
 Presented to  

the faculty of the School of Engineering and Applied Science 

University of Virginia

in partial fulfillment 

of the requirements  for the degree 

by

Land Cover Change Modeling Using Cellular Automata Rules Derived from Landsat Imagery

Master of Science

S. M. Vacik

2015

August

A Thesis



APPROVAL SHEET

is submitted in partial fulfillment of the requirements 

for the degree of

AUTHOR

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, Dean, School of Engineering and Applied Science

Advisor

Master of Science

The thesis

2015

August

The thesis has been read and approved by the examining committee:

Gerard P. Learmonth, Ph.D.

Barry Horowitz, Ph.D.

John Porter, Ph.D.

           S. M. Vacik



Land	Cover	Change	Modeling	Using	Cellular	Automata	Rules	Derived	from	Landsat	Imagery
Thesis

Presented	in	Partial	Ful�illment	of	the	Requirements	for	the	Degree	Master	ofScience	in	Systems	Engineering	in	the	Graduate	School	ofThe	University	of	Virginia
By

S.	M.	Vacik,	B.S.
Graduate	Program	in	Systems	and	Information	Engineering

The	University	of	Virginia
2015

Thesis	Committee:Gerard	P.	Learmonth,	Ph.D.,	AdvisorJohn	Porter,	Ph.D.,	Committee	MemberBarry	Horowitz,	Ph.D.,	Committee	Chair



LCCM	Using	CA	Rules	Derived	from	LSI	/	Vacik

1

©	2015,	S.	M.	Vacik



LCCM	Using	CA	Rules	Derived	from	LSI	/	Vacik

2

Abstract	Land	cover	generally	describes	categorical	feature	classes	de�ined	by	their	physicalcharacteristics,	such	as	vegetation	or	material	type,	as	seen	on	a	small	parcel	of	surface	areaof	the	Earth.	Land	cover	changes	occur	annually	due	to	such	activities	as	urbandevelopment,	agriculture,	climatic	shifts,	and	natural	disasters	such	as	�ires	and	hurricanes.Observing	land	cover	change	provides	insight	into	trends	due	to	natural	and	manmadeannual	changes	that	can	be	used	to	construct	decision	rules	and	to	model	techniquespurposed	with	preventing	or	mitigating	the	effects	of	extreme	weather	or	climatic	shifts.	Annual	datasets	are	required	for	such	analysis	and	the	United	States	GeologicalSurvey	(USGS)	provides	land	cover	datasets	covering	the	entire	United	States	for	only	theyears	1992,	2001,	2006,	and	2011,	which	cover	a	time	frame	of	19	years.	One	mappingtechnique	called	Variable	Multiple	Endmember	Mixture	Analysis	(VMESMA)	accuratelymaps	physical	characteristics	of	land	but	can	be	computationally	intensive	and	slowdepending	on	its	implementation.	In	this	thesis,	Variable	Spectral	Unmixing	(VSU)	—	a	newand	improved	spectral	mixture	analysis	technique	inspired	by	VMESMA	—	is	presented	toproduce	land	cover	estimates	from	preprocessed	Landsat	imagery	for	the	years	2001through	2011.	VSU	results	correspond	to	physical	surface	material	types,	such	asconiferous	trees	and	arti�icial	substances,	and	are	interpreted	into	land	cover	classes	basedon	material	type	prior	to	overall	classi�ication	by	hierarchal	rules.	Agreements	with	theUSGS	National	Land	Cover	Dataset	(NLCD)	of	less	than	40%	result	due	to	the	classi�icationrules	and	re�lect	the	physical	surface	types	that	meet	the	�irst	rule	within	the	hierarchy.Future	land	cover	mapping	applications	require	new	classi�ication	rules	to	improveinterpretation	of	the	VSU	results	and	the	agreement	of	the	generated	maps	with	the	USGS
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interpretation	of	the	VSU	results	and	the	agreement	of	the	generated	maps	with	the	USGSNLCD.		Land	cover	estimates	are	used	to	develop	Cellular	Atomaton-based	(CA)	decisionrules	to	map	land	cover	change	and	to	forecast	such	changes	into	future	years.	The	CA	rulesare	based	on	the	analysis	of	Moore	and	von	Neumann	neighborhoods	of	a	time	series	ofVSU-generated	maps.	Results	of	the	neighborhood	analysis	revealed	potential	generalneighborhood	structures	for	decision	rules,	which	may	or	may	not	vary	in	time	as	a	resultto	changes	in	the	rates	of	change	of	each	class.	Forecast	results	are	tested	in	a	basic	iterativefashion	using	the	USGS	NLCD	2001	map	as	a	base	case.	Agreements	of	66%	and	77%	of	thevon	Neumann	and	Moore	forecasts,	respectively,	for	the	year	2011	with	the	NLCD	2011demonstrate	the	feasibility	of	land	cover	change	modeling	using	neighborhood-based	CAdecision	rules	and	a	method	for	modeling	land	cover	change	trends	based	on	decision	rulesderived	from	a	time	series	of	maps.
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1.	Introduction

Earth	continues	to	undergo	climatic	shifts	in	response	to	aggravated	environmentalconditions,	such	as	increasing	carbon	dioxide	concentrations	in	the	atmosphere.	Thesechanges	to	the	land	already	disrupt	human	land	use,	as	in	the	case	of	the	historic	droughtaffecting	agricultural	activities	in	California	and	the	unprecedented	heat	waves	cyclingaround	the	globe,	causing	death	in	regions	without	access	to	the	modern	convenience	of	airconditioning.	In	the	case	of	Louisiana,	used	here	without	loss	of	generality,	land	lossthreatens	to	displace	a	large	population	in	addition	to	the	loss	of	lands	used	in	theproduction	of	produce,	petroleum	products,	etc.	due	to	steady	land	subsidence,	sea	levelrise,	and	damaging	weather	events.	This	thesis	focuses	on	the	application	of	land	covermapping	and	change	modeling	techniques	to	the	Louisiana	Gulf	Coast,	but	they	may	beapplied	as	is	or	adapted	for	application	to	the	land	cover	of	other	locations	and	forapplications	other	than	land	cover.According	to	Louisiana’s	Comprehensive	Master	Plan	for	a	Sustainable	Coast(LCMPSC),	Louisiana	lost	1,880	square	miles	of	land	in	the	past	80	years	and	risks	losing	anadditional	1,750	square	miles	of	land	by	2065	[15].	The	state	of	Louisiana	hosts	a	system	oflevees	and	storm	drains	to	assist	in	diverting	�lood	waters	along	the	Mississippi	and	othermajor	waterways	from	residential	and	other	major	infrastructure,	but	these	�lood-diversionsystems	also	prevent	naturally	occurring	sediment	build	up	and	fresh	water	from	reachingwetlands	suffering	erosion	and	other	damage	leading	to	land	loss	[15].	Rising	sea	levels
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wetlands	suffering	erosion	and	other	damage	leading	to	land	loss	[15].	Rising	sea	levels
further	complicate	this	problem.	According	to	the	National	Oceanic	and	AtmosphericAdministration’s	(NOAA)	Tide	and	Currents,	sea	level	currently	rises	by	9.03	millimetersper	year	on	Grand	Isle,	Louisiana,	which	equates	to	a	rate	of	approximately	3	feet	per	100years	[16].	If	this	rate	continues	steadily,	the	mean	seal	level	could	increase	by	1.5	feet	onGrand	Isle,	Louisiana,	by	the	year	2065,	placing	residents	and	their	way	of	life	at	risk.	Though	these	events	are	in	the	future	and	are	inherently	theoretical,	current	trendsappear	to	indicate	a	signi�icant	risk	to	the	livelihoods	of	not	only	the	people	of	Louisiana.Similar	problems	arise	around	the	globe.	Preventive	measures	underway	now	wouldlogically	be	the	best	course	of	action,	but	as	in	the	case	of	any	investment,	such	preventivemeasures	require	estimation	of	their	effectiveness	as	proof	of	their	ability	to	circumvent	arisk	prior	to	receiving	any	support	and,	more	importantly,	actual	funding.	Modeling	andsimulation	can	provide	a	means	for	demonstrating	such	methods.	Land	cover	change	modeling	using	a	cellular	automata	(CA)	approach	offers	theopportunity	to	study	Louisiana’s	land	loss	by	forecasting	changes	in	land	cover	area	andwater	water	area	based	on	current	trends.	It	will	also	enable	testing	the	effectiveness	ofpreventive	techniques	affecting	land	cover	change,	such	as	wetlands	restoration	programs.Prior	to	developing	a	CA-based	land	cover	model,	basic	cellular	automata	land	cover	changerules	must	be	derived,	especially	those	related	to	wetlands	land	cover.Such	analysis	requires	a	time	series	of	land	cover	maps	to	determine	annual	landcover	change	in	land	cover	cell	counts.	The	United	States	Geological	Survey	(USGS)	offersthe	National	Land	Cover	Dataset	(NLCD)	for	the	years	1992,	2001,	2006,	and	2011	—	onlyfour	datasets	for	single	years	over	a	time	span	of	19	years.	Other	datasets	were	found,	but
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four	datasets	for	single	years	over	a	time	span	of	19	years.	Other	datasets	were	found,	but
they	have	coarse	spatial	resolutions	greater	than	100	meters	square.	The	NLCD	has	aspatial	resolution	of	30	meters	and	a	desired	high-level	classi�ication	system,	but	it	lacksdata	for	determination	of	annual	land	cover	change	trends.This	thesis	describes	two	topics:	(1)	creating	a	dataset	approximating	the	NLCD	onan	annual	basis	for	a	period	of	at	least	10	years	and	(2)	using	this	dataset	to	determine	landcover	trends,	particularly	in	the	wetlands	land	cover,	to	develop	decision	rules	for	landcover	change.	The	�irst	topic	is	accomplished	by	using	Variable	Spectral	Unmixing	(VSU)	—a	modi�ied	version	of	the	Variable	Multiple	Endmember	Spectral	Mixture	Analysis(VMESMA)	technique	—	and	hierarchal	classi�ication	rules,	as	covered	in	the	followingsection.	This	method	is	used	to	generate	a	time	series	of	maps,	where	the	Moore	and	vonNeumann	neighborhoods	of	each	pixel	are	analyzed	for	frequency	of	occurrence.	The	topneighborhoods	per	class	transition	are	then	structured	into	decision	rules	and	tested	in	asimple	iterative	model.	The	following	sections	provide	detail	on	these	two	topics.
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2.	Approximating	the	National	Land	Cover	Dataset	Using	

					Variable	Spectral	Unmixing	(VSU)

2.1	Section	OverviewSpectral	mixture	analysis	(SMA)	is	a	sub-pixel	mapping	technique	that	estimates	thefractional	weights	of	a	set	of	spectral	endmembers	whose	spectral	responses	are	believedto	contribute	to	the	response	of	a	given	pixel	[13].	Its	applications	range	from	land	covermapping	to	mineral	mapping.	Different	forms	of	SMA	arise	from	optical	properties	ofsensors	and	the	atmosphere,	such	as	linear	versus	nonlinear	scattering,	as	well	as	due	tomathematical	operations	proposed	in	previous	work.	This	study	relies	on	linear	mixturetechniques.	The	following	section	discusses	research	that	inspired	the	technique	proposedin	this	thesis.For	a	given	pixel	i,	basic	linear	SMA	assumes	a	spectral	response	xi	is	the	linearweighted	sum	of	a	set	of	spectral	responses	of	endmembers,	which	relate	to	a	feature	class,as	expressed	in	equation	(2.1):
(2.1),	where	xi	is	a	vector	of	a	spectral	response	of	the	i-th	pixel;	E	is	a	n	by	m	matrix	with	nspectral	bands	and	m	endmember	responses;	f	is	a	vector	of	m	fractional	weights;	and	e	is	avector	of	residual	errors	[20].		Equation	(2.1)	forms	an	optimization	problem	solvable	usingleast-square	solvers	and	subject	to	two	constraints:	(1)	each	weight	fi	must	be	greater	than
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least-square	solvers	and	subject	to	two	constraints:	(1)	each	weight	fi	must	be	greater	than
or	equal	to	zero,	and	(2)	all	weights	must	sum	to	one	[20].	Using	a	set	of	n	endmembersminimizes	the	errors	in	the	error	vector	e.Basic	SMA	involves	the	selection	and	use	of	a	constant	set	of	a	small	number	ofendmembers	for	the	analysis	of	an	entire	image,	thereby	producing	sub-pixelcompositional	maps	of	each	endmember.	This	technique	is	simple	to	implement	andprovides	estimates	of	the	physical	composition	of	a	pixel	[19].	The	number	of	endmemberspermitted	in	SMA	is	less	than	or	equal	to	the	number	of	bands	in	a	remote	sensing	image	inorder	to	limit	the	root	mean	square	error	of	the	solution	to	the	linear	system	of	equationsper	pixel.	Upon	selection,	the	set	of	endmembers	may	not	be	changed	for	an	image.	As	aresult,	basic	SMA	fails	to	account	for	variations	in	cover	types,	permitting	the	exclusion	ofsome	feature	classes	depending	on	the	selection	of	endmembers	(i.e.	including	onlyendmembers	of	arti�icial	and	soils	rather	than	including	one	or	more	vegetativeendmembers)	and	the	confusion	between	endmembers	if	any	are	spectrally	similar	[19].Additionally,	endmembers	are	selected	to	map	a	speci�ic	feature	classes	(such	as	forest,	soil,or	urban	areas)	for	an	entire	image	and	do	not	correspond	directly	to	physical	surfacematerials	due	to	the	constancy	of	the	set	of	endmembers.	Variations	in	illumination(including	shade)	and	atmospheric	conditions	may	further	increase	errors.Roberts	et	al.	[19]	introduced	the	technique	called	multiple	endmember	spectralmixture	analysis	(MESMA),	which	permits	variations	in	the	number	and	type	ofendmembers	per	pixel	in	an	image	via	strict	selection	criteria	of	endmember	matrices	toproduce	different	two-	and	three-endmember	models.	Their	technique	incorporates	linearSMA	and	presents	a	rigorous	method	for	selecting	a	model	from	several	possible	sets
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SMA	and	presents	a	rigorous	method	for	selecting	a	model	from	several	possible	sets
created	through	combinations	of	endmembers	within	a	library	using	three	criteria	relatedto	the	performance	of	each	model.	MESMA	results	in	compositional	estimates	of	physicalendmembers	rather	than	feature	classes	and	allows	variations	in	cover	types,	improving	onthe	failures	of	basic	linear	SMA.	MESMA	is	less	easily	implemented	compared	to	SMA.As	noted	by	Garcia-Haro	et	al.	[8],	MESMA	is	computationally	intensive	due	to	itsmethod	of	selecting	the	appropriate	model	per	pixel;	it	allows	inconsistencies	inendmember	selection;	and	it	requires	a	library	with	numerous	endmembers,	furtherexacerbating	computation	durations.	Garcia-Haro	et	al.	proposed	an	alternative	methodcalled	Variable	Multiple	Endmember	Spectral	Mixture	Analysis	(VMESMA)	to	address	theerrors	inherent	in	MESMA	and	reduce	its	computation	time.	In	addition	to	these	objectives,VMESMA	addresses	other	issues	with	linear	SMA,	including	reduction	of	errors	related	toillumination	and	atmospheric	conditions	by	standardizing	a	spectral	library.VMESMA	incorporates	a	rigorous	iterative	method	for	selecting	endmembermatrices	and	two	solutions	of	linear	and	standard	unmixing	from	which	to	choose.Standardized	unmixing	further	lowers	the	errors	due	to	the	in�luences	of	illumination	andatmospheric	conditions	on	the	spectral	response	of	a	given	pixel	[8].	The	selection	ofendmembers	begins	with	image	segmentation	to	target	a	feature	class	and	optimizeendmember	matrices	to	identify	the	target.	Prior	to	unmixing,	the	spectral	matchingalgorithm	further	reduces	the	number	of	endmembers	for	a	given	pixel	using	three	criteriawith	thresholds,	including	the	Euclidean	distance,	standardized	Euclidean	distance,	andspectral	angle	matching	as	calculated	in	spectral	space	between	each	endmember	spectraand	the	response	of	the	given	pixel.	Then,	similar	to	MESMA,	VMESMA	reiteratively	passes
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and	the	response	of	the	given	pixel.	Then,	similar	to	MESMA,	VMESMA	reiteratively	passes
through	this	subset	of	satisfactory	endmembers	to	select	those	for	a	model	which	yields	theleast	squares	solution	to	linear	SMA	with	the	minimal	root	mean	square	error.	Though	thismethod	is	more	accurate	than	linear	SMA	and	MESMA,	VMESMA	requires	a	prioriknowledge	of	a	target	area	and	is	applicable	to	small	locations	to	produce	accurate	resultsof	a	target	feature	class.	VMESMA	is	less	computationally	intensive	as	compared	to	MESMAbut	still	requires	extensive	time.	The	method,	called	Variable	Spectral	Unmixing	(VSU),	proposed	in	this	thesissimpli�ies	the	VMESMA	approach	and	applies	it	to	land	cover	mapping	with	a	few	notabledifferences.	First,	the	algorithm	segments	the	image	into	two	components	to	extract	waterfrom	land	using	the	modi�ied	normalized	difference	water	index	(MNDWI),	as	discussed	indetail	in	the	following	section.	All	pixels	extracted	as	water	are	automatically	assigned	thecorresponding	land	cover	class	code	and	passed	over	during	analysis.	Pixels	associatedwith	land	undergo	spectral	matching	and	linear	SMA	prior	to	classi�ication.	The	spectralmatching	algorithm	uses	two	criteria	for	endmember	selection,	namely	standardizedEuclidean	distance	and	spectral	angle	matching	with	standardized	angles	to	attemptreduction	in	computational	costs.	Finally,	it	classi�ies	each	pixel	by	its	fractional	weightsusing	a	set	of	custom	hierarchal	rules.As	compared	with	VMESMA,	the	VSL	method	proposed	here	does	not	require	a
priori	knowledge	of	a	target	location	but	is	computationally	intensive.	Eliminating	a	fewsteps	within	VMESMA	results	in	reduced	computation	duration,	as	implemented	in	thisresearch	in	Python,	but	like	VMESMA	and	MESMA,	mapping	large	regions	such	as	the	entireUnited	States,	would	require	at	least	a	few	years	on	a	single	computer	if	left	un-parallelized.
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United	States,	would	require	at	least	a	few	years	on	a	single	computer	if	left	un-parallelized.
This	method	is	fully	autonomous	with	the	full	spectral	library.	Its	library	may	be	reduced	toeliminate	speci�ic	endmembers	or	endmember	types	that	prevent	detection	of	desired	landcover	classes,	such	as	urban	classes,	as	determined	by	initial	tests	prior	to	mapping	anentire	time	series.	This	new	method	is	discussed	in	detail	in	the	subsequent	sections.	Lastly,in	general,	most	applications	of	spectral	mixture	analysis	use	two	or	three	endmembers,but	this	research	uses	six	endmembers	in	order	to	increase	the	accuracy	of	the	mixtureanalysis	without	comprising	spectral	variability.
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2.2	Methodology

