. From this plot, we see that the signal drops off quickly beyond
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FIGURE 6.6: FFT data of TES signal.

1.4 MHz, but there is a substantial contribution at low frequency, even down to 1 kHz.
This contribution can be attributed to the slow cooling tail that trails after each event.
This portion of the signal will be important to the area calculation so should not be
excluded. However, there is a DC offset that one would like to suppress, so some high-
pass filtering would also be helpful.

To test possible filtering frequencies, low and high-pass filtering was applied to
the data in post-processing at several test frequencies as shown in Fig. 6.7. Both panels
of this figure show the original data (blue) compared to the data filtered by the given
frequency (red). It can be seen that the test high-pass filter at 40 kHz in Fig. 6.7(a) per-
forms poorly as several features are qualitatively quite different; this shows that the
low-frequency peaks in the power spectrum are components of the signal, and impor-
tant to be kept.

The high-pass filter in Fig. 6.7(b), however, seems to perform quite well. The fil-
tered data gives similar quality peaks but smooths the fast noise. This indicates that the
1.4 MHz peak on the power spectrum may be noise unrelated to the signal. However, it
was eventually decided that this 1.4 MHz component may also relate to the initial peak
height, as the rise time can be quite fast depending on the bias, and 1 MHz Fourier
components are expected for a signal with a rise time of 1 µs.

The final circuit design is shown in Fig. 6.8, where the top panel shows the sim-
plified circuit diagram and the picture shows the modified demo board for the op-amp
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FIGURE 6.7: TES signal (blue) compared to a filtered signal (red) for a high-
pass filter applied at 40 kHz (a) and a low-pass filter applied at 800 kHz
(b). The top panel of each shows the comparison of the signal in time while

the bottom compares the power spectrum in the frequency domain.
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FIGURE 6.8: Circuit used to amplify the TES output signal into the 0-500
mV range. The circuit is an active high-pass filter with corner of 145 Hz,
gain of 20, and low-pass filter at 3.2 MHz. The modified OPA818 demo

board is also shown.
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FIGURE 6.9: Frequency response of the OPA818 amplifier circuit.

use. First, an active high-pass filter with a cutoff frequency of 145 Hz is used to remove
the DC component of the signal and provide a gain of 20. At the end of the circuit,
a low-pass filter with cutoff frequency of 3.2 MHz is used to clean any residual noise
from the op-amp or other high-frequency noise from the TES signal.

The demo board can be turned into the amplifier described by replacing R2 with
a 10 kΩ resistor, removing R3 entirely, replacing R4 with a 500 Ω resistor, adding a 1 nF
capacitor at R7 (not shown in picture), and replacing R9 with a 2.2 µF capacitor. After
these modifications, the frequency response was measured as shown in Fig. 6.9

6.4 TES Efficiency Calibration

Transition-edge sensors have managed to reach up to 98% quantum efficiency [188], but
it is important to characterize the precise response of our detection system. Although
our detectors were optimized for our system wavelength at 1064 nm, the quantum
efficiency (QE) is still imperfect, although it remains at or above 90% for the detectors
measured.

Before our system was optimized to count up to 30 photons, each TES channel
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could handle no more than several photons at a time before saturating. At our wave-
length (1064 nm), each photon has energy

h̄ω =
2πh̄c

λ
= 1.868× 10−19 J. (6.12)

If each pulse is 100 ns wide and I wish to send on average 1 photon per pulse to the
TES, then the power in a pulse is one the order of 2 pW. This power is considerably
smaller than what can be resolved by commercial power meters, and in the absence of
highly accurate fiber attenuators as used by NIST [124], a more complicated calibration
scheme is necessary. One could, of course, attempt to accurately calibrate several free-
space attenuators and use these in succession, but this method will lead to large error
in calculated efficiency, as each attenuated placed will ever-so-slightly alter the beam
path, and thus change the alignment on the fiber coupled to the TES. Another option
would be to use several accurately calibrated beamsplitters, but each beamsplitter can
only reduce beam power by about three orders of magnitude. In order to bring the
power down from the several hundred µW necessary to achieve an accurate power
reading on a commercial sensor to the TES level, at least three or four beamsplitters
with associated waveplates would be required, which becomes cumbersome.

Instead, an alternate scheme was used as depicted in Fig. 6.10. First, I constructed
a high-amplification photodetection circuit which consisted of a photodiode connected
to two back-to-back inverting amplifiers. Although these op-amps were used to am-
plify a DC signal, utilizing two amplifiers in series with slightly smaller gains as op-
posed to a single, high-gain amplifier allows for a larger amplification bandwidth. The
overall gain for the circuit was on the order of 106, which gave it a low-power sensitiv-
ity threshold at approximately 200 pW.

The scheme in Fig. 6.10(a) was used to accurately calibrate the the home-built
detector, depicted as detector ‘B’, with respect to a Scientech pyroelectric calorimeter
as detector ‘A’. In this scheme, the closest beamsplitter to the detector is set to a static
5 : 95 splitting ratio, and a fixed neutral density (ND) filter of optical density (OD) 1.3 is
placed in front of the detector under test. Next, to avoid any movement of detectors or
other optics that may slightly cause beam path deviation and additional error, a single
half-wave plate (HWP) is rotated further back in the beam path before a second beam-
splitter to change the power of the whole system. Power measurements at detector ‘A’
and voltage output levels at detector ‘B’ are measured for a variety of input powers.
It is expected that far from either the minimum or maximum detectable value of the
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FIGURE 6.10: Protocol to measure TES efficiency. (a) Set-up used to to cal-
ibrate the home-built low-light detector, where A is the commercial power
meter and B is the detector to be calibrated. (b) The newly calibrated de-
tector B is now used in place of the commercial power meter, and the TES
takes the place of the detector to be calibrated. The power of light can be
lowered by several orders of magnitude to a level the TES can handle. (c)
Measured efficiency of several TES channels. (d) Circuit for the home-built

low-light photodiode.

photodiode circuit, the response of detector ‘B’ will be linear with increasing power.
For a voltage Vm, measured by the photodiode circuit, the power can be written as

PB = γ
(
Vm −Vo f f set

)
, (6.13)

where Vo f f set is the offset due to dark noise or amplified residual current. By taking
several power measurements and fitting the data to a line, values for γ and Vo f f set

can be determined. In this instance, for Vm measured in Volts, γ = 63 ± 1 µA and
Vo f f set = 0.5± 0.2 mV. It is important to note, however, that these values will be useless
if used again. Both the offset and γ are highly sensitive to environmental conditions and
exact lens placement to focus the light on the photodiode. These values are listed here
only for order-of-magnitude reference and should not be used for future calibrations.

Once the home-built detector was calibrated, the set-up in Fig. 6.10(b) was used
to measure the TES efficiency. This set-up is nearly identical to the first using the newly
built detector as a reference, but with the difference that the beam was alternated be-
tween being pulsed and held CW. Additionally, the ND filter was recalibrated with the
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fiber coupling efficiency included. Thus the ND and fiber were considered as a sin-
gle system that together just acted to attenuate the beam. During the CW phase, the
home-built detector could register a large enough power (∼ nW) within the regime it
was calibrated, and then the TES would acquire signal during the pulse phase, which
consisted of 100 ns pulsed separated by 30 µs. Although the power per pulse should
be 1

300 of the CW power, the response of the AOM/pulse generator may mean that the
pulse width is not precisely 100 ns (see Ch. 8 for details). To check, one can simply
measure the average integrated power of a pulse train with a commercial detector at
higher power to determine what fraction of the CW power is in each pulse.

Now, to determine the detector efficiency, the mean photon number over the
course of 105 pulses was collected over a small range of powers, with mean photon
number varying from 0− 4, but ensuring that the detection probability of photon num-
ber above 8 was low. This mean photon number can be related back to the average
power per pulse, and thus compared with the power measured by the calibrated home-
built detector. Once this is done, the set-up can be used for several detectors sequen-
tially, and the QE can be extracted as shown in Fig. 6.10(d). Only five detectors were
measured, as detectors 1, 4, and 8 were offline at the time of calibration.

The main source of error is the 3% absolute calibration error on the commercial
detector used to begin the process. The remainder arises from small propagating er-
rors in the fit of γ and Vo f f set for the photodiode circuit and ND filter calibration. To-
gether, this amounts to about 5% error on the TES QE. However, each detector mea-
sured achieved a QE above 90% to within measurement error.

6.5 Counting 30 Photons

Once the TES signal is properly amplified, filtered, and digitized by the EFADC, the
results still need a series of post-processing algorithms before they are ready to be
turned into photon number distributions. An extended explanation of these algorithms
is given in Appx. F, but I will motivate some of the key components here.

First, it is insufficient simply to use the raw heights or areas as acquired by the
EFADC. This is due to the fact that the reference point for all signals is the zero-point on
the DAC instead of the signal baseline. If the actual signal has a small offset such that
the signal zero is above the DAC zero, then each measured area will have an additional,
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FIGURE 6.11: Using raw heights and areas to generate histograms may
produce errors if DAC settings are imperfect. Calculating the adjusted
heights and areas by subtracting off the baseline in post-processing im-

proves the photon-number discrimination.

unwanted rectangular area portion added to it. Because the baseline occasionally fluc-
tuates at low frequencies (the He compressor imparts 60 Hz environmental noise), this
additional area can negatively impact the peak separation in the histogram.

To fix this problem, the pedestal value (baseline at the trigger) can be used to set
a new baseline, and the area of the rectangle formed from Tr to Tf on the time axis and
zero to TETHI on the voltage axis can be subtracted off. The new area is referred to
as the ‘relative area’, as it is the measured area relative to the signal baseline instead
of the DAC baseline. A similar process can be used on the signal heights, but this has
a smaller effect. The results of applying this correction can be seen in Fig. 6.11, where
the peak heights give clear PNR distinction. The areas for the exact same data set in
Fig. 6.11(c), however, show very poor signal distinction. Applying the relative area
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corrections offers some improvement as seen in Fig. 6.11(d). It should be noted that
even with the correction, the peak distinction with areas for this data set is not optimal.
This likely means that the TETHI or TETLO setting was chosen sub-optimally, such that
some portions of the correct area were prematurely cut off.

As yet another reason to use relative areas as a metric instead of raw areas, I have
found that the signal offset from zero is also dependent on the average intensity of the
state being measured by the TES. This may at first seem highly problematic, as the de-
tector response should be independent of the input state. However, on further thought,
this is not too surprising that the detector behaves this way. Because there is already
some DC offset, I included a high-pass filter to remove low frequencies below ∼150
Hz. Recall, however, that the TES signal saturates beyond about 8 photons, meaning
the signal stays at maximum, and the remainder of the PNR capability comes from the
area, which has its origins in how long the signal takes to drop back down. If the input
signal is large enough such that photon numbers larger than 8 occur frequently, then
the TES will spend a majority of the time saturated, and thus the maximum signal starts
to have a DC-like quality in the spectral decomposition of the signal and will be sup-
pressed by the filter. One way to correct this problem is to increase the time between
pulses. This was the method used for this work whenever high energy inputs were
used; even though the cool-down time remained below 30 µs, a temporal pulse spacing
of 80 µs was used. Even so, there remains a small effect of slight signal offsets that vary
with average input power which is avoidable using the relative area calculations.

Fig. 6.11 also illustrates another important quality of the histogramming process:
peak height can be a better differentiator of photon-number binning at low photon
counts than area. This is not always the case, but heights are more robust to imper-
fections in DAC settings as TETLO does not come into play, and offset values are less
important. Thus, one can use the peak heights at low counts as a way to verify that
the area measurements are correctly calibrated. This way, when larger photon number
measurements are made that cannot rely on height alone, we can rest assured that the
user settings optimize the peak differentiation given by areas.

Once all settings are verified and the relative areas are calculated, one can produce
a histogram of the areas as shown in Fig. 6.12(a). This figure plots the log-scale his-
togrammed areas for 107 pulsed events where the coherent state amplitude was tuned
to be as large as possible without saturating in order to test the limits of the TES. This
histogram can now be sectioned based on the grouping of events, and each section can
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FIGURE 6.12: (a) Histogram of integrated peak areas for 107 measured
events. The distribution is fit to a sum of Gaussian peaks, and peak in-
tersections are used to determine photon-number binning. (b) Individual
normalized Gaussian fits. The overlap of neighboring Gaussians lead to

miscounting errors.

be assigned a photon number.

The spread in areas in each bin is caused by Gaussian noise and thermal fluctua-
tions, so each of these can be fitted to a Gaussian. Thus, the whole histogram is fitted
to a sum of Gaussian curves, and the intersection point of neighboring Gaussians de-
fines the bins used to determine photon number [165]. It is important to ensure that the
histogram has enough smaller area bins initially so that the distribution approaches
a continuous curve that can be well-fitted to the Gaussian sum. When attempting to
characterize the TES for large PNR, fitting the entire histogram to many Gaussians all
at once can be difficult depending on the fitting algorithm used (least sum of squares,
for instance) due to the several orders-of-magnitude difference in counts for different
area occurrences. To avoid this, one can section the histogram and fit each individ-
ual piece to several Gaussian curves. This process is described and implemented in
Appx. F.

The process of fitting the histogram to a series of Gaussian peaks and finding the
intersections is the most accurate method of determining the photon number bins, but it
is computationally intensive for large data sets. Additionally, this characterization must
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be redone for each channel and for every data set as the area calibrations will vary with
TES temperature, bias settings, and EFADC settings. Even if all parameters are kept
unchanged, re-cooling the TES will invariably introduce minor changes that shift the
calibration. Because of the time-consuming nature of this method, a ‘manual’ method
can occasionally be useful, where a user simply zooms in on the region between two
peaks and chooses the minimum histogram value between the peaks. Surprisingly, this
method is nearly indistinguishable from a numeric fit as far as accuracy is concerned,
and is generally faster than waiting for the Gaussian fit to find a valid solution.

As a good rule of thumb, this TES calibration should always be performed with
a pulsed coherent state, so the resultant probability distribution can be checked with
what is expected. Once the calibration is completed and the measured distribution is
acquired, one can determine the mean photon number of the measured data, which
is equivalent to |α|2 for the input coherent state |α〉. One can then calculate the sum-
squared error (SSE) as

∑
n

(
Pmeas(n)−

e−|α|
2 |α|2n

n!

)2

, (6.14)

where Pmeas(n) is the measured probability. The SSE for this data set is on the order of
∼ 10−6 so the measured distribution agrees quite well with the Poissonian we would
expect based on the mean. The SEE can be reduced slightly more if we consider ampli-
tude fluctuations as well, where we imagine we have actually measured a mixture of
coherent states,

ρ =
1

2πσ

∫
dβe−

(β−α)2

2σ |β〉 〈β| , (6.15)

where |α|2 is the mean photon number of the mixture and σ is a small parameter de-
scribing the fluctuations. Over the course of 107 measurements, these fluctuations are
small but non-zero, and we find that σ ≈ 0.04 for the data set shown in Fig. 6.12. This
is also considered further in Appx. F.

6.5.1 Bin overlap error

Due to the fact that there is a distribution of peak areas for each photon number bin,
there is some error in the discrimination of photon counting. This manifests in the
fact that each Gaussian overlaps with its neighbor, so after calibrating the detector, any
given photon that is assigned a bin, n, has some probability of actually being either an
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FIGURE 6.13: Probability that an event assigned to be an n photon peak is
actually either an n− 1 or n + 1 peak for the calibration data in Fig. 6.12

n− 1 or n + 1 photon event. Because the Gaussians are already fairly well separated,
errors beyond nearest-neighbor overlap are negligible.

Errors are shown in the Table depicted in Fig. 6.13, where the error shown is the
probability that an event was incorrectly assigned to an n photon event. Because the
calibration itself is different for various external parameters, these binning errors are
again only valid for the specific data set in Fig. 6.12 and should merely act as a guide.
These values are calculated in detail with the documented code in Appx. G.

The versatility of the bias controls actually allows for the user to optimize certain
detection regimes. For instance, if the FB and TES biases are set such that the cooling
time is slow and the events peaks are as large and wide as possible, then the discrim-
ination at higher photon number is better, and one can count all the way out to 30
photons. However, this also means that lower and intermediate regimes are subject to
underdamped oscillations and may have slightly larger binning errors at low photon
counts. If one instead tweaks the TES bias to shorten the peak width, then not only will
the TES be ready to measure the subsequent pulse more quickly, but the distinction be-
tween lower photon-number events can be improved. However, this does come at the
cost of reducing the maximum number of resolvable photons.
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FIGURE 6.14: (a) By defining regions of uncertainty near the bin edges with
respect to each n-th Gaussian width, σn, and ignoring measured areas in
this region, the photon-resolving accuracy can be improved. (b) Example
error rate of incorrectly counting a true 25 photon event as the proportion
of data used is decreased. Using half of the data set reduces error by an

order of magnitude.

Bin error mitigation

These errors in bin calibration can be almost entirely eliminated if one also implements
post-selected detection to ignore events with areas that are ‘too close’ to the bin bound-
ary. Events with areas falling nearer to the center of each bin can be considered as
having a high chance to actually be within the bin they were found. Rather than choos-
ing the intersection points of the Gaussians to fix the bin edges, one could instead use
a specific distance from the bin center in terms of the Gaussian width, σn, for each
peak and ignore all events with areas landing outside of any defined bin. Fortunately,
because the areas of the histogram follow Gaussian distributions in each bin, system-
atically ignoring events will not alter the measured probability distribution provided
that each newly defined bin is the same size as all of the others in terms of fractions of
the associated σn.

An example of this method is shown in Fig. 6.14(a), where a region of uncertainty
is defined near the bin intersection and we zoom in on the 25 photon bin. In Fig. 6.14(b),
we suppose that we have a perfect 25 photon event and plot the probability to miscount
this 25 photon event as a function of the fraction of data used. We see that cutting out
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half of the measured data reduces the error rate by an order of magnitude to ∼ 1%.
Provided one can take enough statistics, the error rate can be drastically reduced on
even large photon-number counts.

6.6 Random Number Generation with the TES

One practical use of the high PNR capability of the TES is to generate truly random
numbers. Random numbers are an essential requirement in many applications includ-
ing simulation and cryptography [265]. Utilizing the inherent randomness in quantum
mechanics enables us to generate truly random numbers as opposed to algorithmically
generated pseudo-random numbers. We were able to experimentally verify a recent
proposal for quantum random-number generation (QRNG) based on measuring the
photon-number parity of coherent light [266]. The proposed method does not require
post-processing and is immune to phase noise. Furthermore, we can prove that this
method is resilient against external noise and we provide arguments for its robustness
against small amplitude fluctuations, detector inefficiency, and eavesdropping. We also
argue that it is tamper-proof provided we use a frequency filter and monitor the output
distribution periodically. With a photon-counting resolution of up to 30 photons, we
construct the distribution of a coherent state with an average photon number greater
than 14. This enables us to measure an expectation value of our parity operator close to
zero (10−4), eliminating bias. Detector inefficiency is no obstacle as coherent states are
eigenstates of the annihilation operator and therefore globally invariant under losses
(which transform a coherent state into a lower-amplitude coherent state). In addition
to the near-zero bias, the high-resolution ability allows us to double our generation
rates (bit rates) by using modulo-4 photon-number binning instead of the modulo-2,
parity binning, which also yields a uniform distribution. Finally, we prove that QRNG
with parity detection only requires a state with zero-valued parity expectation value.
The main idea is that the expectation value of the parity operator in a coherent state
exponentially approaches zero as the average photon number increases. This means
that we have an equal probability of getting an even or odd number of photons every
time we detect a pulse on our photon number resolving detector. Assigning a 0 to even
numbers and 1 to odd, we can then construct binary strings of random numbers.

We begin by looking at the expectation value of the parity operator. Intuitively,
the expectation value being near zero can be seen by remembering that the value of the
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Wigner function at the origin is the same as the expectation value of the parity [267]
(discussed more in the next chapter). Because the coherent state Wigner function is
Gaussian, the value of the Wigner function exponentially trails to zero away from the
center of the displacement in phase space. Thus for large displacements, the value of
the Wigner function at the origin is very near zero.

Mathematically, this is easily obtained by looking at the form of a coherent state:
|α〉 = e−

1
2 |α|2 ∑∞

n=0
αn√

n!
|n〉. The parity operator can be written as Π̂ = (−1)n̂ = eiπn̂,

where n̂ = â† â is the photon-number operator. Thus we can derive

〈α| Π̂ |α〉 = e−2n̄, (6.16)

where n̄ = 〈α| n̂ |α〉. Next, we consider the case where we do not have a pure coherent
state, but a statistical mixture of coherent states with the same amplitude and totally
random phase,

ρcoh =
1

2π

∫ 2π

0
dφ |reiφ〉 〈reiφ| , (6.17)

where r = |α| =
√

n̄. This yields

〈Π̂〉 = Tr[ρcohΠ̂] = e−2n̄, (6.18)

which shows that phase noise does not affect the parity expectation value.

Changes in the amplitude of the coherent state amount to changes in the mean
photon number n̄. For a change δ in the mean photon number, the parity expectation
value becomes e−2(n̄±δ) which is approximately e−2n̄ for small δ. As for detector ineffi-
ciency, we can always model an inefficient detector as a perfect one with a beamsplitter
before it of transmittivity η. Doing so, the detector always gets a coherent state from the
beamsplitter output, albeit of a different n̄. And as long as the final n̄ is large enough,
all the previous reasoning holds. We stay with the beamsplitter to explore another idea
— that of eavesdropping. Suppose an eavesdropper uses a beamsplitter to sample the
light used to generate random numbers. Due to the nature of coherent light, the two
beamsplitter outputs are in a product state, hence not correlated and no information
about the results at one output port can be used to determine the results at the other.

Consider now the addition of environmental noise, which can be understood as
follows: What is the expectation value of the parity operator on the whole system where
ρ = ρcoh ⊗ ρenv? Deriving the expectation value of the new parity operator, eiπ ∑ n̂i ,
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where subscript i denotes the different subsystems, we obtain

〈eiπ ∑ n̂i〉 = Tr[eiπn̂1ρcoh ⊗ eiπn̂2ρenv] = e−2n̄〈Π̂〉env, (6.19)

where 〈Π̂〉env is bounded between 1 and -1. For large enough n̄, the whole expecta-
tion value goes to zero regardless of the form of ρenv. Finally, we explore the general
requirements needed to satisfy our method of quantum random number generation.
The necessary condition imposed is that a state with 〈Π̂〉 = 0 impinges upon an ideal
PNR detector. Such a state will still be immune to mixing with the environment and
phase shifts since PNR detection is phase-insensitive, but it will no longer necessarily
be immune to eavesdropping, amplitude fluctuations, and imperfect detectors. These
attributes arise because the coherent state is an eigenstate of the annihilation operator,
and a coherent state exits a beamsplitter as yet another coherent state.

FIGURE 6.15: Measured photon number distribution of coherent laser out-
put from 1.07× 108 samples. The inset plot shows the measured parity ex-
ponentially decreases with increasing mean photon number, as predicted
by Eq. 6.16. Error due to finite sampling falls within the size of the data

markers.

We implemented QRNG by coupling a strongly attenuated pulsed coherent light
source at 1064 nm into a TES device cooled to 100 mK and analyzed the response on-
the-fly with an Ethernet-based flash analog-to-digital converter (EFADC). The EFADC
computes the signal pulse areas, which can be used to accurately resolve photon num-
ber in real time [165]. Our system achieved PNR capability up to 30 photons. By only
keeping the parity of the measured event, we can ensure a nearly bias-free coin flip
when sampling a coherent state with large enough mean photon number. We collected
108 samples using a coherent state with |α2| = 14.31 and experimentally measured the
expectation of parity to be zero within finite-sampling error. The results are presented
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in Fig. 6.15.
Furthermore, we demonstrated the robustness of our system to external noise and pos-
sible tampering. We note that the parity of the measured distribution still tends to zero
even when the coherent state is phase-randomized and thermal environmental noise is
introduced. Additionally binning the distribution by modulo 4 successfully doubled
the bit generation rate while remaining bias-free.
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Chapter 7

Tomography with PNR Detectors

Applications in quantum information often require a process where one can completely
characterize a quantum state in what is known as quantum state tomography [268].
This is useful not only when one would like to verify some types of quantum state
engineering experiments are successful, but also if one is sent a completely unknown
state. It is, of course, impossible to determine the state of a single unknown quantum
system as any measurement will disturb the state, but it is possible to perform quan-
tum state tomography on an ensemble of identically prepared states. Even still, this is
not a straightforward task in general. Suppose Alice prepares many copies of the pure
quantum state, |ψ〉, and sends them to Bob. When Bob measures each state, he projects
it into a specific eigenstate in the eigenbasis of the measurement operator. By perform-
ing this measurement many times, he can construct a histogram of the probabilities,
which according to the Born rule, allows the determination of |ψ(m)|2 where m is an
eigenstate of the measurement operator M̂. Clearly, this does not provide complete in-
formation about the full wavefunction, ψ(m), so more information is required. If Bob
now measures the same ensemble in the conjugate basis using the measurement oper-
ator M̂′ to construct |ψ̃(m′)|2, then he now has enough information to reconstruct the
quantum state due to the relationship of the wavefunction ψ to ψ̃ through the Fourier
transform. The determination of a quantum state in this way is an example of phase
retrieval [269].

Quantum state tomography is not restricted to pure states, as mixtures will al-
ways be the predominant form of any experimentally generated state. Thus one must
entirely reconstruct an unknown density operator, ρ, where measuring in a single basis
only provides access to the main diagonal. For an N mode (or particle) system where
each mode can be described by a d-dimensional Hilbert space, the density operator of
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the whole system can be written as a dN × dN matrix. Since Tr[ρ] = 1 and ρ is Hermi-
tian, the density matrix has d2N − 1 real parameters that must be found. The problem
of full state tomography is thus inefficient as it requires a number of measurement set-
tings that is exponential in the number of modes in general. Certain situations may
reduce the number of required measurements if one has a priori information about the
system, or if ρ is sparse [270].

Alternative to the density operator, the Wigner function [271, 272] can equiva-
lently be used as a full state descriptor:

W(q, p) =
1
π

∫ ∞

−∞
e2ipy〈q− y|ρ|q + y〉dy, (7.1)

where q and p are the eigenvalues of the respective amplitude and phase quadratures,
which are defined in terms of the bosonic creation and annihilation operators as dis-
cussed in Chapter 1. The experimental determination of the Wigner function was first
proposed and realized utilizing homodyne quadrature measurements, as process in
which a bright local oscillator is used as a phase reference and interfered with the state
to be measured [273]. Homodyne tomography is a mature technology that is commonly
used to tomograph CV quantum optical states; however, many difficulties still prevent
this technique from being the final word on tomographic methodology [274]. In addi-
tion to the necessity for computation-intensive reconstruction algorithms, maximum-
likelihood (MaxLik) and maximum-entropy (MaxEnt) methods may fail to converge
or give unphysical results, especially in the presence of noise during the measurement
process.

In this chapter, I will discuss optical methods of tomography alternative to ho-
modyne detection that involve PNR detection schemes. The majority of this chapter
is based on the recently published overlap tomography method [264], but I will also
include a variety of extensions that are not found elsewhere.

Before moving on to other methods of tomography, it is interesting to fundamen-
tally examine why homodyne measurement gives rise to difficulties in state reconstruc-
tion even though one has access to fast and reliable measurements in linear combi-
nations of two non-commuting operators (Q̂ and P̂). Suppose one has a single-mode
density operator that can be written out in the Fock basis with a Hilbert space trun-
cation of d (no photon-number components greater than d), and thus has d2 − 1 real
parameters. As a continuous variable measurement, performing an ideal homodyne
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detection would perfectly project ρ onto an eigenstate of Q̂ or P̂, which are both un-
physical infinite energy eigenstates. Although the density operator has a finite number
of elements in the Fock basis, the quadrature basis requires a continuous representation
of the density operator, robbing the experimenter of the ability to perform only d2 − 1
measurement settings. Thus for homodyne tomography to work properly, one must
measure using many settings, where each setting corresponds to a different angle of the
phase reference and the measurement projects upon the generalized quadrature

Â(θ) = Q̂ cos(θ) + P̂ sin(θ). (7.2)

Furthermore, many measurements must be made at each measurement setting to ac-
curately construct the probability distribution at that setting. Even in the absence of
experimental noise, a perfect reconstruction requires measurements over a continuum
of θ for measurement settings. This is where methods such as MaxLik and MaxEnt
make their debut — to compensate for lack of information at all continuous θ and aid
the reconstruction algorithm when information is lacking. In spite of the difficulties
mentioned here, homodyne tomography is useful in many applications.

7.1 Point-by-point Tomography

Rather than using a quadrature basis to perform measurements, one could make use
of the photon-number basis to measure quantum states. Fortunately, the value of the
Wigner function at the origin of phase space corresponds to the expectation value of
the parity operator [267]. The parity operator can be expressed as

Π̂ = (−1)n̂ = eiπn̂. (7.3)

From here, one can measure the photon number distribution of the unknown state
and directly obtain the value of the unknown Wigner function of state ρ at the origin
according to

Wρ(0, 0) =
1
π

∞

∑
n=0

(−1)nP(n). (7.4)

Wallentowitz-Vogel [275] and Banaszek-Wodkiewicz [276] (WVBW) proposed a
method by which this fact can be used to perform full state tomography. In this method,
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FIGURE 7.1: Point-by-point tomography method described in the main
text.

a simple phase-space translation, i.e., displacement, of the quantum state to be charac-
terized, followed by parity measurements, allows easy determination of the Wigner
function. An example of this is shown in Fig. 7.1, where the Wigner function of an
unknown state (in this case a single-photon) is first measured at the origin, and then
translated before another measurement is performed. This methodology was first ex-
perimentally implemented on the phononic field vibration of a single trapped ion [277]
and on microwave cavity fields [278, 279]. More recently, optical PNR detection such
as with TES devices has allowed the use of the full WVBW method on traveling opti-
cal fields with no prior knowledge of the measured quantum state [114, 263]. While
the WVBW method presents clear advantages in terms of the numerical demands on
reconstruction, it requires a phase space raster scan involving a large number of op-
tical displacements, and the required measurement-point density of the raster scan is
determined by the specific features of the unknown Wigner function to be resolved.
Because the method maps out the Wigner function instead of the density operator, one
can never determine the smooth function exactly, but only interpolate a continuous
function between a finitely-grained sample grid. This will often be sufficient, but there
are times where the interpolation will fail to give accurate results unless many mea-
surement points are obtained, as we will discuss later. Moreover, the best experimental
implementation of phase space displacements is intrinsically imperfect [127].
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7.2 Overlap Tomography

In Ref. [264], we presented a generalization of the WVBW approach which uses a
Wigner function overlap measurement to reconstruct the density operator, rather than
the Wigner function, using computationally efficient semidefinite programming. This
general method requires considerably less data acquisition and ensures physical results
which are robust against measurement noise. Since this method reconstructs the den-
sity operator directly, it can be done with an efficient number of measurements settings.

7.2.1 Theory of wigner function overlap

To understand overlap tomography, consider the situation depicted in Fig. 7.2(a): a

FIGURE 7.2: (a), Schematic of the experiment: the field to be measured, of
density operator ρ, interferes with a calibrated field in coherent state α at
a beamsplitter of field reflectance r ∈ R and transmittance t = (1− r2)1/2.
PNRD: photon-number-resolving detector. (b), Principle of generalized
overlap tomography exemplified with a two-photon Fock state. (c), Limit
case of (b), where a highly unbalanced beamsplitter merely implements a

displacement of ρ by −β.

field with unknown density operator ρ and Wigner function W1(q1, p1) interferes at
a beamsplitter with a reference coherent state |α〉 〈α| of Wigner function W2(q2, p2).
Measuring the Wigner function at the origin of phase space of just one output mode
directly yields the Wigner function overlap between ρ and a probing function. To see
this, we adopt the Heisenberg picture and determine the evolved output quadratures
under the beamsplitter interaction to be q′1 = tq1 − rq2 and p′1 = tp1 − rp2. Likewise,
q′2 = rq1 + tq2 and p′2 = rp1 + tp2.
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The two-mode input state is written in the Wigner function representation as

W1,2(x) = W1(q1, p1)W2(q2, p2). (7.5)

Next, by using the evolved quadratures, one can write the Wigner function of the beam-
splitter output as

W ′1,2(x
′) =W1(tq′1 + rq′2, tp′1 + rp′2)W2(−rq′1 + tq′2,−rp′1 + tp′2), (7.6)

where x and x′ are column vectors consisting of quadratures corresponding to the input
and output modes, respectively. The value of the Wigner function of output mode 1 at
the origin can be obtained by setting q′1 = p′1 = 0 and tracing out over mode 2 to yield

∫∫
W ′1,2(x

′)dq′2dp′2|q′1,p′1=0 =
∫∫

W1(rq′2, rp′2)W2(tq′2, tp′2)dq′2dp′2 (7.7)

=
1
r2

∫∫
W1(q, p)W2(

t
r q, t

r p)dqdp. (7.8)

Setting r = t = 1√
2

yields the Wigner function overlap between ρ and |αj〉〈αj|, i.e., the
overlap O of the unknown ρ with |α〉〈α|:

O = Tr[ρ|α〉〈α|] = πW ′1(0, 0; 1√
2
, 1√

2
) =

N

∑
n
(−1)nρ′nn, (7.9)

which can be obtained by a parity measurement on mode 1 (ρ′) after the beamsplit-
ter. Note that O is proportional to the Husimi Q function, Q(α), which we sample
sparsely [280].

In the case of an unbalanced beamsplitter where the input probe is still a coherent
state, αj =

1√
2
(qαj + ipαj), we now have

W2(
t
r q, t

r p) = W|αj〉〈αj|(
t
r q, t

r p) =
1
π

exp
[
−
( t

r q + qαj

)2 −
( t

r p + pαj)
)2
]

(7.10)

=
1
π

exp
{
− 1

σ2

[(
q + qβ j

)2
+
(

p + pβ j

)2
]}

, (7.11)

where σ = r
t and β j = σαj. The integral overlap from Eq. 7.8 is then

1
t2

∫∫
W1(q, p)Wσ(q + qβ j , p + pβ j)dqdp, (7.12)
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where Wσ(q + qβ j , p + pβ j) =
1

πσ2 exp
{
− 1

σ2

[(
q + qβ j

)2
+
(

p + pβ j

)2
]}

. When σ > 1,

Eq. (7.12) gives a scaled overlap between ρin and a thermal state displaced by β j. When
σ < 1, however, the overlap is between ρin and a mathematical object that approaches
a displaced delta function in the limit where σ→ 0 and |α| → ∞, which exactly probes
the Wigner function of ρin point-by-point as in the unbalanced homodyne technique of
Refs. [275] and [276]. One can find more detailed information on calculating the Wigner
function overlap between ρ and the σ-width Gaussian function in the supplementary
material of Ref. [264].

One might also wonder about the outcome of a similar measurement performed
on the other port of the beamsplitter. If we go back to Eq. (7.6) and now determine
the value of the Wigner function of output mode 2 at the origin while tracing out over
mode 1, we have

∫∫
W ′1,2(x

′)dq′1dp′1|q′2,p′2=0 =
∫∫

W1(tq′1, tp′1)W2(−rq′1,−rp′1)dq′1dp′1 (7.13)

=
1
t2

∫∫
W1(q, p)W2(− r

t q,− r
t p)dqdp. (7.14)

This time when we set r = t, the measured Wigner function overlap is between ρin

and | − αj〉〈−αj|, i.e., the very same coherent state probe with a phase factor of eiπ.
From this, we can conclude that measuring the Wigner function at the origin of both
beamsplitter outputs would yield the overlap between the signal and coherent-state
probes at opposite phases. When performing the tomographic reconstruction, it is pos-
sible to utilize both outputs to collect overlap measurements and only externally vary
the probe phases by half of the desired range; however, ensuring that both detection
channels following the beamsplitter are identical in losses, detector efficiency, etc., is
experimentally challenging, and this also imposes additional requirements on PNR de-
tection capabilities. Therefore, it is simpler to utilize a single output mode to perform
the tomographic reconstruction and correct for known losses as detailed below and in
the main text.

7.2.2 Tomographic reconstruction with semidefinite programming

We now use the formalism discussed above to perform the complete state tomography
of an arbitrary quantum state. For a given single-mode quantum state, one can write
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the density operator in the photon-number basis as

ρ =
∞

∑
n,n′=0

ρnn′ |n〉〈n′|. (7.15)

Complete characterization of ρ requires determining ρnn′for all n, m. To do that, we
choose a set of distinct coherent states, |αj〉. Using Eq. (7.8), we obtain the fidelity
between |αj〉 and ρ, formulated as

O j = Tr
[
|αj〉〈αj|ρ

]
= 〈αj|ρ|αj〉. (7.16)

Using Eq. (7.16) and the coherent state represented in the photon-number basis, |αj〉 =
∑∞

n=0 cjn|n〉, we get

O j =
∞

∑
m′=0

c∗jm′〈m′|
∞

∑
n,n′=0

ρnn′ |n〉〈n′|
∞

∑
n′=0

cjm|m〉. (7.17)

Further simplification leads to

O j =
∞

∑
n,m=0

cjmc∗jnρnm. (7.18)

Ideally, the sum over n, m goes to infinity but for practical purposes one needs to trun-
cate it at, say N, such that any terms n, m > N do not significantly contribute to the
sum. As a result, we have

O j =
N

∑
n,m=0

cjmc∗jnρnm, (7.19)

where cjmc∗jn = e−|αj|2 (α
∗
j )

n(αj)
m

√
n!m!

.

Furthermore, by using Np = (N + 1)2 coherent states, Eq. (7.19) can be written in
the matrix form as




O(0)

O(1)

...
ONp




=




c0
0c0∗

0 c0
0c0∗

1 . . . c0
Nc0∗

N

c1
0c1∗

0 c1
0c1∗

1 . . . c1
Nc1∗

N
...

... . . . ...

cNp
0 cNp∗

0 cNp
0 cNp∗

1 . . . cNp
N cNp∗

N







ρ0,0

ρ0,1
...

