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ABSTRACT

Deep learning in natural language processing revolutionized low-resource domains

like education and healthcare with approaches like transfer learning and prompting-

based methods. Large language models can generalize to new tasks in low-resource

environments; however, domain-specific data collection often beats generalized data

for a given model size.

My dissertation aims to take the advances in deep learning and natural language

processing and apply them in the context of low-resource domains like education and

healthcare. Through this work, we have collected data using model-assisted labeling

by improving the annotation speed by up to 33% and e�ciently devised a method to

determine examples near the decision boundary of deep learning-based classifiers.

Evaluation of Deep Learning models is tricky because seemingly small perturbations

to the input data (for example changing the articles in a sentence) can cause the

classification label to change. We proposed a di↵erential-geometry-based approach to

find examples that are most and least susceptible to this change.

We also explored how to train and deploy transformer-based models in educa-

tional scenarios e�ciently. We proposed a tensorized adapter approach (using tensor

decomposition-based methods) that reduced the number of tunable parameters of

Large Language Model without a drop in performance.
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Chapter 1

INTRODUCTION

The last few years have seen unprecedented improvements in Natural Language

Processing and artificial intelligence. These improvements led to significant progress

in adjacent fields like education and healthcare that use natural language processing.

A lot of these improvements have resulted from modeling improvements using optimal

training methods and modern architectures. Improvement in model performance

has resulted mainly from larger models (models with up to a trillion parameters).

However, model architectures and larger models only address part of the challenge in

the application of NLP systems. Low resource domains still have a “data” problem.

Specific tasks in a field like question answering in the context of math education

require labeled data for math education. Generic data collected in another domain is

often not su�cient to achieve the desired performance [6, 7].

However collecting large datasets for a task is non-trivial. The cost of collecting

and labeling datasets is non-trivial and designing e↵ective systems to collect data can

improve not just the amount of data collected but also the quality of the data. In

our work, we prototype a system for a mathematical training scenario for classroom

instructions.

The nature and quality of classroom instruction is highly correlated to teachers’

ability to rehearse e↵ective teaching strategies. Utilizing research-based teaching prac-

tices increases teacher e↵ectiveness, confidence, and retention along with improving

student achievements. High-fidelity, AI-based simulated classroom systems enable

teachers to rehearse and get feedback on specific pedagogical skills. One primary chal-

lenge is that current conversational agents (CA) can have task-oriented conversations,
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however more varied dialogue-oriented conversations such as that between a teacher

and student for a domain-specific task (like a mathematical scenario) can be di�cult

to model. In the first chapter we present a high-fidelity, AI-based classroom simulator

to help teachers rehearse research-based mathematical questioning skills. The system

relies on advances in deep-learning uncertainty quantification and natural language

processing while acknowledging the limitations of CAs for specific pedagogical needs.

A second challenge in low resource data scenarios is understanding failure modes.

Recent findings indicate how larger models are not necessarily better but use shortcuts

[8] to improve metrics like accuracy. Understanding what leads to failure modes in

specific tasks will improve interpretability and reliability of NLP systems. A growing

body of evidence has suggested that metrics like accuracy overestimate the classifier’s

generalization ability. Several state of the art Natural Language Processing (NLP)

classifiers like BERT and LSTM rely on superficial cue words (e.g., if a movie review

has the word “romantic”, the review tends to be positive), or unnecessary words (e.g.,

learning a proper noun to classify a movie as positive or negative). One approach to

test NLP classifiers for such fragilities is analogous to how teachers discover gaps in

a student’s understanding: by finding problems where small perturbations confuse

the student. While several perturbation strategies like contrast sets or random word

substitutions have been proposed, they are typically based on heuristics and/or require

expensive human involvement. In the second chapter, using tools from information

geometry, we propose a principled way to quantify the fragility of an example for

an NLP classifier. By discovering such fragile examples for several state of the art

NLP models like BERT, LSTM, and CNN, we demonstrate their susceptibility to

meaningless perturbations like noun/synonym substitution, causing their accuracy to

drop down to 20 percent in some cases. Our approach is simple, architecture agnostic

and can be used to study the fragilities of text classification models.

2



A critical challenge in using Large Language Models is the deployability of these

models in low resource scenarios. Since a multi-stage dialogue system requires multiple

copies of the model, our goal is to reduce the total amount of memory required for

a dialogue system. In this work, we use tensor decomposition based approaches to

improve task regularization and parameter e�ciency of fine-tuned models (reducing

the number of copies of the transformer models). Adapters, Compactors, and BitFit

are parameter-e�cient approaches to fine-tuning large language models by freezing

the entire language model and adding task-specific, fully-connected layers. The goals

are two-fold: Parameter e�ciency and improved task regularization. Tensorized layers

(CP, Tucker, TensorTrain, and TensorRing) are more e�cient and have also been shown

to act as regularizers. One natural extension is using Tensorized layers to parameterize

the adapter layers and simultaneously exploit parameter e�ciency and regularization

ability. Our work extensively studies Tensorized layers that can naturally exploit

the low-rank structure of the adapter layers and provide a drop-in replacement for

Adapters. We empirically investigate the di↵erent tensor decomposition approaches

and the impact of tensor ranks in the adapter layers.
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Chapter 2

OZ BASED DATA COLLECTION SYSTEM

2.1 Introduction

Despite ample evidence showing that deliberate practice can improve teachers’

mathematical questioning, teachers are rarely given opportunities to rehearse these

kinds of questioning strategies in pre-service or in-service settings due to a variety of

constraints in teacher preparation programs. However, computer-based systems can

provide ways for pre-service and in-service teachers to practice and receive feedback

on mathematical questioning skills. This chapter presents the development of an

AI-based classroom teaching system (ACTS) designed to help teachers rehearse

mathematical questioning strategies that leverages advances in conversational agent

(CA) development. In particular, this chapter describes the use of a human expert

working with the computer-based system in a supervisor-type role to step in and keep

the conversation going when the CA may fail. We also show how AI assisted data

labeling for CA’s can improve the speed and e�ciency of data collection. The goal

of the system is to simultaneously collect data for conversational agent components,

while maintaining a coherent conversation and relying on state of the art advances in

natural language processing systems. This chapter reports on the development and

user testing of the ACTS system.

2.2 Related Works

Conversational agent evaluation is tricky because di↵erent systems have di↵erent

evaluation requirements. [9] showed the limitations with automatic evaluations of

4



dialogue systems often are poor evaluations of dialogue systems. Interactive evaluations

[10] where both the user of the system evaluates the system is critical specifically

in scenarios like teacher education because one critical component of this evaluation

is the user’s perception of students understanding of the concepts. Our evaluation

metrics for the dialogue system comprise of both interactive evaluation components

and automated evaluation components [10].

Uncertainty has been recently explored in deep learning for classification tasks

either for out of data distributions [11] and also for distributions shifts [12]. However,

Active Dropout [13] is a cheap and e↵ective way to add uncertainty to classification

tasks, and we use this approach to add uncertainty to our dialogue acts module.

Including multiple modalities is critical in scenarios in teaching since it relies on

visual aspects. Engaging with images has been [14] has been explored for conversations,

and they show the e↵ectiveness of using an image as a modality for interaction.

Data collection and data labeling are the primary bottlenecks in applying deep

learning methodologies in new domains. A paradigm similar to weak supervision

proposed by [15] used deep learning to understand annotator accuracy. They also

showed the robustness of deep learning to label noise [16]. However, these approaches

scale with large datasets and only show promising results when large-scale datasets

are available, which is not often the case in education. Moreover, with larger datasets,

inconsistencies are so common that models rely on shortcut learning [8] for classification

tasks. The largest and the most popular dataset in deep learning is riddled with

inconsistencies of various kinds [17], and there are social and political consequences of

using them [18]. In this work, we wanted to collect a dataset only for the evaluation

of IQA since it is a well-established metric for teacher evaluation and our goal was to

make it e�cient to label and annotate using domain experts over crowd workers.

5



Figure 2.1: With the weak supervision rules, we trained a DistilBERT [1] model for

category classification. The annotators had access to this screen pre-filled with one of

the category labels (Probing and Exploring, Procedural and Factual, and Expository

and Cueing and Other) before annotators labeled. The annotators have the option

of agreeing with the label or choosing a di↵erent option. The annotators could also

select multiple options and indicate their order preference if they were unsure. This

information was not used to train the models but helps build more robust annotation

guidelines for subsequent iterations of data collection.

2.3 Current Challenges

Current challenges to CA development in educational contexts include:

• Model and Data Limitations (MDL): Deep learning models (models that

are used in most modern CAs) can fail catastrophically because they work by

exploiting spurious relationships [19] within data sets which is known as shortcut

learning [8].

