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Introduction 

Brain computer interfaces currently require extensive user training in order to effectively 

isolate and translate the desired brain signal characteristics into desired control signals for 

external devices. Machine learning algorithms allow for computers to generalize data and 

identify trends to perform tasks without explicit instructions. In my Technical Report, I will 

discuss the possibility of using machine learning algorithms to significantly reduce the amount of 

effort required by the user to build a mapping from their brain activity to their desired actions. 

Brain computer interfaces have the potential to dramatically change how society 

functions. By utilizing brain computer interfaces to build neuroprosthetics, society becomes 

closer to complete integration with computers. This could mean the introduction of cyborg-like 

humans with capabilities that exceed normal biological capabilities (Clerc et al., 2016). More 

significantly, brain computer interface enabled prosthetics are making progress towards allowing 

those missing limbs to regain full functionality (H.A. Agashe et al., 2016). In my Sociotechnical 

Report, I will examine the impact of increasing integration of brain computer interfaces. 

Creating more efficient and effective brain computer interfaces could lead to faster 

adoption of neuroprosthetics as a treatment for those missing functionality in their limbs. 

Machine learning algorithms make brain computer interfaces more efficient by improving their 

ability to identify brain signal characteristics and translate them into actions (Li et al., 2010). 

This could lead to a quicker and easier process of fitting neuroprosthetics to new users as the 

program will only need to adapt to the new user and will continuously improve as the user 

continues to use it. By incorporating machine learning into brain computer interfaces, a future in 

which people have the ability to regain complete function of lost or paralyzed limbs becomes 

much closer. 
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Machine Learning and Brain Computer Interfaces 

 The brain computer interface system is broken up into the following steps: signal 

acquisition, signal processing, device commands, and feedback (Shih et al., 2012). During signal 

acquisition, electrodes placed either on the scalp or surgically implanted near or on the brain 

record the electric signals produced by brain activity. Signals undergo some pre-processing, then 

go through feature extraction and a translation algorithm, which makes up signal processing. 

Commands are then transmitted to the desired device, which produces some sort of feedback to 

the user.  

Signal processing, the step in which feature extraction and translation occurs, is where 

brain signals actually get converted into instructions for devices. This process begins with pre-

processing, where irrelevant information that reduces signal quality is removed from the 

captured signal. Irrelevant information includes brain signals that are generated by eye or muscle 

activity (Li et al., 2010). Since there is no way to ensure users only think of one thing at a time, 

removing extra information is extremely important to isolate the signal of the desired action. 

Next, feature extraction, which is the isolation of useful signal features that reflect the user’s 

intent, occurs through analyzing brain patterns in the time and frequency domain (Li et al., 

2010). Finally, a translation algorithm identifies the useful signal and outputs the desired control 

signals to the external device. 

The signal processing step, specifically feature extraction and translation is where 

machine learning can be extremely useful in creating effective and efficient brain computer 

interfaces. Without machine learning, users must undergo significant testing and training to build 

an accurate catalog of actions that maps their brain signals to their desired action. This process 

can be extremely tedious and repetitive as brain signals are not always the exact same. By 
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introducing machine learning, this process could be significantly reduced by enabling the 

automatic generation and refinement of the translation dictionary. A machine learning algorithm 

will learn the brain signal characteristics for the user and continuously improve as the user 

continues to use the system. 

Machine learning algorithms have the potential to greatly improve the quality of brain 

computer interfaces. Shifting some of the responsibility of extracting signal characteristics and 

translating them into control signals onto a machine learning algorithm reduces the amount of 

extensive testing by letting the computer extrapolate from existing data sets and adapt them to 

each individual user. Furthermore, computers can sift through data much faster than humans can 

so machine learning algorithms will be able to incorporate additional data sets into the process 

more efficiently. 