ρN,N




. (7.20)
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We can rewrite the above matrix equation in compact form as

O = CP, (7.21)

where O ∈ R(N+1)2
, P ∈ C(N+1)2

and C ∈ C(N+1)2×(N+1)2
. Next, we can invert

Eq. (7.21) to reconstruct P. This can be achieved by solving the following semidefinite
program:

Minimize
P

||O− CP||2

Subject to ρ ≥ 0 and Tr[ρ] = 1, (7.22)

where ||.||2 is the l2 norm defined as ||V||2 =
√

∑i |vi|2. Note that this kind of quadratic
convex techniques have been extensively discussed in the the context of quantum de-
tector tomography [281–283]. The optimization problem is convex and can be effi-
ciently solved for a guaranteed unique P, and hence for the unknown state, ρ, using
open source Python module CVXPY [284].

It is important to emphasize that the coefficient matrix in Eq. 7.20 is a square
matrix with a number of rows equal to the number of overlap coherent states, i.e., the
number of measurements settings used. Thus, in order to have enough measurement
settings to reconstruct the density matrix and solve the matrix inversion, we need one
measurement setting for each element in ρ, so N2 measurement settings. This is only
one more than the lower limit of N2 − 1, which is set by the number of independent
parameters in the density matrix. Thus, this method is considerably more efficient
in terms of required measurement settings than either homodyne tomography or the
WVBW method, which I will elaborate on in the next section.

Although the above method holds for general quantum states, we restrict our
simulations to real-valued density matrices for numerical ease. However, we do show
the reconstruction for complex-valued density matrices in Ref. [264]. All numerical
simulations were performed in QuTip [285] where the Hilbert space for each optical
mode was constructed in the Fock basis with a high enough dimensionality to ensure
state probability amplitudes decayed to less than 10−7 before truncation. Under these
parameters, the numerically efficient SDP algorithms converged on the order of 10−2

seconds on a 3GHz Intel i5 quad-core processor with 16Gb RAM.
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Our method is demonstrated in Fig. 7.3 for the example cases of the small am-
plitude cat state, |ψ〉 ∝ |α〉 + | − α〉 where α =

√
3, and a Gottesman-Kitaev-Preskill

(GKP) state of mean photon number 5. These states were reconstructed using 400 dif-
ferent probing coherent states of 20 amplitude increments from β = 0 to β =

√
6 and 20

phase increments from 0 to 2π, to achieve fidelities with the target states greater than
0.999 for the cat state, and a fidelity of 0.985 for the GKP state. Because the observer is
assumed to have no prior knowledge of the state to be characterized, it is important to
scan the entirety of phase space in question with different coherent states so as to have
sufficient overlap between all portions of the state under test. If some prior knowledge
of the state is obtained, then the probing coherent states can be restricted to a localized
region of phase space near the unknown quantum state.

FIGURE 7.3: Tomographic reconstruction using 400 coherent state probes
for (a) a cat state of amplitude

√
3, and (b) a GKP state with a mean photon

number of 5. The top row displays the density matrix for the ideal theo-
retical state, and the bottom shows the reconstructions. Insets display the

plotted Wigner function for each state.
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This method also exhibits some resilience to noise in that acquiring more mea-
surements adds some redundancy to the SDP optimization problem. This redundancy
can help average out some measurement-induced noise, such as fluctuations in the
phase or amplitude of the coherent state used to probe the unknown density matrix.
This is discussed in more detail in the supplementary material in Ref. [264] and in R.
Nehra’s thesis [286], so I with omit further discussion on this point. This point will also
be evident in the experimental success of the procedure, which I will show later in this
chapter.

7.2.3 Phase-Space resolution

In this section, I compare the number of measurement settings required to accurately
reconstruct a Wigner function using the WVBW method vs. the overlap tomography
method. Using WVBW, the ability to perform a parity measurement allows one to map
out the entire Wigner function in a point-by-point manner without the need for any
numerical reconstructions. However, the Wigner function can, and in general, will ac-
quire complicated structures with sub-Planck length features [287]. For a quantum state
localized to a region of phase-space with area A, this structure can appear on scales
with area a ≈ 1/A and require fine-grained sampling in order to resolve when per-
forming WVBW tomography. Additionally, if one has little knowledge of the quantum
state in question (excluding possible information about total energy or even the ex-
act photon-number distribution), the location of the quickly-varying Wigner function
structure may appear anywhere in phase space, meaning that the WVBW method will
need to sample a minimum of one point per phase-space area a over the entire region.
This leads to the requirement that the Wigner function be probed at≈ A2 points. How-
ever, using the overlap tomography method, we only need d2 distinct measurements
to completely reconstruct the unknown density matrix, where d is the dimension of the
Hilbert space in the Fock basis. Interestingly enough, the number of measurements be-
tween each method scales similarly, but simply measuring the Wigner function at one
point per phase-space area of a may not be sufficient if one is unlucky, as I will demon-
strate. But first, one might ask - given that I know where to truncate my state, how far
should I measure in phase-space? Or, if I want to measure the Wigner function out to
some boundary, at what d do I truncate my Hilbert space?
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In general, the Wigner function is a linear combination of each density matrix
element |n〉 〈n′|, where each component is given by [288]

Wnn′(q, p) =





(−1)n

π

√
2n′n!
2nn′! (q− ip)n′−ne−(q

2+p2)Ln′−n
n (2(q2 + p2)) n ≤ n′

(−1)n′

π

√
2nn′!
2n′n!

(q + ip)n−n′e−(q
2+p2)Ln−n′

n′ (2(q2 + p2)) n ≥ n′
, (7.23)

and Lα
n are the Laguerre polynomials. The furthest features in the Wigner function are

determined just beyond the last zero of the largest contributing n Laguerre polynomial,
where the function can attain non-trivial values before the exponential modulation ter-
minally brings the Wigner function to zero. Suppose I truncate my Hilbert space at
d = N + 1, such that the |N〉 〈N| is the last contributing term. This component’s contri-
bution to the Wigner function can be seen in phase-space at least up to (and slightly be-
yond) the last zero of L0

N. Although the exact location of the zeros xk of Laguerre poly-
nomials remains an open question, there exist bounds on their locations [289], leading
to the largest zero adhering to

x1 > 2N − 2 +
√
(N − 1)2 + 1. (7.24)

Using x1 as the argument for the Laguerre poylnomial in Eq. 7.23, it is easy to see that
the Wigner function must be mapped out to at least a phase-space radius of

qmax =

[
N − 1 +

1
2

√
(N − 1)2 + 1

]1/2

, (7.25)

leading to a minimum phase space area

A = π(N − 1) +
π

2

√
(N − 1)2 + 1. (7.26)

For large N, we have that A2 ≈ 9π2

4 N2. When comparing the number of required
measurements between d2 and A2, we see that both the overlap and WVBW tomogra-
phy methods scale as N2; however, the larger scaling factor on A2 should not be ignored
as this could pose additional experimental difficulties for large N, and the increase in
required measurements will only be exacerbated for multimode systems when the re-
quired measurement scaling will become d2M and A2M, respectively, for an M-mode
system.
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Cat-state example

To explore a specific example, consider the four-component cat state (a.k.a compass
state), given by

|ψ〉 = |α〉+ |−α〉+ |iα〉+ |−iα〉 (7.27)

with photon-number distribution

P(n) =

{
2|α|2n

n!(cosh |α|2+cos |α|2) n mod 4 = 0

0 otherwise
(7.28)

The Wigner function in Eq. 7.27 consists of Gaussians from each of the four classical
coherent-state |α〉 〈α| components located at corners of a square in phase-space, inter-
ference terms perpendicular to each edge of the square that resemble cat-state fringes,
and interference terms between the Guassians along the diagonals of the square re-
sulting in a checkerboard pattern. The checkerboard interference is governed by the
oscillatory term

cos(Pq) + cos Lp = 2 cos (1
2(Pq + Lp)) cos (1

2(Pq− Lp)), (7.29)

where L = P = 2
√

2|α| is the the phase-space separation between opposite gaussian
peaks. The periodic tiles formed each contain four smaller squares of area (see Ref. [287]
for details)

a =
π2

2|α|2 , (7.30)

where I have used α = 1√
2
(q + ip) and set h̄ = 1. If I wish to measure the Wigner

function out to where it decays to an arbitrarily chosen value of 10−2, then I will need
to measure to a phase-space radius of qmax =

√
2|α| + 2, which is the point at which

the four Gaussian terms have decayed sufficiently. This value comes from the fact that
each Gaussian is centered at distance of

√
2|α| with σ = 1, and the state is normalized

so that each of the four peaks has a maximum value of 1
4π . This leads to an area of

A = πq2
max requiring

MWVBW =
A
a
=

2
π
|α|2(
√

2|α|+ 2)2 ≈ 4
π
|α|4 (7.31)
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measurements with the WVBW method for large |α|. Using qmax in Eq. 7.25 to find N
results in the number of measurements required for overlap tomography to be

MO ≈
16
9
|α|4 (7.32)

Note that the use of Eq. 7.25 relies on Eq. 7.24, which could result in an over-estimation
for the required N due to the inequality.

FIGURE 7.4: (a) Wigner function of compass state in the ideal case using
overlap tomography. (b) Wigner function of the same state using WVBW
tomography with the same number of measurements (252) as in (a). To
achieve the same crisp resolution as depicted at left, the WVBW method
would require 1002 measurements. (c) and (d) zoom in on the central in-
terference fringes with (d) showing the actual measurement coordinates as

black points.

Looking at Eq. 7.31 and 7.32, the overlap method actually scales slightly worse
at first glance than the WVBW method as α becomes large. However, if one wishes to
catch the fast oscillations of the Wigner function using the WVBW method, measuring
one point in every area a may not be sufficient if one is unlucky. Consider the Wigner
function of a four-component cat state displaced by D(K

√
a

2 ), where K is an odd integer.
Now, if the WVBW measurement scheme covers a rectangular grid beginning at the
origin with point spacing of

√
a, the measurements will always unluckily find the zeros

of Eq. 7.29, leading to what appears to the observer to be a flat Wigner function around
the origin with no quantum interference. To avoid cases like this, it would be necessary
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to sample more points for each phase-space area a. Interestingly enough, this directly
relates to the Nyquist-Shannon sampling theorem [290, 291], whereby it is necessary
to have a sampling rate of at least twice the signal frequency in order to reconstruct it.
In this case, the frequency of oscillation in each direction, from Eq. 7.29, is f =

√
2

π |α|.
Sampling at twice this frequency in each direction yields the new required single-point
sample area

as =
π2

8|α|2 , (7.33)

leading to a new number of required measurements in the WVBW method to be

M′WVBW ≈
16
π
|α|4. (7.34)

Again, it is necessary to apply this fine-meshed sampling to the entirety of phase-
space if little is known about the state a priori. With this consideration, the number of
required measurements becomes approximately three times that of Eq. 7.32, and may
be substantially more if one wishes to measure all the maximum and minimum Wigner
function fringe values without applying any flavor of maximum-likelihood or other
reconstruction algorithms. The comparison between the WVBW and overlap methods
for the same number of measurements is displayed in Fig. 7.4, where the Wigner func-
tion at top left is the ideal compass state Wigner function reconstructed from (N + 1)2

overlap measurements, with N = 24 and |α| = 3.5. The Wigner function plotted at the
top right of the figure shows the results of the WVBW tomography method with the
same number of measurements, where the Wigner function is sampled at 25 equally
spaced amplitudes each at 25 phase values. The maximum amplitude to use was de-
termined from Eq. 7.25 using the Fock-basis truncation of N = 24. The lower half of
the figure shows the same plots as above but zoomed in to see the central interference
pattern. It is clear that although WVBW successfully catches the negativity and general
features of the distribution, it fails to display the finer features and at times misses local
extrema. The 3D plots in Fig. 7.5 show more clearly how even though main features are
caught with the same number of measurements using the WVBW technique, many of
the finer features lose definition.
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FIGURE 7.5: 3D representation of the central interference fringes in the
Wigner function. Top: Wigner function from the overlap tomography
method. Bottom: Wigner function from the WVBW method after sampling

d2 points.

7.3 Variations on Overlap Tomography

7.3.1 Click detection

The discussion of overlap tomography in Sec. 7.2 is based on the experimenter having
access to parity measurements so that the Wigner function at the origin can be mea-
sured. However, this is only necessary to get the overlap measurements between the
unknown Wigner function and the probing state. The real magic of the overlap method
arises from the relation of the overlap measurement to the density operator given by
Eq. 7.16. This overlap measurement can be achieved without parity measurements at
all. In fact, even PNR measurements are not necessary, as the overlap can be obtained
using a displacement and click detectors only as shown in Fig. 7.6.

This experimental implementation is exactly that of the WVBW method except
that the parity detection is replaced by a detector that can only determine the difference
between events where the measured number of photons was zero or nonzero. From
this type of measurement, one can determine the probability to measure zero photons,
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FIGURE 7.6: Experimental implementation of a displacement followed by
detection with a click detector that can only differentiate between zero pho-

tons and one or more photons.

which is written as
P(0) = Tr

[
|0〉 〈0| D̂†(β)ρD̂(β)

]
, (7.35)

where β = −rα for the experimental scheme shown in the figure.

By using the cyclic property of the trace and pushing the displacement operators
into the zero photon bra and ket, one can see that this measurement is exactly that
of the overlap measurement of ρ with a coherent state given by the opposite of the
displacement value:

P(0) = Tr [|β〉 〈β| ρ] = O(ρ, β). (7.36)

From here, one can now perform several displacements and use the same SDP method
with the overlap measurements to reconstruct the density matrix, and from there cal-
culate the Wigner function.

On the surface, this method seems quite useful in performing tomography on a
variety of states. In reality, this only works well for tomography of density matrices
with low mean-photon number. In order to accurately determine the overlap mea-
surement needed for reconstruction, one needs an accurate determination of the zero
photon detection probabilities. However, for higher energy states which must also be
displaced, the probability to detect zero photons for some measurement settings may
be quite low, and it will thus be necessary to perform many measurements before an
accurate overlap value is obtained.

7.3.2 Quadratic speed-up with full PNR

As yet another alternative take on overlap tomography, again consider using the same
set-up as the WVBW method, but simply keep the photon-number measurements as
they are without converting to parity (recall that current parity measurements are just
obtained from PNR measurement distributions). This allows the experimenter to make
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full use of the Fock-basis measurement without reducing the results to a binary even-
or-odd measurement in post-processing. Now, displacing the unknown quantum state
and obtaining photon-number probabilities allows for obtaining many different over-
lap measurements for a single measurement setting. In fact, the number of multiplexed
overlap measurements obtained for a single ‘measurement setting’ is given by the up-
per limit on PNR detection allowed by the detector. This will lead to a quadratic speed-
up in the number of measurements required to perform full state tomography.

The overlaps can be obtained by writing out the probabilities to detect a given
number of photons, k, similarly to the zero photon probability in the previous section.
Here,

P(k) = Tr
[
|k〉 〈k| D̂†(β)ρD̂(β)

]

= 〈k, β| ρ |k, β〉 = O
β
k , (7.37)

where |k, β〉 = D̂(β) |k〉. This expression is simply the fidelity between ρ and the dis-
placed k-photon Fock state. Thus for a single displacement value, performing PNR
detection and obtaining the photon-number probability distribution yields N separate
overlap measurements, where N is the maximum number of photons the detector can
resolve. We can now re-frame the SDP problem in terms of a new coefficient matrix.

We can write the overlaps as

O
β j
k =

N

∑
n,m=0

cj
kmcj∗

knρnm, (7.38)

where cj
kn = 〈m| D̂(β) |k〉 is the overlap coefficient which is given by [292]

〈m| D̂(β) |k〉 = e−|β|
2/2
(

k!
m!

)1/2

βm−kL(m−k)
k (|β|2), (7.39)

and Lj
k(x) are the associated Laguerre polynomials. By using several values of β j

for displacements, we can write the matrix for a series of equations with the form of
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Eq. 7.38 as 


O0
0

O0
1

...
O1

0
...

O
j
N




=




c0
00c0∗

00 c0
01c0∗

00 . . . c0
0Nc0∗

0N

c0
10c0∗

10 c0
11c0∗

10 . . . c0
1Nc0∗

1N
...

... . . . ...
c1

00c1∗
00 c1

01c1∗
00 . . . c1

0Nc1∗
0N

...
... . . . ...

cj
N0cj∗

N0 cj
N1cj∗

N0 . . . cj
NNcj∗

NN







ρ0,0

ρ0,1
...

ρN,N




, (7.40)

which has the familiar expression for the matrix equation we found earlier of O = CP.
Here, the dimensions will depend not only on the number of displacement values used
but also on the resolution capability of the PNR detector. As before P ∈ C(N+1)2

, but
now we have that O ∈ Rj(N+1) and C ∈ Cj(N+1)×(N+1)2

. In order to have enough
independent parameters to solve the matrix inversion problem, we now only require
that the number of measurement settings is j ≥ (N + 1), which substantially reduces
the experimental burden for the number of required measurements compared to the
previous version of overlap tomography, where j ≥ (N + 1)2 coherent states were
needed. Using more than the minimum required measurements simply increases the
number of rows in the coefficient matrix which will help mitigate the effects of noise
and random measurement errors when the SDP problem of Eq. 7.22 is solved. Note
that there must be a minimum of three measurement settings, even in the case where
the detector can measure many more photons that are possibly contained in ρ. The case
where β = 0 will only give information about the main diagonal of ρ, and purely real
β will not yield information on the complex-valued parameters in ρ. Thus there must
always be nonzero, real, and imaginary values for the displacement.

Multi-mode systems

Suppose one has a multi-mode system and the ability to perform independent dis-
placements and PNR measurements on each mode. By taking advantage of the multi-
plexed nature of the overlap measurements obtained by PNR detectors, one can achieve
a quadratic reduction in the number of ‘measurement settings’ required to fully tomog-
raphy an unknown multi-mode system. If each of the M modes can be expressed in a
Hilbert space with photon-number cutoff of N (and each PNR detector has at least N-
photon resolution), then the full multi-mode density matrix will have (N + 1)2M − 1
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elements and can be expressed as

ρ =
N

∑
n,m

ρn,m |n〉 〈m| , (7.41)

where n, m ∈ ZM where each element has a maximmum cutoff of N, and |n〉 =

|n1〉 ⊗ |n2〉 ⊗ ... ⊗ |nM〉. If each mode, j, has an associated PNR detector that yields
a measurement result of k j, then a given multimode detection probability for all k j is

P(k) = Tr
[
|k〉 〈k| D̂(α)ρD̂†(α)

]
= O

βj

k , (7.42)

where α ∈ CM is the vector defining the M-mode displacement and β = −α. For
each displacement setting, assembling the probability distribution from the collected
statistics will yield (N + 1)M distinct probability measurements, which are exactly the
overlap values necessary for tomography. Thus, instead of needing (N + 1)2M mea-
surement settings, only (N + 1)M displacement settings are necessary, leading to a
quadratic speed-up in tomography over prior methods. The origin of this speed-up
can be seen as taking advantage of the quantum nature of the detector, which allows
for a full Fock-basis measurement over all M modes, which also scales exponentially in
the number of detectors.

In requiring fewer measurement settings, the experimenter additionally gains a
reduction in the number of calibration measurements needed. At each measurement
setting, the values of the coherent state displacements must be precisely determined.
This can be obtained by blocking the input signal and only allowing the displacement
field to impinge upon the PNR detectors. The accuracy of this calibration directly con-
tributes to the error in the tomographic reconstruction; thus it is important to take many
samples to obtain precise values of α. The number of samples needed for the actual
overlap measurements will be discussed next.

Finite sampling error

In order to collect the overlap values, it is necessary to sample a probability distribu-
tion, which requires many single-shot measurements to acquire sufficient statistics and
reduce measurement error. This is a well-known fact of experimental physics, but it
is often neglected when considering analyses as to the theoretical efficiency of a given
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protocol. Fortunately, the quadratic reduction in the number of measurement settings
also translates to a quadratic reduction in the number of physical samples taken. This
can be seen by realizing that in both cases of overlap from parity or overlap from prob-
abilities, the measurements are obtained by post-processing PNR detection statistics.

Suppose we send S laser pulses to a PNR detector that results in outcome n with
maximum photon-number detection of M. This can be seen as measuring S indepen-
dent and identically distributed (iid) random variables, X. The probability of event k,
P(X = k), can be written as a scaled sum of all outcomes of different iid random vari-
ables, Y, where the probability of outcome k is the same, P(X = k) = P(Y = k) ≡ P(k),
but all other outcomes are zero, P(Y 6= k) = 0. In this way, we can write

P(X = k) =
1
S

S

∑
s

ys

k
, (7.43)

where ys is the sampled result of the s-th iid random variable, Y. The variance of this
expression is given by

Var[P(X = k)] = Var

[
1
S

S

∑
s

ys

k

]
=

1
S2k2

S

∑
s

Var [ys] , (7.44)

where the last line follows because each random sampling event is independent from
all other events. Because the random variables Y each have a distribution that is only
either 0 or k, the variance of each ys is

Var [ys] =
M

∑
n=0

n2P(Y = n)−
(

M

∑
n=0

nP(Y = n)

)
(7.45)

= k2
(

P(k)− P(k)2
)2

. (7.46)

Since there are S total events in the sum, the variance of the measured probability is

Var[P(X = k)] ≡ ∆2
k =

P(k)− P(k)2

S
. (7.47)

Thus, the uncertainty ∆k scales as S−1/2, which is the same scaling as the standard error
on the mean, which might have been expected. Since each probability is less than one,
we can at worst estimate the error as ∆k ≈ S−1/2 = ∆. If one takes enough samples such
that the measured probability is near the true probability (so we can use the measured
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probability, Pmeas(k) ≈ P(k) to calculate the variance), then the overlap measurements

become O
βj

k ±∆. For each measurement setting, S measurement samples then result in
(N + 1)M total overlap measurements, each with error ∆.

Now, consider the error to each overlap measurement obtained by calculating the
parity from Eq. 7.9. In this case, we can write the variance of the expectation of parity
as

Var
[
〈(−1)n̂〉

]
= Var

[
1
S

S

∑
s
(−1)xs

]
, (7.48)

where xs is a PNR measurement result independent of all other xs. To leading order,
the variance of a function of a random variable can be expanded as[293]

Var [ f (X)] ≈ Var[X]
(

f ′(X)|E[X]

)2
, (7.49)

where we can write the derivative as

f ′(X) =
d

dX
(−1)X = iπ(−1)X. (7.50)

For S total measurement samples, the variance on the parity is

Var
[
〈(−1)n̂〉

]
≈ σ2

S
|iπ(−1)µ|2 =

π2σ2

S
, (7.51)

where σ is the standard deviation on the measured photon number and µ is the mean.
Thus, S samples with the parity method of Eq. 7.9 also yields an overlap O ± ∆ where
∆ ∼ O(S−1/2), yet only a single overlap measurement is obtained for each measurement
setting. The new overlap method that uses probabilities as per Eq. 7.42 results in a sim-
ilar accuracy on each overlap measurement as in the parity case for the same number
of measurements, S, but instead yield an exponentially increased (N + 1)M number of
measurements. Thus, the quadratic reduction in the number of measurement settings
extends to the true number of measurements required to perform overlap tomography
to a similar level of accuracy.
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7.4 Loss Compensation

A major experimental annoyance stems from imperfect detectors as touched on in the
previous chapter. Fortunately, some of these effects can be accounted for when per-
forming tomography by characterizing the statistical effects of the imperfections and
applying a map back to what would be a perfect state. An example of this is correc-
tions for loss on a measured photon number distribution. Suppose one has a pure
Fock state, |n〉, and sends it to a PNR detector where the only imperfection is efficiency
η < 1. Instead of registering n photons every time, the PNR detector will actually mea-
sure a distribution according to its POVM. Assuming the detector can resolve at least n
photons, the resultant probability distribution for measuring k photons will be

P(k) =
(

n
k

)
ηk(1− η)n−k. (7.52)

When η → 1, the detection probability goes to zero for any event other than k = n, and
as η → 0, only the k = 0 term survives, which corresponds to losing all of the n photons.
This is equivalent to sending |n〉 through a beamsplitter of reflectivity r =

√
1− η

(where the second mode is vacuum) and tracing out over the reflected mode while
sending the transmitted mode to a perfect PNR detector.

Perhaps surprisingly, this pure loss is a linear mapping and thus unique. That
is to say, for a given η, each photon number distribution before loss maps to a unique
distribution after loss. Thus if one has accurately calibrated the efficiency of a PNR de-
tector, this loss effect can be accounted for and ‘undone’ in post-processing by applying
the inverse map as has been demonstrated previously [112, 294]. The calibration of η

could be achieved, for example, by sending a known coherent state, |α〉 to the detector
and measuring the mean photon number. Under pure loss, the coherent state becomes
|α〉 → |√ηα〉, so the experimenter will measure a mean photon number of η|α|2 and
can directly extract η to a high degree of accuracy.

For tomography with PNR detectors, one could in principle apply this statistical
correction after each measured distribution. However, since many individual photon
number distributions are measured, this may become cumbersome. Alternatively, as
discussed next, one can apply a similar inverse mapping to account for loss on the
entire density matrix at once.
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7.4.1 Complete density matrix correction

We now wish to correct an arbitrary density matrix given a known loss. In this case,
we have experimentally measured ρ′, but our goal is to reconstruct the density matrix
before the loss, ρ. As shown in Fig. 7.7, this can be modeled by sending ρ through a
fictitious ‘loss beamsplitter’ with reflection and transmission coefficients of r =

√
1− η

and t =
√

η, where η is the overall transmission efficiency.

FIGURE 7.7: Lossy channel.

The general quantum state density matrix before the loss can be written as

ρ =
∞

∑
n,n′=0

ρn,n′ |n〉〈n′|

ρ =
∞

∑
n,n′=0

ρn,n′√
n!n′!

a†n|0〉〈0|an′ . (7.53)

If this state enters into the loss beamsplitter in mode â with vacuum in mode b̂, then
the mode operators transform in the Heisenberg picture according to â → tâ + rb̂ and
b̂→ −râ + tb̂ to yield an output density matrix

ρout =
∞

∑
n,n′=0

ρn,n′
(tâ† + rb̂†)n
√

n!
|0〉a|0〉b〈0|b〈0|a

(tâ + rb̂)n′

√
n′!

. (7.54)

Tracing out over mode b yields the final state after loss, which is given by

ρ′ = Trb[ρout] =
∞

∑
n,n′=0

ρn,n′
n

∑
k=0

n′

∑
k′=0

An,n′,k,k′ |n− k〉〈n′ − k′|〈k|k′〉δk,k′ , (7.55)

where

A(n, n′, k, k′) =

√(
n
k

)(
n′

k′

)
rk+k′ tn+n′−k−k′ . (7.56)
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Substituting n− k and n′ − k with m and m′ allows us to rearrange the expression and
write a sum over the Fock components in order, which can be written as

ρ′ =
∞

∑
m,m′,k=0

ρ(m+k),(m′+k)A(m + k, m′ + k, k, k)|m〉〈m′|, (7.57)

where it is easy to see that each element of the density matrix after loss is related to the
original state by

ρ′m,m′ =
∞

∑
k=0

ρ(m+k),(m′+k)

√(
m + k

k

)(
m′ + k

k

)
r2ktm+m′ . (7.58)

This can be viewed as a generalized Bernoulli distribution [295], so can be inverted to
read

ρm,m′ =
∞

∑
k=0

ρ′(m+k),(m′+k)

√(
m + k

k

)(
m′ + k

k

)
(−1)k

(r
t

)2k
t−m−m′ . (7.59)

In practice, the sum over k can be truncated to some value, Nmax, beyond which the
entries in the initial density matrix are negligible. We can then reformulate Eq. 7.58 as
a series of Nmax linear maps from the ith diagonal of ρ′ to the ith diagonal of ρ, where
the main diagonal is given by i = 0. This mapping can be visualized in Fig. 7.8. Each of
these linear maps, M(i), is an upper triangular matrix of dimension Nmax − i× Nmax − i
with elements

M(i)
jk (η) =

{
0 j > k√

( k
k−j)(

i+k
k−j)(1− η)(k−j)η

i
2+j otherwise

(7.60)

Since each M(i)(η) is triangular with nonzero diagonal elements, the inverse map-
pings can be found by inverting the generalized Bernoulli transformation and are given
by [295]

Inv[M(i)(η)] = M(i)(η−1). (7.61)

The existence of this inversion is due to the known well defined statistical nature of
loss channel, which makes it possible to perfectly reconstruct any ρ within a finite-
dimensional Hilbert space when η and ρ′ are precisely known [295]. However, the
presence of any small deviations in an experimentally measured ρ′ can lead to unphys-
ically large or non-positive diagonal density matrix elements in the reconstruction of ρ,
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FIGURE 7.8: Each diagonal of a density matrix subjected to loss is uniquely
mapped to a new, loss-degraded diagonal in ρ′. This mapping can be un-

done by applying the inverse mapping.

even while ρ remains normalized, which is similar to the possible numerical instabili-
ties that arise when using pattern-functions [274]. These errors become pronounced for
low detector efficiencies at high photon-numbers as seen Fig. 7.9a for the specific case
of a loss-compensated cat state. Therefore, it becomes extremely crucial to have a priori
information about the energy of the quantum states under consideration.

Here, we are able to relax this issue by inverting each M(i)(η) using semidefinite
programming, where the optimization problem is defined as

Minimize
ρ

Nmax

∑
i=0
||ρ′(i)diag −M(i)ρ

(i)
diag||2 (7.62)

Subject to ρ ≥ 0, Tr[ρ] = 1, and ρm,m ≤ η−mρ′m,m,

where ρ
(i)
diag denotes the ith diagonal of ρ and the third constraint is obtained by noting

that each element in the sum in Eq. (7.59) is positive for m = m′, leading to the inequal-
ity when the sum is truncated after the first term. Additionally, it is only necessary
to sum over the upper diagonals of ρ in the minimization (hence the sum starting at
i = 0), due to the enforced hermiticity of ρ.
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FIGURE 7.9: Loss-compensation for tomographed cat state of amplitude√
3 after transmission of η = 0.70 and Hilbert space cut-off of d = 20,

with (a) inversion using the generalized Bernoulli transformation and (b)
inversion using SDP. The logarithm of the trace-distance between the re-
constructed state, ρ, and the target state, σ, is plotted against η [d] in (c)
[(d)]. We note that T(ρ, σ) > 1 occurs due to the unphysical reconstruction
of ρ and large non-positive diagonal elements. The figure insets show the

Wigner function for each state.

The application of these constraints enforces physicality and avoids the numerically
unstable reconstruction that would result by using an exact expression for M(i)(η)

−1
.

We demonstrate in Fig. 7.9 how small errors on density matrix elements from perform-
ing the tomographic procedure on a loss degraded cat state and single-photon Fock
state give rise to an unphysical loss-compensated state using the analytical matrix in-
version from Ref. [295], whereas inversion using SDPs successfully reconstructs the
state prior to loss. Although all errors in the tomographed density matrix elements
prior to loss compensation are on the order of 10−3 (not depicted), the analytical ma-
trix inversion drastically magnifies these slight deviations. In particular, Fig. 7.9c and
Fig. 7.9d show that the validity of the loss-compensation can heavily depend on both
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the overall loss and on the choice of Hilbert dimension cutoff. When comparing the
reconstructed state, ρ, to the ideal state without loss, σ, using the trace distance de-
fined by T(ρ, σ) = 1

2 ||ρ− σ||1, we see that the deviation of ρ from σ grows quickly as η

shrinks and d increases in the case of analytic inversion. However, T(ρ, σ) is both small
and relatively independent of either η or d when using SDP. As a result, our method is
significantly more robust to experimental noise.

7.4.2 Equivalence of photon-number distributions

To show the equivalence of the photon-number distributions measured in each configu-
ration in Fig. 7.10, we adapt the approach originally introduced in [275]. The signal and
LO modes are described by annihilation operators â and b̂ respectively, and ĉv and d̂v

are vacuum modes. For a perfect PNR detector, the probability of measuring n photons

FIGURE 7.10: Schematic of the loss model. Left and right networks pro-
duce the same photon-number distribution.

is given by [296]

P(N = n) =
〈

:
N̂n

n!
e−N̂ :

〉

ρin

, (7.63)

where N̂ = d̂†d̂ is the photon-number operator of the detection mode and the expecta-
tion value is calculated over the initial states, and :: is the normal ordering. By employ-
ing the Heisenberg picture, we first determine the detection mode in terms of input
modes for the network on the left of Fig. 7.10. The input mode denoted by annihilation
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operator, â, evolves to

After first beamsplitter: â→ â + b̂√
2

(7.64)

After second beamsplitter:
√

η

(
â + b̂√

2

)
+
√

1− ηĉv

(7.65)

Since the input states for mode b̂ and ĉv are coherent and vacuum states respectively,
the normal ordering allows to treat them as complex numbers. As a result, the effective
photon-number operator is given by

N̂L
eff. = d̂†d̂, (7.66)

where the detection mode is

d̂L =
√

η

(
â + β√

2

)
(7.67)

Likewise, for the right network, we have

After left beamsplitter: â→ √η â +
√

1− ηb̂v (7.68)

After top beamsplitter: b̂→ √ηb̂ +
√

1− ηĉv (7.69)

After balanced beamsplitter: d̂ =
1√
2
(
√

η â +
√

1− ηb̂v +
√

ηb̂ +
√

1− ηĉv),

where ĉv, b̂v are vacuum modes and b̂ is a coherent state. We again utilize the fact that
normal ordering allows coherent states to be represented by a complex number and the
vacuum state can also be considered as a coherent state with zero amplitude. Thus, the
detection mode can be further simplified as

d̂R =
√

η

(
â + β√

2

)
. (7.70)

From Eq. 7.67 and Eq. 7.70, one can see that both networks have the same detection
mode, therefore would produce the same photon-number distribution for a given quan-
tum state under investigation.
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7.5 Applications to Quantum Field Theory

Near the inception of using quantum systems to perform computations, Feynman pro-
posed using quantum computers as simulators of quantum physics [22]. He rather
bluntly, but succinctly, stated the problem as: “Nature isn’t classical, dammit, and if
you want to make a simulation of nature, you’d better make it quantum mechanical,
and by golly it’s a wonderful problem, because it doesn’t look so easy.”

He was clearly right, and evidently, it hasn’t been easy thus far. However, there
has been extensive progress on the theoretical development of quantum algorithms
for quantum simulation, and there have also been experimental advances such as ap-
plied to quantum chemistry [297–299]. As far as quantum field theory applications,
Jordan, Lee, and Preskill (JLP) developed a quantum algorithm to compute relativis-
tic scattering amplitudes in a massive quantum field theory with quartic interactions.
The algorithm is polynomial in the number of scattering particles and has the potential
to yield an exponential speed-up over classical algorithms in the strong-coupling and
high precision regimes [300].

However, the JLP algorithm requires a qubit register than discretizes both space
(position) and field amplitude. If one instead purses a CV implementation, such as
with quantum optics, the field amplitude can be left as a continuous parameter and can
be described by a single qumode instead of a register of qubits. The JLP algorithm was
translated to CV in just this way by Marshall et al. [301]. This approach to simulating
scattering amplitudes uses squeezing to effectively confer mass in a rotated massive
bosonic particle basis. The CV algorithm as proposed is depicted in Fig. 7.11.

FIGURE 7.11: Quantum algorithm to simulate relativistic scattering of
massive bosonic fields using a CV implementations.

One first prepares a series of Fock states |n1〉 , |n2〉 , ..., |nM〉. These Fock states
will eventually correspond to excited states of the massive bosonic field we wish to
simulate. The unitary operator that maps the photonic basis to the QFT basis, Û, is
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dependent upon the number of qumodes used in the simulation. This operator can
be decomposed into three steps, Û ≡ Û3Û2Û1. Supposing that we have M qumodes,
the first operation acts to map the photon-number creation and annihilation operators
according to

Û1 â0Û†
1 =

M−1

∑
k=0

âk,

Û1 âmÛ†
1 =

M−1

∑
k=0

cos 2πmk
M âk, (7.71)

Û1 âM−mÛ†
1 =

M−1

∑
k=0

sin 2πmk
M âk,

where 1 ≤ m ≤ M/2. This rotation, being Gaussian (and passive), can be decom-
posed into two-mode beamsplitter operations and phase shifts alone. Next, single-
mode squeezing operations are applied to every mode to confer mass,

Û2 =
M−1

∏
m=0

e
rm
2 (â2

m−â†2
m ), (7.72)

where e2rm = ωm for m ≤ M/2 and = e−2rm = ωm for m > M/2. Here, the oscillation
frequency is related to the mass, µ, in the scalar field theory, with ω2

m = µ2 + 4 sin2 mπ
M .

Finally, the last operator is identity on the zeroth mode, and a series of balanced beam-
splitters on all other modes whose actions is given by

Û3 âmÛ†
3 = 1√

2
(âm + iâM−m) ,

Û3 âM−mÛ†
3 = 1√

2
(iâm + âM−m) . (7.73)

Together, these three operators form the Gaussian transformation that brings the photon-
number creation operators of the Fock-basis inputs to the creation operators of excita-
tions of the massive scalar field. From here, an interaction operation, Î can be applied
to simulate scattering or other interactions. This operator is necessarily non-Gaussian
for it to be of any interest for a quantum speed-up, and it involves the quartic phase
gate as a means to simulate a quartic self-interaction in the implementation outlined
in Ref. [301]. After this non-Gaussian operation is applied, whatever it may be, the
operator Û† ≡ Û†

1 Û†
2 Û†

3 must be applied to rotate back to the photon basis. Finally,
performing a PNR detection on all modes and obtaining the probability distribution
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from a given set-up allows one to experimentally measure the modulus-squared value
of the scattering amplitudes. However, we would like to obtain the complex-valued
scattering amplitude in each case. We detail below an extension of the method detailed
by Marshall et al. that will overcome this difficulty and allow full access to the desired
quantities.

7.5.1 Phase-sensitive simulation of scattering amplitudes

Following a quantum computation, we would like to determine the scattering ampli-
tude, A, that is given by projecting our evolved state onto a measurement operator.
However, measuring the final state in the photon-number basis only yields statistics
that give us probabilities, which lead to |A|2. To get around this difficulty, we can per-
form a series of weak displacements to the state before counting photons and use these
measurements to construct A.

