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Abstract

Multirotor unmanned aerial vehicles (UAVs) have shown evident advantages over

traditional fixed wing UAVs in remote sensing. They are also believed to hold enormous

potential in logistics, infrastructure maintenance and agriculture management. Such

emerging applications bring the multirotor drones into new working environments

with more uncertainties and higher levels of safety requirements. Study has shown

that the desired performance of multirotors, such as fast maneuver and fault resilience,

has not been rigorously achieved by current applied control approaches. The control

goal of this research is to guarantee closed-loop system stability and enhance tracking

performance under abnormal and uncertain system conditions. This research develops

advanced adaptive control techniques for multirotors to accommodate parameter

uncertainties, compensate actuator failures, and reject uncertain disturbances. The

results of the research have formed some desired foundations for advanced unmanned

multirotor systems and intelligent aerial systems.

The dissertation research studies both the traditional quadrotor-like under-actuated

multirotors and the novel tilted-rotor fully-actuated omni-directional multirotors. Some

fundamental system characteristics such as nonlinear and linearized model parameter-

ization, relative degree, high-frequency gain matrix variation, and control allocation

scheme are investigated for different multirotor systems at various operating conditions.

Such studies are crucial for developing adaptive control designs which enable the

multirotors working at non-hover conditions under uncertain system parameters, such
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as mass, inertial momentum and drag coefficients. Different rotor arrangements of

hexarotor (NPNPNP and NNPPNP) and octorotor (NPNPNPNP and NNPPNNPP)

aircrafts are surveyed to specify the compensable actuator failure patterns.

An input compensator is developed for multirotor systems to assure a uniform

interactor matrix and a consistent pattern of the gain matrix signs over different

typical operating conditions. An adaptive control scheme with input compensator is

designed for quadrotors with nonlinear offsets at the non-equilibriums and uncertain

parameters. Adaptive failure compensation schemes are designed to deal with unknown

loss-of-control actuator failures whose pattern, time and value are all uncertain. A

control signal distribution technique is developed to ensure the invariant gain matrix

sign pattern under all the compensable actuator failure patterns, which enables the

integrated adaptive control scheme for hexarotors subject to uncertain parameters

and unknown failures simultaneously. Adaptive disturbance rejection schemes are

developed to reject wind uncertainties for a multirotor-based atmospheric measurement

platform. Nonlinear adaptive controllers are constructed to achieve more sophisticated

maneuvers. Both analytical and simulation results are presented to verify the desired

properties of the developed adaptive multirotor control systems.
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Chapter 1

Introduction

Multirotors are unmanned aerial vehicles (UAVs) with multiple propulsion rotors,

like quadrotor, hexarotor and octorotor. Compared to the unmanned helicopters and

other fixed wing UAVs, the multirotors have significant advantages in mechanical

simplicity, user safety and landing convenience. Current multirotor control techniques

are designed for the remote controlled drones to convey photography devices. With the

technological improvement in battery capacity, propeller design and planning algorithm,

the utilization of the multirotors is expanding to many new aspects, for example

infrastructure maintenance, meteorological measurement, and cargo delivery. The

emerging applications require the multirotor drones to work autonomously, accurately

and safely. In order to realize various tasks from different application scopes, a

multirotor should be able to track known trajectories against the disturbance from

the environment and uncertain parameters of itself or its loads.

Actuator failure is a critical issue for multirotor systems, which includes but not

limited to loss-of-effectiveness, lock-in-place, and loss-of-control. In order to enhance

the tracking performance and guarantee the system stability, multirotor systems should

be equipped with failure compensation controllers. Most of the existing compensation

approaches only deal with loss-of-efficiency failures but can not accommodate the

1



2 Chapter 1 Introduction

loss-of-control failures. To tolerant the failure and fault of actuators, a multirotor

should have redundancy in actuation. So a quadrotor is regarded as unqualified

for failure compensation control designs as the result of its under-actuated nature.

Moreover, even a hexarotor, who has two extra actuators than a quadrotor, could not

always guarantee its controllability when single actuator failure happens. Therefore

it is crucial to verify the design conditions, like compensable actuator failures and

control gain matrix signs, before the development of adaptive controllers.

1.1 Research Motivations

Figure 1.1: Different types of multirotor drones. (copyright: Joseph Flynt [1])

Multirotor (or multicopter, like quadcopter, hexacopter and octocopter) UAVs

are more and more popular in recent years because of their ability of hovering and

vertical-take-off-and-landing (VTOL) compared with the fixed wing UAVs. Multirotor

UAVs are more and more considered as flying robots that can not only observe but

also actively interact with the environment. However, the stability and performance

of multirotor systems are not fully guaranteed for sophisticated tasks in the presence

of uncertain parameters, failures, and wind disturbances. The expected performance
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of multirotors will be discussed in the following parts; and the insufficient of current

control techniques, especially PID control, will also be pointed out.

1.1.1 Broad Applications of Multirotors

The most significant difference between multirotor UAVs and fix wing aircrafts is that

the propulsion of a multirotor is generated along the z-axis in its body frame. This

aspect of the multirotor does not only provide the capability of vertical take-off and

landing (VTOL) but also makes it possible to hover at a given position in the air.

Unlike the smooth routes of fixed wing aircrafts, the target trajectories for multirotors

may include steady points for hovering, sharp turns in the sky, elevation or descending

vertically. They are competent in many fields that fix wing aircrafts can not well

handle. Following are some examples of the emerging applications of multirotors.

• Aerial photography

This is one of the most traditional usages of drones. When a fix wing UAV is

required to keep monitoring a small area, it has to linger around the spot, which is

neither energy efficient nor with good sensing quality. Since the multirotor UAVs

are not restricted by the minimum cruising speed, which is a common constraint

for the fixed wing aircrafts, they can work at a wider range of velocities.

• Meteorological measurement

Multirotor drones can collect meteorological information more accurately and

timely than the current balloon systems. However, a drone is much expensive

than a balloon. What is more, the propellers of a multirotor are always subjected

to failure in severe environment. So the fault tolerant control technique is very

meaningful for the utilization of drones in this field.

• Infrastructure maintenance

With the abilities of hovering, VTOL and sharp turning, multirotors can track
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complicated trajectories in complex environment. Such ability enables multirotor

drones to monitor infrastructures like wind turbines, pipes, tunnels, mines and

buildings. Moreover, the multirotor drones can even fix facilities if they are

equipped with manipulators.

Figure 1.2: A drone from Cyberhawk Innovations is inspecting a wind turbine in UK.
(copyright: Ascending Technologies [2])

• Disaster relief

Unmanned multirotor vehicles can fly through narrow ruins and land on small

fields. They are ideal platforms for fast response after emergencies. Different

from the infrastructure maintenance and package delivering, the site maps are

often not accurate after disasters. There are uncertainties from environment

that not only disturb the motion but also cause actuator failures.

• Package delivering

UVAs can improve the efficiency of logistics industry by working together with

trucks. The ground vehicles are playing the roles of command centers, mobile

warehouses and charging stations for the drones in the team. The drones must

track given trajectories precisely to avoid trespassing the neighbor’s property of
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the target. The drones should also tolerate faults, failures and disturbances to

guarantee the public safety.

Figure 1.3: A drone from UPS is delivering blood for a hospital. (copyright: Ryan
Davis/UPS [3])

These innovative enterprises are calling for different capabilities of multirotor

unmanned vehicles. A multirotor is expected to fulfill different tasks accurately and

keep the system stable and safety.

1.1.2 Advanced Tasks and Technical Challenges

A bright future has been depicted for multirotor systems , but the utilization of

them is still limited by many factors, like battery capacity, blade aerodynamics, and

legislative process. For control design and system integration, the main challenges can

be summarized in the following aspects.

From Flying Camera to Aerial Robot

The quadrotor drones are very popular consumer electronics and their market keeps

booming. They are also adopted as a powerful remote sensing platform in film

shooting, construction and agricultural monitoring. Therefore most current efforts

from researchers and manufacturers were made for the development of gimbals system,
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attitude stabilization controllers, and corresponding guidance systems. In recent years,

the multirotor UAVs are more and more considered as flying robots which not only

observes but also actively interacts with the environment. However, for the multirotors

work for delivering, manipulating and assembling, there emerges many new problems.

Figure 1.4: A manipulator arm developed by Energid. (copyright: Energid [4])

From Remotely Controlled to Autonomously Operating

The output tracking problem of drones has not attracted much attention because the

multirotors were manipulated by a human operator via remote controllers. The position

control problem is shirked to the human; and the controller is only responsible for

control allocation and attitude stabilization. As explained, the emerging applications

require the multirotor drones to work on their own accurately and safely. Then

advanced control algorithms are needed to deal with the uncertainties and enhance

the autonomy.

1.1.3 Issues of Current Multirotor Control Techniques

The promising missions of multirotors require fast, agile and accurate maneuvers.

Different models and control methods have been proposed for better performance of
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multirotors, like quadrotors [5–9], hexarotors [10–14],and octorotors [15–17]. Though

the multirotor market is blooming now, their desired performances are still not fully

satisfied. For example, the users need to purchase expensive gimbals and cameras

to compensate the insufficiency of the tracking control algorithms. It should be

articulated that some of the issues are intrinsic drawbacks of the PID control method

which is widely used in the design of rotor controllers.

• No Guarantee of Stability for Fast Maneuver

Among the linearization-based designs, PID controllers are most widely used to

control quadrotors at the hover condition, for example [18–23]. However, a PID

controller can only work with constant reference signals and cannot deal with

high-order dynamic systems like multirotors at other fast maneuver conditions

(that is, a PID controller is not able to ensure the rotor system to track an

arbitrary trajectory signal). Moreover, the closed-loop system stability is not

guaranteed by a PID controller applied to multirotor systems (which is only

analytically ensured to stabilize low-order systems).

• Insufficient Capacity to Handle Parameter Uncertainties

Many of the system parameters of multirotors are subject to change even within

one flight. For example, the friction coefficients are dependent on the density

and humidity of the airflow. If the multirotor delivers a cargo or picks up

something, the mass and moments of inertia will change. For the multirotors

with manipulators, the stretch and shrink of the joints often lead to the moving of

the center of mass, which affects the stability and efficiency of control allocation.

• Inadequate Treatment for Actuator Failures

Multirotors are often working in complicated and severe environments and

facing the threaten of actuator failures. The unpredicted circumstances may

cause physical damage to propellers. Moreover, the dust and moisture in harsh
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working conditions may lead to the burn of motors. If a proper control strategy

is not equipped to a multirotor, it may fail to complete its task when there

is emergency. Actuator failure is a major challenge for multirotor systems.

Faults in the actuation components often lead to decreased performance. A

loss-of-control rotor may cause severe crash and even threaten public safety.

Insufficient ability of quadrotors in dealing with actuator failures

Quadrotors and other 4-DOF multirotors are under-actuated aerial vehicles,

because they can only control four degrees of freedom out of their six degrees of

freedom [24–26]. Due to the underactuation nature of such aerial vehicles, their

roll angle φ and pitch angle θ are often coupled with the horizontal position (x, y).

Hence, a trade-off must be made between full attitude control and full position

control. For the underactuated multirotors, the position (x, y, z) together with

the yaw angle ψ are chosen to be the system outputs for most tracking tasks.

When a multirotor without actuation redundancy is subject to actuator failures,

it may fail to track the given trajectory. Hence, special control scheme is needed

to deal with failures.

1.2 Control Problem Formulation

The fundamental ideas of adaptive control theory are summarized in [27–29]. The

advanced control techniques developed in this dissertation for multirotors are based on

the multivariable model reference control framework which is suitable for multirotor

applications in terms of critical technical aspects of system stabilization and trajectory

tracking. This section describes and formulates the general control problem to be

solved in this dissertation research.
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1.2.1 Nominal System

We start with a multirotor system model without any uncertainty or fault, its dynamics

can be characterized by a nonlinear model as

ẋp(t) = f(xp(t), up(t)),

where xp(t) is a signal vector of system states, up(t) is a signal vector of system inputs,

the subscript p stands for plant, and f is a known nonlinear function. The components

of xp(t) often include positions, velocities, attitude angles and angular velocities. The

components of up(t) vary for different levels of the control problem, which may contain

thrust force, momentum torque, or motor speed.

The output tracking problems are studied in this research. A subset of the state

vector xp is chosen to be the components of the system output vector as

yp(t) = Cxp(t),

where C is the known output matrix. The desired output or trajectory to be tracked

is often represented by ym(t). The selection of the components in the output vector

depends on the nature of given task. Popular choices include but not limited to position

tracking, attitude tracking, position-yaw tracking, and attitude-altitude tracking.

1.2.2 System with Uncertainties and Faults

The next step is to introduce parameter uncertainty and disturbance into the system,

which leads to the following new system model as

ẋp(t) = f(xp(t), up(t), fd(t), t),
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where fd represents the disturbance to the system. At this stage, the system parameters

in f could be uncertain. Since multirotors are man-made vehicles, so their physical

structures and benchmark parameters are known. As a result of such facts, the

structure of f and the order of the system are known. The time term t is also included

in the formula to indicate that some of the parameters might be time-varying. For

example, a quadrotor is spraying pesticides upon a farm, the total mass and the weight

distribution of the system would keep changing.

Then we consider the actuator failure problem of the system. Recall that in

the previous two system models we assume that the system input up(t) should be

exact what we command. However, such assumption does not stand for an abnormal

actuation system. In order to depict the cases with actuator failures, we replace up(t)

in the former model and get

ẋp(t) = f(xp(t), v(t), ū(t), fd(t), t),

where v(t) is the applied control signal (which is identical to up(t) for the cases without

actuator failure), ū(t) represents the uncertain effect of failure to the system. Note

that the nonlinear function f should contain some more uncertain parameters that

associated with the failure pattern.

Remark 1. In this dissertation research , we work on the problems of parameter

uncertainty, environment disturbance, and actuator failure. Adaptive control and

compensation schemes will be developed to deal with different cases and guarantee

tracking performance. The issues of system noise and sensor failure are not considered

in this work. They should be resolved by observer designs and estimation algorithms,

for example [30–34].
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1.2.3 Control Design Objective

The goal of control design is to develop an adaptive controller to generate an applied

control signal v(t) for the system

ẋp(t) = f(xp(t), v(t), ū(t), fd(t), t) (1.1)

yp(t) = Cxp(t) (1.2)

which is subject to uncertain system parameters in f , unknown disturbance fd(t),

and unknown actuator failure ū(t), to guarantee the boundedness of the closed-loop

signals and asymptotic tracking of a given reference output signal ym(t).

1.3 Literature Review

This section reviews the relevant literature published in journals and conference

proceedings, which pertain to the research and development of the multirotor control

techniques. We will introduce and discuss related research approaches on multirotor

design, adaptive control, and fault-tolerant control, which provide solid technical

foundation for this research. This survey of the state-of-the-art is also important for

better understanding of the contribution of the research work to be presented.

1.3.1 Background

The models of quadrotors have been widely studied during the past years [5, 9, 24, 35].

Different control techniques have been used upon quadrotors, for example optimal

control [36], robust control [7,8,37], adaptive control [38], sliding mode control [39–41],

LQ regulation [42], and neural networks [43–45]. A feedback linearization control

approach is given in [6]; an input-output linearization control scheme is introduced

in [46]; and a multivariable model reference adaptive control (MRAC) approach is
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addressed in [47]. A fault detection and isolation approach is proposed in [48] to

construct an active fault-tolerant controller. The adaptive control problem at the

non-hover conditions is dealt by various methods, for example [49–51].

Hexarotors are multirotor UAVs with six rotors. They have two more rotors than

the quadrotors, which help them achieve better performance than quadrotors and also

bring more control challenges. Most of the control approaches for hexarotors are based

on hexarotor designs with four degrees of freedom (DOF), like [10,11,52–54]. The two

redundant rotors of the 4-DOF hexarotor systems are very important in keeping safety

when actuator failures happen. For the designs with tilted rotors as in [12–14,55–57],

the actuation redundancy is exchanged for six degrees of freedom and agile maneuver.

The key advantage of such design is the ability to reject random disturbances, like the

wind gusts , without changing its attitude.

Linearization-based methods are widely used in studying nonlinear systems. As

shown by extensive literature, for example [42, 47, 58–61], it is efficient and reliable

to linearize the model of quadrotors at typical operating points for investigating

the input-output relation and designing control methods. An adaptive controller is

developed in [38] as a supplement of a baseline controller for known system dynamics, a

feedback linearization control approach was given in [6], an input-output linearization

control scheme is introduced in [46]. The PID control technique is still widely used

upon multirotor systems for desired performance, for example [18–23,62,63]. However,

PID controllers are not very capable in working with arbitrary reference signals

of multivariable nonlinear systems under parameter uncertainties. To deal with the

uncertain parameters, different adaptive controllers are designed for multirotor systems,

like [7, 8, 47,49,58,64,65].

Model reference adaptive control (MRAC) is a well-established control method

dealing with the parameter uncertainties and unknown actuator failures. It has been

widely used upon different kinds of aircrafts and of course the multirotor systems.
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It is shown in [47] and [58] that MRAC is effective for the quadrotors at hover

condition. Then the result is extended to different typical operating conditions of 4-

DOF multirotors in [50] and [66]. The compensable failure patterns and corresponding

adaptive compensation scheme are investigated in [67] for a hexarotor system with

unknown failure and known parameters. This work will extend previous effort of

adaptive control design for 4-DOF multirotors.

Multirotors are expected to be working in unstructured and uncertain environments

which may lead to various actuator failures. To guarantee the fulfillment of missions

and the safety, researchers developed many different compensation schemes. A fault

tolerant control scheme is designed in [68] for a quadrotor system to work despite

the total loss of an actuator. The controllability of hexarotor systems with different

rotor arrangement under single loss-of-control actuator failure is studied in [69]. A

learning-based failure compensation scheme is proposed in [70] for the output tracking

problem of quadrotors under loss-of-efficiency failures. The controllability and hovering

problem of a quadrotor under one, tow, or three failed rotors is studied in [9] to fully

understand the redundancy of quadrotor systems.

1.3.2 Multirotor Systems

The quadrotor is the most used and studied type of multirotor unmanned aerial vehicles

(UAVs) as a result of its simplicity in mechanism and the increasing demands in aerial

photography. Different advanced control techniques have been tested on quadrotors

for better performance, like nonlinear robust control [37], disturbance-observer-based

sliding mode control [71], nonlinear back-stepping control [72], L1 adaptive control [49],

and model reference adaptive control (MRAC) [50, 58, 73]. Since a quadrotor only

has four actuators, it can track no more than four output signals and cannot control

all its six degrees of freedom (DOF). To achieve more agile motion, different designs

of omni-directional multirotors are proposed to make the system fully-actuated and
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robust to disturbances. Such designs depend on the tilted rotor systems that generate

thrust forces not only parallel to the z-axis of the body frame.

The main advantage of 4-DOF hexarotors over quadrotors is the actuation re-

dundancy realized by the two extra rotors. Intuitively, a 4-DOF hexarotor with

proper control scheme should be able to bear at most two failed actuators and still

fulfill its original tracking task. The fact is that only the hexarotors with a specific

rotor arrangement can tolerate the failure of one actuator [69]. The compensable

patterns of one actuator failure are also given in [69], but the compensable patterns of

two actuators failure are not explored. It is also shown in [74] that the traditional

NPNPNP rotor arrangement is not able to guarantee the stability and performance

with a loss-of-control rotor. Meanwhile, a novel rotor arrangement (NNPPNP) is

investigated in [69] and [75], with which the controllability of a 4-DOF hexarotor

could be remained under the loss-of-thrust failure of a single rotor. However, the

corresponding adaptive failure compensation design is not provided; and the cases of

two failed actuators are not surveyed yet.

To achieve better performance in manipulator operation and disturbance rejection,

fully-actuated multirotor systems are proposed in recent years. However, the tilted

rotor system of these designs also leads to the energy inefficiency of control allocation.

The early prototypes include but not limited to the non-planar multirotor vehicle

in [76], the fully-actuated hexarotor in [12], and the omni-directional aerial vehicle

from [55]. The maneuverability of fully-actuated hexarotor systems is evaluated in [77]

based on different tilted angles and rotor arrangement. A connection between the

motion planning and the control problem of fully-actuated multirotors is established

in [78] by constructing a computationally efficient method of trajectory generating.

An explicit reference governor scheme is introduced in [79] for fully-actuated aerial

vehicles under actuator saturation. A double-loop geometric control architecture is

proposed and validated in [80] to tackle with environmental disturbance and physical
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interaction with human.

Figure 1.5: The Voliro hexacopter’s tilting rotors let it hover and fly in any orientation.
(copyright: Voliro [81])

1.3.3 Adaptive Control Designs

One of the key challenges for multirotor control is to deal with the parameter un-

certainty. For example, multirotors are often carrying additional loads like cameras,

manipulators or cargoes, whose center of mass and shape might change during different

missions. Moreover, the dynamics of propellers are often not precisely modeled and

the force they generate might vary according to the real environment. The PID control

technique is still widely used upon multirotor systems for desired performance, for

example [18–20, 23, 62]. However, PID controllers are not very capable in working

with arbitrary reference signal of multivariable nonlinear systems under parameter

uncertainties. To deal with the uncertain parameters, different adaptive controllers

are design for multirotor systems, like [7, 8, 47,49,58,64,65].

The model reference adaptive control (MRAC) technique is a well-established

control method dealing with parameter uncertainties, which has rich literature [27,

82, 83]. It is shown in [47] and [58] that the architecture of the MRAC could be

used to control a quadrotor with unknown parameters at the hover condition where
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all attitude angle are around zero. Further, the linearized models of quadrotors at

typical operating conditions were studied in [84] together with the essential design

information for MRAC design as the interactor matrices and the signs of the leading

principal minors of the high-frequency gain matrices.

The restriction to the hover condition that all attitude angles are around zero

is the most common condition in literatures, for example [47, 49, 59]. It should be

relaxed because the quadrotors can neither maintain high cruising speed nor reject

strong disturbance at hover condition. In practice a quadrotor needs to change the

yaw angle at some circumstances, for example, a manipulator may need an extra

degree of freedom to work. What is more, as a result of the underactuated nature of

the quadrotors, the horizontal propulsions are coupled with the attitude angles [24].

So when there is disturbance in the horizontal plane, a quadrotor should have a

non-zero roll or pitch angle for compensation. However, as shown in [84], different

typical operating conditions of the quadrotor are with different interactor matrices

and different gain matrix signs, which lead to difficult problems for constructing a

MRAC scheme working for multiple operating conditions. For the adaptive control

methods that can deal with parameter uncertainties at operating points other than

the hover condition, there are also some limitations need to be relaxed. For example,

the controller developed in [38] is able to work with the parameter uncertainties in

the state matrix but not the input matrix. the approach in [8] achieved good results

in attitude tracking but needs further efforts in trajectory tracking.

The center of gravity variation (c.g.v.) is another challenge for the control design

of multirotor systems. The center of gravity significantly changes both the dynamic

model and actuation model of a multirotor system. In the view of adaptive control,

though c.g.v. can transfigure the inertial momentum matrix in the dynamics equations,

the design conditions remain the same for most cases. Most of the existing control ap-

proaches assume known control allocation schemes. Some adaptive control allocations
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have been presented in [85–87], which assume that there only exist multiplication

parameter uncertainties but no additional parameter uncertainties. Such assumptions

may not be appropriate for multirotors equipped with manipulators. The extension

and flexing of the mechanical arm may cause shifting of the system mass center, which

leads to uncertain control allocation scheme. If the multirotor delivers a cargo or

picks up something, the mass and moments of inertia may change. Thus the adaptive

control design for uncertain control allocation is another open problem for multirotors.

1.3.4 Fault Compensation Schemes

Actuator failure is another major challenge for multirotor systems. When the actuator

failures happen in severe environment or caused by emergencies, they are often

accompanied by structure damage and system parameter changing. Such uncertainties

may lead a hexarotor to fail its task and even be a huge risk for public safety. The

actuator failure of a multirotor often happens in the components of motor, propeller

and electronic speed controller (ESC) [88]. The failure modes of motors and ESCs

include seizing, degradation, overheating, and burnt [89]. The propellers suffer from

failures like fracture, broken and vibration [88]. The hexarotors and octorotors are

considered to be better candidates for tolerating actuator failures for they have more

actuators than quadrotors.

