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Abstract

I study the strategic investment in startups by competing venture capitals (VCs),

focusing on the impact of uncertainty about startup quality on investment and startup

dynamism. My framework considers multi-round funding requirements and VC op-

timization based on current information and projections of future success (M&A or

IPO). Using a novel dataset on the “life-cycle” of biotech and software startups from

2000 to 2022, I establish that my dataset identifies model parameters and propose a

method to correct for dynamic selection to infer startups values and VCs information.

Among several others, I find that (1) biotech investors initially possess more informa-

tion than software investors but learn slower, reflecting sector-specific uncertainty, but

in both cases the investors eventually learn the true quality; (2) uncertainty leads to

underfunding of promising startups, causing welfare losses of 22% and 21% in biotech

and software, respectively; and (3) positive “dynamic information externality” from

early stage investors to late stage investors causes the former to invest less, leading to

welfare losses of $10 billion in biotech and $3 billion in software. I then explore policies

to mitigate these losses. I also estimate that an undervalued M&A exit reduces VC

returns, significantly decreasing startup funding and exacerbating welfare losses.

JEL classification: C15, C32, D44, D83, G24, L26, M13

Keywords: Startup, Venture Capital, Information and Learning, Auction
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1 Introduction

Innovation is the cornerstone of economic growth and prosperity (e.g., Aghion et al., 2021;

Akcigit and Van Reenen, 2023), and startups are important source of innovation (Kolev et al.,

2022). For instance, 57% of all new drugs approved in the US in 2023 originated at startups

(Economist, 2024). Startups are mostly funded by venture capitals (VCs) across multiple

rounds. Although only 0.5% firms in the US receive VC financing, VC-backed firms make up

over half of all IPOs and outperform other firms in market value, revenue, employment, and

R&D (Lerner and Nanda, 2020). However, there is concern that the dynamism of startups

is not at the level it could be, especially in the biotech and software sectors (Bloom et al.,

2020; Park et al., 2023). One reason for this could be intrinsic to the imperfect competition

among VCs over financing startups with uncertain qualities, leading to the underfunding of

many viable startups.

If so, understanding the performance of this capital market and identifying the source(s)

of inefficiency, if any, is an important first step to finding policies to support innovation

through startups. For that, we have to answer the following questions: How does multi-

round VC funding affect the dynamism of startups? How are the returns from startups

shared across VCs at different stages? Is this capital market efficient? If not, what are the

extent and causes of inefficiency? In this paper, I answer these questions in the context of the

financing of biotech and software startups in the US, which, to my knowledge, has not yet

been studied. To this end, I evaluate the strategic investment decisions of competing VCs,

quantify inefficiency, and identify their cause(s) to understand the functioning of the current

market and provide a new framework to evaluate policies meant to support the industry.

To understand the possibility of inefficiency, note that despite a potentially large upside,

funding a startup entails tangible risk. On the one hand, most startups fail, some are average,

and only a handful generate outstanding returns, but it is hard, if not impossible, to “pick

the winner” at the outset.1 As a result, VCs may under-invest, especially in early rounds

when there is too little information about the startup. On the other hand, all else equal,

1For instance, Bessemer Venture Partners is one of the largest VC firms, but they declined the oppor-
tunities to invest in Airbnb, Apple, eBay, Facebook, Tesla, and Zoom, among others, on account of high
uncertainties. Furthermore, Kerr et al. (2014) find that among several ex-ante equally ranked startups, 60%
failed, while 10% generated a more than five times return on investment.

1



early-round investments generate higher returns than late-round investments. However, the

former can generate informational spillover benefitting late-round VCs, which I refer to as

positive “dynamic informational externality.” Which of these opposing forces dominates is

an empirical question of interest that I answer.

To this end, first, I develop a flexible but tractable framework that captures uncertainty

in startup quality, multi-round financing, dynamic information structure, and imperfect

VC competition, building on the pure common value auction model of Milgrom and Weber

(1982). Second, I establish conditions under which the model parameters can be identi-

fied from my dataset. In particular, I adapt the results from dynamic discrete choice by

Heckman and Navarro (2007) that allow for serially correlated quality signals across multi-

ple rounds in my setting to correct for dynamic selection and infer the startup’s true quality

and investor’s interim information set about the startup. Third, I construct a rich and novel

dataset on the universe of biotech and software startups in the US by combining several data

sources to estimate this model.

The lack of such data has limited previous studies from incorporating uncertainty and dy-

namic information structure. I overcame this challenge and created the dataset by leveraging

exit value data from Compustat and SEC filings, and VC investment data from Pitchbook.

With these data, I can infer the true values of startups and the investors’ interim information

about them.

I have collected information on 5,591 US startups in the biotech and software sectors

between 2000 and 2022 from the Pitchbook database. Besides being two of the most impor-

tant sectors, I focus on them because they have distinct business models and risk profiles,

which can shed light on the market performance. Software businesses are typically built

on proven technologies, the primary source of uncertainty is the demand for a new product

or service. So, the common practice is to develop and launch a minimum viable product

quickly to test market demand.2 Once validated, they refine the product and scale up the

business, which usually comes with less uncertainty (Lerner and Nanda, 2020). In contrast,

2The most famous example is Amazon, which wanted to be an e-commerce platform, starting with an
online bookstore and validating the demand for e-commerce, at least in the domain of books, before it
expanded to become the “everything store” as it is today. See details at https://x.com/zackbshapiro/

status/1780601872903979171
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drug development consists of several distinct stages, each testing a different aspect of the

drug — pre-clinical trial tests safety on animals, phase I assesses toxicity on a small group

of healthy individuals, phase II evaluates efficacy on patients and phase III tests efficacy on

a larger population (Food and Administration, 2018). Hence, unlike in software, the uncer-

tainties in biotech are spread out over several stages. These sectoral differences are useful to

better understand the interaction between VCs and startups with different risk profiles.

A few key data features suggest that startup quality is highly uncertain. To avoid an

“all or nothing bet,” startup financing is done in stages, enabling the “market” to learn its

heretofore unobserved quality. Moreover, this uncertainty likely dissipates as startups mature

and more information from previous rounds becomes publicly available. Furthermore, in the

data, when funding a startup, it is common for a VC to lead only one round of investment

in a startup, and they compete with other VCs.

So, in line with the data, I consider a multi-round game between a startup and several

VCs. A startup of unknown (to both entrepreneur and investors) quality needs to secure

several rounds of VC funding before exiting. In each round, a (new) set of VCs compete to

invest based on their information about the startup. The unit of observation is a startup, and

I follow it throughout its life cycle. In this dynamic investment model, VCs make investment

decisions based on their current information and expectations on future investment decisions

and, thereby, the startup’s future trajectory.

In each round, the startup announces the amount of capital to be raised in this round.

A set of VCs is matched and each obtains a private signal about the quality. Then, they

compete to invest by making offers on how the future returns are shared. I model the

competition “as if” VCs compete in an English auction with pure common value by bidding

equity ownership. The VC that outbids the competitor by offering at least as much equity

to the startup founder as the competitor is selected. If the startup fails to raise capital, it

quits, and the capital already invested is sunk. If successful, it proceeds to the next round,

and the market can infer VCs’ signals from previous rounds. In the next round, another set

of VCs is matched, and the game iterates until the last round, after which the exit value

is realized, and returns are shared among the startup and all VCs according to their final

equity share.
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I characterize the equilibrium strategy of the game. For each round, I determine the

funding rule and equity sharing rule between the VC and the startup based on current

and past information. To isolate the source of inefficiency, I also determine the funding

rule chosen by a “planner” that maximizes the net returns. To make these two investment

strategies comparable, I impose that the planner has the same information as the VCs.

I identify a potential “under-investment” in the VC market due to dynamic information

spillover, i.e., once an early-round investor invests, it generates information that late-round

investors can costlessly observe, helping them make more informed investment decisions.

This feature leads to a positive information externality where late-round investors free-ride

on the information produced by early-round investors. VCs cannot internalize the full benefit

of their investment, leading to under-investment in even viable startups.3

I estimate the model using a simulated minimum distance estimator that matches mo-

ments in the empirical data to those predicted by the model (e.g., Agarwal, 2015; Aryal et al.,

2024; McFadden, 1989; Pakes and Pollard, 1989). Some of the moments I match include sum-

maries of transition patterns of the startups and within- and cross-round variation in capital

investment, winning equity bid, and exit value.

The estimates suggest that while the uncertainties in software are primarily concentrated

in the initial round, they extend across multiple rounds in biotech. These features are

aligned with the distinct business models of each sector. As a result, software investors are

initially less informed about the startup’s quality but learn faster than biotech investors.

Consequently, compared to biotech investors, software investors make more Type I errors —

not funding good startups — but fewer Type II errors — funding bad startups. Additionally,

in both sectors, early-stage investments generate two to three times returns than later-

stage investments, which is comparable to the estimates in Kaplan and Schoar (2005) and

Cochrane (2005). Unlike traditional financial models (e.g., CAPM), where risk premium

arises from the assumption of risk-averse agents, in my model the uneven returns across

stages stem from the sequential dissemination of information.

Using the estimates and the model, I characterize the efficiency level under alternative

3Some VC contracts may include anti-dilution protections, primarily to safeguard investors who enter
at a high valuation. These protections are not designed to solve the dynamic information externalities that
cause inefficiency, because they are triggered only if a startup’s value drops in the next round.
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information and market structures that provide new insights into the welfare consequences

of information externalities and uncertainties. My main finding is that the current biotech

and software sectors respectively yield 78% and 79% of the first-best efficiency where all

uncertainties are resolved. Information externality and quality uncertainty each contribute

to 18% and 73% of the efficiency loss in the biotech sector, translating to $10 billion and

$39 billion, while in the software sector, they account for 5% and 54%, or $3 billion and

$30 billion, respectively. Most efficiency losses occur in early rounds when the noise-to-

signal ratio is the highest, which excludes some viable startups at the early stage. Thus,

government-provided funds and grants for early-stage startups would increase market effi-

ciency if allocated properly. Examples include Small Business Innovation Research (SBIR)

and Small Business Technology Transfer (STTR), which the US government runs.

Having identified the sources and magnitudes of inefficiencies in this market, I extend this

framework to examine the effects of various policy interventions on innovation. Specifically,

I study the relative importance of M&A and IPO exits on the “supply” side of innovation.

I find that a 10% undervaluation in an M&A exit leads to a 10% drop in VC market net

returns, with 30% attributed to extensive margins — fewer startups get funded, and 70% to

intensive margins — funded startups are reduced in value.

Related Literature. My paper relates to the extensive literature on VC and innovation,

e.g., Gornall and Strebulaev (2021); Howell et al. (2020); Lerner and Nanda (2020). Most of

these papers, however, take the “reduced-form” approach and focus only on a small subset

of startups that become publicly listed companies. I contribute by using the structural

approach and curating new dataset on private and public companies to study the role of VC

in innovation.

My paper is also related to the literature that considers VC-startup interaction, e.g.,

Ewens et al. (2022); Sørensen (2007). However, these papers only consider the first VC

round and assume complete information about the quality of the startups; therefore, they

ignore the dynamics involved in funding startups with uncertain qualities. Multi-stage fi-

nancing and uncertainty about the quality of a startup are considered to be two of the most

important features of VC financing (Ewens et al., 2018; Kerr et al., 2014; Lerner and Nanda,

2020). As such, these papers ignore the dynamic information externality and, therefore, un-
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derestimate the level of inefficiency. Furthermore, Sørensen (2007) considers a cooperative

solution concept, which also ignores competition among VCs.

In terms of the modeling decisions, my paper is related to the literature on auctions with

common value, in particular the papers on security design auctions of DeMarzo et al. (2005),

Garmaise (2001), and Gorbenko and Malenko (2011), where bidders compete for an asset

(i.e., startup) by bidding with securities whose payments are contingent on the asset’s value

to be realized in the future. Furthermore, given how I model the multi-round financing of

startups, my paper is also loosely related to the literature in labor on symmetric employer

learning (Altonji and Pierret, 2001; Aryal et al., 2022; Lange, 2007), where, just as employers

learn about a worker’s abilities over time, in my setting, VCs in later rounds can infer the

signals of earlier-round VCs.

Lastly, my paper builds upon the identification results of discrete choice models by

Heckman and Navarro (2007). In the context of startups, besides the right censoring of

the data, we do not observe their true value because most startups fail. Furthermore, a

startup can fail at different stages of financing, leading to dynamic selection, such that the

“errors” are serially correlated. In this setting, identification is challenging as the standard

results based on independent shocks, e.g., Rust (1987), do not apply. I show that we can

adapt Heckman and Navarro (2007) to correct for the dynamic selection.

Overall, my paper contributes to the literature by providing a comprehensive framework

for analyzing VC investments under uncertainty, offering new insights into market efficiency,

and exploring the potential impacts of policy changes on startup outcomes.

2 Data

In my data, the unit of observation is a startup. My primary dataset on startup financ-

ing rounds and exit values comes from Pitchbook.4 This database tracks each startup’s VC

rounds, providing detailed data on capital investment, valuation, equity ownership and in-

vestor identities at the round level. It also provides information on startup sector, patents

and exits, including IPOs and M&A (“success” hereafter), and bankruptcies and business

4Pitchbook is a common tool to venture capitalists and has become more and more used in academia
(e.g., Ewens et al., 2022; Jiang and Sohail, 2023).
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closures (“fail” hereafter).5 Pitchbook collects articles of incorporation filings from states

like Delaware and California, and encode key contract terms from the financing rounds de-

scribed in those documents (Ewens et al., 2022). Overall, Pitchbook has one of the best

coverage and is one of the most accurate VC databases (Retterath and Braun, 2020). I limit

my sample to companies established after 2000.

I complement Pitchbook data with several other sources. First, the acquisition prices

for some M&A exits are not recorded in Pitchbook. I supplement these missing values by

reviewing SEC filings (Form 8-K, 10-K, and 10-Q) of publicly traded acquirers, as they are

required to report significant M&A transactions. Second, Pitchbook calculates IPO exit

values by multiplying the number of outstanding common shares by the initial offering price,

which often reflects strategic underpricing and may not represent the company’s true value

(Beatty and Ritter, 1986). To correct this, I replace the initial offering price with the closing

price on the first IPO day, using data from Compustat. For firms listed outside North

America, I obtain these closing prices from FactSet.

I collect all information on biotech and software companies that were founded between

2000 and 2022, headquartered in the US, and have raised VC or pre-VC rounds.

Biotech companies focus on drug discovery and the delivery of pharmaceuticals or biotech-

nology, such as Amgen, Moderna and Eli Lilly. Software companies design and develop

softwares, including application softwares (Adobe, Oracle), business/productivity softwares

(IBM, Salesforce), operating systems (Apple, Microsoft), social/platform softwares (LinkedIn,

Meta) etc.