• User Expectation Limitations (UEL): The “deep gulf of evaluation” [20]

exists because CA systems lack meaningful feedback regarding the systems

6



Uncertainty module sends response to Oz

Dialog System

Figure 2.2: The ACTS system has chat functionality and a dynamic rep-

resentation of the mathematical task. The expert user has access to the

Supervisor Interface to the right. The dialogue system responds when

it is certain about the dialogue acts and entities. When the uncertainty

thresholds are met, it sends the prompt to the expert user. The expert

user can then type in the response as a student, and it will appear on the

prompt (left). This prevents conversations from breaking because of the

failure of ML pipelines and components.

intelligence and capability. This mismatch of user expectations and current

technology capabilities can lead to a mis-application of CAs and a lack of

confidence that results in an avoidance of use and deployment for complex tasks

or sensitive activities.

• Limitations of Pretrained Models: Generic models like BERT [21] do not

readily generalize to specific domains. To address this, education communities

need education-specific pre-trained models, like the biomedical community [7].

• Limitations in data collection practices: The primary mode of data

collection in education contexts for domain-specific scenarios often relies on text

transcriptions from noisy classroom videos. This coupled with privacy concerns

7



Figure 2.3: The system enables data collection both during evaluation of

the natural language processing modules and building scenarios for a new

system. The “Verify” mode enables data collection for new scenarios while

the “Backup” mode can redirect control to the human when a language

component fails.

makes data collection for addressing MDL non-trivial.

2.4 System Description

The MDL and UEL are di�cult to meet in CA’s for any system and especially

for a CA in the context of education. In order to design useful systems, we need to

acknowledge that current advances in dialogue systems make having fluent conversa-

tions over multiple turns non-trivial. We designed a dialogue system to specifically

address user expectation failure and model and data failures. At it’s core, the system

minimizes negative user experiences by incorporating uncertainty modeling. When

a dialogue system component or a system fails, we redirect control to a supervisor

whose task is to bring the conversation back on track. We rely on recent developments

in deep learning and uncertainty estimation for each subcomponent of the dialogue

8



Technique Annotator n
Annotator

Accuracy

Agreement

(kappa)

Model-

Assisted

Agreement

Time

M(SD)

(seconds)
p-value

A
Classical

Labeling

Both 1730 0.82

0.52

- 15.2(42.1)

<0.001

A1 864 0.89 - 13.2(37.8)

A2 866 0.74 - 17.3(45.9)

B WS - MAL

Both 3983 0.84

0.61

0.70 10.4(32.7)

B1 1994 0.89 0.80 7.1(18.3)

B2 1989 0.79 0.60 13.6(42.3)

Table 2.1: Performance comparison of annotators between traditional supervised

labeling and weak-supervision + model-assisted labeling approach. The gold accuracy

table refers to anonymized annotators accuracy compared to gold labels generated by

expert teachers with significant experience in evaluating IQA metrics.

system and build an interaction pipeline of user + system + supervisor that can pass

the system’s control from the dialogue system to the supervisor based on the failure.

The uncertainty modules prevent the conversation from derailing due to a failure of one

or more of the sub-components. The supervisor is present during the user engagement

with the application acting within the role as an expert user (someone familiar with

the scenario and the system’s limitations) with the ability to send a response back

to the system as a “Student”. While perfect conversations in task-specific dialogue

systems are challenging to achieve in complex scenarios, adding an expert in the loop

prevents conversations from derailing. This also enables better user satisfaction and

long-term data collection for better modeling or never-ending learning [22] scenarios.

2.5 Conclusion and Future Work

Initial user studies demonstrate an improvement of the user experience of our

conversational agent despite the limitations of a complex, low-data educational sce-
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nario by including uncertainty module elements and allowing for human-in-the-loop

interactions. Even with the uncertainty modules, uncertainty quantification in deep

learning is not robust [23]. Also, uncertainty in deep learning has been explored

mostly for classification tasks but dialogue systems have many other tasks (entity

recognition, turn-taking). Thus accuracy of uncertainty estimates also vary based on

the stage of the dialogue system. In the future, we are planning to explore two lines

of work: determining approaches so that we can jointly model uncertainty of all the

stages together as a more robust uncertainty metric and controlling the amount of

supervisor involvement as we collect more data in these training scenarios. We believe

that these kinds of discrete, domain-specific web-based simulated classroom systems

can provide needed opportunities to help pre-service and in-service teachers rehearse

specific pedagogical strategies.
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Chapter 3

MODEL EVALUATION

3.1 Introduction

NLP classifiers have achieved state of the art performance in several tasks like

sentiment analysis [24], semantic entailment [25], and question answering [26]. Despite

their successes, several studies have pointed out issues in features learnt by such

classifiers. [27] discovered that several high performing NLP models were using trivial

features like vagueness and negation to perform classification. [8] performed several

experiments to discover that “romantic” movies tend to be classified as positive movie

reviews due to the presence of unnecessary words like proper nouns, a phenomena they

called shortcut learning. Even models like BERT [28] rely on superficial cue words like

“not” to infer the line of argumentation. Strategies like this enable models to perform

prediction without inherently using the semantic meaning of the sentence [29]. Simple

attributes like word lengths are also exploited by models for prediction [30].

In order to address these issues, several perturbation based approaches have been

proposed. Contrast Sets [31] and Counterfactual examples [32] get human annotators

to perform minimal token substitutions to construct challenging test sets for the

classifier. While useful in addressing biases, manual curation of datasets are often

time consuming and require extensive e↵orts. Using unsupervised training to mitigate

issues related to shortcut learning has not been successful in practice [29].

While interesting, most traditional formulations treat this input embedding space

as flat, thus reasoning that the gradient of the likelihood in the input space gives us

the direction that causes the most significant change in likelihood. If we were, however,
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g ∶X �→ Z

A
B

Figure 3.1: A: A neural network can be considered as a mapping g between the

sentence manifold X on the left (represented as a Euclidean space for simplification)

and the statistical manifold of probability distribution over outputs Z. The fisher

metric defines a particular Riemannian metric over this manifold. Let us consider an

✏ ball around two sentences x1 (blue circle) and x2 (red circle). As we can see from

the distortion of the blue circle, for x1, any local perturbation can only result in a

small change over the models output probability distribution which and vice versa for

red circle. The eigenvalue of the fisher matrix quantifies this local distortion. B: We

train a neural network to learn a decision boundary (black) to separate two gaussians

and color each data point by the local distortion (blue implying low distortion, red

implying higher distortion). As we can see from the colors, perturbing a point close to

the decision boundary (red circle, same as red circle in A) results in a larger change

over the model’s output probability distribution than a point away from the boundary

(blue circle, same as blue circle in A).

to consider the discrete likelihood of the class probabilities as the model output and

the input as a pullback of this output, the space of output probability distributions

is certainly non-linear, and the Euclidean distance metric no longer su�ces. We

show this schematically in Figure 1A, where the transformation g maps elements of

the sentence manifold X to a non-linear statistical manifold Z. A natural distance

12



metric to consider on this manifold is the Fisher Information Metric, which along

with being a Hessian of the KL divergence, is also a useful distance measure between

probability distributions. Furthermore, the Fisher Information Metric is invariant to

transformations like changing the model architecture, provided the likelihood remains

the same. We thus use the eigenvalues of the Fisher matrix to discover high fragility

regions in the statistical manifold. In regions with high �max, small perturbations

can cause large changes in the output probability distribution (Figure 1A, red circle).

Linguistically, this corresponds to the classifier being susceptible to meaningless

perturbations like noun, synonym substitutions. Similarly, in regions with low �max

no local perturbation can a↵ect the classifier, resulting in the classifier being resilient

upto 20% percent of word substitutions.

Our main contribution can thus be summarized as the following. 1. We propose a

second order statistic, the log of the largest eigenvalue of Fisher matrix in order to

capture linguistic fragilities. 2. We extensively establish the empirical relationship

between �max and success probability of random word substitutions. To the best

of our knowledge, this is the first work analyzing properties of the fisher metric to

understand classifier fragility in NLP. The rest of the chapter is organized as follows:

In Section 2, we summarize related work. In Section 3, we discuss our approach of

computing the FIM and the gradient-based perturbation strategy. In Section 4, we

discuss the results of the eigenvalues of FIM in synthetic data and sentiment analysis

datasets with BERT and CNN. We also do extensive quantitative evaluations using 4

other text datasets. Finally, in Section 5, we discuss the implications of studying the

eigenvalues of FIM for evaluating NLP models.
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Table 3.1: Top row: Substituting even a single word for fragile examples (large �max)

causes BERT to change the predicted sentiment. Bottom Row: Robust examples

(small �max), however, retain positive sentiment despite multiple substitutions of

positive words with negative words.

