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Abstract

Language understanding requires not only linguistic knowledge but also relies on

knowledge that is external to textual symbols. A vast amount of knowledge is stored

in the form of graph-structured data in many application domains. Despite a growing

interest in developing knowledge-driven approaches in the community, how to build

powerful representations of graph-structured knowledge and effectively incorporate

them into language understanding models remains a challenging problem in natural

language processing research.

This thesis explores the direction of contextualizing language understanding with

graph-based knowledge representations. I first demonstrate the challenges of building

meaningful interactions between language representations and domain-specific knowl-

edge representations in the task of cross-domain Text-to-SQL semantic parsing. By

citing this example, I point out the idea of fostering multiple connections between

the two representations in their different levels of abstraction and utilize the idea

to substantially improve two graph neural network-based semantic parsers. To im-

plement this idea in a more general form to benefits more language understanding

tasks, I propose a new knowledge graph representation model that shares a similar

Transformer architecture design with prevalent language models. In the task of fac-

toid question answering, I show that the proposed knowledge representations can be

effectively integrated into state-of-the-art pre-trained language models via a simple

cross-modality attention mechanism.
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Chapter 1

Introduction

Understanding natural languages, which are structured systems humans developed to

communicate between individuals, is considered a grand challenge to artificial intel-

ligence research. Language embodies humans’ reasoning process with various knowl-

edge. It trade full clarity for efficiency by keeping only essential content but ignoring

shared knowledge about the context. Although some of the contextual information is

still expressed in the forms of language in a larger space, lots of the valuable contexts

are from other modalities. Therefore, trying to understand language by only learning

from textual symbols could raise several issues.

• Some ambiguities are impossible to be resolved due to the absence of necessary

contexts, e.g., in a sentence “the man saw a jaguar cross the jungle”,1 we do

not know whether the “jaguar” here is a jaguar car or an animal, while this

ambiguity can be resolved if a picture of the scene is presented.

• Linguistic knowledge learned from one domain is hard to generalize to other do-

mains because of context switching, e.g., semantic parsers trained on geography

domain cannot generalize to flight booking domain without explicitly capturing

the domain differences.

• Learning general knowledge requires inefficient training on large amounts of

data, e.g., huge language models trained on billions of words can recall some
1This example is adapted from Raiman and Raiman (2018).
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factual knowledge (Petroni et al., 2019).

As we will see through the rest of this thesis, these problems are widespread

across many critical applications of natural language processing, hindering the current

research progress. Moreover, from a linguistic perspective, researchers have even

argued that it is theoretically impossible to learn the meaning of language by only

training models on linguistic forms (Bender and Koller, 2020). We also see a growing

interest in grounded language learning in recent reflections (Tamari et al., 2020).

Contextualizing language understanding with data from other modalities is not a

new idea. Harnad (1990) identifies the famous “symbol grounding problem”, suggest-

ing that language understanding systems should have the innate ability to ground

the meaning of language to a underlying symbol system, with the help of sensory

data of human perception. It further proposes a potential solution of using neural

networks to learn the “categorical representations” for sensory data which contains

invariant features that are grounded to the symbol system. Early work uses statistical

models to exploit the correlations between multimodal data within the same context.

For example, Roy and Pentland (2002) explores lexicon acquisition by building an

information-theoretic model which is proposed to find consistent structure between

paired speech and image data. Mintz et al. (2009) perform distant-supervised relation

extraction by aligning text to existing knowledge graphs, e.g., the Freebase (Bollacker

et al., 2008). After the successful applications of neural networks in many domains,

many works have enjoyed the benefits of having a consistent framework for multimodal

data. Convolution neural networks have been applied to build multimodal neural lan-

guage models which can be used to retrieve phrase descriptions of a given image or

the other way around (Kiros et al., 2014). The Transformer architecture (Vaswani

et al., 2017) has also been used to learn high quality cross-modality representations in

large amounts of image and sentence pairs (Tan and Bansal, 2019), after its success

in learning representations of languages (Devlin et al., 2019).

This thesis investigates ways that language can be supplied with external con-

texts in the form of graph-structured data. Among various forms of external context

that are useful for language understanding, I choose graphs because of their wide

10



availability in many domains and full expressiveness in representing the relationship

between entities. For many natural language processing tasks, there are external

contexts that are represented by graphs. For example, the senses of words and the

relations between them (e.g., “is a” relation between “cat” and “mammal”) can con-

stitute a WordNet (Miller, 1995), which is beneficial for tasks like computing word

similarity and word sense disambiguation. Visual information can be essentialized

to scene graphs to contextualize language understanding with visual knowledge (Yu

et al., 2020). Besides natural language processing, much early work has been put into

storing general-purpose world knowledge by constructing large-scale knowledge bases

represented in the form of graphs. These knowledge graphs are naturally-occurred

semantics and have wide implications for a variety of applications in natural language

processing such as answering factoid questions.

Specifically, this work makes a step forward in bridging language and graph-

structured data. I approach this problem from both sides, formulated as the following

research questions.

• Starting from languages: how to ground language understanding to external

graph-structured data via the interactions between neural representations of

language and graph.

• Starting from graphs: how to represent graph-structured data in a way that it

can be better integrated into language understanding models, without losing its

expressiveness.

Starting with the first direction, in the task of text-to-SQL semantic parsing,

I attempt to map natural language questions to SQL queries that are executable

against a database. I study this task in a cross-domain setting where the databases

I used for training the semantic parser are not the same as those I used for testing.

This is achieved by encoding the domain-specific context — the schema graph of

a database to a graph representation that can be used by the parser. Focusing on

the both crucial and challenging problem of selecting the correct entities (tables and

columns) for the generated SQL query, I formulate two linking processes that I can
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use to ground two different types of semantic units (shallow and compositional) to

entities in the database schema graph via two different linking paths, at different

levels of graph representation. One of the key insights here is that the linguistic units

bearing shallow semantics can mostly be grounded to shallow graph representations,

while those bearing compositional semantics will require structural representations

of the graph. Interestingly, I find that in a widely-used cross-domain text-to-SQL

parsing dataset, these two types of semantic units are well-separable with the help

of partially generated SQL code segments. Also, this case study demonstrates the

needs and benefits of external context in a fundamental task of natural language

understanding.

Motivated by the benefits brought by proper multilevel interactions between lan-

guage and knowledge representations that I previously observed, I explore the possi-

bility of creating a new graph representation model which can foster such interactions

naturally. The current graph representations are usually learnt by various graph neu-

ral networks. Such network variant is known to suffer from depth limitation, result

in commonly shallow graph representations. After the success of large pre-trained

language models (Devlin et al., 2019), the Transformer (Vaswani et al., 2017) has

become the de facto model for many language tasks. To explain its unprecedented

power, researchers have performed probing analysis and found that meaningful levels

of abstraction of language occur in representations from pre-trained Transformer’s

different layers. For example, representations from the lower layers often encode

more syntactic information while those from higher layers capture complex seman-

tics (Tenney et al., 2019; Lin et al., 2019). Therefore, it is challenging to combine

a deep hierarchical language representations with a shallow representations of graph

while keeping meaningful interaction favourably. As such, taking knowledge graphs as

test beds, I adapt the Transformer to learn knowledge graph representation so that

the model architectures for language and knowledge graphs are homogeneous, en-

abling the possibility of an elegant merger using a simple cross-attention mechanism.

I perform evaluations in long-standing knowledge graph completion benchmarks to

show that the proposed Transformer-based graph representations (called HittER) are

12



more expressive in the sense of generalizing to unseen relational facts during inference,

compared to a long line of work in knowledge graph representations learning.

Lastly, to evaluate whether the proposed knowledge graph representations HittER

can enable meaningful interactions with deep language representations via their levels

of abstraction, I combine a HittER model pre-trained on a knowledge graph with a

state-of-the-art pre-trained Transformer-based language model BERT. Experiments

on a factoid question answering task, pertaining to questions of facts in the knowledge

graph I used for pre-training, demonstrate the validity of my hypothesis.

13



Chapter 2

Text-to-SQL Parsing with Schema

Graphs

In this chapter, I explore how external graph-structured data can benefit language

understanding, using cross-domain Text-to-SQL semantic parsing as an example.1

Semantic parsing aims at extracting the precise meaning of language and representing

it with a machine-understandable meaning representation. As a key task in natural

language processing, semantic parsing has attracted lots of research attention because

it focuses on the fundamental problems of extracting meaning from language and

bridging the gap between human and computer. Although a variety of logic forms

have been studied as targets of meaning representation over the decades, Text-to-

SQL semantic parsing has nevertheless attracted a large amount of attention due to

the desire of natural language interfaces to database (NLIDB) in both the academia

and industry. As a Text-to-SQL parser translates user query utterances to SQL code

that is executable against a database, lots of existing work focuses on learning a

specific database (e.g., geographical database), treating it as a latent world state.

This learning paradigm ignores the valuable information stored in the database and
1Material in this chapter is adapted from:

• Sanxing Chen, Aidan San, Xiaodong Liu and Yangfeng Ji. A Tale of Two Linkings: Dynam-
ically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing. In
Proceedings of the 28th International Conference on Computational Linguistics, 2020.
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leads to semantic parsers that are unable to generalize to other databases. Recent

work on cross-domain Text-to-SQL semantic parsing tries to fix this issue by proposing

a new learning paradigm where a semantic parser is given the database as input and

will be evaluated in databases that are not seen during training. Under this setting,

the parser receives inputs of two modalities, i.e., text of user query and the database

depicted by its schema graphs. Although recent work has explored ways to build

representations for both inputs, it is unclear how to capture meaningful interactions

between these two representations.

