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Abstract

Land cover generally describes categorical feature classes defined by their physical
characteristics, such as vegetation or material type, as seen on a small parcel of surface area
of the Earth. Land cover changes occur annually due to such activities as urban
development, agriculture, climatic shifts, and natural disasters such as fires and hurricanes.
Observing land cover change provides insight into trends due to natural and manmade
annual changes that can be used to construct decision rules and to model techniques
purposed with preventing or mitigating the effects of extreme weather or climatic shifts.

Annual datasets are required for such analysis and the United States Geological
Survey (USGS) provides land cover datasets covering the entire United States for only the
years 1992, 2001, 2006, and 2011, which cover a time frame of 19 years. One mapping
technique called Variable Multiple Endmember Mixture Analysis (VMESMA) accurately
maps physical characteristics of land but can be computationally intensive and slow
depending on its implementation. In this thesis, Variable Spectral Unmixing (VSU) — a new
and improved spectral mixture analysis technique inspired by VMESMA — is presented to
produce land cover estimates from preprocessed Landsat imagery for the years 2001
through 2011. VSU results correspond to physical surface material types, such as
coniferous trees and artificial substances, and are interpreted into land cover classes based
on material type prior to overall classification by hierarchal rules. Agreements with the
USGS National Land Cover Dataset (NLCD) of less than 40% result due to the classification
rules and reflect the physical surface types that meet the first rule within the hierarchy.
Future land cover mapping applications require new classification rules to improve

interpretation of the VSU results and the agreement of the generated maps with the USGS
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NLCD.

Land cover estimates are used to develop Cellular Atomaton-based (CA) decision
rules to map land cover change and to forecast such changes into future years. The CA rules
are based on the analysis of Moore and von Neumann neighborhoods of a time series of
VSU-generated maps. Results of the neighborhood analysis revealed potential general
neighborhood structures for decision rules, which may or may not vary in time as a result
to changes in the rates of change of each class. Forecast results are tested in a basic iterative
fashion using the USGS NLCD 2001 map as a base case. Agreements of 66% and 77% of the
von Neumann and Moore forecasts, respectively, for the year 2011 with the NLCD 2011
demonstrate the feasibility of land cover change modeling using neighborhood-based CA
decision rules and a method for modeling land cover change trends based on decision rules

derived from a time series of maps.
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1. Introduction

Earth continues to undergo climatic shifts in response to aggravated environmental
conditions, such as increasing carbon dioxide concentrations in the atmosphere. These
changes to the land already disrupt human land use, as in the case of the historic drought
affecting agricultural activities in California and the unprecedented heat waves cycling
around the globe, causing death in regions without access to the modern convenience of air
conditioning. In the case of Louisiana, used here without loss of generality, land loss
threatens to displace a large population in addition to the loss of lands used in the
production of produce, petroleum products, etc. due to steady land subsidence, sea level
rise, and damaging weather events. This thesis focuses on the application of land cover
mapping and change modeling techniques to the Louisiana Gulf Coast, but they may be
applied as is or adapted for application to the land cover of other locations and for
applications other than land cover.

According to Louisiana’s Comprehensive Master Plan for a Sustainable Coast
(LCMPSC), Louisiana lost 1,880 square miles of land in the past 80 years and risks losing an
additional 1,750 square miles of land by 2065 [15]. The state of Louisiana hosts a system of
levees and storm drains to assist in diverting flood waters along the Mississippi and other
major waterways from residential and other major infrastructure, but these flood-diversion
systems also prevent naturally occurring sediment build up and fresh water from reaching

wetlands suffering erosion and other damage leading to land loss [15]. Rising sea levels
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further complicate this problem. According to the National Oceanic and Atmospheric
Administration’s (NOAA) Tide and Currents, sea level currently rises by 9.03 millimeters
per year on Grand Isle, Louisiana, which equates to a rate of approximately 3 feet per 100
years [16]. If this rate continues steadily, the mean seal level could increase by 1.5 feet on
Grand Isle, Louisiana, by the year 2065, placing residents and their way of life at risk.

Though these events are in the future and are inherently theoretical, current trends
appear to indicate a significant risk to the livelihoods of not only the people of Louisiana.
Similar problems arise around the globe. Preventive measures underway now would
logically be the best course of action, but as in the case of any investment, such preventive
measures require estimation of their effectiveness as proof of their ability to circumvent a
risk prior to receiving any support and, more importantly, actual funding. Modeling and
simulation can provide a means for demonstrating such methods.

Land cover change modeling using a cellular automata (CA) approach offers the
opportunity to study Louisiana’s land loss by forecasting changes in land cover area and
water water area based on current trends. It will also enable testing the effectiveness of
preventive techniques affecting land cover change, such as wetlands restoration programs.
Prior to developing a CA-based land cover model, basic cellular automata land cover change
rules must be derived, especially those related to wetlands land cover.

Such analysis requires a time series of land cover maps to determine annual land
cover change in land cover cell counts. The United States Geological Survey (USGS) offers
the National Land Cover Dataset (NLCD) for the years 1992, 2001, 2006, and 2011 — only

four datasets for single years over a time span of 19 years. Other datasets were found, but

11
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they have coarse spatial resolutions greater than 100 meters square. The NLCD has a
spatial resolution of 30 meters and a desired high-level classification system, but it lacks
data for determination of annual land cover change trends.

This thesis describes two topics: (1) creating a dataset approximating the NLCD on
an annual basis for a period of at least 10 years and (2) using this dataset to determine land
cover trends, particularly in the wetlands land cover, to develop decision rules for land
cover change. The first topic is accomplished by using Variable Spectral Unmixing (VSU) —
a modified version of the Variable Multiple Endmember Spectral Mixture Analysis
(VMESMA) technique — and hierarchal classification rules, as covered in the following
section. This method is used to generate a time series of maps, where the Moore and von
Neumann neighborhoods of each pixel are analyzed for frequency of occurrence. The top
neighborhoods per class transition are then structured into decision rules and tested in a

simple iterative model. The following sections provide detail on these two topics.

12
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2. Approximating the National Land Cover Dataset Using

Variable Spectral Unmixing (VSU)

2.1 Section Overview

Spectral mixture analysis (SMA) is a sub-pixel mapping technique that estimates the
fractional weights of a set of spectral endmembers whose spectral responses are believed
to contribute to the response of a given pixel [13]. Its applications range from land cover
mapping to mineral mapping. Different forms of SMA arise from optical properties of
sensors and the atmosphere, such as linear versus nonlinear scattering, as well as due to
mathematical operations proposed in previous work. This study relies on linear mixture
techniques. The following section discusses research that inspired the technique proposed
in this thesis.

For a given pixel i, basic linear SMA assumes a spectral response x; is the linear
weighted sum of a set of spectral responses of endmembers, which relate to a feature class,
as expressed in equation (2.1):

x,=E-f+e 21
, where x; is a vector of a spectral response of the i-th pixel; E is a n by m matrix with n
spectral bands and m endmember responses; fis a vector of m fractional weights; and e is a
vector of residual errors [20]. Equation (2.1) forms an optimization problem solvable using

least-square solvers and subject to two constraints: (1) each weight f; must be greater than

13
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or equal to zero, and (2) all weights must sum to one [20]. Using a set of n endmembers
minimizes the errors in the error vector e.

Basic SMA involves the selection and use of a constant set of a small number of
endmembers for the analysis of an entire image, thereby producing sub-pixel
compositional maps of each endmember. This technique is simple to implement and
provides estimates of the physical composition of a pixel [19]. The number of endmembers
permitted in SMA is less than or equal to the number of bands in a remote sensing image in
order to limit the root mean square error of the solution to the linear system of equations
per pixel. Upon selection, the set of endmembers may not be changed for an image. As a
result, basic SMA fails to account for variations in cover types, permitting the exclusion of
some feature classes depending on the selection of endmembers (i.e. including only
endmembers of artificial and soils rather than including one or more vegetative
endmembers) and the confusion between endmembers if any are spectrally similar [19].
Additionally, endmembers are selected to map a specific feature classes (such as forest, soil,
or urban areas) for an entire image and do not correspond directly to physical surface
materials due to the constancy of the set of endmembers. Variations in illumination
(including shade) and atmospheric conditions may further increase errors.

Roberts et al. [19] introduced the technique called multiple endmember spectral
mixture analysis (MESMA), which permits variations in the number and type of
endmembers per pixel in an image via strict selection criteria of endmember matrices to
produce different two- and three-endmember models. Their technique incorporates linear

SMA and presents a rigorous method for selecting a model from several possible sets
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created through combinations of endmembers within a library using three criteria related
to the performance of each model. MESMA results in compositional estimates of physical
endmembers rather than feature classes and allows variations in cover types, improving on
the failures of basic linear SMA. MESMA is less easily implemented compared to SMA.

As noted by Garcia-Haro et al. [8], MESMA is computationally intensive due to its
method of selecting the appropriate model per pixel; it allows inconsistencies in
endmember selection; and it requires a library with numerous endmembers, further
exacerbating computation durations. Garcia-Haro et al. proposed an alternative method
called Variable Multiple Endmember Spectral Mixture Analysis (VMESMA) to address the
errors inherent in MESMA and reduce its computation time. In addition to these objectives,
VMESMA addresses other issues with linear SMA, including reduction of errors related to
illumination and atmospheric conditions by standardizing a spectral library.

VMESMA incorporates a rigorous iterative method for selecting endmember
matrices and two solutions of linear and standard unmixing from which to choose.
Standardized unmixing further lowers the errors due to the influences of illumination and
atmospheric conditions on the spectral response of a given pixel [8]. The selection of
endmembers begins with image segmentation to target a feature class and optimize
endmember matrices to identify the target. Prior to unmixing, the spectral matching
algorithm further reduces the number of endmembers for a given pixel using three criteria
with thresholds, including the Euclidean distance, standardized Euclidean distance, and
spectral angle matching as calculated in spectral space between each endmember spectra

and the response of the given pixel. Then, similar to MESMA, VMESMA reiteratively passes
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through this subset of satisfactory endmembers to select those for a model which yields the
least squares solution to linear SMA with the minimal root mean square error. Though this
method is more accurate than linear SMA and MESMA, VMESMA requires a priori
knowledge of a target area and is applicable to small locations to produce accurate results
of a target feature class. VMESMA is less computationally intensive as compared to MESMA
but still requires extensive time.

The method, called Variable Spectral Unmixing (VSU), proposed in this thesis
simplifies the VMESMA approach and applies it to land cover mapping with a few notable
differences. First, the algorithm segments the image into two components to extract water
from land using the modified normalized difference water index (MNDWI), as discussed in
detail in the following section. All pixels extracted as water are automatically assigned the
corresponding land cover class code and passed over during analysis. Pixels associated
with land undergo spectral matching and linear SMA prior to classification. The spectral
matching algorithm uses two criteria for endmember selection, namely standardized
Euclidean distance and spectral angle matching with standardized angles to attempt
reduction in computational costs. Finally, it classifies each pixel by its fractional weights
using a set of custom hierarchal rules.

As compared with VMESMA, the VSL method proposed here does not require a
priori knowledge of a target location but is computationally intensive. Eliminating a few
steps within VMESMA results in reduced computation duration, as implemented in this
research in Python, but like VMESMA and MESMA, mapping large regions such as the entire

United States, would require at least a few years on a single computer if left un-parallelized.
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This method is fully autonomous with the full spectral library. Its library may be reduced to
eliminate specific endmembers or endmember types that prevent detection of desired land
cover classes, such as urban classes, as determined by initial tests prior to mapping an
entire time series. This new method is discussed in detail in the subsequent sections. Lastly,
in general, most applications of spectral mixture analysis use two or three endmembers,
but this research uses six endmembers in order to increase the accuracy of the mixture

analysis without comprising spectral variability.
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2.2 Methodology

2.2.1 Data Sources

This research utilizes imagery and spectral libraries freely offered by agencies
within the U.S. government for scientific purposes. The following subsections briefly
describe the sources and the data used in this research.

