
Programming Public Safety: A Script to Help Save Lives

CS4991 Capstone Report, 2024

Hunter Brown

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ghb6mt@virginia.edu

ABSTRACT

During my time at L3Harris, I worked on

the back end of the radio network system

where I created a configuration tool to assist

in programming newly constructed radio

network systems for law enforcement,

firefighters, and EMS. Another team member

and I created a Python script that read in

configuration files and programmatically

configured the towers in accordance with the

specification sheet provided to the engineer

setting up the tower. We were able to

complete the project during the summer,

turning a 2–3-week job into a 2–3-day job, in

which our script was used to program all the

new radio towers installed across the state of

Florida. During this time, I also developed

many professional skills enabling me to learn

to document software, give demos in front of

dozens of people, and work in a team on a

strict time schedule for a release. While this

project was successful at a basic level, further

development is needed in the user interface,

configuration settings, and the script

versatility, allowing it to update as well as

configure new towers.

1. INTRODUCTION

When I started at L3Harris, I was

introduced to many of the different

technologies they produce to best equip

emergency services to do their job safely and

effectively. They had begun work on the State

of Florida Law Enforcement Radio System

(SLERS) but times for configuration of new

towers were very slow, taking an engineer 2-3

weeks to set up the tower completely. This

was done as manual work, so an engineer

could only do one tower at a time, along with

the potential for mistakes which would take

more time.

The brains of the radio towers being built

in the SLERS region were called Enterprise

Network Managers (ENM). The ENM

controlled all the logic for trunking and

directing digital signals to the correct

handhelds and car radio systems. Being the

core component of a large radio tower

system, that is a part of a larger radio network

system, the configuration of the network

tower was done exactly to specification for

responsiveness and interconnectivity with the

rest of the network system.

When I arrived, there was a need to

increase the productivity of programming the

ENM’s for this region, as a faster delivery of

the product would allow the team to work on

new projects along with saving the company

time and money spent configuring ENM’s for

the region. Originally, several engineers had

to be taken from a team to manually

configure these ENM’s in the factory by

hand, taking away their work on other

projects and impacting the productivity of a

team. This created the necessity of creating a

program that would allow the ENM’s to be

programmatically configured.

2. RELATED WORKS

A key technology we utilized was the

creation of a RESTful API inside the ENM.

RedHat describes a RESTful API as a

programming interface that adheres to the

REST architectural style of representational

state transfer [1]. The RESTful API utilized

HTTP requests, specifically POSTs and PUTs

to send data to the ENM over the internet and

update its configuration settings. The creation

of the API by the ENM’s manufacturer gave

us the ability to programmatically interact

with the ENM with HTTP requests. With it

being a 1.0 version, we were able to directly

interact with the manufacturer, Cisco, and ask

for features to be implemented for our work

and report bugs that we had encountered.

Another key technology we utilized to

complete the project was use of the Pandas

data frames inside the Python programming

language. PyPI describes Pandas as a data

analysis toolkit built for Python, but we were

able to use its data frame features, which

were very similar to an Excel sheet [2]. We

used it to get the data in our program into

organized objects that we could control for

each portion needed for the API calls.

3. PROJECT DESIGN

When designing our project, we needed to

identify what our client, being ourselves,

needed along with clearly defining clear

specifications to follow along the way.

During this process we encountered some

challenges and adapted solutions to overcome

them.

3.1 Requirements

3.1.1 Client Needs

Our client for this script was ourselves.

The script was for in-house use by the

engineers who setup the radio towers to

replace their manual configuration with our

script for automated configuration. Our

engineers at the time were spending 2+ weeks

per ENM, manually entering data into its

interface. This script needed to be compiled

into an executable that could be run on any

Windows system on weak hardware for both

our engineers in the factory and for

technicians in the field to be able to use it.

Along with the script, there was a need

for internal documentation for the engineers/

field technicians to know how to use the

script. They also needed internal

documentation of the development of the

script and how it works at a program level.

3.2 Key Components

3.2.1 Specifications

The specifications for our script were

loosely defined other than the type of

documents that it should be able to read in

and the different configurable options. The

document to be read in was an Excel sheet

which contained roughly 10 pages in which

we needed to use 5. We needed to scrape key

information from these sheets including

device names, device functionality, and

device connections.