Given our task definition, the output meaning representation (i.e., SQL code) is

meant to capture the precise semantics of question utterances and also compliant with

the rules defined in the database. This unique role makes it an ideal intermediate

representation for us to bridge the gap between the two representations of text and

graph. Moreover, previous work has shown that current Text-to-SQL parsers have no

trouble in generating SQL skeletons that are matched with the general semantics of

question utterances. Instead, they struggle with selecting the correct entities (tables

and columns in a database) to fill in the slots in SQL skeletons which requires deeper

understanding.

Thus our goal in this chapter is to explore how meaningful interactions between

text and graph representations can help us identify the correct entities for a SQL

output. To accomplish this goal, I first formulate two linking processes: 1) schema

linking, which identifies entities that are explicitly mentioned in question utterances

by matching with entity names in the schema graph; 2) structural linking, which

identifies entities that are not directly mentioned in question utterances but related

to other entities in the SQL code, according to their structural relationships in the

schema graph. Next, I design a model that can distinguish between these two linking

paths for each entity given its role in the SQL query.
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2.1 Related Work

2.1.1 Semantic Parsing

Semantic parsing research focus on mapping natural language to formal languages

like lambda calculus (Zettlemoyer and Collins, 2005; Kwiatkowksi et al., 2010; Liang

et al., 2011; Dong and Lapata, 2016), Prolog-style queries (Zelle and Mooney, 1996;

Tang and Mooney, 2000), and more recently to SQL (Warren and Pereira, 1982;

Popescu et al., 2003; Giordani and Moschitti, 2009; Zhong et al., 2017; Iyer et al.,

2017). It can also tackle the problem of parsing natural language descriptions to

complicated general-purpose programming language such as Python (Ling et al., 2016;

Rabinovich et al., 2017; Yin and Neubig, 2017).

Text-to-SQL parsing requires strict structured prediction due to its application

scenario where the output SQL will be sent to an executor program directly. To en-

hance the capacity of an auto-regressive model to capture structural information, cur-

rent state-of-the-art semantic parsers usually adopt a grammar-based decoder (Xiao

et al., 2016; Yin and Neubig, 2017; Krishnamurthy et al., 2017). Rather than directly

generating the tokens in a traditional sequence-to-sequence manner, grammar-based

decoders produce a sequence of production rules to construct an abstract syntax tree

(AST) of the corresponding SQL. As the grammar constraints narrows down the

search space to only grammatically valid ASTs, those parsers can usually generate

well-formed SQL skeletons (Guo et al., 2019; Bogin et al., 2019a).

However, it is still difficult for current state-of-the-art models to fill in the skeletons

with semantically correct entities, especially when they are required to generalize to

unseen DB schemas (Yu et al., 2018; Suhr et al., 2020). To predict the correct entity,

the model should have a database (DB) schema grounded understanding of the NL

question, which means that the model should be able to jointly learn the semantics

in the NL question and the structured knowledge in a given database. Our proposed

method is tested for Text-to-SQL parsing and can be adapted to other semantic

parsing applications.
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2.1.2 Structural Mismatch

Programming languages like SQL express the same intent in a completely different

way from natural language by design (Kate, 2008). The phenomenon called structural

mismatch widely exists between language and various programming language and is

a major challenge in semantic parsing (Dong, 2019). To alleviate the structural

mismatch problem, early approaches rely on linguistic formalisms like parsing results

from flexible CCGs (Zettlemoyer and Collins, 2005, 2007; Kwiatkowski et al., 2011,

2013). Chen et al. (2016) proposed to use sentence rewriting to revise the natural

language question to a new question which has the same structure with the targeted

logical form. Recently, Guo et al. (2019) proposed to first translate the natural

language question to an intermediate representation (IR) designed to bridge natural

language and SQL, then use a deterministic algorithm to convert the IR to SQL. In

addition to taking a considerable amount of engineering effort, their designed IR is

still unable to cover some SQL grammars like the self-join in the ON clause, and is more

challenging to apply to other programming languages. We deal with this problem by

explicitly modeling the prediction structure with external predefined structure (i.e.,

DB schema) by structural linking.

2.1.3 Memory Pointer Network

Memory networks were first introduced in the context of the question answering task,

where they served as a differentiable long-term knowledge base to enhance auto-

regressive model’s poor memory (Weston et al., 2015; Sukhbaatar et al., 2015). Copy

mechanisms use attention as a pointer to select and copy items from source text, thus

addressing the problem of a variable output vocabulary size (Vinyals et al., 2015; See

et al., 2017). Recent research has applied memory-augmented pointer networks to

various NLP tasks, including task-oriented dialogue (Wu et al., 2019) and also se-

mantic parsing (Liang et al., 2017; Guo et al., 2019). Our dynamic gating mechanism

can also be seen a memory controller, except our memory is read-only and acts as

both the query and key in a pointer network. Different from most current techniques,
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our pointer network does not only perform copying but can also point to a start point

of structural linking.

2.2 Model

In this section, we first formulate the Text-to-SQL semantic parsing task in sec-

tion 2.2.1. We will then describe the details of our proposed method in section 2.2.2.

2.2.1 Text-to-SQL Semantic Parsing

The task of Text-to-SQL semantic parsing is to predict a SQL query 𝒮 based on input

(𝒬,𝒢) where 𝒬 = {𝑞1, . . . , 𝑞|𝒬|} is the NL question and 𝒢 = (𝒱 , ℰ) is the DB schema

being queried. In the schema, 𝒱 = {(𝑒1, 𝑡1), . . . , (𝑒|𝒱|, 𝑡|𝒱|)} is a set which usually con-

tains two types of entities (i.e., tables and columns2) and their textual descriptions

(i.e., table names and column names), while ℰ = {(𝑒(𝑠)1 , 𝑒
(𝑡)
1 , 𝑙1), . . . , (𝑒

(𝑠)
|ℰ| , 𝑒

(𝑡)
|ℰ|, 𝑙|ℰ|)}

contains the relations 𝑙 between source entity 𝑒(𝑠) and target entity 𝑒(𝑡), e.g., table-

column relationships, foreign-primary key relationships,3 etc. The output 𝒮 = {𝑎1, . . . , 𝑎|𝒮|}

is a sequence of decoder actions which further compose an AST of SQL.

Typical state-of-the-art Text-to-SQL parsers, consist of three components: a NL

encoder, a schema encoder and a grammar decoder (Guo et al., 2019; Bogin et al.,

2019a).

The NL encoder takes the NL question tokens 𝒬 as input, maps them to word

embeddings 𝐸𝒬, then feeds them to a Bi-LSTM (Hochreiter and Schmidhuber, 1997).

The hidden states of the Bi-LSTM serve as the contextual word representation of each

token.

The schema encoder takes 𝒢 as input and builds a relation-aware entity rep-

resentation for every entity in the schema. The initial representation of an en-

tity is a combination of its words embeddings and type information. Then self-
2Note that columns may have more fine-grained types like binary, numeric, string and date/time,

primary/foreign etc.
3In SQL, a foreign key in one table is used to refer to a primary key in another table to link these

two tables together for joint queries.
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For   each  continent,  list    its     id,    name,   and    how   many  countries  it    hasQuestion

Embedding

NL Encoder

query "-> ["select", selections, from, group_by] 
selections "-> [selection, ",", selections]  
selection "-> [column]  

column "-> ["continents@contid"] 
selections "-> [selection, ",", selection]  
selection "-> [column]  

column "-> ["continents@continent"] 

!.. !.. !.. 
from "-> ["from", table, join]  

table "-> ["continents"] 
join "-> ["join", table, "on", join_condition]  

table "-> ["countries"] 
join_condition "-> [column, "=", column]  

column "-> [“continents@contid"] 

column "-> ["countries@continent"] 
group_by "-> ["group", "by", column]  

column "-> ["countries@continent"]

Grammar Decoder

continents@contid
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Figure 2-1: An illustration of our proposed method when running the first example
shown in Table 2.1. This figure shows two independent entity generation procedures,
the top one favors schema linking while the bottom one favors structural linking.
Some details are omitted for the sake of simplicity. Grammars are simplified to fit in
the limited space, readers are encouraged to refer to (Krishnamurthy et al., 2017) for
details.
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Figure 2-2: An illustration of our gating mechanism.
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1
Q: For each continent, list its id, name, and how many countries it has?
select t1 . contid , t1 . continent , count(∗) from continents as t1

join countries as t2 on t1 . contid = t2 . continent group by
t1 . contid ;

2
Q1: What is the average, minimum, and maximum age of all singers from
:::::::
France?
Q2: What is the average, minimum, and maximum age for all

:::::::
French

singers?
select avg(age) , min(age) , max(age) from singer where country =

’France ’ ;

3
Q: What is the first name and gender of the all the students who have more
than one pet?
select t1 .fname, t1 . sex from student as t1 join has_pet as t2

on t1 . stuid = t2 . stuid group by t1 . stuid having count(∗) > 1

Table 2.1: Several examples that are taken from the Spider dataset. Entity mentions
are underlined in NL questions. Q1 and Q2 are paraphrases of each other which
should lead to the same SQL result.