2.2.1.1 Landsat

The National Aeronautic and Space Administration (NASA) operates the Landsat
program for the United States Geological Survey (USGS). The Landsat program consists of
five retired and two currently operating satellites, each named Landsat with an identifying
number in the series. Landsats 7 and 8 currently image the Earth at an altitude of 705 km
with a revisit time of approximately 16 days for any given location on the surface [18].
Landsats prior to LS 7 are no longer operational, but their imagery remains available
through USGS EarthExplorer (an Internet tool used to disseminate Landsat and other
overhead sources of imagery for scientific purposes for free).

This research uses imagery captured by Landsat 5 Thematic Mapper (TM) and
Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The TM sensor preceded the ETM+ but
both share the same bands that are used in this research. Both the TM and the ETM+
sensors record data for seven bands of wavelengths, as seen in Table 2.1 [18]. Each sensor
records a single measurement for each band over its corresponding range of wavelengths.
Each band has a square spatial resolution of 30 meters on a side [18]. NASA provides the

relative spectral responses for each band of each sensor for use in scientific studies. Note,

18



LCCM Using CA Rules Derived from LSI / Vacik

however, that only six bands are used in this research. Band 6, which covers the thermal

infrared region of the electromagnetic spectrum, is excluded.

Table 2.1 - Landsat 5 & 7 Sensor Bandwidths

Satellite Sensor Bands / Spectrum Wavelengths (um)
Landsat 5 ™ 1 - Blue 0.45-0.52
Landsat 7 ETM+ 2 - Green 0.52-0.60

3 - Red 0.63 - 0.69

4 - NIR 0.76 - 0.90

5-SWIR1 1.55-1.75

7 - SWIR2 2.08-2.35

The USGS processes each Landsat image for geometric and radiometric corrections
prior to releasing each as a Level 1 Product, which include a single GeoTIFF image per
band, a world file, a metadata file, and, if geometrically corrected, a GeoTIFF containing the
ground control points. The images contained within each Level 1 Product store
measurements as digital numbers, which must be converted to radiance and from radiance
to reflectance prior to use in any analysis. This research utilizes the Level 1 Products for
images captured by Landsats 5 and 7 over bands 1 through 5 and 7 for the years from 2001

to 2011.
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2.2.1.2 Spectral Libraries

The USGS Spectroscopy Lab located in Denver, CO, offers the Digital Spectral Library
(most recent version splibO6a), which consists of over 1300+ spectra belonging to mineral,
soil, vegetative, and artificial materials [4]. In general, each endmember spectrum includes
measurements in units of percent reflectance for the range of wavelengths of 0.45 to 2.5
microns in addition to metadata consisting of the each material’s classification, appearance,
method of measurement, source, etc. Similarly, the NASA Jet Propulsion Laboratory (JPL)
provides the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER)
Spectral Library, which include spectra taken from images captured by the ASTER sensor
flying on the NASA Terra satellite in addition to spectra from other sources, including the
USGS Spectroscopy Lab [2]. These spectral libraries are referred to as the USGS and JPL
spectral libraries for the rest of this document.

The USGS and JPL spectral libraries overlap each other in the material types of soil,
mineral, and artificial materials. The JPL spectral library, however, contains only four
vegetation spectra for dry grass, healthy grass, and deciduous and coniferous trees [2]. In
comparison, the USGS spectral library offers data covering a wide selection of various
species of coniferous and deciduous trees and shrubs, grasses and herbaceous plants,
rangeland, wetlands, cacti, and domestic plants [4]. When used together, they provide a
wide selection of spectra for use in analysis. Both lack spectra for pasture, hay, and crops.
The exact reasons are not known. It may be speculated, however, that these spectra were
excluded based on the high spectral variability in such factors as plant height and annual

illumination, varying growth and planting cycles by region, and differing soil compositions
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by region. As a result, the land cover classes associated with pasture / hay and cultivated
crops are not mapped. Note that pasture and hay, excluding other vegetation occurring in
this class, are spectrally similar to grassland gramanoid species. Thus, it may be possible to
map the pasture / hay land cover class incorporating gramanoid species using a

classification rule.
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2.2.1.3 National Land Cover Dataset

The third dataset used in this research includes the USGS National Land Cover
Dataset (NLCD). The USGS preprocesses Landsat images according to a specific manual and
generates land cover maps using a comprehensive approach by first spectrally clustering all
pixels into target land cover classes, comparing a seasonal time series to establish classes
which change rapidly throughout a single year (such as cultivated cropland), and validates
it with further steps, including comparisons to ancillary datasets [21]. This process
requires at least five years to completely map the entire United States, including Alaska and
Hawaii, and validate results.

The NLCD includes datasets for the years 1992, 2001, 2006, and 2011, but only the
last three years utilize the same mapping criteria and will be used as the control dataset for
this study. Each map has a square spatial resolution of 30 meters and utilizes 16 land cover
classes for the contiguous United States and Hawaii [21]. Alaska requires an additional four
classes. All generated and modeled maps use the same color scheme as is captured by the

NLCD 2011 legend in Figure 2.1 (below).
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NLCD Land Cover Classification Legend

I 11 Open Water

[ 112 Perennial Ice/ Snow

[ 121 Developed, Open Space

[ 122 Developed, Low Intensity
I 23 Developed, Medium Intensity
I 24 Developed, High Intensity

[ 131 Barren Land (Rock/Sand/Clay)
] 41 Deciduous Forest

I 42 Evergreen Forest

[ 143 Mixed Forest

7 51 Dwarf Scrub*

[ |52 Shrub/Scrub

[ 171 Grassland/Herbaceous

[ |72 Sedge/Herbaceous*

[ |73 Lichens*

74 Moss*
[ |81 Pasture/Hay

[ 82 Cultivated Crops
[ ]90 Woody Wetlands
7] 95 Emergent Herbaceous Wetlands

* Alaska only

Figure 2.1 - NLCD 2011 Legend [11]

2.2.2 Image Selection

LCCM Using CA Rules Derived from LSI / Vacik

Land cover tends to vary spectrally due to various reasons, including variations in

annual lighting conditions due to the inherent geometries of the satellite in relation to the
Earth and Sun and atmospheric conditions regardless of the location of the surface target
on the Earth. The best results of spectral mixture analysis occur when variations due to
such parameters as temporal, luminary, and atmospheric conditions are minimized.
Selecting images occurring on the same date minimizes temporal and luminary variations
and ignores errors due to potential atmospheric variations. Selecting images with limited

to no haze or cloud contamination may minimize errors due to atmospheric conditions.
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Unfortunately, atmospheric conditions are not guaranteed to be consistent on an annual
basis.

In order to minimize errors due to luminary, temporal, and atmospheric conditions,
images may be selected from a range of dates under the condition that the image contains
limited to no haze or cloud contamination. Glancing through the scenes available via Earth
Explorer demonstrate the difficulty in selecting a scene for path-row 022-039, as Louisiana
frequently lies under cloud cover. Images within the time period of late summer to late fall,
or from July to November, appear to occur with cloud contamination under 20%. This
research uses this time frame as the period as a criterion in image selection, preferring
images with cloud contamination less than 20% occurring as close to August 1st as
possible. Some images may occur as early and as late as June and November, respectively,

due to availability of images with less than 20% cloud contamination.

2.2.3 Preprocessing

NLCD & Landsat Scene Clipping

The NLCD spatial reference system uses the North American Datum of 1983
(NAD83) as the geodetic model and the map projection of Albers Conical Equal Area for the
Lower 48 states (AlbersL48). This geodetic model and map projection are used for all
geographical images in this thesis. The World Reference System 2 (WRS2) provides
shapefiles for each Landsat scene. The shapefile for path-row 022-039 was reprojected to
use the same geodetic model and map projection as the NLCD using ArcGIS. Each NLCD
image was clipped by the reprojected WRS2 path-row 22-39 shapefile. Prior to
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preprocessing, all Landsat scenes were reprojected to the same geodetic model and map
projection as the NLCD and clipped using the reprojected shapefile. This eliminates band

fringing in the Level 1 Product scenes.

Landsat Scene Preprocessing

USGS offers the Level 1 Product created from raw Landsat scenes. The Level 1
Product records data in the form of digital numbers (DN). Spectral mixture analysis
analyzes data in units of percent reflectance and, thus, the DN require conversion to this
unit of measurement. According to the USGS’ MRLC Image Processing Manual, the
conversion process consists of two steps: conversion from DN to radiance and from
radiance to percent reflectance. These conversions are performed using the following

equations (2.2) and (2.3), respectively:

L, = Gain,»DN, + Bias, (2.2)
— od’
©  ESUN,sin# 2.3)

, where A is the band number; L is the at-satellite radiance per band; Gain is the band
specific gain; Bias is the band specific bias; o is the at-satellite reflectance; d is the Earth-
Sun distance in astronomical units; ESUN is the solar exoatmospheric spectral irradiance; 6
is the sun elevation angle [21]. The resulting reflectance measurements are multiplied by
100. All bands are stacked in order of descending band number and saved to a GeoTIFF

prior to analysis. The values for the solar exoatmospheric spectral irradiance are given in
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Table 2.2. The value of the distance between the Earth and the Sun is referenced from a text

file available from NASA.

Table 2.2 - ESUN Solar Spectral Irradiances

Band 1 2 3 4 5 7
LS5 TM 1957.000 1826.000 1554.000 1036.000 215.000 80.670
LS7 ETM+ 1969.000 1840.000 1551.000 1044.000 225.700 82.070

Prior to these calculations, the constants are extracted and selected according to
guidelines set in the USGS MRLC Image Processing Manual [21]. All Landsat 5 scenes
occurring after May 2003 are processed with gains and biases specific to that vehicle and
scenes occurring prior to May 2003 are processed with gains and biases specific to Landsat
7. This makes Landsat 5 scenes captured prior to May 2003 compatible with Landsat 7
scenes for analytical purposes [21]. To enable this processing, the Landsat 5 DN are
converted to Landsat 7 DN by the following equation (2.4) prior to the conversions from

DN to reflectance:
DN7=DN5-m+i (24
, where DN7 is the Landsat 7 DN; DN5 is the Landsat 5 DN; and m and i are the slope and

intercept values, respectively, to the measurements in Table 2.3.

Table 2.3 - Slope and Intercept Values

Band 1 2 3 4 5 7
Slope (m) 0.9398 1.7731 1.5348 1.4239 0.9828 1.3017
Intercept (i) 4.2934 47289 3.9796 7.032 7.0185 7.6568
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Spectral Libraries Sampling

The USGS and JPL spectral libraries contain measurements of percent reflectance for
wavelengths generally occurring in the bandwidths of the Landsat TM and ETM+ sensors.
As previously stated, each Landsat sensor bandwidth results in one measurement. In order
to simulate the spectral signature as seen by Landsat, each spectral signature of the
combined spectral library is sampled at the wavelength corresponding to where the
relative spectral response of each Landsat 5 TM sensor bandwidth equals or is closet to
one. This provides variation per band within the library but does not fully simulate the
spectral response seen with atmosphere. The wavelengths corresponding to the points in
each Landsat 5 TM bandwidth at which the relative spectral response equals or approaches

one ares given in Table 2.4.

Table 2.4 - LS5 TM Relative Spectral Response Points

Band 1 2 3 4 5 7
Wavelength 503 594 677 800 1711 2199
(um)
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2.2.4 Variable Spectral Unmixing (VSU)

2.2.4.1 Algorithm Overview
The Variable Spectral Unmixing (VSU) algorithm iterates once per pixel through the

following steps prior to classifying a pixel as a land cover class:

1. Spectral Matching

2. Spectral Mixture Analysis

3. Classification

Each process involves a series of steps relying on calculations from reflectance data

in an effort to reduce processing durations from requiring a few minutes per pixel to mere
seconds. Additionally, the third step of classification represents an algorithm with a general
purpose of interpreting the results of Spectral Matching and Spectral Mixture Analysis to
identify a feature class pertaining to the given pixel. In this case, the classification algorithm
identifies an appropriate land cover class, but it may be replaced with rules to map other
physical surface features of interest for other applications, including but not limited to

mapping minerals, burnt areas, sea ice, snow cover, or crops. The following subsections

detail the underlying methodology of each step.