2.2.1	Data	SourcesThis	research	utilizes	imagery	and	spectral	libraries	freely	offered	by	agencieswithin	the	U.S.	government	for	scienti�ic	purposes.	The	following	subsections	brie�lydescribe	the	sources	and	the	data	used	in	this	research.
2.2.1.1	LandsatThe	National	Aeronautic	and	Space	Administration	(NASA)	operates	the	Landsatprogram	for	the	United	States	Geological	Survey	(USGS).	The	Landsat	program	consists	of�ive	retired	and	two	currently	operating	satellites,	each	named	Landsat	with	an	identifyingnumber	in	the	series.		Landsats	7	and	8	currently	image	the	Earth	at	an	altitude	of	705	kmwith	a	revisit	time	of	approximately	16	days	for	any	given	location	on	the	surface	[18].Landsats	prior	to	LS	7	are	no	longer	operational,	but	their	imagery	remains	availablethrough	USGS	EarthExplorer	(an	Internet	tool	used	to	disseminate	Landsat	and	otheroverhead	sources	of	imagery	for	scienti�ic	purposes	for	free).This	research	uses	imagery	captured	by	Landsat	5	Thematic	Mapper	(TM)	andLandsat	7	Enhanced	Thematic	Mapper	Plus	(ETM+).	The	TM	sensor	preceded	the	ETM+	butboth	share	the	same	bands	that	are	used	in	this	research.	Both	the	TM	and	the	ETM+sensors	record	data	for	seven	bands	of	wavelengths,	as	seen	in	Table	2.1	[18].	Each	sensorrecords	a	single	measurement	for	each	band	over	its	corresponding	range	of	wavelengths.Each	band	has	a	square	spatial	resolution	of	30	meters	on	a	side	[18].	NASA	provides	therelative	spectral	responses	for	each	band	of	each	sensor	for	use	in	scienti�ic	studies.	Note,
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relative	spectral	responses	for	each	band	of	each	sensor	for	use	in	scienti�ic	studies.	Note,
however,	that	only	six	bands	are	used	in	this	research.	Band	6,	which	covers	the	thermalinfrared	region	of	the	electromagnetic	spectrum,	is	excluded.

Table	2.1	-	Landsat	5	&	7	Sensor	BandwidthsSatellite Sensor Bands	/	Spectrum Wavelengths	(um)Landsat	5 TM 1	-	Blue 0.45	-	0.52Landsat	7 ETM+ 2	-	Green 0.52	-	0.603	-	Red 0.63	-	0.694	-	NIR 0.76	-	0.905	-	SWIR1 1.55	-	1.757	-	SWIR2 2.08	-	2.35The	USGS	processes	each	Landsat	image	for	geometric	and	radiometric	correctionsprior	to	releasing	each	as	a	Level	1	Product,	which	include	a	single	GeoTIFF	image	perband,	a	world	�ile,	a	metadata	�ile,	and,	if	geometrically	corrected,	a	GeoTIFF	containing	theground	control	points.	The	images	contained	within	each	Level	1	Product	storemeasurements	as	digital	numbers,	which	must	be	converted	to	radiance	and	from	radianceto	re�lectance	prior	to	use	in	any	analysis.	This	research	utilizes	the	Level	1	Products	forimages	captured	by	Landsats	5	and	7	over	bands	1	through	5	and	7	for	the	years	from	2001to	2011.	
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2.2.1.2	Spectral	LibrariesThe	USGS	Spectroscopy	Lab	located	in	Denver,	CO,	offers	the	Digital	Spectral	Library(most	recent	version	splib06a),	which	consists	of	over	1300+	spectra	belonging	to	mineral,soil,	vegetative,	and	arti�icial	materials	[4].	In	general,	each	endmember	spectrum	includesmeasurements	in	units	of	percent	re�lectance	for	the	range	of	wavelengths	of	0.45	to	2.5microns	in	addition	to	metadata	consisting	of	the	each	material’s	classi�ication,	appearance,method	of	measurement,	source,	etc.	Similarly,	the	NASA	Jet	Propulsion	Laboratory	(JPL)provides	the	Advanced	Spaceborne	Thermal	Emission	Re�lection	Radiometer	(ASTER)Spectral	Library,	which	include	spectra	taken	from	images	captured	by	the	ASTER	sensor�lying	on	the	NASA	Terra	satellite	in	addition	to	spectra	from	other	sources,	including	theUSGS	Spectroscopy	Lab	[2].	These	spectral	libraries	are	referred	to	as	the	USGS	and	JPLspectral	libraries	for	the	rest	of	this	document.The	USGS	and	JPL	spectral	libraries	overlap	each	other	in	the	material	types	of	soil,mineral,	and	arti�icial	materials.	The	JPL	spectral	library,	however,	contains	only	fourvegetation	spectra	for	dry	grass,	healthy	grass,	and	deciduous	and	coniferous	trees	[2].	Incomparison,	the	USGS	spectral	library	offers	data	covering	a	wide	selection	of	variousspecies	of	coniferous	and	deciduous	trees	and	shrubs,	grasses	and	herbaceous	plants,rangeland,	wetlands,	cacti,	and	domestic	plants	[4].	When	used	together,	they	provide	awide	selection	of	spectra	for	use	in	analysis.	Both	lack	spectra	for	pasture,	hay,	and	crops.The	exact	reasons	are	not	known.	It	may	be	speculated,	however,	that	these	spectra	wereexcluded	based	on	the	high	spectral	variability	in	such	factors	as	plant	height	and	annualillumination,	varying	growth	and	planting	cycles	by	region,	and	differing	soil	compositions
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illumination,	varying	growth	and	planting	cycles	by	region,	and	differing	soil	compositions
by	region.	As	a	result,	the	land	cover	classes	associated	with	pasture	/	hay	and	cultivatedcrops	are	not	mapped.	Note	that	pasture	and	hay,	excluding	other	vegetation	occurring	inthis	class,	are	spectrally	similar	to	grassland	gramanoid	species.	Thus,	it	may	be	possible	tomap	the	pasture	/	hay	land	cover	class	incorporating	gramanoid	species	using	aclassi�ication	rule.
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2.2.1.3	National	Land	Cover	DatasetThe	third	dataset	used	in	this	research	includes	the	USGS	National	Land	CoverDataset	(NLCD).	The	USGS	preprocesses	Landsat	images	according	to	a	speci�ic	manual	andgenerates	land	cover	maps	using	a	comprehensive	approach	by	�irst	spectrally	clustering	allpixels	into	target	land	cover	classes,	comparing	a	seasonal	time	series	to	establish	classeswhich	change	rapidly	throughout	a	single	year	(such	as	cultivated	cropland),	and	validatesit	with	further	steps,	including	comparisons	to	ancillary	datasets	[21].	This	processrequires	at	least	�ive	years	to	completely	map	the	entire	United	States,	including	Alaska	andHawaii,	and	validate	results.The	NLCD	includes	datasets	for	the	years	1992,	2001,	2006,	and	2011,	but	only	thelast	three	years	utilize	the	same	mapping	criteria	and	will	be	used	as	the	control	dataset	forthis	study.	Each	map	has	a	square	spatial	resolution	of	30	meters	and	utilizes	16	land	coverclasses	for	the	contiguous	United	States	and	Hawaii	[21].	Alaska	requires	an	additional	fourclasses.	All	generated	and	modeled	maps	use	the	same	color	scheme	as	is	captured	by	theNLCD	2011	legend	in	Figure	2.1	(below).
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Figure	2.1	-	NLCD	2011	Legend	[11]

2.2.2	Image	SelectionLand	cover	tends	to	vary	spectrally	due	to	various	reasons,	including	variations	inannual	lighting	conditions	due	to	the	inherent	geometries	of	the	satellite	in	relation	to	theEarth	and	Sun	and	atmospheric	conditions	regardless	of	the	location	of	the	surface	targeton	the	Earth.		The	best	results	of	spectral	mixture	analysis	occur	when	variations	due	tosuch	parameters	as	temporal,	luminary,	and	atmospheric	conditions	are	minimized.Selecting	images	occurring	on	the	same	date	minimizes	temporal	and	luminary	variationsand	ignores	errors	due	to	potential	atmospheric	variations.	Selecting	images	with	limitedto	no	haze	or	cloud	contamination	may	minimize	errors	due	to	atmospheric	conditions.
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to	no	haze	or	cloud	contamination	may	minimize	errors	due	to	atmospheric	conditions.
Unfortunately,	atmospheric	conditions	are	not	guaranteed	to	be	consistent	on	an	annualbasis. In	order	to	minimize	errors	due	to	luminary,	temporal,	and	atmospheric	conditions,images	may	be	selected	from	a	range	of	dates	under	the	condition	that	the	image	containslimited	to	no	haze	or	cloud	contamination.	Glancing	through	the	scenes	available	via	EarthExplorer	demonstrate	the	dif�iculty	in	selecting	a	scene	for	path-row	022-039,	as	Louisianafrequently	lies	under	cloud	cover.	Images	within	the	time	period	of	late	summer	to	late	fall,or	from	July	to	November,	appear	to	occur	with	cloud	contamination	under	20%.	Thisresearch	uses	this	time	frame	as	the	period	as	a	criterion	in	image	selection,	preferringimages	with	cloud	contamination	less	than	20%	occurring	as	close	to	August	1st	aspossible.	Some	images	may	occur	as	early	and	as	late	as	June	and	November,	respectively,due	to	availability	of	images	with	less	than	20%	cloud	contamination.

2.2.3	Preprocessing

NLCD	&	Landsat	Scene	Clipping

The	NLCD	spatial	reference	system	uses	the	North	American	Datum	of	1983(NAD83)	as	the	geodetic	model	and	the	map	projection	of	Albers	Conical	Equal	Area	for	theLower	48	states	(AlbersL48).	This	geodetic	model	and	map	projection	are	used	for	allgeographical	images	in	this	thesis.	The	World	Reference	System	2	(WRS2)	providesshape�iles	for	each	Landsat	scene.	The	shape�ile	for	path-row	022-039	was	reprojected	touse	the	same	geodetic	model	and	map	projection	as	the	NLCD	using	ArcGIS.	Each	NLCDimage	was	clipped	by	the	reprojected	WRS2	path-row	22-39	shape�ile.	Prior	to
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image	was	clipped	by	the	reprojected	WRS2	path-row	22-39	shape�ile.	Prior	to
preprocessing,	all	Landsat	scenes	were	reprojected	to	the	same	geodetic	model	and	mapprojection	as	the	NLCD	and	clipped	using	the	reprojected	shape�ile.	This	eliminates	bandfringing	in	the	Level	1	Product	scenes.

Landsat	Scene	Preprocessing

USGS	offers	the	Level	1	Product	created	from	raw	Landsat	scenes.	The	Level	1Product	records	data	in	the	form	of	digital	numbers	(DN).	Spectral	mixture	analysisanalyzes	data	in	units	of	percent	re�lectance	and,	thus,	the	DN	require	conversion	to	thisunit	of	measurement.	According	to	the	USGS’	MRLC	Image	Processing	Manual,	theconversion	process	consists	of	two	steps:	conversion	from	DN	to	radiance	and	fromradiance	to	percent	re�lectance.	These	conversions	are	performed	using	the	followingequations	(2.2)	and	(2.3),	respectively:
(2.2)

(2.3),	where	λ	is	the	band	number;	L	is	the	at-satellite	radiance	per	band;	Gain	is	the	bandspeci�ic	gain;	Bias	is	the	band	speci�ic	bias;	ρ is	the	at-satellite	re�lectance;	d	is	the	Earth-Sun	distance	in	astronomical	units;	ESUN	is	the	solar	exoatmospheric	spectral	irradiance;	θis	the	sun	elevation	angle	[21].	The	resulting	re�lectance	measurements	are	multiplied	by100.	All	bands	are	stacked	in	order	of	descending	band	number	and	saved	to	a	GeoTIFFprior	to	analysis.	The	values	for	the	solar	exoatmospheric	spectral	irradiance	are	given	in
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prior	to	analysis.	The	values	for	the	solar	exoatmospheric	spectral	irradiance	are	given	in
Table	2.2.	The	value	of	the	distance	between	the	Earth	and	the	Sun	is	referenced	from	a	text�ile	available	from	NASA.

Table	2.2	-	ESUN	Solar	Spectral	IrradiancesBand 1 2 3 4 5 7LS5	TM 1957.000 1826.000 1554.000 1036.000 215.000 80.670LS7	ETM+ 1969.000 1840.000 1551.000 1044.000 225.700 82.070
Prior	to	these	calculations,	the	constants	are	extracted	and	selected	according	toguidelines	set	in	the	USGS	MRLC	Image	Processing	Manual	[21].	All	Landsat	5	scenesoccurring	after	May	2003	are	processed	with	gains	and	biases	speci�ic	to	that	vehicle	andscenes	occurring	prior	to	May	2003	are	processed	with	gains	and	biases	speci�ic	to	Landsat7.	This	makes	Landsat	5	scenes	captured	prior	to	May	2003	compatible	with	Landsat	7scenes	for	analytical	purposes	[21].	To	enable	this	processing,	the	Landsat	5	DN	areconverted	to	Landsat	7	DN	by	the	following	equation	(2.4)	prior	to	the	conversions	fromDN	to	re�lectance:

(2.4),	where	DN7	is	the	Landsat	7	DN;	DN5	is	the	Landsat	5	DN;	and	m	and	i	are	the	slope	andintercept	values,	respectively,	to	the	measurements	in	Table	2.3.
Table	2.3	-	Slope	and	Intercept	ValuesBand 1 2 3 4 5 7Slope	(m) 0.9398 1.7731 1.5348 1.4239 0.9828 1.3017Intercept	(i) 4.2934 4.7289 3.9796 7.032 7.0185 7.6568
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Spectral	Libraries	Sampling

The	USGS	and	JPL	spectral	libraries	contain	measurements	of	percent	re�lectance	forwavelengths	generally	occurring	in	the	bandwidths	of	the	Landsat	TM	and	ETM+	sensors.As	previously	stated,	each	Landsat	sensor	bandwidth	results	in	one	measurement.	In	orderto	simulate	the	spectral	signature	as	seen	by	Landsat,	each	spectral	signature	of	thecombined	spectral	library	is	sampled	at	the	wavelength	corresponding	to	where	therelative	spectral	response	of	each	Landsat	5	TM	sensor	bandwidth	equals	or	is	closet	toone.	This	provides	variation	per	band	within	the	library	but	does	not	fully	simulate	thespectral	response	seen	with	atmosphere.	The	wavelengths	corresponding	to	the	points	ineach	Landsat	5	TM	bandwidth	at	which	the	relative	spectral	response	equals	or	approachesone	ares	given	in	Table	2.4.
		