Perturbed

sentiment

Word substitutions

Positive

→ Nega-

tive fragile

example

(�max =0.78)

OK, I kinda like the idea of this movie. I’m in the age demographic, and I kinda

identify with some of the stories. Even the sometimes tacky and meaningful dialogue

seems realistic, and in a di↵erent movie would have been forgivable.¡br /¿¡br /¿I’m

trying as hard as possible not to trash this movie like the others did, but it’s robust

when the filmmakers were trying very hard.¡br /¿¡br /¿The editing in this movie is

terrific! Possibly the best → worst editing I’ve ever seen in a movie! There are

things that you don’t have to go to film school to learn, leaning good editing is not

one of them, but identifying a bad one is.¡br /¿¡br /¿Also, the shot... Oh my God

the shots, just fantastic! I can’t even go into the details, but we sometimes just see

random things popping up, and that, in conjunction with the editing will give you

the most exhilirating film viewing experience.¡br /¿¡br /¿This movie being made on

low or no budget with 4 cast and crew is an excuse also. I’ve seen short films on

youtube with a lot less artistic integrity! ...

Positive

→ Positive

robust

example

(�max =0.55)

This is the best and most original show seen in years. The more I watch it the

more I fall in love with → hate it. The cast is excellent → terrible , the writing

is great → bad. I personally loved → hated every character. However, there is

a character for everyone as there is a good mix of personalities and backgrounds

just like in real life. I believe ABC has done a great service to the writers, actors

and to the potential audience of this show, to cancel so quickly and not advertise

it enough nor give it a real chance to gain a following. There are so few shows I

watch anymore as most TV is awful . This show in my opinion was right down there

with my favorites Greys Anatomy and Brothers and Sisters. In fact I think the same

audience for Brothers and Sisters would hate this show if they even knew about it.
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3.2 Related Work

In NLP, improperly trained machine learning models (for instance in the presence

of limited/biased data) for classification often rely on spurious statistical patterns of

the text and use shortcut for learning to classify. These can range from annotation

artifacts [27,33,34], spelling mistakes [35], or new test conditions that require world

knowledge [36].

Another issue of language recently has been that static benchmarks (e.g., GLUE

by [5]) tend to saturate quickly because of the availability of ever-increasing compute

and harder benchmarks are needed to evaluate NLP models (e.g., SuperGlue [37]). A

more sustainable approach to this is the development of moving benchmarks. One

notable initiative in this area is the Adversarial NLI [38], but most of the research

community hardly validate their approach against this sort of moving benchmark. In

the Adversarial NLI dataset, the authors propose an iterative, adversarial human-

and-model-in-the-loop solution which makes models robust by training the model

iteratively on di�cult examples. In approaches like never-ending learning, models

improve and test sets get di�cult over time [22]. A moving benchmark is necessary

since we know that improving performance on a constant test set may not generalize

to newly collected datasets under the same condition [39,40]. Therefore, it is essential

to find fragile examples in a more disciplined way. Approaches based on geometry have

recently started gaining traction in computer vision literature. [41] studied universal

statistics of the eigenvalues of the Fisher matrix to conclude that the parameter

landscape is flat in most dimensions but very strongly distorted in others. [42] studied

the connections between the Fisher metric and natural gradient. [43] used a similar

approach for understanding adversarial examples in images, a formulation we extend

to language in our work.
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Table 3.2: Top row: In fragile examples synonym or change of name, changes classifier

label. Bottom row: In robust examples, despite multiple simultaneous antonym

substitutions, the classifier sentiment does not change.

Perturbed

sentiment

Word substitutions

Positive

→ Nega-

tive fragile

example

(�max =5.25)

Going into this movie, I had heard good things about it. Coming out of it, I wasn’t

really amazed nor disappointed. Simon Pegg plays a rather childish character much

like his other movies. There were a couple of laughs here and there– nothing too

funny. Probably my favorite → preferred parts of the movie is when he dances

in the club scene. I totally gotta try that out next time I find myself in a club. A

couple of stars here and there including: Megan Fox, Kirsten Dunst, that chick from

X-Files, and Je↵ Bridges. I found it quite amusing to see a cameo appearance of

Thandie Newton in a scene. She of course being in a previous movie with Simon

Pegg, Run Fatboy Run. I see it as a toss up, you’ll either enjoy it to an extent or find

it a little dull. I might add, Kirsten Dunst → Nicole Kidman, Emma Stone,

Megan Fox, Tom Cruise, Johnny Depp, Robert Downey Jr. is adorable in

this movie. :3

Negative

→ Nega-

tive robust

example

(�max =0.0008)

I missed this movie in the cinema but had some idea in the back of my head that it

was worth a look, so when I saw it on the shelves in DVD I thought ”time to watch

it”. Big mistake!¡br /¿¡br /¿A long list of stars cannot save this turkey, surely one

of the worst → best movies ever. An incomprehensible → comprehensible

plot is poorly → exceptionally delivered and poorly → brilliantly presented.

Perhaps it would have made more sense if I’d read Robbins’ novel but unless the film

is completely di↵erent to the novel, and with Robbins assisting in the screenplay I

doubt it, the novel would have to be an excruciating → exciting read as well.¡br

/¿¡br /¿I hope the actors were well paid as they looked embarrassed to be in this

waste of celluloid and more lately DVD blanks, take for example Pat Morita. Even

Thurman has the grace to look uncomfortable at times.¡br /¿¡br /¿Save yourself

around 98 minutes of your life for something more worthwhile, like trimming your

toenails or sorting out your sock drawer. Even when you see it in the ”under $5”

throw-away bin at your local store, resist the urge!
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3.3 Computation of the KL divergence

Consider an ⌘ perturbation in the sentence space. In that case the classifier

probability changes as show in Equation (3.1):

KL(p(y�x)��p(y�x + ⌘)) (3.1)

= Ep(y�x) log p(y�x)
p(y�x + ⌘) = Ep(y�x) log p(y�x) −Ep(y�x) log p(y�x + ⌘) (3.2)

Performing a taylor expansion of 2nd term

Ep(y�x) log p(y�x + ⌘) = Ep(y�x)((log p(y � x) + ⌘�∇ log p(y�x) + ⌘�∇2 log p(y�x)) (3.3)
The first order term:

⌘
�∇ log p(y�x)

The Hessian is:

⌘
�∇2 log p(y�x)

Now the first order term vanishes because:

Ep(y�x)⌘�∇ log p(y�x� − (3.4)
=⌘��

y
p(y�x)∇y log p(y�x) − (3.5)

=⌘��
y
p(y�x)� 1

p(y�x) ⋅ ∇yp(y�x)� − (3.6)
=⌘��

y
∇yp(y�x) − (3.7)

Since gradient is a linear operator, we can interchange summation (∑) and (∇).
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= eg: ∇y1p (y1 � x) +∇y2p (y2 � x)
= ∇ (p (y1 � x) + p (y2 � x)) = ∇�

y
p(y � x) = ∇ ⋅ 1 = 0

Thus the first order term vanishes and the final equation becomes:

= Ep(y�x) log p(y�x) −Ep(y�x) log p(y)x� − 0
- Ep(y�x)⌘�∇2 log p(y�x)�⌘

After ignoring the higher order terms we finally get:

= ⌘� �Ep(y�x) −∇2 log p(y�x)�⌘
And ∇2 log p(y�x) is the expectation of the Hessian.

Thus we only need to compute the following term

= ⌘�G⌘
where

G = Ep(y�x) −∇2
xlogp(y�x)

Consider the manifold of all possible sentence embeddings X. We show this

schematically in Figure 1A, left. Although, We represent this as a euclidean space

for simplicity, in the general setting this manifold could be non linear. Let x✏X be a

sentence on this manifold, and y be the label vector corresponding to this sentence.

The neural network p(y�x) maps each sentence to a probability distribution over y.

The set of all such probability distributions forms a statistical manifold Z (Figure

1A, right), Depending on the properties of the neural network, an ⌘ change in x (red

circle/blue circle) can result in a large change in p(y�x). We seek to quantify this

change by measuring the KL divergence between the two original and ⌘ perturbed

sentence.
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By studying the eigenvalues of the fisher matrix, we can quantify the local distortion.

As we see in Figure 1, the red sentence has a larger �max, resulting in a large change

in the prob distribution. The blue sentence has a much smaller �max, meaning that

perturbations around this sentence are less likely to a↵ect p(y�x) and thus the model

accuracy.

After getting the eigenvalues of the FIM, we can use the largest eigenvalue �max to

quantify how fragile an example is to linguistic perturbation. We propose the following

procedure to calculate �max

Algorithm 1 Algorithm for estimating fragility of an example

Input: x: Sentence representation, f: Neural Network

Output: �max

Calculate probability vector :

1: p = f(x)
Calculate Jacobian of log probability w.r.t x

2: J = ∇xlogp

Duplicate probability vector along rows to match J’s shape

3: pc = duplicate(p, J.dim[0])
Compute the FIM

4: G = pcJJT

Perform eigendecomposition to get the eigenvalues

5: �s, vs = eigendecomposition(G)
6: return max(�s)

3.3.1 Models and Datasets

We used multiple model architectures to understand the implications of FIM.