2.2.4.2 Extraction of Water

Large areas of water lie in some of the locations to be mapped for this analysis. In
order to quicken the mapping process, areas of water are extracted prior to and passed
over during mapping. The algorithm makes use of the modified normalized difference

water index (MNDWI), as seen in Eq. 2.5 below, where Green corresponds to band 2 (B2)
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and MIR corresponds to band 5 (B5) [22]. As recommended by Xu, the MNDWI has a
threshold on the range of [0.0,1.0] in order to extract all water pixels. However, some pixels
belonging to land cover classes with spectral similarities to water may also be extracted.
These land features include water-infused earthen materials, such as mud, clay, and sand,
and water- or oil-covered urban materials, such as some heavily trafficked roadways

containing oil or other materials leaking from passing vehicles.

G'I‘EEH—M.I'H_ B2—EB5 (2.5)

MNDWT= .
Green—MIR B2+ 85

2.2.4.3 Spectral Matching

Spectral matching aims to identify and select the endmembers to include in spectral
mixture analysis. This sub-algorithm begins by calculating the standard vectors of the given
pixel and every endmember within the spectral library using Eq. (2.11) in Table 2.6. Egs.
(2.9) and (2.10) calculate the standard Euclidean distance and the spectral angle of each
endmember’s reflectance vector with respect to that of the given pixel using the
standardized and unstandardized data, respectively. Spectral angles undergo
standardization using Eq. (2.11) in order to simplify sorting. Results are sorted in
descending order in order of preference for standard Euclidean distance values over
spectral angles and then in descending order of spectral angles. This produces an array

with the endmembers with minimal distance and angle values at the top.
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Table 2.5 - Parameters, Equations, & Thresholds for Spectral Matching

Technique Equation Eq. No. Threshold
Standard Euclidean L";, - I:L,'“_,‘."_'I 2.9 1 unit
Distance [13] gl
Spectral Angle [13] ", 2.10 1 degree*

1| RE |

=C0% | I-E"-F"H |

LS .-"-
Standard Vector [13] . ;T_#;}, 2.11 N/A
=
T

* After standardization of the vector of spectral angles.

A secondary sort extracts the sorted endmembers according to those whose
distances and angles meet the limits given in Table 2.6. Egs. (2.9) and (2.10) produce values
on the real line with a minimum of 0. According to de Jong, et al. [13], endmembers with
distances of 0 units and angles of 0 degrees are perfect matches and endmembers with
values closest to 0 are near perfect matches. Endmembers with distances and angles within
the range of [0,1] are acceptable matches.

The calculations used within this sub-algorithm may produce a number of matches
less than or greater than the number of bands within the image. If the number of
endmembers is less than the number of bands, then all endmembers are selected. If the
number of endmembers equals or surpasses the number of bands, then only the first six
endmembers are selected because they possess the smallest distance and angle values that
minimize the root mean square error of the least squares solution of Eq. (2.1). Prior to
passing the matched endmembers to the next step, this sub-algorithm constructs a matrix
from the reflectance measurements of the selected endmembers with the spectral

signatures of each endmember occupying a column.
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2.2.4.4 Spectral Mixture Analysis

Both MESMA and VMESMA solve Eq. (2.1) as a least-squares optimization problem
with differences in the constraints. This VSU method solves Eq. (2.1) without constraints
using a least squares solver provided by the linear algebra submodule in NumPy. The
results are real numbers which are normalized to meet the constraints generally used in
linear spectral mixture analysis and as given in Section 2.1. The least squares solver
calculates the residual error (the root mean square error) associated with the solution and

this error is recorded for a later calculation of the mean residual error of the modified

MESMA.

2.2.4.5 Classification by Endmembers and Rules

Results of spectral mixture analysis receive preliminary sub-pixel classification
based on the link between the material type to which an endmember belongs and a basic
land cover class (such as coniferous or deciduous forest and cultivated crops). Endmembers
within spectral libraries are classified by overarching material types, which include
manmade or artificial substances; soils, rocks, and other earthen substrates; water phases;
and vegetation. Vegetation is subdivided into the subcategories of coniferous and
deciduous trees, shrubs and scrubs, herbaceous plants, grasses, wetlands, and crops [4][2].
Note that some categorical systems of vegetation may segment hay and pasture into its own
category in recognition of its corresponding land use. For basic land cover classes
belonging to a single category, endmembers of the same category may be linked to the

corresponding class. For example, endmembers belonging to the material types of
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manmade / artificial substances and coniferous trees lead to preliminary classification as
developed and evergreen forest, respectively. These links are shown in Table 2.4.

Post sub-pixel classification, a predominant land cover class is assigned based on
rules adapted from the USGS NLCD classification scheme and its criteria, as seen in Table
2.4. As calculated by SMA, the compositional weights represent the estimated percentage of
a material type contributing to the land cover of a given pixel. The compositional weights
belonging to the same material type are summed to calculate the cumulative compositions
by material type and, hence, basic land cover types belonging to pure land cover classes. As
a result of the mixed pixel problem, pixels of medium to large coarse spatial resolutions
may contain multiple land cover types within their area [13]. Thus, the classification rules
adapted from criteria in Table 2.6 assign a predominant class to a given pixel based on
preliminary sub-pixel classification and the cumulative composition weights by material
type. Note, only the classes found in the contiguous US are presented in Table 2.6. The table
excludes classes found only in Alaska, as they are not encountered naturally in the study

location.

Table 2.6 - USGS NLCD Classification Classes, Codes, Criteria, & Corresponding Materials
Class / Code Criteria Material Type

Open Water, 11 Areas of open water, generally with less than 25% Liquid water
cover of vegetation or soil.

Perennial Areas characterized by a perennial cover of ice and/or  Solid water
Ice/Snow, 12 snow, generally greater than 25% of total cover.

Developed, Open Areas with a mixture of some constructed materials, Manmade
Space, 21 but mostly vegetation in the form of lawn grasses. materials

Impervious surfaces account for less than 20% of
total cover. These areas most commonly include large-
lot single-family housing units, parks, golf courses,
and vegetation planted in developed settings for
recreation, erosion control, or aesthetic purposes.

Developed, Low Areas with a mixture of constructed materials and Manmade
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Intensity, 22

Developed,
Medium Intensity,
23

Developed, High
Intensity, 24

Barren Land
(Rock/Sand/Clay),
31

Deciduous Forest,
41

Evergreen Forest,

42

Mixed Forest, 43

Shrub / Scrub, 52

Grassland /
Herbaceous, 71

Pasture / Hay, 81

Cultivated, Crops,
82
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vegetation. Impervious surfaces account for 20% to
49% of total cover. These areas most commonly
include single-family housing units.

Areas with a mixture of constructed materials and
vegetation. Impervious surfaces account 50% to 79%
of the total cover. These areas most commonly include
single-family housing units.

Highly developed areas where people reside or work
in high numbers. Examples include apartment
complexes, row houses, and commercial/industrial.
Impervious surfaces account for 80% to 100% of the
total cover.

Areas of bedrock, desert pavement, scarps, talus,
slides, volcanic material, glacial debris, sand dunes,
strip mines, gravel pits, and other accumulations of
earthen material. Generally, vegetation accounts for
less than 15% of total cover.

Areas dominated by trees generally greater than 5
meters tall, and greater than 20% of total vegetation
cover. More than 75% of the tree species shed foliage
simultaneously in response to seasonal change.

Areas dominated by trees generally greater than 5
meters tall, and greater than 20% of total vegetation
cover. More than 75 of the tree species maintain their
leaves all year. Canopy is never without green foliage.

Areas dominated by trees generally greater than 5
meters tall, and greater than 20% of total vegetation
cover. Neither deciduous nor evergreen species are
greater than 75% of total tree cover.

Areas dominated by shrubs; less than 5 meters tall
with shrub canopy typically greater than 20% of total
vegetation. This class includes true shrubs, young
trees in an early successional stage or trees stunted
from environmental conditions.

Areas dominated by gramanoid or herbaceous
vegetation, generally greater than 80% of total
vegetation. These areas are not subject to intensive
management such as tiling , but can be utilized for
grazing.

Areas of grasses, legumes, or grass-legume mixtures
planted for livestock grazing or the production of seed
or hay crops, typically on a perennial cycle.
Pasture/hay vegetation accounts for greater than
20% of total vegetation.

Areas used for the production of annual, crops, such
as corn, soybeans, vegetables, tobacoo, and cotton,
and also perennial woody crops such as orchards and
vineyards. Crop vegetation accounts for greater than
20% of total vegetation. This class also including all
land being actively tilled.

materials

Manmade
materials

Manmade
materials

Minerals, rocks,
soils, sand, clay,
etc.

Deciduous trees

Coniferous trees

Deciduous and

coniferous trees

Shrubs and scrubs

Grasses and
herbaceous plants

Grasses and
herbaceous plants

Crops
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Woody Wetlands, = Areas where forest or shrub land vegetation accounts = Deciduous and

90 for greater than 20% of vegetative cover and the soil coniferous trees
or substrate is periodically saturated with or covered
with water.
Emergent Areas where perennial herbaceous vegetation Wetlands
Herbaceous accounts for greater than 80% of vegetative cover and
Wetlands, 95 the soil or substrate is periodically saturated with or

covered with water.

The classification rules derived from the USGS NLCD classification criteria in Table
2.6 are shown in Figure 2.2. After the initial sub-pixel classification and the cumulative sum
of compositional weights by material type, the classification rules decide on the final label
for a given pixel. Each rule uses three criteria for determining the final land cover class and
these include: (1) whether the target class of the rule occurs in the sub-pixel classification;
(2) whether the cumulative compositional weight of the target class meets a set threshold;
and (3) whether the number of material types with cumulative weights below the weight of
the target class equals the number of material types minus one as an attempt to ensure the
class has the maximal cumulative weight. If these three conditions are met, then the pixel is
classified as the target class of the rule.

The developed and the woody wetlands classes are exempt from this rule format
due to their mixed nature. Due to the varied ranges of the developed classes, the
corresponding rules use only the first and second criteria for classification. The woody
wetlands class is either not included due to a lack of endmembers or is validated using an
ancillary dataset and a logic expression of whether the pixel in the mapped area contains
one of the three forest classes. Note, in Figure 2.2, Clazz is a vector containing the sub-pixel
classification by endmembers, Mats is a vector containing the cumulative sum of all weights

per endmember type, and Over is the final classification.
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Mats = Mixes6(W, Eye) # calculates the cumulative sum of all weights of the same type

Over =-1

#C = [Manmade, Soils/Rocks, Water, Domestic, Grasses, Herbs, Deciduous, Coniferous,
Shrubs/Scrubs, Hay, Crops, Wetlands]

if Index == 1 and Mats[2] > 0.2:

Over =11
else:
if 21 in Clazz and 0.07 < Mats[0] < 0.2 and sum(x > Mats[0] for x in Mats) >= 4:
Over =21
elif 21 in Clazz and 0.2 <= Mats[0] < 0.5 and sum(x > Mats[0] for x in Mats) >=5:
Over = 22
elif 21 in Clazz and 0.5 <= Mats[0] < 0.8 and sum(x < Mats[0] for x in Mats) >=5:
Over = 23
elif 21 in Clazz and 0.8 <= Mats[0] <= 1.0 and sum(x < Mats[0] for x in Mats) >=5:
Over = 24

if 31 in Clazz and Mats[1] > 0.15 and (sum(x < Mats[1] for x in Mats) == 11 or (sum(x < Mats[1]
for x in Mats) >= 7 and sum(Mats[4:12]) < 0.2)):
Over =31
elif 71 in Clazz and (Mats[4] > 0.4 or Mats[5] > 0.5 or sum(Mats[4:6]) > 0.4) and (sum(x <
Mats[4] for x in Mats) >= 8 or sum(x < Mats[5] for x in Mats) //
>= 8 or sum(x < (Mats[4] + Mats[5]) for x in Mats) >= 8):

Over=71

elif 42 in Clazz and Mats[7] > 0.7 and (sum(x < Mats[7] for x in Mats) == 11 or (Mats[7] >

Mats[6] and Mats[6] < 0.5 and sum(x < Mats[7] for x in Mats) //==10)):
Over = 42

elif 41 in Clazz and Mats[6] > 0.7 and (sum(x < Mats[6] for x in Mats) == 11 or (Mats[6] >

Mats[7] and Mats[7] < 0.5 and sum(x < Mats[6] for x in Mats) //==10)):
Over = 41

elif 41 in Clazz and 42 in Clazz and 0.4 < Mats[6] < 0.7 and 0.4 < Mats[7] < 0.7 and sum(x <
sum(Mats[6:8]) for x in Mats) == 10:

Over = 43
elif 52 in Clazz and Mats[8] > 0.5 and sum(x < Mats[8] for x in Mats) == 11:
Over =52
elif (71 in Clazz or 81 in Clazz) and (0.2 < Mats[4] < 0.5 or 0.2 < Mats[5] < 0.5 0or 0.2 <
(Mats[4] + Mats[5]) < 0.5) and (sum(x < Mats[4] for x in Mats) == //11 or sum(x
< Mats[5] for x in Mats) == 11 or sum(x < (Mats[4] + Mats[5]) for x in Mats) == 10):
Over = 81
elif 82 in Clazz and Mats[10] > 0.3 and sum(x < Mats[10] for x in Mats) == 11:
Over = 82
elif 95 in Clazz and Mats[11] > 0.8 and sum(x < Mats[11] for x in Mats) == 11:
Over =95
if Over <= 0:

Over = Clazz[0]

Figure 2.2 - Code snippet showing classification rules used with VSU
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2.2.5 Error Analysis

As the purpose of this mapping procedure is to create a time series of land cover
maps comparable to the NLCD, the years of 2001, 2006, and 2011 are mapped for error
analysis and validation against the NLCD. Two methods used in the error analysis include
the calculation of the percent agreement between the generated maps and the NLCD and an
error matrix. The percent agreement is calculated by taking the difference of the NLCD and
generated map images, counting the number of zeros signifying a perfect match, and
dividing this count by the total number of pixels encompassing the mapped location. The
error matrix is generated by comparing the generated maps to the corresponding NLCD
and counting the land cover transitions from the mapped dataset to the NLCD. The error
matrix shows where classes in the NLCD are mistaken for other classes in the generated
map.