::::::
Wavy

::::::::::
underline indicates the mention can only

be resolved by linking to a cell value or common sense reasoning.

attention (Zhang et al., 2019a; Shaw et al., 2019) or graph-based models (Bogin et al.,

2019a; Wang et al., 2020a) are utilized to exploit the relational information between

each pair of entities from the DB schema, thus produce the final representation of all

entities 𝐻𝒱 ∈ R|𝒱|×dim. We will detail this in section 2.2.3.

Finally, a grammar decoder (Xiao et al., 2016; Yin and Neubig, 2017; Krish-

namurthy et al., 2017) generates an AST of output SQL in a depth-first order. The

decoder is typically an auto-regressive model (e.g., LSTM) which estimates the prob-

ability of generating an action sequence.

There are two cases of using actions. Depending a specific case, an action is either

(i) producing a new production rule to unfold the leftmost non-terminal node in the

AST, or (ii) generating an entity (e.g., a table or a column) from the DB schema

if it is required by last output production rule. In the former case, at step 𝑡, the

decoder normally uses its hidden states ℎ𝑡 to retrieve a context vector 𝑐𝑡 from the NL

encoder. Then an action embedding 𝑎𝑡 is produced based on the concatenation of ℎ𝑡

and 𝑐𝑡. This action embedding will directly predict a production rule from the target

20



vocabulary which is a subset of a fixed number of production rules. For the latter

case, the decoder need to estimate a probability distribution over a schema-specific

vocabulary under grammatical constraints which come from the structure of both the

output SQL and the DB schema, as well as semantic constraints implied in the NL

question.

2.2.2 Dynamic Gating

In this paper, we focus on the decision made when the decoder is looking for an entity

to fill in a slot (i.e., case (ii) in the last paragraph). Our decoder predicts the entity

based on a mixed probability model consisting of two processes:

• Schema linking. The decoder attends to the output of the NL encoder (which

can be seen as selecting a most relevant NL mention), then finds the correspond-

ing entity based on string-matching or embedding-matching results.

• Structural linking. The decoder self-attends to the output states from those

previous decoding steps which have generated entities, then finds another entity

which is structurally linked to the attended entity.

The choice between them is controlled by a gating mechanism called the link gate.

Formally, the marginal probability of generating an entity 𝑒 is defined as follows:

Pr(𝑎𝑡 = 𝑒) = Pr(𝑒|Schm) Pr(Schm) + Pr(𝑒|Strct) Pr(Strct) (2.1)

where Pr(Schm) and Pr(Strct) are the probability of choosing schema linking and

structural linking respectively. They are further computed as:

𝜌link = Sigmoid(FF(𝑎𝑡)) (2.2)

Pr(Schm) = 𝜌link (2.3)

Pr(Strct) = 1− 𝜌link (2.4)

eq. (2.2) stands for our proposed link gate which is computed by 𝑎𝑡. The reason
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for purely basing the gate value on 𝑎𝑡 is that intuitively the choice between the two

processes is about the role of the current entity we want to generate. The role of an

entity is determined by the SQL clause that contains it. Since 𝑎𝑡 is directly used to

predict a production rule in case (i), it should be able to capture this information.

The link gate allows the decoder to dynamically choose between information from

our two linking processes, and prevents them from interfering each other.

In practice, we model the probability of the schema linking process generating an

entity mentioned in the NL question, namely Pr(𝑒|Schm), as a multiplication of the

attention weights 𝜆 ∈ R|𝒬| over the NL encoder outputs and a schema linking matrix

𝑀 ∈ R|𝒬|×|𝒱|. The probability of the structural linking process, namely Pr(𝑒|Strct),

is similarly computed by multiplying decoder self-attention weights and a structural

linking matrix 𝑇 ∈ R|𝒱|×|𝒱|.

The structural linking matrix 𝑇 captures the relationship between every pair of

entities given the relational DB schema. Common structural links include relations

between a table and its columns, a table and its primary/foreign key, a primary key

and one of its linked foreign keys in other tables, etc. There are also multi-steps

links which are the combinations of the one-step links listed above. Note that there

may not be a unique link between every pair of entities and some entities may not

have a link between them at all. Meanwhile, an entity can link to itself which can

be considered to be a special zero-step structural link. It is the only structural link

modeled in most current Text-to-SQL semantic parsers.

We compute the structural linking probability between an entity 𝑒𝑖 and 𝑒𝑗 by an

additive attention mechanism (Bahdanau et al., 2015), as follows:

𝑇𝑖,𝑗 = v⊤𝛼 tanh (W𝛼 [𝑒𝑖; 𝑒𝑗]) (2.5)

where 𝑒𝑖 and 𝑒𝑗 are the corresponding entity representations retrieved from 𝐻𝒱 , while

v𝛼 and W𝛼 are both trainable parameters. Compared to the dot-product attention

used in Bogin et al. (2019a) and Bogin et al. (2019b), the additive attention we used

here is expected to capture more of the structural relationship between entity pairs
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rather than only the similarity of entity representations.

𝑇 is expected to capture all types of relationships between entities, but it can

be overwhelmed by the large workload. So, we single out the zero-step relationship

(i.e., copying) and address it by another structural linking matrix 𝑇copy = 𝐼, which is

trivially an identity matrix in this case. To choose between copying and other types

of links, a copy gate (𝜌copy) is obtained in the same manner as to how we compute

the link gate in eq. (2.2).

We use decoder self-attention to find the past generated entity which could have

structural constraints on the entity that we currently want to generate.

𝛽 = Softmax(Attention(𝑎𝑡,𝐻𝑚)) (2.6)

𝐻𝑚 = {𝑎𝑖|𝑖 < 𝑡, 𝑎𝑖 ∈ 𝑒} (2.7)

𝐻𝑚 is a memory matrix consisting of the action embeddings from every past decoding

step which has generated an entity. In this way, we compute two sets of attention

weights 𝛽copy and 𝛽link for copying and linking separately using the additive atten-

tion (Bahdanau et al., 2015) again. The motivation for separate attention weights is

that these two linking patterns might need to attend to different generated entities.

Overall the probability of generating an entity via structural linking is modeled

as:

Pr(𝑎𝑡 = 𝑒𝑖|Strct) = 𝜌copy(𝛽copy𝑇copy)𝑖 + (1− 𝜌copy)(𝛽link𝑇 )𝑖 (2.8)

Finally, this probability is mixed with the probability of schema linking controlled by

the link gate.

2.2.3 Implementation

In this section, we describe how we integrate our proposed method into a grammar

decoder and leverage the entity representation from a GNN module.

We use the type constrained grammar decoder from Krishnamurthy et al. (2017).
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To predict 𝑎𝑡 at time step 𝑡, the decoder will first obtain the context vector 𝑐𝑡 from

the NL encoder by performing dot-product attention (Luong et al., 2015). Then the

action embedding is generated by a feed-forward network taking the concatenation of

decoder hidden state and context vector as input.

𝑎𝑡 = FF([ℎ𝑡; 𝑐𝑡]) (2.9)

𝑎𝑡 is used to predict the production rule or estimate the gate values in the entity

generation process.

We adopt the idea from (Bogin et al., 2019a,b) to learn a schema relation-aware

entity representation 𝐻𝒱 by a GNN module.4 The initial embedding of each entity

ℎ
(0)
𝑒 is defined as a non-linear transformation of the combination of its type embedding

and the average over the word embeddings of its neighbors in the schema graph. In

later time steps, the hidden state is updated by a gated recurrent unit (Cho et al.,

2014; Li et al., 2016) as ℎ(𝑙)𝑒 = GRU
(︁
ℎ
(𝑙−1)
𝑒 , 𝑥

(𝑙)
𝑒

)︁
, where the input 𝑥(𝑙)𝑒 is defined as a

weighted summation over the hidden states of its neighbor entities:

𝑥(𝑙)𝑒 =
∑︁

𝑡∈{←,→,↔}

∑︁
(𝑠,𝑒,𝑙)∈ℰ,𝑙=𝑡

W𝑡ℎ
(𝑙−1)
𝑠 + 𝑏𝑡

They consider three edge types, i.e., bidirectional edges between a table and its

contained columns ↔, unidirectional edges between a foreign key and a connected

primary key ← and its reverse version →. Given a fixed GNN recurrence step 𝐿, we

have the final hidden states of all the entities in the graph as the entity representation

𝐻𝒱 = {ℎ(𝐿)𝑒 |(𝑒, 𝑡) ∈ 𝒱}. We also adopt their schema linking module to create a schema

linking matrix 𝑀 based on word embedding similarity and some simple manually

design features (e.g., editing distance and lemma). In their GlobalGNN (Bogin

et al., 2019b), an additional GNN and an auxiliary training loss are added to filter

out irrelevant nodes in the graph, thus producing a better entity representation.
4We choose these models because of the ability of GNNs to model various types of structural

links, and they are among a few state-of-the-art models that are publicly available at the time of
writing.
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Hardness # Example

Easy 250
Medium 440
Hard 174
Extra 170
All 1034

Table 2.2: Number of examples in the development set of Spider with different hard-
ness levels associated with the SQL need to be generated.

To augment our model with pretrained BERT embeddings, we follow Hwang et al.

(2019) and Zhang et al. (2019a) to feed the concatenation of NL question and the

textual descriptions of DB entities to BERT and use the top layer hidden states of

BERT as the input embeddings.

2.3 Experiments

We evaluate the effectiveness of our proposed method by integrating it into two state-

of-the-art semantic parsers on the Spider dataset and further ablate out some com-

ponents to understand their contributions.