Convolutional Neural Networks [44], LSTM [45], Fasttext [46] and BERT [28]. For
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datasets, we used IMDB [24], AG NEWS [47], Sogou News [47] and Yelp Review

Polarity [47]. 1

Figure 3.2: Top row: Correlation between �max and probability of a random word

substitution substitution pflip for CNN, LSTM and FastText classifiers. Bottom

row: Correlation between �max and minimum perturbation strength to flip classifier

output for CNN, LSTM and FastText classifiers. The linear relationship of �max

with both pflip and minimum perturbation strength demonstrates that �max captures

perturbation sensitivity in both embedding space and word substitutions.

3.4 Discussion and Results

We now quantitatively and qualitatively explore how the Fisher Information metric

relates to properties like accuracy and investigate it’s feasibility in finding examples

that are susceptible to perturbations.

3.4.1 �max reflects distances from the decision boundary

We first investigate the FIM properties by training a neural network on a synthetic

mixture of gaussians dataset. The parameters of the two gaussians are µ1 = [−2,−2]
1More details about models and datasets can be found here: https://arxiv.org/abs/2010.07212
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and µ2 = [3.5, 3.5]. The covariances are ⌃1 = eye(2) and ⌃2 = [[2., 1.], [1., 2.]]We train

a 2-layered network to separate the two classes from each other. We use algorithm 1

to compute �max for each datapoint, and use it to color the points. We also plot the

eigenvector for the top 20 points.

As seen by the gradient of the colors in Figure 1B, the points with the largest �max

tend to lie close to the decision boundary. These points (red circle) are indicative of how

fragile the example is to the neural network since a small shift along the eigenvector can

cause a significant change in the KL divergence between the probability distribution

of the original and new data points. For points away from the boundary (blue circle),

there is minimal e↵ect of local perturbations.

3.4.2 FIM captures resilience to lingustic perturbations

In this section we explore relationship of FIM with linguistic perturbations (syn-

onym/antonym substitutions, noun replacements), token level substitutions (random

word choice, nearest neighbors in GloVE embeddings) and embedding perturbations.

�max is correlated with fragility to word substitutions

In order to investigate the relationship between �max and linguistic fragility, we perform

the following experiment: We randomly sample 1000 examples from Yelp ReviewPo-

larity dataset. For each sampled example, we try a batch of word substitutions based

on nearest neighbours in glove embedding space. In each substitution attempt, we try

to flip between 10 to 20 percentage of words at a time, and calculate the percentage

of successful flips which change the classifier prediction pflip. We also calculate the

�max for these examples using the procedure outlined in Algorithm 1.

As we see from Figure 2 and Table 4, On YelpReviewPolarity, we observe r values

of 0.3, 0.38 and 0.38 for CNN, FastText and LSTM respectively. It’s interesting to note
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Figure 3.3: Top row: We sample n low �max (robust) examples and n high �max

(fragile) examples and plot classification accuracy as a function of n. Robust examples

retain high accuracy when token substitutions are performed whereas accuracy on

fragile examples is significantly lower. In other words, high �max examples are much

more fragile (pflip ∼ 0.5 on AG NEWS, pflip ∼ 0.38 on SogouNews, pflip ∼ 0.85 on

YelpReviewPolarity) as opposed to low �max examples (pflip ∼ 0.05 on AG NEWS,

pflip ∼ 0 on SogouNews, pflip ∼ 0.1 on YelpReviewPolarity). Bottom row: Similar

to above, we sample n robust and fragile examples and plot the classifier accuracy

vs the norm of perturbation. High �max examples are significantly more fragile to

perturbations, with even small perturbations (weight of 0.5 on AG NEWS, 0.5 on

SogouNews, 0.1 on YelpReviewPolarity) can cause the classifier accuracy to plummet

near 40-50 percent. The low �max examples have nearly 100% accuracy for these

perturbation strengths.

that although FIM is defined in a continuous space, we observe a linear relationship

with success probability of token substitutions, which are discrete. This could be

indicative of the fact that flipping a small number of tokens in a large sentence is akin

to an ✏ perturbation in embedding space, which gets captured by �max.
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�max captures strength of the minimal su�cient perturbation

We were also interested in investigating the relationship between �max and norm of

the smallest vector (oriented along the largest eigenvector emax) which can cause the

classifier to flip it’s prediction. We perform the following experiment: We randomly

sample 500 examples from YelpReview. For each of these examples, we calculate �max

and emax and perturb the sentence embedding with a strength of ⌘, where

xflip = xorgin + ⌘ emax�emax�
By performing binary search on ⌘, we can determine the minimum perturbation

strength su�cient to flip the classifier prediction.

As evident from Figure 2 and Table 5, we obtain r values of -0.41, -0.36 and -0.39

for CNN, FastText and LSTM, respectively. These correlations suggest that �max

captures the perturbability of a sentence, with lower �max examples requiring much

larger perturbation strengths in order to flip their prediction.

3.4.3 High �max examples cause substantial drop in accuracy

In order to study the e↵ect of �max on classification accuracy, we sort the examples

by �max and pick n low and high �max examples. We then plot the classifier accuracy

as a function of number n. We repeat this procedure 6 times with n ranging from 200

to 1200.

As we see from Figure 3, low �max examples retain accuracies of 90-100 percent

across all 3 datasets. They are much more resilient to perturbations. In other words,

high �max examples are much more fragile, with much higher probabilities of random

word substitutions causing misclassifications (pflip ∼ 0.5 on AG NEWS, pflip ∼ 0.38
on SogouNews, pflip ∼ 0.85 on YelpReviewPolarity) as opposed to low �max examples

(pflip ∼ 0.05 on AG NEWS, pflip ∼ 0 on SogouNews, pflip ∼ 0.1 on YelpReviewPolarity).
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Table 3.3: Statistics of correlation between random word substitution success proba-

bility pflip and �max.

Dataset Architecture p-value r-value

YelpReviewPolarity CNN 1.32e-11 0.30

YelpReviewPolarity FastText 2.66e-18 0.38

YelpReviewPolarity LSTM 1.24e-18 0.38

AG NEWS CNN 1.43e-11 0.24

AG NEWS FastText 3.81e-16 0.21

AG NEWS LSTM 2.36e-10 0.26

SogouNews CNN 7.32e-8 0.22

SogouNews FastText 2.22e-15 0.23

SogouNews LSTM 4.21e-18 0.31

As we see from the trend with n, this relationship is stable across di↵erent sample

sizes of low and high.

We also investigated the e↵ect of perturbation strength along largest eigenvector

emax on classifier accuracy. In figure 3b, we pick n low and high fim examples and

plot classifier accuracy as a function of perturbation strength. As we see from the

di↵erence between the orange and blue curves in Figure 3, part B, Similar to above,

we sample n robust and fragile examples and plot the classifier accuracy vs the norm

of perturbation. High �max examples are significantly more fragile to perturbations,

with even small perturbations (weight of 0.5 on AG NEWS, 0.5 on SogouNews, 0.1 on

YelpReviewPolarity) can cause the classifier accuracy to plummet near 40-50 percent.

Low �max examples on the other hand, are remarkably resilient, with classifier accuracy

remaining near 100 percent at these perturbation strengths.
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Table 3.4: Statistics of correlation between min su�cient perturbation strength and

�max.

Dataset Architecture p-value r-value

YelpReviewPolarity CNN 5.76e-42 -0.411

YelpReviewPolarity FastText 7.66e-32 -0.359

YelpReviewPolarity LSTM 7.75e-39 -0.396

AG NEWS CNN 6.38e-30 -0.31

AG NEWS FastText 6.24e-28 -0.30

AG NEWS LSTM 5.87e-29 -0.27

SogouNews CNN 7.84e-32 -0.26

SogouNews FastText 7.43e-32 -0.19

SogouNews LSTM 7.72e-39 -0.21

3.4.4 Qualitative exploration of fragilities

We also qualitatively explore the nature of linguistic fragilities for both high

and low �max examples. We sample high and low �max examples from the two

tails of the �max distributions. We then perform several token level substitutions:

synonym, antonym substitutions, noun, and article substitutions. The tokens for

substitutions were selected using word attribution score from Integrated Gradients

( [48]). Integrated gradients assign importance scores to words by the network

and provide a more methodical approach to word substitutions than random word

substitutions for qualitative evaluations.