The failures would occur in unexpected situations in which the failure time, failed

actuator and failure value are all unknown. The technique of fault detection and

isolation [16,17,48,91,92] is often used to deal with the case. However, the detection

process itself may take some time and delay the reconfiguration of the control allocation.

Moreover, failures are usually accompanied by disturbance, structure damage and

system parameter shifting. These uncertainties are great challenges for designing

reconfiguration schemes in advance and constructing fault tolerant controllers. The

adaptive controller for actuator failure compensation does not need the step of fault
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Figure 1.6: Broken propeller blades of drones. (copyright: Day Dreamer [90])

detection, whose parameters for control allocation are updated by adaptive laws. Many

adaptive fault tolerant controllers have been constructed for hexarotors, for example,

loss-of-effectiveness compensation [93–95], 3-DOF attitude tracking [96], and 3-DOF

position tracking [97]. But for more challenging failure types, like loss-of-control, the

adaptive controller design is still an open problem for the output tracking of 4-DOF

with guaranteed stability.

Though the quadrotors cannot track four outputs when one actuator is subjected

to loss-of-control failure, many fault tolerant controllers are developed for other issues

in the literature. For the loss-of-effectiveness failure, fault tolerant controllers are

constructed in [38, 70, 98–100] to retain the tracking performance for four outputs.

However, one of the four outputs needs to be sacrificed when more severe actuator

failures happen, like loss-of-thrust, lock-in-place, or even loss of control. In [6, 48,

101,102], control techniques are developed for 3-DOF position tracking in case of the

complete loss of one rotor. The yaw angles of the quadrotors are not under control

in any of the mentioned fault tolerant position tracking controllers. As a result, the

quadrotors are spinning in the yaw direction when a failure happens. Such spinning

can undermine the ability of a quadrotor in tasks of photographing, manipulating

and delivering. The centrifugal force is also a potential threaten, which may cause
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disintegration of the system. In order to enhance the flight safety, quadrotors should

be replaced by 4-DOF hexarotors equipped with the failure compensation algorithm.

The 4-DOF hexarotors are under-actuated UAVs as quadrotors that can only

control four out of six DOF [7, 24, 103]. Moreover, the 4-DOF hexarotors are also

over-actuated [104–106], because they have more actuators than outputs. The nature

as both over-actuated and under-actuated of them provides us many interesting and

yet unsolved control problems. For example, The parameter uncertainty of a hexarotor

is well handled in [94], but only the loss-of-effectiveness failures can be compensated

by the approach. In [74], a degraded control scheme is developed for hexarotors

for total rotor failures, but only the three position outputs can be tracked. A fault

tolerant algorithm for four outputs tracking is presented in [87], but the parameters

are assumed to be known. So the main problem we consider is the systematic study of

the composite controller for the 4-DOF hexarotors under both parameter and failure

uncertainty.

The nonlinear adaptive control design for a multirotor system under both parameter

and failure uncertainties is still a open problem. The loss-of-control failure problem

is investigated on linearized multirotor systems in [107–110]. Though the adaptive

controllers in [93–97] cannot guarantee the tracking performance and stability of 4-

DOF hexarotors under actuator failures, they have displayed the potential of adaptive

control designs in dealing with the problem. The abilities of adaptive control methods

in failure compensation have been demonstrated on various systems, especially on

spacecrafts [111–113] and aircrafts [114–117]. Adaptive controllers are also widely

used in dealing with the system parameter uncertainties of quadrotor systems, for

example [7, 8, 47, 49, 58, 64, 65]. However, unsolved adaptive control challenges still

exist on the original nonlinear systems.
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1.4 Dissertation Organization

The dissertation is organized as follows.

The first part is the foundation of the research, which contains Chapter 1 - 3. This

part summarizes knowledge and information related to the research. The purpose is to

aid the audience to understand the technical approaches and contributions presented in

later parts. In Chapter 1, the research motivation and related literature are discussed;

the general research problem is also formulated. In Chapter 2, the basic mathematical

and physical knowledge together with system and control theory are provided. In

Chapter 3, we listed the multirotor system models related to the research, which

include nonlinear and linearized dynamic model, actuation model, wind disturbance

model, center of gravity variation model, and actuator failure model.

The second part derives the important system characteristics, which contains

Chapter 4 and 5. The verification of such information is crucial for designing adaptive

control and compensation schemes, In Chapter 4, system features of the dynamic

models for both under-actuated and fully-actuated multirotors are studied at several

typical operating conditions, which are the transfer matrix, the interactor matrix, and

the high frequency gain matrix. In Chapter 5, the compensable failure patterns are

investigated for different rotor arrangements of hexarotor and octorotor systems.

The third part develops a series of MRAC schemes to deal with different uncertain-

ties and faults, which contains Chapter 6 - 9. These linearization-based adaptive control

and compensation designs are demonstrated to be effective on the typical operating

conditions. In Chapter 6, an adaptive control scheme with state-dependent interactor

matrices is constructed for working at different equilibrium and non-equilibrium condi-

tions. In Chapter 7, an input compensator is designed to achieve a uniform interactor

matrix for all the typical operating conditions to enhance the system performance. In

Chapter 8, we develop an adaptive compensation scheme for multirotor systems under

loss-of-control actuator failures with unknown failure time, value and pattern. In
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Chapter 9, a control signal distribution scheme is constructed to reduce the dimension

of parameters to be estimated for an adaptive controller against both parameter

uncertainty and actuator failure.

The last part, as Chapter 10, is a conclusion of the research. The possible future

work is also discussed.
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Preliminaries

2.1 Coordination Transformation

Since the position and attitude of the quadrotor are described in an initial coordinate

system, while the mechanical analysis are made in the body coordinate frame of the

quadrotor. It is necessary to take some coordinate transformation for the system.

The origin of the body frame is set at the geometry center of the quadrotor and it

is assumed that the mass center of the quadrotor coincides its geometry center. And

the x and y axis are set on the arms of rotor 1 and 2, the z axis could be determined

via right hand rule. Here we use Tait-Bryan angles [118] to present the orientation

of the quadrotor to the earth frame, where φ, θ, ψ represent the roll, pitch and yaw

angles. The definition of the attitude angles is shown as in Fig. 2.1.

Then we could use a rotation matrix R to represent the relationship between the

position of a point in the body frame and earth frame as


xE

yE

zE

 = R


xB

yB

zB

 (2.1)

22
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Figure 2.1: Tait-Bryan angles in Z-Y-X sequence.

where (xE, yE, zE) is the position in earth frame, (xB, yB, zB) is the position in body

frame, and the rotation matrix

R =


CθCψ −CφSψ + SφSθCψ SφSψ + CφSθCψ

CθSψ CφCψ + SφSθSψ −SφCψ + CφSθSψ

−Sθ SφCθ CφCθ

 . (2.2)

The quaternions could be used here to avoid the gimbal lock problem [119–123]. Since

the quadrotor will lose control against the gravity, a 90 degree pitch angle should not

be allowed, so the rotation matrix should suit our problem.

2.2 Rigid Body Dynamics

The dynamics of a rigid body under external forces and moments expressed in in

inertial frame are governed by

mv̇ + ω ×mv =ΣF (2.3)

Jω̇ + ω × Jω =ΣT (2.4)
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where ΣF ∈ R3 and ΣT ∈ R3 represents the external forces and torques acting on the

vehicle, v is the velocity in the body frame, ω is the angular rate of the vehicle, m is

the quadrotor mass, and J the moment of inertial matrix.

The dynamic model used in this work is similar to the ones in [6] and [124], which

includes kinematics, centripetal forces, gyroscopic moment as well as the drag effect.

The effect of the angular velocity changing of rotors is omitted because it is relatively

small [124].

2.2.1 Kinematics

The Newton equation for acceleration is

ξ̈E = FE/m, (2.5)

where ξE = [xE, yE, zE]T , the net external force FE applied on the quadrotor in the

earth frame is

FE = REBFB −G− ft, (2.6)

where the translational drag effect ft is related to ξ̇E, the rotation matrix from the

body frame to the earth frame

REB =


CθCψ SφSθCψ − CφSψ SφSψ + CφSθCψ

CθSψ CφCψ + SφSθSψ CφSθSψ − SφCψ

−Sθ SφCθ CφCθ

 , (2.7)

where C∗ and S∗ represent the cosine and sine function for certain attitude angle

respectively. We use Tait-Bryan angles [118] with Z-Y-X rotation sequence in this

work to present the orientation of the body frame according to the earth frame, where

φ is the roll angle, θ is the pitch angle, and ψ is the yaw angle. For a quadrotor, the

forces generated by the rotors are all parallel to zB axis. So the components of FB on
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xB and yB are zero. Then (2.5) can be written as

ξ̈E = REB[0, 0, Fz]
T/m− [0, 0, g]T − ft/m. (2.8)

The entries of matrix REB is dependent on the current attitude of the quadrotor. The

attitude angles are dominated by the torques generated from the rotors as explained

in following section .

2.2.2 Rolling Moments

The Euler-Lagrangian equation for centripetal forces and gyroscopic moment is

Jν̇ + ν × Jν = TB − fr, (2.9)

where J = diag{Jx, Jy, Jz}, TB = [Tx, Ty, Tz]
T , ν = [p, q, r]T , the rotational drag effect

fr is related to ν.

The values of the attitude angle are important for solving (2.8), but the angular

velocities are not the first order derivatives of the attitude angles. It is known that

there exists a transformation relationship for angular velocities from the earth frame

to the body frame as

ν = Wηη̇, (2.10)

where η = [φ, θ, ψ]T , Wη is the transformation matrix

Wη =


1 0 −Sθ

0 Cφ SφCθ

0 −Sφ CφCθ

 . (2.11)

Wη is only invertible when θ 6= ±π
2
, so the pitch angle θ is not allowed to be ±π

2
. By

applying W−1
η to both sides of (2.10), we have the transformation relationship for
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angular velocities from the body frame to the earth frame as

η̇ = W−1
η ν, (2.12)

where

W−1
η =


1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ

 . (2.13)

Then the attitude angles can be found by the angular speed; and the there is no

missing information for equation (2.8).

2.3 Model Reference Adaptive Control

Model reference adaptive control is a well established advanced control method for

systems with uncertainties. The fundamental idea of the method is expressed in [27,82].

The design for multirotors will follow the approach of the multivariable MRAC with

state feedback for output tracking in [125], the technique of single input single output

(SISO) MRAC with state feedback for output tracking in [27] and the high-frequency

gain matrix decompositions technique in [126].

The interactor matrix ξm(s) and high-frequency gain matrix Kp are crucial for

selecting the reference model and updating the parameters of the adaptive controller.

For example, the controller structure of state feedback output tracking is given as

∆up(t) = Kx∆xp(t) +Krr(t) + kf , (2.14)

the adaptive parameter matrices Kx, Kr and kf will be updated from adaptive laws as

in [125] using the knowledge of ξm(s) and the signs of leading principal minors of Kp.
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Limited by the ability of measurement, the output information is not always

available. Then an adaptive controller with output feedback for output tracking can

be designed as

∆up(t) = ΘT
1w1(t) + ΘT

2w2(t) + Θ20∆yp(t) + Θ3r(t) + Θf , (2.15)

for some filter signal w1(t) on ∆up(t) and filter signal w2(t) on ∆yp(t), the adaptive

parameters Θ1,Θ2,Θ20,Θ3 and Θf are updated according to the information of the

interactor matrix ξm(s) and the signs of the leading principal minors of Kp.

A controller structure of state feedback for state tracking is also given in [27],

which will not be discussed in this paper. The state tracking requires complete

information of the matrix Bp in (3.14), which is impossible for a quadrotor with

parameter uncertainties. However, as shown in [47] and [58], the prior information

for the output tracking remains fixed when the system parameters are changing for a

quadrotor at hover condition.

The important preliminaries for MRAC design are given as follows.

Interactor matrix and high frequency gain matrix

The transfer function of the linearized system at (xo, uo) is defined as G(s) = C(sI −

A)−1B. Then the crucial priori information for the design of the MRAC scheme, can

be specified form the following lemma.

Lemma 1 [27]. For any M ×M strictly proper and full rank rational matrix G(s),

there exists a lower triangular polynomial matrix ξm(s), defined as the left modified
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interactor matrix (LMI) of G(s), of the form

ξm(s)=



d1(s) 0 · · · 0

hm21(s) d2(s)
. . .

...
. . .

...
. . . dm−1(s) 0

hmm1(s) · · · hmm m−1(s) dm(s)


, (2.16)

where hmij (s) are polynomials, and dk(s) are monic stable polynomials, such that the

high-frequency gain matrix

Kp = lim
s→∞

ξm(s)G(s), (2.17)

is finite and nonsingular.

Plant assumptions

The following conditions are required for the design of a multivariable MRAC scheme

of state feedback output tracking [27]:

(A1) all zeros of G(s) have negative real parts;

(A2) (A,B) is stabilizable and (A,C) is detectable;

(A3) G(s) has full rank and its modified left interactor matrix ξm(s) of G(s) is known;

and

(A4) all leading principal minors ∆k of the high-frequency gain matrix Kp are nonzero

and their signs are known.

The condition (A1) is needed for stable plant-model output matching. Condition

(A2) is needed for internal stability under stable output matching. Condition (A3) is

needed to select a reference model system for plant-model output matching, and (A4)

is needed for designing adaptive laws which converge in the correct direction.



Chapter 3

Models of Multirotors

This chapter investigates the models of multirotor systems at different levels. There

are two major ways to category multirotor systems. Form the view of dynamics,

they are either under-actuated or fully-actuated. In respect to actuation, they are

systems of different numbers of actuators or/and with different arrangements of these

actuators. The mathematical model of actuator failures is also explained.

3.1 Structures of Multirotor Systems

In this section, we display the physical structure of quadrotors, which have four rotors,

and hexarotors, which have six rotors. The octorotors with eight rotors and other

multirotors with ten or more rotors are similar in structure.

3.1.1 Quadrotor System

A quadrotor, as shown in Figure 3.1, has four arms with same length and weight. The

extended lines of the arms should intersect at the center of the quadrotor. There

is a rotor at each arm and the rotors are assumed to be the same. We define two

coordinate systems in Figure 3.1, which are the body frame (oB, xB, yB, zB) and the

29
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Figure 3.1: The structure and coordinate frames of a quadrotor.

earth frame (oE, xE, yE, zE). The origin of the body frame oB is set at the geometry

center of the quadrotor; and it is assumed that the mass center of the quadrotor also

coincides with oB. The xB and yB axes are set on the arms of rotor 1 and 2, the zB

axis is determined via right hand rule. For the convenience of analyzing the system in

a precise and clear way, the variables are often not studied in one single coordinate

frame. For example, the position and attitude of the quadrotor are described in the

earth coordinate system, while the forces, torques and angular velocities are in the

body frame of the quadrotor.

Note that the rotation direction for rotor 1 and 3 are set as counter clockwise and

for rotor 2 and 4 clockwise. The directions of the rotors are preset and should not

rotate in reverse at most occasions. Though most quadrotors are equipped with DC

motors and able to rotate reversely with a reverse current, we could achieve same

dynamic effect through control the symmetrical rotors strategically.

3.1.2 Hexarotor Systems

Unlike a quadrotor, a hexarotor has many different designs in structure and rotor

arrangement. In this work, we study the hexarotor with its six rotors placed at the six
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vertices of a regular hexagon, whose structure is shown in Figure 3.2. The mass center

Figure 3.2: The structure of a hexarotor with NNPPNP rotor arrangement.

of the whole system is assumed to be at the geometry center of the hexagon. Such

symmetric design can enhance the stability of the system and decrease the difficulty

of control allocation design. This research studies the compensation scheme dealing

with the uncertainties of the rotor failures but not the system parameter uncertainties

caused by mass center shifting.

As shown in Figure 3.2, the rotor 1, 3 and 6 rotate counterclockwise; and the

rotor 2, 4 and 5 rotate clockwise. This rotor arrangement is called as NNPPNP [75]

compared to the NPNPNP rotor arrangement used in most of the past literature and

shown in Figure 3.3. For the hexarotor in Figure 3.3, the rotor 1, 3 and 5 rotate

counterclockwise; and the rotor 2, 4 and 6 rotate clockwise. The NNPPNP rotor

arrangement leads to more difficulty in control allocation than NPNPNP, but as

demonstrated in [74] and [69] that a hexarotor with NNPPNP rotor arrangement has

better performance in fault tolerance than the one with NPNPNP. So in this paper the

hexarotor with NNPPNP rotor arrangement is studied for the adaptive compensation

of actuator failures.
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Figure 3.3: The structure of a hexarotor with NPNPNP rotor arrangement.

Remark 2. Note that the rotor arrangement in Figure 3.2 is actually PNPNNP. In

the view of actuation, PNPNNP has no difference as NNPPNP. Similarly, PNPNPN

should be the same compensability as NPNPNP.

3.2 Dynamics Model for Motion Control

3.2.1 Under-Actuated Multirotor Systems

Nonlinear model

By integrating the kinematics equation as (2.8), the rolling moments equation as (2.9),

and the rotational relationship as (2.12), the nonlinear model of the quadrotor model
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can be built into state-space form as

ẍE = (SφSψ + CφSθCψ)
Fz
m
− ct
m
ẋE (3.1)

ÿE = (CφSθSψ − SφCψ)
Fz
m
− ct
m
ẏE (3.2)

z̈E = CφCθ
Fz
m
− g − ct

m
żE (3.3)

ṗ = qr(
Jy − Jz
Jx

)− 1

Jx
crp+

Tx
Jx

(3.4)

q̇ = pr(
Jz − Jx
Jy

)− 1

Jy
crq +

Ty
Jy

(3.5)

ṙ = pq(
Jx − Jy
Jz

)− 1

Jz
crr +

Tz
Jz

(3.6)

φ̇ = p+ qSφTθ + rCφTθ (3.7)

θ̇ = qCφ − rSφ (3.8)

ψ̇ =
1

Cθ
(qSφ + rCφ). (3.9)

The state vector of the system is chosen as

xp = [xE, yE, zE, ẋE, ẏE, żE, φ, θ, ψ, p, q, r]
T . (3.10)

The most significant difference between our dynamic model in this paper and

the one used in [47] and [58] is that the angular velocities of the quadrotor are not

considered as the first-order derivatives of the attitude angles. The relation between

the attitude angles and the angular velocities in the body frame are depicted in (2.12).

Then the quadrotor is relaxed to work at non-equilibrium operating points other than

the special hover condition. The other significant difference is that the drag effect is

taken into consideration.



34 Chapter 3 Models of Multirotors

Output selection

Though a quadrotor with the structure in Figure 3.1 has six degrees of freedom (DOF),

a quadrotor is an under-actuated system with four actuators since only four degrees

of freedom can be controlled [24]. We choose the output vector of the system in this

work as

yp = [zE, yE, xE, ψ]T . (3.11)

Linearized model

Let us rewrite the dynamics model in (3.1) - (3.9) into the more concise form as

ẋp(t) = f(xp(t), up(t)). (3.12)

Denoting an operating point as (xo, uo), the Taylor series expansion yields

ẋp(t) ∼= f(xo, uo) +
∂f

∂xp

∣∣∣∣
(xo,uo)

(xp(t)− xo) +
∂f

∂u

∣∣∣∣
(xo,uo)

(up(t)− uo) + H.O.T. (3.13)

Omitting the higher order terms (H.O.T.), we have

∆ẋp(t) = Ap∆xp(t) +Bp∆up(t) + f(xo, uo), (3.14)

where ∆xp(t) = xp(t)− xo, ∆up(t) = up(t)− uo, the parameter matrices

Ap =



03×3 I3×3 03×3 03×3

03×3 −ctI3×3 At 03×3

03×3 03×3 As Aw

03×3 03×3 03×3 Ar


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Bp =



03×1 03×3

Bt 03×3

03×1 03×3

03×1 Br


,

with the submatrices

At =


CφSψ − SφSθCψ CφCθCψ SφCψ − CφSθSψ

−CθCψ − SφSθSψ CφCθSψ SφSψ + CφSθCψ

−SφCθ −CφSθ 0

 Fzm

Ar =


− cr
Jx

r

(
Jy − Jz
Jx

)
q

(
Jy − Jz
Jx

)
r

(
Jz − Jx
Jy

)
− cr
Jy

p

(
Jz − Jx
Jy

)
q

(
Jx − Jy
Jz

)
p

(
Jx − Jy
Jz

)
− cr
Jz



As =


qCφTθ − rSφTθ

qSφ + rCφ
C2
θ

0

−qSφ − rCφ 0 0

qCφ − rSφ
Cθ

Sθ
C2
θ

(qSφ + rCφ) 0



Aw =


1 SφTθ CφTθ

0 Cφ −Sφ

0
Sφ
Cθ

Cφ
Cθ



Bt =


SφSψ + CφSθCψ

−SφCψ + CφSθSψ

CφCθ

 1

m

Br = diag

{
1

Jx

1

Jy

1

Jz

}
.
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Recall that the output is chosen as (3.11), then the output of the linearized model is

∆yp = Cp∆xp, (3.15)

with

Cp =

 Ct 03×3 03×3 03×3

01×3 01×3 Cr 01×3


where the submatrices

Ct =


0 0 1

0 1 0

1 0 0

 , Cr =

[
0 0 1

]
.

Then with the information of certain operating points, we can deduct the transfer

matrices at some typical operating points, which have the form

G0(s) = Cp(sI − Ap)−1Bp. (3.16)

The transfer matrix is a useful system characteristic of the linearized model, which

represents the input-output relationship. It is also important for investigating the

prior system information for the design of adaptive controllers.

3.2.2 Fully-Actuated Multirotor Systems

The fully-actuated multirotors have a different propeller system from the underactuated

multirotors. The thrust force generated by a rotor does not parallel to the zB axis in the

body frame. As shown in Figure 3.4, zp is not parallel to zB. In this paper we choose

the rotation angles from the body frame to the propeller frame as (−π/6, π/6, π/6).
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Figure 3.4: A propeller system with tilted rotor.

Nonlinear dynamic model

The nonlinear dynamic model of fully-actuated omni-directional multirotor systems

for motion control is

ẍE = CθCψ
Fx
m

+ (SφSθCψ − CφSψ)
Fy
m

+ (SφSψ + CφSθCψ)
Fz
m
− ct
m
ẋE (3.17)

ÿE = CθSψ
Fx
m

+ (CφCψ + SφSθSψ)
Fy
m

+ (CφSθSψ − SφCψ)
Fz
m
− ct
m
ẏE (3.18)

z̈E = −Sθ
Fx
m

+ SφCθ
Fy
m

+ CφCθ
Fz
m
− g − ct

m
żE (3.19)

ṗ = qr(
Jy − Jz
Jx

)− 1

Jx
crp+

Tx
Jx

(3.20)

q̇ = pr(
Jz − Jx
Jy

)− 1

Jy
crq +

Ty
Jy

(3.21)

ṙ = pq(
Jx − Jy
Jz

)− 1

Jz
crr +

Tz
Jz

(3.22)

φ̇ = p+ qSφTθ + rCφTθ (3.23)

θ̇ = qCφ − rSφ (3.24)

ψ̇ =
1

Cθ
(qSφ + rCφ). (3.25)

Different from the widely studies under-actuated multirotors (like a quadrotor), the

multirotor systems in this paper can generate thrust forces in the yB and xB direction

of its body frame.