Scattering amplitudes of interest to quantum field theory can potentially be simulated
with continuous-variable quantum computation (CVQC) by preparing a series of Fock
states as an input state, performing unitary operations, and then projecting the resul-
tant state in the Fock basis with photon-number-resolving measurements [301]. The
resultant scattering amplitudes appear as

A = 〈out|U |in〉 (7.74)

Where |in〉 is the input state to the scatting process, U is the collection of operations
performed by the computation, and |out〉 is the scattered state. Fortunately, in the con-
text of the proposal by Marshall et al., both the input and output states can be written
as a tensor product of Fock states follow by a unitary transformation. In this case, the
scattering amplitude can be rewritten as

A = 〈nN| ⊗ ... 〈n2| ⊗ 〈n1|U′ |m1〉 ⊗ |m2〉 ...⊗ |mN〉 , (7.75)

where N is the number of physical modes that are input and then detected. Suppose
we start with the simplest case, where there is only a single physical mode, in which
case we have that

An = 〈n|ψ〉, (7.76)
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where |ψ〉 = U′ |m〉. By preparing many copies of |ψ〉 and performing PNR detection,
we can collect statistics to determine the detection probabilities - in other words, deter-
mine |An|2 for each n - but this does not give us access to the full complex number that
is A. To remedy this, we can examine the effects of displacing |ψ〉 before measurement.

The displacement operator, defined as

D̂(α) = eαâ†−α∗ â, (7.77)

can be written as D̂(α) = 1̂+ αâ†− α∗ â +O(α2) for small displacements. The detection
probabilities after displacement, which we do have access to, are given by

Pn(α) = | 〈n| D̂(α) |ψ〉 |2. (7.78)

Using the Heisenberg Picture, the displacement in the above equation can be applied
to the detection result instead of the state |ψ〉, to be rewritten as

Pn(α) =| 〈n|ψ〉+ α
√

n 〈n− 1|ψ〉 − α∗
√

n + 1 〈n + 1|ψ〉+O(α2)|2

=|An|2 + 2
√

nRe[α∗AnA
∗
n−1]− 2

√
n + 1Re[αAnA

∗
n+1], (7.79)

where in the last line we have neglected O(α2) terms. Suppose we let α ∈ R. Now,
with just three measurement settings, we can get:

Pn(0) = |An|2 (7.80)

Pn(α) = Pn(0) + 2α(
√

nRe[AnA
∗
n−1]−

√
n + 1Re[AnA

∗
n+1]) (7.81)

Pn(iα) = Pn(0) + 2α(−
√

nIm[AnA
∗
n−1] +

√
n + 1Im[AnA

∗
n+1]). (7.82)

At first glance, it seems the above equations may be difficult to solve. Things are sim-
plified greatly, however, when one writes out the zero photon detection probabilities
for each displacement setting and makes use of the fact that the annihilation operator
acting on vacuum is zero. Thus P0(0), P0(α), P0(iα), and P1(0) are sufficient to entirely
determine A0 and A1, up to a global phase. For a maximum photon detection of M
photons, these 3M equations can be solved to obtain all A0,A1, ...AM scattering ampli-
tudes.
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Multi-mode Extention

The above results can be easily generalized to an N-mode system, where local weak
displacements of 0, α, and iα are applied in every combination to each mode before
detection. In this case, the multi-mode detection probabilities can be written as

Pn(α) = | 〈n|∏
j

D̂(αj) |ψ〉 |2, (7.83)

where the PNR detector of the jth mode detects nj photons, |n〉 = |n1〉 ⊗ |n2〉 ⊗ ...⊗
|nN〉, and α ∈ CM is the vector defining the M-mode displacement. If only one mode
is displaced at a time, that is, α = [0, ..., αj, ..., 0] ≡ αj, then to leading order in αj, the
probability is given by

Pn(α) ≈ | 〈n|ψ〉+ αj
√

nj 〈n− ej|ψ〉 − α∗j
√

nj + 1 〈n + ej|ψ〉|2, (7.84)

where ej is the unit vector along component j. Similarly to the single mode case above,
if each mode is now displaced one at a time by 0, α, and iα for α ∈ R, the measured
probabilities will be (to leading order in α)

Pn(0) = |An|2 (7.85)

Pn(αj) = Pn(0) + 2α
(√

njRe[AnA∗m−ej
]−
√

nj + 1Re[AnA∗n+ej
]
)

(7.86)

Pn(iαj) = Pn(0) + 2α
(
−√njIm[AnA∗n−ej

] +
√

nj + 1Im[AnA∗n+ej
]
)

. (7.87)

For an N-mode system with maximum PNR resolution of M photons on each
mode, displacing in this way leads to 2N + 1 measurement settings which give rise to
(2N + 1)M equations that can be solved to determine the 2NM real parameters associ-
ated with the possible scattering amplitudes. A point of note is that while the number
of real parameters we wish to find scales exponentially with the number of modes, the
number of measurement settings needed to determine these parameters is linear. Thus,
we maintain the quantum speed-up of the original algorithm.

The ability to use displacements to access the full complex-valued scattering am-
plitudes can be thought of as a partial tomographic reconstruction. Although we do not
wish to entirely reconstruct the multi-mode quantum state, we are interested in mea-
surements with phase sensitivity. PNR detectors alone are unable to collect any phase
information on a state as they project directly onto the Fock basis. Another way to see
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FIGURE 7.12: Phase-sensitive simulation of scattering amplitudes. Input
Fock states are rotated to the massive bosonic field basis by operator Û and
then subjected to interactions described by the operator Î. After rotating
back to the photon-number basis with Û†, performing a series of single-
mode displacement followed by PNR detection allows for access to the

complex-valued scattering amplitude.

this is via the uncertainty principle: if I can directly measure photon number, then the
conjugate parameter, the phase, must be entirely indeterminate. However, if we induce
phase sensitivity through the use of displacements, which do have phase information,
we are essentially performing a projection onto a displaced Fock basis. If many more
displacements are used, the full overlap tomography scheme can be deployed to ac-
quire full state information. Since this is invariably an exponentially scaling task, we
wish to avoid full state tomography and only access limited phase information — thus
the small number of displacements.
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Chapter 8

Experimental Design

With the exception of Ch. 6, the majority of this work has focused on explaining a
variety of theoretical methods to generate and measure non-Gaussian quantum states.
This chapter will focus on the experimental design, both implemented and proposed,
for realizing a variety of the quantum state engineering protocols discussed. I will focus
specifically on progress made towards demonstrating photon catalysis and will discuss
successes and current challenges. As measurement is a key portion of demonstrating
an experiment, I will also discuss results from the tomography protocol of Ref. [264] in
addition to related unpublished results. Finally, I will discuss a proposal to generate the
two-mode coherent photon-subtracted state from Ch. 5 with only slight modifications
to the current experimental setup.

As all experiments in this section make use of many of the same resources, the
beginning of this chapter will be dedicated to presenting the current state of many
experimental tools. Since the TES would saturate from continuous-wave (CW) laser
operation, I will begin by discussing our implementation of converting the CW beam to
pulsed operation through the use of acousto-optic modulators (AOMs). Additionally,
as the workhorse of single-photon generation used to verify overlap tomography and
for photon catalysis is a down-conversion source from an optical parametric oscillator
(OPO), I will also discuss the OPO, cavity locking, temperature control, and additional
spectral filtering mechanisms. Once the foundations are in place, I will discuss current
experimental results.
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8.1 Pulsing

As we saw in Ch. 6, the cooling tail of signal peaks from the TES is vital to achieve
maximum photon-number resolution. Depending on the bias settings, this can be as
long as 10− 30 µs from detection onset. However, the arrival of the photons must be
constrained to within the rising edge of the peak of ∼ 500 ns. If additional photons
arrive before the end of the cooling tail, a second peak will begin in the middle of the
previous tail. These events are known as pile-ups and were one of the largest limiting
factors in previous TES experiments with CW lasers [114, 263, 264]. These pile-ups
make it impossible to determine accurate photon-number measurements, so to avoid
this, one must either use laser pulses or very weak CW light with average power less
than about one photon per 10 µs, which corresponds to about 18.7 fW. In the latter case,
we cannot achieve large enough photon numbers to fully utilize the TES, so pulsing is
the ideal path forward. The pulse signal timing is discussed in Appx. D.

8.1.1 Acousto-optic modulation

FIGURE 8.1: Light entering an AOM is diffracted at the Bragg angle as it
travels through the crystal and acquires a frequency shift of ωΛ due to the
sound wave travelling through the crystal. The light can diffract into mul-
tiple orders, but only the first-order diffraction is used for the experiment.

Instead of using a pulsed source such as a mode-locked laser, we start with CW
light and convert to pulsed operation by quickly switching the beam on and off to form
a pulse. To perform this switching, we use an acousto-optic modulator (AOM) [302].
The AOM works on the principle of Bragg diffraction, where light diffracts from a crys-
talline lattice as a sound wave propagates through the crystal. The sound wave is a
collective oscillation of the atoms in the lattice, so the process can be seen as an inter-
action between the lattice phonons and the optical photons. The momentum exchange
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acts to alter the frequency of the light and impart an angular path deviation. This an-
gular shift is given by the Bragg angle,

sin θB =
λ

Λ
, (8.1)

where λ is the wavelength of light in a vacuum and Λ is the wavelength of the sound
wave. Additionally, the light acquires a Doppler shift depending on the direction of the
sound wave in the crystal and the diffraction order as shown in Fig. 8.1. For an input
beam at frequency ω, the output frequency will be

ω(0) = ω, ω(1) = ω + ωΛ, (8.2)

where the superscripts indicate diffraction order and ωΛ is the frequency of the sound
wave in the material.

The sound wave in the AOM is driven by an RF signal applied to a piezoelectric
actuator (PZT) that can be quickly switched on and off with rise time on the order of
∼ 10− 20 ns depending on the wavelength and how tightly the beam is focused in the
crystal. When the RF drive is absent, there is zero light in the diffracted beam, mean-
ing that the diffracted light can be entirely switched off. When properly aligned and
focused, and with sufficient RF power, a majority of the incident light can be converted
into the first-order diffraction output.

We implement pulsing using separate AOMs for each the pump beam at 532 nm
and the LO at 1064 nm using the first-order diffracted beams. The two AOMs are syn-
chronously pulsed with tunable pulse duration limited to a minimum of ∼ 30 ns due
to the turn-on dynamics of the PZT within the AOM. Because the pump beam will be
used to down-convert to half the frequency, it is essential that the RF drive to the pump
AOM is exactly double the drive frequency of the infra-red AOM. Maximum power
conversion of 90% to the first-order diffraction was achieved using a drive frequency of
95.000 MHz to the IR AOM. The pump AOM was then set to have a 190.000 MHz drive
frequency where a diffraction efficiency of 80% was obtained.

It was verified that the frequency shift of the pump beam was exactly double
the IR frequency shift through an optical interference measurement. After being sent
through the AOM, the shifted IR light was sent through the OPO and up-converted
through second-harmonic generation (SHG) to the pump frequency. This up-converted
beam was then interfered with the pump AOM output and a DC interference fringe
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was observed. If the frequencies of the two beams were not identical, there would be
no static interference pattern.

An important experimental consideration concerning the turn-on dynamics of the
AOMs should be noted: just as a laser should be given time to thermalize for power sta-
bility, so must the AOMs. Although they work immediately and the beams can be used
for routine alignment, the AOMs should be turned on and left at desired operating con-
ditions for approximately 60− 90 minutes before performing precision measurements
with the output beams.

8.2 Single-Photon Generation

FIGURE 8.2: A type II periodically-poled KTP (PPKTP) crystal is placed
in a one-sided cavity to form an optical parametric oscillator (OPO) with
R1 ≈ 1 and R2 = 0.98. The output frequencies of the down-conversion
process are filtered with an external filter cavity (FC) and interference filter
(IF) as explained in the main text. The filtered light is coupled to a fiber and
sent to the TES, where a single-photon measurement heralds the presence

of a single photon in the other channel.

To generate single photons for the experiment, we make use of the spontaneous
parametric down-conversion (SPDC) process in nonlinear optics to produce pairs of
photons. These pairs are first spatially separated into two paths, and then one of the
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twin photons is sent to the TES for detection. When the TES registers one photon, it acts
to herald the presence of the other photon of the pair in the undetected path. Provided
the heralded single photon is spectrally and spatially pure (and not lost), it can be used
for other types of quantum experiments such as photon catalysis.

The single-photon source is implemented using the process of SPDC from a quasi-
phase matched type II nonlinear crystal [13]. The crystal is formed from periodically-
poled KTiOPO4 (PPKTP) and is placed into an optical cavity to form an optical para-
metric oscillator (OPO). The cavity is entirely transmissive to the pump beam at 532 nm
while it acts as one-side for the down-converted field at 1064 nm as shown in Fig. 8.2.
The cavity serves dual purposes: it acts to spectrally filter the broadband emission over
the ≈ 1 THz phase-matching bandwidth of the crystal while also providing a cavity-
enhancement effect for the resonant frequencies. This is a technique commonly used
for generating single photons [303].

The OPO consists of two spherical mirrors with 5 cm focal lengths spaced 10 cm
apart, where one mirror is highly reflective with R1 ≈ 1 and the other has reflectivity
R2 = 0.98 for 1064 nm light. This cavity design leads to a free-spectral range (FSR)
given by

∆FSR =
c

2L
= 1.5GHz. (8.3)

The cavity finesse can then be calculated as [304]

F =
π(R1R2)

1/4

1−√R1R2
≈ 310. (8.4)

For low-loss cavities, we can obtain the linewidth of each resonant peak from

∆FWHM ≈
∆FSR

F
≈ 4.8MHz. (8.5)

Sending a weak pump beam at 532 nm through the OPO will now spontaneously
produce pairs of cross-polarized, co-linear photons that can be spatially separated at a
polarizing beamsplitter (PBS). Due to the cavity spectrum, these two photons may be
separated in frequency by integer multiples of twice the FSR of the cavity; however,
we will want pure, degenerate single photons at exactly half of the pump frequency.
To achieve this, we must perform spectral filtering on the photons used for heralding.
This will ensure that we only collect data on the other half of the experiment (the half
using the heralded photon) when the TES registers a heralding photon at the desired
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frequency. This filtering is achieved through the use of a passive filter cavity (FC) with
a cavity linewidth of 1 GHZ and FSR of 300 GHz. When the FC and OPO are locked
together onto the same reference frequency, the linewidth of the FC will serve to filter
out all but the degenerate OPO cavity mode. Additionally, in order to eliminate any
other simultaneously resonant modes within the large phase-matching bandwidth of
the crystal, we utilize an interference filter (IF) to eliminate all but one of the FC reso-
nant modes (gray region in inset of Fig. 8.2).

When the filtering is in place and the cavities are properly locked to a reference
beam, all photons that make it through the heralding path to the TES are now certain
to be the same frequency as the reference locking beam, which will be used as a lo-
cal oscillator later. This ensures that the down-converted photon in the heralded path
will also be the same frequency as the measured photon, ensuring a highly pure single
photon. Further details on this specific cavity design and filtering can be found in the
Ph.D. thesis by Reihaneh Shahrokhshahi at UVA [305]. Additionally, details regarding
the limits of single-photon generation with SPDC can be found in Ref. [306], and a gen-
eral model for heralding single photons included detector efficiency can be found in
Rajveer Nehra’s Ph.D. thesis [286].

8.2.1 On/off locking

In order to ensure that the filter cavity works properly to filter all but the degenerate
OPO mode, both the FC and OPO must be locked to the same reference frequency. This
is achieved by using the method of Pound-Drever-Hall locking [222]. In our imple-
mentation, we denote the frequency reference as the locking beam, which is derived
from the local oscillator (LO) used for interference with the signal later. If the cavities
are locked to the same frequencies as the LO, then we can be sure that the degenerate
mode will properly interfere.

Because the OPO is approximately a one-sided cavity at 1064 nm, the locking
beam is injected through the front of the cavity, and the weakly transmitted mode is sent
to a photodiode and used to generate an error signal for locking. In this implementation
of PDH locking, the cavity length is modulated through the use of a mirror-mounted
PZT1. Simultaneously, the locking beam is sent through the FC to a second photodiode

1The PDH locking on the filter cavity also places modulation on the cavity length with a PZT.
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to generate an error signal for locking it as well. Since the signal and locking beam fol-
low the same path through the FC, polarization is used as a separate degree of freedom
so that the locking beam path through the FC to the photodiode is independent of the
signal path to the TES.

Unfortunately, the nature of the two-mirror cavities means that we cannot have
counter-propagating cavity modes, such as in a three or four mirror cavity. This fact,
paired with the highly sensitive nature of the TES, means that we cannot simultane-
ously lock the cavities and perform single-photon measurements with the TES. The
SPDC light exiting the cavity must follow the same path as the locking beam reflected
off of the front mirror of the cavity. Fortunately, the monolithic OPO cavity design and
extremely short FC (0.5 cm length) mean that both cavities are stable for reasonable
amounts of time (∼ 1 second). Knowing this, we can implement an on/off locking
scheme, where the cavities are locked by the frequency reference for some amount of
time, and then the locking beam is shut off while data is collected within the stability
time of the cavities. After a short period, the locking beam is re-engaged to ensure
the cavities remain locked. By repeating this process and introducing optical shutters
to protect the TES from saturation, data at the single-photon level can be collected in
short bursts between periods of cavity locking.

The sequencing of when to turn on and off the locking beam, when to open the
shutters, and when to pulse the laser must be designed carefully. The shutters to protect
the TES have response times of ∼ 15− 20 ms, so it is important to build in additional
dead time where the locking beam is shut off before the shutter is opened and only
re-engaged once the shutter is fully closed. All signals are controlled and synchronized
by an external Quantum Composers 9500 series pulse generator. The pulse schedule is
displayed in Appx. D.

8.2.2 Mode-matching

Once the single-photon state is generated, the state must be properly mode-matched
to achieve maximum interference with the local oscillator mode as well as the optical
fiber coupled to the TES for measurement. And while losses on the heralding path only
reduce state generation rates and do not degrade the purity of the heralded photon, it
behooves the experimenter to limit losses as much as possible to maximize count rates.
While spectral filtering is achieved through the use of cavities as discussed above, the
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FIGURE 8.3: A reference beam fed through the back of the high-reflectivity
mirror on the OPO is used for mode-matching with the cavity field.

mode-matching in this section refers to ensuring that the spatial wavefront of the cavity
output matches other beams and optics further along the propagation path.

Previous implementations of this experiment achieved spatial mode-matching by
reflecting the classical locking beam off of the front of the OPO and using this for align-
ment. While the beam path is identical in this case, the beam profile may deviate from
the cavity mode due to interference with a locking beam that does not precisely match
the cavity mode. To remedy this problem, we couple a reference beam through the
high-reflectivity mirror at the back of the cavity as shown in Fig. 8.3. Because the cav-
ity is asymmetric and the reflectivity of the mirror R1 ≈ 1, the maximum laser power
transmitted through the cavity is only ∼ 30 µW. While small, this is enough for charac-
terization and cavity locking.

Using the reference beam, a CW visibility of 97% was achieved with the LO used
for the tomography experiment and visibility of 98% was obtained for use in the photon
catalysis experiment. Additionally, the reference beam can be matched closely to the
fiber mode by sending a counter-propagating beam back through the fiber and measur-
ing the Gaussian beam parameters of the output fiber mode. By matching the reference
beam to the output fiber mode, coupling efficiencies of 85% and 90% were achieved for
respective detectors B and C shown in Fig. 8.6.

Temperature stability

Due to the fact that KTP is a birefringent material and we are using type II SPDC, it
is vital that the cross-polarized photons are both resonant simultaneously within the
OPO. This can be achieved by modifying the refractive indices of the KTP crystal at the
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FIGURE 8.4: Stability of the horizontally polarized reference beam power
output from OPO over the course of a 50 minute period while the cavity
was locked on the vertical polarization. Small temperature fluctuations

result in dips in the transmitted power to 96% of the peak power.

two polarizations by tuning the crystal temperature. At the correct temperature setting,
the OPO becomes double-resonant for both down-converted photons in the pair.

The temperature was stabilized near 28◦C to within one millidegree using the
commercial HTC-500 temperature controller. By sending the reference beam through
the back of the OPO and locking on one polarization, the transmitted power of the other
polarization can be monitored over time to characterize the temperature stability of the
crystal. This is shown in Fig. 8.4, where the cavity was continuously locked for a 50
minutes period and the transmitted power was monitored. Small thermal fluctuations
across the crystal cause the beam power to drift as the cavity lock only follows one of
the two polarizations, but the temperature controller acts to correct deviations before
long. Over the measurement period, the beam power drifted to a minimum of 96% of
the peak power while remaining above 98% of the peak power on average.

Temporal synchronization

Beyond matching the spatial mode profile, it is also vital to overlap the LO pulse with
the signal pulse in the time domain. Otherwise, there will be no interference. The first
step is to ensure the path length is the same for each the LO and the signal after the
AOM aperture. Although care was taken to ensure that the path lengths were the same
to within several centimeters, the relatively long 200 ns pulse duration used means
that a full meter of path-length difference would only degrade the temporal overlap by
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less than 2%. However, the difference in turn-on dynamics of the two separate AOMs
means that a delay may need to be introduced in one path to compensate.

The pulse timing could be verified by bringing the OPO above threshold and
interfering the pulsed down-converted signal with the pulsed LO beam. Unfortunately,
previous experiments conducted by Reihaneh Shahrokhshahi indicated that the high
intra-cavity power of the OPO cavity above threshold damages the KTP crystal [305],
rendering this method unfeasible. Alternatively, the TES can be used to measure arrival
times of photons from each beam path. If the photons arrive at simultaneous times from
the initiation of an RF trigger pulse common to each AOM and the path lengths are the
same, then the two optical pulses will temporally overlap at the beamsplitter where the
interference should occur.

FIGURE 8.5: Histogram of the timestamp of single-photon peaks in terms
of number of EFADC samples from initiation of a trigger pulse. The mean
peak time was 317 samples after the trigger, which at 4 ns/sample corre-

sponds to 1.268 µs for this particular TES channel.

To do this, one can start by blocking the OPO and sending a weak coherent state
pulse following the path of the local oscillator to the TES. Fig. 8.5 shows the histogram
of the peak times for single-photon events in EFADC samples from the trigger sig-
nal. For this data set, the mean peak-time occurred at 317 samples points, or 1.268
µs, after the arrival of the trigger. Next, one can block the LO path and collect data
on the TES channel from SPDC photons from the pulsed pump traveling through the
OPO. Because the timing information is the same whether or not the SPDC pair is
frequency-degenerate, information from the heralding channel can be ignored and all
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single-photon events can be collected and used for this calibration. By tuning the de-
lay of the signal sent to pulse the pump AOM, this process can be repeated until the
mean arrival times of the LO pulses match the mean arrival times of the SPDC events.
Once completed, the mean arrival times differed by less than 2 EFADC sample points
meaning that the centers of the pulses were within 8 ns of each other.

It is important to note that the pulse generator used has the ability to tune all
outgoing pulses with respect to one master trigger. This master trigger is sent to the
EFADC to prepare it for an incoming TES signal, but all pulses sent to turn on/off the
AOMs and shutters can be tuned with respect to the master trigger. Another impor-
tant point is that one must only use single-photon events for this calibration from both
the SPDC and LO. The TES response rise-time varies slightly with photon number, so
timing calibration should be done with the same photon-number events.

8.2.3 Full experimental design

FIGURE 8.6: Full experimental design for photon catalysis, with the excep-
tion of the reference beam used for mode-matching. EOM: Electro-optic
modulator. POL: Polarizer. PZT: Piezo-electric actuator. PDH: Pound-
Drever-Hall cavity locking. λ

2 : Half-wave plate. PBS: Polarising beam-
splitter. LO: Local oscillator. SMF-28: Single-mode optical fiber2.
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The full experimental design is depicted in Fig. 8.6. The diagram shows the paths
of the locking beam as dotted lines, which are operated in CW mode during the ‘on’
phase of the on/off locking scheme, meaning that the IR AOM is left active without
pulsing. During the ‘off’ phase of locking, the shutter in the locking beam path is
closed and the shutters in front of the detectors are opened. Additionally, pulsed mode
for both the green and IR AOMS is engaged.

Once a single photon is registered by channel A of the TES, the presence of a sin-
gle photon is heralded on the transmitted path through the PBS just after the OPO. This
photon then interferes with the coherent state, |α〉, at a beamsplitter of variable reflectiv-
ity r, t3. This step is omitted in the case of the single-photon tomography experiment.
One output of this beamsplitter is sent to TES channel B, where a measurement of n
photons indicates the precise form of catalysis that has occurred. The other port output
is now our engineered state, ρ, which is sent to the tomography protocol. Tomogra-
phy is performed by interfering ρ with a variable coherent state |βj〉, with amplitude
controlled by the polarizer placed after an electro-optic modulator used to rotate po-
larization, and the phase is controlled by a mirror-mounted PZT. The result of this
interference is sent to TES channel C to measure the expectation of parity as discussed
in Ch. 7. Note that this interference for tomography can be modified to a displacement
if an observable other than parity is used for characterization, as discussed in Sec. 7.3.2
in the previous chapter.

8.3 Overlap Tomography

To verify that the new pulsed setup works as expected, the experiment from Ref. [264]
was repeated. The results for the tomography of the single photon are shown in Fig. 8.7,
where the photon number distributions are shown when all data is considered next to
the phase-averaged data. The plotted Wigner functions show the results after loss-
inversion is applied to recover Wigner function negativity. The results of this experi-
ment successfully recreate the CW experiment from the previous work with minor but
notable differences. In this case, less care was taken to optimize all aspects of the ex-
periment, so the overall loss was approximately 10% higher. Taken together, all losses
totaled to approximately 58%. Additionally, the pump power was not optimized for

3This beamsplitter is actually comprised of a PBSs and a waveplate used to tune the splitting ratio
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FIGURE 8.7: Left column: reconstructions with all data points. Right col-
umn: reconstruction assumming phase-space symmetry by averaging data
at different LO phases. (a) and (b) show the photon-number distribution
reconstruction from the direct data. (c) and (d) shows the photon-number
distribution after performing statistical loss-inversion on the data, where

the associated Wigner functions are shown in (e) and (f).

single-photon generation. As one can see by looking at the photon-number distribu-
tions in the figure, the two-photon contributions are quite high. This comes about when
loss through the FC on the heralding path causes the TES channel to see a single pho-
ton, but two photons would have been detected in the lossless case. Thus, the signal
side of the experiment now has a two-photon Fock state when the experimenter mis-
takenly thinks it is a single photon. Because the tomography process is agnostic to the
type of input state, this is clearly seen by the reconstruction. In addition to the pho-
ton number distributions, the reconstructed Wigner functions are less negative than
the single-photon state. This is due to the two-photon state’s Wigner function spiking
positive at the origin of phase-space.
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Otherwise, this experiment is nearly identical to the results from before. The
Wigner function reconstructed from the raw data clearly resembles that of a single pho-
ton but with extra ripples and noisy features. These additional ripples can be attributed
mainly to a combination of slight amplitudes fluctuations in the LO probe over the
course of the several hours of data collection experiment and the effects of finite sam-
pling errors on the measured statistics. Additionally, the precise purity and composi-
tion of the state being measured will drift slightly over the course of the experiment
as the pump power, crystal temperature, or OPO cavity locking change. However, en-
forcing symmetry by averaging measurements at different LO phases for the same LO
amplitude effectively washes away these fluctuations by averaging over longer times
and larger data sets.

In addition to the tomography of a single photon, tomography of a phase-averaged
coherent state (PACS) was performed. In Ref. [264], care was taken to demonstrate the
tomographic method worked for both a pure quantum state, the single photon, and for
a classical-like state with asymmetric phase qualities — the coherent state. However,
the procedure was not demonstrated on a statistical mixture. Here, overlap tomogra-
phy was also demonstrated using the mixture of a PACS as shown in Fig. 8.8.

FIGURE 8.8: Wigner function and photon-number distribution for the to-
mographic reconstruction of a phase-averaged coherent state. (a) Compar-
ison of the measured Wigner function (red) with the target phase-average
coherent state (blue); the fidelity is 98%. (b) Comparison of the measured
reconstruction (red) to a thermal mixture Wigner function with the same
mean photon number (blue); the fidelity is only 90%. (c) Comparison of
the photon number distribution for the target state (black) with reconstruc-
tions using all data (red), averaging data (blue), and the thermal distribu-

tion (green).

This is quite interesting because not only is the reconstructed Wigner function
quite close the expected PACS in Fig. 8.8(a), but it is also clearly different from the near-
est thermal mixture as shown in Fig. 8.8(b). The expected PACS, or target state, was
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determined by finding the PACS having the same mean-photon number as the mea-
sured ‘unknown’ state. Similarly, the nearest thermal mixture was determined to be the
thermal mixture with the same mean photon number as the measured state. Fig. 8.8(c)
demonstrates the efficacy of the tomographic reconstruction by directly comparing the
photon number distributions. The target state in black is compared to reconstructions
using all measured data as-in (red) and the measured data assuming phase-space sym-
metry (blue). The distribution for the thermal mixture in green is clearly quite different;
thus the method of overlap tomography is successful on mixtures as well as pure states.

8.4 Photon Catalysis

Chapter 2 introduced photon catalysis and showed that for a single-photon input, it is
possible to filter out a Fock-basis component. Although the derivation presented there
was instructive, it is less cumbersome if we treat the process of photon catalysis as a
Kraus operator. Using a pure single photon at one port of the beamsplitter and a PNR
detector on one output, the Kraus operator for an m PNR detection can be derived to
be ( A.6)

K̂m =
(r

t

)m 1
r
√

m!

(
mt2 − r2 â† â

)
âm−1e−βâ† â, (8.6)

where r2 + t2 = 1 are the beamsplitter parameters and β = − ln t. In this form, it is
easy to see that when the beamsplitter is balanced with r = t, the term in parentheses
becomes (m− n̂), so the m-th photon component must vanish from the superposition
when applying K̂m to any state. Noting that for a coherent state,

e−βâ† â |α〉 ∝ |e−βα〉 , (8.7)

we have that photon catalysis applied to a coherent state leads to

K̂m |α〉 ∝
(

mt2 − r2e−βαâ†
)
|e−βα〉 , (8.8)

which is now a superposition between a different coherent state and a photon-added
coherent state. Setting r = t for simplicity leads to the output state

|φ〉 ∝ (m− 1√
2
αâ†) | 1√

2
α〉 . (8.9)



8.4. Photon Catalysis 277

8.4.1 Realistic modeling

Ideally, Eq. 8.9 captures what we would like to generate experimentally. Unfortunately,
the experimental setup shown in Fig. 8.6 contains many real-world imperfections that
cannot be neglected. There are three main contributing imperfections that can be in-
cluded to form a better theoretical model for what we are likely to see. These imperfec-
tions include:

• an impure heralded single photon, such that the true heralded state is a mixture
of Fock states,

• photon loss and detector inefficiency,

• imperfect visibility, or mode-matching, between the heralded single photon and
coherent state.

The majority of these influences can be extensively characterized and built into a model
before running the experiment. Additional errors include finite sampling as discussed
in Sec. 7.3.2, miscellaneous experimental drifts over the several-hour course of data col-
lection, and TES resolution errors beyond detection efficiency. Overall, modeling the
three main errors bullet-pointed above will be sufficient to capture the main features
of the data. It should be noted that approximately 0.3% of pulses resulted in a single-
photon detection on the heralding TES channel. Increasing the pump power further
increases the count rates, but also increases the likelihood of either having two-photon
events or having a pair of twin SPDC photons where one pair is not frequency degen-
erate.

Heralding

First, consider the true heralded distribution shown in Fig. 8.9. The distribution at left
shows the raw distribution after heralding on a single photon. The distribution on the
right then shows the distribution after correcting for losses, which is closer to the true
distribution that will interfere with the coherent state at the catalysis step. Because
these photons originate from an SPDC process, the quantum state that interacts with
the rest of the experiment is just a diagonal density matrix that is a mixture of Fock
states and thus is exactly characterized by the photon number distribution.
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FIGURE 8.9: (a) Raw measured heralded photon number distribution
when heralding on a single photon. (b) Heralded distribution after cor-

recting for measured losses.

From the figure, the heralded state is primarily a single photon, with some ad-
ditional two and three-photon components. These higher number photons come from
events where losses on the heralding detection (FC and detector) caused a single photon
to be measured while two or three would have been present without loss. The Faraday
rotator, filter cavity, and other optics account for 16% loss, while fiber coupling on this
arm accounts for an additional 25% loss.

Coherent state calibration

In addition to calibrating the purity of the single photon from the heralded distribution,
it is also important to calibrate the coherent state that interferes with the single photon.
This is achieved by blocking the beam path from the OPO and just acquiring samples
of the coherent state on the detector. The mean photon number of the measurement
can then be used as the value for |αη|2 after all losses have occurred. Fortunately, the
coherent state is an eigenstate of the annihilation operator, thus a coherent state maps
to a different, smaller coherent state under loss. With properly calibrated loss, one can
determine the value of the coherent state that impinges on the interference beamsplitter
to be

|α0〉 = |
√

2
η αη〉 , (8.10)

where |α0〉 is the coherent state that interferes with the single-photon state, |αη〉 is the
directly measured coherent state on a detector with efficiency η, and the additional fac-
tor of

√
2 comes from the fact that the beamsplitter used in this specific photon catalysis

process is balanced with r = t = 1√
2
.
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Loss calibration

Losses are calibrated at several points throughout the experiment by measuring the
transmitted power of a classical beam. Although the maximum fiber coupling achieved
for some experiments reached 90%, it is estimated that the fiber coupling for the data
presented here was reduced to approximately 80%. Additional losses on the heralded
signal path were measured at 5% from various optical elements used. Finally, as dis-
cussed in Ch. 6, a value of approximately 90% can be used for the TES detection effi-
ciency. This leads to an overall value of η ≈ 0.8 ∗ 0.95 ∗ 0.9 = 0.68. Due to the relatively
large uncertainty on detection efficiency of the TES, both beam paths for channels B
and C in Fig. 8.6 are assumed to have the same overall efficiency of η.

Furthermore, by looking at the heralded signal distribution from Fig. 8.9, it is
clear that more losses must be present elsewhere. It is likely that there is approximately
10% additional loss from temperature drift and on/off locking error that accrues on the
OPO output. However, using the value of η ≈ 0.68 for the remaining portions of the
experiment is consistent with classical measurements and matches the measured PNR
distributions for the catalysis experiment remarkably well, as we will see.

Imperfect visibility

Although the classical visibility was measured to be quite high with 98% spatial mode-
matching with CW beams, and care was taken to ensure the pulses arrived simultane-
ously as discussed in Sec. 8.2.2, we will see in the next section that the experimental
data indicates substantially poorer visibility. Here, I will discuss a method to model
such mode-mismatch.

When considering the interference of two density matrices, ρ1 and ρ2, a full treat-
ment can be described by the diagram in Fib. 8.10(a), which is similar to the model
developed in Ref. [307]. In this model, each of the two modes can be decomposed
into an overlapping portion that interferes properly and a portion that does not inter-
fere. The non-interfering portions can first be split by beamsplitters, which introduces
vacuum. The interfering portion then overlaps perfectly at the beamsplitter, while the
non-interfering portions are split and interfere only with vacuum. Thus, while in the
ideal case there would have been two modes in and two modes out, now each output of
the beamsplitter has three independent modes. The detector on an output now acts as a
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FIGURE 8.10: (a) Full model for including visibility imperfections. (b) Sim-
plified model where ρ2 is a coherent state and the majority of ρ1 interferes

with a portion of ρ2.

bucket detector across all three modes. From this model, one can see that imperfect vis-
ibility is worse than loss alone, as vacuum gets in and the bucket detection introduces
mixing through the inability to distinguish whether the measured photons originated
from the interfering or non-interfering modes.

As opposed to this full model, we can consider a simplified model in Fig. 8.10(b)
that while less accurate, acts to sufficiently capture the experimental results as will be
verified in the next section. First, take the second density matrix, ρ2, to be the coherent
state as is the case for this experiment. Now for a coherent state |α0〉, imperfect visibil-
ity simply splits the state into different coherent states in separate modes. The second
simplification in this model is that the majority of ρ1 interferes with the coherent state,
but some of the coherent state does not interfere with ρ1. This is approximately valid
if we consider ρ1 as the detection mode, and if we note that the mean photon number
of ρ1 is considerably lower than the coherent state, we see that the majority of the pho-
tons contaminating the TES detection originate from the non-interfering portion of the
coherent state.

The results of photon catalysis can be derived from Fig. 8.10(b) by recognizing
that the state after the interference beamsplitter is given by

ρ′ = B̂12(ρ1 ⊗ |
√

vα0〉 〈
√

vα0|)B̂†
12 ⊗ (|rα′〉 〈rα′|)3 ⊗ (|tα′〉 〈tα′|)4, (8.11)

where v is the visibility, α0 is the initial coherent state, and α′ =
√

1− vα.
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Suppose we now have a PNR detector on the reflected output. Instead of per-
forming a perfect Fock-basis measurement on a single mode, each component of the
projector will actually be a mixture, as for a measured photon count of m, these m pho-
tons could have come in any combination from the two modes. The projection element
for an m photon detection will therefore become

|m〉 〈m| →
m

∑
k
(|k〉 〈k|)1 ⊗ (|m− k〉 〈m− k|)3. (8.12)

Because the third mode is a coherent state, we can derive the form of the projector
acting on the remaining single mode to be

Π̂m,v = Tr3

[
m

∑
k
(|k〉 〈k|)1 ⊗ (〈rα′ |m− k〉 〈m− k| rα′〉)3

]

=
m

∑
k

e−|rα′|2 |rα′|2(m−k)

(m− k)!
(|k〉 〈k|)1. (8.13)

In the above, the dependence on visibility is implicitly contained within the definition
of α′. However, this projector does not include detector inefficiency. By modifying
each Fock-basis projector of Eq 6.4 from Ch. 6 with Eq. 8.13, we can arrive at the full
single-mode projector of

Π̂(η)
m,v =

∞

∑
n=0

(
n
m

)
ηm(1− η)n−m

n

∑
k

e−|rα′|2 |rα′|2(n−k)

(n− k)!
|k〉 〈k| . (8.14)

Thus for a measured photon number of m on the catalysis detector (channel B in Fig. 8.6),
the projector in Eq. 8.14 is actually applied to the quantum state.