Direct comparison between the generated maps and the NLCD is recognized to be a
rough measure of agreement due to differences in mapping methods. The USGS produces
the NLCD using a rigorous procedure of preliminary unsupervised spectral clustering of
multi-temporal Landsat scenes from the same target year, followed by extensive validation
processes using human expertise in pattern recognition and ancillary datasets whereas the
VSU method is a single-pass, autonomous mapping method using hierarchal classification
rules derived from the NLCD classification criteria. Due to this, the results of this method

should be further validated using photo-interpretative techniques.
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2.3 Results & Discussion

Figures 2.3, 2.4, and 2.5 show the mapping results for the same years corresponding
to the NLCD for the image spatial coordinates of the upper left hand corner of each image:
[2100,1900], [3620,1060], and [5450,4650], respectively. Refer to the NLCD legend in
Figure 2.1 in Section 2.2.1.3 to see the class-color coordination. Each location mapped for
the years 2001, 2006, and 2011 show changes in the following land cover changes
respectively: forest, shrub land, grassland, pasture/hay, and woody wetlands; developed,
pasture / hay, cultivated crops, and woody wetlands; and emergent herbaceous wetlands
and water. The following presentation of results and discussion focuses primarily on
graphical comparisons of the VSU-generated maps with the USGS NLCD.

When compared visually, there are areas of similarly classified and misclassified
pixels between the VSU-generated maps and the NLCD. For example, in the upper left-hand
corner of the first locale (A) in Figures 2.3, 2.4, and 2.5, the NLCD features large areas of
land belonging to the grassland, shrub land, and coniferous forest classes in 2001, which
gradually change to predominantly coniferous forest in 2011. In comparison, the same area
of the VSU-generated maps of the first locale (B) feature a mixture of grassland, shrub land,
and coniferous forest in 2001 that transmutes to predominantly coniferous forest in 2011.
While the same trend of land cover change from a mixture of grassland, shrub land, and
coniferous forest to paramount coniferous forest is seen in both datasets, differences exist
between the two time series for the single locale. The 2001 VSU-image in Figure 2.3 (B) of
the upper left-hand corner features a mixture of shrub land and deciduous forest amid

grassland and coniferous forest where the NLCD contains shrub land surrounded by
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grassland and coniferous forest. For the upper left-hand corner in Figure 2.4 (B), the region
in 2006 shows mixtures of shrub land, deciduous forest, and coniferous forest whereas the
NLCD 2006 in Figure 2.4 (A) shows a similar mixture to its previous state in 2001. In Figure
2.5, the same region in the upper left-hand corner of the VSU-generated image (B) and the
NLCD 2011 (A) changed to predominantly coniferous forest, but the NLCD 2011 and VSU-
generated 2011 image feature shrub land and grassland respectively in a few surrounding
areas, respectively. Similar examples may be found upon examination of the images in
Figures 2.3, 2.4, and 2.5, and they will be discussed briefly in the rest of this section in
addition to other observed errors.

These overarching classifications for vegetation types of deciduous and coniferous
trees, shrub land, and grassland occur due to spectral similarities between vegetation types
and due to the hierarchal structure and order of the classification rules. Shrubs and scrubs
cover a wide range of plants consisting of woody stems and of either coniferous or
deciduous foliage characterized by needles and broad, flattened leaves, respectively. As
stated in Table 2.6, shrub and scrub land plants grow to maximal heights under five meters
and these classes may include young trees under this height limit. As a result, shrub land
possesses similar spectral signatures to deciduous and coniferous forest, leading to
misinterpretation in classification as a result of these vegetation types occurring in the
unmixing results. Similarly, grassland includes gramanoid species which may reach heights
of low to moderately high scrubs and shrubs and these two vegetation types may occur
naturally in grassland, causing spectral similarity between grassland and shrub land

classes. The results of SMA reflect estimates of physical materials identified as endmembers
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detected during spectral matching [13], and VSU permits multiple endmembers per
material type, allowing cumulative weights of material types to vary per pixel in an attempt
to improve classification results. Thus, misinterpretations may occur due to the cumulative
weight of multiple endmembers of the same material type occurring in the VSU results and
a lack of proper rules or another system to resolve these incidents of spectral similarities
into an appropriate land cover class.

Additionally, the classification results in Figures 2.3, 2.4, and 2.5 correspond to the
material types whose cumulative weights met the conditions in the rules shown in Figure
2.2 but they also reflect the order and hierarchal structure of those rules. Grassland and
coniferous forest occur early in the hierarchal structure and experience high proliferation
in all three images of Figures 2.3, 2.4, and 2.5 (B) as shown by the large swaths of land in
the colors corresponding to these classes. For example, in the case of the upper left-hand
corner of the first locale (B) in Figures 2.3, 2.4, and 2.5, coniferous forest arises due to
having a high cumulative weight or a cumulative weight greater than the weight of the
deciduous forest material type and this rule occurs prior to the rules of deciduous and
mixed forest and shrub land but after grassland. Similar structures of the other rules allow
those classes to occur in the final results, though a class lower in the hierarchy may be a
better interpretation, but their order in the hierarchy contributes to their proliferation in
the final map. Thus, the mapped land cover classes represent a base material type with a
large cumulative weight or the dominant physical characteristic of the land, namely pure
land cover classes, rather than their intended or correct classes due to the hierarchal

classification rules.
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These trends are seen in the other locales, but limited detection of urban classes and
wetlands also appear. In the third locale (NLCD and VSU-generated images (E) and (F),
respectively, in Figures 2.3, 2.4, and 2.5), grassland and shrub land were classified in the
VSU-generated images as opposed to being classified as emergent herbaceous wetlands.
Woody wetlands include large quantities of coniferous and deciduous trees, shrubs, and
scrubs whereas emergent herbaceous wetlands include gramanoid and herbaceous species,
which may include herbaceous shrubs. Thus, the grassland and shrub land classified in the
third locale are the same vegetation types as those encountered in emergent herbaceous
wetlands. They are misclassified due to the VSU results including these endmembers and
meeting the conditions required for these classes in the hierarchal rules prior to the rule
for emergent herbaceous wetlands. Another possibility is the low spectral similarity
between the few wetlands endmembers and the pixel reflectance measurements, which
may be countered by acquiring more spectra for wetlands. Further problems with this
locale are discussed later in this section. In the second locale (NLCD and VSU-generated
images (C) and (D), respectively, in Figures 2.3, 2.4, and 2.5), vegetation types of grassland,
shrub land, and forest approximate the general vegetation encountered in urban areas,
including trees and grasses. This signifies the dominance of the vegetation types over
artificial and manmade materials associated with the developed classes as a result of
greater spectral similarity between the vegetative endmembers with the pixel reflectance
measurements and the limited classification of urban areas due to the break in the

hierarchal rules between the urban classes and the following rules.
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(E)
Figure 2.3 - 2001 Mapping Results versus the NLCD 2001 by Locale: (A) NLCD 2001
[2100,1900]; (B) Mapped 2001 [2100,1900]; (C) NLCD 2001 [3620,1060]; (D) Mapped 2001 [3620,1060];
(E) NLCD 2001 [5450,4650]; (F) Mapped 2001 [5450,4650]. Black pixels are unclassified.
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(E)
Figure 2.4 - 2006 Mapping results versus NLCD 2006 by locale: (A) NLCD 2006 [2100, 1900]; (C)
NLCD 2006 [3620,1060]; (E) NLCD 2006 [5450,4650]; (B) Mapped 2006 [2100,1900]; (D) Mapped 2006
[3620,1060]; (F) Mapped 2006 [5450,4650]. Black pixels are unclassified.
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(E) (F)
Figure 2.5 - 2011 Mapping Results versus NLCD 2011 by locale: (A) NLCD 2011 [2100,1900]; (C)
NLCD 2011 [3620,1060]; (E) NLCD 2011 [5450, 4650]; (B) Mapped 2011 [2100,1900]; (D) Mapped 2011
[3620,1060]; (F) Mapped 2011 [5450,4650]. Black pixels are unclassified.
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These results occur primarily due to the hierarchal classification rules seen in
Section 2.2.4.5, which attempted to resolve sub-pixel classifications resulting from the
mixed pixel problem into a high-level classification to be placed in the resulting maps in
Figures 2.3, 2.4, and 2.5. When examining the sub-pixel maps in descending compositional
weight, developed land cover codes (21, 22, 23, and 24) often occurred in the lower layers
of the sub-pixel map, such as a matrix depth of 4 and 5 that have very low compositional
weights, and generally belonged to the open space developed class (21). As a result, the
agreements in Table 2.7 between the generated and NLCD maps per each year at locale
[3620,1060] feature very low agreements because the developed (21 - 24), pasture / hay
(81), and cultivated cropland (82) dominate this locale in the NLCD. It is possible to
partially fix this problem by changing the classification system to use different criteria,
which will be further discussed below and in Section 4.

The mapping results signify a low spectral similarity between the spectral urban
targets in the original Landsat images and the endmembers belonging to urban materials
for at least three reasons. First, this occurs due to low representation of various artificial
materials and their spectra at different points in their life cycles in addition to the lack of
endmembers for pasture / hay and crops at various stages in their annual growth cycles in
the spectral library. This problem is easily fixed by incorporating such endmembers into
the library. Second, this suggests the endmember sampling method may be partially to
blame, which contributes to the high proliferation of vegetated classes in the generated
maps. Louisiana features high abundances of the vegetation types within the library and

Landsat scenes of the area contain high spectral similarity to vegetation classes, increasing
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the difficulty of mapping urban areas within Louisiana. Lastly, temporal disparities in
illumination contribute to the limited detection of urban areas and the selected Landsat
scenes were acquired on different days within the seasons of late summer to late fall. Using
images from the same day per year does not guarantee detection of urban areas due to
annual variations in atmospheric conditions, including large annual variations in cloud
contamination.