2.3.1 Experiment Setup

We implement our model using PyTorch (Paszke et al., 2019a) and AllenNLP (Gard-

ner et al., 2018). For the GNN and GlobalGNN models we revise and build upon

the code released in (Bogin et al., 2019a,b). We re-ran the experiment and report the

results on our re-implementation and found our results slightly improves upon their

reported results. In BERT experiments, we use the base uncased BERT model with

768 hidden size provided by HuggingFace’s Transformers library (Wolf et al., 2019).

We follow the database split setting of Spider, where any databases that appear at

testing time are ensured to be unseen at training time.
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Model Acc. Easy Medium Hard Extra

GNN 47.7% 68.8% 51.8% 31.2% 22.9%
+ Ours 50.7% 66.4% 54.8% 42.8% 25.3%

GlobalGNN 49.3% 69.2% 53.0% 32.8% 27.6%
+ Ours 52.8% 70.4% 55.7% 46.6% 25.9%
+ BERT 53.5% 76.0% 57.3% 36.2% 28.3%
+ BERT + Ours 57.6% 73.6% 61.6% 48.9% 32.9%

Table 2.3: Exact Set Matching Accuracy on SQL queries with different hardness
levels in the development set of Spider. Greatest improvements in the Hard level;
small fluctuation in Easy level due to gate bias.

2.3.2 Experimental Results

The experimental results in table 2.3 show that our proposed gating mechanism leads

a substantial improvement on all the GNN, GlobalGNN, and BERT baselines.

Spider questions are divided into different levels of difficulty (hardness). Most of

the improvements come from gains in complicated (i.e., Medium, Hard and Extra

Hard) SQL generation. Specially, we observe up to 13.8% gains in the Hard set when

applying our method on the GlobalGNN baseline. One major contribution comes

from the partial matching F1 score of IUEN (i.e., SQL clauses INTERSECT, UNION,

EXCEPT, NESTED which only appear in Hard and Extra Hard levels) increasing from

25.4% to 39.7%. We also notice that the SQL output well-formedness is improved.

For instance, before applying our method the decoder would occasionally select the

same columns twice to perform the ON clause.5 After applying our dynamic gating,

this issue is virtually eliminated (error rate from 2% to 0.2%).6

As shown in fig. 2-3, the values of both gates are polarized to 0 or 1, thus making

the gating mechanism act as a binary gate. These statistics coincide with our hy-

pothesis that most entity generation decisions in Text-to-SQL can be solely made by

evidence from either schema linking or structural linking. In addition, among all the

cases where structural linking is chosen and the copy gate takes control, fewer than

20% of cases favor copying. This suggests that there are lots of circumstances where
5This is different from the case of intentionally self join.
6Although this issue can be resolved by engineering more grammar rules, we leave it as an

indicator of the improvement of the well-formedness of the output SQL.
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Figure 2-3: Value distributions of the link gate and copy gate measured in dev set of
Spider using the GlobalGNN model. Values of copy gate are considered when the
corresponding link gate value is small (𝜌link < 0.1).

different kinds of structural linking are adopted.

2.3.3 Alternative Approaches and Ablation

We also conduct several experiments to examine several design choices in our proposed

method.

Sharing Action Embedding. In the design of our gating mechanism, one critical

decision is to use the action embedding 𝑎𝑡 to perform decoder self-attention and

produce the gating values. This is based on our intuition that the action embedding

captures the structural information of the output SQL at the current position. To

verify this decision, we conduct an ablation experiment by using a dedicated embedding

to produce the gating value. This dedicated embedding is produced in exactly same

way as we generated 𝑎𝑡 in eq. (2.9), but uses a different set of parameters for the

feed-forward network. As we can see from table 2.4 (“dedicated embed"), sharing the

parameters with the action embedding is important.

Keeping entities. Guo et al. (2019) also uses a memory-augmented pointer network

to perform a copy mechanism which assists column selection. In contrast with our

memory matrix consisting of action embeddings (eq. (2.7)), their memory matrix

consists of the entity embeddings of columns that have been selected previously.

They further remove the columns from the candidates in the schema linking process
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Model Dev Acc. (%)
GlobalGNN GlobalBERT

Base 49.3 53.5
Ours 52.8 57.6

dedicated embed 50.0 55.4
removing entity 49.4 57.1
without copy 50.9 55.8

Table 2.4: Alternative approaches and ablation results.

once they are generated to prevent the decoder from repeatedly generating the same

columns. To determine if our dynamic gating and structural linking module can add

enough structural constraints to the decoding process to resolve this kind of problem,

we conduct an experiment where we also remove the entities in the schema linking

process after they are generated (i.e., “removing entity" in table 2.4) to see if it

further improves the model. Our results shows that this change can actually hurts

the model. Specifically, we observe a drop in accuracy of the WHERE and IUEN clauses,

which suggests that in our context, the information about a specific entity in the

schema linking process is still useful even after the entity has been generated once.

Copy Gate. In addition, removing the copy gate and copy mechanism also harms the

performance of our model (i.e., “without copy" in table 2.4). This result confirms that

it is beneficial to handle different types of structural links separately. We hypothesize

that different types of structural links conflict with each other, so they are hard to

fit in one structural linking matrix. Overall, these two results further supports our

claim that the copy gate can determine when to copy or link to an entity by itself.

2.3.4 Error Analysis

Gate bias. Error analysis reveals that our gating mechanism is biased, e.g., for the

first few entities being selected in a SQL the link gate is trained to favor schema

linking in most cases. But, such bias could sometimes be wrong. In such cases where

structural linking is needed but absent, the model may select duplicated columns or

the wrong table during decoding. Similar problem happens to the copy gate. Out of
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NL Show the stadium name and the number of concerts in each stadium.

SQL

select stadium.name
𝜌l = N/A, 𝜌c = N/A

, count(∗) from concert
𝜌l = 0.15, 𝜌c = 0.00

join stadium
𝜌l = 0.00, 𝜌c = 0.00

on concert.stadium_id
𝜌l = 0.09, 𝜌c = 0.00

= stadium.stadium_id
𝜌l = 0.00, 𝜌c = 0.00

group by concert.stadium_id
𝜌l = 0.00, 𝜌c = 0.96

;

NL Which city has most number of departing flights?

SQL

select airports.city
𝜌l = N/A, 𝜌c = N/A

from airports
𝜌l = 0.82, 𝜌c = 0.01

join flights
𝜌l = 0.00, 𝜌c = 0.00

on flights.airportcode
𝜌l = 0.00, 𝜌c = 0.00

= flights.sourceairport
𝜌l = 0.00, 𝜌c = 0.00

group by airports.city
𝜌l = 0.50, 𝜌c = 1.00

order by count (∗) desc limit 1

Table 2.5: Sample predictions of our model. 𝜌link and 𝜌copy are abbreviated as 𝜌l and
𝜌c respectively. Gate values are not applicable (denoted by N/A) for the first entity
since it has no previously generated entity. Some of the results reflect gate bias, see
text for details.

all the SQL clause components, only the GROUP BY clause’s partial matching F1 score

drops (about 3%). This is caused by the copy gate biasing toward copying an entity

from memory in this case. It is true that the entity needed in the GROUP BY clause

is usually selected, but the information from schema linking can still be beneficial,7

e.g., in the second example of table 2.5, the model wants to copy the wrong entity but

the link gate rectifies it with schema linking information. Our gating mechanism only

relies on the current action embedding (which can be seen as short-term structural

information) to determine the gate values. We believe that introducing more global

structural constraints is a promising direction to find a more flexible and accurate

gating mechanism.

2.4 Discussion

Short attention spans. In our experiments, we notice that the action history the

model usually attends to is very short, i.e., the model only utilizes the the output

memory of the most recent three entities in 99% of cases. This coincides with similar
7The semantics of some pronouns (e.g., “each" and “which" in the examples of table 2.5) in NL

question match with the GROUP BY clause, but this could be a dataset bias.
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findings in language modeling (Daniluk et al., 2017) where the augmented-memory

was expected to facilitate the modeling of long-range dependencies but failed to do so.

Although long-term context is important for language modeling, it is not as important

in our Text-to-SQL scenario since most dependencies in programming languages like

SQL lie within a short span. We are interested in exploring semantic parsing tasks

which requires long-term structural constraints using our method in the future.

Structural linking patterns. We have shown the effectiveness of our method in

dealing with different types of structural links separately using different components

of the model in the previous section. So far, the only special type of structural

links we can explicitly model is the copy mechanism, and we treat all other types

of links uniformly using additive attention in Equation 2.5. This might limit the

model’s ability to take advantage of the complicated relationships between entities.

Currently, the entity representation provided by the GNN model is still difficult to

explain, because the node representations contain a mix of information from different

message-passing steps. One could imagine training GNNs with different message-

passing steps each modeling a different level of structural linking, could lead to a

more clear and expressive linking pattern.
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Chapter 3

Graph Representation Learning with

Hierarchical Transformers

The process of formulating two types linkings showed that, the levels of abstraction

in both the representations of language and graph-structured data can be utilized to

form more meaningful interactions between them. However, manually finding such

interactions requires a deep understanding of the application domain. In this chapter,

I investigate a more expressive model that works for generic graph-structured data

while having a structure that foster the development of the levels of abstraction1.

Additionally, in text-to-SQL, we have seen how domain-specific graph-structured data

can benefit natural language understanding applications to generalize across domains.

In this chapter, I study another type of graph-structured data, which is associated

with more general world knowledge, in order to benefit more language understanding

tasks.