Impact of BCI-Integrated Prosthetics  

I am working on the topic of brain computer interfaces and prosthetics because I want to 

find out how brain computer interfaces can affect the lives of those requiring prosthetics. This is 

important because the loss of limb use leads to dramatic changes in quality of life and we should 

explore whether it is possible to reduce this impact. Furthermore, combining and/or replacing 

human biological functions with computers and machines will cause a ripple effect that will 

impact many aspects of common life. 

Prosthetic devices are currently used by many patients to replace limbs lost due to 

trauma, disease, or other conditions. Early prosthetics were largely made from natural materials, 

such as wood, leather, and linen, and were extremely limited in their functionality (Prosthetics 

through the Ages, 2023). Since then, prosthetics have made large improvements in functionality, 

cosmetic appearance, and comfort. Prosthetics can now bend and rotate, though many need to be 
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adjusted manually. Additionally, the materials used, such as plastic, aluminum, and silicon, are 

much lighter and more durable. However, not all prosthetics are suited for all aspects of life. For 

example, prosthetics made specifically for running differ in shape and material than those made 

primarily for daily use (Uustal, 2020). Furthermore, prosthetics are not a perfect recreation of 

lost limbs, which results in some permanently lost functionality. 

Brain computer interfaces are an emerging technology that enables the decoding of brain 

signals into recognizable computer operations. Brain computer interfaces are divided into two 

major categories: invasive and non-invasive (Chaudhary et al., 2016). Invasive brain computer 

interfaces require the implantation of electrodes that are placed either directly on the brain or in 

the membrane surrounding the brain. Many invasive brain computer interfaces rely on 

electrocorticography (ECoG) readings from electrodes embedded in thin pads placed in the 

membrane that surrounds the brain (Shih et al., 2012). However, some rely on local field 

potentials, which are the electric potential recorded in the extracellular space in brain tissue 

(Chaudhary et al., 2016). The close proximity to the brain allows for more accurate readings of 

the electrical signals produced by the brain, but the surgery required to place those electrodes 

could lead to negative side effects. Furthermore, the body could reject the implanted electrodes 

causing a significant medical concern. Non-invasive brain computer interfaces, on the other 

hand, do not require surgery and mainly rely on electroencephalogram (EEG) readings from 

electrodes attached to the scalp, either individually or with an EEG cap (Chaudhary et al., 2016). 

These signals are much weaker due to damping by the skull, resulting in more difficult readings. 

Due to the weaker signals, non-invasive brain computer interfaces often need to amplify, filter, 

and decode the captured signals, and require training of the user to be most effective. 
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Brain computer interfaces have begun to enable the control of some prosthetic devices by 

merely thinking through the action. This breakthrough could eventually lead to the widespread 

use of neuroprosthetics, where most, if not all, prosthetics have close to full functionality of a 

biological human limb. However, the adoption of brain computer interfaces will cause 

ramifications that impact society. For example, the abilities of robotic limbs could exceed the 

natural capabilities of human limbs leading to robotically enhanced humans that could be used 

both for good and bad (Clerc et al., 2016). Furthermore, connecting humans to computers in such 

an integrated way could lead to security problems if the neuroprosthetics are able to be hacked 

(MacKellar, 2019). This paper will explore these issues by analyzing research on the use and 

risks of brain computer interface controlled prosthetics. These sources will be compared to 

determine what the average capabilities of brain computer interface controlled prosthetics are 

and what future capabilities will look like. Furthermore, sources analyzing the risks of brain 

computer interface controlled prosthetics will be collected to determine the severity of possible 

negative consequences. 

Conclusion 

Brain computer interface integrated prosthetics will have an impact on how society 

functions by enabling recuperation of full or exceeding functionality by those who have lost 

functionality in their limbs due to loss or paralysis. These humans will be more closely 

connected to a computer than any human has been in the past, leading to even more impacts such 

as the threat of hacking their interface. Additionally, humans with brain computer interfaces will 

become more like cyborgs as new developments allow more capabilities to be added. This 

research paper will address these impacts in depth in order to better define the potential future in 

which humans have increased their capabilities through robotic integration. 
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