Once this projector is applied, one can calculate the expected probability distribu-
tion of the other detector (channel C in Fig. 8.6). As discussed in Sec. 6.1, the obtained
distribution for a bucket detector will really be a discrete convolution of the individual
probability distributions. In this case, the result will be the mixed signal obtained after
the catalysis detection convolved with the mode-mismatched portion of the coherent
state.

In order to determine the true visibility from the measurement data, the catalysis
detector is first ignored, so the full measured distribution is obtained from the detector
in channel C, regardless of the measurement in channel B. This amounts to taking a
partial trace over all modes that were sent to channel B. The reason the calibration was
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FIGURE 8.11: Photon number distributions for photon catalysis mixtures
where the catalysis detector is ignored. (a) Measured distribution (black)
compared to a theoretical model with ideal visibility (red) and zero visibil-
ity (blue) corresponding to no interference between the coherent state and
single-photon input. (b) Measured distribution compared to the model

with 51% visibility.

performed in this way was to ensure that all data was included and the distribution
had the maximum statistical significance. The measured distribution (black) is shown
in Fig. 8.11(a) comparing the cases for perfect interference (red) and a complete lack of
interference between the heralded signal and the coherent state (blue). As is evident
from the bar graph, the experimental data lies somewhere between the two extremes.
By minimizing the sum-squared error between the model and the distribution, it can
be found that the model matches the experimental data most closely when the visibility
parameter is set to 51%.

8.4.2 Results

The results for the photon catalysis experiment with a balanced beamsplitter are shown
in Fig. 8.12 compared to modeled results with various parameters set, where the catal-
ysis PNR detection result is the number shown in red in each plot. More results be-
yond the displayed distribution were obtained, but the distributions for catalyzing on
photon-number detections of 5− 12 each contained at least 5, 000 sampling events, so
the distributions obtained have sufficient statistical significance.

First, column (i) of Fig. 8.12 shows the ideal results that could be expected for the
input coherent state and heralded signal in the case of perfect interference visibility and
no loss. Recall from Ch. 2 that for perfect photon catalysis with an input single-photon
state and a balanced beamsplitter, we would expect the m-photon probability to vanish
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FIGURE 8.12: Photon-number distributions for photon catalysis, where the
catalyzed photon detection is shown by the number in red. (i) Theoreti-
cal model for photon catalysis for input measured mixture of Fock states
and coherent state ignoring losses and imperfect visibility. (ii) Model with
loss and detector inefficiency included. (iii) Model including loss, detec-
tor inefficiency, and imperfect visibility. (iv) Raw experimental data. (v)

comparison of experimental data (black) to full model (red).
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for an m photon detection on the catalysis detector. In this case, the heralded state is not
a pure single-photon state but is the mixture of several Fock states shown in Fig. 8.9(b).
This prevents any of the probabilities in the resultant distribution from vanishing en-
tirely and imparts a shift to the minimum probability away from the exact catalysis
detection. However, photon catalysis under these conditions still causes a strong bi-
furcation of the coherent-state Poissonian distribution depending on the measurement
result.

Column (ii) of the figure adds in the overall experimental loss to the model, both
on the catalysis projective measurement and on the final detector to determine the mea-
sured distribution. The loss on the projective measurement causes mixing of catalysis
outputs for several different cases, which smears the bifurcation otherwise seen in col-
umn (i). Additionally, the loss on the final detector shifts the distribution towards the
origin and further washes out defining features. Nonetheless, even with the measured
experimental efficiency of η ≈ 0.68 we would expect to see well-defined signatures
of successful photon catalysis for a variety of cases, especially with catalysis detection
events of 7− 10.

Column (iii) shows the full model including loss and the imperfect interference
with visibility of v = 0.51, and column (iv) shows the experimental measurements.
The model is then directly compared to the experimental data in column (v), where the
measured data is shown in black and the model results are given in red. From the last
column, it is clear that the relatively simple model captures the data extremely well, as
the red and black distributions are nearly a perfect match.

Unfortunately, this brings to question a different issue: if the pulse timing and
spatial mode interference were measured to be quite high, why does the model only
fit the data when the overall visibility is lowered to 51%? One such probability is that
the photons making it through the FC on the heralding channel are in fact not the same
degenerate frequency as the heralded photons. However, as the OPO and FC are locked
to the same reference frequency, the only likely way for this to happen is if two pairs of
SPDC photons were actually emitted; one degenerate pair and one non-degenerate pair,
where the non-degenerate photon was lost on the heralding channel and the degenerate
photon was lost on the heralded channel. While possible, this is not likely to be the
case as the losses in the heralded path were below 50%, so both photons would make
it through to the detector more frequently than shown by the heralded distribution in
Fig. 8.9.
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Alternatively, while the spatial mode-matching and pulse arrival time can be cor-
rect, the pulse shape of the LO and OPO signal photons may be substantially different.
As the pump and LO are pulsed by two separate AOMs, it is likely that the response
of the two devices is not the same. In fact, this is clearly true, as the AOM timing must
be tuned to ensure the pulses arrive at the detector simultaneously as discussed in
Sec. 8.2.2. Additionally, consider the shape of each pulse. The AOM in the LO path
is sent a square pulse, meaning that the spectral distribution of the LO will be the
Fourier transform of the square pulse — a sinc function. The spectral output of the
OPO, however, will follow a Lorentzian, which will not overlap perfectly with the sinc
distribution of the LO. The experimental fix to this problem would likely be to care-
fully engineer pulse shaping of the RF drive to the AOMs to ensure the LO and signal
have the same spectral and temporal shape. Additionally, implementing the pulsing
through a single AOM placed before the IR beam is doubled to green may also solve
this problem, as the pulse timing and shape between the two arms of the experiment
will be derived from the same source.

Although this experiment has yet to reveal the nice results of photon catalysis by
showing a strong reduction in certain Fock-state components of the output distribu-
tion, the results obtained do match the model quite well for experimentally measured
parameters. If the visibility can be improved through careful pulse shaping, experimen-
tal results resembling column (ii) of Fig. 8.12 could be expected. Additionally, if losses
could be reduced further, the results would likely lie somewhere between columns (i)
and (ii).

8.5 Coherent-Photon Subtraction

Chapter 5 discussed a scheme where performing coherent photon subtraction from a
two-mode squeezed state led to a resource that could be used for Heisenberg-limited
interferometry. This section discusses how with minor modifications, the current ex-
perimental setup can be used to generate this state.

The main difficulty lies in adapting the current experiment to generate a pure,
two-mode squeezed state at a single degenerate frequency. One arm of the experiment
already uses a filter cavity to remove all non-degenerate frequency modes from that
beam path, so an obvious solution would be to place a second filter cavity in the other
beam path. However, in order to avoid building a second cavity, it is possible to play
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FIGURE 8.13: Proposed experimental schematic to produce frequency-
degenerate two-mode squeezed light by multiplexing a single filter cavity.
Careful use of Faraday rotators allows the simultaneous locking of both

cavities without contaminating the squeezed light.

tricks with polarization and multiplex the same cavity. In addition to filtering out the
non-degenerate frequencies, both beams would pass through the same cavity meaning
that the two spatial modes would already be optimized for ideal interference as needed
in the protocol in Fig. 5.2 from Ch. 5.

This could all be achieved through the addition of two Faraday rotators and ad-
ditional polarization optics as shown in Fig. 8.13. This method takes advantage of the
Faraday effect to rotate the polarization of a beam based on the direction of propagation
as is already used in the current experiment. With the modification, both two-mirror
cavities could be locked to the same LO, and the two filtered signal beams could be
spatially separate from the rest of the experiment. These two modes could now be
interfered and used for generating the coherent photon-subtracted resource state.
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Chapter 9

Conclusion

In this Ph.D. dissertation, I have attempted to motivate a variety of ways to generate
quantum states that are required for any type of quantum advantage in continuous-
variable (CV) quantum information applications. Each method introduced has been
based on experimental techniques that are currently available, and a realistic analysis
of the success was performed in each case that included a majority of the expected
imperfections. Additionally, I demonstrated improvements to experimental methods
in non-Gaussian projections by substantially extending the limits of current photon-
number-resolving (PNR) detection using highly efficient transition-edge sensors (TES)
and fast, on-the-fly signal processing. With this modification, I have also made experi-
mental progress towards realizing the quantum state engineering techniques discussed
through preliminary photon catalysis experiments and quantum state tomography of
benchmark states.

After introducing the basics of quantum optics and tying together ideas of qubit
quantum computation (QC) with CV cluster states, I demonstrated the need for non-
Gaussian resources to implement both a universal gate set and quantum error cor-
rection. Although much is dependent on the precise logical encoding of the bosonic
Hilbert space, Gottesman-Kitaev-Preskill (GKP) states and rotation-symmetric states
emerge as leading contenders for implementing fault-tolerant CVQC, as both encod-
ings can correct against all error sets. The GKP codes are attractive in that a universal
gate set in this encoding is Gaussian only, but the logical qubits for rotation-symmetric
codes could be produced exactly without the finite-energy approximations the GKP
states necessitate.

Although interesting in their own right for a variety of other quantum informa-
tion applications, Schrödinger cat states are a highly desirable resource as these states
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can be used either for certain rotation-symmetric encodings or as precursors to GKP
states. Once one has a supply of cat states, many can be used to distill a logical GKP
state. With this in mind, Ch. 2 discussed the method of photon catalysis, which is a
promising method to generate large cat states in addition to other states with higher
degrees of phase-space symmetry. While photon catalysis does not require squeez-
ing resources, it does require single-photon states which are challenging to create on-
demand. It is likely that photon catalysis will remain useful as a quantum state en-
gineering technique, but it is the author’s opinion that other methods will be more
optimal for generating cat states both in terms of resource efficiency and current exper-
imental capabilities.

With the limitations of photon catalysis in mind, Ch. 3 developed a method of
performing photon subtraction on a cluster state. Surprisingly, this method acts to dis-
till cat states, and can in fact proceed in the presence of Gaussian noise. This technique,
which was dubbed the Photon-Assisted Node-Teleportation Method (PhANTM), was
shown to near-deterministically produce cat states provided that a sufficient portion of
the cluster state was used as an overhead resource. This method not only creates cat
states but also embeds them within the cluster state where they can be directly used for
QC algorithms, such as breeding for GKP state distillation.

Chapters 4 and 5 both relied on a similar technique to the photon subtraction
in the previous chapter. Here, however, photon subtraction was performed coherently
between a pair of modes. Unlike the PhANTM, the technique in these chapters can
also be viewed as specific examples of a Gaussian boson sampling (GBS) device. While
other methods beyond this work have extensively examined GBS devices and even de-
vised machine learning methods to optimize certain state generation methods, the GBS
device is classically inefficient to simulate. This, along with the propensity for complex
optimization algorithms to be ill-defined or become stuck in local minima, indicates
that specific examples of resource-efficient GBS devices are useful. In the first exam-
ple in Ch. 4, coherent-photon subtraction from a two-mode squeezed state is demon-
strated to have the capacity to generate rotation-symmetric states such as binomial code
states when an additional PNR detector is used. Ch. 5 motivated a class of quantum
states useful for Heisenberg-limited quantum sensing that could be demonstrated with
a modified version of coherent-photon subtraction using only a single PNR detector.

After these chapters, the remainder of this dissertation transitioned to experimen-
tal techniques. Ch. 6 discussed PNR detection and current implementations with a
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TES. By improving data collection and processing methods to measure output pulse
area in real-time, the resolving capability for each TES channel was increased from
roughly 8 photons to approximately 30. By multiplexing several channels, it is feasible
to reach PNR detection over the entire range of 0-100 photons, which will be the subject
of upcoming work. This has far-reaching implications for quantum state engineering,
metrology, and many other quantum information applications including quantum ran-
dom number generation.

Once any type of state is generated, it is vital to be able to fully characterize this
state. In principle, one should have the ability to characterize even entirely unknown
states. Ch. 7 discussed methods of using PNR detection to perform more efficient state
characterization. A leading candidate for experimental use was overlap tomography
using parity measurement, which has since been demonstrated. Additionally, overlap
tomography was extended to fully use the PNR capabilities by looking at overlap mea-
surements in the displaced Fock-state basis, which would yield a quadratic reduction
in the number of measurement settings required to perform tomography.

Finally, Ch. 8 showcased current experiment progress on several fronts, including
a successful verification of the previous single-photon tomography experiment with
pulsed light. This chapter discussed the details of pure single-photon generation, in-
cluding the use of an optical parametric oscillator for cavity enhancement and an exter-
nal filter cavity for spectral filtering. Once generated through heralding detection, the
single photon can be used for a variety of applications, including the demonstration of
photon catalysis.

Photon catalysis was attempted for quantum state engineering, but there are sev-
eral limiting factors to the current results. Due to the slow cool-down time of the TES,
low single-photon heralding rates, and additional post-selection from the catalysis de-
tection, collecting statistics for a single photon-number distribution of a particular out-
put state required several hours of continuous measurement to achieve the desired
accuracy due to finite-sampling errors. This imparted additional strain to experimental
stability and ruled out the ability to perform full state tomography which would re-
quire the precise measurement of probability distributions at dozens of measurement
settings. In addition to the sampling problem, it was determined that interference be-
tween the single-photon signal and coherent state was drastically diminished due to
pulse shape mismatch, likely originating from the pair of acousto-optic modulators
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used for pulsing. Despite these challenges, preliminary data indicates that if the infer-
ence can be improved, the photon catalysis experiment will yield the desired results.
At the end of the chapter, I proposed a small modification to the current experimental
set-up that may be used to generate a pure two-mode-squeezed state without addi-
tional cavities, which could then be immediately used for the protocols introduced in
chapters 4 and 5.

Overall, this dissertation developed novel theoretical and experimental techniques
for developing CV quantum information resources. It is the hope that future work will
continue to bridge the gap between experimental resources and ideal theoretical con-
cepts with the eventual goal of developing fault-tolerant universal quantum computa-
tion.
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Appendix A

Photon catalysis

A.1 Numerical modeling

We begin by defining a generic beamsplitter operation, projector, and input density
matrices as

Uab = eθ(ab†−a†b) (A.1)

Pn = (|n〉〈n|)a ⊗ 1b (A.2)

ρin
a = (|ψ〉〈ψ|)a (A.3)

ρin
b = (|1〉〈1|)b (A.4)

where r = cos θ is the reflection coefficient. After the beamsplitter, but before the de-
tection event, the new density matrix is

ρab = Uabρin
a ⊗ ρin

b U†
ab. (A.5)

We then apply the projective measurement of mode a by an ideal detector and normal-
ize to obtain the resulting density matrix of mode b, given by

ρout =
Tra[ρabPn]

Tr[ρabPn]
. (A.6)

Imperfect detection can be modeled by including a loss beamsplitter followed by a
perfect detector as depicted in Fig.A.1, where we trace out over the lost mode. In this
case we now have a vacuum input mode to consider, so a new input state of ρin

c =

(|0〉〈0|)c, a loss beamsplitter Uac = eξ(ac†−a†c) where η = cos ξ is the detector efficiency,
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and a modified projector, Pη
n = (|n〉〈n|)a ⊗ 1b ⊗ 1c. Eq. (A.5) becomes

ρabc = Uacρab ⊗ ρin
c U†

ac. (A.7)

As before, we apply the projective measurement of the detector, but must now also
trace out over the lost beamsplitter port in addition to the detected mode. Our final
state is now

ρout,η =
Trac[ρabcPη

n ]

Tr[ρabcPη
n ]

. (A.8)

FIGURE A.1: Loss model. Photon catalysis with an imperfect detector can
be modeled by placing a beamsplitter of reflectivity η with vacuum input
before an ideal detector, where the other output is lost via a partial trace.

In several sections of this work, we explore the possibility to perform cascaded
photon catalysis by using the resulting density matrix from the ith step as the input
state to the i + 1 interference beamsplitter,

ρin
a
(i+1)

= ρ
(i)
out (A.9)

This procedure allows us to independently vary the beamsplitter parameter rj and PNR
detection nj at each step and obtain the intermediate resulting density matrix. After
repeated the process as many times as desired, we can compute the fidelity between a
target state, ρT, and the result of our process, ρout, which is defined by Eq. 2.7.

When performing cascaded photon catalysis calculations, we we limited the Hilbert
space dimension to 50 as the tensor product between Hilbert spaces causes an exponen-
tial increase in computational expense with each additional mode added.
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A.2 Cascaded photon catalysis

Consider iterating the photon catalysis process by using the output from one step as the
input to the next. Here, we derive the general quantum state at the output of an N-step
photon catalysis procedure where the initial input is taken to be an arbitrary pure state,
ψ, and each step uses a single-photon Fock state as the second input. The ith step is
described by a beamsplitter of real reflectivity and transmissivity, ri and ti, followed by
a perfect PNR detector that detects ni photons. We start by giving the result and then
proceed with mathematical induction as proof. After N steps, we posit that the final
quantum state, up to a normalization, will be

|φN〉 ∝
∞

∑
m=0

{
ψm−N+∑N

j=1 nj

[
[m− N + ∑N

j=1 nj]!

m!

] 1
2 N−1

∏
k=0

[
rnk+1−1

k+1√
nk+1!

t
m−1+∑k−1

j=0 (nN−j−1)
N−k

×
(

nN−kt2
N−k − r2

N−k(m +
k−1

∑
j=0

(nN−j − 1))
)]}

|m〉 .

(A.10)

By taking N = 1, it is easy to see that this reduces to Eq. 2.2, thus A.10 is verified for
a single photon catalysis step. For the proof, we now assume A.10 to be true and feed
φN into an (N + 1)th step. The resulting quantum state after the PNR detection of nN+1

photons can be obtained from equation 2.2 by using the m + nN+1 − 1th component of
φN to arrive at

b〈nN+1|Uab |φN+1〉a ⊗ |1〉b ∝
∞

∑
m=0

{
ψm+nN+1−1−N+∑N

j=1 nj√
nN+1

(
m + nN+1 − 1

m

) 1
2

×
[
[m + nN+1 − 1− N + ∑N

j=1 nj]!

(m + nN+1 − 1)!

] 1
2

rnN+1−1
N+1 tm−1

N+1[nN+1t2
N+1 −mr2

N+1]

×
N−1

∏
k=0

[
rnk+1−1

k+1√
nk+1!

t
m+nN+1−2+∑k−1

j=0 (nN−j−1)
N−k

×
(

nN−kt2
N−k − r2

N−k(m + nN+1 − 1 +
k−1

∑
j=0

(nN−j − 1))
)]}

|m〉 .

(A.11)

Reordering the sum and product indices allows us to arrive at an expression iden-
tical to Eq. A.10, but with N → N + 1, and thereby complete the proof. From Eq.
A.10, we can also extract the overall success probability for a particular set of detection



A.3. Fidelity with SSV 317

events:

P(n1, . . . , nN) =
∞

∑
m=0

{
ψ2

m−N+∑N
j=1 nj

[
[m− N + ∑N

j=1 nj]!

m!

]

×
N−1

∏
k=0

[
r2nk+1−2

k+1
nk+1!

t
2m−2+2 ∑k−1

j=0 (nN−j−1)
N−k

(
nN−kt2

N−k − r2
N−k(m +

k−1

∑
j=0

(nN−j − 1))
)2
]}

.

(A.12)

A.3 Fidelity with SSV

We now derive an expression for the fidelity between a pure SSV state and the result
from an N-step filtered coherent state. The SSV states are given by

|SSV±〉 = CSSV± [D(β)± D(−β)] S(r) |0〉 , (A.13)

where r is the single-mode squeezing parameter, β is the displacement magnitude to
create the superposition, and the normalization coefficient is

CSSV± =

[
1

2± 2e−2|β|2e−2r

] 1
2

. (A.14)

As a first step, we derive the overlap coefficients between an n-photon Fock state and
a displaced m-photon Fock state, which will be useful later. This is given by

A(n, m, γ) ≡ 〈n|D(γ) |m〉 (A.15)

= 〈n|D(γ)
a†m

√
m!

D†(γ) |m〉 (A.16)

= 〈n| (a† − γ∗)m
√

m!
|γ〉 (A.17)

= e−|γ|
2/2

m

∑
k=0

(
m
k

)
(−1)k

√
n! |γ|2k+n−m

m!(n−m + k)!
. (A.18)

Because the photon-catalyzed coherent state must be displaced back to the origin of
phase space before comparing to an SSV state (see main text), we are interested in a
fidelity of the form

F = | 〈SSV±|D†(δ) |φN〉 |2, (A.19)
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where δ here is the amplitude of displacement needed after the photon catalysis pro-
cedure. By substituting the coefficients of a coherent state of magnitude α for ψ in Eq.
A.10 and using the overlap coefficients given by A.18, we can arrive at the overall ex-
pression

F =
C2

SSV±C2
|φN〉

cosh r

∣∣∣∣∣
∞

∑
`,m=0

{
(tanh r)`

(2`− 1)!!αm
√
(2`)!m!

[A(2`, m,−β− δ)− A(2`, m, β− δ))]

×
N−1

∏
k=0

[
tm
k+1

(
nN−kt2

N−k − r2
N−k(m +

k−1

∑
j=0

(nN−j − 1)
)]}∣∣∣∣∣

2

,

(A.20)
where C|φN〉 is determined by normalizing Eq. A.10 with a coherent state input. This
equation for fidelity can now be numerically maximized for the experimentally acces-
sible parameters of ri, α, and δ, as well as the desired post-selected PNR measurements
of ni for N photon catalysis steps.

A.4 Optimized parameters

The cascaded photon catalysis protocol for N = 2, 3, and 4 steps was numerically opti-
mized to yield the high-fidelity SSV(2) states discussed in the main text. The full list of
parameters for the protocols and resultant states are displayed in Table A.1.
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N 2 3 4

Fidelity > 0.999 0.984 0.977

Success probability 1.5× 10−2 1.8× 10−3 4.2× 10−5

β 0.90 1.35 1.59

Squeezing parame-
ter

-0.22 -0.48 -0.52

α 1.20 3.54 4.66

{r1, r2, r3, r4} {0.60, 0.85, - -, - -} {0.64, 0.49, 0.52, - -} {0.58, 0.55,
0.70, 0.42}

{n1, n2, n3, n4} {1, 2, - -,- -} {5, 2, 1, - -} {6, 4, 2, 1}

TABLE A.1: Parameters of N-step photon-catalysis that optimize the fi-
delity with the nearest SSV(2) state. The fidelity was numerically optimized
for all combinations of integer ni below 10, with all other parameters al-
lowed to vary independently. The combinations with the highest fidelities
and success probabilities are displayed. α: input coherent state amplitude.
β: target SSV state amplitude. ri: real-valued reflectiviy of the ith beam-
splitter in cascaded photon catalysis where r2

i + t2
i = 1. ni: Measurement

result of the ith PNR detector.

A.5 SSV enlargement by PNR

As described in the main text, the breeding protocol for enlarging a general Mth order
symmetry SSV state consists of sending two identical SSV(M) states in respective modes
a and b to a balanced beamsplitter, and performing a PNR measurement on the output
mode b. Before the detection step, the state is given by Eq. 2.29 which can be rewritten
as

|φ〉 ∝
M−1

∑
n=0

UabDa(βn)Db(βn)Sa(ξn)Sb(ξn) |0〉a |0〉b

+
M−1

∑
n1 6=n2

UabDa(βn1)Db(βn2)Sa(ξn1)Sb(ξn2) |0〉a |0〉b ,

(A.21)

where we note that |βn1 | = |βn2 | and |ξn1 | = |ξn2 | for all values of n1 and n2. Using
a balanced beamsplitter defined by Uab = e

π
4 (ab†−a†b), it can be seen that identical dis-

placers and squeezers on separate modes are transformed in the Heisenberg picture
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according to

UabDa(βn)Db(βn)U†
ab = Da(

√
2βn) (A.22)

UabSa(ξn)Sb(ξn)U†
ab = Sa(ξn)Sb(ξn), (A.23)

so after detecting zero photons in mode b, the first sum in Eq. A.21 becomes

1√
cosh |ξ|

M−1

∑
n=0

Da(
√

2βn)Sa(ξn) |0〉a . (A.24)

If we can show that the terms from the second sum in Eq. A.21 are negligible, then
normalizing Eq. A.24 will give us the desired enlarged SSV(M) state. The beamsplitter
acting on the two unequal displacers gives

UabDa(βn1)Db(βn2)U
†
ab = Da(

β+√
2
)Db(

β−√
2
) (A.25)

where β+ = βn1 + βn2 and β− = βn1 − βn2 . Applying Eq. (13) and (14) from Ref. [15]
and writing the squeezing arguments as ξn1 = −re2iϕ and ξn2 = −re2iθ, we see that the
two unequal squeezers on vacuum are transformed by

UabSa(−re2iϕ)Sb(−re2iθ) |0〉a |0〉b = Ra(ϕ)Rb(θ)Sa

(
− r

2
(1 + e2i(ϕ−θ))

)

× Sb

(
− r

2
(1 + e−2i(ϕ−θ))

)
Sab

(
− 2r sinh (ϕ− θ)

)
|0〉a |0〉b ,

(A.26)

where R(Θ) = eiΘa†a is the phase-shift operator. Detecting zero photon in mode
b leads to each term in the second sum of Eq. A.21 taking the form:

Da(β+)Sa(ς) b〈0|Db(β−)Sb(ς
∗)Sab(∆) |0〉b |0〉a , (A.27)

where ς = − r
2(1 + e2i(ϕ−θ)) and 4 = −2r sinh (ϕ− θ). Now, realizing that β− =

|β|√
2
(e

2πin1
M − e

2πin2
M ) is always nonzero for n1 6= n2 when n1, n2 < M, we see that each

of the terms having the form of Eq. A.27 consists of the overlap of vacuum with two
and single-mode squeezed vacuum that has been displaced. For finite squeezing, it is
clear that this overlap term can always be made arbitrarily small for a large enough
displacement amplitude |β−|. If this is the case, then the entire second sum in Eq. A.21
vanishes, and detecting zero photons in mode b reduces A.21 to A.24.
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The only question that remains is how large of an initial displacement amplitude,
|β|, is considered large enough, as it can be seen that increasing M leads to more terms
in the sum that we would wish to neglect. In practice, this can be determined numeri-
cally for a desired fidelity threshold with the target enlarged SSV(M), and we see from
Fig.2.9 in the main text that |β| ≥

√
2 for M = 2 and 3, and |β| ≥

√
5 for M = 4 is

sufficient for high-fidelity breeding.

A.6 Kraus Operator Formalism

The derivation for photon catalysis presented in the main text gives the Schrödinger
evolution of the input states interfered at a beamsplitter followed by PNR measurement
on one mode. However, this process can instead be represented as a Kraus operator
acting on a single input. With this representation, alternative physical insight into the
process can be gained. To derive the Kraus operator, first start from Eq. 2.1 given in the
main text, and project mode 2 onto the n-photon Fock state to get

2〈n|φ〉12 =
∞

∑
m=0

ψmtm

(
t
√

m!n√
(m− n + 1)!(n− 1)!

(r
t

)n−1
− r
√

m!(m− n + 1)√
m!(m− n)!

(r
t

)n
)
|m− n + 1〉1.

(A.28)
Next, make use of the two identities

ân−1 |m〉 =
√

m!√
(m− n− 1)!

|m− n + 1〉 , (A.29)

â† ân |m〉 =
√

m!(m− n + 1)√
(m− n)!

|m− n + 1〉 (A.30)

to arrive at

2〈n|φ〉12 =
∞

∑
m=0

ψmtm

(
t
√

n√
(n− 1)!

(r
t

)n−1
ân−1

1 − r√
n!

(r
t

)n
â†

1 ân
1

)
|m〉1 . (A.31)

By pulling the operators out of the sum and using Eq. 1.132, we can arrive at the Kraus
operator form of photon catalysis, where

2〈n|B̂12|ψ〉1|1〉2 = K̂1 |ψ〉1 (A.32)
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with
K̂ =

(r
t

)n 1
r
√

n!
(nt2 − r2 â† â)ân−1e−βâ† â (A.33)

and β = − ln t.

The form of this Kraus operator more clearly illuminates the photon catalysis pro-
cess when the other input is a coherent state, i.e., |ψ〉 = |α〉. Noting that the damping
operator just decreases the value of α,

e−βâ† â |α〉 ∝ |e−βα〉 , (A.34)

we see that
K̂ |α〉 ∝ (nt2 − e−βr2αâ†) |e−βα〉 . (A.35)

Thus, the single-photon catalysis process on a coherent state creates a superposition
between a slight smaller coherent state and the same smaller coherent state with a single
photon added to it.

As yet another way to look at it, consider the coherent state as displaced vacuum
and commute the coherent state to the back of the equation. Using D̂†(γ)â†D̂(γ) =

â† + γ∗, we can rewrite Eq. A.35 as

K̂ |α〉 ∝ D̂(e−βα)(nt2 − e−2β)r2|α|2 − e−βr2αâ†) |0〉
∝ D̂(e−βα)

[
(nt2 − e−2β)r2|α|2) |0〉 − e−βr2α |1〉

]
, (A.36)

which is now just the displaced superposition ψ0 |0〉 + ψ1 |1〉. Evidently, when nt2 =

e−2β)r2|α|2, we are left with a perfectly displaced single photon as derived otherwise in
the main text of Ch. 2.
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PhANTM

B.1 PhANTM Derivation

We fully derive the effects of photon subtraction proceeded by teleportation in the pres-
ence of finite squeezing. First, we derive the circuit identity given by the following
lemma:

N〈n|
��

|0〉N
P〈m|

= P〈0| fn(Q) , (B.1)

where the arrow in the diagram represents a beamsplitter, B̂θ, with reflectivity r = sin θ

and transmissivity t = cos θ. The lefthand side can be written as

N1
〈n|p2
〈m|B̂θ|0〉N ⊗ I, (B.2)

and in the Q-basis, the bras can be expressed as

N〈n| =
∫

duq〈u|ψn(u) (B.3)

P〈m| =
1√
2π

∫
dvq〈v| e−imv, (B.4)

where ψn(x) is the wavefunction of the harmonic oscillator:

ψn(x) =
1

π1/4
√

2nn!
e−x2/2Hn(x). (B.5)
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Using the above expressions, and temporarily neglecting the (2π)−1/2 factor, Eq. B.2
becomes

∫
dudvq1

〈u|q2
〈v|ψn(u)e−imvB̂θ|0〉N1

(B.6)

=
∫

dudvq1
〈0|q2
〈0|B̂θ B̂†

θ eiuP̂1+ivP̂2ψn(u)e−imvB̂θ|0〉N1
(B.7)

=
∫

dudvq1
〈0|q2
〈0|eiu(tP̂1−rP̂2)+iv(tP̂2+rP̂1)ψn(u)e−imv|0〉N1

(B.8)

where in the last line we have used the fact that a beamsplitter applied to a pair of q = 0
states has no effect. Expressing the vacuum state in the Q-basis as well yields

∫
dudvdzq1

〈tu + rv|z〉q1 q2
〈tv− ru|ψn(u)ψ0(z)e−imv (B.9)

=
∫

dudvq2
〈tv− ru|ψn(u)ψ0(tu + rv)e−imv (B.10)

=
1√
2π

∫
dxQ〈x| fn(x) = p〈0| fn(Q̂) (B.11)

where we reintroduced the missing prefactor in the final two lines. With a change of
the integration variables to x = tv− ru, y = tu + rv, one can see that

fn(x) =
∫

dy ψn(ty− rx)ψ0(y)e−im(tx+ry). (B.12)

Changing variables again, this can be rewritten as

fn(x) =
1
t

∫
dy ψn(y)ψ0(

y + rx
t

)e−
im
t (ry+x)

= e−r/2

t e−iζx
∫

dy N〈n|y〉Q Q〈y|D̂(α)Ŝ(r)|0〉N
= e−r/2

t e−iζx 〈n| D̂(α)Ŝ(r) |0〉 (B.13)

where here, α = −2−1/2(rx + i r
t m), r = ln t, and ζ = m

t (1 +
1
2 t2).

At this point, it becomes necessary to derive an identity for the overlap coeffi-
cients of the Fock states with displaced, squeezed vacuum. This overlap can be written
as

〈n| D̂(α)Ŝ(r) |0〉 = e−
i
2 γβ 〈n| Ẑ(γ)X̂(β)Ŝ(r) |0〉, (B.14)
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where γ =
√

2Im[α] and β =
√

2Re[α]. Transforming to the Q-basis, we have

e−
i
2 γβ

∫
dsdtψn(s)ψ0(t)q〈s|Ẑ(γ)X̂(β)Ŝ(r)|t〉q

=e
r
2−

i
2 γβ

∫
dsdtψn(s)ψ0(t)eisγδ(s− β− te−r)

=
e
r
2−

i
2 γβ

√
2nn!π

∫
dse−s2/2Hn(s)e−(s−β)2e2r/2eisγ

=
e
r
2−iγ(β/2−B)+C

A
√

2nn!π

∫
dse−s2/2Hn(

s
A + B)ei s

A γ, (B.15)

where we have defined

A =
√

1 + e2r (B.16)

B =
βe2r

1 + e2r (B.17)

C =
β2e4r

2(1 + e2r)
− 1

2
β2e2r. (B.18)

We can now make use of the pair of Hermite polynomial identities

Hn(x + y) = 2−
n
2

n

∑
k=0

(
n
k

)
Hn−k

(
x
√

2
)

Hk

(
y
√

2
)

(B.19)

Hn(γx) =
bn

2 c
∑
i=0

γn−2i(γ2 − 1)i
(

n
2i

)
(2i)!

i!
Hn−2i(x), (B.20)

along with the property that Hermite polynomials are eigenfunctions of the Fourier
transform, i.e.,

∫ ∞
−∞dxeikxe−x2/2Hn(x) =

√
2π(i)ne−

1
2 k2

Hn(k), (B.21)

to take Eq. B.15 and arrive at the result of

〈n|D̂(α)Ŝ(r) |0〉 =

κ
n

∑
k=0

b n−k
2 c

∑
j=0

χj,kHk(
√

2B)Hn−k−2j(
γ
A ) (B.22)
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where

κ =
ine

r
2−iγ(β/2−B)+C

An+1
√

2n−1n!
e−

γ2

2A2 (B.23)

χj,k =

(
n
k

)(
n− k

2j

)
(2j!)A2j+k

j!
√
−22j+k

( 2
A2 − 1)j. (B.24)

We can now put everything back together and see that fn(x) is a polynomial of degree
n with an exponential envelope. Using Eq. B.13 along with the derived overlap in
Eq. B.22 and the intermediary definition of Eqs. eqs. (B.16) to (B.18), (B.23) and (B.24)
lead to

fn(x) = e−imx( 2t
1+t2 )e−x2 t2r2

2+2t2 f ′n(x), (B.25)

where f ′n(x) is the polynomial portion given by

f ′n(x) = in√
2n−1n!(1+t2)n+1 ∑n

k=0 ∑
b n−k

2 c
j=0 (n

k)(
n−k

2j )
(2j)!r2j

2j j!

(
1+t2

2

)k/2
(−i)k+2jHk(

−x
√

2rt2

1+t2 )Hn−k−2j(
−mr

t
√

1+t2 )

(B.26)
Subtraction-assisted teleportation can thus be recognized as a circuit of the form

P〈0| fn(Q) • (in)

(out) • S(r′) |0〉N
,

(B.27)

where f is the resulting function from Eq. B.25. The operator in the top wire is a func-
tion of Q̂ only so commutes with the ĈZ, and we can make use of the fact that we can
write the input momentum-squeezed state as

Ŝ(r′)|0〉N = π−1/4
∫

dte−t2/2s2 |t〉q

= π−1/4e−Q̂2/2s2
∫

dt|t〉q

= π1/4

√
2
s

e−Q̂2/2s2 |0〉p, (B.28)
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where s = er
′
. In this form, the exponentiated function of Q̂ commutes through the CZ

gate to give us

P〈0| • fn(Q) (in)

(out) e−Q2/2s2 • |0〉p
,

(B.29)

which is easily recognizable as the teleportation circuit with additional operators ap-
plied bother before and after the teleportation. The overall Kraus operator representa-
tion of the action of the circuit acting on the input is given by

K̂ = π1/4

√
2
s

e−Q̂2/2s2
R̂(π

2 ) fn(Q̂). (B.30)

However, if we note that there is a Q-quadrature shift within fn(Q̂) that we may wish
to undo with feed-forward operations, we can commute this to the back of the Kraus
operator. This leads to an alternate form of

K̂ =π1/4
√

2√
s e

m2

s2 σ2
X̂(mσ)R̂(π

2 )

× e−
1

2s2 (P̂−mσ)2
e−Q̂2 σt(1−t2)

4 f ′n(Q̂), (B.31)

where we define σ = 2t
1+t2 . For weak beamsplitter reflectivity, we have that t → 1 and

σ → 1, and in this limit, we can recover the form of the idealized case discussed in the
main text. Taking the large squeezing limit s → ∞ and weak beamsplitter reflectivity
r → 0, we have to leading order in r that

f ′n(Q̂)→
b n

2c
∑
j=0

√
n!2−jr2j

2n j!(n− 2j)!
×

n−2j

∑
k=0

(
n− 2j

k

)
Hk(

−Qr√
2
)in−k−2jHn−k−2j(

−mr√
2
). (B.32)

Defining the generalized probabilist’s Hermite polynomial H[α]
en (x) as

H[α]
en (x) = α

n
2 Hen

(
x√
α

)
=
(

α
2

) n
2 Hn

(
x√
2α

)
(B.33)



328 Appendix B. PhANTM

and making using of the identity

H[α+β]
en (x + y) =

n

∑
k=0

(
n
k

)
H[α]

ek (x)H[β]
en−k(y), (B.34)

along with the special case of
H[0]

en (x) = (x)n (B.35)

allows us to simplify Eq. B.32 to

f ′n(Q̂)→ rn
√

n!
2n
√

2n

b n
2c

∑
j=0

(√
2(Q + im)

)n−2j

j!(n− 2j)!
. (B.36)

We can now simplify the above expression by using the expansion of the Hermite poly-
nomial given by

Hn(x) = n!
bn

2 c
∑

m=0

(−1)m

m!(n− 2m)!
(2x)n−2m, (B.37)

which leads to the limiting case Kraus operator of

K̂ ∝ X̂(m)R̂(π
2 )Hn

(
iQ̂−m√

2

)
. (B.38)

B.2 Hermite Polynomial

We prove the relation

Hen(Q) =
n

∑
k=0

(
n
k

)
(−iP)k(Q + iP)n−k. (B.39)

This is easily verified to be true for the first few terms, so we proceed by induction.
Assuming Eq. B.39 is true for n, we can make use of the relation (n+1

k ) = (n
k) + ( n

k−1) to
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prove the validity for n + 1 as follows:

n+1

∑
k=0

(
n + 1

k

)
(−iP)k (Q + iP)n+1−k = (B.40)

n

∑
k=0

(
n
k

)
(−iP)k (Q + iP)n−k(Q + iP) +

n

∑
k=1

(
n

k− 1

)
(−iP)k (Q + iP)n+1−k + (−iP)n+1

(B.41)

= Hen(Q)(Q + iP) +
n−1

∑
k=0

(
n
k

)
(−iP)k+1(Q + iP)n−k + (−iP)n+1 (B.42)

= Hen(q)(Q + iP) + (−iP)

(
n

∑
k=0

(
n
k

)
(−iP)k(Q + iP)n−k

)
(B.43)

= Hen(Q)(Q + iP) + (−iP) Hen(Q) = QHen(Q) + [−iP, Hen(Q)]︸ ︷︷ ︸
− dHen (Q)

dQ

(B.44)

= QHen(Q)− dHen(Q)

dQ
≡ Hen+1(Q) (B.45)

QED.