After dropping companies with missing data and focusing on firms that raise at most

7 rounds, my final sample consists of 5,591 companies, with 2,378 in biotech and 3,213 in

software. In total, 2,072 were successful (589 IPO and 1,483 M&A) and 3,519 failed.6

5Unlike in IO literature where “exit” typically refers to a firm’s (usually undesirable) leave from the
market, in the context of VC and startups, an “exit” refers to a liquidity event like an M&A or IPO where
investors realize returns on their investments.

6Excluding startups with more than 7 rounds does not weaken my sample’s representativeness, as they
comprise less than 5% of all startups.
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2.1 Data Description

I begin with an example to introduce key concepts in this industry. See Appendix A for

additional examples from the data.

Example 1. ABC is an app offering online English classes for kids. It started with 10

million outstanding shares, all owned by founders and employees. On Jun 19, 2008, it raised

$5 million in the first VC round and issued 5 million new shares to this round’s investors.

Based on these terms, price per share equals to $5 million
5 million shares

= $1 representing the

dollar value of each share traded in this round; equity ownership is defined as the pro-

portion of shares held by this round’s investor relative to the total number of outstanding

shares, representing a claim to a portion of the company’s returns. It is calculated as

5 million shares
15 million shares

= 33%; PreVal (pre-money valuation) equals to price per share multiplied by

the total shares before the new issuance — $1 per share × 10 million shares = $10 million

(or equivalently, $5 million
33%

− $5 million), representing the “price” of the entire company in

this round; PostVal (post-money valuation) is the same as PreVal except that it’s after the

new issuance, calculated as $1 per share × 15 million shares = $15 million (or equivalently,

$5 million
33%

).

On Nov 24, 2009, ABC raised $10 million in the second round and issued 5 million new

shares to round 2 investors. Now, price per share, PreVal and PostVal are respectively $2, $30

million and $40 million. Round 2 investor’s equity ownership is 25%, while round 1 investor’s

equity ownership is diluted from 33% to 25% because more shares were issued. However,

round 1 investor’s estimated return still increases because the rise in ABC ’s valuation offsets

the dilution in the ownership.

Eventually, on Apr 29, 2010, ABC was acquired for $100 million. Round 1 and 2 investors’

returns were both 25% × $100 million = $25 million, and their multiple of money (MoM)

were 5 and 2.5, respectively.

Section A and B in Appendix B describe the variables observed at startup and startup-

round level, respectively. ExitValue, CapitalAmount, PreVal, and PostVal are converted to

millions of USD as of September 2023. One limitation of the data is that Pitchbook does not

provide exit values for failed companies, so I assign a value of 0 in such cases. Appendix C.1
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and C.2 present summary statistics at startup-round and startup level, respectively. In

general, as a startup proceeds to later rounds, CapitalAmount and PostVal tend to increase,

while EquityOwnership tends to decrease. Additionally, Patent, PostVal and ExitValue are

all highly skewed, indicating that while most startups are average, few are exceptional.

2.2 Empirical Observations

2.2.1 Skewed Exit Value

In the VC-startup context, exit value is a key object of interest, as it directly affects VC

returns. By the nature of innovation, neither entrepreneurs nor investors can identify the

biggest success ex-ante (e.g., Ewens et al., 2018; Kerr et al., 2014). Hence, the distribution

of exit value defines how risky VC investments are and affects how well this market functions.

Figure 1 presents the distribution of exit values in the data. While 90% of startups

have exit values below $1 billion, the top 1% reach as high as $31 billion, highlighting that

VC investment combines skewed ex post returns with an inability to identify the biggest

successes ex ante.

Figure 1: Empirical CDF of exit value

Note: Only IPO and M&A startups are included. All values are in Sep 2023 USD.
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2.2.2 Risk in VC Investments

To evaluate the performance of VC investments, I follow Kaplan and Schoar (2005) by com-

paring a VC investment to an equivalently timed investment in a public market benchmark,

such as the S&P 500 index.

I use Example 1 for illustration. Round 1 and 2 investors each invested $5 million and $10

million, respectively, and both received $25 million in return. Thus, the multiple of money

(MoM) — a common metric for measuring VC investment performance —is calculated as

25+25
5+10

= 3.33. Had round 1 investor invested the same amount in S&P 500 index on the same

day and sold his holdings at the time of acquisition, and similar for round 2 investor, the

MoM would have been 1.02.

I replicate this exercise for each startup in my sample and compare the MoM of VC

investment to its public market counterfactual. As shown in Fig. 2, VC investments tend to

have higher expected returns and greater volatility compared to the public market counter-

factuals, highlighting their high risk high reward nature.

Figure 2: MoM of VC investments and public market counterfactuals

Note: Only IPO and M&A startups are included. Outliers (below 5 percentiles or above 95 percentiles) are
kept in the left figure but removed from the right figure.

In response, venture capitalists phase their investments over multiple rounds, with each

round generating some (new) information about the startup’s exit value (Ewens et al., 2018),

helping future investors make more informed decisions. Figure 3 summarizes the multi-round
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financing and exit of startups in my sample, based on which I derive the empirical transition

probability matrix in Table 1.

Figure 3: Multi-round financing and exit

Round 0 1 2 3 4 5 6 7

Arrive

IPO

MA

Fail

5591 3664 2321 1446 853 456 207 62

23 47 108 137 106 78 53 37

185 319 329 266 189 109 61 25

1719 977 438 190 102 62 31 0

Note: The circles at the top row represent VC rounds, the rectangles on the leftmost column represent
startup status in a given round. For example, among the 5,591 established startups, 3,664 raised the 1st VC
round, 23 and 185 went IPO and got acquired directly, and the rest failed without raising any VC rounds.
Round 0 = established.

Table 1: Empirical transition probability matrix

Next state
Current state Next round IPO M&A Fail
Established 0.66 0.00 0.03 0.31
Round 1 0.63 0.01 0.09 0.27
Round 2 0.62 0.05 0.14 0.19
Round 3 0.59 0.09 0.18 0.13
Round 4 0.53 0.12 0.22 0.12
Round 5 0.45 0.17 0.24 0.14
Round 6 0.30 0.26 0.29 0.15
Round 7 0.00 0.60 0.40 0.00

Note: The leftmost column shows the current states, including newly established and VC round 1 to 7. Each
row represents the probability of transitioning from the current state to each possible next state, with the
probabilities summing to 1. Take the first row for example. Among all the established startups, 66% secured
the first VC round, 3% got acquired directly, 31% failed without raising any VC rounds.

Each row in Table 1 shows the probability of transitioning from the current state to each
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of the possible next state. As startups progress to later rounds, success rates increase and

failure rates decrease, as low-quality startups are continuously filtered out, leaving a stronger

pool of companies.

In summary, VC investments are high risk high return compared to public market in-

vestments, but the risk decreases over rounds.

2.2.3 Dilution in Equity Ownership

As illustrated in Example 1, one of the features of VC financing is that equity ownership

dilutes as a startup raises additional capital and issues more shares. Equity dilution is

important because it determines how the returns from startups are shared across VCs at

different stages.

Figure 4: Diluted equity ownership

Note: This figure presents the median of each round investors’ equity ownership in each future round after
dilution. For instance, at the median, round 1 investors hold 30% equity at the close of round 1, but by
round 7, their ownership is diluted to less than 5%.

As shown in Fig. 4, equity ownership dilution is significant, especially for early-stage

investors. For instance, round 1 investors hold a median equity ownership of 30% by the

end of the 1st round, but as new shares are issued in subsequent rounds, their ownership is

diluted to less than 5% by round 7.
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2.2.4 Round-specific Return

Despite significant dilution, early investors still earn more, provided that they invest in a

company that is later proved to be successful. Fig. 5 presents the MoM returns to each round

investors, conditional on investing in an ex-post IPO company. On average, early investors

achieve higher MoMs than later investors. One reason could be intrinsic to the evolving

information structure: due to significant uncertainties about startup quality in the early

rounds, investors can buy equity shares at reduced prices; as the startup matures and moves

to later rounds, its potential becomes more recognized, driving up equity prices and (over)

offsetting the effects of dilution . Hence, an investor would have been better off investing

early if he had known the ex post big success.

Figure 5: MoM of IPO startups

Note: Only IPO companies are included. The left (right) figure excludes (includes) outliers (below 5 per-
centiles or above 95 percentiles).

2.2.5 “Price” converging to true value

Venture capitalists learn about a startup’s exit value from the information released in each

round, which affects their “willingness-to-pay”. Meanwhile, VCs compete with each other to

secure the investment opportunity. Hence, the observed “price” (i.e., PreVal and PostVal)

is an outcome of both VCs’ learning about the true value and imperfect VC competition,
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the two effects cannot be disentangled without a model.

I use log
(

PreValk
ExitValue

)
to quantify the gap between the “price” paid by round k investor

and the startup’s true value. Failed startups are excluded due to missing exit values. Thus,

the sample represents stronger companies. Initially, there is a large gap between the paid

price and the true value, suggesting substantial uncertainties in startup quality at the outset.

However, as the startup grows and releases more information, the price gradually converges

toward its true value. Additionally, the gap is approximately normal for all rounds.

Figure 6: Gap between price and true value

Note: The horizontal axis is log
(

PreValk
ExitValue

)
. For example, if a startup raised two rounds with PreVal at

$10 million and $20 million each, and was later acquired at $100 million, then this measure is − log 10 and
− log 5 for each round. The white vertical line at 0 is when the paid price perfectly coincides with the true
value. Only IPO and M&A companies are included.

2.2.6 Lead VC

When funding a startup, it’s rare for a single VC to fund it throughout. Typically, there

are several VCs, and each leads a different stage. One reason is that VC funds face a

timeline constraint of 10 to 12 years, with the first 5 to 6 years deploying all capitals and

the remaining years harvesting the returns, usually not enough time for a startup to reach

a scale that attracts buyers or go public. Other reasons include 1) VC fund size is usually
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too small for funding a startup entirely, and 2) VCs tend to diversity investments, usually

no single project takes up more than 60% of a fund.

To examine this pattern in the data, I count the number of rounds each VC has lead in

each startup, and find that nearly 90% VCs lead only one round of investment in a startup.7

So, in the model, I assume a new VC in each round.

Table 2: Lead VC

1 2 3 4 5 6

Share 86.31% 10.44% 2.25% 0.69% 0.20% 0.07%

Note: This table summarizes the number of rounds a VC leads for a given startup. Nearly 90% of VCs lead
just one round, although some VCs lead as many as 6 rounds.

2.2.7 Startup Heterogeneity

Next, I ask whether startups following different paths are inherently different. To address

this, I group startups based on their exits and the number of VC rounds raised, then I

compare the characteristics of each group.

Table 3: Startup Heterogeneity

Round 0 1 2 3 4 5 6 7

Patents IPO 6.91 27.68 27.23 23.57 33.59 53.92 152.25 77.54

MA 2.12 2.28 2.98 5.12 9.2 12.04 16.13 14.2

Fail 0.26 0.76 3.3 2.61 4.73 5.32 7.77 NA

Total Capital IPO 0 29.84 74.15 93.77 103.72 151.36 224.95 208.33

MA 0 12.25 26.29 47.5 82.04 94.3 128.53 141.54

Fail 0 3.41 12.35 27.5 45.41 53.3 86.58 NA

Exit Value IPO 203.03 308.25 361.46 437.02 399.54 1023.98 1947.91 596.47

MA 147.52 129.58 193.93 249.69 320.28 440.27 595.18 515.3

Note: This table presents the mean of patent count, total capital raised from VC and exit value of startups
in each group. Startups are grouped by their exit channel and number of rounds. E.g., 23.57 is the mean
patent count among startups that went IPO after raising 3 VC rounds. Total capital raised and exit value
are in million USD. Round 0 = established.

7In 38% of cases where Pitchbook does not identify the lead VC, I follow Ewens et al. (2022) and assume
the lead investor to be the VC with the most experience, measured by the number of VC investments made
up to the time of the current deal.
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Table 3 shows that startups following different trajectories are heterogeneous in patents,

total capital raised, and exit value.

Table 4 shows the correlations between patent, total capital and exit value, all of which

are positively correlated with each other.

Table 4: Correlation

Patents Total Capital Exit Value

Patents 1 .13 .13

Total Capital .13 1 .54

Exit Value .13 .54 1

Note: Exit values for failed companies are fill with 0.

3 Model

I consider a multi-round game between a startup and several VCs. The unit of observation is a

startup, and I follow it throughout its life cycle. A startup of unknown (to both entrepreneur

and investors) quality needs to secure several rounds of VC funding to be successful. In each

round, a (new) set of VCs compete in equity shares to invest based on their information

about the startup. VCs also form expectations about involvement of VCs in the future

rounds before making their investment decisions. This leads to a dynamic, finite horizon

decision problem.

Every round the amount of capital to be raised by the startup is public information.

A set of VCs is matched, and each obtains a private signal on the unobserved quality.

Then, they compete by making offers on how the future returns are shared. I model the

competition “as if” it were an English auction with pure common value, and VCs “bid” on

equity ownership.8 The VC that outbids the competitor by offering at least as much equity

to the startup as the competitor is selected. If the startup fails to raise capital, it fails and

exits the market, and the capital already invested is sunk. If successful, it proceeds to the

next round, and the VCs’ signals in the current round become public. There is evidence that

8Throughout the paper, I assume that VCs 1) do not add values other than provide capital; and 2) only
bid on equity ownership but not other contract dimensions. See Section 8 for discussions on this assumption.
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late-round investor candidates in practice can assess the information early-stage investors

used in their decisions. For example, during due diligence, prospective investors are typically

provided with historical financial reports, product details, vendor and customer contracts,

and management team backgrounds that have been reviewed by earlier investors (Ollar et al.,

2021; Sannikov et al., 2016). In the next round, another set of VCs is matched, and the game

iterates until the last round, after which the exit value is realized, and returns are shared.

English auction with pure common value delivers a tractable way of modeling the bargain-

ing process while produces similar patterns as multi-lateral bargaining (McAfee and Vincent,

1997). Here bid is the equity ownership, and VCs favor larger equity ownership as it grants

higher claim on returns, while startups prefer to offer less to the VCs.

I follow Milgrom and Weber (1982) and model the auction as follows. At the start, all

bidders are active at an arbitrarily high equity ownership. As the equity ownership decreases,

bidders drop out one by one. In a symmetric monotone equilibrium, the equity ownership

at which each bidder drops out reveals her true signal, thus the bidders who are still active

will incorporate the new information and update their bids accordingly. Any dropped-out

bidder cannot be re-actived. The auction ends when only one bidder is left. She wins and is

paid the equity ownership at which the second highest bidder quits.