These last two problems may be solved using two methods either together or
separately. Though, these methods should be explored and tested prior to application with
VSU. Regarding the spectral library, the endmember library could be simulated and
sampled in order to account for radiometric and temporally-caused illumination
differences between the endmembers and each Landsat scene. For example, endmember
responses may be simulated to correspond to a response seen from space. One such
method is to convolve each endmember with the relative spectral response of the Landsat
sensor and then convolve the resulting signal with a signal for atmospheric interference.
This method, however, is experimental, requires sampling (such as at the wavelength
where the relative spectral response of the sensor equals or approaches one), and would
require knowledge of atmospheric conditions for the day and location of the region imaged
by Landsat. The time series of Landsat scenes could be radiometrically normalized to
account for differences in daily and annual illumination and for disparities in annual
atmospheric conditions, but the radiometrically normalized scenes would likely still
contain at least marginal spectral distinction from the library. However, detection and

classification of urban areas would likely improve if these two methods or a similar
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strategy were employed to minimize the spectral variance between the time series of
Landsat scenes and the spectral library. Another means of improving urban detection and
classification may include using multiple images from different seasons. Winter images
lacking snow show increased urban areas due to lack of leafy coverage. Urban areas
classified in winter imagery could be used to correct misclassified urban areas in maps
generated from scenes acquired in other seasons of the same year.

In the last locale, each year shows more water coverage than occurs in the
corresponding NLCD images. This can occur for at least two reasons. These areas lie on the
coast and consist of wetlands, which may be covered with water periodically throughout a
single year due to either or both drainage and oceanic tides. As a result, the mapping
algorithm may have picked up on standing water and classified it as open water
accordingly. Additionally, the use of the MNDWI with the threshold of 0.0 may have caused
more pixels to be extracted automatically as water. As a result of these errors, the
agreements between each mapped location and the corresponding NLCD are low, as seen in
Table 2.7. In the first locale, the agreement corresponds predominantly to the areas of
vegetation belonging to the types of forest, shrubs, and grasses and the agreement in the
last locale occurs primarily due to water coverage. However, misclassification due to the

hierarchal classification rules also persist in the low agreements.
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Table 2.7 - Agreements with the NLCD

Locale.Image [2100,1900] [3620,1060] [5450,4650]
Coordinates

NLCD 2001 33.76% 2.03% 20.69%
NLCD 2006 27.72% 1.73% 18.53%
NLCD 2011 32.35% 3.10% 39.64%

According to the NLCD classification criteria in Table 2.7, all classes represent
mixtures of physical surface characteristics with varying percentages. The exact limits for
every coverage type are not explicitly stated except for the coverage predominant per class.
For example, the predominant type in deciduous forest are deciduous trees and the criteria
does not specify the limits for other coverage types, such as bare land, artificial materials,
coniferous trees, gramanoids like grass, and other materials, occurring within the same
land area. This constitutes the mixed pixel problem. In the case of the third locale,
vegetation occurring in emergent herbaceous wetlands (95 — dark blue as seen in the
maps) includes both herbaceous and gramanoid species, which are shared with the
grassland and shrub land. A few of the herbaceous species in the spectral library are
herbaceous scrubs and contribute spectrally both to grassland and shrub land. As a result
of the material type and the hierarchal classification system, the wetlands were
misclassified as grassland in third locale. Similar effects are seen in the maps produced for
the first and second locales.

Thus, altering the hierarchal classification rules may improve classification results.
The easiest fix may be to raise the classification rule for wetlands to a higher level in the
rule structure, but this may lead to confusion with other classes below it in the hierarchy.

The hierarchal classification rules could be replaced with rules based on explicit mixtures
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of material types occurring within each NLCD class. These mixtures may be generated
through analysis of the VSU output of the endmember ids and material types with their
corresponding fractional weights to establish limits on the cumulative weights by material
type occurring for each class in the NLCD. Classification rules could be structured based on
these limits to further guide and improve the accuracy of classification into NLCD classes. If
VSU is used with other applications requiring classification, a similar approach may be used
with the target classification scheme. Additionally, implementing such mixture rules as a
decision tree would assist in minimizing error due to a single hierarchy structure. Though,
there are other means of classification, including maximal likelihood, fuzzy, or score-based
systems, which could be adapted to the NLCD criteria and used in place of a hierarchal
system.

Overall, the results of VSU are very promising. Despite agreements less than 40%,
the VSU method produced land cover maps with classes corresponding to physical material
types with cumulative weights meeting the conditions within and the order of the
hierarchal classification system as opposed to classes representing land cover classes with
mixed physical material types, but these results may be improved to result in mixed classes
corresponding to physical coverage. In comparison to the NLCD method, this method is less
involved. The NLCD methodology requires images from multiple seasons, days, and years;
ancillary datasets; at least a moderately sized group of personnel; and multiple years to
create one accurate land cover dataset for a single year. This method using VSU requires a
single person, one image per year mapped, and one workstation. It is fast, autonomous and

adaptive based on the requirements per application. If improved to the point where its
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accuracy is at least 75% for mapping land cover, the method using VSU would rival the

NLCD methodology.
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3. Land Cover Change Modeling

3.1 Section Overview

Land cover change modeling attempts to predict the future state of land cover in
response to various stimuli, such as environmental factors, previous states, etc. This second
contribution of this thesis is concerned with alterations in land cover due to differences or
changes in surrounding land cover and aims to determine, if any, the trends in land cover
change due to the neighborhood of a pixel in the previous state after a transition of the
target pixel to a future state. In this research, the Moore and von Neumann cell
neighborhoods of a time series of land cover maps are analyzed to determine land cover
change trends due to neighboring land cover and derived rules derived are used to model
changes in classes using the NLCD 2001 as a starting point. In analyzing a time series of
maps and modeling land cover change using derived decision rules, this part of the thesis
aims to demonstrate how modeling using neighborhoods and previous states as criteria for
change may produce good forecasts of future land cover with an accuracy of at least 50%.

Note, this portion of the thesis relies on data created using the mapping algorithm
developed in Section 2, but this section specifically deals with the development of a method
for deriving decision rules from a time series and their implementation. Any mentions of
the mapping algorithm are to indicate potential errors in deriving land cover change
decision rules and are intended to discuss ways to improve the detection of changes in land
cover due to neighborhoods rather than to directly improving the mapping algorithm,

which is discussed in depth in Sections 2.3 and 4.1. The following sections address the
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methodology used in land cover change modeling and analysis prior to delving into

modeling results.

3.2 Methodology

This study will examine land cover change trends as a function of changes in
neighboring land cover. In the proposed model, a two-dimensional array represents a large
land surface composed of pixels with a square spatial resolution of 30 meters and annual
changes to land cover result from changes in its spatial neighborhood, such as the Moore or
von Neumann neighborhoods of a given pixel. The spatial orientation of the land cover
classes of the neighborhoods is assumed not to contribute to the change in a target pixel.

As the NLCD contains datasets only for four years over 19 years, this study begins by
generating a land cover dataset according to the method outlined in Section 2 of this thesis.
The VSU algorithm generated maps for three locations for the years 2001 through 2011 for
a total of 11 years. The locations were chosen after examining the land cover change
between the NLCD 2001 and 2006, the 2006 and 2011, and the 2001 and 2011 datasets
after calculating the difference between each dataset.

The maps generated using VSU tend to be strong in pure land cover classes (such as
forest, grassland, and shrub land) and weak in the other land cover classes. As discussed in
Section 2.3, urban and agricultural areas suffer low propagation in the VSU-generated
images due to urban areas occurring with low compositional weights that do not survive
post-classification and a lack of pasture/hay and crop endmembers. Wetlands occur due to

mixtures of vegetation types and water drainage systems that were not accounted for in the
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classification algorithm used with VSU. Thus, prior to neighborhood analysis, the VSU-
generated maps need to be corrected in order to derive decision rules for these classes
important to human life. The VSU-generated maps are validated against and corrected
using an ancillary land cover dataset known as the Coastal Change Analysis Program (C-
CAP), which the National Oceanic and Atmospheric Administration (NOAA) created for the
years 2001, 2006, and 2011, as it uses similar land cover classes to the USGS NLCD. The
NOAA C-CAP uses the same core land cover classes and criteria as the NLCD except for the
cases of wetlands. In the NOAA C-CAP, additional land cover classes break out the wetlands
into different types with respect to mixed environments corresponding to marine and
grassland, shrub / scrub land, and forest vegetation.

As a result, the NLCD-equivalent codes of the C-CAP land cover classes replace the
values of pixels in the VSU-generated maps that spatially correspond to the same pixels that
belong to the urban, agricultural, and wetlands classes in the C-CAP. For example, if a pixel
is classified as deciduous forest in the VSU-generated map and as low density developed in
the C-CAP, then the pixel in the VSU-generated map is reclassified as low density developed.
Similarly, if a pixel is classified as grassland in the VSU-generated map and as woody
wetlands or cultivated crops in the C-CAP, then the pixel in the VSU-generated maps is
reclassified as woody wetlands or cultivated crops. This reclassification is directly
applicable only to the years for which there exist maps in both datasets. As a result, pixels
replaced in the datasets for 2001 and 2006 are held constant for the time frames 2001
through 2005 and 2006 through 2010. This causes the urban, agricultural, and wetlands

classes to experience quinquennial changes. These classes do experience change in the C-
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CAP in the selected locales and result in identification of some trends in these classes.
Otherwise, no decision rules would result for the classes of developed, pasture / hay,
cultivated crops, woody wetlands, and emergent herbaceous wetlands.

The analysis of the Moore and von Neumann cell neighborhoods assume a change in
the land cover class per year occurs due to the land cover classes in its neighborhood in the
past. The neighborhood analysis starts with year 2002 and proceeds through 2011 using
each past year as the previous state resulting in the change to the next year, if any. In order
to simplify and speed the neighborhood analysis, the maps corresponding to the current
and prior years are differenced and only pixels with a non-zero difference are analyzed.
Additionally, analysis of the Moore and von Neumann neighborhoods excludes the
outermost ring of land cover in a map and starts at the pixel on the diagonal from the upper
leftmost pixel. The Moore and von Neumann neighborhoods are defined as follows in Eq.

3.1 and 3.2, respectively:
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(3.2)
,where N1y and N1y are the Moore and von Neumann neighborhoods of radius one unit of
pixel (i,j), respectively, and o is the state at coordinates around pixel (i,j) [9]. Note, in a
Moore neighborhood, the use of a radius of one unit around a target pixel assumes

surrounding pixels at distances greater than 30 meters (the spatial resolution of Landsat
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images) do not contribute to the annual change of the target. In the case of the von
Neumann neighborhood, the use of a radius of one unit around a target pixel assumes
surrounding pixels that are not orthogonal to the target or are at distances greater than 30
meters do not contribute to the annual change of the target.

During analysis, the previous state, the future state, and the neighborhood of the
previous state are recorded per locale per change in year. Then, the locale data is recorded
as a single set per change in year. In this thesis, annual changes in land cover are considered
independent of the spatial orientation of the neighborhood of land cover classes. Thus, two
neighborhoods are equivalent if they include the same land cover classes with equivalent
amounts per class in each neighborhood. Due to this, prior to accumulative counting, the
neighborhoods are converted to an array of the frequency of occurrence of each land cover
class in the neighborhood for ease of counting. The extracted neighborhoods are counted to
determine the total number of occurrences per neighborhood per possible transition per
change in year. Using this data, rules are constructed in the form of if-else statements using
the previous state and the neighboring land cover classes as the criteria for change in a
basic reiterative model. Separate models were constructed for both neighborhoods and
start with a large section of the NLCD 2001. Using the derived rules, both models were run
from 2001 through 2011 with the intermittent maps recorded for comparison with the
corresponding NLCD if their locales are included within the larger sample location of the

model.
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3.3 Results & Discussion

3.3.1 Rationale of Transition Exclusions

Analysis of the Moore and von Neumann neighborhoods of validated mapped pixels
revealed several trends of interest, but some transitions were excluded. General
nonsensical transitions may include transitions of land cover classes recorded during
analysis that may arise due to mapping or validation errors, such as the case of a developed
pixel surrounded by water pixels, and transitions that are not thought to occur naturally,
such as downward transitions of high density developed (24) to deciduous forest (41).
Additionally, neighborhoods in which all neighbors in a Moore neighborhood for
transitions where the previous state does not equal the future state belong to the same
class as the previous state i are excluded. This thesis assumes a neighborhood with eight
members of the same class leads to continuance of the same state. Furthermore,

In the case of transitions from the developed classes to any of the forest, shrub land,
woody wetlands, and cultivated crops, these transitions are not considered due to the
amount of time needed to change urban areas into these heavily vegetated classes. For
example, according to the NLCD criteria given in Table 2.6, forests and shrub land consist of
plants greater than and less than 5 meters tall, respectively. Vegetation of such height is
assumed to take more than one year to develop. Similarly, time is needed to change
developed areas into barren land capable of sustaining mass agricultural activities. Those
types of transitions will be considered and pursued in the future with repetition of this

same or a similar methodology as applied to other regions and a larger time span. The
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same rationale is used for excluding transitions of the type from barren land to any of the

forest classes, including woody wetlands, and shrub land.