B.3 Beamsplitter to ĈZ Breeding

Several other works have discussed breeding cat states for enlargement or to make grid
states in the context of beamsplitters followed by a homodyne measurement. Here, we
show how this is translated to the canonical cluster state measurements through the
use of the beamsplitter unitary decomposition. Breeding cat states is achieved by using
the circuit

��

|ψ〉

p〈m| |φ〉
, (B.46)

where |ψ〉 and |φ〉 and the input cat states used for breeding. Up to an overall phase,
the balanced beamsplitter can be decomposed as [18]

B̂12 = e−iQ̂1P̂2
(

Ŝ†
1(

1
2 ln 2)Ŝ2(

1
2 ln 2)

)
eiP̂1Q̂2 . (B.47)
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Performing a homodyne measurement in the P-basis to mode two after applying a
beamsplitter can thus be written as

2P〈m|B̂12 = 2P〈m|Ẑ†
1(m)

(
Ŝ†

1(ln
√

2)Ŝ2(
1
2 ln 2)

)
eiP̂1Q̂2

= Ẑ†
1(m)Ŝ†

1(ln
√

2)2P〈m′|eiP̂1Q̂2 , (B.48)

where we have used that

Ŝ†(r)|m〉P = Ẑ(m′)Ŝ†(r)|0〉p
= |m′〉p (B.49)

with m′ = 2−1/2m. Finally, we can arrive at the ĈZ gate we want by rewriting

eiP̂1Q̂2 = R̂1(
π
2 )ĈZ12 R̂†

1(
π
2 ). (B.50)

With the help of Eqs. B.48 and B.50, the starting circuit in Eq. B.46 can be converted to

Z†(m) S†(1
2 ln 2) R(π

2 ) • |ψ′〉

p〈m| • |φ〉
, (B.51)

where ψ has been Fourier transformed to |ψ′〉 = R̂(π
2 ) |ψ〉. Thus, if the input cat states

are properly rotated, breeding with the beamsplitter is exactly equivalent to breeding
with a ĈZ gate up to Gaussian operations that can be undone with further cluster state
processing and feed-forward displacements.
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Quantum Sensing

C.1 Experimental State Derivation

Input state:

|φin〉 = |0, r〉ab |0〉c =
1

cosh r

∞

∑
n
(tanh r)n |n〉a |n〉b |0〉c (C.1)

The overall state is transformed by the beamsplitters and projective PNR measurement
to become

|φout〉 = c 〈Z|UacUbc |φin〉 , (C.2)

where Ubc = exp
[
θ1(bc† − b†c)

]
, and Uac = exp

[
θ2(ac†e−iϕ − a†ceiϕ)

]
to allow for an

additional phase of ϕ between mode a and the reflected mode c from the first beamsplit-
ter, where reflectivities and transmissivities ri = sin θi, ti = cos θi. Note that the second
beamsplitter operation, Uac, will act between mode a and the transformed mode c from
the output of the first beamsplitter operation. With this in mind, the first beamsplitter
transforms the input state to

Ubc |φin〉 =
∞

∑
n

(tanh r)n
√

n! cosh r
Ubcb†n

U†
bc |n〉a |0〉b |0〉c

=
∞

∑
n

(tanh r)n
√

n! cosh r
(t1b† + r1c†)n |n〉a |0〉b |0〉c

=
∞

∑
n

(tanh r)n

n! cosh r

n

∑
k

(
n
k

)
tk
1rn−k

1 a†n
b†k

c†n−k |0〉a |0〉b |0〉c . (C.3)
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Now, applying the second beamsplitter yields the state

∞

∑
n

(tanh r)n

n! cosh r

n

∑
k

(
n
k

)
tk
1rn−k

1 b†k
(t2a† + eiϕr2c†)n(t2c† − e−iϕr2a†)n−k |0〉abc

=
∞

∑
n

(−r1r2
2 tanh r)n

n! cosh r

n

∑
k

(
n
k

)(
t1

r1r2

)k
b†k n

∑
j

(
n
j

)(
t2

r2

)j

×
n−k

∑
m

(
n− k

m

)
(−1)m+k

(
t2

r2

)m
(eiϕ)k+m−ja† j+n−k−m

c†n−j+m |0〉abc . (C.4)

Projecting output mode c onto the PNR detection event of Z photons means that the
only terms in the above sums that survive occur when j = n + m− Z. It is also impor-
tant to note that the maximum value of j is n, so the remaining sum over m goes from
zero to mmax = Min(n− k, Z). These substitutions lead to

|φZ〉 =
rZ

2

√
Z!

tZ
2 cosh r

∞

∑
n=0

(−t2r1r2e−iϕ tanh r)n
n

∑
k=0

√
(2n− k− Z)!√

k!

(−eiϕt1

r1r2

)k

×
mmax

∑
m=0

(
n

n + m− Z

)(
t2

r2

)2m (−1)m

m!(n− k−m)!
|2n− k− Z〉a |k〉b

∝
∞

∑
n=0

cn

n

∑
k=kmin

dn,k |n + k− Z〉a |n− k〉b , (C.5)

where kmin = Max(0, Z− n), cn = (t1t2 tanh r)n, and the coefficient dn,k is

dn,k =

√
(n + k− Z)!√
(n− k)!

(
r1r2

−eiϕt1

)k Min(Z,k)

∑
m=0

(
n

n + m− Z

)(
t2

r2

)2m (−1)m

m!(k−m)!
. (C.6)

The form of the general case in Eq. C.5 shows that after all is said and done, we have
a superposition over n of two-mode superpositions that are desirable for quantum en-
hanced interferometry, where the cn terms depends on a new effective squeezing, which
is reduced from the originial value by the transmissivity of the two beamsplitters. The
success probability to create this state after a given Z PNR detection is given by

P(Z) =
Z!

(cosh r)2

(
r2

t2

)2Z ∞

∑
n=0

n

∑
k=kmin

c2
nd2

n,k (C.7)
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C.2 Highly unbalanced beamsplitters

If we consider the case where both beamsplitters are identical and highly transmissive
with r1 = r2 ≡ r and r � 1, then examining Eq. C.6 shows that only the term with
m = k contributes to the coefficient dn to leading order. Furthermore, since the sum
over m is truncated at mmax = Min(k, Z), the sum over k in Eq. C.5 can be effectively
truncated at Z to the same order of approximation. The output state then becomes

|φZ〉 ∝
∞

∑
n=0

(t2 tanh r)n
Z

∑
kmin

√(
n
k

)(
n

Z− k

)(
Z
k

)
eikϕ |n + k− Z〉a |n− k〉b , (C.8)

with an approximate success probability of

P(Z) ≈ r2Z

(cosh r)2

∞

∑
n=0

(1− 2nr2)(tanh r)2n
Z

∑
kmin

(
n
k

)(
n

Z− k

)(
Z
k

)
(C.9)

C.3 Coefficients

Here we verify several properties of the coefficients of the experimental state. In the
case of a highly unbalanced beamsplitter, then for a given n, the experimental state
takes the form of Eq. 5.19 with coefficients having the form shown in Eq. C.8 to be

ck ∝

√(
n
k

)(
n

Z− k

)(
Z
k

)
eikϕ, (C.10)

where all ck have the same proportionality constant from normalization. Setting ϕ = 0
ensures that all ck are real. When writing the state in the Schwinger representation,
these coefficients become

cm ∝

√(
n

m + s

)(
n

s−m

)(
2s

m + s

)
, (C.11)

where s = Z
2 and m = k− s, from which it is clear to see that

cm = c−m. (C.12)
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Now, how do neighboring coefficients relate? Calculating the ratio between neighbors
yields

cm+1

cm
=

s−m
s + m + 1

(
n− s−m

n− s + m + 1

)1/2

, (C.13)

which leads to the bounds of
1
2s

(i)
≤ cm+1

cm

(i)
≤ 2s, (C.14)

where (i) denotes the use of the approximation that n � s. This ratio is useful when
calculating terms that appear in expectation values, and can be used to determine a
bound on the sum of all pairs of neighboring coefficients to be

1
2s

(i)
≤

s−1

∑
m=−s

cmcm+1 ≤ 1, (C.15)

where the upper bound can be derived from the Cauchy–Schwarz inequality. Similarly,
the ratio between next neighboring coefficients has the bound

cm+2

cm

(i)
≥ 1

s(2s− 1)
, (C.16)

which leads to bounding the sum of next-nearest neighboring coefficients to be

1
2s2 − s

(i)
≤

s−2

∑
m=−s

cmcm+2 ≤ 1. (C.17)
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C.4 General Multi-Photon Subtracted State

Here we derive the Fisher information for the general case of the state given by Eq. 5.19.
All of the relevant terms are:

〈a†b〉 =
Z−1

∑
k=0

ckc∗k+1

√
(n− k)(n− Z + k + 1)

〈ab†〉 =
Z−1

∑
k=0

c∗k ck+1

√
(n− k + 1)(n− Z + k)

〈a†abb†〉 =
Z

∑
k=0
|ck|2(n− Z + k)(n− k + 1))

〈aa†b†b〉 =
Z

∑
k=0
|ck|2(n− Z + k + 1)(n− k))

〈a†a†bb〉 =
Z−2

∑
k=0

ckc∗k+2

√
(n− k)(n− k− 1)(n− Z + k + 1)(n− Z + k + 2)

〈aab†b†〉 =
Z−2

∑
k=0

c∗k ck+2

√
(n− k + 1)(n− k + 2)(n− Z + k)(n− Z + k− 1).

If we take a case where the number of photons removed from the state is small com-
pared to the total, i.e., n � Z, then denoting the use of this approximation as (i), the
Fisher information is

F
(i)
= 2

Z

∑
k=0

n2|ck|2 −
Z−2

∑
k=0

n2(ckc∗k+2 + c∗k ck=2) +

(
Z−1

∑
k=0

nckc∗k+1

)2

+

(
Z−1

∑
k=0

nc∗k ck+1

)2

−
Z−1

∑
k=0

Z−1

∑
k′=0

n2(ckc∗k+1c∗k′ck′+1 + c∗k ck+1ck′c∗k′+1). (C.18)

If we now make assumption (ii) that all of the coefficients are the same, ck =
1√
Z

, then

F
(i,ii)
=

4n2

Z
, (C.19)

so the Cramér-Rao inequality leads to

(∆φd)
2 ≥ Z

N2 , (C.20)
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where N = 2n− Z.

C.5 MZI fringe and phase sensitivity

Using the Schwinger representation to determine the observables when the general Z-
subtracted state from Eq. 5.26 is input into a MZI, we start by finding the expectation
value of Jx and Jz. We find that

〈Jz〉 = 0 (C.21)

〈Jx〉 =
1
2

s

∑
m=1−s

c∗m−1cm

√
(j + m)(j−m + 1) +

1
2

s−1

∑
m=−s

c∗m+1cm

√
(j−m)(j + m + 1)

=
s−1

∑
m=−s

cm+1cm

√
(j−m)(j + m + 1)

(i)
= j

s−1

∑
m=−s

cm+1cm,

where we have used that all cm ∈ R, cm = c−m, and have used approximation (i) that
j � s. From here, we can estimate the value of the remaining sum by making use of
the bounds on cm+1

cm
, denoted by (ii), for all of the coefficients derived in Appx C.3. This

leads to the result that

j
2s

(i,ii)
≤ 〈Jx〉

(i)
≤ j (C.22)

The observable fringe is given by the expectation value of 2Jz at the output, where

|〈J′z〉| = | cos φ〈Jz〉 − sin φ〈Jx〉|
j

2s
| sin φ|

(i,ii)
≤ |〈J′z〉|

(i)
≤ j| sin φ|. (C.23)

The end result above shows that the measurable fringe scales with the mean photon
number of the state. When calculating ∆φ, the Heisenberg transformations yield

∂d
∂dφ
〈J′z〉 = − sin φ〈Jz〉 − cos φ〈Jx〉 (C.24)

(∆J′z)
2 = (cos φ∆Jz)

2 + (sin φ∆Jx)
2 − sin φ cos φ(〈{Jz, Jx}〉 − 2〈Jz〉〈Jx〉). (C.25)
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Deriving the quantities individually, we have

(∆Jz)
2 = 〈J2

z 〉 =
s

∑
m=−s

m2|cm|2 < s2, (C.26)

where the inequality is obtained by replacing all m2 with the maximimum value of s2.
We also find that

〈J2
x〉 =

1
4
〈J2

+ + J2
− + 2(J2 − J2

z )〉

=
1
2

s

∑
m=−s
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+
1
2
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=
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2
+
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s−2

∑
m=−s

cmcm+2

j2

2

(
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1
s(2s + 1)

)
+
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2

(i,ii)
≤ 〈J2

x〉
(i)
≤ 1, (C.27)

where the sum in the second-to-last line was bounded by the ratio of next-nearest
neighboring coefficients derived in Appx C.3. This leads to the variance

(∆Jx)
2 ∼ O(j2). (C.28)

The other necessary terms are

〈{Jz, Jx}〉 =
s−1

∑
m=−s

(2m + 1)cm+1cm

√
(j−m)(j + m + 1) ≈ 〈Jx〉 (C.29)

2〈Jz〉〈Jx〉 = 0, (C.30)

which when combined with Eqs. C.23, C.26, and C.28 lead to an overall value for the
phase difference estimator given by Eq. 5.29 to be

(∆φ)2
(i)
≤ (s cos φ)2 + (∆Jx sin φ)2 + sin φ cos φ〈Jx〉

( j
2s cos φ)2

(C.31)
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This takes on a minimum value when φ = 0 to yield the upper bound

∆φmin
(i,ii)
≤ 2s2

j
, (C.32)

which scales with the HL up to a constant factor. By taking the upper limit of 〈Jx〉 from
Eq. C.22, the lower bound on ∆φ when φ = 0 is

√
s

j

(i,ii)
≤ ∆φmin. (C.33)

C.6 Phase sensitivity for a general twin-beam input

In this section, we show that our photon subtraction protocol also works for the most
general twin-beam statistical mixture, e.g. as produced by an OPO above threshold.
The density operator in the Fock basis is given by

ρab = ∑
n,n′

ρn,n′ |nn〉 〈n′n′| . (C.34)

The two beamplitter operations are given by

Uac′Ubc = exp
[
θ2(a†c′ − ac′†)

]
exp

[
θ1(b†c− bc†)

]

= ∑
j,k

θk
1θ

j
2

j!k!

(
a†c′ − ac′†

)j (
b† − bc†

)k
, (C.35)

where c′ = c cos θ1− b sin θ1 is the transformed vacuum mode from the first beamsplit-
ter input. Because the input state, ρab, consists solely of vacuum in the input mode
c, and we are post-selecting the transformed mode c on a detection of Z photons, we
need only consider terms with of the form cxc†(x+Z) and c†(x+Z)cx. To further simplify,
we can assume the highly unbalanaced beamsplitter regime, where both θ1 � 1 and
θ2 � 1, in which case we need only consider terms with c†Z. Thus, to leading order in
θ, we have j + k = Z and

Uac′Ubc ≈
Z

∑
k=0

rk
1rZ−k

2
k!(Z− k!)

(−at1)
Z−k (−b)k c†Z, (C.36)
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where r1 = sin θ1 ≈ θ1 and r2 = sin θ2 ≈ θ2. Sending the twin-beam input through the
unbalanced beamsplitters and detecting Z photons in mode c leads to

ρout =Trc

[
(|Z〉〈Z|)cUac′Ubcρab ⊗ |0〉〈0|U†

bcU
†
ac′

]
(C.37)

=Trc

[
(|Z〉〈Z|)c

Z

∑
k,k′

rk+k′
1 r2Z−k−k′

2 t2Z−k−k′
1

k!k′!(Z− k)!(Z− k′)!

∞

∑
n,n′

ρn,n′aZ−kbkc†Z|n, n, 0〉〈n′, n′, 0|a†(Z−k′)b†k′cZ

]

(C.38)

∝(r2t1)
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∞

∑
n,n′

ρn,n′
Z

∑
k,k′

Ck,k′ |n− Z + k, n− k〉〈n′ − Z + k′, n′ − k′|, (C.39)

where Cn,n′ contains all of the remaining binomial coefficients,

Cn,n′ =

[(
n
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)(
Z
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)(
n

Z− k

)(
n′

k′

)(
Z
k′

)(
n′

Z− k′

)]1/2 ( r1

t1r2

)k+k′

. (C.40)

Writing the output in the Schwinger representation, we have

ρout =
∞

∑
j,j′

ρj,j′
s

∑
m,m′=−s

C′m,m′ |j, m〉〈j′, m′|, (C.41)

where s = Z
2 . From here, the calculations for the Schwinger operators follow the form of

C.5 for each of the superpositions within the mixture, leading to the finding that about
the interferometric phase φ = 0, we have that (∆J′z)2 ≤ s2. Additionally, following the
arguments of C.3, we find that 〈Jx〉 ≥ javg

2s , where javg is the average value of j in the
statistical mixture. These values lead to the determination that about φ = 0,

∆φ =
(∆J′z)∣∣∣ ∂
∂φ 〈J′z〉

∣∣∣
|φ=0

(i,ii)
≤ 2s2

javg
, (C.42)

and hence the general twin-beam source is sufficient to achieve phase-sensitivity scal-
ing proportionally with the HL.
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Appendix D

Pulse Timing

Channel DELAY WIDTH Mode Gate
Trigger 79.90 µs 100 ns Active High Disabled
Pump AOM 79.97 µs 100 ns Active High Disabled
IR AOM 0 80.10 µs Active Low Disabled
Lock shutter 40 ms 182 ms Active High Active Low
TES shutter 373 ms 227 ms Active Low Disabled
PDH lock
freeze

420 ms 150 ms Active Low Active Low

Gate 400 ms 200 ms Active High N/A

TABLE D.1: Global settings: pulse period of 80.2 µs and a duty cycle of
5, 000 pulses on followed by 2, 500 pulses off. All channels initialize at
the same time and are INACTIVE for duration DELAY. The signal is then
ACTIVE for duration WIDTH. The mode determines whether the signal is
high (5V) or low (0V) when ACTIVE. Channels can additionally be gated,
such that they follow the prescribed settings only when the gate is enabled

or disabled.

This section discusses the pulse timing sequence used to drive the AOMs, trigger
data collection, perform on/off cavity locking, and operate the shutters. The pulsing
was achieved using the Quantum Composers 9500 series pulse generator. The pulse
generator has a fixed internal clock as a reference, and 8 signals can be independently
set with respect to the same reference. Each channel can emit a square pulse from 0 to 5
volts with tunable delay and width, while all channels adhere to a global pulse period
and duty cycle if specified. The timings for each channel are displayed in Table D.1 and
the outputs are shown in Fig. D.1. The global pulse settings give an µs period to allow
time for 100− 200 ns width pulses followed by an 80 µs gap during which the TES can
completely re-cool before the next event. Additionally, the pulses were sent in trains of
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5, 000 pulses followed by a duration of 2, 500 periods without pulses during which the
cavity can be locked.

The specifics of the individual timing for each channel are relatively arbitrary, but
the results can be seen more clearly in the figure. First, Fig. D.1(a) shows the individ-
ual pulses for the pump (green trace) and IR (magenta) AOMs. Each pulse is 100 ns
in width, but the IR pulse must be delayed so that the pump pulse occurs first. The
delay was chosen by tuning the pulse separation and performing TES measurements
on photon arrival times as discussed in Sec. 8.2.2.

FIGURE D.1: Green trace: TES shutter. Blue trace: signal to freeze PDH
locking servo. Yellow trace: Locking beam shutter. Magenta trace: IR
AOM pulsing. The green shaded region is when data collection occurs
while the blue shaded region is when the cavities are locked. The region
between is used as a buffer to ensure signals are turned on in the proper

order.

Zooming out, the pulse schedule for the entire data collection schedule can be
seen in Fig. D.1(b). Here, the green trace is the signal enabling the shutters in front of
the TES channels, the yellow trace shows the signal to the shutter in front of the locking
beam, the blue trace is a signal to freeze the PDH cavity locking, and the magenta is
the IR AOM pulse schedule. During the green shaded area, the experiment is in the
data collection phase. Here, the TES shutters are open, the locking shutter is closed, the
PDH locking is frozen to prevent it responding to a lack of signal, and both AOMs are
pulsing. During the blue shaded region, the experiment is in the cavity locking phase.
Here, the shutter positions are reversed, the signal to freeze the cavity lock is disabled,
and the IR beam is turn to CW so that there is sufficient signal to lock the cavities.
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These two regions are relatively clear, but the region between, the unshaded re-
gion, is actually the most important. This region acts as a ‘buffer’ between the data
collection phase. Here, it is important to ensure that the signals turn on and off in the
precise order, taking into account physical delays from the mechanical shutters. When
transitioning from data collection to locking, the TES shutter must be the first to close
to prevent the detector from saturating when the locking beam is engaged. Second,
the locking beam shutter must open before the PDH locking is enabled. Otherwise, the
PDH electronics will register no signal on the photodiode used for generating the error
signal, so the servo will throw the cavity out of lock if one is not careful. When tran-
sitioning from the locking phase to the data collection phase, everything must proceed
in the precise reverse order to that just described.
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Quantum Simulation Tutorial



Introuction to Quantum Simulation with QuTiP
Miller Eaton

January 26, 2022

1 Intro and Install Instructions
Quantum Toolbox in Python (QuTiP) is an open-source software package useful for simulation a
variety of quantum systems. Although it is well-documented online, it has many applications and
can quickly turn into a deep rabbit hole if one isn’t careful. In order to have a more directed focus, I
attempt to give a brief introduciton as it applies to simulating quantum optical systems. To begin,
it will be necessary to install Python locally along with the QuTiP libraries. I suggest installing
Anaconda and using Jupyter Notebooks with Anaconda Navigator. Using Jupyter Notebooks allows
for one to easily interact with the code and quickly edit and replot different segments.

After installing Anaconda, run the Anaconda Prompt to lauch a terminal. Next, if desired, create an
environment for QuTiP using ‘conda create –name myenv’ where ‘myenv’ is the environment name.
Activate this environment with ‘conda activate myenv’. Once one has an Anaconda environment
active (or simply in the base environment), one can install QuTip with pip using the command
‘pip install qutip’. Install Anaconda navigator with ‘conda install anaconda-navigator’. After the
install, launch Anaconda Navigator, and then Jupyter Notebook can be installed using the user
interface. Alternatively, it can be installed via the terminal.

Because the quantized electromagnetic field can be described as a quantum harmonic oscillator as
discussed briefly in Thesis Chapter 1, any quantum-optical mode (qumode) can be written in the
Fock basis and described in terms of eigenstates of the harmonic oscillator. This is ammenable
to computation with linear algebraic computing methods since all states can be represented by a
discrete basis. Additionally, nearly all physical quantum states can be accurately described with a
finite-dimensional Hilbert space - we impose an energy cutoff that limits the maximum Fock-basis
component. This is equivalent to saying that the probability to find any number of photons above
some maximum value in a given quantum state vanishes.

Of course, states in real life can have many orders of magnitude of photons. However, if a system
has N photons, then quantum effects generally only persist if the losses are on the order of 1

N or
lower (see the Thesis Chapter on Quantum Sensing). Thus, for quantum effects, a realistic Hilbert
space for a single qumode is generally not too large. However, the Hilbert space scales exponentially
when considering multiply qumodes. The point of quantum computing is to take advantage of this
exponential scaling, so obviously it will be difficult to simulate classically, but the point here is that
the Hilbert space scales as dn where d is the Hilbert space dimension of a single mode and n is the
number of modes. With qumodes, the base itself, d, can be quite large, which leads to running into
a classical wall much faster than with qubits.

For example, supposed I have a computer with 16 GB of memory which is ∼ 1.3 × 1011 bits. To
perform one simple simulation, the computer will at minimum have to hold one matrix describing
the state, one matrix describing the operator to be applied, and one matrix describing the output

1



state. This is even very optimistic, as I am ignorning any intermediate memory needed to calculate
floating-point operations of the matrix multiplication. Regardless, for a Hilber space of D = dn,
the state will have ∼ 2D real parameters (since probability amplitudes can be complex), and the
operator will need memory allocation for ∼ (2D)2 parameters. If each parameter is a float data
type containing 32 bits, then to simulate this simple evolution we need 32 × (4D + 4D2) bits of
memory at minimum. This leads to a maximum total Hilbert space of D ≈ 32, 000, which means
one could not quite simulate 15 qubits. However, for an optical system with 1% overall loss, which
is not unreasonable experimentally, one could have up to N ≈ 100 photons in an optical mode with
quantum effects. Setting d = 100 means we can only simulate 2 qumodes with the same 16 GB
machine! This, again, is the power of continuous-variable quantum optics we would like to leverage.

I digress - back to simulating quantum optics. The first order of business is to understand how
quantum optical states can be represented in a way that a machine could easily perform calculations.
The natural way is already prescribed by linear algebra. We simply assign each state a complex
vector that gives the Fock-basis representation. As an example, the single-mode Fock state |n⟩
can be described by the unit vector (0, 0, ..., 1, ..., 0), where the 1 is located in the n-th possition of
the d-dimensional vector. Similarly, operators are represented by d2-dimensional square matrices.
Multi-mode states and operators are just created by taking the tensor product between single-mode
state vectors and operator matrices, respectively. This will become more clear with some examples,
so let’s start by importing some other Python packages used for mathematics and plotting, and
they we’ll import everything from qutip. Generally, it saves memory and computation time by only
importing specific functions from the QuTip library, but for now, we won’t worry about that and
will just import everything.

2 Basics
[1]: import numpy as np

import matplotlib.pyplot as plt
import math, cmath, random, functools, scipy
from qutip import*

Let’s start by defining a small Hilbert space, just large enough to see what’s going on without
become overly cumbersome. We’ll then define the bosonic annihilation operator, â, along with a
single photon Fock state, |1⟩.

[2]: Dim=4 #Define the Hilbert Space dimension
a1=destroy(Dim) #the single-mode annihilation operator
photon=fock(Dim,1) # a Fock state existing in Hilbert space size Dim with␣
↪→excitation 1

Start by looking at exactly what the variable ‘photon’ is. Notice that in addition to being a vector,
the QuTiP library makes it a Quantum object from the class Qobj(), which has several useful
features in addition to keeping track of the quantum properties (such as being a bra or ket).

[3]: photon

[3]:

2



Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket



0.0
1.0
0.0
0.0




The above vector is a ket, but we can get the bra by taking the dagger of the quantum object. In
fact, the .dag() method can be applied to any quantum object to get the daggered state or operator.

[4]: photon.dag()

[4]: Quantum object: dims = [[1], [4]], shape = (1, 4), type = bra
(
0.0 1.0 0.0 0.0

)

Note that instead of using the fock() function, we could also define an array and later pass it to the
Qobj() class. This is a useful way to initialize any input state vector. The .full() method converts
a quantum object back to an array.

[5]: my_array=np.array([0,1,0,0])
print('To a quantum object: ', Qobj(my_array))
print('And back to an array... ',Qobj(my_array).full())

To a quantum object: Quantum object: dims = [[4], [1]], shape = (4, 1), type =
ket
Qobj data =
[[0.]
[1.]
[0.]
[0.]]
And back to an array… [[0.+0.j]
[1.+0.j]
[0.+0.j]
[0.+0.j]]

I can also use the .norm() method to find the norm of any vector. In this way I can normalize
an otherwise non-normalized state. I can also use the .unit() method to turn any vector into a
unit vector. Suppose I want to input the superposition 1√

2
(|1⟩ + |2⟩) but am lazy and neglect the

normalizing factor.

[6]: my_array=np.array([0,1,1,0])
superpos=Qobj(my_array)
normed_superpos=superpos.unit()
normed_superpos

[6]:

3



Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket



0.0
0.707
0.707
0.0




Next, let’s look at an operator, the annihilation operator defined above.

[7]: a1

[7]: Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False



0.0 1.0 0.0 0.0
0.0 0.0 1.414 0.0
0.0 0.0 0.0 1.732
0.0 0.0 0.0 0.0




The annihilation operator is define such that it will map every n Fock state to the n − 1 Fock
state along with the necessary coefficients as expected: â|n⟩ = √

n|n − 1⟩. Similarly, one can use
the creation operator simply by taking the dagger of annihilation operator. Let’s apply â†2 to the
vacuum to generate the two-photon Fock state.

[8]: vac=fock(Dim,0)
two_photon=(a1.dag()**2*vac).unit()
two_photon

[8]: Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket



0.0
0.0
1.0
0.0




Superpositions can be defined by turning an array into a quantum object, but they can also be
formed by summing Fock states. For example, lets make the state |ψ⟩ = 1√

2
(|0⟩+ i|2⟩).

[9]: superpos2=(fock(Dim,0)+1j*fock(Dim,2)).unit()
superpos2

[9]: Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket



0.707
0.0

0.707j
0.0




Because all real quantum state simulations will need to include imperfects such as loss, we need a
way to deal with mixtures. Fortunately, density matrices are equally easy to deal with. However,
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note that the density matrix takes up more memory and thus takes longer to perform calculations
with since the computer needs to put a complex number at each element in the square matrix. We
can get the density matrix in two ways: either use the ket2dm() function or take a product of the
ket and the bra. We can check that the two density matrices are the same by using the fidelity()
function.

[10]: dm1=ket2dm(superpos2)
dm2=superpos2*superpos2.dag()
print(dm1)
print('The fidelity is: ', fidelity(dm1,dm2)**2)

Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0.5+0.j 0. +0.j 0. -0.5j 0. +0.j ]
[0. +0.j 0. +0.j 0. +0.j 0. +0.j ]
[0. +0.5j 0. +0.j 0.5+0.j 0. +0.j ]
[0. +0.j 0. +0.j 0. +0.j 0. +0.j ]]
The fidelity is: 1.0000000149011607

The fidelity is 1, so they are the same state. The fractial deviations are due to round-off errors
when using the built in functions and a finite Hilbert space. Generally, numerical calculations
aren’t reliable beyond the fourth or fifth decimal. Note that this fidelity function returns

Tr
[√√

σρ
√
σ

]

(Tr
[√
σρ

]
if either state is pure), so we also need to square it to get the regular definition. Without

squaring, we get the overlap of the absolute value of the probability amplitudes, but because we
want to know how close two states are, comaring probabilites makes more sense. This is clearer if
we take the state dm1 which is an even superposition of |0⟩ and |2⟩, so we would expect the fidelity
with either consistuent part to be 1/2 and not 1√

2
.

[11]: print('Without squaring: ',fidelity(dm1,fock(Dim,2)))
print('With squaring: ', fidelity(dm1,fock(Dim,2))**2)

Without squaring: 0.7071067811865475
With squaring: 0.4999999999999999

Now, let’s try to calculate some expectation values. For a given operator Ô, this can be done either
as ⟨ψ|Ô|ψ⟩ or by taking the trace Tr[ρÔ]. Let’s do the expectation of photon number, ⟨â†â⟩. Notice
that while the answer is the same, the data type isn’t. Using the latter method of the trace, we
just get a number. Using the former, however, we get a 1× 1 quantum object.

[12]: print(superpos2.dag()*a1.dag()*a1*superpos2)
print((dm1*a1.dag()*a1).tr())

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =
[[1.]]
1.0
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Occassionally it is useful to time code segments, as occassionally diffect methods achieving the same
calculation may take different times. In general, if one can perform a calculation with pure state,
it is generally easier (faster or less memory) to perform calculations without density matrices. Of
course, if one later wishes to introduce loss, the density matrix formalism will become necessary.

[13]: Q=(1/np.sqrt(2))*(a1.dag()+a1)
import time
t1=time.time()
var=(dm1*Q**2).tr()-(dm1*Q).tr()**2
t2=time.time()
print('Variance of Q is ', var, ' and took ', t2-t1)

Variance of Q is 1.4999999999999996 and took 0.0009970664978027344

Next, consider how we treat multi-mode systems. If one has two qumodes, |ψ⟩|ϕ⟩, this state can
be encode by taking the tensor product of the two. Similarly, I could make a two mode operator
out of a tensor product of two single-mode operators. Remember that taking a tensor product is
essentially how the Hilbert spaces merge, so we always have to be careful to make the dimensions
of everything match.

As an example, let’s take |ψ⟩ = |0⟩ and |ϕ⟩ = 1√
2
(|0⟩+|1⟩). Now, apply the creation operator to just

the first mode to add in one photon, and calculate the mean photon number, which can be done on
the individual mode separately and then later add the result, so the tensor products aren’t really
necessary. Next, apply a superposition of a creation operator to each mode: 1√

2
(â†1 + â†2). Now

taking the tensor products is absolutely necessaray. One might naively think that the expectation of
final photon number will be the same in both cases, but since â†|n⟩ =

√
n+ 1|n+1⟩, the coefficient

will change the ratio of the compenents of the superpostion. Thus, applying creation operators
is not the same as ‘adding’ a photon. Note that qeye(Dim) is the identity matrix as a quantum
object for a Dim dimensional Hilbert space. I’ll also reduce the size of the Hilbert space for easier
visualization, and define an annihilation operator for each mode. This isn’t strictly necessary, but
it is helpful as a bookkeeping method.

[14]: Dim=3; a1=destroy(Dim); a2=destroy(Dim)
psi=fock(Dim,1)
phi=(fock(Dim,0)+fock(Dim,1)).unit()
in_state=tensor(psi,phi)
print('The initial state is, ', in_state)
out1=(tensor(a1.dag(),qeye(Dim))*in_state).unit()
print()
print('Applying the creation operator to the first mode and normalizing yields␣
↪→', out1)

exp1=out1.dag()*(tensor(a1.dag()*a1,qeye(Dim))+tensor(qeye(Dim),a2.
↪→dag()*a2))*out1

print('Which has photon-number expectation value of ', exp1)
out2=((tensor(a1.dag(),qeye(Dim))+tensor(qeye(Dim),a2.dag()))*in_state).unit()
print('Applying a superposition of creation operators to both modes and␣
↪→normalizing yields ', out2)
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exp2=out2.dag()*(tensor(a1.dag()*a1,qeye(Dim))+tensor(qeye(Dim),a2.
↪→dag()*a2))*out2

print('Which has photon-number expectation value of ', exp2)

The initial state is, Quantum object: dims = [[3, 3], [1, 1]], shape = (9, 1),
type = ket
Qobj data =
[[0. ]
[0. ]
[0. ]
[0.70710678]
[0.70710678]
[0. ]
[0. ]
[0. ]
[0. ]]

Applying the creation operator to the first mode and normalizing yields Quantum
object: dims = [[3, 3], [1, 1]], shape = (9, 1), type = ket
Qobj data =
[[0. ]
[0. ]
[0. ]
[0. ]
[0. ]
[0. ]
[0.70710678]
[0.70710678]
[0. ]]
Which has photon-number expectation value of Quantum object: dims = [[1], [1]],
shape = (1, 1), type = bra
Qobj data =
[[2.5]]
Applying a superposition of creation operators to both modes and normalizing
yields Quantum object: dims = [[3, 3], [1, 1]], shape = (9, 1), type = ket
Qobj data =
[[0. ]
[0. ]
[0. ]
[0. ]
[0.37796447]
[0.53452248]
[0.53452248]
[0.53452248]
[0. ]]
Which has photon-number expectation value of Quantum object: dims = [[1], [1]],
shape = (1, 1), type = bra
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Qobj data =
[[2.57142857]]

3 Functions and Operators
QuTiP comes with a lot of predefined functions that can be directly used to make or manipulate
quantum states. For example, instead of using fock(Dim, n) to initialize states, one could begin
with a coherent state, |α⟩ with by using coherent(Dim,α). QuTiP also has built in operators for
squeezing, displacements, spins, commutators, and several more. However, differences in definitions
(factors of 2, h̄, etc…) can occasionally cause problems if one is inconsistent. As QuTiP does not have
all operators predefined, and mixing my own definitions with their may sometimes be incompatible,
I generally prefer defining all of my own functions from scratch.

To demonstrate this, I will define a displacement operator, a single-mode rotation operation, and a
squeeze operator. After generating a state we can visualize its photon number distribution, Wigner
function, and calculate expectation values. For example to apply an optical phase (rotation in
phase space), I would need to create the operator

R̂ = eiθâ
†â.

Because the creation and annihilation operators are already matrices, I must use the method
.expm() which exponentiates an existing operator.