Table	2.4	-	LS5	TM	Relative	Spectral	Response	PointsBand 1 2 3 4 5 7Wavelength(μm) 503 594 677 800 1711 2199
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2.2.4	Variable	Spectral	Unmixing	(VSU)

2.2.4.1	Algorithm	OverviewThe	Variable	Spectral	Unmixing	(VSU)	algorithm	iterates	once	per	pixel	through	thefollowing	steps	prior	to	classifying	a	pixel	as	a	land	cover	class:
1. Spectral	Matching2. Spectral	Mixture	Analysis3. Classi�icationEach	process	involves	a	series	of	steps	relying	on	calculations	from	re�lectance	datain	an	effort	to	reduce	processing	durations	from	requiring	a	few	minutes	per	pixel	to	mereseconds.	Additionally,	the	third	step	of	classi�ication	represents	an	algorithm	with	a	generalpurpose	of	interpreting	the	results	of	Spectral	Matching	and	Spectral	Mixture	Analysis	toidentify	a	feature	class	pertaining	to	the	given	pixel.	In	this	case,	the	classi�ication	algorithmidenti�ies	an	appropriate	land	cover	class,	but	it	may	be	replaced	with	rules	to	map	otherphysical	surface	features	of	interest	for	other	applications,	including	but	not	limited	tomapping	minerals,	burnt	areas,	sea	ice,	snow	cover,	or	crops.	The	following	subsectionsdetail	the	underlying	methodology	of	each	step.
2.2.4.2	Extraction	of	WaterLarge	areas	of	water	lie	in	some	of	the	locations	to	be	mapped	for	this	analysis.	Inorder	to	quicken	the	mapping	process,	areas	of	water	are	extracted	prior	to	and	passedover	during	mapping.	The	algorithm	makes	use	of	the	modi�ied	normalized	differencewater	index	(MNDWI),	as	seen	in	Eq.	2.5	below,	where	Green	corresponds	to	band	2	(B2)
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water	index	(MNDWI),	as	seen	in	Eq.	2.5	below,	where	Green	corresponds	to	band	2	(B2)
and	MIR	corresponds	to	band	5	(B5)	[22].	As	recommended	by	Xu,	the	MNDWI	has	athreshold	on	the	range	of	[0.0,1.0]	in	order	to	extract	all	water	pixels.	However,	some	pixelsbelonging	to	land	cover	classes	with	spectral	similarities	to	water	may	also	be	extracted.These	land	features	include	water-infused	earthen	materials,	such	as	mud,	clay,	and	sand,and	water-	or	oil-covered	urban	materials,	such	as	some	heavily	traf�icked	roadwayscontaining	oil	or	other	materials	leaking	from	passing	vehicles.	

(2.5)
2.2.4.3	Spectral	MatchingSpectral	matching	aims	to	identify	and	select	the	endmembers	to	include	in	spectralmixture	analysis.	This	sub-algorithm	begins	by	calculating	the	standard	vectors	of	the	givenpixel	and	every	endmember	within	the	spectral	library	using	Eq.	(2.11)	in	Table	2.6.	Eqs.(2.9)	and	(2.10)	calculate	the	standard	Euclidean	distance	and	the	spectral	angle	of	eachendmember’s	re�lectance	vector	with	respect	to	that	of	the	given	pixel	using	thestandardized	and	unstandardized	data,	respectively.	Spectral	angles	undergostandardization	using	Eq.	(2.11)	in	order	to	simplify	sorting.	Results	are	sorted	indescending	order	in	order	of	preference	for	standard	Euclidean	distance	values	overspectral	angles	and	then	in	descending	order	of	spectral	angles.	This	produces	an	arraywith	the	endmembers	with	minimal	distance	and	angle	values	at	the	top.	
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Table	2.5	-	Parameters,	Equations,	&	Thresholds	for	Spectral	MatchingTechnique Equation Eq.	No. ThresholdStandard	EuclideanDistance	[13] 2.9 1	unit
Spectral	Angle	[13] 2.10 1	degree*
Standard	Vector	[13] 2.11 N/A

*	After	standardization	of	the	vector	of	spectral	angles.A	secondary	sort	extracts	the	sorted	endmembers	according	to	those	whosedistances	and	angles	meet	the	limits	given	in	Table	2.6.	Eqs.	(2.9)	and	(2.10)	produce	valueson	the	real	line	with	a	minimum	of	0.	According	to	de	Jong,	et	al.	[13],	endmembers	withdistances	of	0	units	and	angles	of	0	degrees	are	perfect	matches	and	endmembers	withvalues	closest	to	0	are	near	perfect	matches.	Endmembers	with	distances	and	angles	withinthe	range	of	[0,1]	are	acceptable	matches.The	calculations	used	within	this	sub-algorithm	may	produce	a	number	of	matchesless	than	or	greater	than	the	number	of	bands	within	the	image.	If	the	number	ofendmembers	is	less	than	the	number	of	bands,	then	all	endmembers	are	selected.	If	thenumber	of	endmembers	equals	or	surpasses	the	number	of	bands,	then	only	the	�irst	sixendmembers	are	selected	because	they	possess	the	smallest	distance	and	angle	values	thatminimize	the	root	mean	square	error	of	the	least	squares	solution	of	Eq.	(2.1).	Prior	topassing	the	matched	endmembers	to	the	next	step,	this	sub-algorithm	constructs	a	matrixfrom	the	re�lectance	measurements	of	the	selected	endmembers	with	the	spectralsignatures	of	each	endmember	occupying	a	column.
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2.2.4.4	Spectral	Mixture	AnalysisBoth	MESMA	and	VMESMA	solve	Eq.	(2.1)	as	a	least-squares	optimization	problemwith	differences	in	the	constraints.	This	VSU	method	solves	Eq.	(2.1)	without	constraintsusing	a	least	squares	solver	provided	by	the	linear	algebra	submodule	in	NumPy.	Theresults	are	real	numbers	which	are	normalized	to	meet	the	constraints	generally	used	inlinear	spectral	mixture	analysis	and	as	given	in	Section	2.1.	The	least	squares	solvercalculates	the	residual	error	(the	root	mean	square	error)	associated	with	the	solution	andthis	error	is	recorded	for	a	later	calculation	of	the	mean	residual	error	of	the	modi�iedMESMA.
2.2.4.5	Classi�ication	by	Endmembers	and	RulesResults	of	spectral	mixture	analysis	receive	preliminary	sub-pixel	classi�icationbased	on	the	link	between	the	material	type	to	which	an	endmember	belongs	and	a	basicland	cover	class	(such	as	coniferous	or	deciduous	forest	and	cultivated	crops).	Endmemberswithin	spectral	libraries	are	classi�ied	by	overarching	material	types,	which	includemanmade	or	arti�icial	substances;	soils,	rocks,	and	other	earthen	substrates;	water	phases;and	vegetation.	Vegetation	is	subdivided	into	the	subcategories	of	coniferous	anddeciduous	trees,	shrubs	and	scrubs,	herbaceous	plants,	grasses,	wetlands,	and	crops	[4][2].Note	that	some	categorical	systems	of	vegetation	may	segment	hay	and	pasture	into	its	owncategory	in	recognition	of	its	corresponding	land	use.	For	basic	land	cover	classesbelonging	to	a	single	category,	endmembers	of	the	same	category	may	be	linked	to	thecorresponding	class.	For	example,	endmembers	belonging	to	the	material	types	of
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corresponding	class.	For	example,	endmembers	belonging	to	the	material	types	of
manmade	/	arti�icial	substances	and	coniferous	trees	lead	to	preliminary	classi�ication	asdeveloped	and	evergreen	forest,	respectively.	These	links	are	shown	in	Table	2.4.Post	sub-pixel	classi�ication,	a	predominant	land	cover	class	is	assigned	based	onrules	adapted	from	the	USGS	NLCD	classi�ication	scheme	and	its	criteria,	as	seen	in	Table2.4.	As	calculated	by	SMA,	the	compositional	weights	represent	the	estimated	percentage	ofa	material	type	contributing	to	the	land	cover	of	a	given	pixel.	The	compositional	weightsbelonging	to	the	same	material	type	are	summed	to	calculate	the	cumulative	compositionsby	material	type	and,	hence,	basic	land	cover	types	belonging	to	pure	land	cover	classes.	Asa	result	of	the	mixed	pixel	problem,	pixels	of	medium	to	large	coarse	spatial	resolutionsmay	contain	multiple	land	cover	types	within	their	area	[13].	Thus,	the	classi�ication	rulesadapted	from	criteria	in	Table	2.6	assign	a	predominant	class	to	a	given	pixel	based	onpreliminary	sub-pixel	classi�ication	and	the	cumulative	composition	weights	by	materialtype.	Note,	only	the	classes	found	in	the	contiguous	US	are	presented	in	Table	2.6.	The	tableexcludes	classes	found	only	in	Alaska,	as	they	are	not	encountered	naturally	in	the	studylocation.

Table	2.6	-	USGS	NLCD	Classi�ication	Classes,	Codes,	Criteria,	&	Corresponding	MaterialsClass	/	Code Criteria Material	TypeOpen	Water,	11 Areas	of	open	water,	generally	with	less	than	25%cover	of	vegetation	or	soil. Liquid	water
PerennialIce/Snow,	12 Areas	characterized	by	a	perennial	cover	of	ice	and/orsnow,	generally	greater	than	25%	of	total	cover. Solid	water
Developed,	OpenSpace,	21 Areas	with	a	mixture	of	some	constructed	materials,but	mostly	vegetation	in	the	form	of	lawn	grasses.Impervious	surfaces	account	for	less	than	20%	oftotal	cover.	These	areas	most	commonly	include	large-lot	single-family	housing	units,	parks,	golf	courses,and	vegetation	planted	in	developed	settings	forrecreation,	erosion	control,	or	aesthetic	purposes.

Manmadematerials

Developed,	Low Areas	with	a	mixture	of	constructed	materials	and Manmade
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Developed,	Low
Intensity,	22

Areas	with	a	mixture	of	constructed	materials	and
vegetation.	Impervious	surfaces	account	for	20%	to49%	of	total	cover.	These	areas	most	commonlyinclude	single-family	housing	units.

Manmade
materials

Developed,Medium	Intensity,23 Areas	with	a	mixture	of	constructed	materials	andvegetation.	Impervious	surfaces	account	50%	to	79%of	the	total	cover.	These	areas	most	commonly	includesingle-family	housing	units.
Manmadematerials

Developed,	HighIntensity,	24 Highly	developed	areas	where	people	reside	or	workin	high	numbers.	Examples	include	apartmentcomplexes,	row	houses,	and	commercial/industrial.Impervious	surfaces	account	for	80%	to	100%	of	thetotal	cover.
Manmadematerials

Barren	Land(Rock/Sand/Clay),31 Areas	of	bedrock,	desert	pavement,	scarps,	talus,slides,	volcanic	material,	glacial	debris,	sand	dunes,strip	mines,	gravel	pits,	and	other	accumulations	ofearthen	material.	Generally,	vegetation	accounts	forless	than	15%	of	total	cover.
Minerals,	rocks,soils,	sand,	clay,etc.

Deciduous	Forest,41 Areas	dominated	by	trees	generally	greater	than	5meters	tall,	and	greater	than	20%	of	total	vegetationcover.	More	than	75%	of	the	tree	species	shed	foliagesimultaneously	in	response	to	seasonal	change.
Deciduous	trees

Evergreen	Forest,42 Areas	dominated	by	trees	generally	greater	than	5meters	tall,	and	greater	than	20%	of	total	vegetationcover.	More	than	75	of	the	tree	species	maintain	theirleaves	all	year.	Canopy	is	never	without	green	foliage.
Coniferous	trees

Mixed	Forest,	43 Areas	dominated	by	trees	generally	greater	than	5meters	tall,	and	greater	than	20%	of	total	vegetationcover.	Neither	deciduous	nor	evergreen	species	aregreater	than	75%	of	total	tree	cover.
Deciduous	andconiferous	trees

Shrub	/	Scrub,	52 Areas	dominated	by	shrubs;	less	than	5	meters	tallwith	shrub	canopy	typically	greater	than	20%	of	totalvegetation.	This	class	includes	true	shrubs,	youngtrees	in	an	early	successional	stage	or	trees	stuntedfrom	environmental	conditions.
Shrubs	and	scrubs

Grassland	/Herbaceous	,	71 Areas	dominated	by	gramanoid	or	herbaceousvegetation,	generally	greater	than	80%	of	totalvegetation.	These	areas	are	not	subject	to	intensivemanagement	such	as	tiling	,	but	can	be	utilized	forgrazing.
Grasses	andherbaceous	plants

Pasture	/	Hay,	81 Areas	of	grasses,	legumes,	or	grass-legume	mixturesplanted	for	livestock	grazing	or	the	production	of	seedor	hay	crops,	typically	on	a	perennial	cycle.Pasture/hay	vegetation	accounts	for	greater	than20%	of	total	vegetation.
Grasses	andherbaceous	plants

Cultivated,	Crops,82 Areas	used	for	the	production	of	annual,	crops,	suchas	corn,	soybeans,	vegetables,	tobacoo,	and	cotton,and	also	perennial	woody	crops	such	as	orchards	andvineyards.	Crop	vegetation	accounts	for	greater	than20%	of	total	vegetation.	This	class	also	including	allland	being	actively	tilled.
Crops
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Woody	Wetlands,90 Areas	where	forest	or	shrub	land	vegetation	accountsfor	greater	than	20%	of	vegetative	cover	and	the	soilor	substrate	is	periodically	saturated	with	or	coveredwith	water.	
Deciduous	andconiferous	trees

EmergentHerbaceousWetlands,	95 Areas	where	perennial	herbaceous	vegetationaccounts	for	greater	than	80%	of	vegetative	cover	andthe	soil	or	substrate	is	periodically	saturated	with	orcovered	with	water.
Wetlands