3.3.2 Results of Neighborhood Analysis

Tables 3.1 and 3.2 show the selected results and their frequencies, f, of occurrence
for the von Neumann and Moore neighborhoods, respectively, for each transition from state
i to state j given in each table. These neighborhoods were included in the model as decision
rules. The results generally occur within the top five per encountered transitions for the
von Neumann and Moore neighborhoods. Where resulting neighborhoods were few in
number or the frequencies of occurrence were low in number (i.e., less than 15), the
neighborhoods were selected based on their constituents.

In Tables 3.1 and 3.2, the frequencies of occurrence tend to be high for transitions
between two vegetated classes and low for transitions between urban classes and between
vegetated and urban classes. These cases result from the choice in mapped locations and
the mapping correction. First, the chosen locations featured more vegetative classes as
compared to urban classes and the vegetated pixels appear to remain vegetated temporally.
Pixels of developed classes appear to remain stable temporally as well. Thus, fewer
transitions appear for transitions from vegetated to developed classes and for transitions
between developed classes, including the agricultural land use classes. Mapping additional
urban locations and larger areas of developed land, such an area of developed land equal to
the area of vegetated classes, would improve detection of urban transitions in further
research using this method. Secondly, the mapping correction assumes no change in urban

areas for years from 2001 to 2005 and from 2006 to 2010. Thus, very limited to moderate
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levels of annual change in developed classes were expected. This study employed mapping
correction in order to generate at least a few cellular automata rules for the developed and
other land use classes. As for errors due to the mapping procedure, naturally, improving the
classification scheme of the VSU output would improve detection of feature classes and,
therefore, detection of change between land cover classes. Strategies for improving the
VSU-mapping procedure are discussed in Section 2.3 and Section 4.1.

The neighborhoods seen in Tables 3.1 and 3.2 show patterns in the frequency of
their components, most notably those with higher frequencies of occurrence. In the von
Neumann results in Table 3.1, transitions from deciduous forest (41) to coniferous forest
(42), from coniferous forest (42) to deciduous forest (41), from coniferous forest (42) to
shrub land (52), and from woody wetlands (90) to coniferous forest (42) in addition to
others have the same patterns. In the one case, the neighborhood of the target pixel
comprises of three neighbors with the same class as the target and one neighbor
corresponding to the future class. In the second case, the neighborhood consists of two
neighbors of the same class of the target pixel and and two neighbors of the future class.

Similar patterns arise in the Moore results in Table 3.2. There are many transitions
resulting from neighborhoods of four cases: (1) where there are seven neighbors of the
same class as that of the target pixel and one neighbor of the future class; (2) where there
are six members of the class of the target pixel and two members of the future class; (3)
where five members belong to the class of the target pixel and three members belong to the
future class; and (4) where equal numbers of members belong to both the previous and

future classes. Examples of these three cases include transitions from open space
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developed (21) to pasture / hay (81), coniferous forest (42) to shrub land (52), coniferous
forest (42) to woody wetlands (90), grassland (71) to deciduous forest (41), woody
wetlands (90) to cultivated cropland (82), and emergent herbaceous wetlands (95) to open
water (11).

These patterns suggest general rules based on such cases for both von Neumann and
Moore neighborhoods may be written in these formats between any two classes. Though,
this observation requires further exploration to be verified, such as through repetitions of
the same method used in this thesis for other or larger locations. Based on the results in
Table 3.1, these trends appear to become distinguishable with large frequencies of
occurrence. Each type also needs to be further explored and tested beyond the scope of this
thesis for accuracy and resulting rates in changes of cell counts per year for each class in a
time series. In this thesis, all transitions in Table 3.1 and 3.2 were modeled.

There are exceptions to these patterns, including but not limited to such as
transitions deciduous forest (41) to woody wetlands (90) and grassland (71) to shrub land
(52) in Table 3.1 and open space developed (21) to barren land (31), low density developed
(22) to 21, medium density developed (23) to high density developed (24), and 52 to 71 in
Table 3.2, that contain neighborhoods with more than two classes. These generally occur
with frequencies of occurrence less than 100, except in the case of the transition of 71 to
52; neighborhoods occurring with frequencies equal to one generally occurred in a list
where all neighborhoods were encountered once in the entire time series of the corrected
VSU-generated maps. These results may not be encountered in repetitions of this same

basic methodology over larger sample areas where such transitions are encountered on an
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annual basis. It should not be immediately concluded, however, that neighborhoods of two
or more classes other than the future and previous states do not contribute to a change. All
patterns discussed in this section need to be verified by repetition of this basic
methodology for a much larger sample area over a longer time span and for additional

states in the US.

Table 3.1 - Von Neumann Neighborhoods with Greatest Frequency of Occurrence Per Transition

i f Neighborhood i j f Neighborhood
21 22 1 [21, 21, 21, 21] 71 42 114 [71,71, 42, 41]
1 [21, 22,22, 22] 80 [71,71,71, 42
21 23 1 [22, 22,22, 23] 71 52 625 [71,71,71,52
1 [21, 21, 21, 22] 266 [71,71,52,41
22 21 1 [22, 22,22, 23] 71 81 17 [71,71,81,81
1 [21, 21, 21, 22] 16 [81,71,71,71
22 23 3 [21, 21, 22, 22] 71 82 5 [71,71, 82,82
3 [22,22,22,23] 4 [82,82,71,22
22 24 3 [22, 22,22, 22] 71 90 16 [71,71,90,90
3 [22, 22,23, 23] 15 [71,71,71,90
23 24 3 [23, 23, 24, 24] 81 21 12 [81, 81,81, 22
2 [23, 24, 24, 24] 4 [81,81,81, 21
31 71 61 [31, 31,31, 71] 81 22 5 [81, 81,81, 22
42 [31,31,71,71] 2 [81,81, 22,22
31 81 2 [31, 71,81, 81] 81 41 115 [90, 81, 81, 81
1 [31,31, 22, 81] 71 [81,81, 22,22
41 42 3120 [41,41,41,42] 81 42 218 [81,81,81,42
3096  [41,41,42,42] 121 [81,81, 42,42

41 52 758  [41,41,41,52
434 [41,41,52,52
41 71 545  [41,41,41,71
511  [41,41,71,71
41 90 38  [41,41,90,90
33 [41,41,42,90
42 41 2732 [41,42,42,42
1434 [41,41, 42,42
42 52 1921  [42,42,42,52
649  [42,42,52,52
42 71 63 [42,42,42,71] 90 11 4 [95,95,11, 11
18 [42,42,71,71 3 [11, 90, 90, 90
42 81 2 [42,42,82,82]* 90 41 130  [41,90,90,90
2 [42,42,42,82]* 71 [41,41,90,90
42 90 810  [42,42,42,90
537  [42,42,90,90
43 90 115  [43,43,43,95
79  [43,43,95,95

13 [81,81,71,71
81 82 56  [81,81,81,82
20  [81,81,82,82
81 95 5 [11,81, 81, 81
82 71 32  [82,82,82,81
82 81 39  [81,81,81,81
3 [82, 82,81, 71
82 90 56  [82,82,8290

]
]
]
]
]
]
]
]
]
] 26 [82, 82,90, 90
]

]

90 42 794 [42,90,90,90
654 [42,42,90,90
90 81 7 [81,90,90,90

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
81 71 162  [81,81,81,71]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
7 [81, 81, 90, 90]

— e —
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52

52

52

71

21

21

21

21

22

22

22

22
23

23

24

24

31

31

31

41

41

41

41

41 799
793

42 3903
2814
71 231
208
41 918
1654

[52,52,52,41] 90 82 2
[52,52,41,41] 90 95 17
[42, 42, 42, 52] 5
[42,42,52,52] 95 11 1297
[71, 52, 41, 41] 1005
[71,52,52,41] 95 90 24
[71, 71, 41, 41] 1
[71, 71, 71, 41] 1
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[82,82,90,90
[71,90,90,90

[90, 90, 90, 95
[11, 95,95, 95
[11,11, 95,95
[90, 95, 95, 95
[41, 95,95, 95
[42, 42,95, 95

[k W i i i W W M|

* Modeled as 81 prior to correction to 82.

Table 3.2 - Moore Neighborhoods with Greatest Frequency of Occurrence Per Transition

j f
22

23
31
81
21
23
24

31
22

24

22

23

21

R R R R NN R ONRE NN RNRR GON R R R R

71

NN
= Ul

81

21

22

31

B O R R RN RN

42 1198

Neighborhood
1,21, 21, 21, 22, 22, 22, 22]
1,21, 21, 22, 22, 22, 22, 22]

2

2

21,21, 22,41, 81, 81, 81, 81]
21,21, 21,81, 81, 81, 81, 81]
21,22,22,22,22,23, 24, 24]
21,22,22,81,81,81, 81, 81]
21,21, 21, 21, 21, 21, 81, 81]
21, 21,81, 81,81, 81, 81, 81]
21,21, 21, 21, 21, 21, 22, 22]
21,22,22,22,23,41, 81, 81]
22,22,22,22,22,22,22,23]
21,21, 21, 21,22, 22, 22, 22]
22,22,22,22,22,23, 23, 24]
21,22,81,81, 81,81, 81, 81]
22,22,22,22,23,23,23,23]
23,23, 23,81,81,81,81, 81]
22,22,22,22,22,23,23,23]
21, 21,22, 22,22, 24, 24, 81]
22,22,22,23,23,23,23,23]
22,22,22,23,23,23, 24, 24]
22,22,23,23,24,81, 81, 81]
22,22,23,23, 24,81, 81, 81]
21,23, 23, 23,23, 23, 23, 24]
23,31,52,71,71, 81, 81, 81]
31,71,71,71,71,81,90,90]
31,31,31,31,31,71,71,71]
31,31,31,31,31,31,71,71]
31,71,81,81,81,81, 81, 81]
22,22,31,31,71,81, 81, 81]
22,22,22,71,81,81, 81, 81]
21,21, 21, 22, 22,41, 43, 43]
22,22,22,22,41,71,71,71]
22,22,23,41,41,52,52,90]
41,41,41,41,41,42,42,52]
41,41, 41, 41, 41, 41, 41, 71]
41,41, 41, 41, 41, 42,42, 42]

e e e e e e e e e e e e e e e e e e e e e e e e e

i j f
42 90 387
355

43 42 43
31

43 90 65
74

52 31 2
4

52 41 228
234

52 42 1313
1911

52 43 7
3

52 71 71
66

52 81 3

71 31 8

71 41 538
71 42 53
71 52 131
71 81 17
71 82

7

2

3
71 90 8
6
81 21 7
3

81 42 88

Neighborhood
[42,42,42,42,42,90,90,90]
[42,42,42,42,42,42,90,90]
[

42, 42,42, 42, 43,43, 43, 43]
[42, 42, 42, 43, 43, 43, 43, 43]
[43, 43, 43, 43, 43, 95, 95, 95]*
[43, 43, 43, 43, 43, 43, 43, 95]*
[41,71,71,71,71, 71, 71, 71]
41, 41, 42, 42, 42, 71, 90, 90]
41,41, 41,52, 52, 52, 52, 52]
41,41, 52,52, 52,52, 52, 52]
42,42, 42,42, 42,52, 52, 52]
[42, 42, 42, 42, 42, 42, 52, 52]
[52, 52,95, 95, 95, 95, 95, 95]*
[52, 52,52, 52,95, 95, 95, 95]*
[41, 41,41, 52,71, 71, 71, 71]
[41, 41,52, 52,71, 71, 71, 71]
[41, 41, 52,52, 52, 71, 71, 71]
[41, 41,41, 52, 52, 52, 52, 71]
[41,52,71,71,71, 71,71, 71]
[41, 52,52, 71,71, 71, 71, 71]
[41, 41,71, 71,71, 71, 71, 71]
[41, 41,41, 71,71, 71, 71, 71]
[41, 41,52, 71,71, 71, 71, 71]
[41, 42, 42, 42,71, 71, 71, 71]
[41,52,71,71,71, 71,71, 71]
[41, 42, 42, 42,71, 71, 71, 71]
[
[
[
[
[
[
[
[
[
[