[15]: def D(alpha, Dim):
#alpha is the complex displacement amplitude
#Dim is the Hilbert space dimension
a1=destroy(Dim)
op=alpha*a1.dag()-np.conj(alpha)*a1;
return op.expm() #exponentites an operator

def R(theta, Dim):
#theta is the rotation angle
#Dim is the Hilbert space dimension
a1=destroy(Dim)
op=1j*theta*a1.dag()*a1;
return op.expm() #exponentites an operator

def Sq(amp,phase,Dim):
#amp is the strength of the squeeze (same as r)
#phase is the squeezing angle
#Dim is the Hilbert space dimension
a1=destroy(Dim)
op=(1/2)*(amp*np.e**(1j*phase)*a1.dag()**2-amp*np.e**(-1j*phase)*a1**2)
return op.expm() #exponentites an operator

[16]: Dim=30 #Hilbert dimension
a1=destroy(Dim) # annihilation operator
Q=(a1.dag()+a1)/np.sqrt(2)
P=1j*(a1.dag()-a1)/np.sqrt(2)
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vac=fock(Dim,0) #vacuum state

alpha=(1+2j)/np.sqrt(2) #displacement value
coher=D(alpha,Dim)*vac #coherent state

print('Expectation value of Q is ', expect(Q,coher))
print('Variance of Q is ', variance(Q,coher))
print('Expectation value of P is ', expect(P,coher))
print('Variance of P is ', variance(P,coher))

Expectation value of Q is 0.9999999999999997
Variance of Q is 0.49999999999999956
Expectation value of P is 1.9999999999999991
Variance of P is 0.5000000000000009

The code above starts by making a vacuum state and then uses the displacement function we
defined to generate the coherent state. I then calculated the expectation values and variance of the
quaradure operators Q̂ and P̂ using inbuilt QuTiP functions. These function return the expectation
value and variance, respectively, of an operator for a certain state, eg,

expect(Ô, |ψ⟩) = ⟨ψ|Ô|ψ⟩.
Note that these functions work if the input state is a ket or a density matrix.

We see that ⟨Q̂⟩ = 1√
2
Re(α) and ⟨P̂ ⟩ = 1√

2
Im(α) as expected. Also, the variance for both Q̂ and

P̂ is 1/2, which is the same as vacuum (h̄ = 1).

Next, let’s define a plotting function to easily visualize the photon-number distribution and the
Wigner function of the states.

[17]: import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib as mpl

def state_plot(state,Qmax,points,numcut):
#Qmax: highest quadrature value at the plot edge
#points: number of points in one axis from 0 out
#numcut: define the maximum photon number to show for the probability␣

↪→distribution
dx=Qmax/points
xvec = np.arange(-points,points+1)*dx
X,Y = np.meshgrid(xvec, xvec)
W=wigner(state,xvec,xvec)

fig = plt.figure(figsize=(16,8))
# `ax` is a 3D-aware axis instance, because of the projection='3d' keyword␣

↪→argument to add_subplot
ax = fig.add_subplot(2, 3, 1)
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#define a surface plot and use vmin and vmax to set the limits of the␣
↪→colorscale to ensure the middle is at the origin

p = ax.contourf(X, Y, W, 60, cmap=cm.RdBu, vmin=-1/np.pi,vmax=1/np.pi)
ax.set_ylabel('P')
ax.set_xlabel('Q')
cb = fig.colorbar(p, shrink = 0.5) # add a colorbar
# surface_plot with color grading and color bar
ax = fig.add_subplot(2, 3, 2, projection='3d')
p = ax.plot_surface(X, Y, W, rstride=1, cstride=1, cmap=cm.RdBu, vmin=-1/np.

↪→pi,vmax=1/np.pi, linewidth=0.5)
ax.set_ylabel('P')
ax.set_xlabel('Q')
cb = fig.colorbar(p,shrink = .5)
ax=fig.add_subplot(2, 3, 3)
if isket(state)==True:

#if the state is a ket, take the square magnitude of each element
p=ax.bar(range(numcut),(np.abs(state.full().flatten())**2)[0:

↪→numcut],tick_label=range(numcut))
else:

#if density matrix, just use the diagonal
p=ax.bar(range(numcut),state.diag()[0:numcut],tick_label=range(numcut))

ax.set_ylabel('P(n)')
ax.set_xlabel('n')

return W, fig

[18]: Wig_plot_coh=state_plot(coher,4,50,12)
print('Mean photon number is: ', expect(a1.dag()*a1,coher))

Mean photon number is: 2.4999999999999982

We can now see the nice Wigner function of our state along with the Poissonian photon number
distribtuion of ⟨â†â⟩ = |α|2.
Next, do the same thing but with a squeezed vacuum state. Then we can also apply the rotation
operator after squeezing the vacuum to change the squeezing angle.
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[19]: sqz_param=0.345 #About 3 dB of squeezing
sqz_vac=Sq(sqz_param, 0, Dim)*vac
Wig_plot_sqz=state_plot(sqz_vac,4,50,12)
print('Mean photon number is: ', expect(a1.dag()*a1,sqz_vac))
print('Expectation value of Q is ', expect(Q,sqz_vac))
print('Variance of Q is ', variance(Q,sqz_vac))
print('Expectation value of P is ', expect(P,sqz_vac))
print('Variance of P is ', variance(P,sqz_vac))

Mean photon number is: 0.12382290057728355
Expectation value of Q is 0.0
Variance of Q is 0.9968577666215033
Expectation value of P is 0.0
Variance of P is 0.25078803453306353

Above, we can see that the uncertainty in the P̂ quadrature has been reduced, while the Q̂ un-
certainty is increased. Since our squeezing parameter was equivalent to 3 dB of squeezing, we see
that the uncertainty doubled from the vacuum in Q̂ and is reduced by half for P̂ . Another inter-
esting quality of squeezed states, showcased here, is that they only contain even photon number
probabilities.

Let’s apply the same squeeze operator again to squeeze twice as hard, then rotate using the phase
operator.

[20]: phase=np.pi/4
sqz_vac2=R(phase,Dim)*Sq(sqz_param, 0, Dim)*sqz_vac
Wig_plot_sqz2=state_plot(sqz_vac2,4,50,12)
print('Mean photon number is: ', expect(a1.dag()*a1,sqz_vac2))
print('Variance of Q is ', variance(Q,sqz_vac2))
print('Variance of P is ', variance(P,sqz_vac2))
print('Variance of (Q+P)/sqrt(2) is ', variance((Q+P)/np.sqrt(2),sqz_vac2))
print('Variance of (Q-P)/sqrt(2) is ', variance((Q-P)/np.sqrt(2),sqz_vac2))

Mean photon number is: 0.5566199519267636
Variance of Q is 1.0566199519267634
Variance of P is 1.0566199519267634
Variance of (Q+P)/sqrt(2) is 1.9874490939334797
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Variance of (Q-P)/sqrt(2) is 0.12579080992004604

The above state is squeezed twice as hard, so we should expect the minimum uncertainty to be 1
4

of the vacuum uncertainty (so about 1
8). However, we also rotated the state by an angle of π

4 . Thus
Q̂ and P̂ are no longer the squeezed and antisqueezed quadratures, but rather (Q̂−P̂ )√

2
and (Q̂+P̂ )√

2
.

Plots of the Wigner function are helpful because they give a general idea about both quadratures
simultaneous. They are also useful as they easily indicate the difference between Gaussian and
non-Gaussian state (non-Gaussian pure states have negativity in phase space). It is important to
note that for a statistical mixture, the Wigner function may be positive everywhere yet still by non-
Gaussian. On occassion, however, it is also nice to directly plot the probability distribution of the
quadratures. This can be done by integrating the Wigner function over the conjugate quadrature.

Let’s try this with some Fock states. We know that

|n⟩ = π−1/4

√
2nn!

∫
dxe−x2/2Hn(x)|x⟩q

where Hn(x) are the n-th order Hermite polynomials and |x⟩q is an eigenstate of the Q̂-quadrature.
Let’s verify this by calculating the Wigner function of a Fock state, integrating it, and comparing
the resultant probability to the Hermite polynomials.

[21]: from scipy.integrate import simps
from scipy.special import hermite
from scipy.special import factorial as fac

five_photon=fock(Dim,5)
#increase the number of points in the plot so the integral will be more accurate
Wig_plot_fock=state_plot(five_photon,4.5,80,12)
print('Minimum value of the Wigner function is ', np.min(Wig_plot_fock[0]))

Minimum value of the Wigner function is -0.3183098861837905
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[22]: dx=4.5/80
xvec = np.arange(-80,81)*dx #Use same xvec as above
W=wigner(five_photon,xvec,xvec) #Wigner function as a 2D array
pdist=simps(W,xvec,dx) #integrate over the q axis to get the p distribution
qdist=simps(W.T,xvec,dx) #integrate over the p axis to get the q distribtuion

###Define the theoretical 5-photon Fock state distribution in terms of the␣
↪→Hermite polynomial###

theory_dist=(np.e**(-xvec**2)*(hermite(5)(xvec))**2)/(2**5*fac(5)*np.pi**(1/2))

plt.plot(xvec,theory_dist,'-k', xvec,pdist,'or',xvec,qdist,'^b', linewidth=2)
plt.legend(('Q-dist Theory','P-dist Sim','Q-dist Sim', ),

loc=(1.025,0.2), shadow=True, fontsize=14)
plt.xlabel('Quadrature Value',fontsize=18)
plt.ylabel('Prob',fontsize=18)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()
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From above, we get great agreement between all of the different calculations. Note that to get the
probability distribution along any generalized quadrature, it is usually easier computationally to
simply rotate the state in phase-space first (with the rotation operator), and then calculate and
integrate the Wigner function along the ‘new’ Q̂ and P̂ axes.

4 Interactions and Detection
Next, we’ll go through how to simulate basic interactions between qumodes and simulate projective
measurement. To do this, let’s start by simulating the Hong-Ou-Mandel effect. First, we’ll need to
define a beamsplitter operator along with a function for detection.

[23]: def BS(theta,Dim):
a1=destroy(Dim)
a2=destroy(Dim)
op=((theta)*(tensor(a1,a2.dag()) - tensor(a1.dag(),a2)))
return op.expm()

def PNR_m1(n,Dim): #pure PNR measurement on mode 1 of two modes
proj=tensor(fock(Dim,n)*fock(Dim,n).dag(),qeye(Dim))
return proj

The Hong-Ou-Mandel effect occurs when a single photon is input on each input of a balanced
beamsplitter. Due to the quantum interference, the photons will perfectly ‘bunch’ in that they will
both exit the beamsplitter together on the same output port. To show this, let’s look at the prob-
ability to measure a single photon on one of the beamsplitter outputs as a function of beamsplitter
reflectivity. When the beamsplitter is perfectly transmittive, the photons don’t interact and the
detector should always measure one photon. Once the beamsplitter becomes balanced with r = t,
we expect the photons to bunch, so the detector would either see zero or two photons. Thus the
probability to measure a single photon drops to zero.

To show this, we’ll but a single photon in each input and apply the beamsplitter unitary,

B̂ = eθ(â1â
†
2−â†1â2).

Then we’ll plot the probability to measure a single photon on output one as a function of θ.

[24]: Dim=5
photon1=fock(Dim,1)
photon2=fock(Dim,1)
in_state=tensor(photon1,photon2) #two-mode input state
theta_vec=np.linspace(0,np.pi/2,101) #values for beamsplitter angle
single_photon_prob=[] #empty list to hold our probabilities
for i in theta_vec: #Loop through each theta value

out_state=BS(i,Dim)*in_state #state after the beamsplitter
prob=(PNR_m1(1,Dim)*out_state).norm() #Project the output mode 1 on a␣

↪→single photon and get the coefficient
single_photon_prob.append(prob)

plt.plot(theta_vec,single_photon_prob)
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plt.xlabel(r'$\theta$',fontsize=18)
plt.ylabel(r'$P(1)$',fontsize=18)
plt.xticks([0,np.pi/4,np.pi/2],['0',r'$\pi/4$',r'$\pi/2$'],fontsize=12)
plt.yticks(fontsize=12)
plt.show()

5 Photon Catalysis
Building on the idea of the Hong-Ou-Mandel effect, let’s go on to simulate Photon Catalysis, which
can be thought of as a generalized Hong-Ou-Mandel effect. With this, a single photon, |1⟩ is input
into one port of the beamsplitter while the other port is allowed to be any quantum state, |ψ⟩.
Next, the user measures one output mode with a photon-counting detector to measure k photons.
The output state can thus be expressed as

|ϕ⟩ = 1⟨k|B̂(θ)|1⟩1|ψ⟩2.

Regardless of the initial state, |ψ⟩, any particular fock-basis component of the output state may be
filtered out depending on the beamsplitter parameter and post-selected detection result.

To simulate this, let’s start with a single photon in mode one and a coherent state with mean
photon number |α|2 = 4 in mode two, and then interfere them at a balanced beamsplitter. To leave
things slightly more general, let’s write everything in terms of density matrices instead of kets. This
way, we can easily extent our code to mixtures as well as pure states. To do this, we can use the
QuTiP function ket2dm() to turn an input ket into a density matrix, or we can immediately start
from a fock state and coherent state density matrix using ‘_dm’ as per built-in QuTiP utilities.

15



Next, remember that density matrices evolve as ρ′ = ÛρÛ †, and we can get mode two alone by
performing a partial trace over mode one. Thus our output density matrix, σ, for photon catalysis
will look like:

σ =
Tr1[|k⟩⟨k|B̂ρ12B̂†]

P (k)

where
P (k) = Tr[|k⟩⟨k|B̂ρ12B̂†]

is the probability of detecting k photons in mode one.

[25]: Dim=30
alpha=2
k=3
mode1=fock_dm(Dim,1) #single photon density matrix
mode2=coherent_dm(Dim,alpha) #coherent state density matrix
bs5050=BS(np.pi/4,Dim) #balanced beamsplitter
rho_in=tensor(mode1,mode2) #state into the beamsplitter

P_k=(PNR_m1(k,Dim)*bs5050*rho_in*bs5050.dag()).tr() #probability of measuring k␣
↪→photons in mode 1

rho_out=(PNR_m1(k,Dim)*bs5050*rho_in*bs5050.dag()).ptrace(1)/P_k

#NOTE: The operation .ptrace(m) takes the partial trace over every mode
#EXCEPT m, where the numbering startes at 0. So .ptrace(1) means you
#keep the second mode and trace out over the first

print('Probability to detect ', k, ' photons in mode one is: ', P_k)
print('Verify the output is normalized: trace of ', r'$\rho$', ' is ', rho_out.
↪→tr())

print('Probability of ', k, ' photons to now also be in mode two: ', rho_out.
↪→diag()[3])

Wig_plot=state_plot(rho_out,4.5,80,12)

Probability to detect 3 photons in mode one is: 0.13533528323576166
Verify the output is normalized: trace of $\rho$ is 1.0
Probability of 3 photons to now also be in mode two: 0.0
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Interestingly, we see that for the balanced beamsplitter and a 3 photon detection in mode one, it is
impossible to subsequently detect 3 photons in mode two as well! It turns out that the input state
can be of any form, and that it doesn’t matter what photon number was detected in mode one at
all. Provided one input to the beamsplitter is a single-photon and the beamsplitter is balanced, a
detection of k photons in mode one ensures the k photon probability in mode two is exactly zero.
This can also be extended to a variety of beamsplitter angles, and in fact, to larger Fock-state
inputs.

6 Simulating Loss
Loss is one of the largest sources of experimental error in any quantum optics experiment, and thus
it is important to simulate. Loss degrades the purity of a state, so we must do everything with
density matrices in this case (occassionally there are ways around this if all loss is commuted to the
detection). Loss can be modeled by interfering a state with vacuum at a beamsplitter and tracing
out over the reflected mode. Let’s try this with a 5-photon Fock state and 20% loss.

[26]: Dim=10
fivephotondm=fock_dm(Dim,4) #five-photon density matrix
vac=fock_dm(Dim,0) #vacuum density matrix
loss=0.2
loss_theta=np.arcsin(np.sqrt(loss)) #cos(theta)^2=loss
loss_bs=BS(loss_theta,Dim) #define the beamsplitter
bs_output=loss_bs*tensor(fivephotondm,vac)*loss_bs.dag() #two-mode state after␣
↪→the beamsplitter

lossy_state=(bs_output.ptrace(0))/bs_output.tr() #trace out over reflected mode␣
↪→and normalize

Wig_plot=state_plot(lossy_state,4.5,80,Dim)
print('Minimum value of the Wigner function is ', np.min(Wig_plot[0]))

Minimum value of the Wigner function is -0.02584281790869087

Already at 20 loss, we see that the negativity in the Wigner function has nearly vanished, dropping
from − 1

π ≈ −0.32 to −0.025. Although the negativity won’t entirely vanish until the loss reaches
50%. Similarly, the five photon component is no longer even the dominant value. This demonstrates
why quantum experiments can be quite challenging - loss must be very low to see quantum effects.
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Suppose we weren’t interested in getting the full quantum state, but only simulate the probability
distribution. Instead of introducing the ancillary vacuum mode and needing to simulate a full two-
mode system, we can instead use a detector POVM with imperfect detection efficieny to describe
the loss. This is exeedingly useful when loss needs to be simulated for multi-mode systems and
adding additional vacuum modes is infeasible to simulate use to the exponential scaling of the
Hilbert space.

Detector inefficiency can be exactly described by a loss channel (beamsplitter and partial trace)
before a perfect detector. Similarly, one could commute all of the losses in an experiment to the
detection, and then just model the imperfect detector. To do this, we will project our pure state
onto a detector described by a weighted sum of Fock-basis projectors that has the information
about efficiency already accounted for.

[27]: from scipy.special import binom #import binomial coefficient calculator

def pnr_det_eta(eta, click, n_trunc,Dim):
#eta: detector efficiency
#click: number of photons measured
#n_trunc: maximum number of photons resolvable by the detector
#Dim: hilbert space dimension
pi_n = 0;
vec = np.arange(click,n_trunc)
#Build the POVM sum for a detector with quantum efficiency eta<1
for i in vec:

pi_n += binom(i,click)*math.pow((1-eta),(i-click))*math.
↪→pow(eta,click)*fock(Dim,i)*fock(Dim,i).dag()

return Qobj(pi_n)

Now that this POVM is defined, I can calculate the probability to measure any given photon
number of a quantum state, ρ, using

P (n) = Tr[Π̂nρ],

where Π̂n is the POVM element associated with an n photon detection event. This probability is
exactly the same as the probability to measure n photons with a perfect detector after ρ has gone
through a lossy channel where the transmission of the channel is given by η. Let’s check this with
the five-photon Fock state and look at the probability distribution for the same 20% loss (η = 0.8).

[28]: photon_probs=[]
eta=0.8
for n in range(Dim):

photon_probs.append((fivephotondm*pnr_det_eta(eta,n,Dim,Dim)).tr())
plt.bar(range(Dim),photon_probs)
plt.show()
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The above distribution is exactly, the same as before, but we didn’t need to include the ancillary
vacuum mode! However, this methods will only yield the diagonal of the density matrix as opposed
to the whole state. Alternatively, since loss is a well-defined statistical process, it is possible to
define a linear map to map the density matrix before loss to one after loss, but we won’t get into
that here. The method shown above with detector POVMs is particularly useful in two mode cases
where one would like to project on a particular photon number, such as in photon catalysis, but
one doesn’t want to use an ancillary mode.

The catalysis function defined below wraps everything we did with photon catalysis before into a
single function, where the user inputs two states, a beamsplitter reflectivity, and the number of
photons to project on with an imperfect detector.

[29]: def catalysis(in1,in2,refl,num_det,eta,Dim):
#'refl' is the beamsplitter reflectivity such that 1-refl=transmittance␣

↪→(r^2+t^2=1 where refl=r^2)
#first, turn the inputs into density matrices if they aren't already
if isket(in1)==True:

rho1=ket2dm(in1)
else:

rho1=in1
if isket(in2)==True:

rho2=ket2dm(in2)
else:

rho2=in2
a1=destroy(Dim)
a2=destroy(Dim)
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Projector = tensor(pnr_det_eta(eta, num_det, Dim,Dim),qeye(Dim)); #Detector␣
↪→POVM used to project mode 1

Initial_state=tensor(rho1,rho2); #tensor product of two input density␣
↪→matrices

theta=np.arccos(np.sqrt(refl)); #beamsplitter parameter

BS1= ((theta)*(tensor(a1,a2.dag()) - tensor(a1.dag(),a2))).expm() #Unitary␣
↪→beamsplitter operator

Rho=BS1*Initial_state*BS1.dag(); #evolve the density matrix through the␣
↪→beamsplitter

P=(Rho*Projector).tr() #Find the probability to detect 'num' photons in␣
↪→mode 1

print('The probability of a sucessful detection is:',P)

Rho_filtered = ((Rho*Projector).ptrace(1))/((Rho*Projector).tr()) #find the␣
↪→normalized output state

'''The operation .ptrace(m) takes the partial trace over every mode
EXCEPT m, where the numbering startes at 0. So .ptrace(1) means you
keep the second mode'''
print('BS has reflectivity',refl,' and I am detecting the |',num_det,

'> state.')
return Rho_filtered

First, replicate what we did before with perfect detector efficiency, single photon on one input,
coherent state on the other, balanced beamsplitter, and a projection of 3 photons on output mode
one. Then plot the resulting state.

Next, do the same considering 10% loss on the projection detector and compare the results.

[30]: Dim=30
alpha=2
k=3
eta1=1
state1=catalysis(fock_dm(Dim,1),coherent_dm(Dim,alpha),0.5,k,eta1,Dim)
Wig_plot1=state_plot(state1,4.5,80,12)
print('Minimum value of the Wigner function without loss is ', np.
↪→min(Wig_plot1[0]))

plt.show()

eta2=0.9
state2=catalysis(fock_dm(Dim,1),coherent_dm(Dim,alpha),0.5,k,eta2,Dim)
Wig_plot2=state_plot(state2,4.5,80,12)
print('Minimum value of the Wigner function with 10% loss is ', np.
↪→min(Wig_plot2[0]))

The probability of a sucessful detection is: 0.13533528323576166
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BS has reflectivity 0.5 and I am detecting the | 3 > state.
Minimum value of the Wigner function without loss is -0.17903979403201714

The probability of a sucessful detection is: 0.14621017260273436
BS has reflectivity 0.5 and I am detecting the | 3 > state.
Minimum value of the Wigner function with 10% loss is -0.1224461516440973

We can now directly see the effects of loss for this process. The amount of Wigner negativity has
decreased, but perhaps more importantly, the probability to measure 3 photons in the new output
is no longer zero.

7 Example: Generating Cat States
I will now show an example using photon catalysis to make cat states. I’ll first define a superposition
of squeezed vacuum (SSV) state, otherwise known as a squeezed cat state, to use as a benchmark.
Then, using single photons, a coherent state, and PNR detectors, I will show how repeating photon
catalysis can generate the same SSV state. More details can be found in M Eaton, R Nehra, O
Pfister, NJP 21 (11), 113034 (2019).

[31]: def SSV_minus(r,alpha,Dim):
state = ket2dm((displace(Dim,alpha)-displace(Dim,-alpha))

*squeeze(Dim,r)*fock(Dim,0))
norm_state = state/state.tr()
return norm_state

Dim=30
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ssv=SSV_minus(0.476595,1.349,Dim) #benchmark squeezed cat-state
Wig_plot_cat=state_plot(ssv,4.5,80,12)

[32]: Dim = 30 ##Dimenstion of the Hilbert spac
eta=1 #detector efficiency -- set eta=1 for ideal case

#parameters from Table D1 of the NJP 2019 paper
refl1=0.637566**2; refl2=0.490869**2; refl3=0.520135**2;
delta=3.53709; beta=2.03846; sq=0.476595; alpha=1.349; n1=5;n2=2;n3=1;

fock1=fock_dm(Dim,1) #input fock state at each state
coher_in=coherent_dm(Dim,delta) #input coherent state

step_one=catalysis(coher_in,fock1,refl1,n1,eta,Dim) #stage one, detect n1␣
↪→photons on output

step_two=catalysis(step_one,fock1,refl2,n2,eta,Dim); #stage two, detect n2␣
↪→photons

step_three=catalysis(step_two,fock1,refl3,n3,eta,Dim); #stage three, detect n3␣
↪→photons

W_step3=state_plot(step_three,5.5,80,20)

The probability of a sucessful detection is: 0.07142454603455682
BS has reflectivity 0.406490404356 and I am detecting the | 5 > state.
The probability of a sucessful detection is: 0.15531158677247464
BS has reflectivity 0.240952375161 and I am detecting the | 2 > state.
The probability of a sucessful detection is: 0.1619065393887992
BS has reflectivity 0.270540418225 and I am detecting the | 1 > state.
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[33]: #plot photon number distributions
fig, axes = plt.subplots(1, 4, figsize=(16,4))
bar0 = axes[0].bar(range(Dim), step_three.diag())
lbl0 = axes[0].set_title("Third Filtered State")
lim0 = axes[0].set_xlim([-.5, 20])
bar1 = axes[1].bar(range(Dim), step_two.diag())
lbl1 = axes[1].set_title("Second Filtered State")
lim1 = axes[1].set_xlim([-.5, 20])
bar2 = axes[2].bar(range(Dim), step_one.diag())
lbl2 = axes[2].set_title("First Filtered State")
lim2 = axes[2].set_xlim([-.5, 25])
bar3 = axes[3].bar(range(Dim), ket2dm(coherent(Dim,delta)).diag())
lbl3 = axes[3].set_title("Initial Coherent State")
lim3 = axes[3].set_xlim([-.5, 25])
plt.show()

As a last step, the state must be dispalced back to the origin. Then we can calculate the fidelity of
our state with our target squeezed cat state.

[34]: final_state=D(-beta,Dim)*step_three*D(-beta,Dim).dag() #displace final state␣
↪→back to the origin

print('Fidelity with the target SSV state is: ', fidelity(ssv,final_state)**2)
W_fin=state_plot(final_state,5.5,80,10)

Fidelity with the target SSV state is: 0.9828867072962356
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Appendix F

TES Data Processing



TES_data_processing

December 22, 2021

1 Processing TES Peak Data into Photon Counts
The EFADC saves all measured data as .bin files, and the python script EFADC_decode3.py
converts the binary data into human readable .csv files with all of the necessary peak data at each
time step. At this point, the user has the freedom about the usage of the data. For the the current
work, focus remains on the peak height and peak area to determine photon number counts at each
time step. Occassionally, peak time is important to ensure that signal timing align, and to eliminate
noise photons that may impinge on the detector at the incorrect time.

When determining what peak paramters to use when determining binning for photon counts, there
is some freedom about how the data can be used. Several approaches were attempted for this
work, but the analysis focused on those methods that optimized the separation between groupings
in a given histogram so as to minimize overlap between potential photon-number binning and thus
given better distinction to events. The methods that yield the best results were relative peak height
and relative area. The relative peak height is defined as the absoulte recorded peak height minus
the pedestal value (the value of the signal voltage exactly at the trigger). This works quite well at
differentiating events, but only at low photon numbers (0-4). Depending on TES bias and photon
flux, the absolute peak height or relatvie peak height may work better. Relative area is defined as
the measured area minus the area of the rectangled defined by the duration of the peak multiplied
by TETHi. This value gave the least noise out of all methods considered and allowed for decent
peak differentiation all the way out to 30 photons. The relative peak height can be used to verify
the efficacy of the area method at low photon number.

[4]: import numpy as np
from qutip import* #need to download
import struct
import os, glob
import scipy.io
import bitarray as b #need to download
import matplotlib.pyplot as plt
import csv
from scipy.special import factorial as fac
from scipy.optimize import curve_fit
from scipy.signal import find_peaks
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
from numpy import array
def flatten(t):

#use to flatten lists
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return [item for sublist in t for item in sublist]

First, the .csv files must be loaded in. In this example, there is one data file for every 250,000
triggers at each channel where data was recorded. Thus, ‘data4’ has 2 channels (Ch1-Ch2) and
2,500,000 triggers (10 subfiles). The data is stored in outdat and indexed as outdat[i][j][k], where i
is the file number, j is the channel number, and k is the type of data indexed by header, which is
printed out below. As an example, outdat[0][1][4] gives an array of all the peak times in order for
channel 2 for the first data files, data4_0Ch1.csv and data4_0Ch2.csv.

[3]: filenames=[]
numfiles=10
basename='/data4_'
for i in range(numfiles):

filenames.append(os.getcwd()+basename+str(i))

outdat=[]
for k in range(numfiles):

chdata=[]
for i in range(8):

fpath=str(filenames[k])+'Ch'+str(i+1)+'.csv'
if os.path.exists(fpath):

file=open(fpath)
datafile=csv.reader(file)
header=next(datafile)
rows=[]
for row in datafile:

rows.append(row)
chdata.append(np.asarray(rows,dtype=float).T)
file.close()

outdat.append(chdata)

print('Data ordering: ', header)

Data ordering: ['Trigger time', 'Channel number', 'Area', 'Peak Height', 'Peak
Time', 'End Time', 'Start Time', 'Pedestal', 'overflow', 'underflow']

The below section takes the outdat variable above and reorganizes it into separate variables for
each channel. The values of TEThi for each channel should be included, as these are used to aid
in the cacluation of relative peak area.

Additionally if one is using shutters and on/off locking, there is the option to remove pulses on
each channel surrounding the shutter. This is necessary because there are several miliseconds of
delay when the shutters open and/or close where signal may be different between the TES channels
due to variations in the mechanical shutters and slight timing mismatches. Discarding data from
about 225 of the pulses before the shutter closes and after it opens ensures the rest of the data is
consistent. Also, the data at the edges has different TES behavior as it transitions to no photon
flux to very high photon flux, meaning the peak information for the first few events after the shutter
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opens is unreliable.

The code to do this looks for how long it has been since an event occurred, and if it is too long
(greater than max_timesep number of triggers), then the code assumes a shutter had been closed,
and it removes the trim_fr events from each channel before the shutter and trim_bk events after
the shutter. Additionally, one should inclue the approximate separation in terms of trigger clock
as pulse_sep. Note that the EFADC samples one data point every 4 ns.

Note: Even if the shutters are on, this removing of peaks should *only be used when calibrating
a coherent state or calculating the histograms used for binning. When heralding, the timestamps
of the single photons allow for determining which events to keep.

[20]: TEThi0=500; TEThi1=350; TEThi2=250; #TET settings in the runinit file for each␣
↪→channel

#coherent state calibration variables
ch0area=[]; ch0pheight=[]; ch0Rarea=[]; ch0Rpheight=[]; ch0trigtime=[];␣
↪→ch0ptime=[];

ch1area=[]; ch1pheight=[]; ch1Rarea=[]; ch1Rpheight=[]; ch1trigtime=[];␣
↪→ch1ptime=[];

ch2area=[]; ch2pheight=[]; ch2Rarea=[]; ch2Rpheight=[]; ch2trigtime=[];␣
↪→ch2ptime=[];

#pulse_sep=20050 #clock timestamp difference between pulses. Here, 20050␣
↪→corresponds to 20050 x 4ns = 80.2 microseconds

#max_timesep=400 #max number of triggers allowed between events before assuming␣
↪→it was from a shutter being closed

#trim_fr=225 # amount of triggers to remove before shutter opens
#trim_bk=225 # amount of triggers to remove after shutter closes

for i in range(numfiles):
for k in range(2):

trigtime=outdat[i][k][0]
sort_times=np.argsort(trigtime) #sorts timestamps correctly
good_idx=np.arange(0,len(sort_times),1)

'''#This section finds breaks in the data from shutters closing and
#calculates a "good index" array that is for the timestamps I want
#to keep. I can then use this for all data

scal_dif=np.diff(trigtime[sort_times])/pulse_sep
breaks=np.where(scal_dif>max_timesep)[0]
size=len(scal_dif)+1
if len(breaks>0):

if breaks[0]==0:
good_idx=np.arange(breaks[0]+trim_fr,breaks[1]-trim_bk,1)
offset=1

else:
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good_idx=np.arange(0,breaks[0]-trim_bk,1)
offset=0

for m in range(len(breaks)-offset-1):
good_idx=np.append(good_idx,np.

↪→arange(breaks[m+offset]+trim_fr,breaks[m+1+offset]-trim_bk,1))
good_idx=np.append(good_idx,np.arange(breaks[-1],size,1))'''

height=((outdat[i][k][3])[sort_times])[good_idx]
area=((outdat[i][k][2])[sort_times])[good_idx]
eval('ch'+str(k)+'area').append(area) #channel areas
#eval('ch'+str(k)+'Rarea').

↪→append(area-(((outdat[i][k][5]-outdat[i][k][6])
# ␣

↪→*eval('TETlow'+str(k)))[sort_times])[good_idx])

eval('ch'+str(k)+'Rarea').
↪→append(area-(((outdat[i][k][5]-outdat[i][k][6])

␣
↪→*eval('TEThi'+str(k)))[sort_times])[good_idx])

#Alternative method for determining relative areas using the␣
↪→pedestal values. This does not seem to work as well.

#eval('ch'+str(k)+'Rarea').
↪→append(area-(((outdat[i][k][5]-outdat[i][k][6])

# ␣
↪→*outdat[i][k][7])[sort_times])[good_idx])

eval('ch'+str(k)+'pheight').append(height) #channel peak heights
eval('ch'+str(k)+'Rpheight').

↪→append(height-((outdat[i][k][7])[sort_times])[good_idx]) #channel relative␣
↪→peak heights

eval('ch'+str(k)+'ptime').
↪→append(((outdat[i][k][4])[sort_times])[good_idx]) #channel peak times

eval('ch'+str(k)+'trigtime').
↪→append((trigtime[sort_times])[good_idx]) #channel trigger times

all_areas=[np.array(flatten(ch0area)),np.array(flatten(ch1area)),np.
↪→array(flatten(ch2area))] #raw areas

all_Rareas=[np.array(flatten(ch0Rarea)),np.array(flatten(ch1Rarea)),np.
↪→array(flatten(ch2Rarea))] #Relative area, right now subtracts a rectangle␣
↪→from start time to end time at TETHi

all_pheight=[np.array(flatten(ch0pheight)),np.array(flatten(ch1pheight)),np.
↪→array(flatten(ch2pheight))] #raw peak height

all_Rpheight=[np.array(flatten(ch0Rpheight)),np.array(flatten(ch1Rpheight)),np.
↪→array(flatten(ch2Rpheight))] #Rpheight = relative peak height, takes peak␣
↪→height and subtracts the pedestal
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#all_RhRa=[np.array(flatten(ch0RhRa)),np.array(flatten(ch1RhRa)),np.
↪→array(flatten(ch2RhRa))]

all_ptime=[np.array(flatten(ch0ptime)),np.array(flatten(ch1ptime)),np.
↪→array(flatten(ch2ptime))] #peak times

all_trigtime=[np.array(flatten(ch0trigtime)),np.array(flatten(ch1trigtime)),np.
↪→array(flatten(ch2trigtime))] #all trigger times

print('The number of recorded area events on Ch1 is given by:',␣
↪→len(all_areas[0]))

The number of recorded area events on Ch1 is given by: 2500000

The above variables are indexed based on channel number, e.g., all_areas[0] gives the areas for all
files for Channel 1.

For the rest of the file, let’s focus on the data from Channel 2. First, let’s plot a histogram of the
peak heights.

[65]: histvals=np.hstack(all_pheight[1])
plt.hist(histvals,bins=1000);
plt.xlim([0,4500])
plt.ylim([0, 40])
plt.title('CH 2 Peak Height Hist')
plt.show()

twophot_idx=(all_pheight[1]<2400)*(all_pheight[1]>1600)
print('The proportion of two photon peaks is about ',␣
↪→len(all_pheight[1][twophot_idx])/len(all_pheight[1]))
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The proportion of two photon peaks is about 3.4e-05

In this example, the photon flux is very high (mean photon number ~14), so there is a low chance
of having low photon numbers. With the bias settings here, the peak height saturates quickly
around the 5 photon mark, thus only 0-4 can be resolved with the height method. However, one
can clearly see the distinction between the 0 photon events (less that 500 height), the 1 photon
events (heights 500-1500), the 2 photon events (heights 1500-2400), and 3 photon events (heights
2450-3200). These values can be used as a self-consistency method to check binning obtained from
another method, such as areas.

Below, I show the relative area histogram for the data. The first is log scale and the second is
regularly scaled, which is spread out over 4 separate graphs with continuation in area to account
for scales. We can now compare the number of two photon peaks from this method and see if it
agrees with the previous peak height methodology.

[482]: histvals=np.hstack(all_Rareas[1])
fig = plt.figure(figsize=(20, 8))
ax = fig.add_subplot(1, 1, 1)
ax.set_yscale('log')
ax.hist(histvals,bins=2500);
ax.set_xticks(np.linspace(0,2e7,21))
ax.set_xlim([-1e6,15e6])

plt.title('CH 2 Relative Area Hist',fontsize=20)
plt.show()

xlims=[-1e6,5e6,9e6,12.7e6,15e6]
ylims=[50,10000,10000,350]
fig, ax = plt.subplots(4, sharey='row',figsize=(18, 12))
for k in range(4):

ax[k].hist(histvals,bins=2500);
ax[k].set_xticks(np.linspace(0,2e7,101))
ax[k].xaxis.set_minor_locator(MultipleLocator(5e4))
ax[k].set_xlim([xlims[k],xlims[k+1]])
ax[k].set_ylim([0,ylims[k]])

plt.show()

twophot_idx=(all_Rareas[1]<2e6)*(all_Rareas[1]>1.2e6)
print('The proportion of two photon peaks is about ',␣
↪→len(all_Rareas[1][twophot_idx])/len(all_Rareas[1]))
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The proportion of two photon peaks is about 3.64e-05

From the two different methods, the two photon contributions agree quite well, so this indicates
our method is working.

One can now determine threshold markers from the minimum between each of the histogram peaks.
These values can be put in ‘by hand’ for quick results, or one can fit each peak to a Gaussian
distribution and find the interesection with neighboring peaks to determine the binning. This is
demonstrated at the end of this code, but surprisingly, the ‘by hand’ results are quite robust and
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nearly as accurate as the results obtained by numerically performing the fits. The results of the
binning can also be verified by checking the sum-squared error of the measured distribution with
that of an expected coherent state. For now, let’s just put in the values by hand.

Note: These binning thresholds must be verified and changed for each and every data set. This is
because these values are dependent upon the specific TES detector used, TES bias settings, TES
temperature, EFADC settings, and input coherent state power. As a side point, the dependence
on the coherent state power has more to do with the time between pulses and the electronic
amplification and High-pass filtering after the TES measures the events.