As seen in Table 3.2, either replacing favorite with preferred or “Kirsten Dunst” with

any of the listed actors/actresses su�ces to change the classifier’s prediction. Note that

“Megan Fox’s” name appears in the same review in the previous sentence. Similarly

in Table ??, it’s su�cient to replace “exciting” with either an antonym (“boring” or
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“uninteresting”) or a synonym (“extraordinary” or “exceptional”). However, for robust

examples, despite trying to replace four or more high attribution words simultaneously

with antonyms, the predicted sentiment did not change. Substitutions include “good”

to “bad”, “unfunny” to “funny”, “factually correct” to “factually incorrect”. Even

though the passage included words like “boredom”, a word that is generally associated

with a negative movie review, the model did not assign it a high attribution score.

Consequently, we did not try to substitute these words for testing robustness or

fragility of word substitutions.

For our models, fragile examples have a mix of positive and negative words in a

movie review. The models also struggled with examples of movies that selectively

praise some attributes like acting (e.g., ”Exceptional performance of the actors got me

hooked to the movie from the beginning”) while simultaneously use negative phrases

(e.g., ”however the editing was horrible”). Fragile examples also have high token

attributions associated with irrelevant words like ”nuclear,” ”get,” and ”an.” Thus

substituting one or two words in fragile examples change the predicted label of the

classifier. Similarly, easier examples have clearly positive reviews (e.g., ”Excellent

direction, clever plot and gripping story”). Combining integrated gradients with high

�max examples can yield insights into NLP models’ fragility.

Several interesting di↵erences emerge within the four models: CNN, Fasttext

and LSTMs, as a consequence of being trained on less amount of data are fragile to

substitutions like Noun substitutions. On the other hand, BERT models are robust to

these sorts of substitutions because of their pretraining. High FIM BERT examples

are more robust to meaningless changes, but single word substitutions still cause

classifier prediction to change compared to low �max examples.
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3.5 Discussion and Conclusion

As evident from our experiments above, �max is correlated with susceptibility to

linguistic perturbations. Furthermore, �max is directly correlated to the minimum

perturbation needed to flip the classifier prediction. Finally, we show a stark di↵erence

in the response of low and high �max examples, with the high �max examples, per-

turbed examples being susceptible to meaningless perturbations (e.g., noun/synonym

substitutions).

These experiments have several interesting ramifications: Firstly, it’s risky to

over rely on accuracy while studying the generalizability of NLP classifiers. Most of

the classifiers we used in our experiments attain really high accuracy on the test set

despite failing simple sanity checks (e.g., invariance to synonym substitutions). It’s

thus important to identify the examples which are most susceptible to perturbations

and test their resilience. The Fisher information provides us with a theoretically

motivated framework to address this issue. By extracting the high �max examples

and perturbing them by using glove based synonym substitutions, we can construct a

rolling test set for our NLP classifiers. Furthermore, by mining only the high �max

examples, FIM provides NLP practitioners with an interactive way to perturb and

explore the flaws of their classifiers, something which would be extremely tedious to

do on the entire dataset otherwise.

In this chapter, we introduced a method to discover the highly fragile examples

for an NLP classifier. our method discovered in several state of the art classifiers

like BERT, CNN and LSTM. Furthermore, our experiments shed some light on the

links between geometry of NLP classifiers and their linguistic and embedding space

perturbability. Our method provides NLP practitioners with both an automated an

interactive human in the loop framework to better understand their models.

27



There are several interesting extensions. Firstly, it would be interesting to decode

the optimal perturbation vector emax associated with �max as a sentence. We are

developing several approaches based on finding token substitutions which maximize

this dot product with emax in order to address this. It will also be interesting to study

the link between purely geometrical properties like distance to the decision boundary

and linguistic resilience. Finally, we are also interested in measuring the norm of token

substitutions in embedding space to understand the relationship between the two.
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Chapter 4

DEPLOYMENT CHALLENGES

4.1 Introduction

Fine-tuning pre-trained large language models (PLMs) in downstream tasks in

Natural Language Processing (NLP) is the standard approach for achieving state-of-

the-art results. This approach involves fine-tuning all the weights of the models (often

billions of parameters) and is sample ine�cient and unstable [49, 50]. Moreover, each

task requires fine-tuning a separate model, which causes significant storage overheads

and deployment costs and hinders adaptability to real-world scenarios. In order to

address this parameter-ine�ciency limitation, recently, there has been a significant

number of approaches to improve fine-tuning the minimum set of parameters to achieve

performance on par or better than full fine-tuning methods. The most prominent

early approach, adapters [3], involves adding task-specific modules between layers of

pre-trained networks. Since then, this approach has been adapted to other task-specific

modules like only adapting the bias terms [51], or projection matrices [52]. [52] showed

that fine-tuning by an arbitrary random linear projection into a smaller subspace

could often be at par with full fine-tuning performance. The approach of using

adapters is e�cient as it exploits the over-parameterizations but fails to account for

the intrinsic low-rank subspace dimensionality of the intermediate layers. In this work,

we want to focus on extreme parameter reduction by using tensorized layers as a

drop-in replacement to adapter-based approaches. This approach has two key benefits:

E�cient tensorization of the pre-trained model varies based on network architectures

and is often not transferrable across architectures. However, by only using tensorized
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layers as a drop-in replacement of Adapter layers, this compression method can be

used in any pre-trained model. Secondly, tensorization of layers naturally provides

regularization and helps fine-tuning for downstream tasks, where the number of points

is orders of magnitude smaller than the number of fine-tuned parameters.

Tensors can be viewed as multilinear mappings (i.e., functions), which are higher-

order generalizations of linear mappings represented by matrices. Essential components

of modern deep learning like convolutions and attentions naturally fit the notion of

tensor mappings. Tensor methods help mitigate the curse of dimensionality without

discarding the data’s or model’s original structure. Tensorized Layers (CP, Tucker,

TensorTrain, and TensorRing) help reduce the number of parameters and improves

generalization across tasks and domains [53, 54]. [55] discuss tensor-based approaches

in modern statistical learning and [56] specifically discuss the applications in computer

vision and deep learning. Tensors are particularly important in understanding the

theoretical aspects. Recent work has shown that tensor ranks can serve as a measure

of predictor complexity and understand implicit regularization in deep learning [57].

Tensorized decompositions have been used to compress the weights of the neural

network layers and improve the speed of inference [58–60]. A natural extension to

using adapters and exploiting the low-rank structure of the weight matrices is to

analyze the performance of fine-tuning with tensorization of adapter layers. Since

adapter layers are already parameter e�cient, tensorization will reduce the parameters

further and naturally address the problems stemming from the curse of dimensionality.

At its core, tensorization replaces a neural network layer with an approximate and

structured low-rank form. This “parametric“ form, i.e it’s shape determines design

trade-o↵s between storage capacity, accuracy and parameter e�ciency. Furthermore,

tensorized layers can be fine-tuned for a given task as a drop-in replacement for many

layers like linear layers [61], embedding layers [62] and convolutional layers [59], by
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Figure 4.1: Tensor Network Diagrams of Tensor Decomposition Approaches. CP

decomposition (Top Left), Tucker Decomposition (Top Right), Tensor Train Decom-

position (Bottom Left) and Tensor Ring Decomposition (Bottom Right)

learning the projection factors by back-propagation along with the rest of the network

parameters.

Tensorized layers add regularization ability while being parameter e�cient be-

cause projection factors naturally deal with the curse of dimensionality. [63] explored

tensorizing pre-trained language models, but e�cient approaches to tensorizations

are non-trivial. For example, [64] showed that merge ordering of the decomposition

factors could determine the computational complexity for TensorRing Decomposition.

Unlike matrices, tensors can be decomposed in di↵erent ways giving rise to di↵er-

ent notions of rank. For most tensor learning problems, deciding the tensorization

and the decomposition is non-trivial. It is also non-trivial to determine the tradeo↵

between minimizing the number of parameters and minimizing the corresponding

loss function [65]. However, while previous work has proposed di↵erent variations of

adapter modules [52,66], tensorized layers have not been used to explore the parameter

e�ciency and downstream performance improvement of the models. In recent work,

Compacter [66] used low-rank matrices for parameter e�ciency in the adapter layers.

However, unlike matrices, tensors have many representative properties that likely

lead to robustness. Firstly, it has been shown that tensor-tensor representation of
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an equal dimensional spanning space is superior to its matrix counterpart regarding

representation e�ciency [67]. TT-ranks provide much better flexibility than the matrix

rank when applied at the same compression level.

Current methods that use parameter e�cient approaches for fine-tuning PLMs have

often shown robustness with fewer parameters. While these isolated approaches like

using the bias terms [51], adapters [3], and Compacters [66] have shown some amount

of performance improvements, the success of the robustness aspect remains somewhat

mysterious. Instead of proposing adaptations to internal layer structure, we empirically

study the impact of tensors as adapter layers. The advantage of tensors is many folds.