Knowledge graphs have been long used for storing factual information about real-

world entities (e.g., places and people) and the relationships between them. Build-

ing representations for knowledge graphs to be further used in downstream tasks
1Material in this chapter is adapted from:

• Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang and Yangfeng Ji.
HittER: Hierarchical Transformers for Knowledge Graph Embeddings. arXiv preprint
arXiv:2008.12813., 2020.
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has attracted consistent research attention for decades. The major challenges of

learning representations for knowledge graphs derive from their complicated multi-

relational structures and severe incompleteness. Besides their broad application sce-

narios, knowledge representations can be intrinsically evaluated based on the ability

of inferring facts that are missing in training data.

This chapter presents HittER, a Hierarchical Transformer model to jointly learn

Entity-relation composition and Relational contextualization based on a source en-

tity’s neighborhood. My proposed model consists of two different Transformer blocks:

the bottom block extracts features of each entity-relation pair in the local neighbor-

hood of the source entity and the top block aggregates the relational information

from the outputs of the bottom block. I further design a masked entity prediction

task to balance information from the relational context and the source entity itself.

Evaluated on the task of link prediction, my approach achieves new state-of-the-art

results on two standard benchmark datasets FB15K-237 and WN18RR.

Note that although HittER is evaluated intrinsically in this chapter, it is motivated

by the language understanding application scenario and can be used to by exporting

its computed representations of a subgraph centered around an entity. The follow-

ing chapter will showcase HittER’s flexibility by integrating it into state-of-the-art

language models.

3.1 Related Work

Learning representations of knowledge graph has been extensively studied in several

diverse directions.

3.1.1 Triple-based Methods

Most of the previous work focuses on exploiting explicit geometric properties in the

embedding space to capture different relations between entities. Early work uses

translational distance-based scoring functions defined on top of entity and relation

embeddings (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015; Ji et al., 2015).
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Another line of work uses tensor factorization methods to match entities seman-

tically. Starting from simple bi-linear transformations in the euclidean space (Nickel

et al., 2011; Yang et al., 2015), numerous complicated transformations in various

spaces have been hence proposed (Trouillon et al., 2016; Ebisu and Ichise, 2018; Sun

et al., 2018; Zhang et al., 2019b; Chami et al., 2020; Tang et al., 2020). Such methods

effectively capture the intuition from observation of data but suffer from unobserved

geometric properties and are generally limited in expressiveness.

In light of recent advances in deep learning, more powerful neural network mod-

ules such as Convolutional Neural Networks (Dettmers et al., 2018), Capsule Net-

works (Nguyen et al., 2019) are also introduced to capture the interaction between

entity embeddings and relation embeddings. Similar to our entity Transformer block,

Wang et al. (2019) use the Transformer to contextualize an entity embedding with

the corresponding relation embedding. These methods produce richer representations

and better performance on predicting missing links in knowledge graphs. However,

they only learn from pairwise local connectivity patterns in the graph but ignore the

structured information stored in the graph context.

3.1.2 Context-aware Methods

Various forms of graph contexts have been proven effective in recent work on neural

networks operating in graphs under the message passing framework (Bruna et al.,

2014; Defferrard et al., 2016; Kipf and Welling, 2017). Schlichtkrull et al. (2018, R-

GCN) adapt the Graph Convolutional Networks to realistic knowledge graphs which

are characterized by their highly multi-relational nature. Teru et al. (2020) incor-

porate an edge attention mechanism to R-GCN, showing that the relational path

between two entities in a knowledge graph contains valuable information about their

relations in an inductive learning setting. Vashishth et al. (2020) explore the idea

of using existing knowledge graph embedding methods to improve the entity-relation

composition in various Graph Convolutional Network-based methods. Bansal et al.

(2019) borrow the idea from Graph Attention Networks (Veličković et al., 2018),

using a bi-linear attention mechanism to selectively gather useful information from
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neighbor entities. Different from their simple single-layer attention formulation, we

use the advanced Transformer to capture both the entity-relation and entity-context

interactions. Nathani et al. (2019) also propose an attention-based feature embedding

to capture multi-hop neighbor information, but unfortunately, their reported results

have been proven to be unreliable in a recent re-evaluation (Sun et al., 2020b).

3.2 Model

We introduce our proposed hierarchical Transformer model (Figure 3-1) in this sec-

tion. In Section 3.2.1, we formally define the link prediction task in a knowledge

graph, and demonstrate how to solve it by a simple Transformer scoring function.

We then cover the detailed architecture of our proposed model in Section 3.2.2. Fi-

nally, we discuss our strategies to learn balanced contextual representations of an

entity in Section 3.2.3.

3.2.1 Transformers for Link Prediction

Formally, a knowledge graph can be viewed as a set of triplets (𝐺 = {(𝑒𝑠, 𝑟𝑝, 𝑒𝑜)})

and each has three items including the subject 𝑒𝑠 ∈ ℰ , the predicate 𝑟𝑝 ∈ ℛ, and

the object 𝑒𝑜 ∈ ℰ to describe a single fact (link) in the knowledge graph. Our model

approximates a pointwise scoring function 𝜓 : ℰ × ℛ × ℰ ↦→ R which takes a triplet

as input and produces a score reflecting the plausibility of the fact represented by

the triplet. In the task of link prediction, given a triplet with either the subject or

the object missing, the goal is to find it from the set of all entities ℰ . Without loss

of generality, we describe the case where an incomplete triplet (𝑒𝑠, 𝑟𝑝) is given and

we want to predict the object 𝑒𝑜. And vice versa, the subject 𝑒𝑠 can be predicted

in a similar process, except that the reciprocal predicate will be used to distinguish

these two cases (Lacroix et al., 2018). We call the entity in the incomplete triplet the

source entity 𝑒src and call the entity we want to predict the target entity 𝑒tgt .

Link prediction can be done in a straightforward manner with a Transformer

encoder (Vaswani et al., 2017) as the scoring function, depicted inside the dashed
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Figure 3-1: Our model consists of two Transformer blocks organized in a hierarchical
fashion. The bottom Transformer block captures the interactions between a entity-
relation pair while the top one gathers information from an entity’s graph neighbor-
hood. Taking the entity embeddings 𝐸𝑒 and the relation embeddings 𝐸𝑟 as input,
the output embedding 𝑇[GCLS] is used for predicting the target entity. We sometimes
mask or replace 𝐸𝑒src with 𝐸[MASK ] or 𝐸𝑒random . In which case, an additional output
embedding 𝑇𝑒src can be used to recover the perturbed entity. The dashed box indicates
a simple context-independent baseline where 𝑀𝑒src is directly used for link prediction.

box in Figure 3-1. Our inputs to the Transformer encoder are randomly initialized

embeddings of the source entity 𝑒src, the predicate 𝑟𝑝, and a special [CLS] token

which serving as an additional bias term. Three different learned type embeddings

are directly added to the three token embeddings similar to the input representations

of BERT (Devlin et al., 2019). Then we use the output embedding corresponding to

the [CLS] token (𝑀𝑒src) to predict the target entity, which is implemented as follows.

We first compute the plausibility score of the true triplet as a dot-product between

𝑀𝑒src and the token embedding of the target entity. In the same way, we also compute

the plausibility scores for all other candidate entities and normalize them using the

softmax function. Lastly, we use the normalized distribution to get the cross-entropy

loss ℒLP = − log 𝑝(𝑒tgt |𝑀𝑒src) for training. We will use this model as a simple context-

independent baseline later in experiments. A similar approach has been explored in

Wang et al. (2019).

Learning knowledge graph embeddings from one triplet at a time ignores the
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abundant structural information in the graph context. Our model, as described in

the following section, also considers the relational neighborhood of the source vertex

(entity), which includes all of its adjacent vertices in the graph, denoted as 𝑁𝐺(𝑒src) =

{(𝑒src, 𝑟𝑖, 𝑒𝑖)}.2

3.2.2 Hierarchical Transformers

We propose a hierarchical Transformer model for knowledge graph embeddings (Fig-

ure 3-1). The proposed model consists of two blocks of multi-layer bidirectional

Transformer encoders.

We employ the Transformer described in Section 3.2.1 as our bottom Transformer

block, called the entity Transformer, to learn interactions between an entity and its

associated relation type. Different from the previous described context-independent

scenario, this entity Transformer is now generalized to also encode information from a

relational context. In specific, there are two cases in our context-dependent scenario:

1. We consider the source entity with the predicate in the incomplete triplet as

the first pair;

2. We consider an entity from the graph neighborhood of the source entity with

the relation type of the edge that connects them.

The bottom block is responsible of packing all useful features from the entity-relation

composition into vector representations to be further used by the top block.

The top Transformer block is called the context Transformer. Given the output

of the previous entity Transformer and a special [GCLS] embedding, it contextualizes

the source entity with relational information from its graph neighborhood. Simi-

larly, three type embeddings are assigned to the special [GCLS] token embedding, the

intermediate source entity embedding, and the other intermediate neighbor entity

embeddings. The cross-entropy loss for link prediction is now changed as follows.
2Our referred neighborhood is slightly different from the formal definition since we only consider

edges connecting to the source vertex.
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ℒLP = − log 𝑝(𝑒tgt | 𝑇[GCLS ]) (3.1)

The top block does most of the heavy lifting to aggregate contextual information

together with the information from the source entity and the predicate, by using

structural features extracted from the output vector representations of the bottom

block.