The	classi�ication	rules	derived	from	the	USGS	NLCD	classi�ication	criteria	in	Table2.6	are	shown	in	Figure	2.2.	After	the	initial	sub-pixel	classi�ication	and	the	cumulative	sumof	compositional	weights	by	material	type,	the	classi�ication	rules	decide	on	the	�inal	labelfor	a	given	pixel.	Each	rule	uses	three	criteria	for	determining	the	�inal	land	cover	class	andthese	include:	(1)	whether	the	target	class	of	the	rule	occurs	in	the	sub-pixel	classi�ication;(2)	whether	the	cumulative	compositional	weight	of	the	target	class	meets	a	set	threshold;and	(3)	whether	the	number	of	material	types	with	cumulative	weights	below	the	weight	ofthe	target	class	equals	the	number	of	material	types	minus	one	as	an	attempt	to	ensure	theclass	has	the	maximal	cumulative	weight.	If	these	three	conditions	are	met,	then	the	pixel	isclassi�ied	as	the	target	class	of	the	rule.The	developed	and	the	woody	wetlands	classes	are	exempt	from	this	rule	formatdue	to	their	mixed	nature.	Due	to	the	varied	ranges	of	the	developed	classes,	thecorresponding	rules	use	only	the	�irst	and	second	criteria	for	classi�ication.	The	woodywetlands	class	is	either	not	included	due	to	a	lack	of	endmembers	or	is	validated	using	anancillary	dataset	and	a	logic	expression	of	whether	the	pixel	in	the	mapped	area	containsone	of	the	three	forest	classes.	Note,	in	Figure	2.2,	Clazz	is	a	vector	containing	the	sub-pixelclassi�ication	by	endmembers,	Mats	is	a	vector	containing	the	cumulative	sum	of	all	weightsper	endmember	type,	and	Over	is	the	�inal	classi�ication.
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Mats	=	Mixes6(W,	Eye)	#	calculates	the	cumulative	sum	of	all	weights	of	the	same	typeOver	=	-1																	#C	=	[Manmade,	Soils/Rocks,	Water,	Domestic,	Grasses,	Herbs,	Deciduous,	Coniferous,Shrubs/Scrubs,	Hay,	Crops,	Wetlands]													if	Index	==	1	and	Mats[2]	>	0.2:							Over	=	11		else:								if	21	in	Clazz	and	0.07	<	Mats[0]	<	0.2	and	sum(x	>	Mats[0]	for	x	in	Mats)	>=	4:																Over	=	21									elif	21	in	Clazz	and	0.2	<=	Mats[0]	<	0.5	and	sum(x	>	Mats[0]	for	x	in	Mats)	>=	5:																	Over	=	22									elif	21	in	Clazz	and	0.5	<=	Mats[0]	<	0.8	and	sum(x	<	Mats[0]	for	x	in	Mats)	>=	5:																	Over	=	23										elif	21	in	Clazz	and	0.8	<=	Mats[0]	<=	1.0	and	sum(x	<	Mats[0]	for	x	in	Mats)	>=	5:																		Over	=	24																															if	31	in	Clazz	and	Mats[1]	>	0.15	and	(sum(x	<	Mats[1]	for	x	in	Mats)	==	11	or	(sum(x	<	Mats[1]for	x	in	Mats)	>=	7	and	sum(Mats[4:12])	<	0.2)):																		Over	=	31												elif	71	in	Clazz	and	(Mats[4]	>	0.4	or	Mats[5]	>	0.5	or	sum(Mats[4:6])	>	0.4)	and	(sum(x	<Mats[4]	for	x	in	Mats)	>=	8	or	sum(x	<	Mats[5]	for	x	in	Mats)	//>=	8	or	sum(x	<	(Mats[4]	+	Mats[5])	for	x	in	Mats)	>=	8):																			Over	=	71													elif	42	in	Clazz	and	Mats[7]	>	0.7	and	(sum(x	<	Mats[7]	for	x	in	Mats)	==	11	or	(Mats[7]	>Mats[6]	and	Mats[6]	<	0.5	and	sum(x	<	Mats[7]	for	x	in	Mats)	 //==	10)):																			Over	=	42														elif	41	in	Clazz	and	Mats[6]	>	0.7	and	(sum(x	<	Mats[6]	for	x	in	Mats)	==	11	or	(Mats[6]	>Mats[7]	and	Mats[7]	<	0.5	and	sum(x	<	Mats[6]	for	x	in	Mats)	 //	==	10)):																				Over	=	41															elif	41	in	Clazz	and	42	in	Clazz	and	0.4	<	Mats[6]	<	0.7	and	0.4	<	Mats[7]	<	0.7	and	sum(x	<sum(Mats[6:8])	for	x	in	Mats)	==	10:																				Over	=	43															elif	52	in	Clazz	and	Mats[8]	>	0.5	and	sum(x	<	Mats[8]	for	x	in	Mats)	==	11:																				Over	=	52															elif	(71	in	Clazz	or	81	in	Clazz)	and	(0.2	<	Mats[4]	<	0.5	or	0.2	<	Mats[5]	<	0.5	or	0.2	<(Mats[4]	+	Mats[5])	<	0.5)	and	(sum(x	<	Mats[4]	for	x	in	Mats)	==	 //11	or	sum(x<	Mats[5]	for	x	in	Mats)	==	11	or	sum(x	<	(Mats[4]	+	Mats[5])	for	x	in	Mats)	==	10):																				Over	=	81															elif	82	in	Clazz	and	Mats[10]	>	0.3	and	sum(x	<	Mats[10]	for	x	in	Mats)	==	11:																				Over	=	82															elif	95	in	Clazz	and	Mats[11]	>	0.8	and	sum(x	<	Mats[11]	for	x	in	Mats)	==	11:																				Over	=	95																							if	Over	<=	0:																Over	=	Clazz[0]
Figure	2.2	-	Code	snippet	showing	classi�ication	rules	used	with	VSU
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2.2.5	Error	AnalysisAs	the	purpose	of	this	mapping	procedure	is	to	create	a	time	series	of	land	covermaps	comparable	to	the	NLCD,	the	years	of	2001,	2006,	and	2011	are	mapped	for	erroranalysis	and	validation	against	the	NLCD.	Two	methods	used	in	the	error	analysis	includethe	calculation	of	the	percent	agreement	between	the	generated	maps	and	the	NLCD	and	anerror	matrix.	The	percent	agreement	is	calculated	by	taking	the	difference	of	the	NLCD	andgenerated	map	images,	counting	the	number	of	zeros	signifying	a	perfect	match,	anddividing	this	count	by	the	total	number	of	pixels	encompassing	the	mapped	location.	Theerror	matrix	is	generated	by	comparing	the	generated	maps	to	the	corresponding	NLCDand	counting	the	land	cover	transitions	from	the	mapped	dataset	to	the	NLCD.	The	errormatrix	shows	where	classes	in	the	NLCD	are	mistaken	for	other	classes	in	the	generatedmap. Direct	comparison	between	the	generated	maps	and	the	NLCD	is	recognized	to	be	arough	measure	of	agreement	due	to	differences	in	mapping	methods.	The	USGS	producesthe	NLCD	using	a	rigorous	procedure	of	preliminary	unsupervised	spectral	clustering	ofmulti-temporal	Landsat	scenes	from	the	same	target	year,	followed	by	extensive	validationprocesses	using	human	expertise	in	pattern	recognition	and	ancillary	datasets	whereas	theVSU	method	is	a	single-pass,	autonomous	mapping	method	using	hierarchal	classi�icationrules	derived	from	the	NLCD	classi�ication	criteria.	Due	to	this,	the	results	of	this	methodshould	be	further	validated	using	photo-interpretative		techniques.
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2.3	Results	&	DiscussionFigures	2.3,	2.4,	and	2.5	show	the	mapping	results	for	the	same	years	correspondingto	the	NLCD	for	the	image	spatial	coordinates	of	the	upper	left	hand	corner	of	each	image:[2100,1900],	[3620,1060],	and	[5450,4650],	respectively.		Refer	to	the	NLCD	legend	inFigure	2.1	in	Section	2.2.1.3	to	see	the	class-color	coordination.	Each	location	mapped	forthe	years	2001,	2006,	and	2011	show	changes	in	the	following	land	cover	changesrespectively:	forest,	shrub	land,	grassland,	pasture/hay,	and	woody	wetlands;	developed,pasture	/	hay,	cultivated	crops,	and	woody	wetlands;	and	emergent	herbaceous	wetlandsand	water.	The	following	presentation	of	results	and	discussion	focuses	primarily	ongraphical	comparisons	of	the	VSU-generated	maps	with	the	USGS	NLCD.When	compared	visually,	there	are	areas	of	similarly	classi�ied	and	misclassi�iedpixels	between	the	VSU-generated	maps	and	the	NLCD.	For	example,	in	the	upper	left-handcorner	of	the	�irst	locale	(A)	in	Figures	2.3,	2.4,	and	2.5,	the	NLCD	features	large	areas	ofland	belonging	to	the	grassland,	shrub	land,	and	coniferous	forest	classes	in	2001,	whichgradually	change	to	predominantly	coniferous	forest	in	2011.	In	comparison,	the	same	areaof	the	VSU-generated	maps	of	the	�irst	locale	(B)	feature		a	mixture	of	grassland,	shrub	land,and	coniferous	forest	in	2001	that	transmutes	to	predominantly	coniferous	forest	in	2011.While	the	same	trend	of	land	cover	change	from	a	mixture	of	grassland,	shrub	land,	andconiferous	forest	to	paramount	coniferous	forest	is	seen	in	both	datasets,	differences	existbetween	the	two	time	series	for	the	single	locale.	The	2001	VSU-image	in	Figure	2.3	(B)	ofthe	upper	left-hand	corner	features	a	mixture	of	shrub	land	and	deciduous	forest	amidgrassland	and	coniferous	forest	where	the	NLCD	contains	shrub	land	surrounded	by
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grassland	and	coniferous	forest	where	the	NLCD	contains	shrub	land	surrounded	by
grassland	and	coniferous	forest.	For	the	upper	left-hand	corner	in	Figure	2.4	(B),	the	regionin	2006	shows	mixtures	of	shrub	land,	deciduous	forest,	and	coniferous	forest	whereas	theNLCD	2006	in	Figure	2.4	(A)	shows	a	similar	mixture	to	its	previous	state	in	2001.	In	Figure2.5,	the	same	region	in	the	upper	left-hand	corner	of	the	VSU-generated	image	(B)	and	theNLCD	2011	(A)	changed	to	predominantly	coniferous	forest,	but	the	NLCD	2011	and	VSU-generated	2011	image	feature	shrub	land	and	grassland	respectively	in	a	few	surroundingareas,	respectively.	Similar	examples	may	be	found	upon	examination	of	the	images	inFigures	2.3,	2.4,	and	2.5,	and	they	will	be	discussed	brie�ly	in	the	rest	of	this	section	inaddition	to	other	observed	errors.These	overarching	classi�ications	for	vegetation	types	of	deciduous	and	coniferoustrees,	shrub	land,	and	grassland	occur	due	to	spectral	similarities	between	vegetation	typesand	due	to	the	hierarchal	structure	and	order	of	the	classi�ication	rules.	Shrubs	and	scrubscover	a	wide	range	of	plants	consisting	of	woody	stems	and	of	either	coniferous	ordeciduous	foliage	characterized	by	needles	and	broad,	�lattened	leaves,	respectively.	Asstated	in	Table	2.6,	shrub	and	scrub	land	plants	grow	to	maximal	heights	under	�ive	metersand	these	classes	may	include	young	trees	under	this	height	limit.	As	a	result,	shrub	landpossesses	similar	spectral	signatures	to	deciduous	and	coniferous	forest,	leading	tomisinterpretation	in	classi�ication	as	a	result	of	these	vegetation	types	occurring	in	theunmixing	results.	Similarly,	grassland	includes	gramanoid	species	which	may	reach	heightsof	low	to	moderately	high	scrubs	and	shrubs	and	these	two	vegetation	types	may	occurnaturally	in	grassland,	causing	spectral	similarity	between	grassland	and	shrub	landclasses.	The	results	of	SMA	re�lect	estimates	of	physical	materials	identi�ied	as	endmembers
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classes.	The	results	of	SMA	re�lect	estimates	of	physical	materials	identi�ied	as	endmembers
detected	during	spectral	matching	[13],	and	VSU	permits	multiple	endmembers	permaterial	type,	allowing	cumulative	weights	of	material	types	to	vary	per	pixel	in	an	attemptto	improve	classi�ication	results.	Thus,	misinterpretations		may	occur	due	to	the	cumulativeweight	of	multiple	endmembers	of	the	same	material	type	occurring	in	the		VSU	results	anda	lack	of	proper	rules	or	another	system	to	resolve	these	incidents	of	spectral	similaritiesinto	an	appropriate	land	cover	class.Additionally,	the	classi�ication	results	in	Figures	2.3,	2.4,	and	2.5	correspond	to	thematerial	types	whose	cumulative	weights	met	the	conditions	in	the	rules	shown	in	Figure2.2	but	they	also	re�lect	the	order	and	hierarchal	structure	of	those	rules.		Grassland	andconiferous	forest	occur	early	in	the	hierarchal	structure	and	experience	high	proliferationin	all	three	images	of	Figures	2.3,	2.4,	and	2.5	(B)	as	shown	by	the	large	swaths	of	land	inthe	colors	corresponding	to	these	classes.	For	example,	in	the	case	of	the	upper	left-handcorner	of	the	�irst	locale	(B)	in	Figures	2.3,	2.4,	and	2.5,	coniferous	forest	arises	due	tohaving	a	high	cumulative	weight	or	a	cumulative	weight	greater	than	the	weight	of	thedeciduous	forest	material	type	and	this	rule	occurs	prior	to	the	rules	of	deciduous	andmixed	forest	and	shrub	land	but	after	grassland.	Similar	structures	of	the	other	rules	allowthose	classes	to	occur	in	the	�inal	results,	though	a	class	lower	in	the	hierarchy	may	be	abetter	interpretation,	but	their	order	in	the	hierarchy	contributes	to	their	proliferation	inthe	�inal	map.		Thus,	the	mapped	land	cover	classes	represent	a	base	material	type	with	alarge	cumulative	weight	or	the	dominant	physical	characteristic	of	the	land,	namely	pureland	cover	classes,	rather	than	their	intended	or	correct		classes	due	to	the	hierarchalclassi�ication	rules.	
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These	trends	are	seen	in	the	other	locales,	but	limited	detection	of	urban	classes	andwetlands	also	appear.	In	the	third	locale	(NLCD	and	VSU-generated	images	(E)	and	(F),respectively,	in	Figures	2.3,	2.4,	and	2.5),	grassland	and	shrub	land	were	classi�ied	in	theVSU-generated	images	as	opposed	to	being	classi�ied	as	emergent	herbaceous	wetlands.Woody	wetlands	include	large	quantities	of	coniferous	and	deciduous	trees,	shrubs,	andscrubs	whereas	emergent	herbaceous	wetlands	include	gramanoid	and	herbaceous	species,which	may	include	herbaceous	shrubs.	Thus,	the	grassland	and	shrub	land	classi�ied	in	thethird	locale	are	the	same	vegetation	types	as	those	encountered	in	emergent	herbaceouswetlands.	They	are	misclassi�ied	due	to	the	VSU	results	including	these	endmembers	andmeeting	the	conditions	required	for	these	classes	in	the	hierarchal	rules	prior	to	the	rulefor	emergent	herbaceous	wetlands.	Another	possibility	is	the	low	spectral	similaritybetween	the	few	wetlands	endmembers	and	the	pixel	re�lectance	measurements,	whichmay	be	countered	by	acquiring	more	spectra	for	wetlands.	Further	problems	with	thislocale	are	discussed	later	in	this	section.	In	the	second	locale	(NLCD	and	VSU-generatedimages	(C)	and	(D),	respectively,	in	Figures	2.3,	2.4,	and	2.5),	vegetation	types	of	grassland,shrub	land,	and	forest	approximate	the	general	vegetation	encountered	in	urban	areas,including	trees	and	grasses.	This	signi�ies	the	dominance	of	the	vegetation	types	overarti�icial	and	manmade	materials	associated	with	the	developed	classes	as	a	result	ofgreater	spectral	similarity	between	the	vegetative	endmembers	with	the	pixel	re�lectancemeasurements	and	the		limited	classi�ication	of	urban	areas	due	to	the	break	in	thehierarchal	rules	between	the	urban	classes	and	the	following	rules.
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																			(A) 																							(B)

	 																								(C) 																									(D)

																						(E) 																										(F)
Figure	2.3	-	2001	Mapping	Results	versus	the	NLCD	2001	by	Locale:	(A)	NLCD	2001[2100,1900];	(B)	Mapped	2001	[2100,1900];	(C)	NLCD	2001	[3620,1060];	(D)	Mapped	2001	[3620,1060];(E)	NLCD	2001	[5450,4650];		(F)	Mapped	2001	[5450,4650].	Black	pixels	are	unclassi�ied.
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																					(A) 																								(B)

					 																							(C) 																										(D)

																						(E) (F)
Figure	2.4	-	2006	Mapping	results	versus	NLCD	2006	by	locale:	(A)	NLCD	2006	[2100,	1900];	(C)NLCD	2006	[3620,1060];	(E)	NLCD	2006	[5450,4650];	(B)	Mapped	2006	[2100,1900];	(D)	Mapped	2006[3620,1060];	(F)	Mapped	2006	[5450,4650].	Black	pixels	are	unclassi�ied.
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																				(A) 																										(B)

																						(C) 																										(D)