I introduce some notations. LetK be the number of rounds a startup needs to complete to

be successful. K is an exogenous random variable with discrete support {0, 1, ..., K̄}, where

K̄ is the maximum possible round for raising funds. The realization of K is not observed

by either the startup or the VCs ex-ante.9 Let Z be a vector of round-unvarying observed

characteristics of the startup, such as its sector (e.g., biotech or software), the number of

assigned patents etc. In round k ∈ {1, ..., K̄}, let dk ∈ R+ be the amount of capital to be

raised by the startup, it only becomes public at the beginning of that round, neither startup

nor VCs know it ex-ante. To simplify the notations, I use Xk = (d1, ..., dk, Z) to denote

all the observed characteristics of the startup in round k. XK is exogenous and may be

correlated with K, I assume that (K,XK) is jointly distributed as F (·). Additionally, δ is

the discount factor between two adjacent rounds.

Let ξ be the unobserved quality of a startup, capturing the hidden features of a startup

9This captures the randomness in when an acquisition opportunity might arise and how long it takes for
a startup to reach the scale needed to go public.
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that neither investors nor entrepreneur know ex-ante. Information on ξ only arrives with

investment into the project. Some examples of the unobserved quality include the validity of

a particular technology or product, and the potential market demand.10 I make the following

assumption.

Assumption 1. ξ ∼ N(0, σ2
ξ ), and is independent of X and K.

Under Assumption 1, agents cannot infer the value of ξ from observed characteristics Xk

or current round k. This assumption is widely used to model the learning process that I will

introduce later.11

Timeline. Fig. 7 shows the timeline. This game is composed of at most K rounds. At the

beginning of round k ∈ {1, ..., K}, the startup samples the amount of capital to be raised in

this round, dk, from a known distribution, and announces it. Then a set of (new) VCs Jk

is matched. They all observe Xk and each samples a private signal sj,k on the unobserved

quality ξ. Then they bid on equity ownership in an English auction with pure common

value. If the startup fails to raise capital, it quits, and the capital already invested is sunk;

If successful, a winner is selected, the winning bid ak is determined, and all private signals

for this round, sk, are publicly disclosed. This process iterates until the last round, after

which the exit value WK is realized and shared.

Exit Value. A startup’s exit value depends on both the observed characteristics and un-

observed quality. The exit value after raising K rounds is

WK = mK(XK) exp (ξ) , (1)

where mK(XK) is an arbitrary function supported on R+ and captures the contribution from

observed characteristics, while exp (ξ) captures the contribution from unobserved quality. To

10For example, when Airbnb first came out in 2009, according to Fred Wilson of Union Square Ventures,
it was an idea of “marketplace for air mattresses on the floors of people’s apartments”, and it was hard to
evaluate the demand for this marketplace when it was only an idea. Investors (and entrepreneurs) can only
learn about the demand by making the investment to build the platform and then see how much demand it
attracts. See more details at https://avc.com/2011/03/airbnb/.

11The normality assumption on ξ can be generalized to Gaussian mixture distribution such that the key
results of this paper still hold.
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Figure 7: Timeline

The startup samples dk and announces it.

A set of VCs Jk are matched. They observe

Xk, and each obtains a private signal sjk.

VCs compete with each other as if they

were in English auction with pure common

value, and the bid is equity ownership.

The startup quits,

all previous invest-

ments are sunk.

The winner is selected,

with winning equity bid

ak. All private signals

sk are publicly revealed.

It proceeds to the next round.

A new set of VCs Jk+1 is matched...

The startup completes all K rounds. The

return WK is realized and shared among

the entrepreneur and VCs across all rounds.

Fail: qk=0 Succeed: qk=1

...

Note: This schematic presents the timeline of the multi-round financing game. Yellow and blue boxes are
startup and VC actions, respectively.
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capture the skewed returns (see Fig. 1), I let ξ enter Eq. (1) through its exponential form.

Furthermore, mK(XK) and exp (ξ) are multiplicatively separable, so that exp (ξ) is the

unobserved marginal productivity of a “composite” observed characteristic that needs to be

learnt across rounds.

Signal. VCs don’t observe ξ directly, but can learn its value from their private signals. At

round k, a matched VC j ∈ Jk receives a private, noisy and unbiased signal

sj,k = ξ + ϵj,k, (2)

where

Assumption 2. For any k ∈ {1, ..., K̄} and j ∈ Jk, ϵj,k
iid∼ N(0, σ2

k) and is independent of

ξ, X and K.

The mean zero assumption is needed for unbiased signals, the normality assumption is

for tractability, and the round-specific variance allows signal accuracy to vary across rounds.

For notation convenience, I define σ = (σk)
K̄
k=1 as the vector of standard deviations of

each round’s signal noise, sk = (sj,k)j∈Jk
as the set of signals generated at round k, and

Sk = (s1, ..., sk) as the set of signals generated before (including) round k.

Ex-post payoff. When a company raises more capital, it issues additional shares, diluting

the equity ownership of existing shareholders. Let ak be the winning equity ownership

(before dilution) in round k. When the startup exits after K rounds, ex-post payoff to round

k investor depends on exit value WK , her ownership ak and dilution,

Rk︸︷︷︸
ex-post payoff

= ak︸︷︷︸
ownership

×
K∏

k′=k+1

(1− ak′)︸ ︷︷ ︸
dilution from round k′

× WK︸︷︷︸
exit value

. (3)

3.1 Equilibrium

I focus on symmetric equilibrium, where the identities of VCs do not matter. In each

round, for any bidding strategies adopted by VCs, the funding rules can be summarized by

a mapping ϕk := (qk, ak) that maps each (Xk,Sk) in the characteristics and signals space

20



to a pair of funding decisions (qk, ak), where qk ∈ {0, 1} is whether the startup secures

round k investment (qk = 1 if yes and 0 if no), and ak ∈ [0, 1] is the equity ownership to

the winning investor of this round. I let ϕk+1 := (ϕk+1, ..., ϕK̄), qk+1 := (qk+1, ..., qK̄) and

ak+1 := (ak+1, ..., aK̄), which come in handy later.

Ex-ante payoff. Since the startup’s exit value is not realized when VCs bid for the

investment opportunity, their bidding decisions are based on the expected payoff. Given

the observed characteristics Xk, the signals on the unobserved quality Sk, and the future

funding rules ϕk+1, the maximum expected payoff to round k investor is

Vk(Xk,Sk;ϕk+1) = E

[
δK−k

K∏
k′=k+1

(1− ak′)qk′WK

∣∣∣∣Xk,Sk;ϕk+1

]
, (4)

The expectation is with respect to the number of ultimate rounds K, future capital require-

ments dk+1, ..., dK , signals sk+1, ..., sK , binary funding choices qk+1, ..., qK , winning equity

ownerships ak+1, ..., aK , and the true quality ξ. In other words, this expectation is with

respect to all possible future trajectories of the startup given the current information set

and future funding rules.

The dimensionality of Sk increases rapidly with k. Under the independence and normality

assumptions of quality and signal noises, Sk is only relevant for inferring the quality ξ. The

posterior distribution of ξ is given by

ξ | Sk ∼ N(µk, τ
2
k ), (5)

where µk is a weighted sum of Sk, and τk is independent of Sk (see Appendix D for the

expressions of µk and τ 2k ). Since Sk impacts the posterior distribution only through µk, µk

is a sufficient statistics for Sk. Hence, Eq. (4) becomes

Vk(Xk, µk;ϕk+1) = E

[
δK−k

K∏
k′=k+1

(1− ak′)qk′WK

∣∣∣∣Xk, µk;ϕk+1

]
. (6)

Bidding strategy. VC j’s strategy at round k specifies the equity level she should drop

out as a function of the current round k, the observed characteristics Xk, previous signals
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Sk−1, her own signal sj,k, and the interim information revealed during the auction, including

the number of bidders who have dropped out and the equity level at which they exited.

At the beginning of round k, each bidder doesn’t know the exact value of µk because

other bidders’ signals are private, and thus can only infer µk from the revealed signals of

previous rounds and her own signal. However, as bidders start to drop out, each equity

level at which a competing VC withdraws discloses her true signal (because the strategies

are revealing in equilibrium), based on which each remaining VC updates her guess of µk

and uses it to determine the next dropping-out threshold, assuming no other VCs exit in the

middle. See Milgrom and Weber (1982) for formal presentation of the bidding strategy.

Funding decision. I characterize the equilibrium binary funding rule q∗k and the equi-

librium winning equity ownership rule a∗k.

Proposition 1. A VC in round k ∈ {1, ..., K̄} funds a startup with characteristics Xk and

µk that needs capital dk if V ∗
k (Xk, µk) ≥ dk. In other words, the optimal funding rule in the

VC market q∗k is given by

q∗k(Xk, µk) = 1{V ∗
k (Xk, µk)− dk ≥ 0}, (7)

where V ∗
k (Xk, µk) := Vk(Xk, µk;ϕ

∗
k+1). Vk is defined in Eq. (6) and ϕ∗

k+1 is the optimal

funding decisions in all future rounds.

V ∗
k is the maximum expected payoff to round k investor when all future rounds follow the

same funding rules as defined in Eq. (7) and Eq. (8). Proposition 1 provides the necessary

and sufficient condition for a startup to secure funding at round k. Intuitively, there should

be at least one VC whose maximum expected payoff is larger than the necessary capital

injection, akin to the entry cost in entry games. Hence, Eq. (7) determines the trajectory of

a startup given its characteristics and signals.

Proposition 2. In equilibrium, the winning equity ownership rule at round k ∈ {1, ..., K̄},

a∗k, satisfies

a∗k(Xk, µ̂k)× V ∗
k (Xk, µ̂k) = dk, (8)

22



where µ̂k is the posterior mean of ξ given Sk−1, s(Jk),k, ..., s(3),k, s(2),k, s(2),k, where s(Jk),k ≤

... ≤ s(1),k. Moreover, V ∗
k (Xk, µk) is strictly increasing in µk for any Xk and k ∈ {1, ..., K̄}.

When only two bidders are left, all other signals (except for the top two) have been

revealed. In Eq. (8), µ̂k represents the second-highest bidder’s guess of µk conditional on all

the revealing signals and assuming that the other active bidder holds the same signal as hers.

Eq. (8) implies that the winning equity bid is such that the second-highest bidder’s expected

net payoff is driven down to 0 assuming that the other bidder receives her own signal. The

formal proof of Proposition 2 is deferred in Appendix E, and it builds on Milgrom and Weber

(1982).

3.2 Efficiency Analysis

Early-round investments can generate informational spillover that benefits late-round VC,

but early-round VCs make decisions based on their private returns, potentially leading to

positive “dynamic information externality”. To examine the associated efficiency implica-

tions in the VC market, I consider a benchmark in which a planner who faces the same

information as the VC investors chooses at each round whether to fund the startup, with

the goal of maximizing total net payoff. I derive the planner’s strategy and then compare it

with the equilibrium in Section 3.1.

At round k, like the VC investors, the planner doesn’t observe the true quality ξ and

only knows (Xk, µk). If he makes the investment, the expected net return (before investing

capital dk) is

Ṽk(Xk, µk;qk+1) = E

[
δK−k

K∏
k′=k+1

qk′WK −
K∑

k′=k+1

δk
′−k

(
k′∏

n=k+1

qn

)
dk′

∣∣∣∣Xk, µk;qk+1

]
. (9)

Eq. (9) is different from Eq. (6) in two aspects: 1) there is no dilution from future rounds

because the planner only cares about the total net return, hence only qk+1 but not ak+1

enters Ṽk; 2) the planner also takes into account all the (discounted) possible future capital

to inject, whereas VC investors only care about their own cost and do not consider future

investors’ costs.

Proposition 1’. A planner in round k ∈ {1, ..., K̄} funds a startup with characteristics
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Xk and µk that needs capital dk if V †
k (Xk, µk) ≥ dk. In other words, the planner’s optimal

funding rule q†k is

q†k(Xk, µk) = 1{V †
k (Xk, µk)− dk ≥ 0}, (10)

where V †
k (Xk, µk) = Ṽk(Xk, µk;q

†
k+1). Ṽk is defined in Eq. (9) and q†

k+1 is the planner’s

optimal funding rules in all future rounds.

V †
k is the expected net return (before injecting dk) to the planner if he follows the same

funding rules as defined in Eq. (10) in all future rounds. This is a cutoff strategy such that

the planner will only fund the startup if the expected net payoff is non-negative.

Next, I compare the planner’s strategy to the equilibrium in the VC market.

Proposition 3. For any (Xk, µk), V
†
k (Xk, µk) > V ∗

k (Xk, µk).

The proof is provided in Appendix F. Proposition 3 implies that for any startup, the

planner would expect a higher return than the VC investors. Consequently, some startups,

which the planner would fund, fail to secure financing in the VC market, suggesting “under”-

investment in the VC market.

This inefficiency stems from dynamic information externalities. Consider an investor

investing in an early round of a startup. This investment generates information that can be

costlessly observed by later-stage investors, helping them make more informed investment

decisions. However, early investors do not get fully paid for this — early investment pushes

the project to the next stage and allows late-stage investor to draw his own signal from a

(presumably) more informative distribution; however, early investor doesn’t know the exact

signal and thus the true value of the later investor, hence there doesn’t exist a mechanism

that achieves Pareto efficiency (i.e., at any given stage, the project is funded if and only if

the total expected net payoff from the project conditional on all the signal realization by that

time point is non-negative) while satisfying incentive compatibility and individual rationality

(Myerson and Satterthwaite, 1983). This creates an information externality where later

investors free-ride on the information produced by early investors. Since individual investors

are not able to internalize the full benefit of their investment, they may stop investing even

when the overall benefit is still positive. Hence, the equilibrium is suboptimal from a social

point of view.
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This inefficiency can be mitigated by government-provided funds and grants for early-

stage startups. For example, the U.S. government has launched programs such as Small

Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) to

support startups at early stages.

4 Identification

The parameters to be identified are Γ = (m, σξ,σ, F ). Recall that m = (m1, ...,mK̄) is a

vector of functions defined in Eq. (1) and represents the effect of observed characteristics

on the exit value; σξ is the standard deviation of quality ξ; σ is the standard deviation

of the signal noise in each round; F is the joint distribution of rounds K and observed

characteristics XK .

I observe (qK ,XK ,aK ,WK), where qK = (qk)
K
k=1 is a vector of binary funding choices; aK

is a vector of equilibrium (winning) equity ownerships; XK = (Z, d1, ..., dK) is the observed

characteristics; and WK is the exit value. The data is subject to threefold right-censoring:

(1) qk,Xk are only observed if q1 = ... = qk−1 = 1; (2) ak is only observed if q1 = ... = qk = 1;

and (3) WK is only observed if q1 = ... = qK = 1. That is, the future path and exit value

are observed for only those startups that secured funding, but the funding decisions are

endogenous and depend on the startup’s unobserved quality, leading to endogeneous sample

selection. Furthermore, a startup can fail at different stages of financing, and the “errors”

that govern “passing” or “failing” each stage — signals about quality in the VC-startup

context, are serially correlated, leading to dynamic selection. In this setting, identification

is challenging as the standard results based on independent shocks across time, e.g., Rust

(1987), do not apply.