The state vector is

xp = [xE, yE, zE, ẋE, ẏE, żE, φ, θ, ψ, p, q, r]
T , (3.26)
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The input vector is chosen as

up(t) = [Fx, Fy, Fz, Tx, Ty, Tz]
T . (3.27)

The output vector is chosen as

yp = [xE, yE, zE, φ, θ, ψ]T . (3.28)

Linearized model

The Taylor series expansion of the nonlinear system around an operating condition

(xo, uo) yields

ẋp(t) ∼= f(xo, uo) +
∂f

∂xp

∣∣∣∣
(xo,uo)

(xp(t)− xo) +
∂f

∂u

∣∣∣∣
(xo,uo)

(up(t)− uo) + H.O.T. (3.29)

Omitting the higher order terms (H.O.T.), we have

∆ẋp(t) = Ap∆xp(t) +Bp∆up(t) + f(xo, uo), (3.30)

where ∆xp(t) = xp(t)− xo, ∆up(t) = up(t)− uo, the parameter matrices

Ap =



03×3 I3×3 03×3 03×3

03×3 −ctI3×3 At 03×3

03×3 03×3 As Aw

03×3 03×3 03×3 Ar



Bp =



03×3 03×3

Bt 03×3

03×3 03×3

03×3 Br


,



3.2 Dynamics Model for Motion Control 39

with the submatrices

At =


CφSψ − SφSθCψ CφCθCψ SφCψ − CφSθSψ

−CθCψ − SφSθSψ CφCθSψ SφSψ + CφSθCψ

−SφCθ −CφSθ 0

 g

CθoCφo

Ar =


− cr
Jx

r

(
Jy − Jz
Jx

)
q

(
Jy − Jz
Jx

)
r

(
Jz − Jx
Jy

)
− cr
Jy

p

(
Jz − Jx
Jy

)
q

(
Jx − Jy
Jz

)
p

(
Jx − Jy
Jz

)
− cr
Jz



As =


qCφTθ − rSφTθ

qSφ + rCφ
C2
θ

0

−qSφ − rCφ 0 0

qCφ − rSφ
Cθ

Sθ
C2
θ

(qSφ + rCφ) 0



Aw =


1 SφTθ CφTθ

0 Cφ −Sφ

0
Sφ
Cθ

Cφ
Cθ



Bt =


CθCψ SφSθCψ − CφSψ SφSψ + CφSθCψ

CθSψ CφCψ + SφSθSψ CφSθSψ − SφCψ

−Sθ SφCθ CφCθ

 1

m

Br = diag

{
1

Jx

1

Jy

1

Jz

}
.
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3.3 Effector Model and Control Allocation

3.3.1 Quadrotor

The four rotors on the quadrotor in Figure 3.1 are the direct actuators of the system.

The force generated by rotor i is

fi = cfω
2
i , i = 1, 2, 3, 4. (3.31)

However, the forces are not directly expressed in the dynamic equations (2.8) and

(2.9). Let us denote a intermediate input vector as

up(t) = [Fz, Tx, Ty, Tz]
T . (3.32)

From the structure of the quadrotor, the relationship between the forces generated by

each rotor and up can be deducted by Newton’s laws as

[Fz, Tx, Ty, Tz]
T = Ca[f1, f2, f3, f4]T , (3.33)

where Ca is the actuation mapping matrix

Ca =



1 1 1 1

0 d 0 −d

−d 0 d 0

−cm cm −cm cm


. (3.34)

Since the determinant of the actuation mapping matrix Ca as in (3.34) is −8cmd
2 6= 0,

the matrix is always nonsingular and the value of ωi can always be solved from the
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input vector by

[f1, f2, f3, f4]T = C−1
a [Fz, Tx, Ty, Tz]

T . (3.35)

Then up in (3.32) is valid to be the input vector and the force generated by each rotor

can be calculated from up. Since the goal of this paper is to generate proper control

input up for the motion control of the quadrotor, we only explain the feasibility of the

choice in (3.32) but not discuss the control allocation in detail.

3.3.2 Hexarotors

There are six rotors on a hexarotor UAV, each of which generates a thrust force. We

denote the control input vector of the plant as

up = [f1, f2, f3, f4, f5, f6]T , (3.36)

where fi is the thrust generated by the ith rotor that

fi = cfω
2
i , i = 1, 2, 3, 4, 5, 6, (3.37)

where cf is the thrust coefficient, ωi is the rotating velocity of the ith rotor.

When the thrusts from the rotors and the structure of the hexarotor are known,

the total forces and torques can be obtained through the linear effector model [127] as

wp(t) = Caup(t), (3.38)
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where the control effectiveness matrix Ca, which is called actuation mapping matrix

in [84], is denoted as

Ca =



1 1 1 1 1 1

d
√

3
2
d −

√
3

2
d −d −

√
3

2
d

√
3

2
d

0 1
2
d 1

2
d 0 −1

2
d −1

2
d

−cm cm −cm cm cm −cm


. (3.39)

Control allocation

The effector model depicts the mechanical relations of the hexarotor. Control allocation

is an inverse problem in control design, which generates a control signal up(t) based

on the intermediate input wp(t) obtained by a desired motion control algorithm. The

control allocation problem for the hexarotor can be denoted by specifying a matrix Λ

for the linear relation

up(t) = Λwp(t), (3.40)

where Λ is the control allocation matrix to be designed.

For a quadrotor, which has four inputs and four outputs, the control allocation

matrix is the inverse of the control effectiveness matrix: Λ = C−1
a . For the hexarotors,

the form of Λ is not unique, for example, the matrices

Λ0 =



1
6

2
13d

0 − 3
26cm

1
6

3
√

3
26d

+ 1
13d

1
2d

√
3

26cm
+ 5

26cm

1
6
−3
√

3
26d
− 1

13d
1
2d

−
√

3
26cm
− 5

26cm

1
6

− 2
13d

0 3
26cm

1
6
−3
√

3
26d

+ 1
13d

− 1
2d
−
√

3
26cm

+ 5
26cm

1
6

3
√

3
26d
− 1

13d
− 1

2d

√
3

26cm
− 5

26cm


(3.41)
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and

Λ1 =



0 0 0 0

8+
√

3
44

2+3
√

3
22d

1
2d

8+
√

3
44cm

11−
√

3
44

−3
√

3
22d

1
2d

−11−
√

3
44cm

3
22

− 2
11d

0 3
22cm

8−
√

3
44

2−3
√

3
22d

− 1
2d

8−
√

3
44cm

11+
√

3
44

3
√

3
22d

− 1
2d

−11+
√

3
44cm


(3.42)

are both valid candidates for Λ.

3.4 Actuator Failure Model

In the presence of actuator failures, the input of the a system can be expressed as

u(t) = v(t) + σ(t)(ū(t)− v(t)) = (I − σ(t))v(t) + σ(t)ū(t), (3.43)

where

v(t) = [v1(t), v2(t), ..., vM(t)]T (3.44)

is the applied control input to be designed,

σ(t) =diag{σ1(t), σ2(t), ..., σM(t)} (3.45)

is the actuator failure pattern matrix with

σj(t) =

 1 if the jth actuator failed

0 otherwise
, (3.46)



44 Chapter 3 Models of Multirotors

and ū(t) is the corresponding failure value vector:

ū(t) = [ū1(t), ū2(t), ..., ūM(t)]T . (3.47)

In this work, we consider the loss-of-control failure that the failure value ūj(t), the

failure time instant tj and the failure pattern σ are all unknown. The jth element of

the failure value vector can be modeled as

ūj(t) =
l∑

k=1

τjkθk(t), (3.48)

where τjk is the element at the jth row and kth column of a unknown scalar matrix τ ,

θk(t) is the kth element of a known bounded signal vector θ(t), l is the number of the

candidate signals. Possible choice of θk(t) can be 0, 1, sin(t), cos(2t), and so on.

Based on the given actuator failure model, the most common failure types can be

model as following:

• loss-of-effectiveness:

ūj(t) = kjvj(t), (3.49)

where j ∈ {1, 2, . . . ,M}, kj ∈ (0, 1) and vj(t) is the jth element of vf (t);

• lock-in-place:

ūj(t) = ūj0, (3.50)

where ūj0 is a constant;

• loss-of-control:

ūj(t) = ūj0 +
l∑

k=1

ūkβk(t) + β0(t), (3.51)

where ūk is a scalar, βk(t) is a known signal, l is the number of the candidate

signals of the failure value vector, β0(t) is a bounded signal.
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Note that the cases of loss-of-effectiveness and lock-in-place can also be modeled

by (3.51) So in this work, we use the model of loss-of-control failures where the failure

time instant tj, the failure pattern σ, the bounded signal β0(t), the failure values ūjo

and ūk are all unknown.

Remark 3. Possible choices of βk(t) can be 0, 1, sin(t), cos(2t), and so on. Complex

failure signals can then be approximated by introducing more frequencies in the sine

and cosine functions.



Chapter 4

Dynamic Mutation under Different

Operating Conditions

The task of this chapter is to build some technical foundations needed for model

reference adaptive control of multirotors by providing the key prior information over

the typical operating conditions. The following problems will be solved in this chapter.

• Figure out the typical operating conditions of the nonlinear multirotor systems,

at which efficient and enlightening linearization models can be conducted.

• Clarify the mutation and invariance of the system characteristics, especially the

interactor and high-frequency gain matrices, at the typical operating conditions.

4.1 Under-Actuated Multirotor Systems

This section presents a systematic study on the important system characteristics

of linearized under-actuated system models. Different operating conditions of the

nonlinear dynamics model are surveyed by deriving corresponding linearized models

and transfer functions. We conduct a thorough study on the dynamics mutation of

the systems at different typical operating conditions. We show that the interactor

46
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matrices and the high-frequency gain matrices are parameter dependent. The operating

conditions can be divided into two groups as:

1. operating conditions with diagonal interactor matrices that already satisfies the

design condition;

2. operating conditions with non-diagonal interactor matrices and needs further

treatments.

The first group of operating points could be controlled by one controller directly. While

the interactor matrices of the second group are depended on the operating points,

then a different control law is needed for every case in a group of typical operating

points. It is also shown that with realistic conditions on the attitude of the quadrotor,

the pattern of the signs of the leading principal minors of the high-frequency gain

matrices in both groups is fixed, known and non-zero.

4.1.1 Flight Conditions with Diagonal Interactor Matrix

In this part, we discuss some fundamental operating conditions of the multirotor

which have diagonal interactor matrices. The flight conditions includes general hover

condition and vertical motion along the zE axis. The interactor matrices of these

conditions are diagonal, so we can directly use the controller in [47] for tracking task.

General hover condition

The hover condition is the condition that the quadrotor is hovering around some

arbitrary position with arbitrary yaw angle and all the angular velocities are zero.

In [47] and many other literatures, the behavior of quadrotors is only studied around

a special hover condition that even the yaw angle ψ is zero. Here we work on the

general hover condition that the yaw angle might not be zero. The key property of

this condition is the external forces and torques are all zero and all the elements in
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the rotation matrix are constant, therefore The system is at an equilibrium point

(xhov, uhov)as

xhov = [xE, yE, zE, 0, 0, 0, 0, 0, ψe, 0, 0, 0]T , ψe ∈ (−π
2
,
π

2
) (4.1)

uhov = [mg, 0, 0, 0]T , (4.2)

where xE, yE, zE are arbitrary and ψe is a constant. By substituting (4.1) and (4.2)

into the linearized mode, the parameters matrices can be derived as

At =


gSψe gCψe 0

−gCψe gSψe 0

0 0 0

 (4.3)

As = 03×3 (4.4)

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
(4.5)

Aw = I3×3 (4.6)

Bt =

[
0 0

1

m

]T
(4.7)

Br = diag

{
1

Jx

1

Jy

1

Jz

}
. (4.8)

The transfer matrix is

Ghov(s) =



1

ms(s+ ct)
0 0 0

0 − gCψe
(ct + s)(cr + Jxs)s2

gSψe ,

(ct + s)(cr + Jys)s2
0

0
gSψe

(ct + s)(cr + Jxs)s2

gCψe
(ct + s)(cr + Jys)s2

0

0 0 0
1

s(cr + Jzs)


. (4.9)

Different from the special hover condition studied in [47], the transfer matrix at

generalized hover condition is not diagonal. We can tell from (4.9) that the input-
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output pairs (Fz, z) and (Tz, ψ) are still independent, while (Tx, y) and (Ty, x) are

coupled. The reason for this is when the yaw angle is zero, the axes xB, yB coincide

with xE, yE, so there is no composition. But when the yaw angle is nonzero, because

the input torque Ti and the output position are defined in different coordinate frames,

the coordinate transformation will lead to decomposition as shown in Ghov.

The modified left interactor (MLI) matrix is obtained as

ξm,hov(s) =



(s+ 1)2 0 0 0

0 (s+ 1)4 0 0

0 0 (s+ 1)4 0

0 0 0 (s+ 1)2


, (4.10)

and the high frequency gain matrix is

Kp,hov =



1/m 0 0 0

0 −gCψe/Jx gSψe/Jy 0

0 gSψe/Jx gCψe/Jy 0

0 0 0 1/Jz


. (4.11)

If ψe is in (−π/2, π/2) as (4.1), then the leading principal minors of Kp are known

and nonzero as

∆1 > 0,∆2 < 0,∆3 < 0,∆4 < 0, (4.12)

where ∆k is the kth order leading principal minors of Kp. With the constraint, ξm(s)

and the signs of leading principal minors of Kp under this generalized hover condition

are consistent with the special hover condition as in [47].

The constraint in (4.1) means the xB axis of body frame should not point backwards

in the view of earth frame. It is a realistic condition if we allow the pitch angle to be
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negative and the quadrotor flies backwards.

Vertical motion condition along zE axis

The operating point is given by (xver, uver) as

xver = [xE, yE, zE, 0, 0, żo, 0, 0, 0, 0, 0, 0]T (4.13)

uver = [mg, 0, 0, 0]T , (4.14)

where x, y, z are arbitrary, żo is a constant. The parameter matrices are derived as

At =


0 g 0

−g 0 0

0 0 0

 (4.15)

As = 03×3 (4.16)

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
(4.17)

Aw = I3×3 (4.18)

Bt =

[
0 0

1

m

]T
(4.19)

Br = diag

{
1

Jx

1

Jy

1

Jz

}
. (4.20)

The transfer matrix is

Gver(s) =



1

ms(s+ ct)
0 0 0

0 − g

(ct + s)(cr + Jxs)s2
0 0

0 0
g

(ct + s)(cr + Jys)s2
0

0 0 0
1

s(cr + Jzs)


. (4.21)
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The modified left interactor (MLI) matrix is obtained as

ξm,ver(s) =



(s+ 1)2 0 0 0

0 (s+ 1)4 0 0

0 0 (s+ 1)4 0

0 0 0 (s+ 1)2


, (4.22)

which is consistent with the general hover condition as (4.10) and the high-frequency

gain matrix is

Kp,ver =



1/m 0 0 0

0 −g/Jx 0 0

0 0 g/Jy 0

0 0 0 1/Jz


. (4.23)

The signs of the leading principals of Kp is known and nonzero as

∆1 > 0,∆2 < 0,∆3 < 0,∆4 < 0, (4.24)

which is consistent with (4.12).

We can summarize the results at these operating points by following proposition:

Proposition 1. For a quadrotor system given by (3.1)-(3.9) at an operating point

satisfying (4.1)-(4.2) or (4.13)-(4.14), there exists an diagonal interactor matrix ξm(s)

as given in (4.10) and the signs of the leading principal minors of the high frequency

gain matrix Kp are known and nonzero as (4.12).
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4.1.2 Flight Conditions with Non-Diagonal Interactor Matri-

ces

We relax φo and θo to be nonzero in this part, so there will be a component of Fz in

the direction of xE, which leads to higher acceleration and velocity than the hover

condition. The non-diagonal interactor matrices are accompanied by more complicated

transfer matrices than the ones in Section 4.1.1.

Uniform motion condition along the xE axis

The operating condition is given by (xpit, upit) as

xpit = [xE, yE, zE, ẋo, 0, 0, 0, θo, 0, 0, 0, 0]T , θo ∈ (−π
2
,
π

2
) (4.25)

upit =

[
mg

Cθo
, 0, 0, 0

]T
, (4.26)

where xE, yE, and zE are arbitrary, θo and ẋo are constants. We are able to derive the

relation between ẋ and θo as

ẍ = gTθo −
ct
m
ẋo = 0 ⇒ θo = tan−1 ctẋo

mg
or ẋo =

mg

ct
tan θo. (4.27)

By substituting (4.25) and (4.26) into the linearized model in (3.14), the parameters

can be derived as

At =


0 g 0

−g 0 gTθo

0 −gTθo 0

 (4.28)

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
(4.29)

As = 03×3 (4.30)
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Aw =


1 0 Tθo

0 1 0

0 0 1/Cθo

 (4.31)

Bt =

[
Sθo
m

0
Cθo
m

]T
(4.32)

Br = diag

{
1

Jx

1

Jy

1

Jz

}
(4.33)

and the transfer function is

Gpit(s) =



Cθo
ms(s+ ct)

0 − gTθo
(ct + s)(cr + Jys)s2

0

0 Gpit,22 0 Gpit,24

Sθo
ms(s+ ct)

0
g

(ct + s)(cr + Jys)s2
0

0 0 0 Gpit,44


, (4.34)

where

Gpit,22 = − g

(ct + s)(cr + Jxs)s2
(4.35)

Gpit,24 =
g(Tθo − Sθo)

Cθo(ct + s)(cr + Jzs)s2
(4.36)

Gpit,44 =
1

Cθos(cr + Jzs)
. (4.37)

The interactor matrix can be obtained as

ξpit(s) =



(s+ 1)2 0 0 0

0 (s+ 1)4 0 0

−Tθo(s+ 1)4 0 (s+ 1)4 0

0 0 0 (s+ 1)2


(4.38)
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such that the high frequency gain matrix is

Kp,pit =



Cθo/m 0 0 0

0 − g

Jx
0

g(Tθo − Sθo)
CθoJz

0 0
gT 2

θo
+ Cθo

JyCθo
0

0 0 0 1/CθoJz


. (4.39)

If θo is in (−π/2, π/2) as (4.25), then the signs of the leading principal minors of Kp are

the same as the general hover condition as (4.12), which are known and nonzero. This

is a rational constraint that the quadrotor is able to fly either forward or backward

with a large enough acceleration.

Uniform motion condition along the yE axis

The operating point is given by (xrol, urol) as

xrol = [x, y, z, 0, ẏo, 0, φo, 0, 0, 0, 0, 0]T , φo ∈ (−π
2
,
π

2
) (4.40)

urol = [mg/Cφo , 0, 0, 0]T , (4.41)

where x, y, z are arbitrary, ẏo, φo are constants. By substituting (4.40) and (4.41) into

the linearized model in (3.14), the parameters can be derived as

At =


0 g gTφo

− g

Cφo
0 0

−gTφo 0 0

 (4.42)

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
(4.43)

As = 03×3 (4.44)
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Aw =


1 0 0

0 Cφo −Sφo

0 Sφo Cφo

 (4.45)

Bt =

[
0 − Sφo

m

Cφo
m

]T
(4.46)

Br = diag

{
1

Jx

1

Jy

1

Jz

}
. (4.47)

The transfer matrix can be found as

Grol(s) =



Cφo
ms(s+ ct)

− gTφo
(ct + s)(cr + Jxs)s2

0 0

− Sφo
ms(s+ ct)

− g

Cφo(ct + s)(cr + Jxs)s2
0 0

0 0 Grol,33 0

0 0 Grol,43 Grol,44


, (4.48)

where

Grol,33 =
g

Cφo(ct + s)(cr + Jys)s2
(4.49)

Grol,43 =
Sφo

s(cr + Jys)
(4.50)

Grol,44 =
Cφo

s(cr + Jzs)
. (4.51)

The interactor matrix is as

ξrol(s) =



(s+ 1)2 0 0 0

Tφo(s+ 1)4 (s+ 1)4 0 0

0 0 (s+ 1)4 0

0 0 0 (s+ 1)2


(4.52)
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such that the high frequency gain matrix is

Kp.rol =



Cφo/m 0 0 0

0 −g(1 + SφoTφo)

CφoJx
0 0

0 0 g/Jy 0

0 0 Sφo/Jy Cφo/Jz


. (4.53)

If φo is in (−π/2, π/2) as (4.40), then the signs of the leading principal minors of Kp are

the same as the general hover condition as (4.12), which are known and nonzero. This

is a realistic constraint that the quadrotor is able to fly either leftward or rightward

with a maximum acceleration which is large enough.

We can summarize the results of these flight conditions by following proposition:

Proposition 2. For a quadrotor system given by (3.1)-(3.9) at an operating point

satisfying (4.25)-(4.26) or (4.40)-(4.41), there exists an non-diagonal interactor matrix

ξm(s) and the signs of the leading principal minors of the high-frequency gain matrix

Kp are known and nonzero as (4.12).

This proposition indicates the existence of an interactor matrix at each condition,

which is non-diagonal, changing and parameter-dependent, unlike the cases of Propo-

sition 1 (in which the interactor matrices are diagonal and parameter-independent).

For the circumstances with full knowledge of state information, an individual state

feedback output tracking control scheme is available for an individual operating con-

dition studied. Then with a proper adaptive law for the control parameter kf , the

result in [47] can be applied to a quadrotor operating at a fixed condition.
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4.1.3 General Model of Fixed Attitude

The state vector is given by

xo,att(t) =[xE, yE, zE, ẋE, ẏE, żE, φo, θo, ψo, 0, 0, 0]T . (4.54)

where xE, yE, zE are arbitrary, ẋE, ẏE, żE, φo, θo, ψo are constants, and the input vector

is given by

u = [
mg

CθoCφo
, 0, 0, 0]T . (4.55)

By substituting (4.54) and (4.55) into our linearized model in (3.14), the parameters

yields

At =


CφoSψo − SφoSθoCψo CφoCθoCψo SφoCψo − CφoSθoSψo

−CθoCψo − SφoSθoSψo CφoCθoSψo SφoSψo + CφoSθoCψo

−SφoCθo −CφoSθo 0

 g

CθoCφo

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
As = 03×3

Aw =


1 SφoTθo CφoTθo

0 Cφo −Sφo

0
Sφo
Cθo

Cφo
Cθo



Bt =


SφoSψo + CφoSθoCψo

−SφoCψo + CφoSθoSψo

CφoCθo

 1

m

Br = diag

{
1

Jx

1

Jy

1

Jz

}
.
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Then we could derive the transfer function as

Gatt(s) =



CφoCθo
ms(s+ ct)

Gatt,12 Gatt,13 0

−SφoCψo − CφoSψoSθo
ms(s+ ct)

Gatt,22 Gatt,23 Gatt,24

SφoSψo + CφoCψoSθo
ms(s+ ct)

Gatt,32 Gatt,33 0

0 0 Gatt,43 Gatt,44


, (4.56)

where

Gatt,12 = − gTφo
(ct + s)(cr + Jxs)s2

(4.57)

Gatt,13 = − gTθo
Cφo(ct + s)(cr + Jys)s2

(4.58)

Gatt,22 = − g(Cψo + SφoTθoSψo)

Cφo(ct + s)(cr + Jxs)s2
(4.59)

Gatt,23 =
g(SφoTθoCψo(Cφo − Cθo) + CθoSψo)

CφoCθo(ct + s)(cr + Jxs)s2
(4.60)

Gatt,24 =
g(CφoTθo − Sθo)Cψo

Cθo(ct + s)(cr + Jzs)s2
(4.61)

Gatt,32 =
g(Sψo − TφoSθoCψo)

Cθo(ct + s)(cr + Jxs)s2
(4.62)

Gatt,33 =
gCψo

Cφo(ct + s)(cr + Jys)s2
(4.63)

Gatt,43 =
Sφo

Cθos(cr + Jys)
(4.64)

Gatt,44 =
Cφo

Cθos(cr + Jzs)
. (4.65)

The modified left interactor (MLI) matrix is obtained as

ξatt(s)=



(s+ 1)2 0 0 0

TφoCψo − SθoSψo
Cθo

(s+ 1)4 (s+ 1)4 0 0

−TφoSψo + SθoCψo
Cθo

(s+ 1)4 0 (s+ 1)4 0

0 0 0 (s+ 1)2


(4.66)
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and the high frequency gain matrix is

Kp,att =



CφoCθo
m

0 0 0

0 −g(SφoTφo + Cθo)Cψo
JxCφoCθo

Katt,23 Katt,24

0
gSψo

JxC2
φo
Cθo

Katt,33 0

0 0
Sφo
CθoJy

Cφo
CθoJz


, (4.67)

where

Katt,23 =
g(−Sφo(SφoTφo + Cθo)TθoCψo + (SθoTθo + Cφo)Sψo)

JyCφoCθo
(4.68)

Katt,24 =
g(CφoTθo − Sθo)Cψo

CθoJz
(4.69)

Katt,33 =
g((SθoTθo + 1)Cψo + TφoTθoSψo)

JyCφoCθo
. (4.70)

If φo, θo and ψo are all in (−π/2, π/2), then the signs of the leading principal minors

of Kp are known and nonzero as ∆1 > 0,∆2 < 0,∆3 < 0,∆4 < 0.