	 																						(E) 																									(F)
Figure	2.5	-	2011	Mapping	Results	versus	NLCD	2011	by	locale:	(A)	NLCD	2011	[2100,1900];	(C)NLCD	2011	[3620,1060];	(E)	NLCD	2011	[5450,	4650];	(B)	Mapped	2011	[2100,1900];	(D)	Mapped	2011[3620,1060];	(F)	Mapped	2011	[5450,4650].	Black	pixels	are	unclassi�ied.
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These	results	occur	primarily	due	to	the	hierarchal	classi�ication	rules	seen	inSection	2.2.4.5,	which	attempted	to	resolve	sub-pixel	classi�ications	resulting	from	themixed	pixel	problem	into	a	high-level	classi�ication	to	be	placed	in	the	resulting	maps	inFigures	2.3,	2.4,	and	2.5.	When	examining	the	sub-pixel	maps	in	descending	compositionalweight,	developed	land	cover	codes	(21,	22,	23,	and	24)	often	occurred	in	the	lower	layersof	the	sub-pixel	map,	such	as	a	matrix	depth	of	4	and	5	that	have	very	low	compositionalweights,	and	generally	belonged	to	the	open	space	developed	class	(21).	As	a	result,	theagreements	in	Table	2.7	between	the	generated	and	NLCD	maps	per	each	year	at	locale[3620,1060]	feature	very	low	agreements	because	the	developed	(21	-	24),	pasture	/	hay(81),	and	cultivated	cropland	(82)	dominate	this	locale	in	the	NLCD.	It	is	possible	topartially	�ix	this	problem	by	changing	the	classi�ication	system	to	use	different	criteria,which	will	be	further	discussed	below	and	in	Section	4.The	mapping	results	signify	a	low	spectral	similarity	between	the	spectral	urbantargets	in	the	original	Landsat	images	and	the	endmembers	belonging	to	urban	materialsfor	at	least	three	reasons.	First,	this	occurs	due	to	low	representation	of	various	arti�icialmaterials	and	their	spectra	at	different	points	in	their	life	cycles	in	addition	to	the	lack	ofendmembers	for	pasture	/	hay	and	crops	at	various	stages	in	their	annual	growth	cycles	inthe	spectral	library.	This	problem	is	easily	�ixed	by	incorporating	such	endmembers	intothe	library.	Second,	this	suggests	the	endmember	sampling	method	may	be	partially	toblame,	which	contributes	to	the	high	proliferation	of	vegetated	classes	in	the	generatedmaps.	Louisiana	features	high	abundances	of	the	vegetation	types	within	the	library	andLandsat	scenes	of	the	area	contain	high	spectral	similarity	to	vegetation	classes,	increasing
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Landsat	scenes	of	the	area	contain	high	spectral	similarity	to	vegetation	classes,	increasing
the	dif�iculty	of	mapping	urban	areas	within	Louisiana.	Lastly,	temporal	disparities	inillumination	contribute	to	the	limited	detection	of	urban	areas	and	the	selected	Landsatscenes	were	acquired	on	different	days	within	the	seasons	of	late	summer	to	late	fall.	Usingimages	from	the	same	day	per	year	does	not	guarantee	detection	of	urban	areas	due	toannual	variations	in	atmospheric	conditions,	including	large	annual	variations	in	cloudcontamination.These	last	two	problems	may	be	solved	using	two	methods	either	together	orseparately.	Though,	these	methods	should	be	explored	and	tested	prior	to	application	withVSU.	Regarding	the	spectral	library,	the	endmember	library	could	be	simulated	andsampled	in	order	to	account	for	radiometric	and	temporally-caused	illuminationdifferences	between	the	endmembers	and	each	Landsat	scene.	For	example,	endmemberresponses	may	be	simulated	to	correspond	to	a	response	seen	from	space.	One	suchmethod	is	to	convolve	each	endmember	with	the	relative	spectral	response	of	the	Landsatsensor	and	then	convolve	the	resulting	signal	with	a	signal	for	atmospheric	interference.This	method,	however,	is	experimental,	requires	sampling	(such	as	at	the	wavelengthwhere	the	relative	spectral	response	of	the	sensor	equals	or	approaches	one),	and	wouldrequire	knowledge	of	atmospheric	conditions	for	the	day	and	location	of	the	region	imagedby	Landsat.	The	time	series	of	Landsat	scenes	could	be	radiometrically	normalized	toaccount	for	differences	in	daily	and	annual	illumination	and	for	disparities	in	annualatmospheric	conditions,	but	the	radiometrically	normalized	scenes	would	likely	stillcontain	at	least	marginal	spectral	distinction	from	the	library.	However,	detection	andclassi�ication	of	urban	areas	would	likely	improve	if	these	two	methods	or	a	similar
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classi�ication	of	urban	areas	would	likely	improve	if	these	two	methods	or	a	similar
strategy	were	employed	to	minimize	the	spectral	variance	between	the	time	series	ofLandsat	scenes	and	the	spectral	library.	Another	means	of	improving	urban	detection	andclassi�ication	may	include	using	multiple	images	from	different	seasons.	Winter	imageslacking	snow	show	increased	urban	areas	due	to	lack	of	leafy	coverage.	Urban	areasclassi�ied	in	winter	imagery	could	be	used	to	correct	misclassi�ied	urban	areas	in	mapsgenerated	from	scenes	acquired	in	other	seasons	of	the	same	year.In	the	last	locale,	each	year	shows	more	water	coverage	than	occurs	in	thecorresponding	NLCD	images.	This	can	occur	for	at	least	two	reasons.	These	areas	lie	on	thecoast	and	consist	of	wetlands,	which	may	be	covered	with	water	periodically	throughout	asingle	year	due	to	either	or	both	drainage	and	oceanic	tides.	As	a	result,	the	mappingalgorithm	may	have	picked	up	on	standing	water	and	classi�ied	it	as	open	wateraccordingly.	Additionally,	the	use	of	the	MNDWI	with	the	threshold	of	0.0	may	have	causedmore	pixels	to	be	extracted	automatically	as	water.	As	a	result	of	these	errors,	theagreements	between	each	mapped	location	and	the	corresponding	NLCD	are	low,	as	seen	inTable	2.7.	In	the	�irst	locale,	the	agreement	corresponds	predominantly	to	the	areas	ofvegetation	belonging	to	the	types	of	forest,	shrubs,	and	grasses	and	the	agreement	in	thelast	locale	occurs	primarily	due	to	water	coverage.	However,	misclassi�ication	due	to	thehierarchal	classi�ication	rules	also	persist	in	the	low	agreements.
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Table	2.7	-	Agreements	with	the	NLCDLocale	Image	Coordinates [2100,1900] [3620,1060] [5450,4650]NLCD	2001 33.76% 2.03% 20.69%NLCD	2006 27.72% 1.73% 18.53%NLCD	2011 32.35% 3.10% 39.64%
According	to	the	NLCD	classi�ication	criteria	in	Table	2.7,	all	classes	representmixtures	of	physical	surface	characteristics	with	varying	percentages.	The	exact	limits	forevery	coverage	type	are	not	explicitly	stated	except	for	the	coverage	predominant	per	class.For	example,	the	predominant	type	in	deciduous	forest	are	deciduous	trees	and	the	criteriadoes	not	specify	the	limits	for	other	coverage	types,	such	as	bare	land,	arti�icial	materials,coniferous	trees,	gramanoids	like	grass,	and	other	materials,	occurring	within	the	sameland	area.	This	constitutes	the	mixed	pixel	problem.	In	the	case	of	the	third	locale,vegetation	occurring	in	emergent	herbaceous	wetlands	(95	—	dark	blue	as	seen	in	themaps)	includes	both	herbaceous	and	gramanoid	species,	which	are	shared	with	thegrassland	and	shrub	land.	A	few	of	the	herbaceous	species	in	the	spectral	library	areherbaceous	scrubs	and	contribute	spectrally	both	to	grassland	and	shrub	land.	As	a	resultof	the	material	type	and	the	hierarchal	classi�ication	system,	the	wetlands	weremisclassi�ied	as	grassland	in	third	locale.	Similar	effects	are	seen	in	the	maps	produced	forthe	�irst	and	second	locales.	Thus,	altering	the	hierarchal	classi�ication	rules	may	improve	classi�ication	results.The	easiest	�ix	may	be	to	raise	the	classi�ication	rule	for	wetlands	to	a	higher	level	in	therule	structure,	but	this	may	lead	to	confusion	with	other	classes	below	it	in	the	hierarchy.The	hierarchal	classi�ication	rules	could	be	replaced	with	rules	based	on	explicit	mixtures
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The	hierarchal	classi�ication	rules	could	be	replaced	with	rules	based	on	explicit	mixturesof	material	types	occurring	within	each	NLCD	class.	These	mixtures	may	be	generatedthrough	analysis	of	the	VSU	output	of	the	endmember	ids	and	material	types	with	theircorresponding	fractional	weights	to	establish	limits	on	the	cumulative	weights	by	materialtype	occurring	for	each	class	in	the	NLCD.	Classi�ication	rules	could	be	structured	based	onthese	limits	to	further	guide	and	improve	the	accuracy	of	classi�ication	into	NLCD	classes.	IfVSU	is	used	with	other	applications	requiring	classi�ication,	a	similar	approach	may	be	usedwith	the	target	classi�ication	scheme.	Additionally,	implementing	such	mixture	rules	as	adecision	tree	would	assist	in	minimizing	error	due	to	a	single	hierarchy	structure.	Though,there	are	other	means	of	classi�ication,	including	maximal	likelihood,	fuzzy,	or	score-basedsystems,	which	could	be	adapted	to	the	NLCD	criteria	and	used	in	place	of	a	hierarchalsystem.Overall,	the	results	of	VSU	are	very	promising.	Despite	agreements	less	than	40%,the	VSU	method	produced	land	cover	maps	with	classes	corresponding	to	physical	materialtypes	with	cumulative	weights	meeting	the	conditions	within	and	the	order	of	thehierarchal	classi�ication	system	as	opposed	to	classes	representing	land	cover	classes	withmixed	physical	material	types,	but	these	results	may	be	improved	to	result	in	mixed	classescorresponding	to	physical	coverage.	In	comparison	to	the	NLCD	method,	this	method	is	lessinvolved.	The	NLCD	methodology	requires	images	from	multiple	seasons,	days,	and	years;ancillary	datasets;	at	least	a	moderately	sized	group	of	personnel;	and	multiple	years	tocreate	one	accurate	land	cover	dataset	for	a	single	year.	This	method	using	VSU	requires	asingle	person,	one	image	per	year	mapped,	and	one	workstation.	It	is	fast,	autonomous	andadaptive	based	on	the	requirements	per	application.	If	improved	to	the	point	where	its
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adaptive	based	on	the	requirements	per	application.	If	improved	to	the	point	where	its
accuracy	is	at	least	75%	for	mapping	land	cover,	the	method	using	VSU	would	rival	theNLCD	methodology.
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3.	Land	Cover	Change	Modeling

3.1	Section	OverviewLand	cover	change	modeling	attempts	to	predict	the	future	state	of	land	cover	inresponse	to	various	stimuli,	such	as	environmental	factors,	previous	states,	etc.	This	secondcontribution	of	this	thesis	is	concerned	with	alterations	in	land	cover	due	to	differences	orchanges	in	surrounding	land	cover	and	aims	to	determine,	if	any,	the	trends	in	land	coverchange	due	to	the	neighborhood	of	a	pixel	in	the	previous	state	after	a	transition	of	thetarget	pixel	to	a	future	state.	In	this	research,	the	Moore	and	von	Neumann	cellneighborhoods	of	a	time	series	of	land	cover	maps	are	analyzed	to	determine	land	coverchange	trends	due	to	neighboring	land	cover	and	derived	rules	derived	are	used	to	modelchanges	in	classes	using	the	NLCD	2001	as	a	starting	point.	In	analyzing	a	time	series	ofmaps	and	modeling	land	cover	change	using	derived	decision	rules,	this	part	of	the	thesisaims	to	demonstrate	how	modeling	using	neighborhoods	and	previous	states	as	criteria	forchange	may	produce	good	forecasts	of	future	land	cover	with	an	accuracy	of	at	least	50%.		Note,	this	portion	of	the	thesis	relies	on	data	created	using	the	mapping	algorithmdeveloped	in	Section	2,	but	this	section	speci�ically	deals	with	the	development	of	a	methodfor	deriving	decision	rules	from	a	time	series	and	their	implementation.	Any	mentions	ofthe	mapping	algorithm	are	to	indicate	potential	errors	in	deriving	land	cover	changedecision	rules	and	are	intended	to	discuss	ways	to	improve	the	detection	of	changes	in	landcover	due	to	neighborhoods	rather	than	to	directly	improving	the	mapping	algorithm,which	is	discussed	in	depth	in	Sections	2.3	and	4.1.	The	following	sections	address	the
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which	is	discussed	in	depth	in	Sections	2.3	and	4.1.	The	following	sections	address	the
methodology	used	in	land	cover	change	modeling	and	analysis	prior	to	delving	intomodeling	results.
3.2	MethodologyThis	study	will	examine	land	cover	change	trends	as	a	function	of	changes	inneighboring	land	cover.	In	the	proposed	model,	a	two-dimensional	array	represents	a	largeland	surface	composed	of	pixels	with	a	square	spatial	resolution	of	30	meters	and	annualchanges	to	land	cover	result	from	changes	in	its	spatial	neighborhood,	such	as	the	Moore	orvon	Neumann	neighborhoods	of	a	given	pixel.	The	spatial	orientation	of	the	land	coverclasses	of	the	neighborhoods	is	assumed	not	to	contribute	to	the	change	in	a	target	pixel.As	the	NLCD	contains	datasets	only	for	four	years	over	19	years,	this	study	begins	bygenerating	a	land	cover	dataset	according	to	the	method	outlined	in	Section	2	of	this	thesis.The	VSU	algorithm	generated	maps	for	three	locations	for	the	years	2001	through	2011	fora	total	of	11	years.	The	locations	were	chosen	after	examining	the	land	cover	changebetween	the	NLCD	2001	and	2006,	the	2006	and	2011,	and	the	2001	and	2011	datasetsafter	calculating	the	difference	between	each	dataset.	The	maps	generated	using	VSU	tend	to	be	strong	in	pure	land	cover	classes	(such	asforest,	grassland,	and	shrub	land)	and	weak	in	the	other	land	cover	classes.	As	discussed	inSection	2.3,	urban	and	agricultural	areas	suffer	low	propagation	in	the	VSU-generatedimages	due	to	urban	areas	occurring	with	low	compositional	weights	that		do	not	survivepost-classi�ication	and	a	lack	of	pasture/hay	and	crop	endmembers.	Wetlands	occur	due	tomixtures	of	vegetation	types	and	water	drainage	systems	that	were	not	accounted	for	in	the
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mixtures	of	vegetation	types	and	water	drainage	systems	that	were	not	accounted	for	in	the
classi�ication	algorithm	used	with	VSU.	Thus,	prior	to	neighborhood	analysis,	the	VSU-generated	maps	need	to	be	corrected	in	order	to	derive	decision	rules	for	these	classesimportant	to	human	life.	The	VSU-generated	maps	are	validated	against	and	correctedusing	an	ancillary	land	cover	dataset	known	as	the	Coastal	Change	Analysis	Program	(C-CAP),	which	the	National	Oceanic	and	Atmospheric	Administration	(NOAA)	created	for	theyears	2001,	2006,	and	2011,	as	it	uses	similar	land	cover	classes	to	the	USGS	NLCD.	TheNOAA	C-CAP	uses	the	same	core	land	cover	classes	and	criteria	as	the	NLCD	except	for	thecases	of	wetlands.	In	the	NOAA	C-CAP,	additional	land	cover	classes	break	out	the	wetlandsinto	different	types	with	respect	to	mixed	environments	corresponding	to	marine	andgrassland,	shrub	/	scrub	land,	and	forest	vegetation.	As	a	result,	the	NLCD-equivalent	codes	of	the	C-CAP	land	cover	classes	replace	thevalues	of	pixels	in	the	VSU-generated	maps	that	spatially	correspond	to	the	same	pixels	thatbelong	to	the	urban,	agricultural,	and	wetlands	classes	in	the	C-CAP.	For	example,	if	a	pixelis	classi�ied	as	deciduous	forest	in	the	VSU-generated	map	and	as	low	density	developed	inthe	C-CAP,	then	the	pixel	in	the	VSU-generated	map	is	reclassi�ied	as	low	density	developed.Similarly,	if	a	pixel	is	classi�ied	as	grassland	in	the	VSU-generated	map	and	as	woodywetlands	or	cultivated	crops	in	the	C-CAP,	then	the	pixel	in	the	VSU-generated	maps	isreclassi�ied	as	woody	wetlands	or	cultivated	crops.	This	reclassi�ication	is	directlyapplicable	only	to	the	years	for	which	there	exist	maps	in	both	datasets.	As	a	result,	pixelsreplaced	in	the	datasets	for	2001	and	2006	are	held	constant	for	the	time	frames	2001through	2005	and	2006	through	2010.	This	causes	the	urban,	agricultural,	and	wetlandsclasses	to	experience	quinquennial	changes.	These	classes	do	experience	change	in	the	C-
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classes	to	experience	quinquennial	changes.	These	classes	do	experience	change	in	the	C-
CAP	in	the	selected	locales	and	result	in	identi�ication	of	some	trends	in	these	classes.Otherwise,	no	decision	rules	would	result	for	the	classes	of	developed,	pasture	/	hay,cultivated	crops,	woody	wetlands,	and	emergent	herbaceous	wetlands.The	analysis	of	the	Moore	and	von	Neumann	cell	neighborhoods	assume	a	change	inthe	land	cover	class	per	year	occurs	due	to	the	land	cover	classes	in	its	neighborhood	in	thepast.	The	neighborhood	analysis	starts	with	year	2002	and	proceeds	through	2011	usingeach	past	year	as	the	previous	state	resulting	in	the	change	to	the	next	year,	if	any.	In	orderto	simplify	and	speed	the	neighborhood	analysis,	the	maps	corresponding	to	the	currentand	prior	years	are	differenced	and	only	pixels	with	a	non-zero	difference	are	analyzed.Additionally,	analysis	of	the	Moore	and	von	Neumann	neighborhoods	excludes	theoutermost	ring	of	land	cover	in	a	map	and	starts	at	the	pixel	on	the	diagonal	from	the	upperleftmost	pixel.	The	Moore	and	von	Neumann	neighborhoods	are	de�ined	as	follows	in	Eq.3.1	and	3.2,	respectively:

(3.1)
(3.2),where	N1M	and	N1N	are	the	Moore	and	von	Neumann	neighborhoods	of	radius	one	unit	ofpixel	(i,j),	respectively,	and	σ	is	the	state	at	coordinates	around	pixel	(i,j)	[9].	Note,	in	aMoore	neighborhood,	the	use	of	a	radius	of	one	unit	around	a	target	pixel	assumessurrounding	pixels	at	distances	greater	than	30	meters	(the	spatial	resolution	of	Landsat