3.2.3 Balanced Contextualization

Trivially supplying contextual information to the model during learning might cause

problems. On one hand, since a source entity often contains particular information for

link prediction, the model may learn to ignore the additional contextual information,

which could also be noisy. On the other hand, the introduction of rich contextual

information could in turn downgrade information from the source entity and cause

potential over-fitting problems. Inspired by the successful Masked Language Modeling

pre-training task in BERT, we propose a two-step Masked Entity Prediction task

(MEP) to balance the process of contextualization during learning.

To avoid the first problem, we apply a masking strategy to the source entity of

each training example as follows. During training, we randomly select a proportion

of training examples in a batch. With certain probabilities, we replace the input

source entity with a special mask token [MASK], a random chosen entity, or just leave

it unchanged. The purpose of these perturbations is to introduce extra noise to the

information from the source entity, thus forcing the model to learn contextual repre-

sentations. The probability of each category is dataset-specific hyper-parameter: for

example, we can mask out the source entity more frequently if its graph neighborhood

is denser (in which case, the source entity can be easily replaced by the additional

contextual information).

In terms of the second problem, we want to promotes the model’s awareness of the

masked entity. Thus we train the model to recover the perturbed source entity based

on the additional contextual information. To do this, we use the output embedding
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corresponding to the source entity 𝑇𝑒src to predict the correct source entity via a

classification layer.3 We can add the cross-entropy classification loss to the previous

mentioned link prediction loss as an auxiliary loss, as follows.

ℒMEP =− log 𝑝(𝑒src | 𝑇𝑒src) (3.2)

ℒ =ℒLP + ℒMEP (3.3)

This step is important when solely relying on the contextual clues is insufficient to

do link prediction, which means the information from the source entity needs to

be emphasized. And it is otherwise unnecessary when there is ample contextual

information. Thus we use dataset-specific configurations to strike a balance between

these two sides. However, the first step of entity masking is always beneficial to the

utilization of contextual information according to our observations.

In addition to the MEP task, we implement a uniform neighborhood sampling

strategy where only a fraction of the entities in the graph neighborhood will appear

in a training example. This sampling strategy acts like a data augmenter and similar

to the edge dropout regularization in graph neural network methods (Rong et al.,

2020). We also have to remove the ground truth target entity from the source entity’s

neighborhood during training. It will otherwise create a dramatic train-test mismatch

because the ground truth target entity can always be found from the source entity’s

neighborhood during training while it can rarely be found during testing. The model

will thus learn to naively select an entity from the neighborhood.

3.3 Experiments

We describe our experiments in this section. Section 3.3.1 introduces two popular

benchmarks for link prediction. We then describe our evaluation protocol in Sec-

tion 3.3.2, and the detailed experimental setup in Section 3.3.3. At last, our proposed

method are assessed both quantitatively and qualitatively in Section 3.3.4, and several
3We share the same weight matrix in the input embeddings layer and the linear transformation

of this classification layer.
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Model
FB15K-237 WN18RR

#Params MRR↑ Hits↑ #Params MRR↑ Hits↑
@1 @3 @10 @1 @3 @10

RESCAL (Nickel et al., 2011) 6M .356 .266 .390 .535 6M .467 .439 .478 .516
TransE (Bordes et al., 2013) 2M .310 .218 .345 .495 21M .232 .061 .366 .522
DistMult (Yang et al., 2015) 4M .342 .249 .378 .531 21M .451 .414 .466 .523
ComplEx (Trouillon et al., 2016) 4M .343 .250 .377 .532 5M .479 .441 .495 .552
ConvE (Dettmers et al., 2018) 9M .338 .247 .372 .521 36M .439 .409 .452 .499
RotatE (Sun et al., 2018) 15M .338 .241 .375 .533 20M .476 .428 .492 .571
TuckER (Balazevic et al., 2019) - .358 .266 .394 .544 - .470 .443 .482 .526
CompGCN (Vashishth et al., 2020) - .355 .264 .390 .535 - .479 .443 .494 .546
RotH (Chami et al., 2020) 8M .344 .246 .380 .535 21M .496 .449 .514 .586

HittER 16M .373 .279 .409 .558 24M .503 .462 .516 .584

Table 3.1: Comparison between the proposed method and a set of baselines evaluated
on two standard datasets. Results of RotatE, TuckER, CompGCN, and RotH are
taken from the original papers. Numbers in bold represent the best results.

ablation studies are conducted in Section 3.3.5.

3.3.1 Datasets

We evaluate our proposed method on two standard benchmark datasets FB15K-

237 (Toutanova and Chen, 2015) and WN18RR (Dettmers et al., 2018) for link pre-

diction.4 FB15K-237 is a subset sampled from the Freebase (Bollacker et al., 2008)

with trivial inverse links removed. It stored facts about topics in movies, actors,

awards, etc. WN18RR is a subset of the WordNet (Miller, 1995) which contains

structured knowledge of English lexicons. Statistics of these two datasets are shown

in Table 3.2. Notably, WN18RR is much sparser than FB15k-237 which implies it

has less structural information in the local neighborhood of an entity. This will affect

our configurations of the masked entity prediction task consequently.

3.3.2 Evaluation Protocol

The task of link prediction in a knowledge graph is defined as an entity ranking task.

Essentially, for each test triplet, we remove the subject or the object from it and
4We intentionally omit the original FB15K and WN18 datasets because of their known flaw in

test-leakage (Toutanova and Chen, 2015).
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Dataset FB15K-237 WN18RR

#Entities 14,541 40,943
#Relations 237 11
#Triples 310,116 93,003
#Avg. degree 42.7 4.5

Table 3.2: Dataset statistics. The WN18RR dataset is significantly sparser than the
FB15K-237 dataset.

let the model predict which is the most plausible answer among all possible entities.

After scoring all entity candidates and sorting them by the computed scores, the rank

of the ground truth target entity is used to further compute various ranking metrics

such as mean reciprocal rank (MRR) and hits@k, 𝑘 ∈ {1, 3, 10}. We report all of these

ranking metrics under the filtered setting proposed in Bordes et al. (2013) where valid

entities except the ground truth target entity are filtered out from the rank list.

3.3.3 Experimental Setup

We implement our proposed method in PyTorch (Paszke et al., 2019b) under the

LibKGE framework (Ruffinelli et al., 2020). To perform a fair comparison with some

early baseline methods, we reproduce the baseline results by using the best hyper-

parameter configurations for them from LibKGE.5

Our model consists of a three-layers entity Transformer and a six-layers context

Transformer. Each Transformer layer has eight heads. The dimension size of hidden

states is 320 across all layers except that we use 1280 dimensions for the position-wise

feed-forward networks inside Transformer layers suggested by Vaswani et al. (2017).

We set the maximum numbers of uniformly sampled neighbor entities for every ex-

ample in the FB15K-237 and WN18RR dataset to be 50 and 12 respectively. Such

configurations ensure most examples (more than 85% of the cases in both datasets)

can have access to its entire local neighborhood during inference. During training,

we further uniformly sample 70% and 50% of entities from these fixed-size sets in the
5These configurations consider many recent training techniques and are found by extensive quasi-

random search. Thus the results are generally much higher then the initially reported ones.
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Entity Top 5 Neighbors

Dominican
Republic

Costa Rica, Ecuador, Puerto Rico, Colombia, El Salvador

Republic Presidential system, Unitary state, Democracy, Parliamentary
system, Constitutional monarchy

MMPR Power Rangers, Sonic X, Ben 10, Star Trek: Enterprise, Code
Geass

Wendee Lee Liam O’Brien, Michelle Ruff, Hilary Haag, Chris Patton, Kari
Wahlgren

Drama Thriller, Romance Film, Mystery, Adventure Film, LGBT

Land reform Pronunciamento, Premium, Protest march, Reform, Birth-
control reformer

Reform Reform, Land reform, Optimization, Self-reformation, Enrich-
ment

Cover Surface, Spread over, Bind, Supply, Strengthen
Covering Sheet, Consumer goods, Flap, Floor covering, Coating
Phytology Paleobiology, Zoology, Kingdom fungi, Plant life, Paleozoology

Table 3.3: Nearest neighbors of first five entities on FB15K-237 and WN18RR
based on the cosine similarity between learned entity embeddings from our proposed
method.

FB15K-237 and WN18RR dataset.

We train our models using Adam (Kingma and Ba, 2015) with a learning rate of

0.01 and an L2 weight decay rate of 0.1. The learning rate linearly increases from 0

over the first tenth training steps, and linearly decreases through the rest of the steps.

We apply dropout (Srivastava et al., 2014) with a probability 𝑝 = 0.1 for all layers,

except that 𝑝 = 0.6 for the embedding layers. We apply label smoothing with a rate

0.1 to prevent the model from being over-confident during training. We train our

models using a batch size of 512 for at most 500 epochs and employ early stopping

based on MRR in the validation set.

When training our model with the masked entity prediction task, our dataset-

specific configurations are listed as follows:

• WN18RR: In 80% of examples in a batch, 60% of examples are masked out.

The rest of the examples are divided in a 3:7 ratio for replaced and unchanged

ones.
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• FB15K-237: 50% of examples in a batch are masked out. No replaced or

unchanged ones. We do not include the auxiliary loss.

All experimental code and model checkpoints will be publicly available after the

anonymity period.