Theoretical guarantees around uniqueness, low-rank structures, and regularization

abilities make tensors appropriate for analysis across various structures. Since it

has already been shown that adapter layers are e�cient for downstream language

tasks, this paper aims to isolate the regularization ability of adapter layers with

tensor-based methods. We do a detailed comparison of di↵erent tensor decomposition

methods to understand the impact on performance. Since it is non-trivial to decide

the decomposition approach and the rank, we do an empirical study across ranks and

di↵erent decomposition methods. We notice that tensor-based decompositions are

more stable than matrix decompositions for adapter layers.

The goal is to systematically evaluate the following questions across a variety of

datasets and models.

• What is the impact of rank in the di↵erent tensor compression approaches on

the performance metric?

• How does the parameter e�ciency change as the number of layers in transformer

models increases?

• Is there a significant performance di↵erence between the di↵erent tensor decomposition-
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based approaches for compression?

• Use tensor based approach to deploy IQA question classification model to reduce

cost of model inference without increasing speed of inference.

It is noted that several recent works focus on network compression using tensors.

For example, [66] proposes a new architecture based on low-rank matrices. [68]

directly uses matrix factorization for compressing pre-trained language models. Tensor

decomposition naturally guarantees stable convergence properties and is superior to

the matrix counterparts in terms of representative e�ciency in terms of the number

of parameters [67]. Secondly, the other line of work involves tensorizing various

components of the pre-trained language model [69]. Since this is architecture-specific,

we aim to only isolate the impact of performance in terms of rank and parameter

e�ciency by using tensor decomposition in the adapter layers. This generalizes to other

multi-layer architectures with no modification (See implementation details in Section

5.1 ). Also, unlike previous work, which highlights isolated compression approaches,

we focus on a detailed empirical study of the di↵erent compression approaches and

the impact of rank in the compression.

We summarize key findings from the tensor-based compression approaches as a

generalized adapter module.

• Tensor-based compression approaches are more stable than the corresponding

matrix-based compression approaches.

• With increasing rank (more parameters), accuracy improves. However, the

improvement is marginal and low ranks like (2,4) often provide an optimal

balance of the number of parameters and performance.
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• Unlike past work in compression that often shows one decomposition is signifi-

cantly superior to the other, we notice that with the increasing number of layers,

there is minimal di↵erence in the performance of the di↵erent decomposition

algorithms. Thus the decomposition approach can be chosen based on tradeo↵s

like compute e�ciency or inference speed.

4.2 Related Work

Tensors have also been used to understand theoretical properties of deep learning

like expressivity [70] and generalizability [71]. Compression of deep networks using

tensor decomposition has been the primary intersection point of tensors and deep

learning. The low-rank structure of the weight matrices means that compressing them

without a significant loss in metrics like accuracy will improve inference time and

enable deployment in resource-constrained hardware. A large body of this research has

focussed on compressing convolutional neural networks (CNNs). These include [72,73]

who proposed low-rank approximations of the convolutional neural networks. However,

since it was not entirely clear which decomposition is better for the di↵erent kinds of

architectures, [74] proposed an approach specific to CNNs. Following the previous

work, [75] introduced a tensors factorization framework for e�cient multi-dimensional

convolutions of higher-order CNNs for emotion estimation.

However, the biggest gain in most of these architectures comes from compressing

the fully connected layers since this is often the bottleneck layer (generally contains

the largest number of parameters compared to the other layers of the network). Also,

the fully connected layer is flattened after the convolutional layers or the transformer

layers before classification or generation tasks, thus losing the multimodal information

and the hierarchical structure it may have learned. In fact, for the well-known

VGG-19 network [76] 80% of the parameters come from the fully connected layer.
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The popular approaches that have been used for compressing the fully connected

layer are Tucker Decomposition by [77], Tensor Train decomposition by [78] and

Block Term Decomposition by [79]. All these show the possibilities in deep learning

compression algorithms. Since Transformer is the dominant architecture in modern

deep learning algorithms, an in-depth study of the compressibility of transformers has

been a recent focus of modern approaches. Some known approaches are quantization,

where 32 bit parameters are replaced with a binary parameters (which can compress

upto 32 times) [80, 81], knowledge distillation where a new model is trained from

scratch [1], or approaches that are computationally heavy like the neural architecture

search [82]. Since we use adapter layers to fine-tune the network on downstream tasks,

this approach is generalizable like adapters while being parameter e�cient.

Transformers have been compressed using Matrix [83] and Tensor Based decom-

position methods [84]. [84] showed the promise of designing e�cient transformer

architectures, and [85] showed how Tensor Train architectures could be used to fine-

tune the language model for compression simultaneously. The most recent work

in this area [63] also focuses on compressing pre-trained transformer models using

Tensor-based methods. However, none of these works compare the di↵erent tensor

decomposition approaches; thus, comparing and evaluating the tensor decomposition

approaches and the impact of tensor rank on parameter e�ciency and performance

during fine-tuning is di�cult.

4.3 Adapter Compression Approach

Parameterizing fully connected layers using tensor decompositions was first pro-

posed by [58]. The weights of fully-connected layers are represented as matrices, and

tensor decompositions cannot be applied directly. Therefore, the weight matrix needs

to be reshaped to obtain a higher-order tensor. The appropriate shape for reconstruc-
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tion is still an open question and is non-trivial. Decisions about decompositions can

also determine the computational complexity and e�ciency of constructing the weight

matrix from the decomposition factors.

Specifically, consider an input matrix W of size I × J , whose dimensions can be

expressed as I = I1 × I2 × � × IN and J = J1 × J2 × � × JN . Hence, W is tensorized

first by reshaping it to a higher-order tensor of size I1 × I2 ×�× IN × J1 × J2 ×�× JN .
Next, by permuting the dimensions and reshaping it again, an N th order tensor of

I1J1 × I2J2 ×�× INJN is obtained. This tensor is then compressed using any of the

tensor decomposition methods as shown in Figure 4.1. The approximated weights are

reconstructed from that low-rank factorization during inference and are then reshaped

back into a matrix. A detailed comparison of the decomposition and corresponding

factors can be found in Table 4.1.

4.4 Gradient Updates

A common approach to reducing parameters in transformer networks is to add

intermediate layers within a transformer network and freezing the rest of the network.

Thus the newly added intermediate layers are part of the gradient updates. The

update equation is as follows.

✓new =  (✓old)
In the fine-tuning stage, adding intermediate layers increases the number of computa-

tions to produce the final output. The added layers in the case of Adapters [3] are

multiple fully connected layers, consequently leading to a significant increase in new

matrix multiplications. This approach consequently leads to an increase in inference

times. While speeding up this process could be achieved through other optimization,

like int-8 quantization, we have left that for future work.
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Figure 4.2: Existing Work: (Left) Original Transformer [2], (Center) Adapters [3],

(Right) Parameter E�cient Adapters [4]

A second challenge of this approach is that these fully connected layers need to be

added to the network, and this approach is non-trivial. The adapters have to serve as

bottleneck layer to facilitate the gradient transfer from other layers but also needs to

be updatable in the fine-tuning stage.

In order to address some of the challenges we proposed the following adaptations.

✓new = ✓old + �
� is only getting updated during the fine-tuning stage. This prevents added matrix

multiplications, and it is only matrix additions. Additions are significantly faster than

matrix multiplications.
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Figure 4.3: Our Work Left: Adding Adaptation Layers (Right) Tensorized Adapters

(Adding tensorized networks improve model e�ciency while adding regularization.)

A second advantage of this approach is that because the computations are additions,

arbitrary and complex computations can be redistributed to a di↵erent device. In

this context, �, could be any function that can be computed in parallel in a di↵erent

device. This parallel computation will not lead to an increase in inference times.

4.5 Adaptation of tensor based approach to improve inference speed

Adapters [3] and the family of parameter e�cient training had one critical drawback.

While the number of parameters that were fine-tuned was less, it did not lead to

decrease in inference speed because the model parameters were all used during inference.
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(In other words, the number of matrix multiplications increased because of the added

parameters and all the components needed to reside in a Graphical Processing Unit.

In essence the update equation changes from:

✓new =  (✓old)
to

✓new = ✓old + �
If ✓ is mXn,  (✓old) is also mXn. In adapters, new layers are added inside the

transformers. While this method is e�cient in solving multiple tasks, by design this is

architecture specific and di↵erent models require di↵erent adaptations to be able to

solve multiple tasks simultaneously. This approach also meant di↵erent parts of the

network needed di↵erent kinds of tensor compression methods and embedding layers

(which often is very parameter heavy) could not be compressed simultaneously across

architectures.