LCCM	Using	CA	Rules	Derived	from	LSI	/	Vacik

54

surrounding	pixels	at	distances	greater	than	30	meters	(the	spatial	resolution	of	Landsatimages)	do	not	contribute	to	the	annual	change	of	the	target.	In	the	case	of	the	vonNeumann	neighborhood,	the	use	of	a	radius	of	one	unit	around	a	target	pixel	assumessurrounding	pixels	that	are	not	orthogonal	to	the	target	or	are	at	distances	greater	than	30meters	do	not	contribute	to	the	annual	change	of	the	target.During	analysis,	the	previous	state,	the	future	state,	and	the	neighborhood	of	theprevious	state	are	recorded	per	locale	per	change	in	year.	Then,	the	locale	data	is	recordedas	a	single	set	per	change	in	year.	In	this	thesis,	annual	changes	in	land	cover	are	consideredindependent	of	the	spatial	orientation	of	the	neighborhood	of	land	cover	classes.	Thus,	twoneighborhoods	are	equivalent	if	they	include	the	same	land	cover	classes	with	equivalentamounts	per	class	in	each	neighborhood.	Due	to	this,	prior	to	accumulative	counting,	theneighborhoods	are	converted	to	an	array	of	the	frequency	of	occurrence	of	each	land	coverclass	in	the	neighborhood	for	ease	of	counting.	The	extracted	neighborhoods	are	counted	todetermine	the	total	number	of	occurrences	per	neighborhood	per	possible	transition	perchange	in	year.	Using	this	data,	rules	are	constructed	in	the	form	of	if-else	statements	usingthe	previous	state	and	the	neighboring	land	cover	classes	as	the	criteria	for	change	in	abasic	reiterative	model.	Separate	models	were	constructed	for	both	neighborhoods	andstart	with	a	large	section	of	the	NLCD	2001.	Using	the	derived	rules,	both	models	were	runfrom	2001	through	2011	with	the	intermittent	maps	recorded	for	comparison	with	thecorresponding	NLCD	if	their	locales	are	included	within	the	larger	sample	location	of	themodel.	
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3.3	Results	&	Discussion

3.3.1	Rationale	of	Transition	ExclusionsAnalysis	of	the	Moore	and	von	Neumann	neighborhoods	of	validated	mapped	pixelsrevealed	several	trends	of	interest,	but	some	transitions	were	excluded.	Generalnonsensical	transitions	may	include	transitions	of	land	cover	classes	recorded	duringanalysis	that	may	arise	due	to	mapping	or	validation	errors,	such	as	the	case	of	a	developedpixel	surrounded	by	water	pixels,	and	transitions	that	are	not	thought	to	occur	naturally,such	as	downward	transitions	of	high	density	developed	(24)	to	deciduous	forest	(41).Additionally,	neighborhoods	in	which	all	neighbors	in		a	Moore	neighborhood	fortransitions	where	the	previous	state	does	not	equal	the	future	state	belong	to	the	sameclass	as	the	previous	state	i	are	excluded.	This	thesis	assumes	a	neighborhood	with	eightmembers	of	the	same	class	leads	to	continuance	of	the	same	state.	Furthermore,	In	the	case	of	transitions	from	the	developed	classes	to	any	of	the	forest,	shrub	land,woody	wetlands,	and	cultivated	crops,	these	transitions	are	not	considered	due	to	theamount	of	time	needed	to	change	urban	areas	into	these	heavily	vegetated	classes.	Forexample,	according	to	the	NLCD	criteria	given	in	Table	2.6,	forests	and	shrub	land	consist	ofplants	greater	than	and	less	than	5	meters	tall,	respectively.	Vegetation	of	such	height	isassumed	to	take	more	than	one	year	to	develop.	Similarly,	time	is	needed	to	changedeveloped	areas	into	barren	land	capable	of	sustaining	mass	agricultural	activities.	Thosetypes	of	transitions	will	be	considered	and	pursued	in	the	future	with	repetition	of	thissame	or	a	similar	methodology	as	applied	to	other	regions	and	a	larger	time	span.	The
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same	or	a	similar	methodology	as	applied	to	other	regions	and	a	larger	time	span.	The
same	rationale	is	used	for	excluding	transitions	of	the	type	from	barren	land	to	any	of	theforest	classes,	including	woody	wetlands,	and	shrub	land.

3.3.2	Results	of	Neighborhood	AnalysisTables	3.1	and	3.2	show	the	selected	results	and	their	frequencies,	f,	of	occurrencefor	the	von	Neumann	and	Moore	neighborhoods,	respectively,	for	each	transition	from	state
i	to	state	j	given	in	each	table.	These	neighborhoods	were	included	in	the	model	as	decisionrules.	The	results	generally	occur	within	the	top	�ive	per	encountered	transitions	for	thevon	Neumann	and	Moore	neighborhoods.	Where	resulting	neighborhoods	were	few	innumber	or	the	frequencies	of	occurrence	were	low	in	number	(i.e.,	less	than	15),	theneighborhoods	were	selected	based	on	their	constituents.In	Tables	3.1	and	3.2,	the	frequencies	of	occurrence	tend	to	be	high	for	transitionsbetween	two	vegetated	classes	and	low	for	transitions	between	urban	classes	and	betweenvegetated	and	urban	classes.	These	cases	result	from	the	choice	in	mapped	locations	andthe	mapping	correction.	First,	the	chosen	locations	featured	more	vegetative	classes	ascompared	to	urban	classes	and	the	vegetated	pixels	appear	to	remain	vegetated	temporally.Pixels	of	developed	classes	appear	to	remain	stable	temporally	as	well.	Thus,	fewertransitions	appear	for	transitions	from	vegetated	to	developed	classes	and	for	transitionsbetween	developed	classes,	including	the	agricultural	land	use	classes.	Mapping	additionalurban	locations	and	larger	areas	of	developed	land,	such	an	area	of	developed	land	equal	tothe	area	of	vegetated	classes,	would	improve	detection	of	urban	transitions	in	furtherresearch	using	this	method.	Secondly,	the	mapping	correction	assumes	no	change	in	urbanareas	for	years	from	2001	to	2005	and	from	2006	to	2010.	Thus,	very	limited	to	moderate
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areas	for	years	from	2001	to	2005	and	from	2006	to	2010.	Thus,	very	limited	to	moderate
levels	of	annual	change	in	developed	classes	were	expected.	This	study	employed	mappingcorrection	in	order	to	generate	at	least	a	few	cellular	automata	rules	for	the	developed	andother	land	use	classes.	As	for	errors	due	to	the	mapping	procedure,	naturally,	improving	theclassi�ication	scheme	of	the	VSU	output	would	improve	detection	of	feature	classes	and,therefore,	detection	of	change	between	land	cover	classes.	Strategies	for	improving	theVSU-mapping	procedure	are	discussed	in	Section	2.3	and	Section	4.1.The	neighborhoods	seen	in	Tables	3.1	and	3.2	show	patterns	in	the	frequency	oftheir	components,	most	notably	those	with	higher	frequencies	of	occurrence.	In	the	vonNeumann	results	in	Table	3.1,	transitions	from	deciduous	forest	(41)	to	coniferous	forest(42),	from		coniferous	forest	(42)	to	deciduous	forest	(41),	from	coniferous	forest	(42)	toshrub	land	(52),	and	from	woody	wetlands	(90)	to	coniferous	forest	(42)	in	addition	toothers	have	the	same	patterns.	In	the	one	case,	the	neighborhood	of	the	target	pixelcomprises	of	three	neighbors	with	the	same	class	as	the	target	and	one	neighborcorresponding	to	the	future	class.	In	the	second	case,	the	neighborhood	consists	of	twoneighbors	of	the	same	class	of	the	target	pixel	and	and	two	neighbors	of	the	future	class.	Similar	patterns	arise	in	the	Moore	results	in	Table	3.2.	There	are	many	transitionsresulting	from	neighborhoods	of	four	cases:	(1)	where	there	are	seven	neighbors	of	thesame	class	as	that	of	the	target	pixel	and	one	neighbor	of	the	future	class;	(2)	where	thereare	six	members	of	the	class	of	the	target	pixel	and	two	members	of	the	future	class;	(3)where	�ive	members	belong	to	the	class	of	the	target	pixel	and	three	members	belong	to	thefuture	class;	and	(4)	where	equal	numbers	of	members	belong	to	both	the	previous	andfuture	classes.	Examples	of	these	three	cases	include	transitions	from	open	space
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future	classes.	Examples	of	these	three	cases	include	transitions	from	open	space
developed	(21)	to	pasture	/	hay	(81),	coniferous	forest	(42)	to	shrub	land	(52),	coniferousforest	(42)	to	woody	wetlands	(90),	grassland	(71)	to	deciduous	forest	(41),	woodywetlands	(90)	to	cultivated	cropland	(82),	and	emergent	herbaceous	wetlands	(95)	to	openwater	(11).	These	patterns	suggest	general	rules	based	on	such	cases	for	both	von	Neumann	andMoore	neighborhoods	may	be	written	in	these	formats	between	any	two	classes.	Though,this	observation	requires	further	exploration	to	be	veri�ied,	such	as	through	repetitions	ofthe	same	method	used	in	this	thesis	for	other	or	larger	locations.	Based	on	the	results	inTable	3.1,	these	trends	appear	to	become	distinguishable	with	large	frequencies	ofoccurrence.	Each	type	also	needs	to	be	further	explored	and	tested	beyond	the	scope	of	thisthesis	for	accuracy	and	resulting	rates	in	changes	of	cell	counts	per	year	for	each	class	in	atime	series.	In	this	thesis,	all	transitions	in	Table	3.1	and	3.2	were	modeled.There	are	exceptions	to	these	patterns,	including	but	not	limited	to	such	astransitions	deciduous	forest	(41)	to	woody	wetlands	(90)	and	grassland	(71)	to	shrub	land(52)	in	Table	3.1	and	open	space	developed	(21)	to	barren	land	(31),	low	density	developed(22)	to	21,	medium	density	developed	(23)	to	high	density	developed	(24),	and	52	to	71	inTable	3.2,	that	contain	neighborhoods	with	more	than	two	classes.	These	generally	occurwith	frequencies	of	occurrence	less	than	100,	except	in	the	case	of	the	transition	of	71	to52;	neighborhoods	occurring	with	frequencies	equal	to	one	generally	occurred	in	a	listwhere	all	neighborhoods	were	encountered	once	in	the	entire	time	series	of	the	correctedVSU-generated	maps.	These	results	may	not	be	encountered	in	repetitions	of	this	samebasic	methodology	over	larger	sample	areas	where	such	transitions	are	encountered	on	an
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basic	methodology	over	larger	sample	areas	where	such	transitions	are	encountered	on	an
annual	basis.	It	should	not	be	immediately	concluded,	however,	that	neighborhoods	of	twoor	more	classes	other	than	the	future	and	previous	states	do	not	contribute	to	a	change.	Allpatterns	discussed	in	this	section	need	to	be	veri�ied	by	repetition	of	this	basicmethodology	for	a	much	larger	sample	area	over	a	longer	time	span	and	for	additionalstates	in	the	US.