3.3.4 Experimental Results

Table 3.1 shows that the results of HittER compared with baseline methods includ-

ing some early methods and previous SOTA methods.6 We outperform all previous

work by a substantial margin across nearly all the metrics. Comparing to some previ-

ous methods which target some observed patterns of specific datasets, our proposed

method is more general and is able to give more consistent improvements over the two

standard datasets. For instance, the previous SOTA in WN18RR, RotH explicitly

captures the hierarchical and logical patterns by hyperbolic embeddings. Comparing

to it, our model performs better especially in the FB15K-237 dataset which has a set

of diverse relation types. On the other hand, our models have comparable numbers

of parameters to the baseline methods, since entity embeddings contribute to the

majority of the parameters.

Table 3.3 lists the entity clustering results of first few entities in each dataset, based

on our learned entity representations. Clusters in FB15K-237 usually are entities of

the same type, such as South/Central American countries, government systems, and

American voice actresses. While clusters in WN18RR are generally looser but still

relevant to the topic of the central word.

3.3.5 Ablation Studies

To figure out the contributions from each aspect of our proposed method, we perform

several ablation studies in this section.

Table 3.4 shows the results of removing the masked entity prediction task described

in Section 3.2.3 (i.e., “No MEP”) and entirely removing the context Transformer from
6Lacroix et al. (2018) use 2000 dimension vectors for entity embeddings which leads to an incom-

parable parameters size. So we do not include it in our comparisons.
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Model FB15K-237 WN18RR

MRR H@10 MRR H@10

Full HittER .379 .563 .501 .586
No MEP .373 .560 .489 .564
No context .371 .554 .473 .539

Table 3.4: Results of ablation studies on the development sets.

Relation Name Count No ctx Full Gain

hypernym 1174 .144 .181 26%
derivationally related form 1078 .947 .947 0%
member meronym 273 .237 .316 33%
has part 154 .200 .235 18%
instance hypernym 107 .302 .330 9%
synset domain topic of 105 .350 .413 18%
verb group 43 .930 .931 0%
also see 41 .585 .595 2%
member of domain region 34 .201 .259 29%
member of domain usage 22 .373 .441 18%
similar to 3 1 1 0%

Table 3.5: Development set MRR and relative improvement percentage of our pro-
posed method with or without the context Transformer respect to each relation in
the WN18RR dataset.

the full model (the context-independent Transformer for link prediction described

in Section 3.2.1, i.e., “No context”). In FB15K-237, we find that the “No context”

model is already very strong which demonstrates our entity Transformer’s capability

of capturing interactions between entities and their associated relations. Adding con-

textual information can further improve our model while our proposed entity masking

strategy plays a very important role in both datasets.

Breaking down the model’s performance by type of relations in WN18RR, Ta-

ble 3.5 shows that incorporating contextual information brings us substantial improve-

ments on two major relation types, namely the hypernym and the member meronym

relations, which both include many examples belong to the challenging one-to-many

relation categories defined in Bordes et al. (2013).

Inferring the relationship between two entities can be viewed as a process of aggre-
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Figure 3-2: Development set mean reciprocal rank (MRR) in the WN18RR dataset
grouped by the number of hops. The bar chart shows the number of examples in each
group.

gating information from the graph paths between them (Teru et al., 2020). To gain

further understanding of what the role does contextual information play from this

perspective, we group examples in the development set of WN18RR by the number

of hops (i.e., the shortest path length in the undirected training graph) between the

subject and the object in each example (Figure 3-2). From the results, we can see

that the MRR metric of each group decreases by the number of hops of the examples.

This matches our intuition that aggregating information from longer graph paths is

generally harder and such information is more unlikely to be meaningful. Comparing

models with and without the contextual information, the contextual model performs

much better in groups of multiple hops ranging from two to four. The improvement

also shrinks as the number of hops increasing.

3.4 Discussion

3.4.1 Right Context for Link Prediction

Structural information of knowledge graphs can come from multiple forms, such as

graph paths, sub-graphs, and the local neighborhood that we used in this work. In
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addition, these context forms can be represented in terms of the relation type, the

entity, or both of them.

In this work, we show that a simple local neighborhood is sufficient to greatly

improve a link prediction model. In early experiments in the FB15K-237 dataset,

we actually observe that masking out the source entity all the time does not harm

the model performance much. This shows that the contextual information in a dense

knowledge graph dataset like FB15K-237 is meaningful enough to replace the source

entity itself in the link prediction task.

Recently, Wang et al. (2020c) argue that graph paths and local neighborhood

should be jointly considered when only the relation types is used (throwing out enti-

ties). Although some recent work has made a first step towards utilizing graph paths

for knowledge graph embeddings (Wang et al., 2019, 2020b), there are still no clear

evidence showing its effectiveness.

3.4.2 Limitations of the 1vsAll Scoring

Recall that HittER learns a representation for an incomplete triplet (𝑒𝑠, 𝑟𝑝) and then

computes the dot-product between it and all the candidate target entity embeddings.

This two-way scoring paradigm, which is often termed 1vsAll scoring, supports fast

training and inference when the interactions between the source entity and the pred-

icate are captured by some computation-intensive operations (i.e., the computations

of Transformers in our case), but unfortunately loses three-way interactions. We

intentionally choose 1vsAll scoring for two reasons. On one hand, 1vsAll together

with cross-entropy training has shown a consistent improvement over other alterna-

tive training configurations empirically (Ruffinelli et al., 2020). On the other hand,

it ensures a reasonable speed for the inference stage where the 1vsAll scoring is nec-

essary.

Admittedly, early interactions between the source entity and the target entity can

provide valuable information to inform the representation learning of the incomplete

triplet (𝑒𝑠, 𝑟𝑝). For instance, we find that a simple bilinear formulation of the source

entity embeddings and the target entity embeddings can be trained to reflect the
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distance (measured by the number of hops) between the source entity and the tar-

get entity in the graph. We leave the question of how to effectively and efficiently

incorporate such early fusion for future work.
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Chapter 4

Factoid Question Answering with

Knowledge Augmented Language

Models

The last chapter demonstrated the effective use of HittER by performing an intrinsic

evaluation task link prediction. In this chapter, I mainly focus on providing a proof-of-

concept of how to infuse the hierarchical knowledge graph representations produced by

HittER into Transformer-based pre-trained language models like BERT. My proposed

model combines language representations and knowledge graph representations by a

simple word-entity cross-attention mechanism, forming lots of meaningful layer-wise

interactions between BERT and HittER.

Previous research has shown that after pretraining on huge corpora containing

billions of words, BERT-like language models can recall some factual knowledge such

as a celebrity’s birthday or birthplace. I show that such ability can be substantially

improved by utilizing representations provided by HittER which is directly trained on

knowledge bases that contain factual information. Preliminary experiments on two

Freebase question answering datasets show that the model improves the language

model’s ability to answer questions related to relational factual knowledge. In addi-

tion, I show that a proper connection strategy between the layer hierarchies of BERT

and HittER is important for downstream task performance.
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4.1 Related Work

After the successes of language models in many language tasks, people have been in-

terested in probing what kinds of information are stored inside the parameters of these

large language models after training on billion of words (Kovaleva et al., 2019; Rogers

et al., 2020). Research has discovered that, in addition to a vast amount of linguistic

knowledge (Tenney et al., 2019), these language models also demonstrate an ability

to recall factual knowledge, serving as a kind of unsupervised knowledge representa-

tion (Petroni et al., 2019). Nevertheless, language models can be further improved by

injecting knowledge from external sources, especially for knowledge-intensive down-

stream tasks. Peters et al. (2019) proposes KnowBert to inject knowledge about

entities into BERT by integrating a word-to-entity attention module to a few lay-

ers of BERT. It uses knowledge representations learned by a relatively simple linear

knowledge embedding model TuckER (Balazevic et al., 2019), while the HittER model

I used can generate multiple layers of output representations.

A recently-proposed Entities as Experts model (Févry et al., 2020) employs a

similar entity embedding retrieval and recontextualization process like the Know-

Bert. But the entity embeddings it used are trained with the language model using

Wikipedia text with entities identified by hyperlinks. Improving on the Entities as

Experts model, Verga et al. (2020) proposes the Facts as Experts model to directly

incorporate information of factual assertions, rather than hoping the entity embed-

dings store enough factual information. Different from the two previous models, my

proposed method does not require training from scratch on a huge amount of data but

uses both pre-trained language and knowledge representation. Moreover, the HittER

is pre-trained on the entire knowledge graph with contextual information from the

graph neighborhood of an entity, so it can capture more structural information from

the graph context.

Recent work has also tried using the Transformer architecture to jointly model

language and knowledge. CoLAKE (Sun et al., 2020a) flattens the fact assertion

triples into a sequence of entities interleaved with their relations to the context entity
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Figure 4-1: The architecture of my proposed HitBERT model for factoid questions
answering task. It consists of two Transformer-based models, i.e., a language model
BERT on the left and a knowledge graph representation model HittER on the right.
Every higher layer of BERT is connected to a HittER layer by a word-entity cross-
attention mechanism.

in a natural language sentence. LUKE (Yamada et al., 2020) keeps only the entities

and throws away the relations between them from the inputs of the model. In the

model, the relations between entities are introduced via a relation classification task.

My proposed model has relations between entities modeled in a hierarchical fash-

ion to fully exploit the structural information stored in pre-constructed knowledge

bases. Furthermore, my strategy of combining BERT and HittER after pre-training

allows them to be trained on large corpora separately to get the best from both

worlds. Beyond entity-based factual knowledge, the cross-attention mechanism in

Transformer has been extended for modeling cross-modality data such as images and

languages (Tan and Bansal, 2019).
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4.2 Model

In this section, I first formulate our factoid questions answering task and then describe

the details of my proposed HitBERT model.