To overcome this challenge it, I adapt Heckman and Navarro (2007) to my setting and

allow for more general time series dependence in the unobservables. I correct the dynamic se-

lection by leveraging VC’s funding choices to explicitly account for the investor-side selection

effect on startup outcomes. Hence, my choice-adjusted estimates of the model primitives are

free from the influence of factors that affect both financing choices and startup outcomes.

Identifying the full structural model requires independence variation in the arguments
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of the binary funding rules. This is achieved through assumptions of independence between

unobserved quality and signal noise, as well as functional restrictions imposed by the model.

More specifically, I have four model-implied conditions that, along with the data, can be

used to identify the parameters:

lnWK = ln (mK(XK)) + ξ, (11)

qk = 1{V ∗
k (Xk, µk) ≥ dk}, (12)

ak =
dk

V ∗
k (Xk, µ̂k)

, (13)
ξ

µ1

...

µK̄

 ∼ N(0,Σ). (14)

Eq. (11) is Eq. (1) after taking the log, Eq. (12) and Eq. (13) are the equilibrium conditions

shown in Eq. (7) and Eq. (8). Eq. (14) describes the serial dependence among quality ξ and

the posterior mean of it in all rounds. Under Assumption 1 and 2, they are jointly normal.

The covariance matrix depends on the the variances of both quality and signal noises, as

well as the number of VCs matched in each round. See Appendix D for its mathematical

expression.

Proposition 4 shows that the unobservable µk can be isolated from the observables Xk

in the funding choice described by Eq. (12). This separation relies on the monotonicity of

V ∗
k in µk, as established in Proposition 2. Hence, the choice equation (12’) has the same

structure as in Heckman and Navarro (2007), allowing me to directly apply their results to

my setting.

Proposition 4. Under Assumption 1 and 2, for any k ∈ {1, ..., K̄}, ∃ a unique hk such that

Eq. (12) implies Eq. (12’):

qk = 1{µk ≥ hk(Xk)}, where (12’)

hk(Xk) = V ∗
k
−1(dk;Xk). (15)
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To summarize, the goal is to identify Γ with a right-censored and dynamically selected

sample (qK ,XK ,aK ,WK), along with four model implied conditions Eq. (11)(12’)(13)(14),

where ξ,µk,µ̂k are unobserved, V ∗ = (V ∗
k )

K̄
k=1 satisfies Eq. (6) and h = (hk)

K̄
k=1 is the inverse

of V ∗. In addition, V ∗,h,Σ are known up to Γ.

One identification challenge is that the number of VCs competing for a startup in each

round is not observed in the data; only the winner’s identity, if any, is observed. While

identifying the parameters (m, σξ,h) does not rely on this information, to identify the other

parameters, I assume there are only two VCs in each round.12 If in each round the number

of VCs is fixed (but not necessarily two), σ is identified up to the number of VCs because

σk affects µk only through the ratio
σ2
k

Jk
. Thus, this assumption is a normalization of σ.

However, without this assumption, we cannot point-identify V ∗ but can only identify its

bound. Furthermore, the lower bound collapses onto the upper bound of V ∗ when I impose

this assumption, suggesting that I am overestimating V ∗ if this assumption fails.

I identify the parameters in three steps. In the first step, I identify m, σξ,σ,h, followed

by V ∗ in the second step and F in the third step.

Identification of m, σξ,σ,h. The first step identifies m, σξ,σ,h by directly applying the

identification results from Heckman and Navarro (2007) to my setting. The identification

relies on the independent variation in the observed characteristics and functional restrictions

on the binary funding rules h.

Proposition 5. Given the following conditions, m, σξ,σ,h are identified with Eq. (11)

(12’)(14).

1. Independence: (µ1, ..., µK̄ , ξ) ⊥ (X1, ...,XK̄).

2. (µ1, ..., µK̄ , ξ) are continuous random variables with zero mean and finite variance, and

with support Supp(µ1)× ...× Supp(µK̄)× Supp(ξ).

12The empirical auction literature has proposed either using the measurement error approach (An et al.,
2010) or using several order statistics (Luo and Xiao, 2023; Song, 2004) for identification when the number
of bidders is not observed. However, these approaches do not apply in my setting because first I observe
only one bid per round, and second, these approaches apply only to independent private value auctions with
static competition. There is no known result for common value auctions with dynamic competition.
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3. Full rank: Supp(ln (mK̄(XK̄)) , h1(X1), ..., hK̄(XK̄)) = Supp(ln (mK̄(XK̄)))×Supp(h1(X1))×

...× Supp(hK̄(XK̄))

4. Inclusion: Supp(hk(Xk)) ⊇ Supp(µk),∀k = 1, ..., K̄.

To prove Proposition 5, I show that the listed conditions are satisfied in my model. Hence,

I can evoke Theorem 2, the sufficient condition for identifying the outcome equations, choice

equations and joint distribution of unobservables, in Heckman and Navarro (2007) to identify

m, σξ,σ,h. The complete proof of Proposition 5 is provided in Appendix G.

Identification of V ∗. In the second step, I leverage the variation in equity ownership to

identify V ∗.

Proposition 6. Given h, using model implied Eq. (13), V ∗ is identified.

The reason that V ∗ cannot be directly identified by inverting h is that as is shown in

Eq. (15), dk also shows up in Xk of V ∗
k
−1, thus the full rank condition on covariates is

violated. However, Eq. (13) implies µ̂k = V ∗
k
−1(Xk;

dk
ak
), where ak provides extra variation

to dk in the second argument, restoring the full rank condition. So that I can explore the

variation in ak to identify V ∗. The complete proof is deferred to Appendix H.

Identification of F . The third step identifies F by exploring the variation in the ob-

served characteristics, accounting for dynamic selection based on the binary funding rules h

identified in the first step.

Proposition 7. Given (m, σξ,σ,h,V
∗), F is identified.

Recall that F is the joint distribution of XK and K. The proof is composed of two steps.

In the first step, I show that F (XK | K) is identified. Specifically, consider the subsample

of startups that complete all K rounds, the distribution of their observed characteristics,

F (XK | K, q1 = ... = qK = 1) is directly identified from data. Moreover, for any XK , the

probability of passing all rounds can be identified given (σξ,σ,h). Hence, F (XK | K) is

identified using Bayes rule. In the second step, I identify F (K) from V ∗. This is because V ∗

are expectations with respect to the number of rounds and thus contain information about

the marginal distribution of K. The complete proof is provided in Appendix I.
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5 Estimation

In this section, I discuss the parameterization of the model and the estimation methodology

(simulated minimum distance estimator). The parameterization balances the dimensionality

of the parameters and the desired richness in the structure of startup attributes, and the

estimation algorithm handles complex and nonlinear problems with large search spaces while

limiting computing time by parallelization.

5.1 Parameterization

Recall that the parameters to be estimated is Γ = (m, σξ,σ, F ). To capture the heteroge-

neous value-add of different round’s capital injection while limiting the number of parameters

to estimate, I use the following parameterization for m:

Assumption 3.

m0(X0) = Zβ0,

m1(X1) = Zβ0 + d1β1, (16)

. . .

mK̄(XK̄) = Zβ0 + d1β1 + · · ·+ dK̄βK̄,

where β = (β0, ..., βK̄) and K̄ = 7. This “triangular” specification in Eq. (16) homogenizes

the capital’s value-add within the same round for startups that exit at different times.

I assume that there is no dependence between XK and K, which would drastically

enhance the computational burden. With this assumption, the distribution of K is directly

identified from the data because the censoring is independent ofK. This means that startups

failing at each round have equal probability of exiting at each subsequent rounds (including

the current round) had they been funded all the way through. For example, in Fig. 3, the

1,719 startups failing to raise round 1 are equally likely to end up in each of the seven rounds

if they received funding throughout.

Furthermore, to reduce state space dimensionality, I assume a Markov transition process

on capital requirements:
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Assumption 4.

dk+1 ∼ Exp

(
1

λk
0 + λk

1dk + λk
2W̄k

)
. (17)

This distributional specification allows dk+1 to depend on all previous characteristics Xk

through dk and W̄k, where W̄k = Zβ0 + d1β1 + · · · + dkβk is the cumulative value from

observed characteristics. For notation convenience, I define λ = (λk
0, λ

k
1, λ

k
2)

K̄−1
k=0 .

Lastly, I choose the discounting factor between two adjacent rounds δ to be 0.95.

5.2 Simulated Minimum Distance Estimator

I use a simulated minimum distance estimator for Γ (Agarwal, 2015; Aryal et al., 2024;

McFadden, 1989; Pakes and Pollard, 1989). The estimate Γ̂ minimizes the distance between

the empirical and simulated moments after properly weighted, i.e.,

Γ̂ = argmin
Γ

(
ĝ − ĝM(Γ)

)′
Λ
(
ĝ − ĝM(Γ)

)
, (18)

where ĝ is a vector of moments constructed from the empirical data, ĝM is the average of

moments constructed from M simulations of startup trajectories given parameter Γ. I follow

Agarwal (2015) and choose the weight matrix Λ as the inverse of the covariance matrix of

10,000 vectors of bootstrap moments, each is constructed from a resampling of the empir-

ical data with replacement. The standard error of the simulated estimator is constructed

following Gourieroux and Monfort (1997), which captures both the (conventional) error due

to limited sample size and the simulation error. Agarwal (2015) provides a thorough expla-

nation of the inference procedure in its Online Appendix B.2.

The vector ĝ is composed of five sets of empirical moments. ĝM contains the same

moments but is derived from and averaged over M simulations. The five sets of moments

include:

1. The fraction of startups that succeed (IPO or M&A) and fail (bankrupt/out of busi-

ness) after raising k rounds, where k = 0, 1, ..., 6. For example, in Fig. 3, 1,719 out

of 5,591 startups failed immediately after establishment, then the moment to match is

1719
5591

. Likewise, there are 14 moments to match in this first set.
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2. The mean and standard error of observed capital injection at round k ∈ {1, ..., 7}. Let

Nk = {i ∈ N :
∏k

k′=1 q
∗
i,k′ = 1}, where N is the number of startups, be the set of

startups that successfully secure round k, the moments are computed as

ĝd,mean,k =

∑
i∈Nk

di,k

|Nk|
,

ĝd,se,k =

√∑
i∈Nk

(di,k − ĝd,mean,k)2

|Nk|
.

3. The mean and standard error of observed post-money valuation at round k ∈ {1, ..., 7}.

Mathematically,

ĝv,mean,k =

∑
i∈Nk

vi,k

|Nk|
,

ĝv,se,k =

√∑
i∈Nk

(vi,k − ĝv,mean,k)2

|Nk|
,

where vi,k =
di,k
ai,k

is the post-money valuation of startup i at round k.

4. The mean and standard error of observed exit value at round k ∈ {0, 1, ..., 7}. Let

Ñk = {i ∈ N : Ki = k, i ∈ Nk} be the set of startups that secure round 1 to k and

then exit successfully,

ĝW,mean,k =

∑
i∈Ñk

Wi,k

|Ñk|
,

ĝW,se,k =

√∑
i∈Ñk

(Wi,k − ĝW,mean,k)2

|Ñk|
.

5. The covariance between capital investment and post-money valuation at round k ∈

{1, ..., 7},

ĝcov,k =

∑
i∈Nk

(di,k − ĝd,mean,k)(vi,k − ĝv,mean,k)

|Nk|
.

For empirical moments, the first set can be derived from Fig. 3, the second to fourth sets

are presented in Table 13.
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5.3 Estimation Algorithm

A startup can be fully characterized by a vector of variables (K,XK , ξ,SK). K determines

when it can successfully exit, XK and ξ determine its exit value, XK and SK determine

both the progression through the VC rounds and the winning equity bid in each round.

The key in simulating the path of a startup is to evaluate the maximum expected payoff,

V ∗
k (Xk, µk), to the investors. There are two challenges: 1) the state space gets very large at

later rounds; 2) V ∗
k is essentially an expectation with respect to all possible future trajectories

and hence is difficult to compute.

Under the Markov assumption in (17), the future capital injections, over which V ∗
k takes

expectation, are independent of the current characteristics Xk conditional on W̄k and dk, so

that V ∗
k (Xk, µk) is reduced to V ∗

k (W̄k, dk, µk). Furthermore, by Eq. (7) and (8), q∗k(Xk, µk)

and a∗k(Xk, µ̂k) are reduced to q∗k(W̄k, dk, µk) and a∗k(W̄k, dk, µ̂k). This technique simplifies

the state variables of round k to Ωk = (W̄k, dk, µk, µ̂k), so that I only need to keep track of

these four variables. To simplify notations, I write V ∗
k (Ωk), q

∗
k(Ωk) and a∗k(Ωk) while keeping

in mind that µk is irrelevant to a∗k and µ̂k is irrelevant to both V ∗
k and q∗k.

To overcome the second challenge, I write V ∗
k in its Bellman representation, which allows

me to use backward induction to back out the value of V ∗
k at any state for any parameter Γ.

V ∗
k (Ωk) = Pr(K = k

∣∣K ≥ k)E
[
WK

∣∣Ωk, K = k
]

+ Pr(K > k
∣∣K ≥ k)δE

[
(1− a∗k+1(Ωk+1))q

∗
k+1(Ωk+1)V

∗
k+1(Ωk+1)

∣∣Ωk, K > k
]
. (19)

To interpret the Bellman equation, for a startup at state Ωk, there is a chance that im-

mediately after this round, an acquisition opportunity arises or the board decides it’s an

ideal time to go public, leading to an exit and realization of value. Otherwise, it transitions

to state Ωk+1 and proceeds to raise the next round, in which case the expectation is over

the possibility of failing to raise money and ceasing operation and the dilution in equity

ownership.

Therefore, to evaluate V ∗
k , it is sufficient to know its transition point in the next round

rather than its entire path.
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Evaluate maximum expected payoff. Before introducing the steps for computing V ∗
k ,

I discretize the space of Ωk. Motivated by data, I discretize the support of dk to grids

{0, 10, 20, ..., 280, 290, 300} and W̄k to {0, 10, 20, ..., 290 + 100k, 300 + 100k}. I allow the

maximum grid of W̄k to expand over rounds to reflect the growth in a startup’s value.

Likewise, I discretize the space of µk and µ̂k to grids {−1.5 − 0.5k,−1.4 − 0.5k, ..., 1.4 +

0.5k, 1.5+0.5k}, with expanding support to reflect the increasing divergence in beliefs across

startups. The set of grids for to be evaluated, Ωk, encompass every permutation of the

possible values for W̄k, dk, µk, µ̂k.