4.2 Fully-Actuated Multirotor Systems

The section derives linearized models and transfer matrices at typical operating

conditions of the nonlinear dynamic model of omni-directional multirotor systems

which has full actuation on all six degrees of freedom. It is discovered that these models

have the same diagonal interactor that is not dependent on system parameters or

operating conditions. It is also shown that with realistic conditions on the attitude of

a multirotor system, the leading principal minors of the high-frequency gain matrices

are all non-zero and their sign patterns are fixed and known.
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4.2.1 Special Hover Condition

The parameter matrices for the condition are given as

At = g


0 1 0

−1 0 0

0 0 0

 (4.71)

As = 03×3 (4.72)

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
(4.73)

Aw = I3×3 (4.74)

Bt =
1

m
I3×3 (4.75)

Br = diag

{
1

Jx

1

Jy

1

Jz

}
. (4.76)

The transfer function is

Ghov(s) =



Ghov,11 0 0 0 Ghov,15 0

0 Ghov,22 0 Ghov,24 0 0

0 0 Ghov,33 0 0 0

0 0 0
1

s(cr + Jxs)
0 0

0 0 0 0
1

s(cr + Jys)
0

0 0 0 0 0
1

s(cr + Jzs)


, (4.77)

where

Ghov,11 =
1

ms(s+ ct)
(4.78)

Ghov,15 =
g

(ct + s)(cr + Jys)s2
(4.79)

Ghov,22 =
1

ms(s+ ct)
(4.80)
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Ghov,24 = − g

(ct + s)(cr + Jxs)s2
(4.81)

Ghov,33 =
1

ms(s+ ct)
. (4.82)

The modified left interactor (MLI) matrix is obtained as

ξm,hov(s) =



(s+ 1)2 0 0 0 0 0

0 (s+ 1)2 0 0 0 0

0 0 (s+ 1)2 0 0 0

0 0 0 (s+ 1)2 0 0

0 0 0 0 (s+ 1)2 0

0 0 0 0 0 (s+ 1)2


, (4.83)

and the high frequency gain matrix is

Kp,hov =



1/m 0 0 0 0 0

0 1/m 0 0 0 0

0 0 1/m 0 0 0

0 0 0 1/Jx 0 0

0 0 0 0 1/Jy 0

0 0 0 0 0 1/Jz


. (4.84)

4.2.2 Conditions with Non-Zero Yaw Angle

The parameter matrices for the condition are given as

At = g


Sψe Cψe 0

−Cψe Sψe 0

0 0 0

 (4.85)
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As = 03×3 (4.86)

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
(4.87)

Aw = I3×3 (4.88)

Bt =
1

m


Cψe −Sψe 0

Sψe Cψe 0

0 0 1

 (4.89)

Br = diag

{
1

Jx

1

Jy

1

Jz

}
. (4.90)

The transfer matrix is

Gyaw(s) =



Gyaw,11 Gyaw,12 0 Gyaw,14 Gyaw,15 0

Gyaw,21 Gyaw,22 0 Gyaw,24 Gyaw,25 0

0 0 Gyaw,33 0 0 0

0 0 0 Gyaw,44 0 0

0 0 0 0 Gyaw,55 0

0 0 0 0 0 Gyaw,66


, (4.91)

where

Gyaw,11 =
Cψe

ms(s+ ct)
(4.92)

Gyaw,12 = − Sψe
ms(s+ ct)

(4.93)

Gyaw,14 =
gSψe

(ct + s)(cr + Jxs)s2
(4.94)

Gyaw,15 =
gCψe

(ct + s)(cr + Jys)s2
(4.95)

Gyaw,21 =
Sψe

ms(s+ ct)
(4.96)
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Gyaw,22 =
Cψe

ms(s+ ct)
(4.97)

Gyaw,24 = − gCψe
(ct + s)(cr + Jxs)s2

(4.98)

Gyaw,25 =
gSψe

(ct + s)(cr + Jys)s2
(4.99)

Gyaw,33 =
1

ms(s+ ct)
(4.100)

Gyaw,44 =
1

s(cr + Jxs)
(4.101)

Gyaw,55 =
1

s(cr + Jys)
(4.102)

Gyaw,66 =
1

s(cr + Jzs)
. (4.103)

The modified left interactor (MLI) matrix is obtained as

ξm,yaw(s) =



(s+ 1)2 0 0 0 0 0

0 (s+ 1)2 0 0 0 0

0 0 (s+ 1)2 0 0 0

0 0 0 (s+ 1)2 0 0

0 0 0 0 (s+ 1)2 0

0 0 0 0 0 (s+ 1)2


, (4.104)

and the high frequency gain matrix is

Kp,yaw =



Cψe/m −Sψe/m 0 0 0 0

Sψe/m Cψe/m 0 0 0 0

0 0 1/m 0 0 0

0 0 0 1/Jx 0 0

0 0 0 0 1/Jy 0

0 0 0 0 0 1/Jz


. (4.105)
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If ψe is in (−π/2, π/2), then the leading principal minors of Kp are known and nonzero

as

∆1 > 0,∆2 > 0,∆3 > 0,∆4 > 0,∆5 > 0,∆6 > 0. (4.106)

4.2.3 Conditions with Non-Zero Pitch Angle

The parameter matrices for the condition are given as

At =


0 g 0

−g 0 gTθe

0 −gTθe 0

 (4.107)

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
(4.108)

As = 03×3 (4.109)

Aw =


1 0 Tθe

0 1 0

0 0 1/Cθe

 (4.110)

Bt =

[
Sθe
m

0
Cθe
m

]T
(4.111)

Br = diag

{
1

Jx

1

Jy

1

Jz

}
(4.112)
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and the transfer function is

Gpit(s) =



Gpit,11 0 Gpit,13 0 Gpit,15 0

0 Gpit,22 0 Gpit,24 0 Gpit,26

Gpit,31 0 Gpit,33 0 Gpit,35 0

0 0 0 Gpit,44 0 Gpit,46

0 0 0 0 Gpit,55 0

0 0 0 0 0 Gpit,66


, (4.113)

where

Gpit,11 =
Cθe

ms(s+ ct)
(4.114)

Gpit,13 =
Sθe

ms(s+ ct)
(4.115)

Gpit,15 =
g

(ct + s)(cr + Jys)s2
(4.116)

Gpit,22 =
1

ms(s+ ct)
(4.117)

Gpit,24 = − g

(ct + s)(cr + Jxs)s2
(4.118)

Gpit,26 =
g(Tθe − Sθe)

Cθe(ct + s)(cr + Jzs)s2
(4.119)

Gpit,31 = − Sθe
ms(s+ ct)

(4.120)

Gpit,33 =
Cθe

ms(s+ ct)
(4.121)

Gpit,35 = − gTθe
Cθe(ct + s)(cr + Jys)s2

(4.122)

Gpit,44 =
1

s(cr + Jxs)
(4.123)

Gpit,46 =
Tθe

s(cr + Jzs)
(4.124)

Gpit,55 =
1

s(cr + Jys)
(4.125)

Gpit,66 =
1

Cθes(cr + Jzs)
. (4.126)
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The modified left interactor (MLI) matrix is obtained as

ξm,pit(s) =



(s+ 1)2 0 0 0 0 0

0 (s+ 1)2 0 0 0 0

0 0 (s+ 1)2 0 0 0

0 0 0 (s+ 1)2 0 0

0 0 0 0 (s+ 1)2 0

0 0 0 0 0 (s+ 1)2


, (4.127)

and the high frequency gain matrix is

Kp,pit =



Cθe/m 0 Sθe/m 0 0 0

0 1/m 0 0 0 0

−Sθe/m 0 Cθe/m 0 0 0

0 0 0 1/Jx 0 Tθe/Jz

0 0 0 0 1/Jy 0

0 0 0 0 0 1/Jz


. (4.128)

If θe is in (−π/2, π/2), then the signs of the leading principal minors of Kp are the

same as the general hover condition as (4.106), which are known and nonzero. This is

a rational constraint that the quadrotor is able to fly either forward or backward with

a large enough acceleration.
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4.2.4 Conditions with Non-Zero Roll Angle

The parameter matrices for the condition are given as

At =


0 g gTφe

− g

Cφe
0 0

−gTφe 0 0

 (4.129)

Ar = −cr diag

{
1

Jx

1

Jy

1

Jz

}
(4.130)

As = 03×3 (4.131)

Aw =


1 0 0

0 Cφe −Sφe

0 Sφe Cφe

 (4.132)

Bt =

[
0 − Sφe

m

Cφe
m

]T
(4.133)

Br = diag

{
1

Jx

1

Jy

1

Jz

}
. (4.134)

The transfer matrix can be found as

Grol(s) =



Grol,11 0 0 0 Grol,15 0

0 Grol,22 Grol,23 Grol,24 0 0

0 Grol,32 Grol,33 Grol,34 0 0

0 0 0 Grol,44 0 0

0 0 0 0
Cφe

s(cr + Jys)
− Sφe
s(cr + Jzs)

0 0 0 0
Sφe

s(cr + Jys)

Cφe
s(cr + Jzs)


, (4.135)

where

Grol,11 =
1

ms(s+ ct)
(4.136)
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Grol,15 =
g

Cφe(ct + s)(cr + Jys)s2
(4.137)

Grol,22 =
Cφe

ms(s+ ct)
(4.138)

Grol,23 = − Sφe
ms(s+ ct)

(4.139)

Grol,24 = − g

Cφe(ct + s)(cr + Jxs)s2
(4.140)

Grol,32 =
Sφe

ms(s+ ct)
(4.141)

Grol,33 =
Cφe

ms(s+ ct)
(4.142)

Grol,34 = − gTφe
(ct + s)(cr + Jxs)s2

(4.143)

Grol,44 =
1

s(cr + Jxs)
. (4.144)

The modified left interactor (MLI) matrix is obtained as

ξm,rol(s) =



(s+ 1)2 0 0 0 0 0

0 (s+ 1)2 0 0 0 0

0 0 (s+ 1)2 0 0 0

0 0 0 (s+ 1)2 0 0

0 0 0 0 (s+ 1)2 0

0 0 0 0 0 (s+ 1)2


, (4.145)

and the high frequency gain matrix is

Kp,rol =



1/m 0 0 0 0 0

0 Cθe/m −Sθe/m 0 0 0

0 Sθe/m Cθe/m 0 0 0

0 0 0 1/Jx 0 0

0 0 0 0 Cθe/Jy −Sθe/Jz

0 0 0 0 Sθe/Jy Cθe/Jz


. (4.146)
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If φe is in (−π/2, π/2), then the signs of the leading principal minors of Kp are the

same as the general hover condition as (4.106), which are known and nonzero.

4.3 Issues with Dynamics Mutation

We have shown that the changeable system parameters at different operating conditions

can lead to mutative transfer matrices and interactor matrices. Such dynamics

mutation is an obstacle for the design of an adaptive controller with a uniform control

parameter updating law. The interactor matrix and the signs of the leading principal

minors of the high-frequency gain matrix are important prior information for designing

MRAC schemes. Because of the varying interactor matrices, different adaptive laws

are needed for different operating conditions.

A possible solution is to construct a control system with multiple controllers for a

group of selected operating conditions. As derived in (4.27), the desired attitude is

related to the desired cruising speed. So the corresponding guidance system should

adjust the reference trajectory to guarantee the quadrotor working around selected

operating conditions. However, such a scheme is based on the assumption that the

translational drag coefficient in (4.27) as ct is known. Since the parameter is dependent

on the environment and unknown, then a stable and fast estimator for ct should also

be attached to the scheme, which definitely increases the complexity of the system

and difficulty of stability analysis.



Chapter 5

Compensable Patterns of Actuator

Failure

The emerging NNPPNP rotor arrangement of hexarotors is adopted in this work

and is investigated for its capability of tolerating up to two failed actuators and for

the design of compensators for individual failure patterns. The compensable failure

patterns of the octorotor systems are also investigated, which include patterns of one,

two, three, and four actuator failures.

5.1 Hexarotors

5.1.1 NPNPNP Hexarotors

A hexarotor with NPNPNP rotor arrangement as in Figure 5.1 can not tolerate the

loss-of-control failure at any actuator [69,74,75].

5.1.2 NNPPNP Hexarotors

The controllability investigation in [69] reveals that the hexarotors with an NNPPNP

rotor arrangement have better performance than the ones with NPNPNP in tolerating

70
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Figure 5.1: The NPNPNP rotor arrangement of a hexarotor.

the loss-of-thrust failure. However, [69] also shows that some of the failure patterns still

cannot be compensated even with the NNPPNP arrangement. All the compensable

patterns are enumerated and grouped as follows.

Figure 5.2: The NNPPNP rotor arrangement of a hexarotor.

(i) The pattern with no actuator failure

(0) σ(0) = diag{0, 0, 0, 0, 0, 0}.
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(ii) Patterns with one actuator failure

(1) σ(1) = diag{1, 0, 0, 0, 0, 0}.

(2) σ(2) = diag{0, 0, 0, 1, 0, 0}.

(3) σ(3) = diag{0, 0, 0, 0, 1, 0}.

(4) σ(4) = diag{0, 0, 0, 0, 0, 1}.

(iii) Patterns with two actuators failures

(5) σ(5) = diag{1, 0, 0, 1, 0, 0}.

(6) σ(6) = diag{1, 0, 0, 0, 1, 0}.

(7) σ(7) = diag{0, 0, 0, 1, 0, 1}.

Remark 4. The compensable patterns with one failure are based on the study in [69],

which do not include the failure of rotor 2 or 3. The two-failure patterns presented

above are not discussed in [69], which are figured out by us following the controllability

analysis procedure in [69]. The hexarotor system in Figure 3.2 cannot bear any

loss-of-control failures of rotor 2 or 3. However, the hexarotors with NPNPNP cannot

control 4-DOF when there is only one rotor with a loss-of-control failure. Though the

compensable patterns are still limited, the NNPPNP rotor arrangement has brought a

huge breakthrough in the failure compensation control of hexarotors.

5.2 Octorotors

5.2.1 NPNPNPNP Octorotors

(i) Pattern with no actuator failure

(0) σ(0) = diag{0, 0, 0, 0, 0, 0, 0, 0}.
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Figure 5.3: The NPNPNPNP rotor arrangement of an octorotor.

(ii) Patterns with one actuator failure

All the eight patterns of single actuator failure are compensable.

(iii) Patterns with two actuators failures

All twenty-eight patterns of two failed actuators are compensable.

(iii) Patterns with three actuators failures

σ(37) = σ124, σ(38) = σ125, σ(39) = σ126, σ(40) = σ127, σ(41) = σ134, σ(42) = σ136,

σ(43) = σ138, σ(44) = σ145, σ(45) = σ147, σ(46) = σ148, σ(47) = σ156, σ(48) = σ158,

σ(49) = σ167, σ(50) = σ168, σ(51) = σ235, σ(52) = σ236, σ(53) = σ237, σ(54) = σ238,

σ(55) = σ245, σ(56) = σ247, σ(57) = σ256, σ(58) = σ257, σ(59) = σ258, σ(60) = σ267,

σ(61) = σ278, σ(62) = σ346, σ(63) = σ347, σ(64) = σ348, σ(65) = σ356, σ(66) = σ358,

σ(67) = σ367, σ(68) = σ368, σ(69) = σ378, σ(70) = σ457, σ(71) = σ458, σ(72) = σ467,

σ(73) = σ478, σ(74) = σ568, σ(75) = σ578.

Remark 5. We use a more compact notation formula in this part to represent the

failure patterns in this section.
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(iii) Patterns with four actuators failures

σ(76) = σ1245, σ(77) = σ1247, σ(78) = σ1256, σ(79) = σ1267, σ(80) = σ1346, σ(81) = σ1348,

σ(82) = σ1368, σ(83) = σ1458, σ(84) = σ1467, σ(85) = σ1568, σ(86) = σ2356, σ(87) = σ2358,

σ(88) = σ2367, σ(89) = σ2378, σ(90) = σ2457, σ(91) = σ2578, σ(92) = σ3467, σ(93) = σ3478,

σ(94) = σ3568, σ(95) = σ4578.

5.2.2 NNPPNNPP Octorotors

An octorotor with NNPPNNPP rotor arrangement is shown in Figure 5.4.

Figure 5.4: The NNPPNNPP rotor arrangement of an octorotor.

(i) Pattern with no actuator failure

(0) σ(0) = diag{0, 0, 0, 0, 0, 0, 0, 0}.



5.2 Octorotors 75

(ii) Patterns with one actuator failure

All the eight patterns of single actuator failure are compensable.

(iii) Patterns with two actuators failures

σ(9) = σ13, σ(10) = σ14, σ(11) = σ15, σ(12) = σ16, σ(13) = σ17, σ(14) = σ18, σ(15) = σ23,

σ(16) = σ24, σ(17) = σ25, σ(18) = σ26, σ(19) = σ27, σ(20) = σ28, σ(21) = σ35, σ(22) = σ36,

σ(23) = σ37, σ(24) = σ38, σ(25) = σ45, σ(26) = σ46, σ(27) = σ47, σ(28) = σ48, σ(29) = σ57,

σ(30) = σ58, σ(31) = σ67, σ(32) = σ68,

(iii) Patterns with three actuators failures

σ(33) = σ457, σ(34) = σ458, σ(35) = σ467, σ(36) = σ468, σ(37) = σ135, σ(38) = σ136,

σ(39) = σ137, σ(40) = σ138, σ(41) = σ145, σ(42) = σ146, σ(43) = σ147, σ(44) = σ148,

σ(45) = σ157, σ(46) = σ158, σ(47) = σ167, σ(48) = σ168, σ(49) = σ235, σ(50) = σ236,

σ(51) = σ237, σ(52) = σ238, σ(53) = σ245, σ(54) = σ246, σ(55) = σ247, σ(56) = σ248,

σ(57) = σ257, σ(58) = σ258, σ(59) = σ267, σ(60) = σ268, σ(61) = σ357, σ(62) = σ358,

σ(63) = σ367, σ(64) = σ368.

(iii) Patterns with four actuators failures

σ(65) = σ1357, σ(66) = σ1358, σ(67) = σ1367, σ(68) = σ1368, σ(69) = σ1457, σ(70) = σ1458,

σ(71) = σ1467, σ(72) = σ1468, σ(73) = σ2357, σ(74) = σ2358, σ(75) = σ2367. σ(76) = σ2368,

σ(77) = σ2457, σ(78) = σ2458, σ(79) = σ2467, σ(80) = σ2468.



Chapter 6

MRAC for Quadrotors with

Non-Diagonal Interactor Matrices

An adaptive control design is presented in this chapter for quadrotor systems working at

non-equilibrium operating conditions under parameter uncertainties. The motivation

of the part is to handle the situation that existing control schemes are either restricted

to the system equilibrium as the hover condition or unable to deal with the system

uncertainties. An adaptive controller is constructed to ensures the signal boundedness

of the closed-loop system and asymptotic output tracking. The proposed scheme

expands the capacity of adaptive control for quadrotors to fly with high speed in the

presence of system uncertainties.

The main contributions of the part include:

• A multivariable MRAC scheme is established for quadrotor systems at non-

equilibrium operating conditions.

• A state feedback based adaptive controller with rejection of the non-equilibrium

offset is developed for uncertain quadrotor systems at non-equilibrium operating

conditions.

76
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6.1 Problem Statement

In this section, we investigate the system characteristics over a typical flight conditions

and present our control problem. There are three significant differences between the

work in this chapter and [47]. First, as shown in following the linearized system is

with a non-diagonal interactor matrix. Second, there exists a non-equilibrium offset

to be eliminated. Third, the drag effect is considered in the system dynamic model.

6.1.1 Linearized Models at Typical Flight Conditions

In this part, we survey two typical flight conditions to show the interactor matrices

and gain matrix signs of different modes may differ from each other.

Generalized hover condition

The hover condition is the condition that the quadrotor is hovering around some

arbitrary position with arbitrary yaw angle while all the angular velocities of the drone

are zero. The system is at its equilibrium point as

xhov = [xE, yE, zE, 0, 0, 0, 0, 0, ψe, 0, 0, 0]T , (6.1)

where xE, yE, zE are arbitrary and ψe is a constant, and the input vector is given by

uhov = [mg, 0, 0, 0]T . (6.2)
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The modified left interactor (MLI) matrix is obtained as

ξm,hov(s)=



(s+ 1)2 0 0 0

0 (s+ 1)4 0 0

0 0 (s+ 1)4 0

0 0 0 (s+ 1)2


, (6.3)

and the high frequency gain matrix is

Kp,hov =



1/m 0 0 0

0 −gCψe/Jx gSψe/Jy 0

0 gSψe/Jx gCψe/Jy 0

0 0 0 1/Jz


. (6.4)

If ψe is in (−π/2, π/2) as (6.1), then the signs of the leading principal minors of

Kp,hov are known and nonzero as ∆1 > 0,∆2 < 0,∆3 < 0,∆4 < 0, where ∆k

is the kth order leading principal minors of Kp,hov. If ψe is in (π/2, 3π/2) as ,

then the signs of the leading principal minors of Kp,hov are known and nonzero as

∆1 > 0,∆2 > 0,∆3 < 0,∆4 < 0.

Cruise condition along the direction of xE

When the quadrotor is flying in the horizontal plane and the velocity direction is along

the xE axis, say, the pitch angle θ is nonzero to generate a propulsion force against

the drag effect. The state vector of the cruise condition along the direction of xE is

given by

xpit = [xE, yE, zE, ẋo, 0, 0, 0, θo, 0, 0, 0, 0]T , (6.5)
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where xE, yE, zE are arbitrary, θo, ẋo are constants. Since the speed ẋo along th xE

axis is a constant, the acceleration ẍE along the xE axis is zero. The input vector is

given by

u = [mg/Cθo , 0, 0, 0]T . (6.6)

For the cruise condition, the interactor matrix can be obtained as

ξm,pit(s)=



(s+ 1)2 0 0 0

0 (s+ 1)4 0 0

−Tθo(s+ 1)4 0 (s+ 1)4 0

0 0 0 (s+ 1)2


, (6.7)

where Tθo = tan θo is the tangent value of the constant pitch angle θo at the given

operating point, such that the high frequency gain matrix is

Kp,pit=



Cθo/m 0 0 0

0 − g
Jx

0
g(Tθo−Sθo )

CθoJz

0 0
g(T 2

θo
+Cθo )

JyCθo
0

0 0 0 1/CθoJz


. (6.8)

If θo is in (−π/2, π/2) as (6.5), then the signs of the leading principal minors of Kp,pit

are known and nonzero as ∆1 > 0,∆2 < 0,∆3 < 0,∆4 < 0 which are the same as the

general hover condition in (6.1). If θo is in (0.77π, 1.23π), then the signs of the leading

principal minors of Kp,pit are known and nonzero as ∆1 < 0,∆2 > 0,∆3 > 0,∆4 < 0.

If θo is in (π/2, 0.77π) ∪ (1.23π, 3π/2), then the signs of the leading principal minors

of Kp,pit are known and nonzero as ∆1 < 0,∆2 > 0,∆3 < 0,∆4 > 0.
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6.1.2 Control objective

The system model of the quadrotor with high cruise speed is described as

ẋ(t) = Ax(t) +Bu(t) + fo, y(t) = Cx(t), (6.9)

where x(t) ∈ Rn is the state vector, u(t) ∈ RM is the input vector, y(t) ∈ RM is the

output vector, fo is an unknown constant vector A and B are unknown matrices, C is

the known output matrix

C =

 Ct 03×3 03×3 03×3

01×3 01×3 Cr 01×3

 . (6.10)

The objective of this research is to design a multivariable adaptive control scheme

for a quadrotor at a non-equilibrium operating condition at which the linearized

system model has a non-diagonal interactor matrix. The adaptive control scheme

ensures that all signals in the closed-loop system are bounded, and the output of the

system y(t) asymptotically tracks a reference signal ym(t) generated from a reference

model system

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s). (6.11)

where r(t) is a bounded reference input signal.

6.2 Adaptive Control Scheme

A multivariable control scheme is developed for the linearized system with input

compensator in this section, which can compensate the unknown non-equilibrium

offset and the uncertain parameters.
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6.2.1 Nominal Controller Design

When the system parameters are known, the nominal controller of state feedback for

output tracking is given by

u∗(t) = K∗Tx x(t) +K∗r r(t) + k∗f , (6.12)

where the non-equilibrium matching parameter k∗f ∈ RM is used to cancel the effect

of the non-equilibrium offset fo = f(xo, uo), and K∗Tx ∈ RM×n and K∗Tr ∈ RM×M are

for the plant-model output matching:

C(sI − A−BK∗Tx )−1BK∗r = Wm(s), K∗−1
r = Kp, (6.13)

where Kp is the high-frequency gain matrix in (2.17). The existence of K∗x and K∗r is

guaranteed by following lemma.