Table	3.1	-	Von	Neumann	Neighborhoods	with	Greatest	Frequency	of	Occurrence	Per	Transition
i j f Neighborhood i j f Neighborhood21 22 1 [21,	21,	21,	21]	 71 42 114 [71,	71,	42,	41]1 [21,	22,	22,	22] 80 [71,	71,	71,	42]21 23 1 [22,	22,	22,	23] 71 52 625 [71,	71,	71,	52]1 [21,	21,	21,	22] 266 [71,	71,	52,	41]22 21 1 [22,	22,	22,	23] 71 81 17 [71,	71,	81,	81]1 [21,	21,	21,	22] 16 [81,	71,	71,	71]22 23 3 [21,	21,	22,	22] 71 82 5 [71,	71,	82,	82]3 [22,	22,	22,	23] 4 [82,	82,	71,	22]22 24 3 [22,	22,	22,	22] 71 90 16 [71,	71,	90,	90]3 [22,	22,	23,	23] 15 [71,	71,	71,	90]23 24 3 [23,	23,	24,	24] 81 21 12 [81,	81,	81,	22]2 [23,	24,	24,	24] 4 [81,	81,	81,	21]31 71 61 [31,	31,	31,	71] 81 22 5 [81,	81,	81,	22]42 [31,	31,	71,	71] 2 [81,	81,	22,	22]31 81 2 [31,	71,	81,	81] 81 41 115 [90,	81,	81,	81]1 [31,	31,	22,	81] 71 [81,	81,	22,	22]41 42 3120 [41,	41,	41,	42] 81 42 218 [81,	81,	81,	42]3096 [41,	41,	42,	42]	 121 [81,	81,	42,	42]41 52 758 [41,	41,	41,	52] 81 71 162 [81,	81,	81,	71]434 [41,	41,	52,	52] 13 [81,	81,	71,	71]41 71 545 [41,	41,	41,	71] 81 82 56 [81,	81,	81,	82]511 [41,	41,	71,	71] 20 [81,	81,	82,	82]41 90 38 [41,	41,	90,	90] 81 95 5 [11,	81,	81,	81]33 [41,	41,	42,	90] 82 71 32 [82,	82,	82,	81]42 41 2732 [41,	42,	42,	42] 82 81 39 [81,	81,	81,	81]1434 [41,	41,	42,	42] 3 [82,	82,	81,	71]42 52 1921 [42,	42,	42,	52] 82 90 56 [82,	82,	82,	90]649 [42,	42,	52,	52] 26 [82,	82,	90,	90]42 71 63 [42,	42,	42,	71] 90 11 4 [95,	95,	11,	11]18 [42,	42,	71,	71] 3 [11,	90,	90,	90]42 81 2 [42,	42,	82,	82]* 90 41 130 [41,	90,	90,	90]2 [42,	42,	42,	82]* 71 [41,	41,	90,	90]42 90 810 [42,	42,	42,	90] 90 42 794 [42,	90,	90,	90]537 [42,	42,	90,	90] 654 [42,	42,	90,	90]43 90 115 [43,	43,	43,	95] 90 81 7 [81,	90,	90,	90]79 [43,	43,	95,	95] 7 [81,	81,	90,	90]
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52 41 799 [52,	52,	52,	41] 90 82 2 [82,	82,	90,	90]793 [52,	52,	41,	41] 90 95 17 [71,	90,	90,	90]52 42 3903 [42,	42,	42,	52] 5 [90,	90,	90,	95]2814 [42,	42,	52,	52] 95 11 1297 [11,	95,	95,	95]52 71 231 [71,	52,	41,	41] 1005 [11,	11,	95,	95]208 [71,	52,	52,	41] 95 90 24 [90,	95,	95,	95]71 41 918 [71,	71,	41,	41] 1 [41,	95,	95,	95]1654 [71,	71,	71,	41] 1 [42,	42,	95,	95]*	Modeled	as	81	prior	to	correction	to	82.
Table	3.2	-	Moore	Neighborhoods	with	Greatest	Frequency	of	Occurrence	Per	Transitioni j f Neighborhood i j f Neighborhood21 22 1 [21,	21,	21,	21,	22,	22,	22,	22] 42 90 387 [42,	42,	42,	42,	42,	90,	90,	90]1 [21,	21,	21,	22,	22,	22,	22,	22] 355 [42,	42,	42,	42,	42,	42,	90,	90]21 23 1 [21,	21,	22,	41,	81,	81,	81,	81] 43 42 43 [42,	42,	42,	42,	43,	43,	43,	43]1 [21,	21,	21,	81,	81,	81,	81,	81] 31 [42,	42,	42,	43,	43,	43,	43,	43]21 31 1 [21,	22,	22,	22,	22,	23,	24,	24] 43 90 65 [43,	43,	43,	43,	43,	95,	95,	95]*1 [21,	22,	22,	81,	81,	81,	81,	81] 74 [43,	43,	43,	43,	43,	43,	43,	95]*21 81 7 [21,	21,	21,	21,	21,	21,	81,	81] 52 31 2 [41,	71,	71,	71,	71,	71,	71,	71]6 [21,	21,	81,	81,	81,	81,	81,	81] 4 [41,	41,	42,	42,	42,	71,	90,	90]22 21 1 [21,	21,	21,	21,	21,	21,	22,	22] 52 41 228 [41,	41,	41,	52,	52,	52,	52,	52]1 [21,	22,	22,	22,	23,	41,	81,	81] 234 [41,	41,	52,	52,	52,	52,	52,	52]22 23 2 [22,	22,	22,	22,	22,	22,	22,	23] 52 42 1313 [42,	42,	42,	42,	42,	52,	52,	52]1 [21,	21,	21,	21,	22,	22,	22,	22] 1911 [42,	42,	42,	42,	42,	42,	52,	52]22 24 2 [22,	22,	22,	22,	22,	23,	23,	24] 52 43 7 [52,	52,	95,	95,	95,	95,	95,	95]*2 [21,	22,	81,	81,	81,	81,	81,	81] 3 [52,	52,	52,	52,	95,	95,	95,	95]*22 31 1 [22,	22,	22,	22,	23,	23,	23,	23] 52 71 71 [41,	41,	41,	52,	71,	71,	71,	71]23 22 2 [23,	23,	23,	81,	81,	81,	81,	81] 66 [41,	41,	52,	52,	71,	71,	71,	71]6 [22,	22,	22,	22,	22,	23,	23,	23] 52 81 3 [41,	41,	52,	52,	52,	71,	71,	71]23 24 1 [21,	21,	22,	22,	22,	24,	24,	81] 2 [41,	41,	41,	52,	52,	52,	52,	71]2 [22,	22,	22,	23,	23,	23,	23,	23] 71 31 8 [41,	52,	71,	71,	71,	71,	71,	71]24 22 2 [22,	22,	22,	23,	23,	23,	24,	24] 7 [41,	52,	52,	71,	71,	71,	71,	71]1 [22,	22,	23,	23,	24,	81,	81,	81] 71 41 538 [41,	41,	71,	71,	71,	71,	71,	71]24 23 1 [22,	22,	23,	23,	24,	81,	81,	81] 448 [41,	41,	41,	71,	71,	71,	71,	71]1 [21,	23,	23,	23,	23,	23,	23,	24] 71 42 53 [41,	41,	52,	71,	71,	71,	71,	71]31 21 1 [23,	31,	52,	71,	71,	81,	81,	81] 42 [41,	42,	42,	42,	71,	71,	71,	71]1 [31,	71,	71,	71,	71,	81,	90,	90] 71 52 131 [41,	52,	71,	71,	71,	71,	71,	71]31 71 25 [31,	31,	31,	31,	31,	71,	71,	71] 13 [41,	42,	42,	42,	71,	71,	71,	71]21 [31,	31,	31,	31,	31,	31,	71,	71] 71 81 17 [71,	71,	71,	71,	71,	71,	71,	81]31 81 2 [31,	71,	81,	81,	81,	81,	81,	81] 7 [71,	71,	71,	81,	81,	81,	81,	81]1 [22,	22,	31,	31,	71,	81,	81,	81] 71 82 2 [71,	71,	71,	81,	82,	82,	82,	82]41 21 2 [22,	22,	22,	71,	81,	81,	81,	81] 3 [71,	71,	71,	81,	81,	81,	81,	81]1 [21,	21,	21,	22,	22,	41,	43,	43] 71 90 8 [71,	81,	81,	81,	90,	90,	90,	90]41 22 1 [22,	22,	22,	22,	41,	71,	71,	71] 6 [71,	71,	71,	71,	71,	71,	90,	90]1 [22,	22,	23,	41,	41,	52,	52,	90] 81 21 7 [21,	21,	21,	81,	81,	81,	81,	81]41 31 6 [41,	41,	41,	41,	41,	42,	42,	52] 3 [21,	21,	22,	81,	81,	81,	81,	81]4 [41,	41,	41,	41,	41,	41,	41,	71] 81 42 88 [42,	42,	42,	81,	81,	81,	81,	81]41 42 1198 [41,	41,	41,	41,	41,	42,	42,	42] 78 [42,	42,	81,	81,	81,	81,	81,	81]
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1108 [41,	41,	41,	41,	42,	42,	42,	42] 81 82 15 [81,	81,	81,	81,	82,	82,	82,	82]41 43 3 [42,	43,	43,	43,	43,	43,	52,	52] 17 [81,	81,	81,	81,	81,	81,	82,	82]1 [43,	43,	43,	90,	90,	90,	90,	90] 82 81 6 [81,	81,	81,	82,	82,	82,	82,	82]41 52 233 [41,	41,	41,	41,	41,	41,	52,	52] 4 [81,	81,	82,	82,	82,	82,	82,	82]293 [41,	41,	41,	41,	41,	41,	41,	52] 82 90 13 [82,	82,	82,	82,	82,	82,	90,	90]41 71 175 [41,	41,	71,	71,	71,	71,	71,	71] 18 [82,	82,	82,	82,	90,	90,	90,	90]147 [41,	41,	41,	71,	71,	71,	71,	71] 90 11 3 [11,	11,	11,	90,	90,	90,	90,	90]41 81 5 [41,	41,	41,	41,	41,	71,	71,	71] 2 [11,	11,	11,	11,	95,	95,	95,	95]3 [41,	41,	41,	41,	41,	42,	52,	52] 90 41 39 [41,	41,	90,	90,	90,	90,	90,	90]41 82 2 [41,	41,	81,	81,	81,	90,	90,	90] 26 [41,	41,	41,	90,	90,	90,	90,	90]2 [41,	81,	81,	81,	90,	90,	90,	90] 90 42 335 [42,	42,	42,	90,	90,	90,	90,	90]41 90 24 [41,	41,	42,	42,	42,	42,	42,	42] 330 [42,	42,	42,	42,	90,	90,	90,	90]13 [41,	41,	41,	42,	42,	42,	42,	90] 90 71 31 [81,	81,	90,	90,	90,	90,	90,	90]42 21 4 [21,	42,	42,	90,	90,	90,	90,	90] 23 [71,	71,	90,	90,	90,	90,	90,	90]4 [21,	42,	90,	90,	90,	90,	90,	90] 90 81 5 [81,	81,	81,	90,	90,	90,	90,	90]42 41 822 [41,	41,	42,	42,	42,	42,	42,	42] 3 [81,	81,	81,	81,	90,	90,	90,	90]820 [41,	41,	41,	42,	42,	42,	42,	42] 3 [81,	81,	81,	81,	90,	90,	90,	90]42 43 23 [42,	42,	42,	42,	42,	42,	43,	43] 90 82 2 [82,	82,	82,	90,	90,	90,	90,	90]4 [42,	42,	43,	43,	43,	81,	81,	81] 1 [82,	82,	82,	82,	82,	90,	90,	90]42 52 732 [42,	42,	42,	42,	42,	42,	52,	52] 95 11 679 [11,	11,	11,	95,	95,	95,	95,	95]436 [42,	42,	42,	42,	42,	52,	52,	52] 672 [11,	11,	95,	95,	95,	95,	95,	95]*	Values	of	95	were	mistyped	as	90	in	the	model	prior	to	correction	of	the	model.
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3.3.3	Modeling	ResultsTwo	models	were	created	using	the	neighborhoods	given	in	Tables	3.1	and	3.2.	Thedecision	rules	were	written	as	if-else	statements	using	the	previous	state	of	the	target	pixeland	the	count	of	each	class	included	within	the	given	neighborhood	of	the	target	pixel	asthe	criteria	to	matching	it	to	any	of	the	selected	neighborhoods	of	the	correspondingtransitions.	If	the	previous	state	and	the	neighborhood	of	the	target	pixel	in	the	previousstate	do	not	match	these	criteria	for	change,	then	the	pixel	remains	in	the	same	state	—	thesame	land	cover	class	as	the	previous	state.	These	rules	were	separated	into	two	modelsaccording	to	the	type	of	neighborhood	used	in	deriving	the	rules:	the	von	Neumann	andMoore	models.	All	neighborhoods	per	transition	as	seen	in	Tables	3.1	and	3.2	were	includedinto	each	corresponding	model.	Each	model	started	on	year	2001	using	the	NLCD	2001	andran	for	11	iterations	through	year	2011.	Modeled	results	of	year	2011	are	compared	to	theNLCD	2011	for	validation	in	the	same	fashion.The	chosen	location	corresponds	to	a	slice	of	the	NLCD	2011	covering	the	imagecoordinates	of	[2000:6000,	2000:6000]	and	features	New	Orleans.	The	following	forecastmaps	use	the	color	scheme	used	in	in	the	NLCD	2011	legend,	as	seen	in	Figure	2.1.
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Von	Neumann	ForecastingFigure	3.1	shows	the	NLCD	2011	(A)	clipped	to	the	same	coordinates	used	in	themodel	and	the	forecast	of	2011,	as	captured	by	the	rules	using	the	von	Neumannneighborhoods	in	Table	3.1.	The	von	Neumann	model	relies	on	a	neighborhood	de�ined	byEq.	(3.2).	Immediately	noticeable	is	the	greater	amount	of	the	open	water	land	cover	in	theforecast	than	in	the	NLCD	2011	and	the	pixelated	appearance	of	the	wetlands	and	othervegetated	classes.	On	the	other	hand,	the	collective	rules	produced	similar	visual	patternsin	the	developed	classes	and	pasture	/	hay.	Straight	lines	corresponding	to	arti�icialstructures	such	as	roadways	and	bridges	are	largely	preserved	in	the	forecast	image.

(A)
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				(B)
Figure	3.1	-	Von	Neumann	Forecasting	Results	vs.	NLCD	2011:	(A)	NLCD	2011;	(B)	2011forecasted	results	of	the	von	Neumann	model.
Table	3.3	shows	numerical	results	comparing	the	forecasted	map	of	2011	and	theNLCD	2011.	Trends	visual	in	Figure	3.1	are	shown	by	data	in	Table	3.3	For	instance,emergent	herbaceous	and	woody	wetlands	decreased	in	cell	counts	from	2006	to	2011.Similarly,	medium	and	high	intensity	developed	classes	experience	an	increase	in	cellcounts,	as	occurs	in	the	NLCD	2011.	The	rates	of	change	in	the	cell	counts	per	year	arelargely	similar	between	the	the	von	Neumann	forecast	and	the	NLCD,	as	shown	in	Table	3.3with	many	of	the	classes	have	the	same	signs	indicating	growth	and	decline.	Some	classesdo	not	follow	this	patter,	such	as	open	space	developed	(21)	and	shrub	land	(52).	This	mayoccur	due	to	annual	changes	in	neighborhoods	permitting	transitions.	This	is	furtherimplicated	by	percent	differences	which	are	different	between	the	2006	and	2011comparisons,	such	as	the	percent	differences	for	classes	open	space	developed	(21),	barren
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comparisons,	such	as	the	percent	differences	for	classes	open	space	developed	(21),	barren
land	(31),	deciduous	forest	(41),	etc.	In	particular,	classes	barren	land	(31)	and	deciduousforest	(41)	experience	very	large	variance	in	their	percent	differences.	Behavior	such	asthis	also	indicates	the	large	changes	incurred	by	the	von	Neumann	neighborhoods	inaddition	to	using	two	neighborhoods	per	rule	in	general.	The	von	Neumann	neighborhoodconsists	of	only	four	neighbors	and	the	lower	number	of	components	for	comparison	leadsto	an	increase	in	the	inaccuracy	of	the	forecasting	results.	These	observations	may	bevalidated	by	replicating	the	underlying	methodology	of	this	thesis	for	larger	areas	or	moreareas	interspersed	around	the	globe.Overall,	the	model	performed	satisfactorily.	The	2011	von	Neumann	land	coverforecast	agrees	approximately	66.38%	with	the	NLCD	2011	with	over	10	million	matchedpixels.	This	lower	accuracy	is	not	surprising	when	compared	to	use	of	the	Mooreneighborhood	method.

Table	3.3	-	Comparison	of	von	Neumann	Forecasts	with	NLCD	-	The	abbreviation	(VN)corresponds	to	results	of	the	von	Neumann	model.Class VN	‘06Counts NLCD	‘06Counts %Difference VN	‘11Counts NLCD	‘11Counts %Difference VN	Slope NLCD	Slope11 5,214,502 4,164,424 -25.22 5,735,395 4,280,815 -25.36 104,178.6 23,378.221 523,652 541,206 3.24 537,860 533,816 -0.75 2,841.6 -1,47822 283,341 657,902 56.93 282,017 655,162 132.31 -264.8 -54823 271,602 210,095 -29.28 279,119 226,229 -18.95 1,503.4 3,226.824 521,48 112,136 -365.05 526,699 122,585 -76.73 1,042 2,089.831 27,677 32,247 14.17 26,235 77,695 196.15 -288.4 9,089.641 153,125 17,787 -760.88 206,233 16,999 -91.76 10,619.6 -157.642 1,391,513 1,455,258 4.38 1,315,191 1,285,433 -2.26 -15,264.4 -33,96543 62,703 77,554 19.14 61,388 72,386 17.92 -263 -1,031.652 1,262,427 1,156,212 -9.19 1,348,726 1,374,366 -18.91 17,259.8 43,630.871 219,336 256,527 14.50 237,462 192,553 -18.91 3,625.2 -12,794.881 440,581 587,672 25.03 388,822 561,526 44.42 -10,351.8 -5,229.282 340,560 413,360 17.62 298,758 400,980 34.22 -8360.4 -2,47690 3,358,376 3,622,337 7.29 3,161,296 3,610,859 14.22 -39,416 -2,295.695 1,929,116 2,695,293 28.43 1,594,809 2,588,596 62.32 -66,861.4 -21,339.4
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Moore	ForecastingFigure	3.2	shows	(A)	the	NLCD	2011	and	(B)	the	2011	forecasting	results	of	theMoore	model.	The	classi�ication	color	legend	is	shown	in	Figure	2.1.	Noticeable	differencesexist	in	the	visual	results.	The	forecast	for	2011	shows	much	degradation	in	emergentherbaceous	wetlands	(95)	and	corresponding	large	growth	in	water,	suggesting	the	rulesfor	emergent	herbaceous	wetlands	and	other	classes	with	transitions	to	water	classesshould	be	limited	to	one	neighborhood.	These	results	are	further	demonstrated	in	Table3.4.	Vegetated	classes	of	pasture	/	hay,	cultivated	crops,	shrub	land,	and	woody	wetlandslook	largely	similar	whereas	urban	areas	show	more	areas	of	high	intensity	developed.

			(A)
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(B)
Figure	3.2	-	Moore	2011	Forecasting	vs.	NLCD	2011:	(A)	NLCD	2011;	(B)	2011	forecasting	resultsof	the	Moore	model.Table	3.4	shows	the	numerical	results	of	comparisons	between	the	forecasted	landcover	of	2011	using	the	Moore	model	and	the	actual	NLCD	2011.	This	table	provides	thecell	counts	per	class	for	the	modeled	years	of	2006	and	2011,	the	percent	differencebetween	each	dataset	per	year,	and	the	slopes	of	the	two	datasets	for	the	duration	from2006	to	2011.	As	seen	in	Table	3.4,	the	modeling	results	vary	by	class	and	year.	Thedifferences	in	cell	counts	vary	by	year	and	class.	For	2006,	the	smallest	percent	differencebetween	the	Moore	and	NLCD	class	counts	occur	for	classes	open	space	developed	(21),coniferous	forest	(42),	shrub	land	(52),	pasture	/	hay	(81),	cultivated	cropland	(82),	andwoody	wetlands	(90)	while	the	largest	percent	differences	occur	for	classes	barren	land(31)	and	deciduous	forest	(41).	The	data	for	2011	show	the	smallest	percent	differencesoccur	for	same	classes,	except	52,	and	the	largest	percent	differences	occur	for	classes	41
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occur	for	same	classes,	except	52,	and	the	largest	percent	differences	occur	for	classes	41
and	emergent	herbaceous	wetlands	(95).	These	results	seem	to	suggest	that	alterations	incell	counts	per	class	may	change	annually.	From	a	modeling	perspective,	this	may	occur	dueto	annual	changes	in	cell	neighborhoods	per	year.	Further	modeling	is	require	to	fullyexplore	this.	These	results	show	that	the	Moore	rules	perform	differently	by	class	as	well.Although	all	changes	in	neighborhoods	by	year	may	be	partially	to	blame,	these	resultssuggest	some	of	the	transition	rules	are	ineffective	for	the	classes	with	the	largest	percentdifferences,	namely	41	deciduous	forest,	and	those	with	large	variance	between	the	cellcounts	per	year,	such	as	31	and	95.	These	rules	must	be	further	tested	to	determine	whichperform	best.	Additionally,	these	rules	should	be	validated	individually	and	then	tested	in	amodel	using	only	one	neighborhood	per	decision	rule,	as	using	two	neighborhoods	per	rulemay	account	for	the	increased	percent	differences	of	these	classes.	After	all,	not	alltransitions	were	modeled	and	some	transitions	have	more	rules	than	others,	as	seen	inTable	3.2.	The	slopes	were	calculated	as	the	difference	between	the	cell	counts	per	2006	and2011	over	a	span	of	5	years.	The	closest	slopes	correspond	to	classes	medium	intensitydeveloped	(23),	mixed	forest	(43),	and	pasture	/	hay	(81),	indicating	similar	patterns	ofgrowth	between	the	forecast	and	the	NLCD	2011,	which	supports	previous	statements.Similarly,	the	slopes	farthest	apart	occur	for	classes	11,	22,	31,	and	etc.,	including	classeswith	high	percent	differences,	and	indicates	poor	performance.
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Table	3.4	-	Comparison	of	Moore	Forecasts	with	NLCD	-	The	pre�ixes	M06,	N06,	M11,	and	N11correspond	to	abbreviations	of	the	terms	Moore	2006,	NLCD	2006,	Moore	2011,	and	NLCD	2011	to	indicateresults	of	the	results	of	the	predictions	for	2006	and	2011	by	the	Moore	model	and	the	NLCD	2006	and	2011,respectively.Class M06Counts N06Counts %Difference M11	Counts N11	Counts %Difference M	Slope	(counts	/year) N	Slope(counts	/year)11 4,999,382 4,164,424 -20.05 5,467,872 4,280,815 -21.71 93,698 23,278.221 515,871 541,206 4.68 513,974 533,816 3.86 -379.4 -1,478.022 532,711 541,206 19.03 498,591 655,162 31.40 -6,824 3,226.823 279,079 210,095 -32.83 296,229 226,229 -23.82 3,575 3,226.824 137,070 112,136 -22.24 142,847 122,585 -14.18 1,155.4 2,089.831 72,423 32,247 -124.59 84,465 77,695 -8.01 2,408.4 -9,089.641 34,130 17,787 -91.88 47,990 16,999 -64.58 2,772 -157.642 1,398,856 1,455,258 3.88 1,354,479 1,285,433 -5.10 -8,875.4 -33,96543 109,977 77,544 -41.83 113,490 72,386 -36.22 702.6 -1031.652 1,163,289 1,156,212 -0.61 1,233,956 1,374,366 11.38 14,133.4 43,630.871 223,642 256,527 12.82 246,076 192,553 -21.75 4,486.8 -12,794.881 604,548 587,672 -2.97 583,347 561,526 -3.74 -4,240.2 -5,229.282 417,517 413,360 -1.01 415,649 400,980 -3.53 -373.6 -247690 3,591,269 3,622,337 0.86 3,502,997 3,610,859 3.08 -17,654.4 -2,295.695 1,920,236 2,695,293 28.76 1,497,313 1,354,912 72.88 -84,584.6 -21,339.4
Overall,	the	model	performs	well	as	compared	to	the	NLCD	2011.	The	land	coverforecast	for	2011	contains	over	12	million	matched	pixels,	equating	to	a	percent	agreementof	approximately	76.85%	with	the	NLCD	2011.	This	is	greater	than	the	agreement	of	thevon	Neumann	forecast	for	land	cover	in	2011	with	the	NLCD.	This	is	expected,	consideringhow	the	Moore	rules	use	a	greater	number	of	values	for	comparison	of	neighborhoods.Despite	using	a	mash-up	of	neighborhoods,	the	Moore	model	performs	well	with	a	goodagreement	of	approximately	77%,	demonstrating	how	decision	rules	based	on	Mooreneighborhoods	and	the	method	of	deriving	those	rules	may	be	used	to	develop	an	accuratemodel. 	
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4.	Conclusion	&	Future	Work