In both the adaptations, our goal is to be able to approximate the tensors in the

weight matrix. In the second approach, the gradients are independently computed

for the parameters and thus the inference speed is not a↵ected since the matrix

multiplication for the adaptation part 4.3 happens parallel to the forward network

computation of the original transformer. This approach is also thus agnostic to newer

architectures of transformers as long as there are independent sub-component of the

transformer blocks.

Instead of using only fully connected layers, (left figure of Figure 4.3), we use

tensor decomposition based methods for the gradient updates for both approaches.

Thus finally the forward pass changes from:
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Hl =Wlx +�Wx

to:

Hl =Wlx + T x
Here T is any representation of Tensor Decomposition Based Approach which is

discussed in the following section.

In Figure 4.3, we used CP decomposition and thus T can be represented using the

following equation:

T = r�
↵=1

u(1)↵ ○ � ○ u(d)↵ , (4.1)

4.6 Tensor Decomposition Methods

The general approach behind all the tensor decomposition is to use the weight ma-

trix tensor and one of the following tensor decomposition algorithms for Compression.

Figure 4.1 shows the tensor network diagram of each decomposition.

4.6.1 CP decomposition

The CPD or cannonical polyadic decomposition [86] aims to represent a dth-order

tensor T , in our case it is the weight matrix, by a sum of rank-one tensors. Determining

the number of rank-1 components is an NP-hard problem.

T = r�
↵=1

u(1)↵ ○ � ○ u(d)↵ , (4.2)

where each rank-1 Tensor is represented by an outer product of d vectors. It can be

also written in the element-wise form given by

T (i1, . . . , id) = �u(1)i1
, . . . ,u(d)id

� , (4.3)
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where �⋅, . . . , ⋅� denotes an inner product of a set of vectors, i.e., u(k)ik
∈ Rr, k = 1, . . . , d.

4.6.2 Tucker decomposition

The Tucker decomposition [87] aims to represent a dth-order tensor T by a

multilinear product between a core tensor G ∈ Rr1×�×rd and factor matrices U(k) ∈
Rnk×rk , k = 1, . . . , d, which is expressed by

T = G ×1 U(1) ×2�×d U(d) = [[G,U(1), . . . ,U(d)]]. (4.4)

4.6.3 TT decomposition

The tensor train decomposition [88] aims to represent a dth-order tensor T by

a sequence of cores Gk, k = 1, . . . , d, where the first core G1 ∈ Rn1×r2 and the last

core Gd ∈ Rrd×nd are matrices while the other cores Gk ∈ Rrk×nk×rk+1 , k = 2, . . . , d − 1
are 3rd-order tensors. Specifically, TT decomposition in the element-wise form is

expressed as

T (i1, . . . , id) = g1(i1)TG2(i2)�Gd−1(id−1)gd(id), (4.5)

where g1(i1) is the i1th row vector of G1, gd(id) is the idth column vector of Gd, and

Gk(ik), k = 2, . . . , d − 1 are the ikth lateral slice matrices of Gk.

4.6.4 Tensor Ring Model

The Tensor Ring decomposition [89] is very similar to the Tensor Train decom-

position except that it represents a higher order tensor by a sequence of 3rd-order

tensors that are multiplied circularly. Specifically, let T be a dth-order tensor of size

n1 × n2 ×�× nd, denoted by T ∈ Rn1×�×nd , TR representation is to decompose it into

a sequence of latent tensors Zk ∈ Rrk×nk×rk+1 , k = 1, 2, . . . , d, which can be expressed in
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Figure 4.4: Performance of the 4 types of Tensor Decomposition Models using the

MNIST dataset. The network is a 2-layered, fully connected network with dimensions

(1024, 1024) and (1024, 10). The experiment’s goal was to understand and evaluate

the impact of tensor decomposition algorithms on simple feedforward networks.

an element-wise form given by

T (i1, i2, . . . , id) =Tr{Z1(i1)Z2(i2)�Zd(id)} ,
=Tr� d�

k=1
Zk(ik)� . (4.6)

T (i1, i2, . . . , id) denotes (i1, i2, . . . , id)th element of the tensor. Zk(ik) denotes the ikth
lateral slice matrix of the latent tensor Zk, which is of size rk × rk+1. Note that any

two adjacent latent tensors, Zk and Zk+1, have an equivalent dimension rk+1 on their

corresponding mode. An important property of Tensor Ring decomposition is that the

last latent tensor Zd is of size rd × nd × r1, i.e., rd+1 = r1. This fact makes it di↵erent

from the Tensor Train decomposition and ensures that the product of these matrices

is a square matrix resulting in numerous important numeric properties of Tensor Ring

Decomposition. For simplicity, TR decomposition in the tensor form, can also be

expressed as:

T = r1,...,rd�
↵1,...,↵d=1

z1(↵1,↵2) ○ z2(↵2,↵3) ○ � ○ zd(↵d,↵1), (4.7)

42



Type Rank Factors TotalParams HidLayer NumLayer Compression

0 TR 4 [(4, 24, 4), (4, 32, 4), (4, 24, 4), (4, 32, 4... 21504 768 12 329.143 x

1 TR 8 [(8, 24, 8), (8, 32, 8), (8, 24, 8), (8, 32, 8... 86016 768 12 82.2857 x

2 TT 4 [(1, 24, 4), (4, 32, 4), (4, 24, 4), (4, 32, 1... 13440 768 12 526.629 x

3 TT 8 [(1, 24, 8), (8, 32, 8), (8, 24, 8), (8, 32, 1... 48384 768 12 146.286 x

4 CP 4 [(24, 4), (32, 4), (24, 4), (32, 4)] * 12 5376 768 12 1316.57 x

5 CP 8 [(24, 8), (32, 8), (24, 8), (32, 8)] * 12 10752 768 12 658.286 x

6 Tucker 4 [(24, 4), (32, 4), (24, 4), (32, 4)] * 12 5376 768 12 1316.57 x

7 Tucker 8 [(24, 8), (32, 8), (24, 8), (32, 8)] * 12 10752 768 12 658.286 x

Table 4.1: Comparison of di↵erent tensor decomposition approaches for ranks 4 and 8

compared to a linear layer, a key component of the adapter layer.

Figure 4.5: The number of parameters grows with increasing layer dimensions and

the number of layers. Since modern transformer architectures grow significantly in

terms of the number of layers and the layer dimensions, TensorTrain and Tensor Ring

models grow faster than CP and Tucker decompositions.

Figure 4.6: Comparison of the number of parameters for 3 models (BERT, RoBERTa,

and DeBERTa) with fully fine-tuned and adapter parameters for the STSB task in

the GLUE Benchmark [5].
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A/MRPC A/RTE S/STSB F1/QQP Params

LayerType Model Rank

Adapter bert - 0.884 0.695 0.787 0.720 2.42M

deberta-v2 - 0.884 0.684 0.854 0.715 3.01M

roberta - 0.884 0.637 0.793 0.713 3.01M

TensorRing bert 2.0 0.881 0.677 0.754 0.712 63K

4.0 0.881 0.673 0.749 0.719 132K

deberta-v2 2.0 0.884 0.681 0.764 0.716 655K

4.0 0.884 0.684 0.801 0.711 724K

roberta 2.0 0.884 0.645 0.757 0.715 654K

4.0 0.884 0.619 0.724 0.716 723K

TensorTrain bert 2.0 0.881 0.677 0.754 0.712 54.1K

4.0 0.881 0.673 0.750 0.709 79.1K

deberta-v2 2.0 0.884 0.681 0.799 0.711 646K

4.0 0.884 0.684 0.829 0.715 671K

roberta 2.0 0.884 0.645 0.703 0.713 645K

4.0 0.884 0.612 0.797 0.720 670K

CP bert 2.0 0.881 0.677 0.750 0.705 51.6K

4.0 0.881 0.673 0.751 0.709 63.2K

deberta-v2 2.0 0.884 0.681 0.769 0.721 644K

4.0 0.884 0.684 0.733 0.717 655K

roberta 2.0 0.884 0.648 0.758 0.722 642K

4.0 0.884 0.616 0.759 0.718 654K

Tucker bert 2.0 0.881 0.677 0.749 0.697 51.8K

4.0 0.881 0.673 0.748 0.717 66K

deberta-v2 2.0 0.884 0.681 0.783 0.713 644K

4.0 0.884 0.684 0.810 0.706 658K

roberta 2.0 0.884 0.645 0.804 0.718 642K

4.0 0.884 0.616 0.788 0.717 657K

Table 4.2: Metrics on the GLUE benchmark for the di↵erent decomposition algorithms

and ranks. No decomposition-based approach is significantly superior to the other.

Even though many recent works relied on Tensor Train decomposition for most of

the experiments, in this dataset, we show that both CP and Tucker Decomposition

perform equally well compared to Tensor Train and Tensor Ring decomposition.
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4.7 Experiments

In order to illustrate the di↵erence in accuracy, a simple two-layer neural network

is used for MNIST classification as a toy example. The goal was to understand

the impact of tensorization and regularization as a substitute for the linear layer.