Lemma 2 [27]. There exist K∗x and K∗r such that the plant-model matching condition

(6.13) holds.

Non-equilibrium offset rejection design

Substituting the applied controller (6.12) into the linearized system, the closed-loop

system in the frequency domain is

y(s) = C(sI − A−BK∗Tx )−1BK∗r r(s) + δ(s), (6.14)

where

δ(s) = C(sI − A−BK∗Tx )−1BK∗r (B
k∗f
s

+
fo
s

), (6.15)



82 Chapter 6 MRAC for Quadrotors with Non-Diagonal Interactor Matrices

The we can derive the output-tracking error in s domain from the reference system in

(6.11) and the matching conditions as (6.13), which is

e(s) = y(s)− ym(s) = δ(s). (6.16)

Then the final value of the tracking error can be found as

lim
t→∞

e(t) = lim
t→∞

δ(t) = lim
s→0

sδ(s) = Dk∗f + d, (6.17)

where

D = −C(A+BK∗x)−1B

d = −C(A+BK∗x)−1fo.

In order to reject the offset d, the nominal parameter k∗f should be as

k∗f = −D−1d (6.18)

so that limt→∞ δ(t) = 0, where D is nonsingular as the result of Assumption (A1).

Then from (6.17) and (6.18), it follows that

lim
t→∞

(y(t)− ym(t)) = lim
t→∞

δ(t) = 0. (6.19)

In summary, the following lemma is given for the nominal controller.

Lemma 3. For the plant (6.9) in the presence of the non-equilibrium offset fo, there

exist matrices K∗x, K
∗
r and k∗f , with which the state feedback controller (6.12) ensures

the closed-loop signal boundedness, nonlinear offset rejection, and output tracking of a

chosen reference output ym(t) by the output y(t).
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6.2.2 Adaptive Controller Design

When the system parameters and the offset vector fo are unknown, the state-feedback

controller structure is given as

u(t) = KT
x (t)x(t) +Kr(t)r(t) + kf (t), (6.20)

where Kx(t), Kr(t) and kf (t) are the estimates of the nominal controller parameters

K∗x, K∗r and k∗f .

Error equation

By substituting the control law as (6.20) into the system model as (6.9), we can write

the system dynamic as

ẋ(t) =Ax(t) +B(KT
x (t)x(t) +Kr(t)r(t) + kf (t)) + fo

=(A+BK∗Tx )x(t) +BK∗r r(t) +Bk∗f + fo

+B(K̃T
x (t)x(t) + K̃r(t)r(t) + k̃f (t)) (6.21)

where K̃x(t) = Kx(t) −K∗x, K̃r(t) = Kr(t) −K∗r , k̃f(t) = kf(t) − k∗f . The tracking

error of the system is e(t) = y(t)− ym(t), by combing the reference model system as

(6.11), the matching conditions in(6.13), and the closed-loop system as (6.21), e(t) can

be represented as

e(t) = y(t)− ym(t) = Wm(s)Kp[Θ̃
Tω](t) + δ(t) (6.22)

where Θ̃(t) = Θ(t) − Θ∗, Θ(t) = [KT
x (t), Kr(t), kf(t)]

T , Θ∗ = [K∗Tx , K∗r , k
∗
f ]
T , ω(t) =

[xT (t), rT (t), 1]T . To deal with the uncertainty of Kp, the LDS decomposition [27] is

used as

Kp = LsDsS, (6.23)
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where S ∈ RM×M is a symmetric positive definite matrix, Ls ∈ RM×M is a unity lower

triangular matrix, and

Ds={sign[∆1]γ1, sign

[
∆2

∆1

]
γ2, . . . , sign

[
∆M

∆M−1

]
γM} (6.24)

such that γi≥0, i = 1, . . . ,M , may be chosen to be arbitrary.

Estimation error

The next step is to parameterize the tracking-error signal and establish the model of

estimation error which is crucial for deriving the adaptive laws of the controller param-

eters. By substituting the LDS decomposition of Kp as (6.23) in to the parameterized

tracking error as (6.22), we have

L−1
s ξm(s)[e](t) = DsSΘ̃T (t)ω(t). (6.25)

The term δ is omitted because it is exponentially decaying according to the choice of

k∗f in (6.18). A parameter matrix is introduced as

Θ∗0 = L−1
s − I =



0 0 0 · · · 0

θ∗21 0 0 · · · 0

θ∗31 θ∗32 0 · · · 0

...
...

...
...

...

θ∗M−11 · · · θ∗M−1M−2 0 0

θ∗M1 · · · θ∗MM−2 θ∗MM−1 0


∈RM×M. (6.26)

Consider a stable and monic polynomial fh(s), whose degree is equal to the maximum

degree of ξm(s). Operating both sides of (6.25) by IM/fh(s), we obtain the filtered
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tracking error

ē(t) + [0, θ∗T2 η2(t), θ∗T3 η3(t), . . . , θ∗TM ηM(t)]T = DsSh(s)[Θ̃Tω](t), (6.27)

where ē(t) = ξm(s)h(s)[e](t) = [ē1(t), . . . , ēM(t)]T , ηi(t) = [ē1(t), . . . , ēi−1(t)]
T , for

i = 2, . . . ,M , θ∗i = [θ∗i1, . . . , θ
∗
ii−1]T , for i = 2, . . . ,M . Based on this error equation, we

construct the estimation error vector signal:

ε(t) = ē(t) + [0, θT2 (t)η2(t), θT3 (t)η3(t), . . . , θTM(t)ηM(t)]T + Ψ(t)ξ(t), (6.28)

where θi(t) are the estimates of θ∗i , Ψ(t) is the estimate of Ψ∗ = DsS, and ξ(t) =

ΘT (t)ζ(t)− h(s)[ΘTω](t), ζ(t) = h(s)[ω](t). From (6.27) and (6.28), it then follows

that

ε(t) = [0, θ̃T2 (t)η2(t), θ̃T3 (t)η3(t), . . . , θ̃TM(t)ηM(t)]T + Ψ̃(t)ξ(t) +DsSΘ̃T (t)ζ(t),(6.29)

where θ̃i(t) = θi(t)− θ∗i and Ψ̃(t) = Ψ(t)−Ψ∗ are the related parameter errors.

Adaptive laws

With the estimation error model (6.29), we choose the adaptive laws

θ̇i(t) =− Γθiεi(t)ηi(t)

m2(t)
, i = 2, 3, . . . ,M (6.30)

Θ̇T (t) =− Dsε(t)ζ
T (t)

m2(t)
, (6.31)

Ψ̇(t) =− Γε(t)ξT (t)

m2(t)
(6.32)
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where the signal ε(t) = [ε1(t), ε2(t), . . . , εM (t)]T is computed from (6.29), Γθi = ΓTθi > 0

and Γ = ΓT > 0 are adaptation gain matrices, and

m(t)=
√

1 + ζT (t)ζ(t) + ξT (t)ξ(t) + ΣM
i=2η

T
i (t)ηi(t), (6.33)

is a standard normalization signal.

6.2.3 Stability analysis

The desired properties of the adaptive laws for the linearized system at each operating

condition is established in this part. Then the closed-loop system stability is analyzed.

Lemma 4. The adaptive laws (6.30)-(6.32) ensure the following desired properties:

1. θi(t) ∈ L∞(i = 2, 3, . . . ,M),Θ(t) ∈ L∞,Ψ ∈ L∞, ε(t)
m(t)
∈ L2 ∩ L∞; and

2. θ̇i(t) ∈ L2 ∩ L∞(i = 2, 3, . . . ,M), Θ̇(t) ∈ L2 ∩ L∞, Ψ̇(t) ∈ L2 ∩ L∞.

Based on Lemma 4, we can derive the following properties of closed-loop system

for each linearized system model:

Theorem 1. The multivariable MRAC scheme with the state feedback control law

(6.20) updated by the adaptive laws (6.30)-(6.32), when applied to the system (6.9),

guarantees the closed-loop signal boundedness and asymptotic output tracking: lim
t→∞

(∆y(t)−

∆ym(t)) = 0, for any initial conditions.

The key step of proving Lemma 4 is to choose a positive definite Lyapunov function

candidate as

V =
1

2
(
M∑
i=2

θ̃Ti Γ−1
θi
θ̃i + tr[Ψ̃TΓ−1Ψ̃] + tr[Θ̃SΘ̃T ]) > 0. (6.34)

Then proof of Theorem 1 is in a similar way to that derived in [27].
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6.3 Simulation Study

Table 6.1: Parameter values for simulation

Parameter Value Unit

cm 0.0025 m·s
cr 0.001 N·m·s
ct 0.25 N·m·s
d 0.2 m

g 9.8 m/s2

Jx 0.005 kg·m2

Jy 0.005 kg·m2

Jz 0.009 kg·m2

m 2 kg

The quadrotor system is linearized at the high speed cruise condition in the

xE direction with pitch angle θ = 0.3 rad and velocity ẋE = 12 m/s. For t ∈

[0, 20) ∩ [40, 50], r = [0, 0, 12t, 0]T , the quadrotor is flying along xE direction with the

speed as 12m/s. For t ∈ [20, 40), r = [sin(1.5t), 2 cos(0.96t), 12t, 0]T , the quadrotor is

flying along a circular path in yE − zE plane in addition to the uniform motion along

xE.

The simulation results can be found in Figure 6.1. The tracking error ez(t) =

zE(t) − zm(t) is relatively large in the first 10 seconds. With the proposed MRAC

design, the output tracking error ez(t) decreases exponentially as the time increases.

The simulation results have verified that the proposed approach is effective at the

non-equilibrium operating conditions of linearized quadrotor systems.

6.4 Summary

In this chapter, we developed a linearization-based model reference adaptive control

scheme for a multivariable quadrotor system. The proposed adaptive design can reject
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Figure 6.1: System responses for high speed cruise condition.

the non-equilibrium offset and make the closed-loop system signals bounded and the

outputs track the chosen reference signals asymptotically.



Chapter 7

Input Compensation Design for

Quadrotors

This chapter presents an adaptive controller design framework with input compensation

for quadrotor systems, which is expected to work at different system operating

conditions with a uniform updating law for the controller parameters. The motivation

of the part is to handle the situations that existing adaptive control schemes are

either restricted to the system equilibrium as at the hover condition or unable to

deal with the full system uncertainties, which cause system interactor matrix and

high frequency gain matrix to change. An adaptive control scheme with an input

compensator is constructed for a uniform interactor matrix and a consistent pattern

of the gain matrix signs over different operating conditions, which are key prior design

conditions for model reference adaptive control. To deal with the uncertain system

high-frequency gain matrix, a gain matrix decomposition technique is employed to

parametrize an error system model in terms of the parameter and tracking errors,

for the design of an adaptive parameter update law with reduced system knowledge.

Stability analysis shows that all closed-loop system signals are bounded, and the

system output tracks a reference output asymptotically despite the system parameter

89
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uncertainties and the uncertain offsets at non-equilibrium operating points. The

proposed scheme expands the capacity of adaptive control for quadrotors to operate

at multiple operating conditions in the presence of system uncertainties. Simulation

results of a quadrotor system with the proposed adaptive control scheme are presented

to show the desired system performance.

The main contributions of this part are summarized as follows.

• A unified framework of multivariable adaptive control schemes with a uniform

interactor matrix for quadrotor systems of multiple operating conditions is

established to meet desired asymptotic output tracking in addition to system

stability.

• A thorough study of the system characteristic for a quadrotor system with input

compensator is performed, whose interactor matrices and gain matrix signs are

consistent for multiple typical operating conditions.

• Adaptive state feedback based control with rejection of non-equilibrium offset is

developed for uncertain quadrotor systems that may work at non-equilibrium

points, including key design condition specification, nominal plant-model match-

ing control design and its adaptive version with adaptive laws and stability

analysis.

• Extensive simulation results are obtained through a quadrotor model with

multiple operating conditions, to verify the effectiveness of our proposed adaptive

control algorithm.
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7.1 Problem Statement

Consider a quadrotor dynamic model

ẋp(t) = f(xp(t), up(t)) (7.1)

yp(t) = Cpxp(t), (7.2)

where xp(t) is the state vector, up(t) is the input vector, yp(t) is the output vector,

f and h represent the system dynamics with unknown parameters, Cp is a known

output matrix. As discussed in last section, most of the control methods on quadrotors

are based on linearization approaches. We can linearize the system at an arbitrary

operating point (xo, uo) as

∆ẋp(t) = Ap∆xp(t) +Bp∆up(t) + fop (7.3)

∆yp(t) = Cp∆xp(t), (7.4)

where ∆xp(t) = xp(t) − xo, ∆up(t) = up(t) − uo, Ap, Bp are system matrices with

unknown parameters, and fop = f(xo, uo) is the non-equilibrium offset of the system

at the chosen operating point. Among the linearization based designs, the PID

controllers [18–20] are most widely used to control quadrotors at the equilibrium point

for tasks around hover condition. However, the PID controller can only work with

constant reference signals and can not deal with high order systems with parameter

uncertainties like a quadrotor.

MRAC is an effective control method dealing with parameter uncertainty of systems.

It has been used on quadrotor systems with random reference signals in [47] and [58].

When fop = 0, the linearized quadrotor system can be expressed as

∆yp(t) = G0(s)[∆up](t) , L−1{G0(s)∆Up(s)}, (7.5)
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where L−1{∗} is the inverse Laplace transform operator. The notation (7.5) represents

that ∆yp(t) is the output of a system with transfer matrix G0(s) by the input ∆up(t),

where the transfer matrix is defined as G0(s) = Cp(sI − Ap)−1Bp.

For the multivariable MRAC for output tracking , the goal is to design a control

signal ∆up(t) such that all signals in the closed-loop system are bounded, and the

output of the linearized system ∆yp(t) asymptotically tracks a reference signal ym(t),

with ym(t) generated from a reference model system

ym(t) = ξ−1
m (s)[r](t), (7.6)

where r(t) is a bounded reference signal, ξm(s) is the modified left interactor matrix

of the transfer matrix G0(s). The updating law of ∆up(t) requires the information of

the signs of the leading principal minors of the high-frequency matrix Kp.

The quadrotor system should be able to work at different operating points for

different tasks. However, the quadrotor system may have different linearized models

at different operating points, which may lead to different transfer matrices. In this

part, we investigate the system characteristics over two typical flight conditions and

present our control problem of quadrotor systems at multiple operating conditions.

Control objective

In this paper, a sequential linear system with unknown non-equilibrium offset is used to

represent the linearized quadrotor system models under multiple operating conditions,

and such a system model is described as

∆ẋp(t) =Ā(t)∆xp(t) + B̄(t)∆u(t) + f̄o(t) (7.7)

∆yp(t) =Cp∆xp(t), (7.8)
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where Ā(t) and B̄(t) are unknown piecewise-constant matrices, and f̄o(t) is an unknown

piecewise-constant vector, Cp is the known output matrix as

Cp =

 Ct 03×3 03×3 03×3

01×3 01×3 Cr 01×3

 (7.9)

with the submatrices

Ct =


0 0 1

0 1 0

1 0 0

 , Cr =

[
0 0 1

]
.

There are a finite number of unknown operating conditions of the quadrotor system,

and the ith operating condition of the system is characterized as (Aoi, Boi, fopi), i =

1, 2, . . . , N . For a given time t, the system is at an unknown operating condition j

with the system parameter matrices Ā(t) = Apj, B̄(t) = Bpj, and f̄o(t) = fopj.

Our objective is to design a multivariable adaptive control scheme for a quadrotor

operating at different conditions at which the linearized system models have different

and uncertain interactor matrices and gain matrix signs, in the presence of system

parameter uncertainties. The adaptive control scheme uses an input compensator to

result in a uniform interactor matrix ξm(s) for system models over multiple operating

conditions, and ensures that all signals in the closed-loop system are bounded, and the

output of the system ∆yp(t) asymptotically tracks a reference signal ym(t) generated

from a reference model system

ym(t) = Wm(s)[r](t), (7.10)

where r(t) is a bounded reference input signal, and Wm(s) = ξ−1
m (s).

Remark 6. In this chapter, we assume that the system stays at an operating condition
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for some sufficient time before switching to another such that the model switching

cause no fatal problem for the stability. This is because the main goal of this work is

to solve the quadrotor control problem of inconsistent interactor matrices and gain

matrix signs under multiple operating conditions. Due to space limit, the problem of

the switch of system stability will be not considered in this paper.

7.2 Input Compensation for Quadrotors with Dy-

namics Mutation

In order to design a uniform adaptive controller for different operating conditions, we

introduce the control design as input compensation. The technique can modify the

system so that the prior information are not changed at different operating conditions.

7.2.1 Input Compensation Technique

From last section, it is learned that there is a uniform interactor matrix at some

operating points. Though they do not share a same high-frequency gain matrix, the

signs of the leading principal minors are the same if some realistic conditions are

applied. However, there are also many operating points without a diagonal interactor

matrix. As shown in Section IV.B, the interactor matrices of those operating points are

even depended on the state. In order to remain the advantage of the MRAC scheme,

we wish to obtain diagonal interactor matrices via additional controller structure.

A dynamic input compensator is studied in [128] to make its Hermite normal form

diagonal for a MIMO plant with the knowledge of the relative degrees of the plant

transfer matrix. It is demonstrated that a diagonal input compensator can be designed

such that the transfer matrix with compensation has a diagonal Hermite form. The

following lemma is based on the work in [128]:
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Lemma 5. For any m×m strictly proper and full rank matrix G0(s) with the knowledge

of the relative degrees of its elements, there exist a diagonal polynomial matrix ξm(s) and

a stable diagonal nonsingular input compensator Wc(s) such that the high frequency

gain matrix with input compensation of G0(s) as Kpc = lim
s→∞

ξm(s)G0(s)Wc(s) is

nonsingular.

As shown in the previous section, the relative degrees of the elements in G0(s)

remain the same among the typical operating points. Then according to Lemma 1,

there exists an input compensator for the linearized quadrotor models at the typical

operating points.

7.2.2 Input Compensation for Quadrotor Systems

Equipped by the theory of input compensation, a stable diagonal nonsingular input

compensator can be designed for the typical operating conditions of the quadrotor

system as

Wc(s) =



1

(s+ b)2
0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (7.11)

where b is a positive constant. For the typical operating conditions with the input

compensator as in (7.11), the corresponding uniform modified left interactor matrix is

ξm(s) =



(s+ a)4 0 0 0

0 (s+ a)4 0 0

0 0 (s+ a)4 0

0 0 0 (s+ a)2


(7.12)
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such that the high-frequency gain matrix

Kpc = lim
s→∞

ξm(s)G(s) (7.13)

is nonsingular, where a is a positive constant and the compensated system is

G(s) = G0(s)Wc(s). (7.14)

For the conditions with diagonal interactor matrices in Section 4.1.1, the high-

frequency gain matrix with input compensation Kpc remains the same as the original

high-frequency matrix Kp. The results for the signs of the leading principal minors

remains, if the conditions on attitude still hold. The results of the operating points

with non-diagonal interactor matrices as Section 4.1.2 will change as following:

Uniform motion condition along the xE axis

Kpc,pit =



Cθo/m 0 − gTθo
CθoJy

0

0 −g/Jx 0
g(Tθo − Sθo)

CθoJz

Sθo/m 0 g/Jy 0

0 0 0 1/(CθoJz)


. (7.15)

If θo satisfies

θo ∈ (−π/2, π/2), (7.16)

then the signs of the leading principal minors of Kpc,pit are the same as ∆1 > 0,∆2 <

0,∆3 < 0,∆4 < 0, which are known and nonzero.
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Uniform motion condition along the yE axis

Kpc,rol =



Cφe/m −gTφe/Jx 0 0

−Sφe/m −g/CφeJx 0 0

0 0 g/Jy 0

0 0 Sφe/Jy Cφe/Jz


. (7.17)

If φo satisfies

φ0 ∈ (−π/2, π/2), (7.18)

then the signs of the leading principal minors of Kpc,rol are the same as ∆1 > 0,∆2 <

0,∆3 < 0,∆4 < 0 , which are known and nonzero.

We can integrate the conditions for attitude as following:

φo ∈ (−π
2
, π

2
), θo ∈ (−π

2
, π

2
), ψo ∈ (−π

2
, π

2
)

φoθo = 0, φoψo = 0, θoψo = 0.

(7.19)

By summarizing Lemma 5 together with our compensator design in (7.11), we can

build a proposition for the quadrotor system in (3.1)-(3.9), which is at one of those

different operating conditions satisfying (7.19), as follows:

Proposition 3. There exists a nonsingular input compensator Wc(s) as in (7.11)

such that the compensated system G(s) in (7.14) have a uniform diagonal interactor

matrix ξm(s) as in (7.12) and signs of the leading principal minors of Kpc as (7.13)

are known and nonzero as ∆1 > 0,∆2 < 0,∆3 < 0,∆4 < 0.

7.2.3 System Model with Input Compensator

The adaptive control proposed in this paper consists two parts, which are an in-

put compensator and an adaptive controller. The control input signal with input
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compensation can be denoted as

∆u(t) = Wc(s)[v](t), (7.20)

where v(t) is the applied control signal from the adaptive controller, whose parameters

are updated by the adaptive laws designed next. Consider the linearized quadrotor

system with the input compensator as the new plant, whose transfer function is

G(s) = G0(s)Wc(s), the input-output form of the system is obtained as

∆yp(t) = G(s)[v](t) +Gf (s)[fo](t). (7.21)

We denote the state vector for the plant with input compensator as

x(t) =

 ∆xp(t)

xc(t)

 , (7.22)

where ∆xp(t) = xp(t)− xo, and xc(t) is the state vector of the input compensator. For

the particular design of Wc(s) in (7.11), we have

xc(t) =

 ∆u1(t)

∆u̇1(t)

 , (7.23)

where ∆u1(t) is the first element of ∆u(t).

The model of the new total plant, which is the combination of the linearized model

at (xo, uo) and the input compensator Wc(s) in (7.11), is denoted as

ẋ(t) = Ax(t) +Bv(t) + fo, y(t) = Cx(t), (7.24)
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where x(t) is the state vector denoted in (7.22), v(t) is the applied control signal,

y(t) = ∆yp(t), C is the known output matrix as

C =

[
Cp 04×2

]
, (7.25)

and the parameter matrices are

A =



03×3 I3×3 03×3 03×3 03×1 03×1

03×3 −ctI3×3 At 03×3 Bt 03×1

03×3 03×3 As Aw 03×1 03×1

03×3 03×3 03×3 Ar 03×1 03×1

01×3 01×3 01×3 01×3 0 1

01×3 01×3 01×3 01×3 −b2 −2b


(7.26)

B =



03×1 03×3

03×1 03×3

03×1 03×3

03×1 Br

0 01×3

1 01×3


(7.27)

fo =

 fop

02×1

 . (7.28)

The transfer function can also be derived from the above system matrices by

G(s) = C(sI − A)−1B, (7.29)

from which the high-frequency gain with input compensation can be found. As the

dynamics mutation under different operating conditions is well treated by the input
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compensator, the remaining task is to design an adaptive control frame work dealing

with the system uncertainties.

7.3 Adaptive Control Scheme

In this section, a state feedback adaptive controller is developed for the quadrotor

system under multiple operating conditions in the presence of uncertain system

parameters and non-equilibrium offset. The proposed controller consists two parts:

a feedforward input compensator and a feedback adaptive controller. The input

compensation technique assures that there exists a uniform interactor matrix for

multiple operating points, for the design of a reference model system. The parameters

of the adaptive controller are updated with the sign information of the corresponding

gain matrix Kp.

In this section, a multivariable state feedback model reference adaptive control

scheme for the linearized system with input compensator will be developed to compen-

sate the unknown non-equilibrium offset and the uncertainties of system parameters.

The nominal nonlinear offset rejection design is first developed for the system with

known parameters, and then an adaptive design is developed using decomposition of

the gain matrix Kpc.

Remark 7. Like other linearization based designs, the adaptive controller proposed

in this section is designed for linearized models at operating points and expected to

work around the operating points.

7.3.1 Output Tracking Control Framework

We have shown that there exists a uniform input compensator for the typical operating

conditions we studied. The interactor matrices and the signs of the leading principal

minors of the high-frequency gain matrices keep consistent with the designed input
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compensator. Then only one controller parameter update law is needed to control the

quadrotor to work at a operating condition within the typical operating conditions.

The adaptive control design procedure for quadrotors can be proposed as follows.