Figure 4-1 shows the overall architecture of the proposed HitBERT model. Inside

in, both the BERT and the HittER model can generate multiple layers of language

or knowledge representations, given two sequences of input tokens consist of words

and entities respectively. Here I assume the entity token sequence is retrieved by an

oracle entity linker for simplicity. In practice, such entity linker can be learned by

using similarity scores defined as the dot-product of word representations from lower

layer BERT representations and the lookup entity embeddings.

Formally, BERT takes the word tokens sequence of the input factoid question to

generate the language representation ℎ𝑛𝑖 for every 𝑖-th token in its 𝑛-th layer. On

the other side, a entity token sequence of the input subgraph centered in an entity

is passed to the HittER to generate knowledge graph representations 𝑒𝑛𝑖 for every for

every 𝑖-th entity in its 𝑛-th layer.

Both the BERT and the HittER model use stacked Transformer building blocks

consist of a multi-head self-attention layer and fully connected layers. When work in

one of the both models independently, the self-attention layer takes outputs from last

layer, transforming them into three vectors: a query 𝑞, a key 𝑘, and a value 𝑣, via

linear transformations with different set of parameters. The attention mechanism is

essentially operated as follows:

Attention (𝑞, 𝑘, 𝑣) = softmax

(︂
𝑞𝑘𝑇√
𝑑𝑘

)︂
𝑣 (4.1)

where 𝑑𝑘 is the dimensionality of the key used to scale the attention scores.1

To enhancing BERT with HittER, after the self-attention layer in a BERT layer, I

introduce a word-entity cross-attention layer where the query is still from the outputs

of last layer while the key and value are from the outputs of a corresponding HittER
1This formulation is simplified by intentional omitting the multi-head decomposition and concate-

nation. In practice, the query, key, and value can be batched as matrices to speed up computations.
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layer. Specifically, if the 𝑖-th layer of BERT and the 𝑗-th layer of HittER is connected,

it is operated as follows.

ℎ̂𝑖 = Attention (ℎ𝑖−1, ℎ𝑖−1, ℎ𝑖−1) (4.2)

ℎ𝑖 = Attention (ℎ̂𝑖, 𝑒𝑗, 𝑒𝑗) (4.3)

The linear transformations and residual connections between layers are omitted here

for simplicity. In this manner, the factual knowledge stored in the representations

of HittER is infused to BERT in a layer-wise fashion, so that I can further apply

different strategies in connecting layers of BERT and HittER. As we will see in the

experiments, different strategies have different impact on the performance of the

proposed HitBERT model in the factoid question answering task.

HitBERT answers a factoid question by predicting the word tokens of the an-

swer. A factoid question is converted to a Cloze question via appending the special

[MASK] tokens to the end. For simplicity, I assume that the number answer tokens is

known to HitBERT and append the exact number of [MASK] tokens to the end of a

question sentence.2 For example, in Figure 4-1, the Cloze question is represented as

the token sequence {‘What’, ‘is’, ‘the’, ‘capital’, ‘city’, ‘of ’, ‘Afghanistan’, ‘?’, [MASK]}.

Similar to the masked language modeling objective in BERT, HitBERT is trained

to recover the answer tokens replaced by [MASK]. A standard classification loss is

computed to supervise the training.

4.3 Experiments

In the last section, we are left with the question of how can we effectively connect

layers of BERT and HittER to construct HitBERT. In this section, I perform two line

of experiments on two open domain question answering datasets to demonstrate that

(1) the connection strategy does matter, (2) HitBERT can enhance BERT’s ability

to recall factual information.
2In practice, this assumption can be removed by adding a sequence generation model on top of

BERT.

51



FreebaseQA WebQuestionSP

Full dataset In FB15K-237 Full dataset In FB15K-237

Train 20358 3713 3098 850
Dev 3994 743 - -
Test 3996 755 1639 484

Table 4.1: Number of examples in two Freebase question answering datasets.

4.3.1 Datasets

I perform a series of experiments to evaluate the proposed HitBERT on two fac-

toid question answering datasets: FreebaseQA and WebQuestionSP, which are both

created from Freebase. The statistics of the two datasets are listed in Table 4.1.

4.3.2 Experimental Setup

Due to a formidable computation cost of training a HittER that can cover all en-

tities used in the two factoid question answering datasets, I use the HittER model

pre-trained on the FB15K-237 dataset described in the last chapter to perform ex-

periments. To gain a better sense of the benefits HitBERT brought to us, in addition

of the results on the full datasets, I also report results under a filtered settings, i.e.,

retaining only the questions that are related to entities in the FB15K-237 dataset.

Table 4.1 show the number of examples on both datasets under the two settings. I

use the accuracy measurement where a questions is answered correctly if the model

predictions exactly match with the ground truth answer.

For the BERT model, I use the BERT base model released in the original pa-

per. The BERT base model has 12 Transformer layers while the HittER model has

6 Transformer layers. The HitBERT is trained for 20 epochs. I use the Adam opti-

mizer (Kingma and Ba, 2015) with the weight decay fix introduced in Loshchilov and

Hutter (2019) and a linear-decayed learning rate schedule. The learning rate linearly

increases from 0 over the first tenth training steps, and linearly decreases through the

rest of the training steps. The peak learning rate is 5𝑒− 6 for the parameters in the

pre-trained BERT and HittER, and it is increased to 5𝑒 − 5 for parameters in the
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Strategy a b c d e f

Dev Acc. (%) 28.5 28.2 26.8 23.7 22.9 22.7

Table 4.2: Performance of each connection strategy in Figure 4-2 measured by the
development set accuracy under the filtered setting on the FreebaseQA dataset.

FreebaseQA WebQuestionSP

Full dataset In FB15K-237 Full dataset In FB15K-237

BERT 18.7% 23.7% 23.0% 44.2%
HitBERT 19.7% 28.5% 26.9% 50.2%

Table 4.3: Accuracy scores of HitBERT (using best performing strategy) in two Free-
base question answering datasets, compared to the results of vanilla BERT.

newly added word-entity cross-attention modules.

4.3.3 Connection Strategy Testing

I design several reasonable connection strategies and test the HitBERT model com-

posed using each strategy under the FB15k-237 filtered setting on the FreebaseQA

dataset. Among six alternatives that I have experimented with, I find that connecting

BERT and HittER in a pattern illustrated in Figure 4-2a gives us the best perfor-

mance. A most straightforward strategy in Figure 4-2b performs similarly, suggesting

that the first layer representation of HittER is not essential when representations of

other layers are presented. The rest of the strategies, e.g., the strategies in Fig-

ure 4-2c and in Figure 4-2d which connect a higher or lower part of BERT, or the

strategies in Figure 4-2e and Figure 4-2f which use only the top/bottom layer of Hit-

tER, are all nonideal strategies and could hurt the performance dramatically. This

result reinforces my previous argument of meaningful interactions between language

representations and knowledge representations are important in Chapter 2.

4.3.4 Experimental Results

According to table 4.3, BERT exhibits a fairly good understanding of factual knowl-

edge in both datasets. However, HitBERT consistently improves on BERT in all
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four comparisons, showing that incorporating relatively small amount of external

knowledge can substantially benefit a language model trained on billions of words.

In consistent with our intuition, the gains brought by HitBERT in filtered sets are

much higher than those of the full dataset setting because filtered sets have significant

larger proportions of answerable questions in terms of the factual knowledge stored in

FB15K-237. Using a HittER model pre-trained on a larger knowledge graph such as

the entire Freebase is expected to largely improve the performance of HitBERT in an-

swering factoid question. Moreover, the proposed HitBERT can be easily adapted to

many other knowledge-intensive language understanding task without modifications.
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(a) (b) (c)

(d) (e) (f)

Figure 4-2: Several alternatives of HitBERT’s connection strategy between 12 BERT
layers (left green) and 6 HittER layers (right orange). Among them, strategy (a)
achieves best performance in experiments.
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Chapter 5

Conclusion

In this thesis, my main goal is to present to the audience the promising idea of using

graph-based knowledge representations to contextualize machine understanding of

natural language. In Chapter 2, the cross-domain Text-to-SQL semantic parsing task

serves as an explanatory example of why we need to utilize graph-based knowledge

representations in a very important application. By describing the challenges I faced

and the application-specific insights I utilized in manually designing the two link-

ing processes, I further point out the influential and challenging problem of building

meaningful interactions between language representations and knowledge represen-

tations for general-purpose models. To make a step toward this problem, in Chap-

ter 3, I design a more powerful representation model for learning graph-structured

data. The ultimate goal behind the design is to unify the modeling architecture be-

tween language and graph-based knowledge to foster meaningful interactions between

them, via the attention-like mechanism that has been proved to be effective. As a

by-product and an intrinsic evaluation of my proposed model, it achieves state-of-

the-art results in long-standing knowledge graph completion benchmarks. Finally, in

Chapter 4, I demonstrate how exactly the meaningful interactions between language

and knowledge representations can be built by proposing HitBERT. Use Freebase

factoid question answering tasks as examples, I show clear evidence that HitBERT

can substantially benefit large language representations trained on billions of words

by adding only a little amount of parameters and computational overheads. Future
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research can easily apply the proposed knowledge graph representations-augmented

language model to knowledge-intensive language understanding tasks.

As the artificial intelligence community increasing its awareness of the importance

of developing knowledge-driven approaches, I hope the contributions made by my

thesis can provide inspiration for future research in incorporating graph-structured

knowledge and building more advanced language understanding systems that are as

knowledgeable as human beings.
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