Given parameter Γ, to compute V ∗
k at each grid, I start from the last possible round.

1. At round K̄, compute V ∗
K̄
(ΩK̄), q

∗
K̄
(ΩK̄), a

∗
K̄
(ΩK̄) for each discretized grid of ΩK̄ . Since

K̄ is for sure the last round and by the property of lognormal distribution, Eq. (19) is

simplified to

V ∗
K̄(ΩK̄) = W̄K̄ exp

(
µK̄ +

1

2
τ 2K̄

)
, (20)

and

q∗K̄(ΩK̄) = 1{V ∗
K̄(ΩK̄) ≥ dK̄}, (21)

a∗K̄(ΩK̄) =
dK̄

V ∗
K̄
(Ω̂K̄)

, (22)

where Ω̂K̄ = (W̄K̄ , dK̄ , µ̂K̄ , µ̂K̄).

2. At round k < K̄, for each grid of Ωk, simulate (Ωl
k+1)

L
l=1 transitioned from Ωk, so that

Eq. (19) becomes

V ∗
k (Ωk) = Pr(K = k

∣∣K ≥ k)W̄k exp

(
µk +

1

2
τ 2k

)
+ Pr(K > k

∣∣K ≥ k)δ
1

L

∑
l

[
(1− a∗k+1(Ω

l
k+1))q

∗
k+1(Ω

l
k+1)V

∗
k+1(Ω

l
k+1)

]
. (23)

The two conditional probabilities are identified directly from data, the values of a∗k+1, q
∗
k+1

and V ∗
k+1 at the simulated grids are taken from the previous step.

3. Iterate the second step until all rounds have been visited.
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Estimation algorithm. I use Algorithm 1 to compute the objective function in Eq. (18)

given parameter Γ.

Algorithm 1: Algorithm for computing the objective function given Γ

// Step 1: for each grid in each round, compute the expected payoff,

binary funding rule and equity ownership rule

1 for k ← 1 to K̄ do
2 foreach Ωk in Ωk do
3 compute V ∗

k (Ωk), q
∗
k(Ωk), a

∗
k(Ωk) using Eq. (20)(21)(22)(23);

4 end

5 end
// Step 2: generate simulated data

6 for m← 1 to M do
7 generate simulated data Dm;
8 end
// Step 3: for each startup in each simulation, determine its

trajectory

9 for m← 1 to M do
10 foreach startup in Dm do
11 generate its trajectory and each round’s winning equity ownership using

results from Step 1;
12 end

13 end
// Step 4: compute the objective function

14 compute the objective function using results from Step 3;

In Step 2, each simulation contains the N startups in the empirical data. If the startup

exits successfully, then I only simulate its SK and fix K,XK and ξ as they are in the

empirical data (ξ, though not observed directly, can be backed out from Eq. (11) given

Γ). If the startup fails, then I simulate its K, unrevealed future capital requirements, and

unobserved quality ξ, in additional to signals SK .

Considering the non-smoothness in the simulated objective function, I use genetic algo-

rithm to find the global minimum.

6 Results

In this section, I present my estimation results. First, I discuss how my estimates shed light

on VC learning across rounds in each sector. Second, I simulate startup trajectories based on
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the estimates and discuss the heterogeneity among startups following different paths. Third,

I show how costs and returns are shared across VCs at different stages.

6.1 Information and learning

To get a sense of what the estimates of σξ and σ imply about the learning process in each

sector, I choose ξ at the 1st percentile — “low” quality startup — and simulate investors’

posterior beliefs on ξ after each round for 10,000 times. Fig. 8 presents the averaged beliefs.

Compared to biotech investors, software investors’ beliefs are initially more dispersed, but

converge faster in the subsequent rounds, suggesting that software investors start with less

information but learn faster. In Appendix J, I provide the results for each quality level.

Statistically, I measure the convergence in beliefs by coefficient of variation (CV), defined

as τk
µk
. As shown in Table 5, in both sectors and across all quality levels, CV approaches 0

over rounds, reflecting the convergence of perceived quality to its actual value.

Another key observation is that in software, CV is significantly higher in round 1 com-

pared to biotech, but thereafter it converges to 0 at a faster speed. This suggests that for

software startups, most uncertainty is concentrated in the initial rounds. Once these are

passed, signal precision improves rapidly, and startup quality is quickly revealed. In con-

trast, uncertainty in biotech startups is spread more evenly across multiple rounds, leading

to slower learning.

Table 5: Coefficient of variation

Sector Quality Round 1 2 3 4 5 6 7

Biotech

Low -5.53 -3.6 -1.72 -1.25 -1.0 -0.68 -0.31

Medium-low -18.64 -12.12 -5.91 -4.26 -3.4 -2.33 -1.05

Medium-high 19.38 12.8 5.97 4.32 3.45 2.36 1.06

High 5.6 3.63 1.73 1.25 1.0 0.68 0.31

Software

Low -11.16 -2.52 -1.48 -0.75 -0.62 -0.44 -0.21

Medium-low -37.23 -8.54 -5.06 -2.55 -2.11 -1.49 -0.73

Medium-high 39.34 8.96 5.14 2.58 2.14 1.51 0.74

High 11.37 2.53 1.48 0.75 0.62 0.44 0.21

Note: This table displays the coefficient of variation for each sector, round and level of unobserved quality.
The 1st, 25th, 75th, and 99th percentiles of ξ are selected to represent ”low,” ”medium-low,” ”medium-high,”
and ”high” levels.
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Figure 8: Learning process

Note: This figure displays, for a low quality startup, the posterior belief on the quality after each round. The
left and right figures are biotech and software, respectively. The x-axis represents the belief on ξ conditional
on the signals S. The grey dashed lines mark the true quality. The 1st percentile of ξ is selected to represent
”low” quality.
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These findings reflect sector-specific business models. Software businesses are typically

built upon proven technologies, the primary source of uncertainty is the demand for a new

product or service. So, the common practice is to develop and launch a minimum viable

product quickly to test market demand (Lerner and Nanda, 2020). Once validated, the

next steps involve product iteration and business expansion, which usually come with less

uncertainty.

In contrast, drug development process consists of several distinct stages, each testing a

different aspect of the drug (DiMasi and Grabowski, 2012). Specifically, pre-clinical trials

involve creating a new compound and testing it on animals to answer basic safety questions. If

successful, the firm proceeds to a three-phase clinical study involving human subjects. Phase

I tests the drug on a small group of healthy volunteers to assess toxicity and determine safe

dosages. Phase II tests the drug on patients with the targeted disease to evaluate efficacy and

identify side effects. Phase III focuses on testing the drug’s efficacy in a broad population

(Food and Administration, 2018). Since each stage addresses a distinct aspect of the drug,

uncertainties for biotech startups are distributed more evenly throughout the development

process, resulting in slower learning rate compared to software startups.

6.2 Exit outcome and startup heterogeneity

With my estimates and model, I simulate trajectories for any startup and determine the

impact of inherent characteristics on the path it follows. Fig. 9 visualizes the simulated

paths of 2,377 biotech startups and 3,203 software startups in my data. Compared to biotech

sector, software sector has a lower success rate (33.0%) — the proportion of startups that

successfully exit through IPO or M&A. This difference is primarily driven by the high failure

rate in the initial round due to high initial uncertainties.

To better understand the factors driving a startup’s fundraising journey, I compare the

characteristics of startups on different paths. In Table 6, I present the average number of

patents held by startups that either secure funding in a given round and exit immediately

via IPO or M&A, or fail to secure funding in that round. I compare only startups that have

undergone the same number of rounds, so that differences in patent counts are not due to

additional time for development.
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Figure 9: Simulated trajectories for all startups

(a) Biotech

(b) Software

Note: This figure presents the average of the simulated paths for 2,377 biotech startups and 3,203 software
startups from 100 simulations using my estimates. In Fig. 9a, the percentages of startups that exit successfully
after Start, Round 1,..., Round 7 are 4.3%, 10.0%, 10.1%, 10.1%, 7.0%, 4.7%, 3.0%, 2.3%, and that fail after
Round 1 to 7 are 24.4%, 16.8%, 5.1%, 1.8%, 0.3%, 0.1%, 0.1%. In Fig. 9b, the percentages of startups that
exit successfully after Start, Round 1,..., Round 7 are 3.3%, 8.1%, 6.8%, 4.9%, 3.8%, 2.9%, 2.3%, 1.0%, and
that fail after Round 1 to 7 are 42.6%, 18.6%, 4.0%, 1.4%, 0.3%, 0.1%, 0.1%.

Table 6: Average patents of successful and failed startups

Sector Success/Fail Round 1 2 3 4 5 6 7

Biotech
Success 4.20 9.97 12.39 15.34 15.34 24.18 18.05
Fail 1.18 2.00 4.65 6.67 6.40 5.23 5.87

Software
Success 1.71 3.41 6.13 9.70 17.70 13.25 18.69
Fail 0.28 0.32 1.14 3.45 6.17 8.34 6.23

Note: This table he average number of patents held by startups that either secure funding in a given round
and exit immediately via IPO or M&A, or fail to secure funding in that round. These patents consist of
both in-house developed patents and those licensed from other entities.

Successful startups tend to have more patents than failed startups. In addition, software

companies typically own fewer patents than biotech companies, consistent with the views
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that patents are crucial in biotech sector for protecting innovations and securing investment,

while in software sector, patents are valuable but often less central due to the industry’s

fast-moving nature and alternative forms of IP protection.

Following this, I simulate the trajectories of a given startup by holding all other char-

acteristics constant and only varying the number of patent. The results are presented in

Fig. 10. In both sectors, startups with more patents are associated with a higher probability

of success. This finding is consistent with previous research that documents the positive

impact of innovation output on a firm’s future performance (Kline et al., 2019; Kogan et al.,

2017).

Figure 10: Simulated trajectories for a given startup

(a) Biotech, low patents (b) Biotech, high patents

(c) Software, low patents (d) Software, high patents

Note: For each sector, I construct a representative startup fixing all characteristics at the median level except
for patents — “low” and “high” patents are chosen at 5th and 95th percentile, respectively. Then I simulate
the trajectories for each representative startup for 1000 times with randomly sampled noises.

6.3 Cost and Return Sharing

While many studies have focused on evaluating average VC returns (Bygrave, 1992; Chen et al.,

2012), surprisingly little is known about how (un)equal the return sharing is across stages in

practice. Moreover, in traditional financial models (e.g., CAPM), the inequality on return-

39



sharing, if any, arises from the assumption of risk-averse agents, yet little is known about the

impact of evolving information structure on return sharing among VCs at different stages.

In this subsection, I analyze how the interaction between sequential dissemination of

information and VC competition affects the return sharing across VCs at different stages.

Using the simulated data, I find that early-round VCs obtain a significantly higher MoM

than late-round VCs in both sectors (see Fig. 11). On average, round 1 VCs in biotech and

software receive $3.31 and $4.02, respectively, for every dollar invested — roughly three times

the returns of last-round VCs, consistent with estimates from Kaplan and Schoar (2005) and

Cochrane (2005). Compared to biotech investors, software investors achieve higher MoM,

particularly in the early rounds, due to greater initial uncertainties. However, in my model

this unequal risk-sharing across stages stems from the sequential dissemination of information

rather than risk-averse agents in standard financial models such as CAPM.

Figure 11: Cost and return sharing

(a) Biotech (b) Software

Note: In Fig. 11a, the capital inputs and returns of each round’s investors are 10.24, 17.42, 21.65, 27.28,
30.67, 22.5, 19.64, and 33.94, 50.33, 66.56, 62.83, 58.79, 47.29, 24.77; the MoMs are 3.31, 2.89, 3.07, 2.3,
1.92, 2.1, 1.26. In Fig. 11b, these values are 4.11, 9.06, 14.68, 17.95, 30.42, 42.62, 31.81; 16.53, 49.05, 65.01,
65.53, 85.51, 100.44, 49.03; and 4.02, 5.41, 4.43, 3.65, 2.81, 2.36, 1.54, respectively. All numbers except for
MoMs are in million USD.

The two sectors exhibit distinct cost structure, with biotech distributing expenses evenly

across rounds, while software pushes most costs to later stages, reflecting sector-specific

business models. As explained in Section 6.1, in the biotech sector, each stage involves a

steadily expanding pool of volunteers, matching the steady increase in the costs over rounds.

However, in the software sector, initial rounds focus on developing a minimum viable product
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at the lowest possible cost in order to test the market demand, whereas later rounds focus

on “cash-burning” activities like business expansion and product promotion. Hence, the cost

structures are consistent with the prioritized activities over rounds.

7 Inefficiency and Welfare

Three sources of inefficiency are present in this market: 1) dynamic information externalities;

2) uncertainty in startup quality; and 3) uncertainty regarding the number of future rounds

and future capital infusions. As discussed in Section 3.2, the first source results in under-

investment. The second source leads to ex-post sub-optimal capital allocation, because the

choice of which startup to support is made without knowing the true quality and only based

on noisy signals. However, these choices are ex-ante optimal, making this type of inefficiency

better referred as “constrained efficiency”. This is also true for the third inefficiency. Notably,

the first two inefficiencies are linked because the information externalities would be resolved

if the startup’s true quality were observable. In that case, VC bidders would have symmetric

information and engage in Bertrand competition until the surplus is bid down to 0.

Moving forward, I refer to these inefficiencies as “information externalities”, “quality

uncertainty”, and “other uncertainties”. First, I run counterfactuals to quantify the efficiency

losses from each source. Then, I compute Type I errors — not funding good startups, and

Type II errors — funding bad startups, in order to identify the main reason(s) for efficiency

loss and explore policies to mitigate these losses. Finally, I extend this framework to examine

the effects of various policy interventions on innovation.

7.1 Quantifying inefficiency

I define first-best efficiency as the one in which all NPV-positive startups are funded through

and all NPV-negative startups are not funded from the beginning. It is the highest possible

efficiency that can be achieved, and is attained when all of the three sources of inefficiency

are eliminated. Second-best efficiency is the one in which a net return-maximizing planner,

with full knowledge of startups’ true qualities, makes the funding choices, it corresponds

to the efficiency level when dynamic information externalities and quality uncertainties are
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resolved. Third-best efficiency is similar to second-best efficiency, except the planner does not

observe the startups’ true qualities directly; instead, he learns from the same signals available

to VC investors. This corresponds to the efficiency level when only dynamic information

externalities are eliminated. Status quo is the efficiency under the current market practice

when all the three inefficiencies present.

In Fig. 12, I present the net return and total cost with the sequential elimination of

each source of inefficiency. Point D denotes the total cost and net return in status quo,

based on the simulated results using my estimates. Point C corresponds to the third-best

efficiency. In both sectors, investors at Point D invest less than what the planner invests

at Point C, aligning with the theoretical results of under-investment in Proposition 3. The

vertical distance between Point C and D — $10 billion in biotech and $3 billion in software

— quantifies the efficiency loss due to dynamic information externality.