We used MNIST instead of language tasks because language networks always have

an embedding layer, and it is di�cult to isolate the impact of the fully connected

layer. Figure 4.4 shows that tensor ring decomposition as a drop-in replacement to

linear layer performs better than the other decomposition-based approaches. Even

though [64] had shown that Tensor Ring decomposition is more expressive than TT for

the same intermediate rank, this performance gain disappears when multiple adapters

are used for compression in Transformer based architectures Table ??.

All experiments were performed in A6000 GPU from NVIDIA, which has a 48GB

GDDR6 RAM. The experiments used consistent random seeds set using both the

numpy and the torch options. The models and the datasets were loaded from the

Huggingface Transformers library [90] and the Huggingface Datasets library [91]. Since

it is di�cult to fine-tune models with di↵erent network architectures, we fixed the

number of epochs for fine-tuning to 3 as recommended in the o�cial evaluation scripts

for the GLUE [5] tasks in the library. This means, technically, the actual performance

could be sub-optimal; however, it enables fair comparison between each of the Tensor

Decomposition Algorithms when trained similarly. Three models were used for the

experiments BERT [21], RoBERTa [92] and DeBERTa [93] and DistilBERT [1] model.

Details of the hyper-parameters and the runs can be found in the Appendix.
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4.7.1 Implementation Details

Each adapter layer was added after a SelfOutput Layer. The Huggingface trans-

formers library [94] was used, and a detailed hyper-parameter description can be found

in the Appendix. Each adapter layer is composed of a down-projection layer and

an up-projection layer which are generally linear layers of shape (hidden dimension,

adapter dimension) and (adapter dimension, hidden dimension). We used the same

hyper-parameters across all the tensor decomposition algorithms, and the models are

trained based on the o�cial transformer library. The datasets library was used for the

datasets used in the experiment [95]. The results reported are the evaluation accuracy.

4.7.2 Models

BERT Base

BERT [21] is a pretrained on the English language using the masked language modeling

objective and the next sentence prediction objective. The model used in our experiment

is ‘BERT-base-uncased,‘ which does not distinguish between upper case and lower

case letters. The training paradigm relied on self-supervision, essentially eliminating

the need for using labeled datasets for training. The original model was trained on

four cloud TPU (Tensor Processing Units) for one million steps with a batch size of

256. The adam optimizer was used, and details of the exact hyperparameters can be

found in the original paper.

RoBERTa Base

RoBERTa [92] was originally a replication study of BERT and showed significant

improvements over BERT by only altering the hyperparameters. The conclusion from

RoBERTa was that BERT was significantly undertrained and could match or even
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exceed the performance of BERT in many tasks. However, since the community still

heavily relies on BERT for all benchamrks we use both BERT and RoBERTa for fair

performance comparison.

Since [51] showed that trends between the base and the large models consistently

remained the same, we used the base models for all our experiments.

DeBERTa-V2

This model is an improvement upon BERT and RoBERTa. Disentangled Attention

helps provide richer information for each word, and an enhanced mask decoder is used

to incorporate absolute positions in the decoding layer. Compared to RoBERTa large,

DeBERTa was trained on half the training data and performed consistently better on

the GLUE benchmark.

The DistilBERT

[1] model is a faster and a smaller version of the BERT model that uses the same

training corpus but uses teacher-student distillation. Here the BERT base model was

the teacher and in addition to the BERT loss functions it has a cosine embedding

loss and distillation loss. Since the model is smaller than BERT this results in faster

inference without a significant decrease in accuracy.

4.7.3 Datasets

We evaluate the tensor decomposition algorithms on the subset of the GLUE [5]

tasks similar to other compression papers. The performance across datasets for

compression remained consistent in [3] and [51]; thus, the subset was chosen based

on the training time required. Some datasets like WNLI were excluded since BERT

models do not outperform the majority baseline. Also, since the QNLI test set
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Table 4.3: Teacher question categories and their alignment with terminology used in

other frameworks

Model Name Accuracy Runtime Hidden Size Vocab Size

bert-base 0.75 6.3532 1024 50272

roberta-base 0.76 5.6464 768 50265

microsoft/deberta-v3-base 0.75 7.8258 768 128100

distilbert-base-uncased 0.74 1.5125 768 30522

benchmark has been updated since the original release, it has not been included for

comparison.

4.7.4 Performance for IQA classification

The tensorized adapter approach is significant since it is an e�cient approach to

deploy Large Language Models in low resource scenarios. Our tensorized adapters

as was shown in table ?? performed at par with existing fully connected approach.

We evaluated it on the IQA question classification task and also noted the runtimes

below. Because of the e�cient distribution of adapter computation and the network

computation this approach can be generalized to any transformer based models for

language tasks.

4.8 Parameter Growth, Rank and Accuracy

As the rank increases, the number of parameters increases, and the performance

metrics should naturally improve. However, lower ranks act as regularizers and often

lead to performance improvements, as seen in some decompositions. Also, unlike

previous approaches that have consistently shown the advantages of TensorTrain
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and TensorRing [64] based decompositions, the performance improvements observed

through Tucker and CP decompositions are comparable ??. As the number of layers

increase, the di↵erence between the decomposition performances reduce. However, it is

worth noting that Tensor Ring, followed by Tensor Train decompositions, increases the

number of parameters with layers (Figure: 4.5. However, there is minimal di↵erence

in accuracy between these approaches. The parameter growth can also be seen in

Figure 4.6 for the STSB task in the GLUE Benchmark [5].

4.9 Conclusion

We have shown results of tensor decomposition techniques that could often benefit

the fine-tuning process in traditional transformers. Our goal was to address previous

approaches to transformer compression through Tensor methods by tensorized trans-

former layers. We proposed a simple adapter replacement to compress transformers

and transfer across multiple tasks. Existing work [3, 4] focussed on reducing the task

specific parameters they increased the speed of inference. Our work keeps the inference

speed constant by adding the tensorized adapters parallel to the transformer layer.

We also empirically studied the di↵erent decomposition algorithms and the ranks of

the decomposition.

We showed an e�cient approach to compress transformer layers (both embedding

and self attention layers) by splitting up the gradient computation of the forward

pass. This work has significant potential to reducing carbon footprint of the models

without any increase in inference speed. This also opens up approaches in the future

to improve upon existing multi-task learning approaches by using tensorized adapters

for each task. We demonstrate the memory e�ciency of our approach by deploying it

in a real world use case which cost 5x lesser than traditional deployment approaches.

Our goal is to open-source our implementations of all the code for the decompo-
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sitions. It is also worth highlighting that we use torch.nn.Module to implement the

decomposition algorithms, thus enabling any multi-layer Transformer models to use it

as a drop-in replacement of transformer layers.
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Chapter 5

CONCLUSION

This dissertation explored various aspects of deep learning in natural language

processing and its applications in low-resource domains like education and healthcare.

Our work focused on data collection, evaluation of deep learning models, and e�cient

training and deployment of transformer-based models. We proposed novel approaches

to address the challenges in these areas and demonstrated their e↵ectiveness through

experiments and evaluations.

We showed that model-assisted labeling can significantly improve the annotation

speed, making data collection more e�cient. Our approach to finding examples near

the decision boundary of deep learning-based classifiers can help identify challenging

cases and improve model performance. Our di↵erential-geometry-based approach

to evaluating deep learning models can identify examples that are most and least

susceptible to small perturbations in input data, providing valuable insights into the

model’s behavior. Our approach highlighted the seemingly simple failure modes of

large language models, and this approach can extend to other languages and datasets.

Finally, our tensorized adapter approach to training and deploying transformer-

based models can reduce the number of tunable parameters without sacrificing perfor-

mance, making these models more e�cient and practical for educational scenarios.

There are several directions for future work based on the findings of this dissertation.

First, our model-assisted data collection approach can be extended to other low-

resource domains and di↵erent data types (images or time series data). Further

research can investigate optimizing the model’s performance using the collected data.

Second, our di↵erential-geometry-based approach to evaluating deep learning models
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can be applied to other natural language processing tasks beyond classification, such as

question-answering and machine translation. Finally, our tensorized adapter approach

to training and deploying transformer-based models can be further optimized to

improve e�ciency and performance. Future research can explore using other tensor

decomposition-based methods or hybrid techniques to reduce the parameters further

while maintaining high accuracy. Additionally, the e↵ectiveness of these approaches

can be evaluated on larger models to assess their scalability and generalizability.

Tensorized layers can also provide insights into the low-rank structure of intermediate-

weight matrices, which in turn can help interpretability and e�cient architecture

design for larger models.
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