Compensated plant

Consider a linearized quadrotor system at a typical operating point (xo, uo), whose

transfer matrix G0(s) is as (3.16). We can design an input compensator Wc(s) as

(7.11) such that the uniform interactor matrix with input compensation ξm(s) is as

(7.12) with the high-frequency gain matrix with input compensation Kpc as (7.13).

We can rewrite the system model of the compensated system in (7.24) as

y(t) = G(s)[v](t) +Gf (s)[fo](t), (7.30)

where

G(s) = C(sI − A)−1B (7.31)

Gf (s) = C(sI − A)−1, (7.32)

y(t) is the output of the new plant, v(t) is the applied input signal to be designed, fo

is the offset in (7.28).

Controller structure

The input signal of the new plant with input compensation can be denoted as

v(t) = Kx(t)x(t) +Kr(t)r(t) + kf (t), (7.33)

where the adaptive parameters Kx, Kr and kf will be updated from adaptive laws

using the knowledge of the signs of leading principal minor ∆k of the high frequency
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gain matrix with input compensation Kpc. The relationship between the ∆up(t) of

the original linearized quadrotor system and the input of the new plant with input

compensation v(t) is

∆up(t) = Wc(s)[v](t), (7.34)

where Wc(s) is the input compensator designed as in (7.11).

Control problem

The control objective is to design a state feedback control signal v(t) such that all

signals in the closed-loop system are bounded and the output signal of the new plant

with input compensation y(t), as in (7.30), asymptotically tracks a given reference

vector signal ym(t), which is generated by a reference system

ym(t) = Wm(s)[r](t), (7.35)

where the reference model is selected as Wm(s) = ξ−1
m (s), and ξm(s) is the interactor

matrix of the system with input compensation as (7.12).

Design condition verification

The plant assumptions for MRAC scheme design is introduced in Section 2.3, it is

necessary to verify the linearized quadrotor system before further discussions. If

the quadrotor system is linearized at a operating condition in (7.19), then the plant

assumptions (A1)-(A4) are satisfied. To deal with the dynamics mutation, an input

compensator is designed for the system, whose existence is guaranteed by Proposition

3.

It can be shown from the results in Section 7.2.2 and Section 7.2.3 that the

system after compensation still satisfies all the assumptions. For the integrity of the
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design procedure, we conclude that the system in (7.30) satisfies the following design

conditions:

(C1) all zeros of G(s) have negative real parts;

(C2) (A,B) is stabilizable and (A,C) is detectable;

(C3) the input compensator Wc(s) of the system is known;

(C4) G(s) has full rank and its modified left interactor matrix ξm(s) is known; and

(C5) all leading principal minors ∆k of the high-frequency gain matrix Kpc of G(s)

are nonzero and their signs are known.

7.3.2 Nominal controller design

When the parameters of the system are known, the nominal controller structure is

given by

v(t) = K∗Tx x(t) +K∗r r(t) + k∗f , (7.36)

where k∗f ∈ RM is used to cancel the effect of the constant offset fo, and K∗Tx ∈ RM×n

and K∗Tr ∈ RM×M are for the plant-model output matching. The existence of the

controller parameters have been proved in [84]. The value of them are also derived

in [84] as

C(sI − A−BK∗Tx )−1BK∗r = Wm(s), K∗−1
r = Kpc, k∗f = −D−1d, (7.37)

where

D =− C(A+BK∗x)−1B

d =− C(A+BK∗x)−1fo,
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and the high-frequency gain matrix is

Kpc = lim
s→∞

ξm(s)C(sI − A)−1B. (7.38)

In summary, the following lemma is given for the nominal controller.

Lemma 6. For the plant (7.24) in the presence of the non-equilibrium offset fo, there

exist matrices K∗x, K
∗
r and k∗f , with which the state feedback controller (7.36) ensures

the closed -loop signal boundedness of all s, nonlinear offset rejection, and output

tracking of a chosen reference output ym(t) by the output y(t).

7.3.3 Adaptive Law Design

When the system parameters and the offset vector fo are unknown, the state-feedback

controller structure is given as

v(t) = KT
x (t)x(t) +Kr(t)r(t) + kf (t), (7.39)

where Kx(t), Kr(t) and kf (t) are the estimates of the nominal controller parameters

K∗x, K∗r and k∗f .

Error equation

Substituting the control law (7.39) into the the system dynamic (7.24), we obtain

ẋ(t) =Ax(t) +B(KT
x (t)x(t) +Kr(t)r(t) + kf (t)) + fo

=(A+BK∗Tx )x(t) +BK∗r r(t) +Bk∗f + fo +B(K̃T
x (t)x(t) + K̃r(t)r(t) + k̃f (t))

(7.40)
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where

K̃x(t) =Kx(t)−K∗x

K̃r(t) =Kr(t)−K∗r

k̃f (t) =kf (t)− k∗f .

In view of the reference model system, matching conditions (7.37), and the closed-loop

system (7.40), the output-tracking error is given as

e(t) = y(t)− ym(t) = Wm(s)Kp[Θ̃
Tω](t) + δ(t) (7.41)

where

Θ̃(t) = Θ(t)−Θ∗

Θ(t) = [KT
x (t), Kr(t), kf (t)]

T

Θ∗ = [K∗Tx , K∗r , k
∗
f ]
T

ω(t) = [x̄T (t), rT (t), 1]T .

To deal with the uncertainty of Kpc, the LDS decomposition [27] is used as

Kpc = LsDsS, (7.42)

where S ∈ RM×M is a symmetric positive definite matrix, Ls ∈ RM×M is a unity lower

triangular matrix, and

Ds =diag{s∗1, s∗2, . . . , s∗M}

={sign[∆1]γ1, sign

[
∆2

∆1

]
γ2, . . . , sign

[
∆M

∆M−1

]
γM} (7.43)
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such that γi ≥ 0, i = 1, . . . ,M , may be chosen to be arbitrary.

Remark 8. In the adaptive law design, the Ds matrix will be used as a gain matrix.

Although Kpc is unknown and may vary among different operating conditions, based

on previous discussion, a uniform Ds is known for the multiple operating conditions

under consideration, which is crucial for deriving stable the adaptive laws.

Error parameterization

To obtain the adaptive laws for Kx(t), Kr(t), and kf (t), a well parameterized tracking-

error model is needed. Substituting the LDS decomposition of Kpc in (7.42) and

ignoring the exponentially decaying term δ(t), the error equation can be parameterized

as

L−1
s ξm(s)[e](t) = DsSΘ̃T (t)ω(t). (7.44)

To parameterize the unknown matrix Ls, a parameter matrix is introduced as

Θ∗0 = L−1
s − I, (7.45)

which has a special form as

Θ∗0 =



0 0 0 · · · 0

θ∗21 0 0 · · · 0

θ∗31 θ∗32 0 · · · 0

...
...

...
...

...

θ∗M−11 · · · θ∗M−1M−2 0 0

θ∗M1 · · · θ∗MM−2 θ∗MM−1 0


∈ RM×M . (7.46)

We introduce a filter h(s) = 1/fh(s), where fh(s) is a stable and monic polynomial

whose degree is equal to the maximum degree of ξm(s). Operating both sides of (7.44)
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by h(s)IM leads to the filtered tracking error

ē(t) + [0, θ∗T2 η2(t), θ∗T3 η3(t), . . . , θ∗TM ηM(t)]T = DsSh(s)[Θ̃Tω](t), (7.47)

where

ē(t) = ξm(s)h(s)[e](t) = [ē1(t), . . . , ēM(t)]T (7.48)

ηi(t) = [ē1(t), . . . , ēi−1(t)]T for i = 2, . . . ,M (7.49)

θ∗i = [θ∗i1, . . . , θ
∗
ii−1]T for i = 2, . . . ,M. (7.50)

Based on this error equation, we construct the estimation error vector signal:

ε(t) = ē(t) + [0, θT2 (t)η2(t), θT3 (t)η3(t), . . . , θTM(t)ηM(t)]T + Ψ(t)ξ(t), (7.51)

where θi(t) are the estimates of θ∗i , Ψ(t) is the estimate of Ψ∗ = DsS, and

ξ(t) = ΘT (t)ζ(t)− h(s)[ΘTω](t) (7.52)

ζ(t) = h(s)[ω](t). (7.53)

From (7.47) and (7.51), it then follows that

ε(t) = [0, θ̃T2 (t)η2(t), θ̃T3 (t)η3(t), . . . , θ̃TM(t)ηM(t)]T + Ψ̃(t)ξ(t) +DsSΘ̃T (t)ζ(t), (7.54)

where θ̃i(t) = θi(t)− θ∗i and Ψ̃(t) = Ψ(t)−Ψ∗ are the related parameter errors.
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Adaptive laws

With the estimation error model (7.54), we choose the adaptive laws

θ̇i(t) =− Γθiεi(t)ηi(t)

m2(t)
, i = 2, 3, . . . ,M (7.55)

Θ̇T (t) =− Dsε(t)ζ
T (t)

m2(t)
(7.56)

Ψ̇(t) =− Γε(t)ξT (t)

m2(t)
(7.57)

where the signal ε(t) = [ε1(t), ε2(t), . . . , εM (t)]T is computed from (7.54), Γθi = ΓTθi > 0

and Γ = ΓT > 0 are adaptation gain matrices, and

m(t) =

√√√√1 + ζT (t)ζ(t) + ξT (t)ξ(t) +
M∑
i=2

ηTi (t)ηi(t), (7.58)

is a standard normalization signal.

Stability analysis

To analyze the closed-loop system stability, we first establish some desired properties of

the aforementioned adaptive parameter update laws for the linearized system models

at each operating condition.

Lemma 7. The adaptive laws (7.55)-(7.57) ensure the following desired properties:

1. θi(t) ∈ L∞(i = 2, 3, . . . ,M),Θ(t) ∈ L∞,Ψ ∈ L∞, ε(t)
m(t)
∈ L2 ∩ L∞; and

2. θ̇i(t) ∈ L2 ∩ L∞(i = 2, 3, . . . ,M), Θ̇(t) ∈ L2 ∩ L∞, Ψ̇(t) ∈ L2 ∩ L∞.

Proof. For each linearized system model, consider the positive-definite function

V =
1

2
(
M∑
i=2

θ̃Ti Γ−1
θi
θ̃i + tr[Ψ̃TΓ−1Ψ̃] + tr[Θ̃SΘ̃T ]) > 0. (7.59)
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From the adaptive laws, the time derivative of V at each operating condition is

obtained to as

V̇ =−
M∑
i=2

θ̃Ti (t)εi(t)ηi(t)

m2(t)
− ξT (t)Ψ̃T (t)ε(t)

m2(t)
− ζT (t)Θ̃(t)SDsε(t)

m2(t)

=− εT (t)ε(t)

m2(t)
≤ 0. (7.60)

From (7.59) and (7.60), it can be concluded that θi(t) ∈ L∞(i = 2, 3, . . . ,M),Θ(t) ∈

L∞, Ψ(t) ∈ L∞, and ε(t)
m(t)
∈ L2. Summing up the boundedness of θi(t)(i = 2, 3, . . . ,M),Θ(t),

and Ψ(t)with (7.54) and (7.58), we have ε(t)
m(t)
∈ L∞. Since the normalized signals

ηi(t)
m(t)

(i = 2, 3, . . . ,M), ζ(t)
m(t)

, ξ(t)
m(t)
∈ L∞, it can be concluded that θ̇i(t) ∈ L2 ∩ L∞(i =

2, 3, . . . ,M), Θ̇(t) ∈ L2 ∩ L∞, and Ψ̇(t) ∈ L2 ∩ L∞.

Based on Lemma 3, the following desired closed-loop system properties for each

linearized system model can be established:

Theorem 2. The multivariable MRAC scheme with the state feedback control law

(7.39) updated by the adaptive laws (7.55)-(7.57), when applied to the system (7.24),

guarantees the closed-loop signal boundness and asymptotic output tracking: lim
t→∞

(∆y(t)−

∆ym(t)) = 0, for any initial conditions.

The proof of Theorem 1 can be carried out in a similar way to that described

in [129] for multivariable MRAC for linearized systems with constant non-equilibrium

offset. The key step of such an analysis procedure is to express a filtered version

of the plant output in a feedback framework that has a small gain due to the L2

properties of Θ̇(t), θ̇(t) and ε(t)/m(t). The state feedback control signal is required to

be expressed in terms of the output. This can be done using a state-observer of the

plant. Then the analysis procedure in [126] can be used to conclude the closed-loop

signal boundedness and output tracking. For the adaptive control scheme of this paper,
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an input compensator has been used, whose effect can be handled in the stability

analysis.

Remark 9. The nominal controller can only work at a given operating condition of

the quadrotor, since it needs the exact parameter information. While the proposed

adaptive controller can be applied to the quadrotor system of multiple operating

points, because the only information needed is the interactor matrix ξm(s) and the

sign matrix Ds, which are uniform over the multiple operating conditions.

7.4 Simulation Study

In this section, the proposed linearization-based adaptive control design is applied to

a quadrotor model with multiple operating conditions. To test the performance of the

proposed control scheme, a MATLAB model of the quadrotor system is used. The

simulation model offers a realistic representation of a quadrotor, and the simulation

results provide a credible assessment of the proposed control design.

7.4.1 Simulation System

The quadrotor system is linearized at three typical operating conditions, which are

chosen from the operable domain. The operating conditions studied in this section

are as follows:

1. special hover condition with all attitude angles being zero;

2. low speed cruise condition in the xE direction with pitch angle θ = 0.1 rad and

velocity ẋE = 4 m/s;

3. high speed cruise condition in the xE direction with pitch angle θ = 0.3 rad and

velocity ẋE = 12 m/s.
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According to

In our simulation, the input compensator is chosen as

Wc(s) =



1

(s+ 2)2
0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (7.61)

which satisfies the structure (7.11). It follows that the uniform interactor matrix for

all three operating conditions is chosen as

ξm(s)=



(s+ 1)4 0 0 0

0 (s+ 1)4 0 0

0 0 (s+ 1)4 0

0 0 0 (s+ 1)2


, (7.62)

and the signs of the leading principal minors of the high-frequency gain matrices

at the three operating conditions are the same as ∆1 > 0,∆2 < 0,∆3 < 0,∆4 < 0.

The numerical parameter values used for building the aircraft simulation models and

verifying the design assumptions are given as follows, which are not used for the

control design.
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Special hover condition

The system parameter matrices are described as

A =



0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 −0.25 0 0 0 9.8 0 0 0 0 0 0

0 0 0 0 −0.25 0 −9.8 0 0 0 0 0 0 0

0 0 0 0 0 −0.25 0 0 0 0 0 0 0.5 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 −0.2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −0.2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −0.1111 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 −4 −4


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B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 200 0 0

0 0 200 0

0 0 0 111.1111

0 0 0 0

1 0 0 0



,

the interactor matrix is chosen as (7.62) such that the high-frequency gain matrix is

Kpc = lim
s→∞

ξm(s)G(s) =



0.5 0 0 0

0 1960 0 0

0 0 1960 0

0 0 0 111.1


(7.63)

and the signs of its leading principle minors are: ∆1 > 0,∆2 < 0,∆3 < 0,∆4 < 0.
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Low speed cruise condition

The system parameter matrices are described as

A =



0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 −0.25 0 0 0 9.8 0 0 0 0 0.0499 0

0 0 0 0 −0.25 0 −9.8 0 0.9833 0 0 0 0 0

0 0 0 0 0 −0.25 0 −0.9833 0 0 0 0 0.4975 0

0 0 0 0 0 0 0 0 0 1 0 0.1003 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1.005 0 0

0 0 0 0 0 0 0 0 0 −0.2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −0.2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −0.1111 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 −4 −4



,

and the input matrix B is same as (7.63), the interactor matrix is chosen as (7.62)

such that the high-frequency gain matrix

Kpc = lim
s→∞

ξm(s)G(s) =



0.4975 0 −197.6 0

0 −1960 0 0.5

0.1478 0 1960 0

0 0 0 111.7


(7.64)

is finite and nonsingular, the signs of its leading principle minors are: ∆1 > 0,∆2 <

0,∆3 < 0,∆4 < 0.
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High speed cruise condition

The system parameter matrices are described as

A =



0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 −0.25 0 0 0 9.8 0 0 0 0 0.1478 0

0 0 0 0 −0.25 0 −9.8 0 3.0315 0 0 0 0 0

0 0 0 0 0 −0.25 0 −3.0315 0 0 0 0 0.4777 0

0 0 0 0 0 0 0 0 0 1 0 0.3093 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1.0468 0 0

0 0 0 0 0 0 0 0 0 −0.2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −0.2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −0.1111 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 −4 −4



,

and the input matrix B is same as (7.63), the interactor matrix is chosen as (7.62)

such that the high-frequency gain matrix

Kpc = lim
s→∞

ξm(s)G(s) =



0.4777 0 −634.6 0

0 −1960 0 28.3

0.0499 0 1960 0

0 0 0 106.1


(7.65)

is finite and nonsingular, the signs of its leading principle minors are: ∆1 > 0,∆2 <

0,∆3 < 0,∆4 < 0.
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7.4.2 Simulation Results

Three simulation cases were conducted to verify the effectiveness of our control method.

The simulation Case I shows the system response at the special hover condition, which

is widely studied in literature. The simulation Case II illustrates the behavior of the

quadrotor at the cruise condition with a relatively high speed and attitude angle,

which is not well studied before. The last simulation as Case III is a comprehensive

study to show that the proposed controller is able to work at different operating

conditions without changing the adaptive laws.

Case I

In this case, the system is simulated at the special hover condition of the linearized

system model that all attitude angles are zero. For t ∈ [0, 10) , r = [2, 0, 0, 0]T ,

the quadrotor is taking off and then hovering at a given position. For t ∈ [10, 20) ,

r = [2, 0, 0, 0.1 sin(t)]T , the quadrotor is changing its yaw angle for some tasks. For

t ∈ [20, 30) , r = [2, 1.2 sin(1.5t), 1.2 cos(1.1t), 0]T , the quadrotor is flying along circular

path. For t ∈ [40, 50] , r = [0, 0, 0, 0]T , the quadrotor is landing. The simulation result

is shown in Figure 7.1. Compared to the results in [47] and [58], we observe that the

input compensator in our controller does not affect the system performance of the

quadrotor at hover condition.

Case II

In this case, the system is simulated at multiple operating conditions of the linearized

model of the quadrotor system, which are the special hover condition, low speed

cruise condition and high speed hover condition. The simulation results are shown

in Figure 7.2. For t ∈ [0, 100) , r = [2, 0, 0, 0]T , the quadrotor is taking off and then

hovering at a given position. For t ∈ [100, 200) , r = [2, 0, 4(t − 100), 0 sin(t)]T , the

quadrotor is flying along the xE axis with a low speed as 4m/s. For t ∈ [200, 300) ,
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Figure 7.1: System responses for Case I.

r = [2, 0, 12(t − 200) + 400, 0]T , the quadrotor is flying along xE with a high speed

as 12m/s. For t ∈ [300, 400) , r = [2, 0, 4(t− 300) + 1600, 0 sin(t)]T , the quadrotor is

flying along xE with a low speed as 4m/s. For t ∈ [400, 500] , r = [2, 0, 2000, 0]T , the

quadrotor is hovering at its destination of the flight. The simulation results show that

the proposed adaptive control scheme with input compensator can solve the problem

of multiple operating conditions of linearized quadrotor systems without changing the

controller parameter adaptive laws and reference model systems.

7.5 Summary

We studied the MRAC problem of quadrotors in this chapter by extending the flight

conditions from the special hover condition to a group of typical flight conditions. The

transfer matrix, interactor matrix and high frequency gain matrix were investigated

at each operating condition. Then an input compensator was designed to guarantee

the uniform diagonal interactor matrix and the same pattern of the signs of the
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Figure 7.2: System responses for Case II.
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leading principal minors of the high frequency gain matrices. The input compensator

can reduce the difficulty of the design of model reference adaptive controller, since

the interactor matrices are the same among the different operating conditions.. A

framework of output tracking control is constructed dealing with the dynamics mutation

under different operating conditions, which is equipped with the input compensation

technique. A nominal controller is designed for the case that the system parameters

are known. Because of the achievable plant-model matching conditions, the proposed

nominal control design can reject the non-equilibrium offset and make the signals of

the closed-loop system bounded and the output signals track some chosen reference

signals . For the non-equilibrium operating conditions, the constant term in the

linearized model requires new update law of the controller and corresponding analysis

of the stability. Complete design of the MRAC scheme with input compensator is still

under investigation and will be presented in our future work.

In this chapter, a linearization-based multivariable adaptive control scheme for

a nonlinear quadrotor model has been developed. The nonlinear quadrotor system

is linearized at given typical operating conditions, and a sequential linear model

with parameter uncertainties and a non-equilibrium offset is obtained to represent

the linearized system at different operating conditions. With the use of an input

compensator, a uniform interactor matrix and identical gain matrix signs are obtained.

As a result of the achievable plant-model matching conditions, the proposed MRAC

design can reject the non-equilibrium offset and make the closed-loop system signals

bounded and the output signals track some chosen reference signals over different

operating conditions. Simulation results from the linearized quadrotor system have

demonstrated certain desired system performance.



Chapter 8

Adaptive Actuator Failure

Compensation for Hexarotors

This chapter develops an adaptive scheme for compensation of uncertain actuator

failures in a hexarotor system, which can be combined with a feedback control law to

achieve desired closed-loop system stability and asymptotic output tracking in the

presence of uncertainties of failure time, values and patterns. Such an adaptive control

scheme is based on adaptive integration of individual failure compensators for different

failure situations. It can adaptively update its parameters, without explicit failure

detection or failure isolation, to deal with uncertain failures. The emerging NNPPNP

rotor arrangement of hexarotors is adopted in this work and is investigated for its

capability of tolerating up to two failed actuators and for the design of compensators

for individual failure patterns. A state feedback model reference control law is chosen

as the baseline controller to be combined with the failure compensators to form a

nominal actuator failure compensation scheme. To deal with uncertain actuator

failures, the nominal controller is parametrized and integrated and its adaptive version

is developed by forming an error model and developing an adaptive scheme to update

the parameters of the integrated failure compensation controller. Stability analysis

120
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shows that all closed-loop system signals are bounded, and the system output tracks a

reference output asymptotically despite the actuator failure uncertainties. Simulation

results of a hexarotor system with the proposed adaptive control scheme are to be

presented to show the desired system performance.

The main contributions of the chapter are as follows.

• A hexarotor model with NNPPNP rotor arrangement is linearized and studied,

which has the potential of dealing with up to two failed actuators.

• The compensable failure patterns of the hexarotor system are investigated, which

include one pattern of no actuator failure, four patterns of one actuator failure,

and three patterns of two actuator failures.

• A uniform nominal control scheme with proved parameter existence is designed

for the compensable failure patterns when the failure information is known,

which is a combination of high-level motion control and control allocation.

• An adaptive compensation controller with guaranteed stability is constructed

for the compensable patterns, when the failure pattern, failure time and failure

value are all unknown.

The rest of the chapter is organized as follows. In Section 8.1, we formulate the

control problem of the paper with the explanation of the actuator failure model and the

control objective. In Section 8.2, the compensable failure patterns are systematically

surveyed; and a nominal controller is designed for the nominal case in which the

knowledge of failure is known. In Section 8.3, we derive an adaptive compensation

scheme with detailed stability proof for the case of uncertain actuator failure. In

Section 8.4, the performance of the proposed adaptive approach is verified by simulation

results. In Section 8.5, the concluding remarks are presented.
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8.1 Problem Statement

Consider the linearized dynamic model of a hexarotor system as

ẋ(t) = Ax(t) +Bw(t), w(t) = Cau(t), y(t) = Cx(t), (8.1)

where x(t) = ∆xp(t) ∈ Rn is the state vector of the linearized system, w(t) = ∆wp(t) ∈

Rm is the intermediate input vector of the linearized system, u(t) = ∆up(t) ∈ RM

is the input vector of the linearized system, y(t) ∈ Rm is the output vector of the

linearized system, the system parameter matrices A, B and Ca are known, the output

matrix is

C =

 Ct 03×3 03×3 03×3

01×3 01×3 Cr 01×3

 (8.2)

with the submatrices

Ct =


0 0 1

0 1 0

1 0 0

 , Cr =

[
0 0 1

]
.

To articulate our control objective of failure compensation, next we introduce an

actuator failure model to describe the failures of the system.