— ———

71,71,71,71,71,71,71, 81]
71,71,71,81, 81, 81, 81, 81]
71,71,71,81, 82,82, 82, 82]
71,71,71,81, 81, 81, 81, 81]
71,81, 81, 81, 90, 90, 90, 90]
71,71,71,71,71,71, 90, 90]
21,21, 21,81, 81, 81, 81, 81]
21,21, 22,81, 81, 81, 81, 81]
42,42,42,81, 81, 81, 81, 81]
42,42,81, 81, 81, 81, 81, 81]
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41

41

41

41

41

41

42

42

42

42

43

52

71

81

82

90

21

41

43

52

822
820
23
4
732
436

[41, 41, 41, 41, 42, 42, 42, 42]
[42, 43, 43,43, 43, 43, 52, 52]
[43, 43, 43,90, 90, 90, 90, 90]
[41, 41, 41,41, 41, 41, 52, 52]
[41, 41, 41, 41, 41, 41, 41, 52]
[41, 41,71, 71,71, 71,71, 71]
[41,41, 41,71, 71, 71, 71, 71]
[41, 41, 41, 41, 41, 71, 71, 71]
[41, 41, 41, 41, 41, 42, 52, 52]
[41, 41, 81, 81, 81, 90, 90, 90]
[41, 81, 81, 81, 90, 90, 90, 90]
[41, 41, 42, 42, 42, 42, 42, 42]
[41, 41, 41, 42, 42, 42, 42, 90]
[21, 42, 42, 90, 90, 90, 90, 90]
[21, 42, 90, 90, 90, 90, 90, 90]
[41, 41, 42, 42, 42, 42, 42, 42]
[41, 41, 41, 42, 42, 42, 42, 42]
[42, 42, 42, 42, 42, 42, 43, 43]
[42, 42, 43,43, 43, 81, 81, 81]
[42, 42, 42, 42, 42, 42, 52, 52]
[42, 42, 42,42, 42, 52, 52, 52]

81

82

82

90

90

90

90

90

90

95

82

81

90

11

41

42

71

81

82

11
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15
17
6
4
13
18
3
2

679
672

81, 81, 81, 81, 82, 82, 82, 82]
81, 81, 81, 81, 81, 81, 82, 82]
81, 81, 81, 82, 82, 82, 82, 82]
81, 81, 82, 82, 82, 82, 82, 82]
82,82,82,82,82,82,90,90]
82,82, 82, 82,90, 90,90, 90]
11,11, 11, 90, 90, 90, 90, 90]
11,11,11,11, 95, 95, 95, 95]
41,41, 90, 90, 90, 90, 90, 90]
41, 41, 41, 90, 90, 90, 90, 90]
42,42, 42,90, 90,90, 90, 90]
42,42,42,42,90,90,90,90]
81, 81, 90, 90, 90, 90, 90, 90]
71,71, 90, 90, 90, 90, 90, 90]
81, 81, 81, 90, 90, 90, 90, 90]
81, 81, 81, 81, 90, 90, 90, 90]
81, 81, 81, 81, 90, 90, 90, 90]
82,82, 82,90, 90, 90, 90, 90]
82,82, 82,82, 82,90, 90, 90]
11,11, 11, 95, 95, 95, 95, 95]
[11,11,95,95,95,95,95,95]

e lsvdrvlirvirv vy discisclselseinisniredirv v lirv vl

* Values of 95 were mistyped as 90 in the model prior to correction of the model.
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3.3.3 Modeling Results

Two models were created using the neighborhoods given in Tables 3.1 and 3.2. The
decision rules were written as if-else statements using the previous state of the target pixel
and the count of each class included within the given neighborhood of the target pixel as
the criteria to matching it to any of the selected neighborhoods of the corresponding
transitions. If the previous state and the neighborhood of the target pixel in the previous
state do not match these criteria for change, then the pixel remains in the same state — the
same land cover class as the previous state. These rules were separated into two models
according to the type of neighborhood used in deriving the rules: the von Neumann and
Moore models. All neighborhoods per transition as seen in Tables 3.1 and 3.2 were included
into each corresponding model. Each model started on year 2001 using the NLCD 2001 and
ran for 11 iterations through year 2011. Modeled results of year 2011 are compared to the
NLCD 2011 for validation in the same fashion.

The chosen location corresponds to a slice of the NLCD 2011 covering the image
coordinates of [2000:6000, 2000:6000] and features New Orleans. The following forecast

maps use the color scheme used in in the NLCD 2011 legend, as seen in Figure 2.1.
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Von Neumann Forecasting

Figure 3.1 shows the NLCD 2011 (A) clipped to the same coordinates used in the
model and the forecast of 2011, as captured by the rules using the von Neumann
neighborhoods in Table 3.1. The von Neumann model relies on a neighborhood defined by
Eq. (3.2). Immediately noticeable is the greater amount of the open water land cover in the
forecast than in the NLCD 2011 and the pixelated appearance of the wetlands and other
vegetated classes. On the other hand, the collective rules produced similar visual patterns
in the developed classes and pasture / hay. Straight lines corresponding to artificial

structures such as roadways and bridges are largely preserved in the forecast image.
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Figure 3.1 - Von Neumann Forecasting Results vs. NLCD 2011: (A) NLCD 2011; (B) 2011
forecasted results of the von Neumann model.

Table 3.3 shows numerical results comparing the forecasted map of 2011 and the
NLCD 2011. Trends visual in Figure 3.1 are shown by data in Table 3.3 For instance,
emergent herbaceous and woody wetlands decreased in cell counts from 2006 to 2011.
Similarly, medium and high intensity developed classes experience an increase in cell
counts, as occurs in the NLCD 2011. The rates of change in the cell counts per year are
largely similar between the the von Neumann forecast and the NLCD, as shown in Table 3.3
with many of the classes have the same signs indicating growth and decline. Some classes
do not follow this patter, such as open space developed (21) and shrub land (52). This may
occur due to annual changes in neighborhoods permitting transitions. This is further
implicated by percent differences which are different between the 2006 and 2011

comparisons, such as the percent differences for classes open space developed (21), barren
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land (31), deciduous forest (41), etc. In particular, classes barren land (31) and deciduous
forest (41) experience very large variance in their percent differences. Behavior such as
this also indicates the large changes incurred by the von Neumann neighborhoods in
addition to using two neighborhoods per rule in general. The von Neumann neighborhood
consists of only four neighbors and the lower number of components for comparison leads
to an increase in the inaccuracy of the forecasting results. These observations may be
validated by replicating the underlying methodology of this thesis for larger areas or more
areas interspersed around the globe.

Overall, the model performed satisfactorily. The 2011 von Neumann land cover
forecast agrees approximately 66.38% with the NLCD 2011 with over 10 million matched
pixels. This lower accuracy is not surprising when compared to use of the Moore

neighborhood method.

Table 3.3 - Comparison of von Neumann Forecasts with NLCD - The abbreviation (VN)
corresponds to results of the von Neumann model.

Class VN ‘06 NLCD ‘06 % VN ‘11 NLCD ‘11 % VN Slope NLCD Slope
Counts Counts  Difference  Counts Counts  Difference

11 5,214,502 4,164,424  -25.22 5,735,395 4,280,815 -25.36 104,178.6 23,378.2
21 523,652 541,206 3.24 537,860 533,816 -0.75 2,841.6 -1,478
22 283,341 657,902 56.93 282,017 655,162 132.31 -264.8 -548
23 271,602 210,095 -29.28 279,119 226,229 -18.95 1,503.4 3,226.8
24 521,48 112,136 -365.05 526,699 122,585 -76.73 1,042 2,089.8
31 27,677 32,247 14.17 26,235 77,695 196.15 -288.4 9,089.6
41 153,125 17,787 -760.88 206,233 16,999 -91.76 10,619.6 -157.6
42 1,391,513 1,455,258 4.38 1,315,191 1,285,433 -2.26 -15,264.4  -33,965
43 62,703 77,554 19.14 61,388 72,386 17.92 -263 -1,031.6
52 1,262,427 1,156,212 -9.19 1,348,726 1,374,366  -18.91 17,259.8 43,630.8
71 219,336 256,527 14.50 237,462 192,553 -18.91 3,625.2  -12,794.8
81 440,581 587,672 25.03 388,822 561,526 44.42 -10,351.8 -5,229.2
82 340,560 413,360 17.62 298,758 400,980 34.22 -8360.4 -2,476

90 3,358,376 3,622,337 7.29 3,161,296 3,610,859 14.22 -39,416  -2,295.6
95 1,929,116 2,695,293 28.43 1,594,809 2,588,596 62.32 -66,861.4 -21,339.4
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Moore Forecasting

Figure 3.2 shows (A) the NLCD 2011 and (B) the 2011 forecasting results of the
Moore model. The classification color legend is shown in Figure 2.1. Noticeable differences
exist in the visual results. The forecast for 2011 shows much degradation in emergent
herbaceous wetlands (95) and corresponding large growth in water, suggesting the rules
for emergent herbaceous wetlands and other classes with transitions to water classes
should be limited to one neighborhood. These results are further demonstrated in Table
3.4. Vegetated classes of pasture / hay, cultivated crops, shrub land, and woody wetlands

look largely similar whereas urban areas show more areas of high intensity developed.
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Figure 3.2 - Moore 2011 Forecasting vs. NLCD 2011: (A) NLCD 2011; (B) 2011 forecasting results
of the Moore model.

Table 3.4 shows the numerical results of comparisons between the forecasted land
cover of 2011 using the Moore model and the actual NLCD 2011. This table provides the
cell counts per class for the modeled years of 2006 and 2011, the percent difference
between each dataset per year, and the slopes of the two datasets for the duration from
2006 to 2011. As seen in Table 3.4, the modeling results vary by class and year. The
differences in cell counts vary by year and class. For 2006, the smallest percent difference
between the Moore and NLCD class counts occur for classes open space developed (21),
coniferous forest (42), shrub land (52), pasture / hay (81), cultivated cropland (82), and
woody wetlands (90) while the largest percent differences occur for classes barren land
(31) and deciduous forest (41). The data for 2011 show the smallest percent differences

occur for same classes, except 52, and the largest percent differences occur for classes 41
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and emergent herbaceous wetlands (95). These results seem to suggest that alterations in
cell counts per class may change annually. From a modeling perspective, this may occur due
to annual changes in cell neighborhoods per year. Further modeling is require to fully
explore this.

These results show that the Moore rules perform differently by class as well.
Although all changes in neighborhoods by year may be partially to blame, these results
suggest some of the transition rules are ineffective for the classes with the largest percent
differences, namely 41 deciduous forest, and those with large variance between the cell
counts per year, such as 31 and 95. These rules must be further tested to determine which
perform best. Additionally, these rules should be validated individually and then tested in a
model using only one neighborhood per decision rule, as using two neighborhoods per rule
may account for the increased percent differences of these classes. After all, not all
transitions were modeled and some transitions have more rules than others, as seen in
Table 3.2.

The slopes were calculated as the difference between the cell counts per 2006 and
2011 over a span of 5 years. The closest slopes correspond to classes medium intensity
developed (23), mixed forest (43), and pasture / hay (81), indicating similar patterns of
growth between the forecast and the NLCD 2011, which supports previous statements.
Similarly, the slopes farthest apart occur for classes 11, 22, 31, and etc., including classes

with high percent differences, and indicates poor performance.
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Table 3.4 - Comparison of Moore Forecasts with NLCD - The prefixes M06, N06, M11, and N11
correspond to abbreviations of the terms Moore 2006, NLCD 2006, Moore 2011, and NLCD 2011 to indicate
results of the results of the predictions for 2006 and 2011 by the Moore model and the NLCD 2006 and 2011,
respectively.