Figure 12: Quantifying inefficiency

(a) Biotech

Total Cost

Net Return

A

D
C

B

(b) Software

Total Cost

Net Return
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D

Note: A, B, C, D represent first-best, second-best, third best and status quo scenario, respectively. The
coordinates for A, B, C, D are respectively (73.2, 239.7), (73.1, 234.6), (80.9, 195.7), (73.6, 186.3) in Fig. 12a,
and (44.8, 264.9), (35.82, 241.9), (43.1, 212.0), (40.7, 209.0) in Fig. 12b, all in billion USD. All results are
based on the same simulated data as before.
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Point B represents second-best efficiency; it incurs lower costs than Point C but yields

a higher net return, due to improved identification of NPV-positive projects. The vertical

difference between B and C — $39 billion in biotech and $30 billion in software — mea-

sures the efficiency loss caused by uncertainties in quality. This loss is smaller in software

due to faster learning. Point A is the first-best efficiency, its vertical distance to B — $5

billion in biotech and $23 billion in software — quantifies the efficiency loss due to “other

uncertainties”.

In addition to the aggregated and ex-post outcomes in Fig. 12, Table 7 presents the

average expected value of individual startups across the four scenarios.

Table 7: Expected Value of Startups

(a) Biotech

Round 1 2 3 4 5 6

Scenarios A 1st-best 105.43 113.65 126.71 130.89 148.35 168.40

B 2nd-best 62.44 99.97 126.62 123.68 133.73 168.67

C 3rd-best 14.04 28.59 45.98 58.84 74.49 104.07

D status quo 11.00 21.75 38.49 52.28 68.11 96.21

Gaps gap between D and A 0.9 0.81 0.7 0.6 0.54 0.43

gap between D and C 0.22 0.24 0.16 0.11 0.09 0.08

gap between C and B 0.78 0.71 0.64 0.52 0.44 0.38

(b) Software

Round 1 2 3 4 5 6

Scenarios A 1st-best 85.53 101.59 124.28 166.85 253.54 307.0

B 2nd-best 48.46 78.78 94.14 134.0 227.41 283.64

C 3rd-best 11.51 21.0 32.46 62.13 101.97 165.75

D status quo 7.98 16.31 27.52 57.39 97.95 162.59

Gaps gap between D and A 0.91 0.84 0.78 0.66 0.61 0.47

gap between D and C 0.31 0.22 0.15 0.08 0.04 0.02

gap between C and B 0.76 0.73 0.66 0.54 0.55 0.42

Note: This table presents the mean of the expected values of individual startups in each round (before
the capital is injected) across all scenarios. All expected values are in million USD. In order to remove
the selection effect, the expected value of a startup is filled in with 0 under the first-best scenario if it’s
NPV-negative, and under the other scenarios if it fails to raise or reach that round. The gap between two
scenarios are calculated as one minus the ratio of the mean expected values in each scenario.
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On average, the expected value rises with each round in both sectors across all scenarios,

with the status quo and first-best scenarios persistently yielding the lowest and highest

expected values, respectively. This gap is largest in the initial round, where individual

startups are undervalued by up to 90% under the status quo, primarily because outstanding

startups are not recognized at the beginning. However, this “under-valuation” narrows to

around 40% by the sixth round, as more information about startup quality becomes available.

Similar to Fig. 12, information externalities drive the gap between D and C, which nar-

rows over rounds as there are fewer future VCs benefitting from late-stage externalities.

Additionally, uncertainties in quality drive the gap between C and B, which narrows as more

information is released to the market.

7.2 Type I and Type II errors

In this subsection, I dig deeper by quantifying the losses associated with Type I errors —

not funding good startups, and Type II errors — funding bad startups. The results have

important policy implications: if Type I errors dominate, the government should complement

the private VC market; if Type II errors dominate, the government should carry out stricter

regulations on investment activities.

I call NPV-positive startups good startups and NPV-negative startups bad startups.

Good startups that exit successfully (i.e., securing all VC rounds and then either getting

acquired or going public) are labeled as good-success, bad startups that fail are labeled as

good-fail. Similarly for bad-success and bad-fail.

Fig. 13 presents the proportions of startups in each group in status quo and 3rd-best

scenario. These percentages are based on the same simulations as before. In both sectors,

Type I errors occur more frequently. Compared to biotech, software makes more Type I

errors due to less informative initial signals, but fewer Type II errors due to faster learning.

This result is consistent with the finding of initial high failure rate for software startups in

Fig. 9. Furthermore, the planner in the 3rd-best scenario make fewer Type I errors and

more Type II errors than status quo, as he assigns higher value to each individual startup

(Proposition 3) and thus invests more aggressively.
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Figure 13: Count of Type I and Type II errors
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Note: The values with (without) parentheses are the percentages of startups in each group in the 3rd-best
scenario (status quo).

The loss from Type I errors is the gap in net returns for good startups between the status

quo and a benchmark scenario, chosen as either the 1st-best or 3rd-best scenario. Similarly,

the loss from Type II errors corresponds to the gap for bad startups.

The results are shown in Table 8. Take the first row in Table 8a for example. The total

expenses on all good startups under 1st-best, 3rd-best and status quo scenarios are 73.28,

60.91, 56.36 billion USD, respectively. Similar for the net returns in each scenario. The

gap in net return between status quo and 1st- or 3rd-best are respectively -44.64 and -10.88

billion USD, quantifying the dollar losses from Type I errors — not funding good startups.

Using either benchmark, the losses from Type I errors are significantly higher than that from

Type II errors, suggesting that “not funding good startups” is the main reason for efficiency

losses in this market.
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Table 8: Quantifying Type I and Type II errors

(a) Biotech

Cost Net return ∆ Net Return

1st-best 3rd-best status quo 1st-best 3rd-best status quo 1st-best 3rd-best

Good 73.28 60.91 56.36 239.75 205.99 195.11 -44.64 -10.88

Bad 0.00 20.08 17.25 0.00 -10.28 -8.78 -8.78 1.50

Total 73.28 80.99 73.61 239.75 195.72 186.33 -53.42 -9.38

(b) Software

Cost Net return ∆ Net Return

1st-best 3rd-best status quo 1st-best 3rd-best status quo 1st-best 3rd-best

Good 44.86 31.81 30.64 264.98 219.03 215.20 -49.78 -3.83

Bad 0.00 11.43 10.06 0.00 -6.96 -6.13 -6.13 0.83

Total 44.86 43.24 40.70 264.98 212.07 209.07 -55.91 -3.00

Note: Each row presents the cost and net return for good and bad startups under 1st-best, 3rd-best and
status quo. Additionally, the last two columns show the gap in net return between status quo and 1st-/2nd-
best. All the numbers are in billion USD.

Following this, I explore when Type I errors occur. Table 9 presents the timing of

failure for good-fail startups. For example, 53% out of the 623 good-fail biotech startups

fail in the first round, and 37% in the second, indicating that most Type I errors occur

in the early stages when information is least reliable. Once surpassing the initial phases,

good startups are almost guaranteed to secure additional fundings. Software startups follow

similar patterns, but a larger proportion fail in the first round due to inaccurate initial

signals. These results reinforce the insights presented in Table 5.

Table 9: Timing of failure for good-fail startups

Sector Round 1 2 3 4 5 6 7

Biotech,% 53 37 9 1 0 0 0
Software, % 68 26 5 1 0 0 0

Note: The sample size is 623 for biotech and 1,184 for software.

Type I errors could be corrected by government funds for early-stage startups if allocated

properly. For example, the U.S. government has launched programs such as Small Business

Innovation Research (SBIR) and Small Business Technology Transfer (STTR) to support
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startups at early stages. A systematic study of the mechanism design for allocating such

funds is beyond the scope of this paper, but indeed intriguing.

7.3 Relative Exit Importance

In this subsection, I extend the framework to examine the relative importance of the two

types of exits: M&A and IPO. Using the model and estimates, I run counterfactuals to study

the impact of an undervalued M&A exit on the financing of innovation.

Assume that conditional on success, a startup exits via M&A with probability 54.4% in

biotech and 91.5% in software, based on empirical data. Using the same simulated data as

in Fig. 12, I reduce the realized value of M&A exits by 10% to 50% to reflect stricter M&A

policies, while keeping the value of IPO exits unchanged. In other words, the value of M&A

exits is now drawn from a different, left-shifted distribution compared to IPO exits. Table 10

presents the cost and return estimates under each level of “devaluation”. In addition, the

change in net return is the difference in net returns between 0% devaluation and a given

devaluation level; it is decomposed into extensive margin — fewer startups get funded, and

intensive margin — funded startups are reduced in value.

For example, in biotech, when M&A exits are devalued by 10%, the overall return and

cost become $236.3 billion and $69.6 billion. The net return, compared to 0% devaluation,

is $19.6 billion less, which is decomposed to 1) extensive margin: fewer projects get funded

because VC investors expect lower returns and thus become more selective in the startups

they choose to fund; and 2) intensive margin: reduced values of startups funded both before

and after the implementation of an M&A devaluation. Extensive and intensive margins each

attribute to $6 billion and $13.6 billion of the total drop in net return. In addition, M&A

devaluation leads to a larger net return decrease in software compared to biotech, because

M&A is a more common exit channel in software.
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Table 10: Counterfactuals of an undervaluation in M&A exit

(a) Biotech

M&A Overall Change in net return

Devaluation Return Cost Net return Sum Extensive margin Intensive margin

0% 259.9 73.6 186.3 - - -

10% 236.3 69.6 166.7 -19.6 -6.0 -13.6

20% 210.6 64.1 146.4 -39.9 -14.2 -25.7

30% 183.9 58.1 125.8 -60.5 -24.7 -35.9

40% 157.8 51.8 105.9 -80.4 -36.5 -43.9

50% 132.1 44.4 87.7 -98.6 -49.3 -49.3

(b) Software

M&A Overall Change in net return

Devaluation Return Cost Net return Sum Extensive margin Intensive margin

0% 249.8 40.7 209.1 - - -

10% 222.2 38.7 183.5 -25.6 -3.2 -22.4

20% 192.5 35.9 156.6 -52.5 -9.3 -43.1

30% 160.7 31.9 128.8 -80.3 -19.4 -60.8

40% 127.4 27.0 100.4 -108.7 -35.1 -73.6

50% 91.5 20.4 71.0 -138.1 -60.8 -77.2

Note: This table presents the returns, costs and net returns if the realized value of an M&A exit drops by
10% to 50%. 0% devaluation is when M&A exits are not devalued, and is the same as point D in Fig. 12.
All values are in billion USD.

8 Discussion

I have shown that understanding VCs’ investment strategies under several opposing incen-

tives requires assumptions on what they bid on in the equity space. I set aside second-order

issues to keep the framework tractable and convey the core messages. In this section, I briefly

touch on a few of these issues, which may serve as pointers for future research.

8.1 Multi-dimensional contract

Throughout this paper, I have assumed that VCs only bid on equity ownership. This is

mainly due to data limitation — a non-trivial portion of contract terms other than equity
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ownership is missing in Pitchbook. In addition, incorporating multi-dimensional contracts

significantly complicates the bidding process, thus it is challenging to derive meaningful

implications for financing innovations. That said, my estimated level of inefficiency due to

information spillover is likely an upper bound on the true level, as other contract terms may

step in to bring the agreement closer to, if not exactly coincide with, the optimal contract.

Although the actual VC contracts tend to be multi-dimensional, to the best of my knowl-

edge, there is not a clause that specifically compensates early investors for the information

externalities they generate. For example, anti-dilution protection is commonly used to ad-

dress the concern of ownership dilution. However, it’s important to point out that it does not

imply a type of stock that is immune to dilution under all circumstances — as a company

issues additional equity to raise more capital in subsequent fundraising rounds, the equity

ownership of existing shareholder, whether founders or investors, dilutes naturally. Hence,

the concept of an undilutable equity share is effectively non-existent in this context. What

anti-dilution protection really means is a downside protection that is only triggered in down

rounds when a startup raises new capital at a lower valuation than previous funding round.

If this happens, the protected investors are entitled to additional shares in the subsequent

financing or exiting events (Kaplan and Strömberg, 2003). While it might somewhat com-

pensate early investors during challenging times, in other times it’s often seen as a cosmetic

clause. Hence, anti-dilution protection is not fundamentally intended to address informa-

tion externalties. Beyond that, these downside protections are sometimes waived even when

triggered — the triggering event typically means that the company is in distress, enforcing

these protections often exacerbates the company’s situation and makes future fundraising

even harder, which are not in the best interest of current investors (Gornall and Strebulaev,

2023).13

8.2 Value-added by VC

I also assume that VCs do not add values in addition to capital input, so that VCs’ bids

are solely based on their private signals but not their (perhaps) heterogeneous ability to

add value. While convenient, this assumption is at odds with some research suggesting that

13https://x.com/twistartups/status/1821607995207537038
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VCs add values by bringing networks of connections, recruiting key personnel, and providing

operational support (Bernstein et al., 2016; Sørensen, 2007). In this case, my estimated β

and σ are likely to be biased up as they pick up the effects of VC value-add. However, the

impact of value-add tends to be case-dependent. For example, underrepresented and first-

time founders may gain significant benefit from VC support in building an initial customer

base and recruiting talents, while there may be less opportunity for VCs to add value to

experienced founders and startups at later stages apart from the capital they contribute.14

However, the value-add to heterogeneous founders and projects is at present not well un-

derstood. A potential extension is to model VC competition as a scoring auction in which

each bidder’s value is a function of both private signal and value-add ability. The major

challenge is the data limitation, as this extension also requires information on the identity of

the second strongest competitor rather than just the winner. This issue can be solved either

with better data or reasonable assumptions that help identify the losing bidders.

8.3 Risk-neutral VC

While individual investors and certain institutional investors (e.g., banks) may exhibit risk-

averse tendencies, VCs differ significantly in two key aspects. First, most — if not all

— VCs employ strong diversification strategies to manage risk (e.g., Harris et al., 2014;

Proksch et al., 2016). Large VCs, such as Sequoia, typically hold portfolios with hundreds of

companies spanning multiple sectors. In contrast, mid-sized and smaller VCs often specialize

in one or two sectors but diversify within them by investing in multiple startups — typically

20 to 30 — across different verticals (e.g., 3D printing and autonomous driving). Such

diversified portfolios allow VCs to tolerate individual failures in pursuit of outsized returns.

Second, startup returns are highly skewed, compelling VCs to chase the outliers (Kerr et al.,

2014). VCs understand very well that most of the startups they invest will fail and only a

small number will generate outsized returns. For example, Kerr et al. (2014) show that 7%

investments from an average VC fund generates nearly 60% of the final returns. Therefore,

VCs focus on startups with massive upside potential and may reject “safe” businesses with

predictable growth — if just one or two investments yield returns in the hundreds or thou-

14https://www.vcstack.io/blog/vc-value-add
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sands of times, they can offset all the fund’s losses while still delivering substantial overall

profits (Ewens et al., 2018).