Control Objective

The control goal is to design an adaptive controller to generate v(t) for system (8.1)

under loss-of-control failures with unknown failure time instants tj , failure pattern σ (

or failure index j) and unknown failure values ūj(t), to guarantee that the remaining

actuators can still ensure boundedness of the closed-loop signals and asymptotic
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tracking of a given reference output signal

ym(t) = Wm(s)[r](t) (8.3)

by the system output y(t), where Wm(s) is the reference model system transfer matrix,

and r(t) is a bounded reference signal.

The basic procedure for the design of an adaptive failure compensation scheme for

the system (21) with w(t) = Cau(t) has three steps:

Step 1: A desired feedback control law wd(t) = K∗Tx x(t) +K∗r r(t) is derived for

w(t), which is a state feedback model reference controller designed with the knowledge

of the system parameters A,B,C (which are assumed to be available for this study,

with the main focus given on how to deal with the actuator failure uncertainties). The

goal of actuator failure compensation design is to choose the applied control signal v(t)

to make w(t) = wd(t) in the nominal case with the knowledge of actuator failures, or

to make lim
t→∞

(y(t)− ym(t)) = 0 in the adaptive case without the knowledge of actuator

failures.

Step 2: A nominal failure compensation control scheme is constructed which

consists of a set of failure compensators, each for an individual actuator failure pattern.

For each failure pattern, a nominal control signal v∗(i)(t) is designed such that for

v(t) = v∗(i)(t) the desired motion control action w(t) = wd(t) is ensured so that the

desired closed-loop stability and tracking performance can be achieved. For each

nominal control law, a fixed control allocation matrix Λi is chosen, for realizing

the control goal of making w(t) = wd(t). Each such control law contains a failure

compensation term which depends on the failure value of each failure pattern. It will

be shown that the control signal v∗(i)(t) indeed leads to w(t) = wd(t). Then, the set

of nominal control laws (for all failure patterns from a failure pattern set of interest)
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are integrated by using failure indicator functions, to form a unified nominal failure

compensation control law or controller structure.

Step 3: Such a nominal controller structure is parametrized in terms of the

unknown actuator failure parameters for all possible failure patterns from the failure

pattern set. An adaptive failure compensation controller structure is then constructed,

for which an adaptive parameter update scheme is developed. The uncertain indicator

functions are to be estimated, and so are the unknown failure parameters, for which a

linearly and completely parametrized error model is to be derived.

8.2 Nominal Compensation Design

In this section, we study the case that the failure information is known. We derive

the corresponding nominal controller and specify its desired performance. Then the

nominal control scheme is developed for the no failure and known failure cases. A

composite design is also given to construct a uniform controller for different cases.

8.2.1 Design for the No Failure Case

For this case, the failure pattern indicator is σ(t) = σ(0), the system input of the

linearized system is u(t) = v(t). We use a model reference controller for the high-level

motion control of the hexarotor system. A control allocation scheme is also designed

to generate the input signals for individual rotors.

Model reference control design

Since the parameters of the system are known, the desired state feedback for output

tracking control scheme can be constructed for the system (8.1) as

wd(t) = K∗Tx x(t) +K∗r r(t), (8.4)



8.2 Nominal Compensation Design 125

where wd(t) is the desired intermediate control input of the linearized system in

(8.1), and the nominal parameters K∗x ∈ Rn×M and K∗r ∈ RM×M are chosen for the

plant-model output matching:

C(sI − A−BK∗Tx )−1BK∗r = Wm(s) = ξ−1
m (s), K∗−1

r = Kp, (8.5)

with the non-singular high-frequency gain matrix

Kp = lim
s→∞

ξm(s)C(sI − A)−1B, (8.6)

for the modified left interactor matrix ξm(s) [84] is specified as

ξm(s)=



(s+ 1)2 0 0 0

0 (s+ 1)4 0 0

0 0 (s+ 1)4 0

0 0 0 (s+ 1)2


. (8.7)

The existence of such control parameter matrices K∗x and K∗r for high-level motion

control is established in [125].

Controller design and verification

The next step is to construct a proper control allocation design for the linearized

system in (8.1). Since there exists actuation redundancy for the no failure case,

different designs can be carried out for different focuses. For this work, we use the

control allocation matrix Λ0 in (3.41). With such choice, the applied control input is

designed as

v∗(0)(t) = Λ0K
∗T
x x(t) + Λ0K

∗
r r(t), (8.8)
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where x(t) and r(t) are the state vector and the bounded reference signal of the

linearized system.

With the knowledge that CaΛ0 = I and u(t) = v(t), we can derive the intermediate

control input of the linearized system as

w∗(0)(t) = Cau(t) = Cav
∗
(0)(t) = K∗Tx x(t) +K∗r r(t) = wd(t), (8.9)

then the desired state feedback for output tracking control scheme in (8.4) is achieved.

8.2.2 Designs for Known Failure Cases

There are seven possible failure patterns that can be compensated. In this research,

we deal with the loss-of-control failures of the linearized system in (8.1). For the

nominal case that the failure value, failure pattern and failure time are all known, the

system input is

u(t) = (I − σ(i))v
∗
(i)(t) + ū(i)(t), i ∈ {1, 2, . . . , 7}, (8.10)

where v∗(i)(t) is the applied control input to be designed for failure pattern (i), the

failure value for failure pattern (i) is

ū(i)(t) = σ(i)ū(t) = σ(i)τθ(t), (8.11)

where τ is a scalar matrix, θ(t) is a known bounded signal vector. The desired

state feedback for output tracking control scheme for the system in (8.1) is wd(t) =

K∗Tx x(t) +K∗r r(t) as in (8.4).
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Nominal controller structure

The state feedback controller structure for v∗(i)(t) is given as

v∗(i)(t) = Λi(K
∗T
x x(t) +K∗r r(t) +K∗θ(i)θ(t)), (8.12)

where K∗x and K∗r are the nominal parameters for the plant-model output matching in

(8.5), Λi is a control allocation matrix to be designed, K∗θ(i) is the nominal parameter

to be designed for compensating the loss-of-control failure ū(i)(t) of the linearized

system.

A design rule is set up for the control allocation matrix Λi in this work as

Ca(I − σ(i))Λi = I. (8.13)

We will show the designs of such control allocation matrices Λi for all the compensable

patterns after deriving the nominal failure compensation parameter matrix K∗θ(i).

Compensation design for loss-of-control failures

Consider the output of the closed-loop system in s domain

y(s) = C(sI − A−BK∗Tx )−1BK∗r r(s) + δ(s), (8.14)

where

δ(s) = C(sI − A−BK∗Tx )−1BCa[(I − σ(i))ΛiK
∗
θ(i) + ū(i)]θ(s). (8.15)

By plugging (8.13) into (8.15), we have

δ(s) = C(sI − A−BK∗Tx )−1B[K∗θ(i) + Caū(i)]θ(s). (8.16)
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Then the output tracking error in the s domain is

e(s) = y(s)− ym(s) = δ(s). (8.17)

From the final value theorem, we have lim
t→∞

e(t) = lim
s→0

sδ(s). In order to compensate

the failure and guarantee lim
t→∞

e(t) = 0, we choose the nominal failure compensation

parameter as

K∗θ(i) = −Caū(i) = −Caσ(i)τ. (8.18)

Then it follows that

lim
t→∞

(y(t)− ym(t)) = lim
t→∞

δ(t) = 0. (8.19)

With the nominal parameters K∗θ(i) given by (8.18), K∗x and K∗r given by (8.5), the

design of the applied control input in (8.12) will be completed by proper control

allocation matrix Λi for failure pattern (i).

Designs for two actuator failures cases

We start with the failure patterns with two failed actuators. For these cases, the

hexarotor system has no actuation redundancy for 4-DOF output tracking. Then the

control allocation matrix is unique for each pattern as follows.

Failure pattern (5): in this case failures happen in actuator 1 and 4, the

corresponding control allocation matrix is

Λ5 =



0 0 0 0

1
4

√
3

6d
1
2d

1
4cm

1
4
−
√

3
6d

1
2d

− 1
4cm

0 0 0 0

1
4
−
√

3
6d
− 1

2d
1

4cm

1
4

√
3

6d
− 1

2d
− 1

4cm


. (8.20)
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Failure pattern (6): in this case failures happen in actuator 1 and 5, the

corresponding control allocation matrix is

Λ6 =



0 0 0 0

0.1830 0.3660
d

0.6340
d

0.1830
cm

0.1585 −0.1830
d

0.6830
d

−0.3415
cm

0.3170 −0.3660
d

−0.6340
d

0.3170
cm

0 0 0 0

0.3415 0.1830
d

−0.6830
d

−0.1585
cm


. (8.21)

Failure pattern (7): in this case failures happen in actuator 4 and 6, the

corresponding control allocation matrix is

Λ7 =



0.3170 0.3660
d

−0.6340
d

−0.3170
cm

0.1585 0.1830
d

0.6830
d

0.3415
cm

0.1830 −0.3660
d

0.6340
d

−0.1830
cm

0 0 0 0

0.3415 −0.1830
d

−0.6830
d

0.1585
cm

0 0 0 0


. (8.22)

Designs for one actuator failure cases

For the one failure cases, the control allocation matrix is not unique. Designs can be

made based on different requirements. In this paper, we follow the principle that all

the actuators are with equal priority. The control allocation matrices are as follows.

Failure pattern (1): in this case the failure happens in rotor 1, the corresponding

control allocation matrix is chosen as Λ1 in (3.42). The matrices in (8.20) and

(8.21) are also valid candidates for this case.
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Failure pattern (2): in this case the failure happens in rotor 4, the corresponding

control allocation matrix is

Λ2 =



3
22

2
11d

0 − 3
22cm

11−
√

3
44

3
√

3
22d

1
2d

11+
√

3
44cm

8+
√

3
44

−2+3
√

3
22d

1
2d

−8+
√

3
44cm

0 0 0 0

11+
√

3
44

−3
√

3
22d

− 1
2d

11−
√

3
44cm

8−
√

3
44

−2+3
√

3
22d

− 1
2d

−8+
√

3
44cm


. (8.23)

The matrices in (8.20) and (8.22) are also valid candidates for this case.

Failure pattern (3): in this case failures happen in actuator 5, the corresponding

control allocation matrix is

Λ3 =



0.1278 0.1825
d

0.1167
d

−0.1447
cm

0.1362 0.2992
d

0.5913
d

0.2360
cm

0.1180 −0.2409
d

0.6460
d

−0.2956
cm

0.3638 −0.2992
d

−0.5913
d

0.2640
cm

0 0 0 0

0.2542 0.0583
d

−0.7627
d

−0.0597
cm


. (8.24)

The matrix in (8.21) is also a valid candidate for this case.
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Failure pattern (4): in this case failures happen in actuator 6, the corresponding

control allocation matrix is

Λ4 =



0.3638 0.2992
d

−0.5913
d

−0.2640
cm

0.1180 −0.2409
d

0.6460
d

0.2956
cm

0.1362 −0.2992
d

0.5913
d

−0.2360
cm

0.1278 −0.1825
d

0.1167
d

0.1447
cm

0.2542 −0.0583
d

−0.7627
d

0.0597
cm

0 0 0 0


. (8.25)

The matrix in (8.22) is also a valid candidate for this case.

Remark 10. Due to the actuation redundancy, the choice of Λ0 is also not unique.

All the Λi presented in this section can serve as an alternate for Λ0. There are many

considerations in determining such a control allocation matrix, like energy efficiency,

emphasis on the agility of a selected output. Since the loss-of-thrust failure of rotor 2

and 3 are not compensable, one may increase their priorities. The main objective is

to design adaptive control scheme for unknown failure pattern and time. So we do

not discuss the control allocation problem in-depth, which is investigated in detail

in [127] and [130].

Controller performance verification

Consider the nominal intermediate control law for the linearized system with failure

pattern (i):

w∗(i)(t) = Ca[(I − σ(i))v
∗
(i)(t) + ū(i)]. (8.26)
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By plugging (8.12), (8.13) and (8.18) into (8.26), we have

w∗(i)(t) = Ca(I − σ(i))Λi(K
∗T
x x(t) +K∗r r(t) +K∗θ(i)) + Caū(i) = wd(t). (8.27)

Thus, it is verified that the desired motion control action in (8.4) has been met for

the cases with known failure.

8.2.3 Composite Control Design

Introducing the indicator functions

χ∗i =

 1 if failure patter (i) happens

0 otherwise
, for i = 0, 1, . . . , 7. (8.28)

With the nominal controller design for the no actuator failure case, four cases of

one actuator failure, and three cases of two actuators failure, a composite controller

structure can be given as

v∗(t) =
7∑
i=0

χ∗i (t)v
∗
(i)(t)

=
7∑
i=0

χ∗i (t)Λi(K
∗T
x (t)x(t) +K∗r (t)r(t) +K∗θ(i)θ(t)), (8.29)

where the nominal failure compensation parameter for the no failure case is K∗θ(0) = 0.

By summarizing (8.9) and (8.27), we present the performance of the nominal

controller in (8.29) as follows.

Lemma 8. For the system in (8.1) under known compensable failures, there exist

matrices K∗x, K∗r , K∗θ(i) and Λi such that w∗(i)(t) = wd(t), with which the state feedback

controller (8.29) ensures the closed-loop signal boundedness, and asymptotic output

tracking of the reference output ym(t) by the system output y(t).
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8.3 Adaptive Compensation Design

The nominal controller presented in last section requires the full knowledge of the

failures. When the failure pattern, failure time, and failure value are unknown, the

given nominal controller can not guarantee closed-loop performance and stability

anymore. In this section, we develop an adaptive actuator failure compensation

scheme for the system in the presence of uncertain actuator failures.

8.3.1 Adaptive Controller Structure

When the failure information of actuators is unknown, the state-feedback controller

structure is given as

v(t) =
7∑
i=0

χi(t)vi(t) =
7∑
i=0

χi(t)Λi[K
∗T
x x(t) +K∗r r(t) +Kθ(i)(t)θ(t)], (8.30)

where χi(t) is the estimation of χ∗i , Λi is the known control allocation matrix for

failure pattern (i), and Kθ(i)(t) is the estimation of K∗θ(i). We can rewrite (8.30) in a

more compact form as

v(t) = [
N∑
i=0

χi(t)ΛiΘ
∗Tω(t)] + Υ(t)θ(t) (8.31)

where

Θ∗ = [K∗Tx , K∗r ]T

ω(t) = [xT (t), rT (t)]T ,

the controller parameter matrix for failure compensation

Υ(t) =
N∑
i=0

χi(t)ΛiKθ(i)(t) (8.32)
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is the estimation of

Υ∗ =
N∑
i=0

χ∗iΛiK
∗
θ(i), (8.33)

and θ(t) is a vector of known bounded signals.

Substituting the controller structure (8.31), the failure model (3.43), and the design

rule of the control allocation matrix (8.13) into the linearized hexarotor system model

in (8.1), we obtain

ẋ(t) = Ax(t) +BCa[(I − σ(t))
7∑
i=0

χi(t)Λi(K
∗T
x x(t) +K∗r r(t) +Kθ(i)(t)θ(t)) + σ(t)ū(t)]

= (A+BK∗Tx )x(t) +BK∗r r(t) +B[Ca(I − σ(t))
7∑
i=0

χ∗iΛiK
∗
θ(i) + Caσ(t)ū(t)]

+BCa(I − σ(t))[
7∑
i=0

χ̃i(t)ΛiΘ
∗Tω(t) + Υ̃(t)θ(t)] (8.34)

where

χ̃i(t) =χi(t)− χ∗i (8.35)

Υ̃(t) =Υ(t)−Υ∗. (8.36)

8.3.2 Error Parameterization

To obtain the adaptive law for χi(t), a well parameterized tracking error model is

needed. In view of the reference model system (8.3), matching conditions (8.5), and

the closed-loop system (8.34), the output-tracking error is given as

e(t) = y(t)− ym(t) = Wm(s)[KpCa(I − σ)(
7∑
i=0

χ̃iΛiΘ
∗Tω + Υ̃θ)](t) + δ(t), (8.37)
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where

δ(t) = L−1{C(sI−A−BK∗Tx )−1B[Ca(I−σ(t))
7∑
i=0

(χ∗iΛiK
∗
θ(i) +Caσ(t)ū(t))]}. (8.38)

Ignoring the exponentially decaying term δ(t) in (8.38), we can rewrite (8.37) as

K−1
p ξm(s)[e](t) = Ca(I − σ(t))[

7∑
i=0

Λiχ̃i(t)Θ
∗Tω(t) + Υ̃(t)θ(t)], (8.39)

where the interactor matrix ξm(s) = W−1
m (s) is specified in (8.7).

Then we introduce a filter h(s) = 1/fh(s), where fh(s) is a stable and monic

polynomial whose degree is equal to the maximum degree of ξm(s). Operating both

sides of (8.39) by h(s)Im, the filtered tracking error can be denoted as

ē(t) = K−1
p ξm(s)h(s)[e](t) = Cah(s)[(I − σ)(

7∑
i=0

χ̃iΛiΘ
∗Tω + Υ̃θ)](t). (8.40)

Based on (8.40), we construct the estimation error vector signal:

ε(t) = ē(t) + Caλ(t)ξ(t), (8.41)

where the parameter matrix

λ(t) = diag{λ1, λ2, . . . , λM} (8.42)

is the estimation of (I − σ(t)) and

ξ(t) =
7∑
i=0

[χi(t)ΛiΘ
∗Tη(t)] + Υ(t)ζ(t)− h(s)[

7∑
i=0

χiΛiΘ
∗Tω + Υθ](t) (8.43)



136 Chapter 8 Adaptive Actuator Failure Compensation for Hexarotors

with the signal vectors

η(t) =h(s)[ω](t) (8.44)

ζ(t) =h(s)[θ](t)]. (8.45)

It then follows from (8.40), (8.41), and (8.43) that

ε(t) = Caλ̃(t)ξ(t) + Ca(I − σ(t))[
7∑
i=0

Λiχ̃i(t)Θ
∗Tη(t) + Υ̃(t)ζ(t)], (8.46)

where

λ̃(t) = λ(t)− λ∗. (8.47)

8.3.3 Adaptive Laws

With the parameterized error model, the adaptive laws are chosen as

λ̇j(t) =−
γλjC

T
ajε(t)ξ

T
j (t)

m2(t)
, j = 1, 2, . . . ,M (8.48)

χ̇i(t) =− γχiη
T (t)Θ∗ΛT

i C
T
a ε(t)

m2(t)
, i = 0, 1, . . . , N (8.49)

Υ̇(t) =− CT
a ε(t)ζ

T (t)

m2(t)
, (8.50)

where λj(t) is the jth diagonal element of λ(t) in (8.42), γλj > 0 (j = 1, 2, . . . ,M) and

γχi > 0 (i = 0, 1, . . . , N) are adaptive gains, Caj is the jth column of Ca, ξj(t) is the

jth element of ξ(t), and

m(t) =
√

1 + ξT (t)ξ(t) + ηT (t)η(t) + ζT (t)ζ(t) (8.51)

is a standard normalization signal.
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8.3.4 Stability Analysis

For the adaptive laws (8.48)-(8.50), we have following desired stability properties.

Lemma 9. The adaptive laws (8.48)-(8.50) guarantee the following desired properties:

1) λj(t) ∈ L∞ (j = 1, 2, . . . ,M), χi(t) ∈ L∞ (i = 0, 1, . . . , N), Υ(t) ∈ L∞, ε(t)
m(t)
∈

L2 ∩ L∞; and

2) λ̇j(t) ∈ L∞ ∩ L2 (j = 1, 2, . . . ,M), χ̇i(t) ∈ L∞ ∩ L2 (i = 0, 1, . . . , N), Υ̇(t) ∈

L∞ ∩ L2.

Proof. Consider the positive-definite function

V =
1

2
(tr[λ̃T (t)Γ−1

λ λ̃(t)] + tr[
N∑
i=0

γ−1
χi χ̃

2
i (t)(I − σ(t))] + tr[Υ̃T (t)(I − σ(t))Υ̃(t)]) > 0,

(8.52)

where the adaptive gain matrix

Γλ = diag{γλ1, γλ2, . . . , γλM}. (8.53)

From the adaptive laws (8.48)-(8.50), the time derivative of V at each operating

condition is obtained to as

V̇ =− εT (t)Caλ̃(t)ξ(t)

m2(t)
−
εT (t)Ca(I − σ(t))

N∑
i=0

χ̃i(t)ΛiΘ
∗Tη(t)

m2(t)
− εT (t)Ca(I − σ(t))Υ̃(t)ζ(t)

m2(t)

=− εT (t)ε(t)

m2(t)
≤ 0. (8.54)

From (8.52) and (8.54), it can be concluded that λ(t), χi(t) ∈ L∞ (i = 0, 1, . . . , N),

Υ(t) ∈ L∞, ε(t)
m(t)
∈ L2. Summing up the boundedness of λ(t), χi(t) (i = 0, 1, . . . , N)

and Υ(t), with (8.46) and (8.51), we have ε(t)
m(t)
∈ L∞. Since the normalized signals

η(t)
m(t)

, ζ(t)
m(t)

, ξ(t)
m(t)
∈ L∞, it can be concluded that λ̇(t) ∈ L∞ ∩ L2, χ̇i(t) ∈ L∞ ∩ L2 (i =

0, 1, . . . , N) and Υ̇(t) ∈ L∞ ∩ L2.
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Based on Lemma 2, the following desired closed-loop system properties for each

linearized system model can be established:

Theorem 3. The multivariable MRAC scheme with the state feedback control law

(8.31) updated by the adaptive laws (8.48)-(8.50), when applied to the system (8.1),

guarantees the closed-loop signal boundness and asymptotic output tracking: lim
t→∞

(∆y(t)−

∆ym(t)) = 0, for any initial conditions.

8.4 Simulation Study

The simulation results are shown in Figure 3. Rotor 1 is failed at t = 10. Both rotor 1

and 3 are failed at t = 30. All of the failures are loss-of control failure.

Figure 8.1: System response with loss-of-control failures.

8.5 Summary

In this chapter, we studied the adaptive actuator failure compensation scheme of

a hexarotor system with NNPPNP rotor arrangement. Our research shows that,
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with a complete parameterization of failure patterns and system parameters, desired

closed-loop stability and asymptotic tracking of the system can be achieved, despite

uncertain actuator failures whose failure index, failure time, and failure value are

unknown. The simulation results also verify the performance of the adaptive failure

compensation algorithm when applied to the linearized hexarotor model subject to

uncertain actuator failures.



Chapter 9

Designs for Hexarotors with

Failure and Parameter

Uncertainties

In this chapter, an adaptive control design is developed for hexarotor systems subject

to uncertain parameters and unknown actuator failures. The developed control

scheme consists of a control signal distributor and a state feedback controller equipped

with adaptive laws. It is verified that the control distribution matrix ensures that

under different uncertain actuator failure patterns the controlled system has high

frequency gain matrices whose equivalent signs are invariant. This property is crucial

for the design of a multivariable adaptive controller which has the capability to ensure

desired stability and asymptotic output tracking of an arbitrary time-varying reference

signal for the high-order hexarotor dynamics with unknown parameters and with

actuator failures whose failure patterns, values and time instants are uncertain. A

nominal control scheme is first constructed for the case of known parameters and

failures, to demonstrate the existence of the plant and reference model matching

parameters. A multivariable model reference adaptive controller is developed to deal

140
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with system and failure uncertainties, using an LDS gain matrix decomposition based

parametrization for the derivation of the estimation error and adaptive law. Such

a control design effectively utilizes the controller adaptation and system actuation

redundancy to compensate for possible uncertain actuator failures in the presence of

system uncertainties. Simulation results are presented to verify the desired performance

of the adaptive compensation scheme developed for hexarotor systems.

The main contributions of the part are as follows.

• A control signal distribution matrix is proposed to deal with uncertainties of

the control allocation scheme for a 4-DOF hexarotor, which includes additive

and manipulative parameters uncertainties.

• The important prior information for adaptive control design, as interactor matrix

and gain matrix signs, are investigated and shown to be fixed with the distributor

against up to two actuator failures with unknown failure time, failure pattern

and failure value.

• A nominal compensation scheme is derived to deal with the compensable failure

patterns.

• An adaptive controller equipped with control signal distributor is developed for

the hexarotor system with parameter and failure uncertainties.