Class MO6 NO6 % M11 N11 % M Slope N Slope
Counts Counts  Difference  Counts Counts Difference (counts/ (counts/
year) year)
11 4,999,382 4,164,424 -20.05 5,467,872 4,280,815 -21.71 93,698 23,278.2
21 515,871 541,206 4.68 513,974 533,816 3.86 -379.4 -1,478.0
22 532,711 541,206 19.03 498,591 655,162 31.40 -6,824 3,226.8

23 279,079 210,095 -32.83 296,229 226,229 -23.82 3,575 3,226.8
24 137,070 112,136 -22.24 142,847 122,585 -14.18 1,155.4 2,089.8
31 72,423 32,247 -124.59 84,465 77,695 -8.01 2,408.4 -9,089.6
41 34,130 17,787 -91.88 47,990 16,999 -64.58 2,772 -157.6
42 1,398,856 1,455,258 3.88 1,354,479 1,285,433 -5.10 -8,875.4  -33,965
43 109,977 77,544 -41.83 113,490 72,386 -36.22 702.6 -1031.6
52 1,163,289 1,156,212 -0.61 1,233,956 1,374,366 11.38 14,133.4 43,630.8
71 223,642 256,527 12.82 246,076 192,553 -21.75 4,486.8 -12,794.8
81 604,548 587,672 -2.97 583,347 561,526 -3.74 -4,240.2  -5,229.2
82 417,517 413,360 -1.01 415,649 400,980 -3.53 -373.6 -2476
90 3,591,269 3,622,337 0.86 3,502,997 3,610,859 3.08 -17,654.4  -2,295.6
95 1,920,236 2,695,293 28.76 1,497,313 1,354,912 72.88 -84,584.6 -21,339.4

Overall, the model performs well as compared to the NLCD 2011. The land cover
forecast for 2011 contains over 12 million matched pixels, equating to a percent agreement
of approximately 76.85% with the NLCD 2011. This is greater than the agreement of the
von Neumann forecast for land cover in 2011 with the NLCD. This is expected, considering
how the Moore rules use a greater number of values for comparison of neighborhoods.
Despite using a mash-up of neighborhoods, the Moore model performs well with a good
agreement of approximately 77%, demonstrating how decision rules based on Moore
neighborhoods and the method of deriving those rules may be used to develop an accurate

model.
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4. Conclusion & Future Work

4.1 Land Cover Mapping Conclusions & Applications

In general, the mapping results showed predominantly vegetation classes of forest,
shrub land, and grassland. The state of Louisiana hosts large amounts of vegetation on its
land surface, promoting the spectral dominance of the endmembers of these classes. This
trumps the detection of urban areas, causing the vegetation endmembers contributing to a
reflectance measurement to have large fractional compositions compared to those of urban
endmembers. Thus, the classification algorithm chooses the vegetation classes over the
urban classes due to the high cumulative sums of the vegetation types. This may be
remedied using different classification methods as adapted for the NLCD classification
scheme. In the future, classification methods such as maximum likelihood, fuzzy, or a score-
based classification should be tested with this method of spectral mixture analysis.

Another source of error is the spectral similarity between the analyzed Landsat
scene and the spectral library. The spectral library was sampled where the relative spectral
response of each Landsat band approached or equaled unity. This attempted to heighten
the spectral similarity between Landsat 5 scenes and the spectral endmembers of urban
materials, because it resulted in urban endmembers occurring in the sub-pixel maps.
Obviously, these sub-pixels classified as urban materials did not have large enough
compositional weights to be classified as urban classes. There are two approaches that
should be tested with the mapping method incorporating VSU. First, in the preprocessing

of each Landsat scene, techniques for computing surface reflectance should be tested with

70



LCCM Using CA Rules Derived from LSI / Vacik

this method. Secondly, the spectral library could be resampled to full-width half maximum
and convolved with the relative spectral response of the Landsat 5 TM sensor and adjusted
for simulated atmosphere to simulate at-satellite reflectance. This latter method can be
challenging due to lack of atmospheric data for each day on which a Landsat scene was
acquired.

Another potential source of error that can be tested in the future includes the use of
the MNDWI to extract water, as it appears to lead to added water being extracted. The
generally used threshold of the MNDWI is 0.0. However, various researchers suggest
adjusting the threshold based on lighting conditions between images in a time series.
Increasing the threshold to 0.2 or 0.3 decreases the amount of pixels carried over as noise
but also decreases the number of pixels extracted as water. The MNDWI could be
eliminated as a means of quickly extracting water features, but eliminating this step would
be accompanied by an increase in processing time. Further analysis into the effects of
thresholding the MNDWI on the mapping results is needed to determine on which route to
proceed.

Although there are significant sources of error in the procedure, this mapping
method using VSU demonstrates it is feasible to map land cover using spectral mixture
analysis techniques, provided the right classification system is used. In small-scale testing,
the single-pass-per-pixel VSU algorithm analyzed a sample size of 100 by 100 with 6 bands
of data in approximately 500 seconds on average with only two criteria used in spectral
matching. In comparison, when implemented in Python, the VMESMA algorithm — without

reiteration through the subset of selected endmembers per pixel to minimize the root mean
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square error of the least-squares solution — with three criteria generally requires 630
seconds on average to analyze the same sample size. When accounting for the reiterative-
per-pixel nature of VMESMA, the temporal difference between these two performance
durations is expected to increase. The method using VSU should be further analyzed for
practical applications, including land cover mapping as attempted in this thesis.

Spectral mixture analysis techniques are applicable to mapping many types of
physical surface features, including sea ice, snow, forest and other dominant vegetation
types, minerals and other earth types, algae, water, urban materials, and other substances.
For example, mapping minerals and other soils may be used to identify lands suitable for
mining and farming. Mapping forests and other vegetation in addition to minerals permits
monitoring of natural environments, such as the amount of land they cover, expanse of fires
or burn damage, or mineral runoff into waterways near mining or drilling operations. Such
applications may then be used to investigate other phenomena. For example, mapping land
cover and then differencing annual land cover datasets leads to the mapping of land cover
change.

The applications of mapping physical surface features other than land cover using
VSU are nearly boundless. Such products may be used in decision making processes, such
as in the cases of identifying where to drill for desired earthen substances or where to plant
to yield the most crops in relation to a viable water source. As with any method, errors
appearing during mapping lead to propagation of errors in further data products, which
can mislead stakeholders in decision making.

Consider a mining company looking for surface characteristics signifying the
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abundance of a valuable mineral (such as oil, coal, or diamonds). The mining company
acquires maps created using a new method with inherent errors and the maps contain false
detection of the surface characteristics signifying a great abundance of their target mineral.
Based on their maps, the company spends millions to mine or drill the indicated site only to
find their site contains limited quantities of their mineral of interest. As a result, the
company experiences no return on their investment and the map makers lose business.
Such errors, which are fixable in the method prior to application, cause large losses
financially and temporally and must be avoided in the real world wherever possible.
Therefore, errors in VSU and classification must be minimized prior to implementation for
any application. Similarly, the errors encountered in this method require correction prior to

large scale application to land cover mapping.

4.2 LCCM Conclusions

In Section 3, land cover changes were modeled using decision rules derived from
analysis of the Moore and von Neumann neighborhoods of a time series of maps covering a
single decade. The results of the neighborhood analysis identified general cases for decision
rules for both von Neumann and Moore neighborhoods. These general neighborhoods
typically included neighbors belonging only the the classes equivalent to the previous state
of the target pixel and the future class with differing numbers of the two classes, forming a
general ratio by type. As these general cases often possess high frequencies of occurrence,
this suggests general rules may be written in the format of these general neighborhoods for
any pair of classes. This observation requires further exploration and testing prior to actual

application. Future research could approach this task by using the methods covered in this
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thesis to map larger locations interspersed throughout the US, or even around the globe.
Future research could also determine if these rules are specific only to the areas studied in
this thesis or are compatible with only similar regions (i.e. environmentally, geographically,
etc.).

The von Neumann land cover forecast for 2011 agreed with the NLCD 2011 by
approximately 66%, a satisfactory result for this model and its general incorporation of
decision rules constructed from von Neumann neighborhoods. The forecast showed
significant degradation of emergent herbaceous wetlands and growth in high intensity
developed areas, indicating potentially overly prolific decision rules. Other land use classes
of pasture / hay and cultivated crops experienced less growth or decline, similar to a few
other vegetated classes.

The Moore land cover forecast for 2011 produced an agreement of approximately
77%. Such a moderately high agreement demonstrates the efficacy of decision rules using a
Moore neighborhood. The forecast also showed large decline in cell counts of emergent
herbaceous wetlands with a corresponding growth in open water cell counts, similar to the
von Neumann model. Other land use classes experienced patterns of growth and decline
similar to those shown in the NLCD. Though, the percent differences between cell counts of
the Moore model were often less than those resulting in the von Neumann model when
comparing their forecasts to the NLCD 2006 and 2011.

Both the von Neumann and Moore models performed satisfactorily, but the Moore
forecast clearly out performs the von Neumann model. This is expected due to the larger

number of elements in the Moore neighborhood, increasing the accuracy of correctly
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transitioning during each iteration of the Moore model as compared to the von Neumann
model. Both models displayed similar errors of cell count trends and of spatial agreement
of cells in the forecast and NLCD maps per year in forecasting land cover changes for
particular land classes, including emergent herbaceous wetlands. In both models, the
trends of growth of open water and of decline of emergent herbaceous wetlands were more
exaggerated than the trends of both classes encountered in the NLCD, as shown by the
lesser loss of emergent herbaceous wetlands cell counts in the NLCD. Such behavior
indicates the inadequacy of the decision rules used for those classes and may be improved
in the future by mapping more areas where these land cover classes occur and change in
relation to other classes. Additionally, patterns of error in the measures of percent
difference between cell counts per class by year may indicate that the neighborhoods
causing annual land cover changes may themselves change annually or with a different
periodicity. This is further stipulated by changes in the NLCD cell counts from 2006 and
2011. These observations require further validation for confirmation.

The agreements between the forecast and NLCD maps for the year 2011 reflect the
spatial agreement between the cells of the two maps per year mapped. The agreements of
66% and 77% of the von Neumann and Moore forecasts, respectively, with the NLCD 2011
demonstrate that 34% and 23% of the cells in the von Neumann and Moore forecasts,
respectively, do not contain the same land cover class code as the NLCD 2011. For example,
there are areas of coniferous forest in the NLCD 2011 which are mixed forest in either or
both of the forecasts and urban areas could possess a land cover code higher than an urban

area in the NLCD 2011. Such errors between similar classes as this must be taken into
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account for calculating the agreement between the two datasets.

This method of deriving rules from classified imagery for implementation in a
forecast model possesses wide applications, including those mentioned in the previous
section, but the following brief discussion will be be applied to land cover change.
Forecasting may be used as a tool for decision making processes in such applications as
wetlands restoration. Consider the case of companies in or near New Orleans, Louisiana,
that possess facilities and employee local citizens of the area. As discussed in the
introduction of this thesis, Louisiana may suffer increased damages from hurricanes in the
future due to wetlands loss and degradation. Local companies could restore wetlands at the
cost of thousands or millions of dollars in order to protect their facilities and their
employees, but they need to know which potential locations of restoration would best
minimize their future damages and the costs of restoration. Forecasting future wetlands
degradation using a rigorous model produce results that, when coupled with other
analyses, may pinpoint areas best suited for restoration while minimizing future hurricane-
related damage and the cost of restoration.

Consider the same scenario using the forecasts given in this thesis, which featured
accelerated degradation of emergent herbaceous wetlands. The accelerated trend would
mislead a company as to future degradation and cause the company to invest too heavily in
wetlands restoration, potentially minimizing future damages while maximizing cost. If a
decelerated trend were encountered, the opposite could occur and the company would
invest too little in wetlands restoration, potentially increasing future damages and

minimizing cost. Such errors are not permissible in a forecast to be used in such a large
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scale endeavor. Thus, prior to application, the neighborhoods and decision rules derived in
this thesis require further validation and testing prior to large scale application.

The satisfactory and good agreements resulting from the von Neumann and Moore
forecasts, respectively, demonstrate how land cover change may be simulated with at
moderately high accuracy using neighborhoods rather than stochastic models.
Furthermore, these results demonstrate how land cover trends may be approximated by
deriving decision rules from analysis of neighborhoods of pixels in a time series of maps.
These results could be improved by mapping other locations where these land cover
classes intermix and a greater time interval should be attempted, as forecasting results are

known to improve with increases in sample sizes.
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