 We were required to develop an interface

for the user to interact with the script, but

there was no specification whether that be

done through the command line or a GUI

interface.

The documentation specification included

an internal company document for

instructions for our engineers and field

technicians to use the script. Also, we were

required to document aspects of our

development and how it works internally,

along with robust testing documents for the

testing part of the script.

3.2.2 Challenges

We faced two key challenges in our

development: cleaning data and a buggy API

for the ENM. The sheet that contained all the

data was developed many years prior for a

different system of radio towers, not for the

current system. This left lots of legacy

information and formatting that the engineers

could read and correct on their own. The

legacy conventions also did not include the

new naming conventions for devices on the

ENM. Adding these devices was the core of

our script.

We also were challenged by the RESTful

API that was created for the ENM. This API

was brand new and was being developed by

Cisco directly for this project. The

documentation for the API was not done well,

which inhibited our ability to make progress

efficiently. Some of the functions did not

work as documented, which caused issues in

development that we had to meet with Cisco

to fix. We also were missing functionality in

the API that would have been useful and

made our script more robust and automated

even more of the configuration process.

3.2.3 Solutions

For solving the issues with the data sheet,

we had to read in extra information to apply

the new naming conventions along with

standard string cleaning. This added lots of

extra hard coded maps in our script and

caused us to add more to our configuration

file, which became difficult to use unless one

knew exactly how the script was going to

handle it.

To solve our API problem, we had to go

through many hoops. For many of the

functions, the lack of documentation along

with incorrect behavior according to the

documentation required us to go through each

of the functions and test functionality and

understand exactly how the input was

expected and what effects it would have on

the ENM. To learn the input pattern and

functionality, we had to reverse engineer

useful functions that were hidden and

undocumented.

4. RESULTS

We were able to programmatically read in

the Excel file and direct the input into the

Pandas data frames. With the forms being

formatted similarly to the Excel sheet, they fit

well into the frames, and it was easy to

visualize exactly how they would translate

from the sheet into our program. We were

able to use the tools in the Pandas framework

to clean our data, which included removing

whitespace and cleaning up and removing

null values in our data. Formatting in the data

frames allowed us to use the ENM’s API calls

directly with the frames, calling a simple

“toMap” function which fed the data in a

JSON format packaged in a HTTP request

that the API expected.

For our UI, we first wanted to create a

graphical user interface, but found that a

command line interface was all that was

necessary since there was not much

interaction other than starting the script and

updating the configuration file with the

intended settings. This was done with a

clickable executable that launched a

command line window and started the script

which would open the configuration file,

allow the user to edit it, then save and run the

script.

Our script was completed on time for an

end of July launch to help with the creation of

the SLERS radio network. This script cut

down configuration times roughly 70% for

our engineers and allowed multiple ENM’s to

be configured at once rather than one by one.

We created robust documentation for both

what the script does and the API that we

reverse engineered.

5. CONCLUSION

We were able to complete our script for

L3Harris by the end of August, in time for the

deployment of more of the SLERS system.

The script was able to be utilized by

engineers in the manufacturing plant to

increase productivity in configuring the

ENM’s. We created a command line driven

UI for users to interact with and usability

features such as automatic window creation

for popups of configuration files and loading

bars.

The completion of the script was

immediately seen as an advantage as multiple

ENM’s could now be configured

simultaneously by a single engineer,

increasing throughput of ENM’s. This

allowed them to configure multiple ENM’s at

the same time, and at a much faster speed.

6. FUTURE WORK

 We were not able to complete all the

work that we wanted to do on the script

during my time there, and the project was put

on hold when I left. There was more

functionality that the API had that we were

unable to program for in my time there,

which would have continued to reduce the

amount of time engineers spent working on

the ENM’s. We had more we wanted to add

to the API by requesting features from

CISCO but were unable to have those

meetings before the project was paused.

There was also a desire for a better UI,

specifically a graphical UI which would be

more user friendly and more professional

versus the command line format we currently

have.

REFERENCES

[1] “What is a rest api?,” Red Hat - We make

open source technologies for the

enterprise,

https://www.redhat.com/en/topics/api/wha

t-is-a-rest-api (accessed Feb. 21, 2024).

[2] “Pandas,” PyPI,

 https://pypi.org/project/pandas/ (accessed

Feb. 21, 2024).