[139]: ch2Rathresh=[0.4e6,1.2e6,2e6,2.8e6,3.5e6,4.15e6,4.8e6,5.35e6,5.9e6,6.4e6,6.
↪→925e6,7.4e6,7.9e6,8.35e6,8.775e6,9.2e6,9.6e6,1.00e7,1.0375e7,1.075e7,1.
↪→1115e7,1.145e7,1.18e7,1.215e7,1.2475e7,1.28e7,1.31e7,1.34e7,1.37e7,1.4e7,1.
↪→425e7,1.46e7]

'''The below threshold are from Gaussian fits, the above are 'by eye'. Both␣
↪→methods are surprisingly similar'''

#ch2Rathresh=[0.4e6, 1109850., 1976700., 2750850., 3497850., 4163400., ␣
↪→4775100.,

# 5339250., 5884950., 6408000., 6915300., 7402800., 7874250.,
# 8328450., 8765550., 9187050., 9591750., 9994650., 10371750.,
# 10744050., 11103900., 11455050., 11796300., 12137400., 12453150.,
# 12781200., 13087050., 13410300., 13695300., 13997850., 14289150.,1.
↪→455e7]

The next section accounts for the events that aren’t recorded by the EFADC at all. This occurs
when the signal never crosses TEThi, which means we should count it as a 0 photon event. However,
it is still important to keep track of these events, as simply discarding them will alter the statistics.
In this case, TEThi was set slightly into the noise floor, thus there were no events that weren’t
caught, and all zero photon events were seen directly. However, the next section will be necessary
if this isn’t the case.

[480]: pulse_sep=22500
zeroidx_insertch1=[]
zeroidx_insertch2=[]
new_areas=[]
new_trigtime=[]
for k in range(2):

skips=np.where(np.diff(all_trigtime[k+1])>pulse_sep+1000) #skips should be␣
↪→greater than pulse_sep but less than 2 X pulse_sep

c=0
for i in range(len(skips[0])-1):

#The below if statement is necessary to remove events that are␣
↪→separated by exactly 1000. I am unsure why this happens, but it seems like␣
↪→there is some systematic fictitious skipping that occurs, either due to␣
↪→pulse-generator reset or extra data timestamps by the DAC. Either way, these␣
↪→events are not real.

if (skips[0][i+1]-skips[0][i])!=1000:
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c+=1
print(skips[0][i])
if np.mod(c,2)==1 and c!=1:

eval('zeroidx_insertch'+str(k+1)).append(skips[0][i]+1)
#print(eval('zeroidx_insertch'+str(k+1)))
new_areas.append(np.insert(all_Rareas[k],eval('zeroidx_insertch'+str(k+1)),

np.
↪→zeros(len(eval('zeroidx_insertch'+str(k+1))))))

new_trigtime.append(np.
↪→insert(all_trigtime[k],eval('zeroidx_insertch'+str(k+1)),

␣
↪→(all_trigtime[k][eval('zeroidx_insertch'+str(k+1))]-22500)))

print('size of new areas, including zero events. This should the same as the␣
↪→number of actual triggers sent', len(new_areas[1]))

size of new areas, including zero events. This should the same as the number of
actual triggers sent 2500000

The code segment below now uses the thresholds for binning defined above, along with the new
areas arrays and determines the probability of a photon to be in each bin. For this example, I
make the peak thresholds for Ch1 the same as for Ch2 (so the code could still be left general for
multiple channels). Note that this will not give the correct results for channel 1, as the binning
must be done independently for each channel. Additionally, I removed all events with areas larger
than the highest threshold, as these have indeterminate photon number, although certainly equal
to or larger than the highest photon number resolvable. Depending on the instance, it may be
useful to keep track of these separately. For the current illustration, I just ignore them, which can
safely be done as they account for less that above 0.3% of events.

While calculating the probabilities, the below code also calculates a bit string based on the parity
of the measured event (0 for even and 1 for odd), in addition to a string containing the results
of the measured photon number modulo 4. These can both be used for unbiased random number
generation as discussed further in the main document.

[141]: ch1Rathresh=np.array(ch2Rathresh)
numtrigs=len(new_areas[1])

coher_probs1=[];
coher_probs2=[];

for k in range(2):
#pthresh=eval('ch'+str(k)+'pthresh')
athresh=eval('ch'+str(k+1)+'Rathresh')
start_A=new_areas[k]
bad_idx=start_A>athresh[-1] #gets rid of all events that can't be resolved:␣

↪→those with areas larger than the highest threshold
tmpA=start_A[~bad_idx]
numevents=len(tmpA)
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vars()['bitstring'+str(k+1)]=np.zeros(numevents);
vars()['mod4_bitstring'+str(k+1)]=np.zeros(numevents);
#numevents=len(tmpA)
for i in range(len(athresh)+1):

if i==0:
idx=tmpA<athresh[i]
#prob=(len(tmpA[idx])+numtrigs_approx-len(tmpA))/numevents
prob=len(tmpA[idx])/numevents
eval('bitstring'+str(k+1))[idx]='00'

elif i==len(athresh):
#idx=tmpA>athresh[i-1]
#prob=len(tmpA[idx])/numevents
prob=0

else:
lowlim=athresh[i-1]
uplim=athresh[i]
idx=(lowlim<tmpA)*(tmpA<uplim)
prob=len(tmpA[idx])/numevents
if np.mod(i,2)==1:

eval('bitstring'+str(k+1))[idx]=1

if np.mod(i,4)==0:
eval('mod4_bitstring'+str(k+1))[idx]=0

elif np.mod(i,4)==1:
eval('mod4_bitstring'+str(k+1))[idx]=1

elif np.mod(i,4)==2:
eval('mod4_bitstring'+str(k+1))[idx]=2

else:
eval('mod4_bitstring'+str(k+1))[idx]=3

eval('coher_probs'+str(k+1)).append(prob)

print('The numbe of events within the calibrated thresholds for Channel 2 is:␣
↪→', numevents)

print('probability of odd on Ch2: ', np.dot(np.
↪→mod(range(len(coher_probs2)),2),coher_probs2))

'''CH2 probs of 0-3'''
print('probability of mod4=0: ', len(mod4_bitstring2[mod4_bitstring2==0])/
↪→len(mod4_bitstring2))

print('probability of mod4=1: ', len(mod4_bitstring2[mod4_bitstring2==1])/
↪→len(mod4_bitstring2))

print('probability of mod4=2: ', len(mod4_bitstring2[mod4_bitstring2==2])/
↪→len(mod4_bitstring2))

print('probability of mod4=3: ', len(mod4_bitstring2[mod4_bitstring2==3])/
↪→len(mod4_bitstring2))
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The numbe of events within the calibrated thresholds for Channel 2 is: 2492860
probability of odd on Ch2: 0.5014854424235617
probability of mod4=0: 0.24905249392264306
probability of mod4=1: 0.2506779361857465
probability of mod4=2: 0.24946206365379525
probability of mod4=3: 0.2508075062378152

The below code can be used to save data. It if the .open() command on a file is used, it is always
necessary to have the corresponding .close()

[142]: #bitstringdata=bitstring1.astype(int)
#file=open(os.getcwd()+basename+"bitarray_testdata"+".bin","wb")
#num=bytearray(list(bitstringdata))
#file.write(num)
#file.close()

Now, let’s examine how well the binned data corresponds to a coherent state. After plotting the
measured distribution, we can check the sum-squared error (SSE) with the expected distribution.
Becase we are sending a coherent state,

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!
,

we see that the expected photon number distribution should follow the Poissonian distribution of

P (n) = e−|α|2 |α|2n
n!

where |α|2 is the mean photon number. However, if there is some error, we can assume that perhaps
the measured mean photon number is not precisely the same as the photon number of the best fit
coherent state (due to amplitude noise or binning error). Instead, we can simply plot the SSE as
a function of α and find the minium value.

[491]: plt.bar(range(len(coher_probs2)),coher_probs2)
plt.show()
meas_meanch2=np.dot(range(len(coher_probs2)),coher_probs2)
print('The measured mean photon number is given by: ', meas_meanch2)
print('The photon number probabilities for this coherent state are: ',␣
↪→coher_probs2)

#Try fitting to a coherent state
meas_dist=np.asarray(coher_probs2)
sse=[]
N_dim=40
for k in range(20): #set to determine number of loop iterations

#mu=np.sqrt(24.7+0.01*k)
mu=np.sqrt(meas_meanch2-0.1+0.01*k) #coherent state amplitude
test=coherent_dm(N_dim,mu) #theory coherent state
sse.append(np.sum(np.abs((meas_dist[0:30]/(np.sum(meas_dist[0:30])))

-(test.diag()[0:30])/(np.sum(test.diag()[0:
↪→30])))**2))
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plt.plot(sse)
plt.show()
print(np.min(sse)) #try to minimize sse

The measured mean photon number is given by: 15.14062923710116
The photon number probabilities for this coherent state are:
[2.005728360196722e-06, 4.412602392432788e-06, 3.610311048354099e-05,
0.00018252128077790168, 0.0006622915045369575, 0.0019194820407082628,
0.004695410091220526, 0.00998010317466685, 0.018671325305071283,
0.030967242444421266, 0.04676516130067473, 0.06395425334756064,
0.08044896223614643, 0.09347536564428006, 0.10081512800558395,
0.10178429594923101, 0.0954995467053906, 0.0862756031225179,
0.07154232487985687, 0.05773769886796691, 0.04362338839726258,
0.031581797613985545, 0.021903355984692282, 0.01491058462970243,
0.009027382203573405, 0.0057756953860224804, 0.003313864396717024,
0.0020101409625891548, 0.0011155861139414166, 0.0006783373314185313,
0.0003907158845663214, 0.0002479080253203148, 0]
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4.761659602312153e-06

The second plot from the above codes plots the SSE vs the index of the loop, which has a minimum
value on about the 8th iteration. This corresponds to an alpha value of 15.11, which is very near the
calculated mean photon number. Furthermore, the SSE is quite low, indicating that the binning
was performed properly. Without checking the SSE fit with a true coherent state, it may be difficult
to ascertain that the binning is in fact correct due to low sampling at some photon numbers. For
example, in the histogram of areas shown several cells above, there are very few events with near
zero area (below 0.2e6). One might be tempted to erroneously group all events with relative areas
less than 1.0e6 as a single bin to call all of them zero photons. However, one can easily check that
this would be incorrect, as re-running the above few cells by doing this (after removing the first
value in ch2Rathresholds) would give a distribution that qualitatively looks like a coherent state,
but the SSE will in fact be about an order of magnitude worse. Thus, the true distribtuion binning
follows the thresholds used above.

Once the bin fitting is assured, the same process with SSE can be performed with amplitude noise
or thermal noise to determine the quality of the measured coherent state. While the above test was
more to determine if the data processing was performed correctly, the below is more to diagnose
the measured state.

[195]: #Try a mixture of gaussian distributed coherent states

meas_dist=np.asarray(coher_probs2)
sse=[]
for k in range(4):

#mu=np.sqrt(24.7+0.01*k)
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mu=np.sqrt(meas_meanch2-0.03+0.01*k)
for j in range(10):

sigma=0.04+0.005*j
test=0
dx=0.01
steps=6*round(sigma/(dx))
xvec=np.linspace(mu-steps*dx/2,mu+steps*dx/2,steps)
for x in xvec:

test=test+np.e**(-(mu-x)**2/(2*sigma**2))*coherent_dm(N_dim,x)
test=test/test.tr()
sse.append(np.sum(np.abs((meas_dist[0:30]/(np.sum(meas_dist[0:30])))

-(test.diag()[0:30])/(np.sum(test.diag()[0:30])))**2))
plt.plot(sse)
plt.show()
print(np.min(sse))
minloc=np.where(sse==np.min(sse))[0]
print('Optimal parameters occur when the state is a mixture of coherent states␣
↪→with a central mean photon number of ', meas_meanch2-0.03+0.01*np.
↪→floor(minloc/10), ' and is mixed with other coherent states having a␣
↪→Gaussian standard deviation of sigma=', 0.04+0.005*np.mod(minloc,10))

1.5291066076581972e-06
Optimal parameters occur when the state is a mixture of coherent states with a
central mean photon number of [15.13062924] and is mixed with other coherent
states having a Gaussian standard deviation of sigma= [0.065]
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[196]: #Try a mixture of a coherent state convolved with a thermal state
meas_dist=np.asarray(coher_probs2)
sse=[]
for k in range(20):

#mu=np.sqrt(24.7+0.01*k)
mu=np.sqrt(meas_meanch2-0.5+0.01*k)
coher=coherent_dm(N_dim,mu).diag()
for j in range(50):

thrmamp=0.1+0.01*j
dist=np.convolve(coher,thermal_dm(N_dim,thrmamp).diag())
sse.append(np.sum(np.abs((meas_dist[0:30]/(np.sum(meas_dist[0:30])))

-(dist[0:30])/(np.sum(dist[0:30])))**2))
plt.plot(sse)
#plt.ylim([0.01,0.02])
plt.show()
print(np.min(sse))
minloc=np.where(sse==np.min(sse))[0]
print('Optimal parameters occur when the coherent state has mean photon number␣
↪→', meas_meanch2-0.5+0.01*np.floor(minloc/50), ' and is convolved with␣
↪→thermal noise with mean photon number, ', 0.1+0.01*np.mod(minloc,50))

1.4896181285011333e-06
Optimal parameters occur when the coherent state has mean photon number
[14.64062924] and is convolved with thermal noise with mean photon number,
[0.5]

Both of the above fits (extra thermal noise vs amplitude noise) have roughly the same SSE so would
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both be good model fits. However, considering that the fits are about the same, we can consider
the fact the the TES has almost negligible dark count, and without any external light, the chances
of having thermal noise this large is quite small. Thus, we can conclude that the likely explanation
is in fact amplitude noise, either on the laser or due to fiber effects. This is shown in the direct
comparison plot below.

[202]: N_dim=40
coher_appx=coherent_dm(N_dim,np.sqrt(15.11))
#sqcoher_appx=ket2dm(squeeze(N_dim,-0.0692)*coherent(N_dim,np.sqrt(5.579)))

mu=np.sqrt(15.13)
sigma=0.065
mix=0
dx=0.01
steps=6*round(sigma/(dx))
xvec=np.linspace(mu-steps*dx/2,mu+steps*dx/2,steps)
xvec=np.linspace(mu-sigma/2,mu+sigma/2,2*round(sigma/(dx)))
for x in xvec:

mix=mix+np.e**(-(mu-x)**2/(2*sigma**2))*coherent_dm(N_dim,x)

#plt.subplots(figsize=(10, 5))
plt.figure(figsize=(18,6))
ax = plt.subplot(111)
x=range(N_dim)
#ax.bar(np.array(range(N_dim))-0.2, (test/test.tr()).diag(), width=0.2,␣
↪→color='b', align='center')

ax.bar(np.array(range(len(coher_probs2))),coher_probs2, width=0.2, color='b',␣
↪→align='center',label='Measured Distribution')

ax.bar(np.array(range(N_dim)[0:32])-0.2, coher_appx.diag()[0:32], width=0.2,␣
↪→color='r', align='center',label='Coherent State')

ax.bar(np.array(range(N_dim)[0:32])+0.2,(mix/mix.tr()).diag()[0:32], width=0.2,␣
↪→color='g', align='center', label='Mixture of Coherent States')

#ax.bar(np.array(range(N_dim)[0:30])+0.2,dist[0:30], width=0.2, color='g',␣
↪→align='center', label='Mix with Thermal')

ax.legend(fontsize=16)
ax.set_xticks(np.array(range(32)))
ax.tick_params(axis='both',labelsize=18)
ax.set_xlabel('$n$',fontsize=24)
ax.set_ylabel('$P(n)$',fontsize=24)
#ax.bar(np.array(range(len(coher_probs2)))+0.3,coher_probs2, width=0.4,␣
↪→color='r', align='center')

#print('Squeezing in db: ',20*np.log10(np.e**-0.0692))
#print('Fidelity with coherent state: ', fidelity(coher_appx,meas_coher)**2)
#print('Fidelity with squeezed coherent state: ',␣
↪→fidelity(sqcoher_appx,meas_coher)**2)

print('Mean photon number of ideal coherent state: ', 15.11)
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print('Spread in mean photon number: ',(mu-sigma/2)**2, ' to ',(mu+sigma/2)**2)

plt.show()

Mean photon number of ideal coherent state: 15.11
Spread in mean photon number: 14.878223795595902 to 15.3838887044041

2 Gaussian Binning
The next set of code will show how to systematically determine the photon binning by taking the
area histograms and fitting a Gaussian function to each peak, and setting the bin threshold at the
intersection point between the two Gaussians. This method is the most accurate way to bin the
histograms, although it surprisingly differs little from binning manually.

First, define two functions that will compute and return an array that is a Gaussian sum. Both
of these functions take in an array of Gaussian parameters grouped in 3-tuples and an array-like x
vector. The Gaussian parameters are input such that in each triple, the first parameter is the center
of the Gaussian, the second parameter is the amplitude, and the third parameter is the standard
deviation.

[203]: def gauss_sum(params,x):
f = np.zeros_like(x)
for k in range(round(len(params)/3)):

ctr = params[3*k]
amp = params[3*k+1]
wid = params[3*k+2]
f = f + amp * np.exp( -((x - ctr)/wid)**2/2)

return f

def gauss_sum_normed(params,x):
f = np.zeros_like(x)
for k in range(round(len(params)/3)):

ctr = params[3*k]

17



amp = params[3*k+1]
wid = params[3*k+2]
f = f + np.exp( -((x - ctr)/wid)**2/2)/np.sqrt(2*np.pi*wid**2)

return f

Take the the histogram used earlier, but now turn it into a function with defined bin heights and
bin centers. Note that the number of bins determines the size of the xvector as used later.

[213]: histvals=np.hstack(all_Rareas[1])
bin_heights, bin_borders, _ = plt.hist(histvals, bins=2000, label='histogram')
bin_centers = bin_borders[:-1] + np.diff(bin_borders) / 2

Now, define a method that will fit an input function to a sum of Gaussian functions. This is achieved
by the below function, which takes several parameters. The first two inputs are the two arrays that
define the function to be fit (the bin_centers and bin_heights). The next parameters, pkprom,
determines the minimum peak prominence the peakfinder should use when assigning Gaussian
peaks to the data. The start and stop are xvector values that are used to determine which subset
of the data is being fit, while num_Gauss tells the function how many Gaussians should be used
to fit the data. Widthguess is the starting peak standard deviation in terms of xvector indices use
for the guess for the optimizer. Finally, maxiters limits how many cycles the optimizer can run
through.

Because the histogram contains peaks on vastly different scales, it is impossible with the current
method to catch each and every peak all at once. Thus some cross between a manual and automated
fitting process is need to catch all possible peaks. The histogram can be sectioned into groupings
of peaks with same order-of-magnitude amplitude, and each of these peaks can be fit with the
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optimizer. After all sections of the histogram have been fit, they can all be stitched together at the
end.

[373]: '''attempt at curve fitting codes'''
from scipy.optimize import curve_fit
from scipy.signal import find_peaks

def func(x, *params):
y = np.zeros_like(x)
for i in range(0, len(params), 3):

ctr = params[i] #center of Gaussian
amp = params[i+1] #amplitude of Gaussian
wid = params[i+2] #width of Gaussian
#constshift=params[i+3] #constant offset to data
y = y + amp * np.exp( -((x - ctr)/wid)**2/2)#+constshift

return y
def␣
↪→gauss_curve_fit(bin_centers,bin_heights,pkprom,start,stop,num_Gauss,widthguess,maxiters):
↪→

x=bin_centers[start:stop]
y=bin_heights[start:stop]
peaks=find_peaks(y, distance=15,prominence=pkprom) #finds the peaks and␣

↪→peak locations with scipy function

#plt.plot(x,y)
#plt.show()
peaklocs=(peaks[0]+start)*bin_centers[-1]/len(bin_heights) #peak locations
#wid_guess=10*bin_centers[-1]/100
wid_guess=widthguess
#guess = [peaklocs[0],2,0.1e6,peaklocs[1],4,0.1e6,peaklocs[2],9,1e6]
guess=[]
#the number of how many Gaussian to use in the fit
for i in range(num_Gauss):

#guess += [peaklocs[i+3], bin_heights[peaks[0][i+3]],␣
↪→20*bin_centers[-1]/1000]

guess += [peaklocs[i], bin_heights[peaks[0][i]+start],wid_guess ]␣
↪→#guess vals for Gaussain, center of G, height of G, and Std. dev. of G

popt, pcov = curve_fit(func, x, y, p0=guess,bounds=(0,np.inf),maxfev =␣
↪→maxiters)

#print(popt)
fit = func(x, *popt)

plt.plot(x,y)
plt.plot(x, fit , 'r-')
plt.show()
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return fit,popt

In this example, I start by fitting the 1-4 photon peaks first. Note that the zero peak is too sharp
for a Gaussian fit to work for several reasons. First, the zero photon peak occurs for recorded events
as well as non-recorded events, meaning that there may be less data which compounds with the
fact that zero photon events are already quite rare in this data set. Additionally, the peak would
be skewed right, as the left half is cut off at zero. Thus, while the other peaks can be fit with the
optimizer, the zeroth-order cuttoff is determined by half the distance from zero to the first peak.

[374]: fit1=gauss_curve_fit(bin_centers,bin_heights,2,0,300,4,2e5,100000)
print('Gaussian fit parameters are given by ', fit1[1])

Gaussian fit parameters are given by [6.04001084e+05 4.60611019e-01
9.94996845e+04 1.57928168e+06
4.31243203e+00 8.23284133e+04 2.41674599e+06 2.19823036e+01
8.25616420e+04 3.16664210e+06 7.40006767e+01 9.18434976e+04]

[430]: fit2=gauss_curve_fit(bin_centers,bin_heights,200,300,1140,21,0.3e5,100000)
print('Gaussian fit parameters are given by ', fit2[1])
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Gaussian fit parameters are given by [3.86327020e+06 2.11696709e+02
9.81853096e+04 4.50898195e+06
5.42158825e+02 9.47704394e+04 5.08723614e+06 1.13339910e+03
9.74796763e+04 5.63882344e+06 2.14023786e+03 9.66295090e+04
6.16943035e+06 3.52592695e+03 9.76375196e+04 6.68308308e+06
5.29137764e+03 9.84758549e+04 7.17881799e+06 7.27936897e+03
9.79727601e+04 7.65702086e+06 9.09967249e+03 9.87779600e+04
8.11823309e+06 1.06392778e+04 9.81042276e+04 8.56181451e+06
1.15191332e+04 9.78291815e+04 8.98965294e+06 1.16530548e+04
9.76223221e+04 9.40312187e+06 1.10216200e+04 9.70047816e+04
9.80161978e+06 9.88222373e+03 9.64529366e+04 1.01886964e+07
8.33741350e+03 9.64219152e+04 1.05633727e+07 6.73575535e+03
9.52499188e+04 1.09271043e+07 5.13865811e+03 9.44273492e+04
1.12803901e+07 3.71501507e+03 9.48725115e+04 1.16246545e+07
2.59933168e+03 9.32132540e+04 1.19613181e+07 1.74611643e+03
9.49308624e+04 1.22867768e+07 1.08828345e+03 9.05731504e+04
1.26163966e+07 6.47513413e+02 1.10101529e+05]

[470]: fit3=gauss_curve_fit(bin_centers,bin_heights,20,1142,1217,3,0.3e5,100000)
print('Gaussian fit parameters are given by ', fit3[1])
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Gaussian fit parameters are given by [1.29162212e+07 3.87191385e+02
1.13141100e+05 1.32348811e+07
2.22284577e+02 8.35333280e+04 1.35226247e+07 1.39018462e+02
1.04863667e+05]

[476]: fit4=gauss_curve_fit(bin_centers,bin_heights,10,1223,1294,3,1e5,100000)
print('Gaussian fit parameters are given by ', fit4[1])
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Gaussian fit parameters are given by [1.38170074e+07 7.41552810e+01
1.25393136e+05 1.41387644e+07
3.84607371e+01 1.03965308e+05 1.44128779e+07 3.01402491e+01
9.63476991e+04]

[487]: '''Now stitch together all of the fit parameters '''
gauss_params_fin=flatten([fit1[1],fit2[1],fit3[1],fit4[1]])

xvec=np.linspace(0,1.6e7,10000)
fig = plt.figure(figsize=(30, 8))
ax = fig.add_subplot(1, 1, 1)
ax.plot(xvec,gauss_sum(gauss_params_fin,xvec), label='Gaussian Fits')
ax.set_yscale('log')
ax.hist(histvals, bins=2000, label='Measured Data')
ax.set_xlim([0,1.45e7])
ax.set_ylim([1,1.2e4])
ax.tick_params(axis='both', labelsize=20 )
plt.legend(loc='lower right', fontsize=20)

plt.show()
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As seen above, the Gaussian fits do a reasonable job of fitting the data with the exception of the
zero peaks, which must be included manually. One may notice that some of the peaks, especially
near the end, do not fit the distribution as well as one might like. This is due to the fact that
the data set only contained 2.5e6 data points. Although this is already a substantial amount, the
coherent state used is quite large, and thus more data will more accurately round out the Gaussian
fits. When the entirety of this data set is used, the peaks fit the data more accurately and can be
used to bin the data as desired. From here, one can rerun the data set with a larger amount of
measurements and then perform the same analysis for each channel where data was collected. Once
that has been achieved the Gaussian fit parameters can be used to determine binning threshold as
per the code in the next section.
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Appendix G

Histogram Bin Overlaps



bin_error_checks

December 22, 2021

1 Bin Overlap Error
This code takes Gaussian fit parameters from a previously obtained histogram, and then examines
how well those Guassians can be used to define bins for counting photon numbers. The first cell
has several lists of Gaussian parameters that together desribe one full histrogram. In this case,
15 million events were sampled from a coherent state distribution with mean photon number of
about 14. After using the fitted Gaussian bits, the areas of the events in the histogram were
used to calculate the photon number distribution of the coherent state, which is given by the list
‘coher_dist’ below.

[18]: import numpy as np
from qutip import* #need to download
import struct
import os, glob
import scipy.io
import bitarray as b #need to download
import matplotlib.pyplot as plt
import csv
from scipy.special import factorial as fac
from scipy.optimize import curve_fit
from scipy.signal import find_peaks
from scipy.integrate import simps

from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)

def flatten(t):
#use to flatten lists
return [item for sublist in t for item in sublist]

'''Calculated Gaussian parameters fits from previous codes on data'''

#Measured distribution for this data
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coher_dist=[5.414203621781381e-06, 3.054680315005051e-05, 0.
↪→00015534085453111025, 0.0005753761083493103, 0.0017126930790235103, 0.
↪→0042276240823509725, 0.00925721872092581, 0.016997792007552612, 0.
↪→02933308575049117, 0.044284977209210645, 0.06089582076285594, 0.
↪→078098617245816, 0.091234544704578, 0.10093425759804939, 0.
↪→09962609242419898, 0.0986438489399758, 0.08790494316122248, 0.
↪→07356946881114583, 0.06002533713610954, 0.04516682397936079, 0.
↪→03475851883163625, 0.02164097292838031, 0.016245685598265155, 0.
↪→010442461419955779, 0.0058813624997150855, 0.003949628121079507, 0.
↪→0017987187587918145, 0.0012519510350119168, 0.0007123354073743725, 0.
↪→00016255979269348542, 0.0002529970457832411, 0.00022218287455310262, 0]

#coher_dist=[5.3473616017593885e-06, 3.001206698987457e-05, 0.
↪→00015106296524970274, 0.0005797876816707617, 0.0016944452075575063, 0.
↪→004209576736945035, 0.009059566867720779, 0.01712980499709605, 0.
↪→028843534795850098, 0.04407469221422146, 0.060947222276252856, 0.
↪→07754402900569354, 0.09112311905720133, 0.0994908710176945, 0.
↪→10131879973923591, 0.09661131679514706, 0.08820840593212233, 0.
↪→07406978133101044, 0.060124664377862215, 0.04619786213820002, 0.
↪→033832422644231544, 0.023712006076741725, 0.01606494477612569, 0.
↪→009963270978418115, 0.006468369119548223, 0.0036993715981171672, 0.
↪→002285863400712095, 0.0011974079466739711, 0.0007202896077569896, 0.
↪→00040867211041446127, 0.00023234286159644544, 0]

'''Gaussian fit parameters for binning. Each Gaussian has three parameters, and␣
↪→they occur in order in each list. The first

is the location of the ceneter of the Gaussian in arbitrary area units used for␣
↪→the histogram, the second is the Gaussian

peak amplitude, and the third is the standard deviation.'''

gauss_params_fin=[6.08268770e+05, 2.45024365e+00, 1.12708544e+05, 1.
↪→56300607e+06, 2.37937662e+01, 9.05904304e+04,

2.41043719e+06, 1.41715463e+02, 8.73496397e+04, 3.16019593e+06,␣
↪→5.19109750e+02, 9.72316856e+04,

3.85652682e+06, 1.58079006e+03, 9.40180788e+04, 4.49960453e+06,␣
↪→3.99563251e+03, 9.44425103e+04,

5.07787115e+06, 8.57688496e+03, 9.47181494e+04, 5630506.
↪→09640559, 16016.10272244, 97158.56749569,

6161137.05076052, 27001.54183779, 97167.60939734, 6674973.
↪→14828196, 40964.75701783, 98093.59459127,

7170491.77639382, 56800.26467025, 97911.73929927, 7648979.
↪→23851249 , 72124.33278633, 99040.31382459,

8108023.50008762, 84787.72518092, 98904.57569745, 8552144.
↪→03989489, 93112.12210683, 97695.19977713,

8979752.00179682, 95255.7521997 , 97227.98508008, 9393836.
↪→44675478, 91158.58222094, 98409.72811466,
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9788275.76988778, 81123.92324075 , 103752.39055317, 10179787.
↪→99087714, 71545.20150504 , 93673.74158892,

10552643.30368328, 57519.17636692, 96039.84687626, 10916503.
↪→80586508, 44685.73830857, 94439.4994612,

11269516.16300907, 32828.38105522, 94419.97121048,␣
↪→11616137.93309524, 23230.73362739, 95283.32052594,

1.19428338e+07, 1.53362445e+04, 1.05822141e+05, 1.22804839e+07,␣
↪→1.00113073e+04, 8.69557886e+04,

1.25960704e+07, 6.17215490e+03, 1.00249661e+05, 1.29103100e+07,␣
↪→3.62335316e+03,8.80348198e+04,

1.32202881e+07, 2.11691440e+03, 1.13544341e+05, 1.35193111e+07,␣
↪→1.15662164e+03, 8.65090415e+04,

1.38045792e+07, 6.64399822e+02, 1.16787485e+05,1.40957079e+07, 3.
↪→14143831e+02, 8.58188067e+04,

1.43757675e+07, 2.25769568e+02, 1.60925503e+05]

Next, define a few functions. The functions below take in a list of Gaussian parameters and an x
vector, and then return the sum of gaussians. The first function gives the sum directly, but the
second function first normalizes each Gaussian in the sum before returning the result.

[17]: def gauss_sum(params,x):
f = np.zeros_like(x)
for k in range(round(len(params)/3)):

ctr = params[3*k] #center of Gaussian on x-axis
amp = params[3*k+1] #amplitude of peak
wid = params[3*k+2] #standard deviation of the peak
f = f + amp * np.exp( -((x - ctr)/wid)**2/2)

return f

def gauss_sum_normed(params,x):
f = np.zeros_like(x)
for k in range(round(len(params)/3)):

ctr = params[3*k] #center of Gaussian on x-axis
amp = params[3*k+1] #amplitude of peak
wid = params[3*k+2] #standard deviation of the peak
f = f + np.exp( -((x - ctr)/wid)**2/2)/np.sqrt(2*np.pi*wid**2)

return f

xvec=np.linspace(0,1.6e7,10000)
g_sum=gauss_sum(gauss_params_fin,xvec)

plt.plot(xvec,g_sum)
plt.show()
plt.bar(range(len(coher_dist)),coher_dist)
plt.show()
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Next, find the intersection points between the neighboring Gaussians to determine the bins for the
data. These locations will occur where there is a minima in the Gaussian sum.
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[19]: '''Instead of the intersection points between neighboring Gaussians, use the␣
↪→minima of the sum of Gaussians'''

#This function takes in the gaussian parameters, the maximum cuttoff for the x␣
↪→value, and the number

#of points in the x-axis array corresponding to histogram areas
def xbin_locs2(params,xmax,points):

x=np.linspace(0,xmax,points)
f = np.zeros_like(x)
for k in range(round(len(params)/3)):

#print(k)
ctr = params[3*k]
amp = params[3*k+1]
wid = params[3*k+2]
f=f+amp*np.exp( -((x - ctr)/wid)**2/2)

pks=find_peaks(-f)[0]*xmax/points #these are the locations of the minima
#diffs=-np.abs(f1-f2)
#loc=np.where(diffs==np.max(diffs[round(points*ctr1/xmax):

↪→round(points*ctr2/xmax)]))[0]*xmax/points
#vec.append(loc)

return pks

#Calculate the location of the bins for the photon counts
photonbins=xbin_locs2(gauss_params_fin,1.5e7,100000)

Now, plot the results, both the normalized Gaussians with bins and the normal sum.

[20]: params=gauss_params_fin
NUM_COLORS = 31

#cm = plt.get_cmap('turbo')
cm = plt.get_cmap('gist_rainbow')
#ax = fig.add_subplot(111)
#ax.set_color_cycle([cm(1.*i/NUM_COLORS) for i in range(NUM_COLORS)])
fig, ax = plt.subplots(2, sharex=True,figsize=(26, 18))

#ax.plot(xvec,gauss_sum_normed(gparams2,xvec),color='k',linewidth=2)

for k in range(len(photonbins)+1):
if k==0:

lend=0
else:

lend=photonbins[k-1]
if k==len(photonbins):

rend=1.6e7
else:

rend=photonbins[k]
ax[0].axvline(rend, color=cm((1.*k+1)/NUM_COLORS))
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ax[0].axvspan(lend, rend, alpha=0.2,color=cm(1.*k/NUM_COLORS) )
ctr = params[3*k]
amp = params[3*k+1]
wid = params[3*k+2]
f = np.exp( -((xvec - ctr)/wid)**2/2)/np.sqrt(2*np.pi*wid**2)
ax[0].plot(xvec,f,color='k')

#ax.plot(xvec,gauss_sum(gauss_params_fin,xvec),color='r',linewidth=3)
plt.xlim([1e5,1.48e7])
#plt.show()

#fig, ax = plt.subplots(figsize=(22, 6))
ax[1].plot(xvec,gauss_sum(gauss_params_fin,xvec),color='r',linewidth=3)
#ax.hist(histvals, bins=1500, label='histogram')

for k in range(len(photonbins)+1):
if k==0:

lend=0
else:

lend=photonbins[k-1]
if k==len(photonbins):

rend=1.6e7
else:

rend=photonbins[k]
ax[1].axvline(rend, color='k')
#ctr = params[3*k]
#amp = params[3*k+1]
#wid = params[3*k+2]
#f = amp * np.exp( -((xvec - ctr)/wid)**2/2)
#ax.plot(xvec,f,color='r')
#ax.axvspan(lend, rend, alpha=0.15,color=cm(1.*k/NUM_COLORS) )

plt.yscale("log")
plt.ylim([1,4e5])
plt.xlim([1e5,1.45e7])
ax[1].tick_params(axis='both', which='major', labelsize=20)
ax[1].tick_params(axis='both', which='minor', labelsize=20)
plt.show()
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The error for an individual event will be the overlap of each Gaussian with neighboring bins. The
next function takes in the bins found previously, the left limit cuttoff, and the Gaussian parameters.

[21]: '''take those bins I just found, and integrate the gaussian in the bin over␣
↪→limits of the bin boundaries'''

def bin_occupancy(bins,llim,gparams):
points=100000
xmax=1.6e7
x=np.linspace(0,xmax,points)
ovlp=[]
right_error=[]
left_error=[]
for k in range(len(bins)+1):

if k==0:
lend=llim

else:
lend=bins[k-1]

if k==len(bins):
rend=1.46e7

else:
rend=bins[k]

ctr = gparams[3*k]
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amp = gparams[3*k+1]
wid = gparams[3*k+2]
f = np.exp( -((x - ctr)/wid)**2/2)/np.sqrt(2*np.pi*wid**2)

lidx=round(lend*points/xmax)
ridx=round(rend*points/xmax)
ldat=np.array(f)
ldat[lidx:]=0
rdat=np.array(f)
rdat[:ridx]=0
f[:lidx]=0
f[ridx:]=0
ovlp.append(simps(f,x,1))
left_error.append(simps(ldat,x,1))
right_error.append(simps(rdat,x,1))

return ovlp,left_error,right_error

'''lerror gives a list of the overlap of each gaussian with everything to the␣
↪→left of its bin, which is to a good

approximation just the overlap with the neighboring bin to the left. rerror the␣
↪→gives the overlap with the bin to the

right. good_ovlp is the overlap of the gaussian with its own bin.'''
overlaps=bin_occupancy(photonbins,0,gauss_params_fin)
rerror=np.asarray(overlaps[2])
lerror=np.asarray(overlaps[1])
good_ovlp=np.asarray(overlaps[0])

np.set_printoptions(precision=4)
print('Probability of a photon count to be in the assigned bin: ',good_ovlp)

print('Approximate probability of a photon count to be miscounted and assigned␣
↪→to the bin to the left: ',lerror)

print('Approximate probability of a photon count to be miscounted and assigned␣
↪→to the bin to the right: ',rerror)

Probability of a photon count to be in the assigned bin: [1. 1. 1.
0.9997 0.9994 0.998 0.9964 0.9942 0.9922 0.9896
0.9866 0.9821 0.978 0.9745 0.9697 0.96 0.9476 0.9556 0.9471 0.9425
0.9356 0.9252 0.8839 0.9264 0.8906 0.9065 0.8325 0.8753 0.7762 0.8605
0.623 ]
Approximate probability of a photon count to be miscounted and assigned to the
bin to the left: [0.0000e+00 2.8334e-07 3.4015e-07 1.2755e-05 6.8171e-05
1.8492e-04
6.9307e-04 1.3564e-03 2.2381e-03 3.2466e-03 4.5824e-03 6.4794e-03
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9.0457e-03 1.1029e-02 1.3815e-02 1.7809e-02 2.9066e-02 2.4108e-02
2.9782e-02 3.3901e-02 3.9686e-02 4.5479e-02 8.3153e-02 5.0032e-02
7.7006e-02 7.1196e-02 1.2038e-01 1.0380e-01 1.7497e-01 1.2740e-01
2.9527e-01]
Approximate probability of a photon count to be miscounted and assigned to the
bin to the right: [4.2883e-06 2.4937e-06 4.8722e-05 2.5740e-04 5.5091e-04
1.7722e-03
2.9013e-03 4.4128e-03 5.5359e-03 7.1334e-03 8.8129e-03 1.1470e-02
1.2906e-02 1.4445e-02 1.6499e-02 2.2186e-02 2.3297e-02 2.0242e-02
2.3144e-02 2.3628e-02 2.4693e-02 2.9285e-02 3.2929e-02 2.3525e-02
3.2420e-02 2.2317e-02 4.7123e-02 2.0891e-02 4.8860e-02 1.2084e-02
8.1688e-02]

We can assume that the error is limited to nearest-neighbor bins, as the next-nearest-neighbor
overlap will be considerably smaller. Now, for even photon number outcomes, the overlap to the
left and right is the probability to be miscounted as an odd, and the same holds true for odd
photons being miscounted as even. Also, the parity error will depend on the specific distribution,
as the Gaussian overlap errors are not the same for every photon-number bin.