4.1	Land	Cover	Mapping	Conclusions	&	ApplicationsIn	general,	the	mapping	results	showed	predominantly	vegetation	classes	of	forest,shrub	land,	and	grassland.	The	state	of	Louisiana	hosts	large	amounts	of	vegetation	on	itsland	surface,	promoting	the	spectral	dominance	of	the	endmembers	of	these	classes.	Thistrumps	the	detection	of	urban	areas,	causing	the	vegetation	endmembers	contributing	to	are�lectance	measurement	to	have	large	fractional	compositions	compared	to	those	of	urbanendmembers.	Thus,	the	classi�ication	algorithm	chooses	the	vegetation	classes	over	theurban	classes	due	to	the	high	cumulative	sums	of	the	vegetation	types.	This	may	beremedied	using	different	classi�ication	methods	as	adapted	for	the	NLCD	classi�icationscheme.	In	the	future,	classi�ication	methods	such	as	maximum	likelihood,	fuzzy,	or	a	score-based	classi�ication	should	be	tested	with	this	method	of	spectral	mixture	analysis.Another	source	of	error	is	the	spectral	similarity	between	the	analyzed	Landsatscene	and	the	spectral	library.	The	spectral	library	was	sampled	where	the	relative	spectralresponse	of	each	Landsat	band	approached	or	equaled	unity.	This	attempted	to	heightenthe	spectral	similarity	between	Landsat	5	scenes	and	the	spectral	endmembers	of	urbanmaterials,	because	it	resulted	in	urban	endmembers	occurring	in	the		sub-pixel	maps.Obviously,	these	sub-pixels	classi�ied	as	urban	materials	did	not	have	large	enoughcompositional	weights	to	be	classi�ied	as	urban	classes.	There	are	two	approaches	thatshould	be	tested	with	the	mapping	method	incorporating	VSU.	First,	in	the	preprocessingof	each	Landsat	scene,	techniques	for	computing	surface	re�lectance	should	be	tested	with
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of	each	Landsat	scene,	techniques	for	computing	surface	re�lectance	should	be	tested	with
this	method.	Secondly,	the	spectral	library	could	be	resampled	to	full-width	half	maximumand	convolved	with	the	relative	spectral	response	of	the	Landsat	5	TM	sensor	and	adjustedfor	simulated	atmosphere	to	simulate	at-satellite	re�lectance.	This	latter	method	can	bechallenging	due	to	lack	of	atmospheric	data	for	each	day	on	which	a	Landsat	scene	wasacquired.	Another	potential	source	of	error	that	can	be	tested	in	the	future	includes	the	use	ofthe	MNDWI	to	extract	water,	as	it	appears	to	lead	to	added	water	being	extracted.	Thegenerally	used	threshold	of	the	MNDWI	is	0.0.	However,	various	researchers	suggestadjusting	the	threshold	based	on	lighting	conditions	between	images	in	a	time	series.Increasing	the	threshold	to	0.2	or	0.3	decreases	the	amount	of	pixels	carried	over	as	noisebut	also	decreases	the	number	of	pixels	extracted	as	water.	The	MNDWI	could	beeliminated	as	a	means	of	quickly	extracting	water	features,	but	eliminating	this	step	wouldbe	accompanied	by	an	increase	in	processing	time.	Further	analysis	into	the	effects	ofthresholding	the	MNDWI	on	the	mapping	results	is	needed	to	determine	on	which	route	toproceed.Although	there	are	signi�icant	sources	of	error	in	the	procedure,	this	mappingmethod	using	VSU	demonstrates	it	is	feasible	to	map	land	cover	using	spectral	mixtureanalysis	techniques,	provided	the	right	classi�ication	system	is	used.	In	small-scale	testing,the	single-pass-per-pixel	VSU	algorithm	analyzed	a	sample	size	of	100	by	100	with	6	bandsof	data	in	approximately	500	seconds	on	average	with	only	two	criteria	used	in	spectralmatching.	In	comparison,	when	implemented	in	Python,	the	VMESMA	algorithm	—	withoutreiteration	through	the	subset	of	selected	endmembers	per	pixel	to	minimize	the	root	mean
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reiteration	through	the	subset	of	selected	endmembers	per	pixel	to	minimize	the	root	mean
square	error	of	the	least-squares	solution	—	with	three	criteria	generally	requires	630seconds	on	average	to	analyze	the	same	sample	size.	When	accounting	for	the	reiterative-per-pixel	nature	of	VMESMA,	the	temporal	difference	between	these	two	performancedurations	is	expected	to	increase.	The	method	using	VSU	should	be	further	analyzed	forpractical	applications,	including	land	cover	mapping	as	attempted	in	this	thesis.Spectral	mixture	analysis	techniques	are	applicable	to	mapping	many	types	ofphysical	surface	features,	including	sea	ice,	snow,	forest	and	other	dominant	vegetationtypes,	minerals	and	other	earth	types,	algae,	water,	urban	materials,	and	other	substances.For	example,	mapping	minerals	and	other	soils	may	be	used	to	identify	lands	suitable	formining	and	farming.	Mapping	forests	and	other	vegetation	in	addition	to	minerals	permitsmonitoring	of	natural	environments,	such	as	the	amount	of	land	they	cover,	expanse	of	�iresor	burn	damage,	or	mineral	runoff	into	waterways	near	mining	or	drilling	operations.	Suchapplications	may	then	be	used	to	investigate	other	phenomena.	For	example,	mapping	landcover	and	then	differencing	annual	land	cover	datasets	leads	to	the	mapping	of	land	coverchange.	The	applications	of	mapping	physical	surface	features	other	than	land	cover	usingVSU	are	nearly	boundless.	Such	products	may	be	used	in	decision	making	processes,	suchas	in	the	cases	of	identifying	where	to	drill	for	desired	earthen	substances	or	where	to	plantto	yield	the	most	crops	in	relation	to	a	viable	water	source.	As	with	any	method,	errorsappearing	during	mapping	lead	to	propagation	of	errors	in	further	data	products,	whichcan	mislead	stakeholders	in	decision	making.	Consider	a	mining	company	looking	for	surface	characteristics	signifying	the
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Consider	a	mining	company	looking	for	surface	characteristics	signifying	the
abundance	of	a	valuable	mineral	(such	as	oil,	coal,	or	diamonds).	The	mining	companyacquires	maps	created	using	a	new	method	with	inherent	errors	and	the	maps	contain	falsedetection	of	the	surface	characteristics	signifying	a	great	abundance	of	their	target	mineral.Based	on	their	maps,	the	company	spends	millions	to	mine	or	drill	the	indicated	site	only	to�ind	their	site	contains	limited	quantities	of	their	mineral	of	interest.	As	a	result,	thecompany	experiences	no	return	on	their	investment	and	the	map	makers	lose	business.Such	errors,	which	are	�ixable	in	the	method	prior	to	application,	cause	large	losses�inancially	and	temporally	and	must	be	avoided	in	the	real	world	wherever	possible.Therefore,	errors	in	VSU	and	classi�ication	must	be	minimized	prior	to	implementation	forany	application.	Similarly,	the	errors	encountered	in	this	method	require	correction	prior	tolarge	scale	application	to	land	cover	mapping.		4.2	LCCM	Conclusions				In	Section	3,	land	cover	changes	were	modeled	using	decision	rules	derived	fromanalysis	of	the	Moore	and	von	Neumann	neighborhoods	of	a	time	series	of	maps	covering	asingle	decade.	The	results	of	the	neighborhood	analysis	identi�ied	general	cases	for	decisionrules	for	both	von	Neumann	and	Moore	neighborhoods.	These	general	neighborhoodstypically	included	neighbors	belonging	only	the	the	classes	equivalent	to	the	previous	stateof	the	target	pixel	and	the	future	class	with	differing	numbers	of	the	two	classes,	forming	ageneral	ratio	by	type.	As	these	general	cases	often	possess	high	frequencies	of	occurrence,this	suggests	general	rules	may	be	written	in	the	format	of	these	general	neighborhoods	forany	pair	of	classes.	This	observation	requires	further	exploration	and	testing	prior	to	actualapplication.	Future	research	could	approach	this	task	by	using	the	methods	covered	in	this
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application.	Future	research	could	approach	this	task	by	using	the	methods	covered	in	this
thesis	to	map	larger	locations	interspersed	throughout	the	US,	or	even	around	the	globe.Future	research	could	also	determine	if	these	rules	are	speci�ic	only	to	the	areas	studied	inthis	thesis	or	are	compatible	with	only	similar	regions	(i.e.	environmentally,	geographically,etc.). The	von	Neumann	land	cover	forecast	for	2011	agreed	with	the	NLCD	2011	byapproximately	66%,	a	satisfactory	result	for	this	model	and	its	general	incorporation	ofdecision	rules	constructed	from	von	Neumann	neighborhoods.	The	forecast	showedsigni�icant	degradation	of	emergent	herbaceous	wetlands	and	growth	in	high	intensitydeveloped	areas,	indicating	potentially	overly	proli�ic	decision	rules.	Other	land	use	classesof	pasture	/	hay	and	cultivated	crops	experienced	less	growth	or	decline,	similar	to	a	fewother	vegetated	classes.The	Moore	land	cover	forecast	for	2011	produced	an	agreement	of	approximately77%.	Such	a	moderately	high	agreement	demonstrates	the	ef�icacy	of	decision	rules	using	aMoore	neighborhood.	The	forecast	also	showed	large	decline	in	cell	counts	of	emergentherbaceous	wetlands	with	a	corresponding	growth	in	open	water	cell	counts,	similar	to	thevon	Neumann	model.	Other	land	use	classes	experienced	patterns	of	growth	and	declinesimilar	to	those	shown	in	the	NLCD.	Though,	the	percent	differences	between	cell	counts	ofthe	Moore	model	were	often	less	than	those	resulting	in	the	von	Neumann	model	whencomparing	their	forecasts	to	the	NLCD	2006	and	2011.		Both	the	von	Neumann	and	Moore	models	performed	satisfactorily,	but	the	Mooreforecast	clearly	out	performs	the	von	Neumann	model.	This	is	expected	due	to	the	largernumber	of	elements	in	the	Moore	neighborhood,	increasing	the	accuracy	of	correctly
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number	of	elements	in	the	Moore	neighborhood,	increasing	the	accuracy	of	correctly
transitioning	during	each	iteration	of	the	Moore	model	as	compared	to	the	von	Neumannmodel.	Both	models	displayed	similar	errors	of	cell	count	trends	and	of	spatial	agreementof	cells	in	the	forecast	and	NLCD	maps	per	year	in	forecasting	land	cover	changes	forparticular	land	classes,	including		emergent	herbaceous	wetlands.	In	both	models,	thetrends	of	growth	of	open	water	and	of	decline	of	emergent	herbaceous	wetlands	were	moreexaggerated	than	the	trends	of	both	classes	encountered	in	the	NLCD,	as	shown	by	thelesser	loss	of	emergent	herbaceous	wetlands	cell	counts	in	the	NLCD.		Such	behaviorindicates	the	inadequacy	of	the	decision	rules	used	for	those	classes	and	may	be	improvedin	the	future	by	mapping	more	areas	where	these	land	cover	classes	occur	and	change	inrelation	to	other	classes.	Additionally,	patterns	of	error	in	the	measures	of	percentdifference	between	cell	counts	per	class	by	year	may	indicate	that	the	neighborhoodscausing	annual	land	cover	changes	may	themselves	change	annually	or	with	a	differentperiodicity.	This	is	further	stipulated	by	changes	in	the	NLCD	cell	counts	from	2006	and2011.	These	observations	require	further	validation	for	con�irmation.The	agreements	between	the	forecast	and	NLCD	maps	for	the	year	2011	re�lect	thespatial	agreement	between	the	cells	of	the	two	maps	per	year	mapped.	The	agreements	of66%	and	77%	of	the	von	Neumann	and	Moore	forecasts,	respectively,	with	the	NLCD	2011demonstrate	that	34%	and	23%	of	the	cells	in	the	von	Neumann	and	Moore	forecasts,respectively,	do	not	contain	the	same	land	cover	class	code	as	the	NLCD	2011.	For	example,there	are	areas	of	coniferous	forest	in	the	NLCD	2011	which	are	mixed	forest	in	either	orboth	of	the	forecasts	and	urban	areas	could	possess	a	land	cover	code	higher	than	an	urbanarea	in	the	NLCD	2011.	Such	errors	between	similar	classes	as	this	must	be	taken	into
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area	in	the	NLCD	2011.	Such	errors	between	similar	classes	as	this	must	be	taken	into
account	for	calculating	the	agreement	between	the	two	datasets.This	method	of	deriving	rules	from	classi�ied	imagery	for	implementation	in	aforecast	model	possesses	wide	applications,	including	those	mentioned	in	the	previoussection,	but	the	following	brief	discussion	will	be	be	applied	to	land	cover	change.Forecasting	may	be	used	as	a	tool	for	decision	making	processes	in	such	applications	aswetlands	restoration.	Consider	the	case	of	companies	in	or	near	New	Orleans,	Louisiana,that	possess	facilities	and	employee	local	citizens	of	the	area.	As	discussed	in	theintroduction	of	this	thesis,	Louisiana	may	suffer	increased	damages	from	hurricanes	in	thefuture	due	to	wetlands	loss	and	degradation.	Local	companies	could	restore	wetlands	at	thecost	of	thousands	or	millions	of	dollars	in	order	to	protect	their	facilities	and	theiremployees,	but	they	need	to	know	which	potential	locations	of	restoration	would	bestminimize	their	future	damages	and	the	costs	of	restoration.	Forecasting	future	wetlandsdegradation	using	a	rigorous	model	produce	results	that,	when	coupled	with	otheranalyses,	may	pinpoint	areas	best	suited	for	restoration	while	minimizing	future	hurricane-related	damage	and	the	cost	of	restoration.	Consider	the	same	scenario	using	the	forecasts	given	in	this	thesis,	which	featuredaccelerated	degradation	of	emergent	herbaceous	wetlands.	The	accelerated	trend	wouldmislead	a	company	as	to	future	degradation	and	cause	the	company	to	invest	too	heavily	inwetlands	restoration,	potentially	minimizing	future	damages	while	maximizing	cost.	If	adecelerated	trend	were	encountered,	the	opposite	could	occur	and	the	company	wouldinvest	too	little	in	wetlands	restoration,	potentially	increasing	future	damages	andminimizing	cost.	Such	errors	are	not	permissible	in	a	forecast	to	be	used	in	such	a	large
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minimizing	cost.	Such	errors	are	not	permissible	in	a	forecast	to	be	used	in	such	a	large
scale	endeavor.	Thus,	prior	to	application,	the	neighborhoods	and	decision	rules	derived	inthis	thesis	require	further	validation	and	testing	prior	to	large	scale	application.	The	satisfactory	and	good	agreements	resulting	from	the	von	Neumann	and	Mooreforecasts,	respectively,	demonstrate	how	land	cover	change	may	be	simulated	with	atmoderately	high	accuracy	using	neighborhoods	rather	than	stochastic	models.Furthermore,	these	results	demonstrate	how	land	cover	trends	may	be	approximated	byderiving	decision	rules	from	analysis	of	neighborhoods	of	pixels	in	a	time	series	of	maps.These	results	could	be	improved	by	mapping	other	locations	where	these	land	coverclasses	intermix	and	a	greater	time	interval	should	be	attempted,	as	forecasting	results	areknown	to	improve	with	increases	in	sample	sizes.	
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