Due to these reasons, modeling VCs as risk-neutral may not be as unreasonable as it

seems. Zhao et al. (2015) estimate VC-specific risk-aversion level using Crunchbase data

and find that VC firms holding a large number of investments (e.g., Sequoia Capital, Accel

Partners, Tiger Global) tend to be risk-neutral. To understand the sensitivities of my results

to this assumption, I could follow their method to estimate the risk-aversion level for each

VC in my dataset, and then run robustness check on the subsample of startups invested only

by risk-neutral VCs.

However, it’s still useful to understand how my results will be biased if VCs are risk-averse

but I assume they are risk-neutral. In my current work, I use the gap between valuation

and exit value (after correcting for selection) as a measure of the uncertainty in unobserved

quality. For example, if a startup’s valuation at round 1 is $1M and its exit value at IPO

a year later is $2M, then the $1M gap ($2M - $1M) reflects the level of uncertainty —

since, in the absence of uncertainty, the valuation would have already been $2M at round

1. However, if VCs are risk-averse, this gap reflects not only uncertainty but also a risk

premium demanded by risk-averse investors. As a result, I might overestimate the level of

uncertainty in current work (in other words, my estimate is an upper bound for the level of

uncertainty).

8.4 Follow-up investment

Another assumption I make is that a VC leads a single round. This assumption is moti-

vated by the data observation in Section 2.2.6 that nearly 90% VCs lead only one round of

investment in a startup, and that the further apart two rounds are, the less overlap there is

between the identities of their syndicate VC groups. Furthermore, this assumption mean-

ingfully improves the tractability of this work — without it, I need to explicitly model each

VC’s choice of following-up or not and the price for an internal VC candidate, likely adding

substantial computation complexity to it.

That said, there are two extreme cases: one where each round is led by a different VC,

and another where a single VC leads all rounds (i.e., the planner’s case), with reality lying
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somewhere in between. Hence, the estimated level of inefficiency is likely an upper bound

on the true value as the threshold for investing is likely lower for a VC who is given the

opportunity to reinvest in the future (option value).

9 Conclusion

In this paper, I develop a tractable empirical framework to understand the strategic invest-

ment decisions of competing VCs under uncertainties and the efficiency gap compared to

alternative information and market structures. My framework captures all the salient fea-

tures of VC-startup interaction, including uncertainty in startup quality, staged financing,

dynamic information structure, and imperfect VC competition.

I estimate the model using a novel dataset of biotech and software startups that includes

both investment and exit data. I find that most uncertainties in software businesses are

concentrated in the initial round, whereas in the biotech sector, they are spread across

multiple rounds. Consequently, software investors, though initially less informed, learn about

the startup quality at a faster pace.

Next, through several counterfactual exercises, I use the estimates to explore the efficiency

gap under alternative information and market structures. I find substantial efficiency loss

relative to the first-best scenario. In particular, the current biotech and software sectors

respectively yield 78% and 79% of the first-best efficiency. By isolating the role of different

sources of constraints in determining efficiency, I find that information externalities, quality

uncertainty, and other uncertainties contribute to 18%, 73%, 9% of the efficiency loss in

biotech, and 5%, 54%, 41% in software.

My paper is the first to incorporate uncertainty, staged financing and imperfect compe-

tition in the VC-funding space. I see this work as opening up several important areas for

future research on related topics. I hope that future researchers studying VC-startup inter-

action in similar contexts will explore the possibilities of capturing VC value-add and other

important contract dimensions, and consider what new insights their estimates provide in

understanding the role of VC.
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A Case Studies

A.1 Siri

Siri is a developer of a web-based personal assistant designed to answer questions, make

recommendations and perform actions by delegating requests to a set of Internet services.

The application software supports a wide range of user commands, including performing

phone actions, checking basic information, scheduling events and reminders, handling device

settings, searching the Internet, navigating areas, finding information on entertainment, and

is also able to engage with iOS-integrated apps, enabling users to get personalized results

for their actions.

Siri was founded in 2007 and headquartered in San Jose. Its primary industry is Appli-

cation Software, and it belongs to the verticals of Artificial Intelligence & Machine Learning

and Mobile. Siri was assigned 3 patents.

Table 11 presents the financing history of Siri. Siri raised $8.55 million of Series A venture

funding from Morgenthaler Ventures and Menlo Ventures on June 19, 2008. Before Series

A, there were 26,995,354 outstanding shares. Siri issued 23,135,294 new shares to Series A

investors at the price of $0.37 per share, putting the company’s post-money valuation at

$18.53 million. After the deal was closed, Series A investors own 46.15% of the company’s

shares.

Then it raised $15.5 million of Series B venture funding from SRI Ventures, Morgenthaler

Ventures and Menlo Ventures on November 24, 2009. Li Ka-shing also participated in the

round. Siri issued 15,500,000 new shares to Series B investors at the price of $1 per share,

putting the company’s post-money valuation at $65.91 million. After the deal was closed,

Series B investors own 23.62% of the company’s shares, and Series A investors’ ownership

was diluted to 35.25%.

Siri was acquired by Apple (NAS: AAPL) for $200 million on April 28, 2010. Previous

investors sold all their shares and exited in full.
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# Deal Type Date Amount Pre-Val Post-Val Ownership,

%

Diluted

Ownership, %

1 Series A 2008-06-19 8.55 9.98 18.53 0.46 0.35

2 Series B 2009-11-24 15.5 50.41 65.91 0.24 0.24

3 M&A 2010-04-28 200 200 200 1.00 1.00

Table 11: This table presents the VC financing rounds and exit outcome of the software
company Siri. Amount, Pre-Val, Post-Val are converted to 2010 Million USD.

A.2 DogRadar

DogRadar is a developer of a gaming application designed to offer dog-friendly adventure

games. The company’s application offers a series of mysterious puzzles and brain teasers,

enabling users to organize park playdates for their dogs with like-minded people.

DogRadar was founded in 2017 in Los Angeles. Its primary industry is Entertainment

Software, it belongs to the verticals of Pet Technology and Mobile. DogRadar was not a

patent assignee.

The company joined the accelerator of Hiventures on June 27, 2018 and received $9

million in funding, puttiing the company’s post-money valuation at $100 million. After the

deal, Hiventures owned 9% of the company’s shares. The company went out of business on

November 12, 2021.

A.3 Talphera

Talphera is a specialty pharmaceutical company focused on the development and commer-

cialization of therapies for use in medically supervised settings. Its product portfolio includes

DSUVIA and Zalviso for moderate-to-severe acute pain.

Talphera was founded in 2005 in Hayward, CA. Its primary industry is Pharmaceuticals

with keywords Pain Therapeutic. So far, it has been assigned 12 patents.

The company raised $21.14 million of Series A venture funding from undisclosed investors

on August 30, 2006. Before Series A, there were 4,256,739 outstanding shares. The company

issued 8,456,581 new shares to Series A investors at the price of $2.5 per share, putting the

company’s post-money valuation at $31.14 million. After the deal was closed, Series A
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investors own 66.56% of the company’s shares.

The company raised $20.22 million of Series B venture funding from Three Arch Partners,

Skyline Venture Partners, Alta Partners and Kaiser Foundation Hospitals on February 19,

2008. The company issued 5,054,544 new shares to Series B investors at the price of $4 per

share, putting the company’s post-money valuation at $72.22 million. After the deal was

closed, Series B investors own 28.0% of the company’s shares.

Then the company raised $14.81 million of Series C venture funding from Three Arch

Partners, Pinnacle Ventures, Skyline Venture Partners, Alta Partners and Kaiser Foundation

Hospitals on November 23, 2009. The company issued 15,028,106 new shares to Series B

investors at the price of $0.99 per share, putting the company’s post-money valuation at

$52.27 million. After the deal was closed, Series C investors own 28.33% of the company’s

shares.

The company raised $40 million in its initial public offering on the NASDAQ under the

ticker symbol of ACRX on February 11, 2011. A total of 8,000,000 shares were sold at a

price of $5 per share. All VC investors’ shares were converted to common stock. After the

offering, there was a total of 19,371,750 outstanding shares (excluding the over-allotment

option) priced at $5 per share, valuing the company at $96.85 million. The underwriters

were granted an option to purchase up to an additional 1,200,000 shares from the company

to cover over-allotments, if any. The close price on the first IPO day was $91.00 per share.

A.4 3D Biomatrix

3D Biomatrix is a manufacturer of three-dimensional systems designed to facilitate cellular

assays in drug discovery. The company’s systems uses 3D sheroid culture through bone-

marrow, hepatocytes and thymus applications, enabling researchers and drug discovery ex-

perts to treat cancer and tumor.

3D Biomatrix was founded in 2010 in Ann Arbor, MI. Its primary industry is Pharma-

ceuticals and it belongs to the vertical of Oncology. It was assigned 1 patent.

The company received $545,000 of grant funding from Department of Health & Human

Services in 2013.

The company raised $1.47 million of Series A funding from Ann Arbor Spark, Biosciences
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Research and Commercialization Center and other investors on February 5, 2013. The

company issued 789,536 new shares to Series A investors at the price of $1.86 per share,

putting the company’s post-money valuation at $3.49 million. After the deal was closed,

Series A investors own 42.1% of the company’s shares.

The company went out of business in October 2015.

B Variable Description

Table 12: Variable Description

Variables Description Source

A. Startup level

Sector 1 if a biotech company, 0 if a software company PB

Patent The number of patents assigned to the startup PB

IPO 1 if the startup exited via IPO, 0 otherwise PB

MA 1 if the startup exited via M&A, 0 otherwise PB

Fail 1 if the startup went bankrupt or out of business, 0 otherwise PB

ExitValue The realized value of the startup. It is the close price on the first

IPO day multiplied by outstanding common shares immediately

after IPO for IPO companies, acquisition price for M&A compa-

nies, and 0 for failed companies

PB,

SEC,

CT, FS

B. Startup-round level

Round The chronological order of the VC round, e.g., for the 3rd VC

round, Round=3

PB

CapitalAmount The capital investment injected to a startup in a round PB

PreVal Price per share multiplied by total outstanding shares before the

new issuance

PB

PostVal Price per share multiplied by total outstanding shares after the

new issuance

PB

EquityOwnership The proportion of shares held by this round’s investor relative

to the total number of outstanding shares, it also equals to
CapitalAmount

PostVal .

PB

Note: PB, SEC, CT, FS are abbreviations for Pitchbook, SEC Filings, Compustat and FactSet. Startup is
indexed by i, round is indexed by k.
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C Summary Statistics

C.1 Startup-round level

Table 13: Summary statistics at startup-round level

Round count mean std min 25% 50% 75% max

CapitalAmount

1 3,664 7.97 15.62 0.001 1.18 3.08 8.50 270.47

2 2,321 16.19 28.36 0.001 3.19 8.59 19.05 810.09

3 1,446 22.70 30.83 0.02 5.24 13.55 29.87 400.78

4 853 26.99 39.69 0.02 6.68 17.01 35.89 700.97

5 456 35.54 43.68 0.004 7.90 21.79 49.92 333.15

6 207 48.50 76.89 0.14 9.72 23.50 57.27 742.54

7 62 44.87 54.72 0.31 9.11 29.63 55.52 317.54

PostVal

1 2,942 22.35 62.89 0.03 5.81 11.33 23.14 1,797.41

2 1,959 57.94 119.03 0.84 15.90 31.93 64.42 2,960.44

3 1,204 108.81 185.83 1.85 28.63 59.85 122.78 3,295.58

4 701 171.71 309.12 0.66 48.53 99.86 182.48 5,252.16

5 391 266.91 456.77 0.96 65.60 132.43 279.55 4,757.84

6 171 474.27 914.57 1.86 86.21 159.56 381.66 5,728.13

7 48 484.40 685.77 26.23 103.28 212.83 520.30 3,825.49

EquityOwnership

1 2,942 0.34 0.19 0.001 0.20 0.30 0.46 0.97

2 1,959 0.31 0.17 0.004 0.19 0.28 0.40 0.92

3 1,204 0.26 0.16 0.003 0.15 0.23 0.35 0.93

4 701 0.23 0.16 0.001 0.11 0.19 0.30 0.88

5 391 0.21 0.15 0.01 0.10 0.17 0.28 0.87

6 171 0.18 0.13 0.02 0.08 0.13 0.25 0.68

7 48 0.15 0.10 0.02 0.08 0.13 0.20 0.48

ExitValue

0 208 153.66 925.54 0.01 4.37 17.46 55.65 12875.85

1 366 152.52 396.51 0.003 13.68 44.02 137.45 4588.70

2 437 235.33 593.15 0.21 28.33 95.61 241.81 7938.39

3 403 313.37 621.38 0.16 49.89 145.92 360.10 8820.16

4 295 348.76 703.51 0.01 68.25 197.06 388.53 8442.44

5 187 683.75 1656.25 0.53 92.00 284.54 539.81 15501.80

6 114 1224.08 3473.23 2.13 113.30 353.53 736.37 31318.33

7 62 563.74 756.68 7.17 63.31 267.08 625.04 3226.83

Note: CapitalAmount, PostVal and ExitValue are in million USD as of Sep 2023. EquityOwnership is between
0 and 1.
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C.2 Startup level

Table 14: Summary statistics at startup level

Variable Category mean std min 25% 50% 75% max

Sector 0.43 0.49 0 0 0 1 1

Patent 6.86 95.37 0 0 0 2 6,515

Exit

IPO 0.11 0.31 0 0 0 0 1

MA 0.27 0.44 0 0 0 1 1

Fail 0.63 0.48 0 0 1 1 1

ExitValue
Unadjusted 348.53 1,149.49 0.003 28.90 107.50 318.04 31,318.33

Adjusted 129.16 719.63 0.00 0.00 0.00 45.13 31,318.33

Note: Sector, IPO, MA, Fail are dummy variables. ExitValue is in million USD as of September 2023.
Unadjusted (adjusted) ExitValue is before (after) filling 0 for failed companies. The minimum exit value
comes from AND CO, a software company acquired in Jan 2018 at $3,250. The number of observations are
all 5,591 except for (unadjusted) ExitValue that has 2,072 observations.

D Covariance Matrix

The posterior mean and variance are

µk = ωk
0 · 0 +

k∑
l=1

ωk
l s̄l (24)

τ 2k = ωk
0σ

2
ξ (25)

where s̄k is the mean of sl and ωk
l is the weight of round l’s mean signal at round k. To

characterize the weights, let α0 = 1 and αl =
1
Jl

σ2
l

1
Jl

σ2
l +(

∏l−1
l′=0

αl′)σ2
, l = 1, ..., k. Then

ωk
l =


∏k

l=1 αl l = 0

(1− αl)
∏k

l′=l+1 αl′ 1 ≤ l < k

1− αk l = k

Note that
∑k

l=0 ω
k
l = 1.