[22]: '''Find the parity error, which will depend on the measured distribution as␣
↪→well'''

ldist_error=np.multiply(lerror,coher_dist[:len(lerror)])
rdist_error=np.multiply(rerror,coher_dist[:len(rerror)])
tot_err=rdist_error+rdist_error

odd_error=np.sum(tot_err[::2]) #total error prob of even to be counted as an␣
↪→odd (sums all error over even counts)

even_error=np.sum(tot_err[1::2]) #total error prob of an odd to be counted as␣
↪→an even (sums all error over odd counts)

print('Average error on the parity for this distribution is given by: ',␣
↪→odd_error-even_error)

Average error on the parity for this distribution is given by:
0.00043309896413963947

[ ]:
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Fock_state_overlaptomo

March 23, 2022

1 Overlap Tomography Code
This code performs the tomographic reconstruction from the overlap tomography experiment.
Specifically, this code is for the overlap tomography of a single-photon Fock state. The basis
for this reconstruction is a convex-optimization semidefinite programming (SDP) algorithm used
to solve the matrix equation M = CP , where M is a column vector containing all of the overlap
measurements, C is a coefficient matrix that can be calculated from the coherent state calibration
measurements, and P is the unknown density operator in Liouville vector representation. Instead
of directly inverting C, which could cause problems due to even small errors in the calibration
blowing up upon matrix inversion, the more robust minimization of the L2 norm, ||M − CP ||2
can be performed. Minimizing this quantity yields a global minimum that this computationally
efficient to solve. Additionally, we can use physicality constraints on the density matrix ρ = ρ† and
Tr[ρ] = 1 to ensure a physical reconstruction. This code uses the Python libraries CVXPY and
CVXOPT to perform the optimization.

Once the reconstruction is performed, a second optimization problem can be solved to compensate
for calibrated loss, as the loss process is just a different matrix mapping from the pure state to the
loss-degraded state.

[1]: import time
from matplotlib import rc
import math
from qutip import *
#from qutip.ipynbtools import plot_animation
#import qutip

import numpy as np
%matplotlib inline
import matplotlib.pylab as plt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from IPython.display import display, Math, Latex

import cmath
from mpl_toolkits.axes_grid1 import AxesGrid
from scipy.special import factorial
from scipy.special import binom
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from scipy import linalg
import scipy as scp
import cvxpy as cp
import cvxopt

global N_dim
global N_trun
N_dim = 10;
N_trun = 6;

First we’ll calculate the coefficient matrix from the measured coherent states. We could use directly
measured results, but we can improved our results by including some additional calibrations such
as imperfect visibility between the signal photon and the coherent state. If we assume that the
fiber collects everything, then the only mode we should care about is the portion of the signal that
correctly interferes with the coherent state, but in actuality, we also measure the non-interferring
photons. Additionally, when calibrating the coherent state, we collect more light than actually
interferes with the signal, as some of this coherent state will not overlap. Thus, when calculating
the coefficient matrix, the value of the coherent state used should actually be smaller than what is
measured by a factor of the visibility. Below, we have the measured amplitudes of the five non-zero
coherent state values which were calibrated before and after each experimental run. The values
used for the reconstruction is the average of the measurements scaled by the visibility.

[2]: '''Coherent State calibrations'''
vis=0.9
M=vis**2
alpha_LO1 = np.sqrt(2)*np.array([0,0.2392,0.2577, 0.2877, 0.3158, 0.50774])␣
↪→#Measured values at start

alpha_LO2 =np.sqrt(2)*np.array([0,0.2653,0.2728, 0.293 ,0.3198, 0.5054]) ␣
↪→#Measured values at end

alpha_LO=(alpha_LO1+alpha_LO2)/2
alpha_LO_new=alpha_LO*vis

[3]: np.sqrt(1-M)

[3]: 0.4358898943540673

The measured amplitudes are only part of the calibrations. Additionally, we need the phase of
each measurement. In this experiment, I used a mirror-mounted PZT to vary the phase of the
overlapping coherent states. Each shift to the piezo applied a 0.58 radian phase. Additionally,
because the EOM was used to control the amplitudes of the coherent states, the phase also depends
on the amplitude since changing the voltage on the EOM will change the phase. The phases were
all calibrated with classical beams before the experimental data collection. At the end of the cell
below, the variable ‘Final_prob’ is now a 2D array that contains all of the coefficients needed to
solve the SDP problem.

[4]: '''Create a matrix of the coefficients of all of the
coherent states used to probe the state to tomograph'''
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prob_matrix_tomo=[]
phase_step=0.58 #the PZT changes the phase by 0.58 rads
EOM_phase_step=0.277 #phase change due to EOM in rads

'''In this set of data, I did i=24;16;8;1 for the EOM values, so I need to␣
↪→assign EOM values to negative phases.

Hence the minus sign on the EOM_phase_step in line 22 of this cell'''
amp_num=5 #number of coherent state probe amplitudes (not including vacuum)

for i in range(amp_num):
amp=alpha_LO_new[i+1];
if (i+1)>4:

EOM_phase=np.e**(-EOM_phase_step*(i-5)*1j)
elif 5>(i+1)>0:

EOM_phase=np.e**(-EOM_phase_step*(i)*1j)
else:

EOM_phase=1
for k in range(10): #(number of phases used)

phase=np.e**(k*1j*phase_step)
B = coherent_dm(N_dim,amp*phase*EOM_phase).full()
ele = B.flatten()
prob_matrix_tomo.append(ele)

'''Add the vacuum component last'''
B_vac=coherent_dm(N_dim,0).full()
prob_matrix_tomo.append(B_vac.flatten())

Final_prob = np.array(prob_matrix_tomo);

The cell below contains the measured photon-number probability distributions from the TES for
each overlap setting for five values of coherent state amplitude each at 10 phases from 0 to 2π. The
first set of ‘amp_0’ is when the coherent state field is block, thus the signal is simply overlapped
with vacuum.

[5]: '''experimental number distributions go here'''
refl_tot=.4 #This is the loss we determined from the heralding ratio

amp_0_1=[0.8134,0.1791,0.0075,0,0,0,0]
amp_0_2=[0.7974,0.2026,0,0,0,0,0]
amp_0_3=[0.7869,0.2131,0,0,0,0,0]
amp_0=np.zeros(7)
for i in range(len(amp_0_1)): #average the 3 measurements

amp_0[i]=(amp_0_1[i]+amp_0_2[i]+amp_0_3[i])/3

amp_1_p1 = [0.6619, 0.3094,0.0288,0,0,0,0]
amp_1_p2 = [ 0.6917,0.2667,0.0417,0,0,0,0]
amp_1_p3 = [ 0.6771,0.2396,0.0833,0,0,0,0]
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amp_1_p4 = [ 0.6579,0.2895,0.0439,0.0088,0,0,0]
amp_1_p5 = [0.66950,0.3136,0.0169,0,0,0,0]
amp_1_p6 = [0.7254,0.2042,0.0634,0.007,0,0,0]
amp_1_p7 = [0.7109,0.25,0.0391,0,0,0,0]
amp_1_p8 = [0.7284,0.2407,0.0309,0,0,0,0]
amp_1_p9 = [0.6855,0.2642,0.044,0.0063,0,0,0]
amp_1_p10 = [ 0.7414,0.2241,0.0345,0,0,0,0]

amp_2_p1 = [0.7143,0.2476,0.0381,0,0,0,0]
amp_2_p2 = [ 0.7596,0.2212,0.0192,0,0,0,0]
amp_2_p3 = [ 0.7042,0.2535,0.0352,0.007,0,0,0]
amp_2_p4 = [ 0.731,0.2164,0.0526,0,0,0,0]
amp_2_p5 = [0.7345,0.2373,0.0226,0.0056,0,0,0]
amp_2_p6 = [0.6842,0.25,0.0658,0,0,0,0]
amp_2_p7 = [0.6698,0.283,0.0472,0,0,0,0]
amp_2_p8 = [0.7068,0.2408,0.0419,0.0105,0,0,0]
amp_2_p9 = [0.7341,0.2197,0.0405,0.0058,0,0,0]
amp_2_p10=[0.6587,0.3077,0.024,0.0096,0,0,0]

amp_3_p1 = [0.6863,0.2598,0.049,0.0049,0,0,0]
amp_3_p2 = [ 00.7037,0.2361,0.0602,0,0,0,0]
amp_3_p3 = [ 0.6364,0.298,0.0606,0.0051,0,0,0]
amp_3_p4 = [ 0.6524,0.2866,0.061,0,0,0,0]
amp_3_p5 = [0.6946,0.2635,0.0419,0,0,0,0]
amp_3_p6 = [0.7113,0.232,0.0515,0.0052,0,0,0]
amp_3_p7 = [0.7468,0.1962,0.038,0.019,0,0,0]
amp_3_p8 = [0.6526,0.3105,0.0368,0,0,0,0]
amp_3_p9 = [0.7086,0.2514,0.04,0,0,0,0]
amp_3_p10=[0.6527,0.3054,0.0359,0.006,0,0,0]

amp_4_p1 = [0.6866,0.2687,0.0398,0.005,0,0,0]
amp_4_p2 = [ 0.6842,0.269,0.0409,0.0058,0,0,0]
amp_4_p3 = [0.6258,0.2945,0.0736,0.0061,0,0,0]#check this point - might be wrong
amp_4_p4 = [ 0.6299,0.3052,0.0519,0.013,0,0,0]
amp_4_p5 = [0.6848,0.2446,0.0707,0,0,0,0]
amp_4_p6 = [0.6377,0.3261,0.029,0.0072,0,0,0]
amp_4_p7 = [0.671,0.2645,0.0581,0.0065,0,0,0]
amp_4_p8 = [0.6918,0.2453,0.0503,0.0126,0,0,0]
amp_4_p9 = [0.7299,0.1971,0.073,0,0,0,0]
amp_4_p10=[0.7071,0.2357,0.0571,0,0,0,0]

amp_5_p1 = [0.5798,0.3109,0.1008,0.0084,0,0,0]
amp_5_p2 = [ 0.5783,0.2771,0.0904,0.0482,0.006,0,0]
amp_5_p3 = [0.5333,0.3222,0.1111,0.0167,0.0167,0,0]
amp_5_p4 = [ 0.5839,0.2919,0.0932,0.0311,0,0,0]
amp_5_p5 = [0.549,0.3464,0.0915,0.0131,0,0,0]
amp_5_p6 = [0.6557,0.2842,0.0546,0.0055,0,0,0]
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amp_5_p7 = [0.6481,0.2099,0.1049,0.037,0,0,0]
amp_5_p8 = [0.6051,0.2484,0.1274,0.0127,0,0.0064,0]
amp_5_p9 = [0.5988,0.2515,0.0958,0.0359,0.012,0.006,0]
amp_5_p10=[0.6175,0.2568,0.1038,0.0219,0,0,0]

'''Restructure data slightly'''
Amp0=[]; Amp1=[]; Amp2=[]; Amp3=[]; Amp4=[]; Amp5 = []
for k in range(6):

for i in range(10):
if k==0:

temp_val=np.asarray(eval('amp_0'))
else:

temp_val=np.asarray(eval('amp_'+str(k)+'_p'+str(i+1)))
eval('Amp'+str(k)).append(temp_val)

Earlier, it was mentioned that a correction needed to be applied to the coherent state amplitudes
to account for the imperfect visibility. Similarly, the extra photons from the coherent state that
don’t properly interfere with the signal add extra photons to the measured probabilities. Since we
know the visibility ahead of time, we can use the measured value and deconvolve the erroneous
photons from the data to recover the true measured distribution. This is done by the function
‘Amp_correction’ below, which simply performs matrix multiplication to map the raw distribution
to the deconvoluted distribution. The matrix needed is calculated in the rest of the cell. Note
that this matrix is actually a ragged matrix of many submatrices, each designed to correct the
mismatched visibility for the different coherent state amplitudes used for the experiment.

First, ‘matrix_M’ is calculated, which contains all of the matrix maps that convolve the true
distributions with non-interfering coherent state photons. These matrices must then be inverted to
‘M_inv’ which will be applied to the actually measured distributions to attain the true distributions
that we can use for further tomographic reconstruction.

[6]: def Amp_correction(num_dist,Matrix):
leng=len(num_dist)
new=[]
for i in range(leng):

new.append(np.dot(Matrix,num_dist[i]))
return new

#Matrices that describes the convolution of a density matrix with coherent␣
↪→state probabilities

matrix_M=[]
dim_out=N_dim #Hilbert space dimentsion cuttoff of the output (measured) state
leng=len(alpha_LO)
for i in range(leng):

Prob_vec=[]
state=coherent_dm(N_dim,np.sqrt(1-M)*alpha_LO[i])
for j in range(7):

row=[]
for k in range(7):
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#for k in range(dim_in):
if k > j: #ensures the result is upper triangular

val=0
else:

#val=(binom(j+k,k)*binom(j+i+k,k))**(1/2)*r**(2*k)*t**(j+(i+j))
#The above line is correct for the values as they start, but I␣

↪→forgot
#that there is an offset, so I need to replace k with (k-j)
val=state.diag()[j-k]

row.append(val) #appends each value to the k^th position in the␣
↪→j^th row

#for n in range(j):
# row[n]=row[j-1-n]
Prob_vec.append(row) #appends the j^th row to the i^th matrix

matrix_M.append(Prob_vec)

M_inv=[] #Invert the above matrix
for i in range(len(alpha_LO)):

inverse=np.linalg.inv(matrix_M[i])
M_inv.append(inverse)

#New amplitudes that are now the corrected measured probability distributions
Amp0_new=Amp0
for k in range(5):

␣
↪→vars()['Amp'+str(k+1)+'_new']=Amp_correction(eval('Amp'+str(k+1)),M_inv[k+1])

Next, take array of probability distributions and turn it into an array of parities. Remeber that
the parity for each distribution is directly related to the overlap fidelity of the unknown density
matrix with the calibrated coherent states.

The capital P# variables (P0, P1, etc.) hold the parities for all measured data points. The
lowercase p# variables hold the averaged measured parity accross all phases for a given amplitude.
The final array, ‘Fid_array_fin’, is the vector of overlap measurements that can go into our SDP
optimization algorithm along with the coefficient matrix to solve for the unknown density operator.

[7]: def par_array(num_dist_matrix, length, n_trun):
P_array=[]
for k in range(length):

P_n=num_dist_matrix[k]
Parity = 0;
for i in range(n_trun):

Parity = Parity + math.pow(-1,i)*P_n[i]
P_array.append(Parity)

return P_array

for k in range(6):
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vars()['P'+str(k)]=par_array(eval('Amp'+str(k)+'_new'),10,N_trun)

for i in range(5):
temp=eval('P'+str(i+1))
avg=np.average(temp)
vars()['p'+str(i+1)]=[avg,avg,avg,avg,avg,avg,avg,avg,avg,avg]

p0=P0

#sets the final distsributions used, P# has data for amplitude# at all phases
Fid_array=np.ndarray.flatten(np.array([P1,P2,P3,P4,P5]))

#This is the array that now averages the measurements at each amplitude overall␣
↪→all phases instead

Fid_array_averaged=np.ndarray.flatten(np.array([p1,p2,p3,p4,p5]))

'''append the vacuum measurement data'''
Fid_array_fin=np.append(Fid_array,P0[1])
Fid_array_fin_averaged=np.append(Fid_array_averaged,p0[1])

The function below is designed to use the measurements (‘Fid_array_fin’) and the calibrated coef-
ficients from the coherent state probe matrix (‘Final_prob’) to solve the semidefinite programming
opimization problem. This function minimizes the error function, which is the L2 norm mentioned
above, ||CP −M ||2. In addition, a small parameter γ is used as a regularizer that penalizes large
elements of the reconstruction. This is a small overall effect but helps minimize the spurious effects
of noise that could lead to unrealistically large coherences in the density matrix from experimental
errors.

[8]: def Convex_optimization_state_tomography(Matrix_prob, Measurements, gamma):
#gamma: small regularizing parameter that helps with noise. Aribitrary, but␣

↪→should be small, order of 0.01 or less
C = Matrix_prob; #This is the input coefficient matrix
Meas = Measurements; #These are the measured overlap fidelities
P = cp.Variable((N_dim,N_dim), PSD = True) #unknown density matrix
#P = cp.Variable((N_dim,N_dim), Hermitian = True) #set hermitian true when␣

↪→I include phase

Error = cp.norm(C@cp.vec(P) - Meas,2) #second paramter gives norm type

Obj_detect = cp.Minimize(Error + gamma*cp.norm(cp.vec(P),2))
constraints = [cp.trace(P)==1]# physicality constraint
for i in range(N_dim):

constraints.append(cp.real(P[i][i]) >= 0) #ensure diagonals are real
if i>5:

#based on direct photon counting (without overlap tomo), we know␣
↪→the probability distribution for the state is zero beyond 4 photons

constraints.append(cp.real(P[i][i]) == 0)
Prob_detect = cp.Problem(Obj_detect,constraints)
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Prob_detect.solve(verbose = False)
#Prob_detect.solve(cp.CVXOPT) #can choose a different solver
p_values = (P.value)
return p_values

P1 = Convex_optimization_state_tomography(Final_prob, Fid_array_fin, .01) #All␣
↪→data points used

P2 = Convex_optimization_state_tomography(Final_prob, Fid_array_fin_averaged, .
↪→01) #averaged phases

P_arr1 = np.array(P1).reshape(N_dim,N_dim)
P_arr2 = np.array(P2).reshape(N_dim,N_dim)

#Plots show the reconstructed photon number distributions
fig, ax = plt.subplots(1,2, sharey=True,figsize=(9,4))

ax[0].bar(range(N_dim),P_arr1.diagonal(0))
ax[0].set_title('Reconstruction with all data')
ax[0].set_ylabel('P(n)',fontsize=14)
ax[0].set_xlabel('n',fontsize=14)
ax[0].set_xlim([-0.5,6])
#ax1.xlabel('n',fontsize=12)
ax[1].bar(range(N_dim),P_arr2.diagonal(0))
ax[1].set_title('Reconstruction with averaged phases')
ax[1].set_xlabel('n',fontsize=14)
ax[1].set_xlim([-0.5,6])
plt.tight_layout()
plt.show()

Looking at the photon-number distributions, we see that for the most part we just have vacuum
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and single photon probabilities. This makes sense, since we send a single photon through a lossy
channel. Now let’s plot the Wigner functions for both reconstructions.

[9]: xvec = np.arange(-20.,20.)*5./40
yvec = np.arange(-50.,50)*5/40
X,Y = np.meshgrid(xvec, xvec)
X1,Y1 = np.meshgrid(yvec,yvec)

q_tomo1=Qobj(P_arr1)
q_tomo2=Qobj(P_arr2)
W1=wigner(q_tomo1,xvec,xvec)
W2=wigner(q_tomo2,xvec,xvec)

fig = plt.figure(figsize=(16,10))
# `ax` is a 3D-aware axis instance, because of the projection='3d' keyword␣
↪→argument to add_subplot

ax = fig.add_subplot(2, 2, 2)
p = ax.contourf(X, Y, W1, 80, cmap=cm.seismic_r,vmin=-0.32,vmax=0.32)
#cb = fig.colorbar(p, shrink = 0.7)
cb = fig.colorbar(p, shrink = 1)
cb.ax.tick_params(labelsize=16)
cb.set_ticks([-0.3,-0.2,-0.1, 0,0.1,0.2,0.3]);

# surface_plot with color grading and color bar
ax = fig.add_subplot(2, 2, 1, projection='3d')
p = ax.plot_surface(X, Y, W1, rstride=1, cstride=1, cmap=cm.seismic_r,vmin=-0.
↪→32,vmax=0.32, linewidth=0.5)

cb = fig.colorbar(p,shrink = .7)
plt.title('Reconstruction with all data')
plt.show()
print('Fidelity with a single photon is ',fidelity(q_tomo1,fock(N_dim,1))**2)

fig = plt.figure(figsize=(16,10))
# `ax` is a 3D-aware axis instance, because of the projection='3d' keyword␣
↪→argument to add_subplot

ax = fig.add_subplot(2, 2, 2)
p = ax.contourf(X, Y, W2, 80, cmap=cm.seismic_r,vmin=-0.32,vmax=0.32)
#cb = fig.colorbar(p, shrink = 0.7)
cb = fig.colorbar(p, shrink = 1)
cb.ax.tick_params(labelsize=16)
cb.set_ticks([-0.3,-0.2,-0.1, 0,0.1,0.2,0.3]);

# surface_plot with color grading and color bar
ax = fig.add_subplot(2, 2, 1, projection='3d')
p = ax.plot_surface(X, Y, W2, rstride=1, cstride=1, cmap=cm.seismic_r,vmin=-0.
↪→32,vmax=0.32, linewidth=0.5)

cb = fig.colorbar(p,shrink = .7)
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plt.title('Reconstruction with phase-averaged data')
plt.show()
print('Fidelity with a single photon is ',fidelity(q_tomo2,fock(N_dim,1))**2)

Fidelity with a single photon is 0.441096175995693

Fidelity with a single photon is 0.4430140560643

The above Wigner functions do not dip negative since the overall loss in this run of the experiment
slightly exceed 50%. While the phase-averaged data more closely resembles the symmetry of the
Fock state, the whole data set is not too bad. The asymmetries originate from experimental
imperfections such as finite sampling and amplitude fluctuations over the course of data collection
(~6 hours).

Fortunately, loss is a statistical process that uniquely maps one density operator to another loss-
degraded density operator. As discussed in the main text, another SDP optimiztion problem can
be solved to determine the true density matrix before loss. First, define ‘matrix_L’ which is the
matrix that applies loss to the density matrix. Here, loss was as high as 60%.
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[10]: refl_tot=0.6
'''Define the Matrix to correct the loss on the reconstructed \rho' '''
#dim_in=N_dim #Hilbert space dimension cuttoff of the input quantum state
dim_out=N_dim #Hilbert space dimentsion cuttoff of the output (measured) state
r=np.sqrt(refl_tot) #loss BS reflection coefficient
t=np.sqrt(1-refl_tot) #loss BS transmission coefficient

#Define my 'ragged' matrix that gives me the transformation between my initial␣
↪→state

#and my final state after the BS and trace. Here, each layer gives a matrix␣
↪→that

#maps ones of the diagonals of my new, measured density matrix to the same
#diagonal of my original matrix.

matrix_L=[]
for i in range(N_dim):

M=[]
for j in range(dim_out-i):

row=[]
for k in range(dim_out-i):

if k < j: #ensures the result is upper triangular
val=0

else:
val=(binom(k,k-j)*binom(i+k,k-j))**(1/

↪→2)*(refl_tot)**((k-j))*(1-refl_tot)**(j+(i/2))
row.append(val) #appends each value to the k^th position in the␣

↪→j^th row
M.append(row) #appends the j^th row to the i^th matrix

matrix_L.append(M)

#For example, the main diagonals map according to
#rho_out.diagonal(0)=np.matmul(matrix_M[0],rho_in.diagonal(0))

#Note, this is NOT YET NORMALIZED! I still need to do that in the optimization␣
↪→algorithm

#rearrange the varibles into the same form that works with the SDP problem
rho_temp1=np.zeros((dim_out,dim_out),complex) #all data points
rho_temp2=np.zeros((dim_out,dim_out),complex) #phase-averaged data
for i in range(N_dim):

for j in range(N_dim):
rho_temp1[i][j]=P_arr1[i][j]
rho_temp2[i][j]=P_arr2[i][j]

The next cell has the SDP algorithm used to correct for loss. As a different matrix must map each
diagonal (not just the main diagonal) of the density matrix into a loss-degraded density matrix,
this SDP problem actually optimizes over several matrix inversions. It is thus a bit more messy
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than before.

[15]: '''Method using SDPs to reconstruct for loss, which uses the first matrix,␣
↪→matrix_L as the loss matrix

which we need to find the inverse of'''
from cvxopt import blas, lapack, solvers

def Convex_optimization_loss_reconstruct(Matrix_map, Rho_measured, gamma,delta):
M = np.asarray(Matrix_map);
Rho = Rho_measured;
Error1=0
Error2=0
P = cp.Variable((N_dim,N_dim), PSD = True) #set hermitian true when I␣

↪→include phase
#P = cp.Variable((N_dim,N_dim), complex = True)
#P = cp.Variable((N_dim,N_dim), hermitian=True)
norm=0

shifted=[]
for i in range(N_dim):

row=[]
for j in range(N_dim-i):

row.append(P[j][i+j])
shifted.append(row)

#The above loop rearranges the variable matrix P into a new matrix where
#the new rows are now the different diagonals of the original P matrix
Error_vec=[]
for k in range(N_dim):

vec=[]
for i in range(N_dim-k):

num=0
for j in range(N_dim-k):

num=num+M[k][i][j]*shifted[k][j]
#inner loop performs matrix multiplication between
#one of the rows from the new shifted P matrix and
#one of the matrices that needs to be inverted, M[k].

vec.append(num)
#This inner multiplications results in the vector vec
#I also use this number to subract element-wise the corresponding
#values of the diagonals of the measured Rho
temp_error=cp.abs(num-np.diagonal(Rho,k)[i])
Error1=Error1+cp.power(temp_error,2)

shifted2=[]
for i in range(N_dim):
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row=[]
for j in range(N_dim-i):

row.append(P[j+i][j])
shifted2.append(row)

for k in range(N_dim):
vec=[]
for i in range(N_dim-k):

num=0
for j in range(N_dim-k):

num=num+M[k][i][j]*shifted2[k][j]
#inner loop performs matrix multiplication between
#one of the rows from the new shifted P matrix and
#one of the matrices that needs to be inverted, M[k].

vec.append(num)
#This inner multiplications results in the vector vec
#I also use this number to subract element-wise the corresponding
#values of the diagonals of the measured Rho
temp_error=cp.abs(num-np.diagonal(Rho,k)[i].conj())
Error2=Error2+cp.power(temp_error,2)

Obj_detect = cp.Minimize(Error1+Error2+ gamma*cp.norm(P,2))

positive_diag=[]

constraints = [cp.trace(P)==1,cp.diag(cp.real(P))>=0] #constrains the␣
↪→density matrix to be physical

for i in range(N_dim):
for j in range(N_dim):

if i==j:
constraints.append(cp.abs(P[i][j]) <= (1/np.

↪→sqrt(1-refl_tot)**(i+j))*cp.abs(Rho[i][j])+delta)
Prob_detect = cp.Problem(Obj_detect,constraints)
Prob_detect.solve(verbose = False) #set verbose = True to see output logs
#Prob_detect.solve(cp.CVXOPT,verbose = False)

p_values = (P.value)
return p_values

Rho1=Convex_optimization_loss_reconstruct(matrix_L,rho_temp1,0.0,0.0) #all data
Rho2=Convex_optimization_loss_reconstruct(matrix_L,rho_temp2,0.0,0.0)␣
↪→#phase-averaged data

[16]: #Plots show the reconstructed photon number distributions
fig, ax = plt.subplots(1,2, sharey=True,figsize=(9,4))

ax[0].bar(range(N_dim),Rho1.diagonal(0))
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ax[0].set_title('Reconstruction with all data')
ax[0].set_ylabel('P(n)',fontsize=14)
ax[0].set_xlabel('n',fontsize=14)
ax[0].set_xlim([-0.5,6])
#ax1.xlabel('n',fontsize=12)
ax[1].bar(range(N_dim),Rho2.diagonal(0))
ax[1].set_title('Reconstruction with averaged phases')
ax[1].set_xlabel('n',fontsize=14)
ax[1].set_xlim([-0.5,6])
plt.tight_layout()
plt.show()

From the above probability distributions, it is clear that the loss reconstruction removed the vacuum
component and produced a state that is considerably closer to the pure single-photon we expect.
However, the relatively large 2 photon component may not be erroneous after all. In fact, the
pump power was too high, so the 2 photon probability in reality was likely non-negligible. Thus,
the tomography protocol was able to provide us information on the generated state.

We can also plot the density matrix elements, followed by Wigner functions of the full reconstruction
with loss compensation.

[17]: s1=np.abs(Rho1)
temp1=np.delete(s1,np.s_[6:],0)
state1=np.delete(temp1,np.s_[6:],1)

s2=np.real(Rho2)
temp2=np.delete(s2,np.s_[6:],0)
state2=np.delete(temp2,np.s_[6:],1)

fig = plt.figure(figsize=(5,3))
plt.pcolormesh(state1, vmin=0.0, vmax=.9,edgecolor='k', linewidth=1)
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cbar=plt.colorbar()
cbar.ax.tick_params(labelsize=16)
plt.xticks([0,2,4,6])
plt.tick_params(labelsize=16)
plt.title('Reconstruction with all data')
plt.show()

#plt.imshow(state)
fig = plt.figure(figsize=(5,3))
plt.pcolormesh(state2, vmin=0.0, vmax=.9,edgecolor='k', linewidth=1)
cbar=plt.colorbar()
cbar.ax.tick_params(labelsize=16)
plt.xticks([0,2,4,6])
plt.tick_params(labelsize=16)
plt.title('Reconstruction with averaged phases')
plt.show()
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[18]: xvec = np.arange(-20.,20.)*5./40
yvec = np.arange(-50.,50)*5/40
X,Y = np.meshgrid(xvec, xvec)
X1,Y1 = np.meshgrid(yvec,yvec)

q_tomo1=Qobj(Rho1)
q_tomo2=Qobj(Rho2)
W1=wigner(q_tomo1,xvec,xvec)
W2=wigner(q_tomo2,xvec,xvec)

fig = plt.figure(figsize=(16,10))
# `ax` is a 3D-aware axis instance, because of the projection='3d' keyword␣
↪→argument to add_subplot

ax = fig.add_subplot(2, 2, 2)
p = ax.contourf(X, Y, W1, 80, cmap=cm.seismic_r,vmin=-0.32,vmax=0.32)
#cb = fig.colorbar(p, shrink = 0.7)
cb = fig.colorbar(p, shrink = 1)
cb.ax.tick_params(labelsize=16)
cb.set_ticks([-0.3,-0.2,-0.1, 0,0.1,0.2,0.3]);

# surface_plot with color grading and color bar
ax = fig.add_subplot(2, 2, 1, projection='3d')
p = ax.plot_surface(X, Y, W1, rstride=1, cstride=1, cmap=cm.seismic_r,vmin=-0.
↪→32,vmax=0.32, linewidth=0.5)

cb = fig.colorbar(p,shrink = .7)
plt.title('Reconstruction with all data')
plt.show()
print('Fidelity with a single photon is ',fidelity(Qobj(Rho1),fock(N_dim,1))**2)
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fig = plt.figure(figsize=(16,10))
# `ax` is a 3D-aware axis instance, because of the projection='3d' keyword␣
↪→argument to add_subplot

ax = fig.add_subplot(2, 2, 2)
p = ax.contourf(X, Y, W2, 80, cmap=cm.seismic_r,vmin=-0.32,vmax=0.32)
#cb = fig.colorbar(p, shrink = 0.7)
cb = fig.colorbar(p, shrink = 1)
cb.ax.tick_params(labelsize=16)
cb.set_ticks([-0.3,-0.2,-0.1, 0,0.1,0.2,0.3]);

# surface_plot with color grading and color bar
ax = fig.add_subplot(2, 2, 1, projection='3d')
p = ax.plot_surface(X, Y, W2, rstride=1, cstride=1, cmap=cm.seismic_r,vmin=-0.
↪→32,vmax=0.32, linewidth=0.5)

cb = fig.colorbar(p,shrink = .7)
plt.title('Reconstruction with phase-averaged data')
plt.show()
print('Fidelity with a single photon is ',fidelity(Qobj(Rho2),fock(N_dim,1))**2)

Fidelity with a single photon is 0.8034190879882358
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Fidelity with a single photon is 0.7594397813576096

18


	Abstract
	Acknowledgements
	Preface
	Quantum Optics and Quantum Computation
	Overview
	Quantizing the Field
	State Representations
	Density Operators
	Wigner function

	Operators and State Evolution
	Schrodinger vs. Heisenberg
	Baker-Campbell-Hausdorff formula
	Rotations in phase space: optical phase shifts
	Translations in phase space: field displacements
	Coherent states

	Phase-space symmetry
	Squeezing
	Two-mode beamsplitter
	Two-mode squeezing
	Controlled gates
	EPR states

	Kraus Operator Formalism and the Lindblad equation
	An example: photon loss
	Lindblad master equation
	Kraus operator for loss
	The damping operator
	Projective measurement
	Photon subtraction
	Photon addition


	Quantum Computation
	Qubits
	Qubit cluster states

	Continuous-Variable Quantum Computation
	Qumode cluster states
	Teleportation
	Disconnecting nodes
	General homodyne measurement
	Feed-forward displacements
	General measurement


	Universal Gate Set
	Gaussian gate set
	Two-mode gates

	Non-Gaussian gates
	Gate teleportation


	Realistic Cluster States
	Macronode cluster states
	Finite squeezing
	Fock state example


	Error Correction and State Encoding
	GKP states
	Error-correction protocol
	Finite squeezing
	Experimental progress

	Rotation symmetric codes
	Binomial code states



	Photon Catalysis
	Overview
	Derivation
	Exact Displaced Single-photon States
	Lossless case
	Lossy case

	Schrödinger Cat States
	Cascaded photon catalysis
	Loss tolerance
	Success probability
	Higher-symmetry SSV states

	Breeding Protocols
	SSV states
	Square-lattice GKP states
	Hexagonal GKP states

	Summary and Goals

	Embedding Non-Gaussianity in a Cluster State
	Overview
	PhANTM
	Ideal teleportation
	Polynomial operator applications

	Realistic teleportation

	Results
	Cat states
	Stabilization of cat states
	Higher-dimensional clusters


	Breeding Cat States
	GKP states
	Breeding on the cluster state

	Phase estimation

	Macronode Extension
	Dictionary protocol
	Effects of m2

	Summary

	Rotation-Symmetric Code States
	Overview
	Rotation-symmetric Bosonic Codes: Recap
	Proposed Method: Analytical Model
	Perfect coherent photon subtraction

	Numerical Experiments
	State Engineering for Bosonic Error Correcting Codes
	General two-component states
	Binomial code state generation
	Truncated cat code state generation
	Arbitrary superposition states
	Success probability enhancement by resource multiplexing

	Imperfect Binomial Code Words
	No-jump errors
	Single-jump errors


	Summary and Outlook 

	Quantum Sensing with Non-Gaussian States
	Overview of Quantum-Enhanced Interferometry
	SU(2) interferometry
	A note on SU(1,1) interferometry

	Quantum Fisher Information
	MZI Implementation Sensitivity
	State Generation
	Squeezed Input
	Practical Considerations
	PNR detector loss
	Click/no-click detector
	General OPO output

	Distinguishable Subtraction without Coherence
	Summary

	Photon-Number-Resolving Detection
	Detector POVMs
	Transition-Edge Sensor
	Basic TES response

	TES Data Acquisition
	Hardware and firmware
	External amplification

	TES Efficiency Calibration
	Counting 30 Photons
	Bin overlap error
	Bin error mitigation


	Random Number Generation with the TES

	Tomography with PNR Detectors
	Point-by-point Tomography
	Overlap Tomography
	Theory of wigner function overlap
	Tomographic reconstruction with semidefinite programming
	Phase-Space resolution
	Cat-state example


	Variations on Overlap Tomography
	Click detection
	Quadratic speed-up with full PNR
	Multi-mode systems
	Finite sampling error


	Loss Compensation
	Complete density matrix correction
	Equivalence of photon-number distributions

	Applications to Quantum Field Theory
	Phase-sensitive simulation of scattering amplitudes
	Multi-mode Extention



	Experimental Design
	Pulsing
	Acousto-optic modulation

	Single-Photon Generation
	On/off locking
	Mode-matching
	Temperature stability
	Temporal synchronization

	Full experimental design

	Overlap Tomography
	Photon Catalysis
	Realistic modeling
	Heralding
	Coherent state calibration
	Loss calibration
	Imperfect visibility

	Results

	Coherent-Photon Subtraction

	Conclusion
	Bibliography
	Photon catalysis
	Numerical modeling
	Cascaded photon catalysis
	Fidelity with SSV
	Optimized parameters
	SSV enlargement by PNR
	Kraus Operator Formalism

	PhANTM
	PhANTM Derivation
	Hermite Polynomial
	Beamsplitter to Z Breeding

	Quantum Sensing
	Experimental State Derivation
	Highly unbalanced beamsplitters
	Coefficients
	General Multi-Photon Subtracted State
	MZI fringe and phase sensitivity
	Phase sensitivity for a general twin-beam input

	Pulse Timing
	Quantum Simulation Tutorial
	TES Data Processing
	Histogram Bin Overlaps
	Overlap Tomography SDP Reconstruction