The chapter is organized as follows. The control problem of the paper is formulated

in Section 9.1. Some background information is also introduced in the section, which

includes the nonlinear and linearized model of the hexarotor system, the actuator

failure model, and the basics of model reference adaptive control. In Section 9.2, the

design and function of the control signal distributor are explained in detail. The

nominal controller for the problem is presented and proved in Section 9.3, which is for

the case that the parameters and failures are known. Then in Section 9.4, the adaptive
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control laws are constructed for the cases that the information is unknown, which

is validated by rigorous stability analysis. Some numerical results of the proposed

approach are shown in Section 9.5.

9.1 Problem Statement

In this chapter, we study the output tracking problem. The output signal is chosen as

y = [zE, yE, xE, ψ]. (9.1)

The linearized hexarotor system model at an operating condition (xo.uo) with actuator

failure can be represented as

ẋ(t) = Ax(t) + B̄vc(t) +Būū(t) + fo, y(t) = Cx(t), (9.2)

where x(t) = ∆xp(t) ∈ Rn is the state vector, vc(t) ∈ RM is the applied control input

to be designed, y(t) ∈ Rm is the output vector; fo = f(xo.uo) is the non-equilibrium

offset, A = Ap, B̄ = BpCa(I−σ(t)), Bū = BpCaσ(t) are unknown matrices, the control

effectiveness matrix is

Ca=



1 1 1 1 1 1

d
√

3
2
d −

√
3

2
d −d −

√
3

2
d

√
3

2
d

0 1
2
d 1

2
d 0 −1

2
d −1

2
d

−cm −cm cm −cm cm cm


, (9.3)

the known output matrix is

C =

 Ct 03×3 03×3 03×3

01×3 01×3 Cr 01×3

 (9.4)
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with the submatrices

Ct =


0 0 1

0 1 0

1 0 0

 , Cr =

[
0 0 1

]
.

The control goal is to design an adaptive controller to generate vc(t) for system (9.2)

under loss-of-control failures with unknown failure time instants tj, failure pattern σ

(or failure index j) and unknown failure values ūj(t), to guarantee that the remaining

actuators can still ensure boundedness of the closed-loop signals and asymptotic

tracking of a given reference output signal

ym(t) = Wm(s)[r](t)1 (9.5)

by the system output y(t), where Wm(s) is the reference model system transfer matrix,

and r(t) is a bounded reference signal.

Remark 11. In this chapter, we work on the failure compensation problem for the

loss-of-control failure in the original nonlinear hexarotor system and the linearized

system in (9.2). For this case, denote the jth element of uo as uoj. Recall that

∆uf (t) = uf (t)− uo, the failure value ū(t) in the linearized system is connected to the

failure value ūf(t) in the original nonlinear system through ū(t) = ūf(t)− uo. Thus,

we can conclude that the unknown loss-of-control failure in the original nonlinear

system is still an unknown loss-of-control failure in the linearized system.

1 The notation G(s)[u](t) is short for

L −1{G(s)L [u(t)]}. (9.6)



144 Chapter 9 Designs for Hexarotors with Failure and Parameter Uncertainties

9.2 Control Distribution Scheme

In order to design a MRAC scheme, the system has to satisfy the design conditions.

When a system does not fully meet the requirements, we may apply some treatment to

it to derive the invariant system characteristics and make control design upon the new

system. In this part, a control signal distributor is proposed for 4-DOF hexarotors

under parameter and failure uncertainties.

9.2.1 Control Signal Distribution Matrix

The process of control signal distribution is to generate the applied control input

vc(t) ∈ RM from the control input uc(t) ∈ Rm by

vc(t) = Cduc(t), (9.7)

where Cd ∈ RM×m is the control distribution matrix to be designed. For systems

with m = M , like a quadrotor, the control distribution matrix Cd is the inverse of

Ca. However, for the systems with redundant actuation that M > m, like the 4-DOF

hexarotors, the control distribution matrix is not unique. Different methods are

proposed to figure out Cd from Ca and performance requirement as discussed in [127].

In this part, we propose a fixed control signal distribution matrix as

Cd =



1
6

2
13

0 − 3
26

1
6

3
√

3
26

+ 1
13

1
2

√
3

26
+ 5

26

1
6
−3
√

3
26
− 1

13
1
2
−
√

3
26
− 5

26

1
6

− 2
13

0 3
26

1
6
−3
√

3
26

+ 1
13
−1

2
−
√

3
26

+ 5
26

1
6

3
√

3
26
− 1

13
−1

2

√
3

26
− 5

26


cd, (9.8)
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where cd = diag{1, d−1, d−1, c−1
m }. It can be easily verified that the distribution matrix

in (9.8) and the control effectiveness matrix in (9.3) satisfies

CaCd = I. (9.9)

So for the case that there is no actuator failure, which means I − σ(t) = I − σ(0) = I,

we can derive the following property:

Ca(I − σ(t))Cd = I. (9.10)

Such property is crucial to verify the plant assumptions in Section 2.3 and design

a MRAC scheme. We will verify the design conditions for the cases with actuator

failure in next part.

9.2.2 Design Condition Verification

In this part, we show that the plant assumptions in Section 2.3 still stands when the

system with actuator failure is equipped with the control distribution scheme in (9.8).

System model with control distribution

By plugging (9.8) and (9.7) into (9.2), we have

ẋ(t) =Ax(t) +Buc(t) +Būū(t) + fo, (9.11)

where the unknown parameter matrix

B = BpCa(I − σ)Cd. (9.12)
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The transfer function of the new system is

G(s) = C(sI − A)−1B. (9.13)

The first step of the verification is to show the property as below.

Proposition 4. The control signal distribution matrix Cd in (9.8) guarantees that

rank(Ca(I − σ(t))Cd) = m, (9.14)

for the control effectiveness matrix Ca in (9.3) and all the compensable failure patterns

in Section 6.1.2.

Proof. We can derive the determine of Ca(I − σ(t))Cd for each compensable pattern:

det(Ca(I − σ(1))Cd) = 0.5641

det(Ca(I − σ(2))Cd) = 0.5641

det(Ca(I − σ(3))Cd) = 0.3512

det(Ca(I − σ(4))Cd) = 0.3512

det(Ca(I − σ(5))Cd) = 0.3077

det(Ca(I − σ(6))Cd) = 0.1914

det(Ca(I − σ(7))Cd) = 0.0893.

Since the determines are all nonzero, so Ca(I − σ(t))Cd is nonsingular and full rank

for each compensable pattern.

From [66], we know that the linearized system without control distribution as

G0 = Cp(sI − Ap)−1Bp satisfies the plant assumptions. Then the design conditions

for the system G(s) = G0(s)Ca(I − σ(t))Cd are verified as following.



9.2 Control Distribution Scheme 147

1. Since the zeros of a transfer matrix are the zeros make the transfer matrix lose

rank. So the constant matrix Ca(I − σ(t))Cd does not bring any new zeros to

the transfer matrix.

2. We know that (Ap, Bp) is stabilizable; and Ca(I − σ(t))Cd is full rank. Then

(Ap, BpCa(I − σ(t))Cd) is also stabilizable.

3. Because Ca(I−σ(t))Cd is full rank and G0(s) is full rank, so G(s) = G0(s)Ca(I−

σ(t))Cd is full rank.

It can be verified numerically that the interactor matrices of G0(s) still work for

G(s). For example, for the hover condition

ξm,hov(s)=



(s+ 1)2 0 0 0

0 (s+ 1)4 0 0

0 0 (s+ 1)4 0

0 0 0 (s+ 1)2


, (9.15)

and for the cruise condition

ξm,pit(s) =



(s+ 1)2 0 0 0

0 (s+ 1)4 0 0

−Tθo(s+ 1)4 0 (s+ 1)4 0

0 0 0 (s+ 1)2


. (9.16)

4. This condition can also be verified numerically. Limited by the paper length,

the trivial derivation process is not shown here.

By summarizing the above analysis, we can build a lemma for the linearized

hexarotor system with control signal distributor as follows:

Lemma 10. There exists a control signal distributor Cd as in (9.8) such that the

system G(s) in (9.13) satisfies the design conditions in Section 2.3.
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9.3 Nominal Controller Design

When the parameters of the system are known, the nominal controller structure is

u∗c(t) = K∗Tx x(t) +K∗r r(t) +K∗ββ(t) + k∗f , (9.17)

where β(t) is a known signal vector with element βk(t) defined in (3.51), K∗Tx ∈ RM×n

and K∗Tr ∈ RM×m are for the plant-model output matching:

C(sI − A−BK∗Tx )−1BK∗r = Wm(s), K∗r = K−1
p , (9.18)

and the high-frequency gain matrix is Kp = lim
s→∞

ξmG(s).

The existence of K∗x and K∗r is guaranteed by following lemma, whose proof is

in [125].

Lemma 11. There exist K∗x and K∗r such that the plant-model matching condition

(9.18) holds.

The nominal parameter k∗f for rejecting the non-equilibrium offset fo is derived

in [50] as

k∗f = −D−1d (9.19)

where

D = −C(A+BK∗x)−1B, d = −C(A+BK∗x)−1fo.

For the nominal case that the failure value, failure pattern and failure time are all

known, the system input is

∆uf (t) = (I − σ(i))v
∗
(i)(t) + ū(i)(t), i ∈ {1, 2, . . . , 7}, (9.20)
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where v∗(i)(t) is the applied control input to be designed for failure pattern (i), the

failure value for failure pattern (i) is

ū(i)(t) = σ(i)ū(t). (9.21)

Compensation design for actuator failures

Consider the output of the closed-loop system in s domain

y(s) = C(sI − A−BK∗Tx )−1BK∗r r(s) + δ(s) (9.22)

where

δ(s) = C(sI − A−BK∗Tx )−1[BK∗β +BpCaσ(i)ū]β(s). (9.23)

Then the output tracking error in the s domain is

e(s) = y(s)− ym(s) = δ(s). (9.24)

From the final value theorem, we have lim
t→∞

e(t) = lim
s→0

sδ(s). Recall that B = BpCa(I−

σ(i))Cd; and as shown in Proposition 1 that Ca(I − σ(i))Cd is full rank. So there exists

the matrix (Ca(I − σ(i))Cd)
−1. In order to compensate the failure and guarantee

lim
t→∞

e(t) = 0, we choose the nominal failure compensation parameter as

K∗β(i) = −(Ca(I − σ(i))Cd)
−1Caσ(i)ū(t) (9.25)

Then it follows that

lim
t→∞

(y(t)− ym(t)) = lim
t→∞

δ(t) = 0. (9.26)

In summary, we have the following theorem.

Theorem 4. For the plant (9.11), there exist matrices K∗x, K
∗
r , k∗f and K∗β, with which
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the state feedback controller (9.17) ensures the closed -loop signal boundedness of all s,

nonlinear offset rejection, and output tracking of a chosen reference output ym(t) by

the output y(t).

9.4 Adaptive Control Design

The nominal controller presented in last section requires the full knowledge of the

failures. When the failure pattern, failure time, and failure value are all unknown, the

given nominal controller can not guarantee closed-loop performance and stability any-

more. In this section, an adaptive actuator failure compensation scheme is developed

for the system in the presence of uncertain actuator failures.

9.4.1 Adaptive Law Design

When the system parameters are unknown, the state-feedback controller structure is

uc(t) = ΘT (t)ω(t), (9.27)

where

ω(t) = [xT (t), rT (t), β(t)T , 1]T , (9.28)

the controller parameter matrix Θ(t) is an estimation of the nominal parameters

Θ∗ = [K∗Tx , K∗r , K
∗
β, k

∗
f ]
T . (9.29)
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Error equation

Substituting the control law (9.27) into the the system dynamic , we obtain

ẋ(t) =Ax(t) +BΘT (t)ω(t) +Būū(t)

=(A+BK∗Tx )x(t) +BK∗r r(t) +BK∗ββ(t) +Būū(t)

+BΘ̃(t)ω(t), (9.30)

where

Θ̃(t) = Θ(t)−Θ∗. (9.31)

In view of the reference model system (9.5), matching conditions (9.18), and the

closed-loop system (9.30), the output-tracking error is given as

e(t) = y(t)− ym(t) = Wm(s)Kp[Θ̃
Tω](t) + δ(t). (9.32)

To deal with the uncertainty of Kp, the LDS decomposition [27] is used as

Kp = LsDsS, (9.33)

where S ∈ RM×M is a symmetric positive definite matrix, Ls ∈ RM×M is a unity lower

triangular matrix, and

Ds =diag{s∗1, s∗2, . . . , s∗M}

={sign[∆1]γ1, sign

[
∆2

∆1

]
γ2, . . . , sign

[
∆M

∆M−1

]
γM} (9.34)

such that γi ≥ 0, i = 1, . . . ,M , may be chosen to be arbitrary.
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Error parameterization

To obtain the adaptive laws for Kx(t), Kr(t), and Kβ(t), a well parameterized tracking-

error model is needed. Substituting the LDS decomposition of Kp and ignoring the

exponentially decaying term δ(t), the error equation can be parameterized as

L−1
s ξm(s)[e](t) = DsSΘ̃T (t)ω(t). (9.35)

To parameterize the unknown matrix Ls, a parameter matrix is introduced as

Θ∗0 = L−1
s − I, (9.36)

which has a special form as

Θ∗0=



0 0 0 · · · 0

θ∗21 0 0 · · · 0

θ∗31 θ∗32 0 · · · 0

...
...

...
...

...

θ∗M−11 · · · θ∗M−1M−2 0 0

θ∗M1 · · · θ∗MM−2 θ∗MM−1 0


∈ RM×M . (9.37)

We introduce a filter h(s) = 1/fh(s), where fh(s) is a stable and monic polynomial

whose degree is equal to the maximum degree of ξm(s). Operating both sides of (9.35)

by h(s)IM leads to the filtered tracking error

ē(t) + [0, θ∗T2 η2(t), θ∗T3 η3(t), . . . , θ∗TM ηM(t)]T

=DsSh(s)[Θ̃Tω](t), (9.38)
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where

ē(t) = ξm(s)h(s)[e](t) = [ē1(t), . . . , ēM(t)]T (9.39)

ηi(t) = [ē1(t), . . . , ēi−1(t)]T for i = 2, . . . ,M (9.40)

θ∗i = [θ∗i1, . . . , θ
∗
ii−1]T for i = 2, . . . ,M. (9.41)

Based on this error equation, we construct the estimation error vector signal:

ε(t) =ē(t) + [0, θT2 (t)η2(t), θT3 (t)η3(t), . . . , θTM(t)ηM(t)]T + Ψ(t)ξ(t), (9.42)

where θi(t) are the estimates of θ∗i , Ψ(t) is the estimate of Ψ∗ = DsS, and

ξ(t) = ΘT (t)ζ(t)− h(s)[ΘTω](t) (9.43)

ζ(t) = h(s)[ω](t). (9.44)

Adaptive laws

With the estimation error model, we choose the adaptive laws

θ̇i(t) =− Γθiεi(t)ηi(t)

m2(t)
, i = 2, 3, . . . ,M (9.45)

Θ̇T (t) =− Dsε(t)ζ
T (t)

m2(t)
(9.46)

Ψ̇(t) =− Γε(t)ξT (t)

m2(t)
(9.47)

where Γθi = ΓTθi > 0 and Γ = ΓT > 0 are adaptation gain matrices, and

m2(t) = 1 + ζT (t)ζ(t) + ξT (t)ξ(t) +
M∑
i=2

ηTi (t)ηi(t), (9.48)

is a standard normalization signal.
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9.4.2 Stability Analysis

To analyze the closed-loop system stability, we first establish some desired properties of

the aforementioned adaptive parameter update laws for the linearized system models

at each operating condition.

Lemma 12. The adaptive laws (9.45)-(9.47) ensure the following desired properties:

1. θi(t) ∈ L∞(i = 2, 3, . . . ,M),Θ(t) ∈ L∞,Ψ ∈ L∞, ε(t)
m(t)
∈ L2 ∩ L∞; and

2. θ̇i(t) ∈ L2 ∩ L∞(i = 2, 3, . . . ,M), Θ̇(t) ∈ L2 ∩ L∞, Ψ̇(t) ∈ L2 ∩ L∞.

Proof. For the linearized system model, consider the positive-definite function

V =
1

2
(
M∑
i=2

θ̃Ti Γ−1
θi
θ̃i + tr[Ψ̃TΓ−1Ψ̃] + tr[Θ̃SΘ̃T ]) > 0. (9.49)

From (9.38) and (9.42), it then follows that

ε(t) =[0, θ̃T2 (t)η2(t), θ̃T3 (t)η3(t), . . . , θ̃TM(t)ηM(t)]T

+ Ψ̃(t)ξ(t) +DsSΘ̃T (t)ζ(t), (9.50)

where θ̃i(t) = θi(t)− θ∗i and Ψ̃(t) = Ψ(t)−Ψ∗ are the related parameter errors.

From the adaptive laws, the time derivative of V can be obtained to as

V̇ =−
M∑
i=2

θ̃Ti (t)εi(t)ηi(t)

m2(t)
− ξT (t)Ψ̃T (t)ε(t)

m2(t)

− ζT (t)Θ̃(t)SDsε(t)

m2(t)

=− εT (t)ε(t)

m2(t)
≤ 0. (9.51)

From (9.49) and (9.51), it can be concluded that θi(t) ∈ L∞(i = 2, 3, . . . ,M),Θ(t) ∈

L∞, Ψ(t) ∈ L∞, and ε(t)
m(t)
∈ L2. Summing up the boundedness of θi(t)(i = 2, 3, . . . ,M),Θ(t),
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and Ψ(t)with (9.50) and (9.48), we have ε(t)
m(t)
∈ L∞. Since the normalized signals

ηi(t)
m(t)

(i = 2, 3, . . . ,M), ζ(t)
m(t)

, ξ(t)
m(t)
∈ L∞, it can be concluded that θ̇i(t) ∈ L2 ∩ L∞(i =

2, 3, . . . ,M), Θ̇(t) ∈ L2 ∩ L∞, and Ψ̇(t) ∈ L2 ∩ L∞.

Based on Lemma 4, the following desired closed-loop system properties for each

linearized system model can be established:

Theorem 5. The multivariable MRAC scheme with the state feedback control law

(9.27) updated by the adaptive laws (9.45)-(9.47), when applied to the system , guar-

antees the closed-loop signal boundness and asymptotic output tracking: lim
t→∞

(∆y(t)−

∆ym(t)) = 0, for any initial conditions.

The proof of Theorem 1 is similar to that explained in [125] for MRAC design

for MIMO systems. The key step is to formulate a filtered output signal. The state

feedback control signal is required to be expressed in terms of the output. Since the

state feedback control input uc(t) depends on the state x(t), we need to express it

in terms of the output y(t), which can be done using a state-observer of the plant.

Then the analysis procedure in [126] can be used to conclude the closed-loop signal

boundedness and output tracking.

9.5 Simulation Study

The proposed adaptive controller has been verified analytically in last section. In this

section, we show its performance by simulation.

9.5.1 Simulation System

The simulation is based on the data of a real hexarotor system. The details of the

parameters we use is shown in Table 9.1. The reference output signal ym(t) is chosen
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to be: ym(t) = [500, 50 sin(t), 180 sin(0.5t), 0]T , for t ∈ [0, 80); yd(t) = [20, 0, 0, 0]T , for

t ∈ [80, 100).

Table 9.1: Parameter values for simulation

Parameter Value Unit

cm 0.0025 m·s
cr 0.001 N·m·s
ct 0.25 N·m·s
d 0.2 m

g 9.8 m/s2

Jx 0.005 kg·m2

Jy 0.005 kg·m2

Jz 0.009 kg·m2

m 2 kg

9.5.2 Simulation Results

Case I

A loss-of-effectiveness failure happens at rotor 1 from t = 20s. The rotor can only

perform 80% of command input. The results are shown in Figure 9.1.

Case II

A lock-in-place failure happens at rotor 1 from t = 20s. The rotor stops receiving

commands and keeps rotating at the same speed. The results are shown in Figure 9.2.

Case III

A loss-of control failure happens at rotor 1 from t = 10s, the rotor stops working after

the failure. Then a loss-of control failure happens at rotor 4 from t = 30s, the rotor

stops working after the failure. The results are shown in Figure 9.3.
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Figure 9.1: Simulation results for loss-of-effectiveness failure compensation.

Figure 9.2: Simulation results for lock-in-place failure compensation.



158 Chapter 9 Designs for Hexarotors with Failure and Parameter Uncertainties

Figure 9.3: Simulation results for loss-of-control failures compensation.
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Case IV

In this case, both failures are loss-of-control failure. The results is shown in Figure

9.4.

Figure 9.4: Simulation results for loss-of control failure.

Case V

In this case, the first failure is lock in place failure, the second failure is loss-of-

effectiveness . The results is shown in Figure 9.5.
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Figure 9.5: Simulation results for loss-of-effectiveness and lock-in-place failures.
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Case VI

In this case, the desired output yd(t) is chosen as: yd(t) = [20, 20 sin(0.5t), 30 cos(0.2t), 0]T ,

for t ∈ [0, 10000); The results is shown in Figure 9.6.

Figure 9.6: Verification of the asymptotic stability of the output.

9.6 Summary

In this chapter, we studied the adaptive actuator failure compensation scheme for a

hexarotor system. The work shows that, with a complete parameterization of failure
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patterns and system parameters, desired closed-loop stability and asymptotic tracking

of the system can be achieved, despite uncertain actuator failures whose failure pattern,

failure time, and failure value are all unknown. The simulation results also verified the

performance of the adaptive control algorithm when applied to the hexarotor system.
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Conclusions and Future Work

10.1 Conclusions

Given the importance of multirotors and the current lacking of effective control

techniques for the next generation of autonomous multirotors (which are expected to

have guaranteed stability and tracking properties for sophisticated fast maneuvers and

under system parameter and fault uncertainties, without the human manipulation),

this dissertation research developed advanced adaptive control techniques to meet

the needs of next generation multirotors: robust stability, asymptotic tracking, and

adaptive fault accommodation, in the presence of system and environment uncertainties.

Such advanced adaptive control methods for multirotors are effective for dealing with

system parameter uncertainties and system faults.

In Chapter 6, we developed a linearization-based model reference adaptive control

scheme for a multivariable quadrotor system. The proposed adaptive design can reject

the non-equilibrium offset and make the closed-loop system signals bounded and the

outputs track the chosen reference signals asymptotically.

In Chapter 7, a linearization-based multivariable adaptive control scheme for a

nonlinear quadrotor model has been developed. The nonlinear quadrotor system

163
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is linearized at given typical operating conditions, and a sequential linear model

with parameter uncertainties and a non-equilibrium offset is obtained to represent

the linearized system at different operating conditions. With the use of an input

compensator, a uniform interactor matrix and identical gain matrix signs are obtained.

As a result of the achievable plant-model matching conditions, the proposed MRAC

design can reject the non-equilibrium offset and make the closed-loop system signals

bounded and the output signals track some chosen reference signals over different

operating conditions.

Chapter 8, we studied the adaptive actuator failure compensation scheme of

a hexarotor system with NNPPNP rotor arrangement. It is shown that, with a

complete parameterization of failure patterns and system parameters, desired closed-

loop stability and asymptotic tracking of the system can be achieved, despite uncertain

actuator failures whose failure index, failure time, and failure value are unknown.

In Chapter 9, we developed an adaptive controller for hexarotor systems subject

to parameter uncertainty and actuator failures. A control signal distribution matrix

is proposed to deal with uncertainties of the control allocation scheme for a 4-DOF

hexarotor, which includes additive and manipulative parameters uncertainties. The

design conditions are verified for the distributor under up to two actuator failures

with unknown failure time, failure pattern and failure value. An adaptive controller

equipped with control signal distributor is developed for the hexarotor system with

parameter and failure uncertainties.

The control designs for multirotors under uncertainties and faults obtained in

this dissertation research will be the basis for resilient control not only in multirotor

systems but also in a broad range of other performance-critical cyber-physical systems

such as intelligent and collaborative robots.
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10.2 Future Work

In this dissertation, an adaptive control framework is presented for different multirotor

systems under various abnormal conditions. There are still some potential directions

for future research work. We would like investigate the non-equilibrium conditions

of omni-directional multirotor systems to reach more sophisticated flight maneuvers.

The compensable actuator failures summarized in Chapter 5 are obtained through

numerical methods, so an analytical study of failure compensability or fault tolerance

should be conducted. The center of gravity variation problem is still unsolved, it

affects both the dynamics and actuation of the system and requires special treatment.
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