The unobserved quality ξ and posterior mean µk are correlated. By Eq. (24),

µk =
k∑

l=1

ωk
l (ξ + ϵ̄l) = (1− ωk

0)ξ +
k∑

l=1

ωk
l ϵ̄l
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Hence, 
ξ

µ1

...

µK̄

 =


1 0 · · · 0

1− ω1
0 ω1

1 · · · 0
...

...
. . .

...

1− ωK̄
0 ωK̄

1 · · · ωK̄
K̄


︸ ︷︷ ︸

Ω


ξ

ϵ̄1
...

ϵ̄K̄



So that the covariance matrix

Σ = Ω


σ2
ξ

σ2
1

J1
. . .

σ2
1

JK̄

Ω′

E Proof of Proposition 2

Assuming that Vk(Xk, µk) is increasing in µk, we can evoke Theorem 10, the existence of a

symmetric equilibrium in an English auction game, in Milgrom and Weber (1982). In this

equilibrium, each bidder bids her maximum gain knowing the true signals of the dropped-out

bidders and assuming that all other active bidders receive the same signal as herself. Because

the strategies are revealing in equilibrium, the true signals of the dropped-out bidders become

known to the remaining bidders. Whenever a bidder drops out, all remaining bidders back

out her true signal by observing the equity level at which she drops out, and update their

bids accordingly. This process iterates until only one bidder is left.

Since Vk(Xk, µk) is increasing in µk, and as is shown in Eq. (24), µk is increasing in

each bidder’s signal, in equilibrium, bidders drop out one by one in the ascending order of

their signals. When only two bidders remain, they are the ones who received the top two

signals. The bidder with the second-highest signal exits first at the equity level that makes

her expected net return zero, assuming that the other bidder received the same signal as she

did. Hence, the winning equity bid a∗k satisfies Eq. (8).

The winner knows all signals when the second-highest bidder drops out, and would only

fund the startup if the net expected return is non-negative conditional on all her information.

Hence, the choice equation satisfies Eq. (7)

Next, we prove that under Assumption 1 and 2, Vk is strictly increasing in µk for any
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k ∈ {1, ..., K̄}. With a sequence of English auctions, Vk(Xk, µk) not only depends on the

current information but also the equilibrium strategies of future investors, thus it is not

necessarily increasing in µk for any possible strategies of future investors. Hence, we prove

by backward induction.

When k = K̄. By Eq. (6),

VK̄(XK̄ , µK̄) = E
[
WK̄

∣∣∣∣XK̄ , µK̄

]
= E

[
mK̄(XK̄) exp (ξ)

∣∣∣∣XK̄ , µK̄

]
= mK̄(XK̄) exp

(
µK̄ +

1

2
σ2
K̄

)
(26)

The first equality is because K̄ is the maximum possible round, the third equality is by the

property of log-normal distribution. Hence, it’s straightforward that VK̄(XK̄ , µK̄) is strictly

increasing in µK̄ .

When k < K̄. We assume that Vk+1(Xk+1, µk+1) is strictly increasing in µk+1. As a

start, we write Vk in its Bellman representation.

Vk(Xk, µk) = Pr(K = k
∣∣K ≥ k,Xk, µk)E

[
WK

∣∣Xk, µk, K = k
]

+ Pr(K > k
∣∣K ≥ k,Xk, µk)E

[
(1− ak+1)qk+1Vk+1(Xk+1, µk+1)

∣∣Xk, µk, K > k
]

= Pr(K = k
∣∣K ≥ k,Xk)mk(Xk) exp

(
µk +

1

2
σ2
k

)
+ Pr(K > k

∣∣K ≥ k,Xk)δE
[
(1− ak+1)qk+1Vk+1(Xk+1, µk+1)

∣∣Xk, µk, K > k
]
(27)

By Assumption 1 and 2, K doesn’t depend on µk, thus we drop µk from the probability.

From the above expression, a sufficient condition for Vk(Xk, µk) to be strictly increasing in

µk is that the following function is strictly increasing in µk.

E
[
(1− ak+1)qk+1Vk+1(Xk+1, µk+1)

∣∣Xk, µk, K > k
]

(28)

As we have shown above, if Vk+1(Xk+1, µk+1) is strictly increasing in µk+1, then the
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equilibrium strategy at round k + 1 follows Eq. (7) and (8). Plugging it to Eq. (28),

E


(
1− dk+1

Vk+1(Xk+1, µ̂k+1)

)
1{Vk+1(Xk+1, µk+1) > dk+1}Vk+1(Xk+1, µk+1)︸ ︷︷ ︸
V̇k+1(Xk+1,µk+1,µ̂k+1)

∣∣Xk, µk, K > k


(29)

The expectation is with respect to Xk+1, µk+1, µ̂k+1. In the following, we ignore X

because we only care about how Eq. (29) changes with µk, and by Assumption 1 and 2, µ is

independent of X.

Under the assumption that Vk+1(Xk+1, µk+1) is strictly increasing in µk+1, it’s easy to

show that V̇k+1(Xk+1, µk+1, µ̂k+1) is weakly increasing in µk+1 and µ̂k+1. We prove that

Eq. (29) is strictly increasing in µk with the help of the following two lemmas.

Lemma 1. For any µk > µ′
k, (µk+1, µ̂k+1) first order stochastically dominates (µ′

k+1, µ̂
′
k+1),

that is, for any real number a and b,

Pr(µk+1 ≤ a, µ̂k+1 ≤ b | µk) < Pr(µ′
k+1 ≤ a, µ̂′

k+1 ≤ b | µ′
k)

Lemma 2. Consider two random variables x, y ∈ R2. Suppose u(x, y) is weakly increasing

in x and y in general, but there exists a region of non-zero measure where u(x, y) is strictly

increasing in x and y. Moreover, (x, y) first order stochastically dominates (x′, y′), then

E [u(x, y)] > E [u(x′, y′)]

Combining these two lemmas, it’s straightforward that Eq. (29) is strictly increasing in

µk. Hence, Vk(Xk, µk) is strictly increasing in µk.

F Proof of Proposition 3

For notation simplicity, we write Vk and V̂k as the shorthand for Vk(Xk, µk) and Vk(Xk, µ̂k).

Hence, by Eq. (27) and (29), the Bellman representation for the maximum possible payoff
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to round k investor, V ∗
k , is as follows:

V ∗
k = Pr(K = k

∣∣K ≥ k,Xk)mk(Xk) exp

(
µk +

1

2
σ2
k

)
+ Pr(K > k

∣∣K ≥ k,Xk)δE

[
1{V ∗

k+1 ≥ dk+1}

(
V ∗
k+1 −

V ∗
k+1

V̂ ∗
k+1

dk+1

)∣∣Xk, µk, K > k

]
(30)

The Bellman representation for V †
k when the social planner makes decisions is

V †
k = Pr(K = k

∣∣K ≥ k,Xk)mk(Xk) exp

(
µk +

1

2
σ2
k

)
+ Pr(K > k

∣∣K ≥ k,Xk)δE
[
1{V †

k+1 ≥ dk+1}
(
V †
k+1 − dk+1

) ∣∣Xk, µk, K > k
]

(31)

When k = K̄, V ∗
k = V †

k is straightforward. Next, we show that for any (Xk, µk), V
∗
k < V †

k .

If V ∗
k+1 ≤ V †

k+1 for any (Xk+1, µk+1), then

1{V ∗
k+1 ≥ dk+1}

(
V ∗
k+1 −

V ∗
k+1

V̂ ∗
k+1

dk+1

)
≤ 1{V ∗

k+1 ≥ dk+1}
(
V ∗
k+1 − dk+1

)
≤ 1{V †

k+1 ≥ dk+1}
(
V †
k+1 − dk+1

)
The first inequality is because V ∗

k is strictly increasing in µk for any k as is suggested by

proposition 2. The second inequality is by V ∗
k+1 ≤ V †

k+1. Moreover, ∃(Xk+1, µk+1), such that

1{V ∗
k+1 ≥ dk+1}

(
V ∗
k+1 −

V ∗
k+1

V̂ ∗
k+1

dk+1

)
< 1{V †

k+1 ≥ dk+1}
(
V †
k+1 − dk+1

)
Hence, V ∗

k < V †
k for any (Xk, µk). By backward induction, it’s straightforward that for any

(Xk, µk), V
∗
k = V †

k when k = K̄, V ∗
k < V †

k when k < K̄.

G Proof of Proposition 5

Proof. We start by proving that the listed conditions are satisfied in my model. The first

two conditions are satisfied under Assumption 1 and 2.

To prove the third condition, it’s straightforward that h1(X1), ..., hK̄(XK̄) have full rank

because a new variable, dk, enters Xk in each round, and dk cannot be deterministically
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inferred from Xk−1. Likewise, h1(X1), ..., hK̄−1(XK̄−1), ln (mK̄(XK̄)) have full rank. Next,

we show that ln (mK̄(XK̄)) and hK̄(XK̄) have full rank. To see this, by Eq. (26),

V ∗
K̄(XK̄ , µK̄) = mK̄ (XK̄) exp

(
µK̄ +

1

2
τ 2K̄

)
Then it’s easy to derive hK̄

hK̄(XK̄) = ln dK̄ − ln (mK̄(XK̄))−
1

2
τ 2K̄

Since dK̄ ∈ R+, then hK̄(XK̄) can attain its full support conditional on ln (mK̄(XK̄)). Hence,

condition 3 is established.

To show condition 4, note that hk is continuous and µk is supported on R. So we only

need to show that (1) ∃Xk such that for any µk, hk(Xk) ≤ µk, i.e., a startup will never be

funded regardless of its µk; (2) ∃Xk such that for any µk, hk(Xk) ≥ µk, i.e., a startup will

always be funded regardless of its µk. It’s easy to show that (1) is established when dk →∞,

and (2) is established when dk → 0. Hence, condition 4 is established.

We can evoke Theorem 2, the sufficient condition for identifying the outcome equations,

choice equations and joint distribution of unobservables, in Heckman and Navarro (2007) to

identify m, σξ,σ,h.

H Proof of Proposition 6

Proof. I show that V ∗ is identified non-parametrically. By Eq. (13),

V ∗
k (Xk, µ̂k) =

dk
a∗k

We have shown in Proposition 2 that V ∗
k is increasing in the second argument (here µ̂k).

Hence, for any Xk, we can identify the χ quantile of a∗k, which we denote as a∗k,χ with

χ ∈ [0, 1]. Moreover, since σξ,σ are identified, then we are able to back out the distribution

63



for µ̂k. Likewise, we denote the χ quantile of µ̂k as µ̂k,χ. Hence,

V ∗
k (Xk, µ̂k,χ) =

dk
a∗k,1−χ

By varying µ̂k,χ, we are able to non-parametrically identify V ∗
k on its full support .

I Proof of Proposition 7

The proof is composed of two steps.

Step 1: We first identify the distribution of Xk conditional on K = k.

Pr
(
Xk

∣∣µ1 ≥ h1(X1), ..., µk ≥ hk(Xk);K = k
)

=
Pr
(
µ1 ≥ h1(X1), ..., µk ≥ hk(Xk)

∣∣Xk;K = k
)
f(Xk

∣∣K = k)

Pr
(
µ1 ≥ h1(X1), ..., µk ≥ hk(Xk)

∣∣K = k
)

=
Pr
(
µ1 ≥ h1(X1), ..., µk ≥ hk(Xk)

∣∣Xk;K = k
)
f(Xk

∣∣K = k)

ck

where ck = Pr
(
µ1 ≥ h1(X1), ..., µk ≥ hk(Xk)

∣∣K = k
)
is a constant. Hence,

f(Xk

∣∣K = k) =
Pr
(
Xk

∣∣µ1 ≥ h1(X1), ..., µk ≥ hk(Xk);K = k
)

Pr
(
µ1 ≥ h1(X1), ..., µk ≥ hk(Xk)

∣∣Xk;K = k
)ck

Note that the numerator is identified directly from data, the denominator can be com-

puted given σξ,σ,h. Therefore, f(Xk

∣∣K = k) is known up to ck. With an additional

condition of
∫
f(Xk

∣∣K = k)dXk=1, ck is identified.

Step 2: Next, we prove that Pr(K = k) is identified ∀k ∈ {1, ..., K̄}. Recall the Bellman

equation in Eq. (30) that connects V ∗
k and V ∗

k+1. Note that in Eq. (30),
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1. Pr(K = k
∣∣K ≥ k,Xk) is known up to Pr(K = k′) where k′ ≥ k. This is because

Pr(K = k
∣∣K ≥ k,Xk) =

f(Xk

∣∣K = k) Pr(K = k | K ≥ k)∑
k′≥k f(Xk′

∣∣K = k′) Pr(K = k′ | K ≥ k)

=
f(Xk

∣∣K = k) Pr(K = k)∑
k′≥k f(Xk′

∣∣K = k′) Pr(K = k′)

f(Xk

∣∣K = k) is identified from Step 1, hence Pr(K = k
∣∣K ≥ k,Xk) is known up to

Pr(K = k′) where k′ ≥ k.

2. E
[
1{V ∗

k+1 ≥ dk+1}
(
V ∗
k+1 −

V ∗
k+1

V̂ ∗
k+1

dk+1

) ∣∣Xk, µk, K > k
]
is known up to Pr(K = k′) for

all k′ > k. This is because given β, σξ,σ,V
∗, it’s easy to show that this expectation is

known up to f(Xk+1

∣∣Xk, K > k), which is known up to Pr(K = k′) where k′ > k. To

see why,

f(Xk+1

∣∣Xk, K > k) =
∑
k′>k

f(Xk+1

∣∣Xk, K = k′) Pr(K = k′∣∣Xk, K > k)

f(Xk+1

∣∣Xk, K = k′) is identified from Step 1. Pr(K = k′
∣∣Xk, K > k) can be rewritten

as below:

Pr(K = k′∣∣K > k,Xk) =
f(Xk

∣∣K = k′) Pr(K = k′)∑
k′′>k f(Xk′′

∣∣K = k′′) Pr(K = k′′)

Hence it’s known up to Pr(K = k′) for all k′ > k.

Hence, by varying the values of Xk and µk in V ∗
k , we are able to trace back the values of

Pr(K = k′) for all k′ ≥ k.
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J Learning Process

Figure 14: Learning process

(a) Biotech

(b) Software

Note: This figure displays, for different levels of ξ, the posterior distribution after each round. The x-axis
represents the belief on ξ conditional on the signals S. The grey dashed lines mark the true values of ξ. The
1st, 25th, 75th, and 99th percentiles of ξ are selected to represent ”low,” ”medium-low,” ”medium-high,”
and ”high” levels.
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