
Coordination Issues in Cooperative Decentralized Decision Problems

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment

of the requirements for the degree

Doctor of Philosophy

by

Yijia Zhao

December

2013

APPROVAL SHEET

The dissertation

is submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

The dissertation has been read and approved by the examining committee:

Peter Beling

Advisor

Stephen Patek (advisor)

Alfredo Garcia

Randy Cogill

Zongli Lin

Accepted for the School of Engineering and Applied Science:

Dean, School of Engineering and Applied Science

December

2013

Coordination Issues in Cooperative Decentralized

Decision Problems

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Systems Engineering)

by

Yijia Zhao

December 2013

c� 2013 Yijia Zhao

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree

of

Doctor of Philosophy (Systems Engineering)

Yijia Zhao

This dissertation has been read and approved by the Examining Committee:

Peter Beling, Dissertation Adviser

Stephen Patek, Dissertation Adviser

Alfredo Garcia, Committee Chair

Randy Cogill, Committee Member

Zongli Lin, Committee Member

Accepted for the School of Engineering and Applied Science:

Dean, Dean, School of Engineering and Applied Science

December 2013

i

Abstract

Decentralized control of complex engineering systems has the potential to provide

the kind of security, reliability and scalability a centralized control scheme may be

unable to o↵er in a highly dynamic setting. Much of the previous work in the area

of decentralized control of a team of cooperative agents focuses on devising centrally

computed policies that can be implemented in a distributed fashion to optimize team

performance. In this thesis, we study decentralized decision problems each agent must

formulate and solve in order to compute its own policy independently. A significant

challenge in enabling the team of cooperative agents to work together e�ciently is

resolving coordination dilemmas associated with the presence of multiple optimal

courses of actions. We aim to resolve these coordination dilemmas without assuming

the presence of a centralized decision maker, the ability to negotiate or share intentions

among the team members, or a consistent internal representation of the multiagent

system.

Markov decision processes and its generalizations serve as the foundation in the

study of single agent control. Decentralized control of cooperative agents is often

framed as a multiagent extension of MDP, or as an identical interest stochastic game.

Finding a solution for both involves solving stage games that are identical interest

strategic games. Coordination dilemmas arise when multiple pareto-optimal Nash

equilibria exist; solving these stage games thus reduces to an equilibrium selection

problem. We propose a new solution concept as an equilibrium selection rule for a class

ii

Abstract iii

of symmetric identical interest games where players are rewarded for commonality in

their actions. The solution concept is endogenously salient and operates under the

principle that no arbitrary decisions are allowed. We develop a linear time heuristic

that 1) is theoretically guaranteed to compute the solution concept under certain

conditions; 2) is shown to be successful with overwhelming likelihood in practice.

Next, we consider a decentralized path planning problem for team Bayesian search.

A team of agents is tasked with making observations in a search area where an unknown

number of targets exist. Each agent must formulate and solve a decentralized planning

problem to compute its future actions. This planning problem is formulated as a

partially observed Markov decision problem whose objective function is evaluated

based on the assumption that all agents will use the same mixed strategy policy. We

propose three dynamic programming heuristics for this planning problem-each can

be used by agents in a decentralized fashion to compute an individual policy. The

heuristics are designed such that all will arrive at the same policy as long as they use

the same heuristics. The resulting policies are evaluated empirically in two instances

of the team Bayesian search problem where resolving coordination dilemmas stemming

from multiple optimal courses of actions is critical.

Acknowledgement

The dissertation process has been a long and winding journey, and there are many

people I have become deeply indebted to along the way. First and foremost I would

like to o↵er my sincerest gratitude toward my advisors Professors Peter Beling and

Stephen Patek for their mentorship and guidance throughout the years. They have

been instrumental in directing me from my initial interest on the topic to the final

thesis. Both have shared valuable insights that helped me to move forward whenever

I was stuck. This dissertation would not have been possible without their tireless

encouragement - especially when I was overwhelmed with self-doubt.

I want to thank the other committee members, Professors Alfredo Garcia, Randy

Cogill, and Zongli Lin, for their continued support throughout this process. Their

valuable questions and insights have greatly benefited my work. I am truly grateful to

Dean Pamela Norris whose support and encouragement was critical during the final

stage.

I want to thank many people who have helped me during my graduate studies at

the University: the Systems Engineering sta↵, Jill Bratton, Jennifer Mueller, Jayne

Weber for their help navigating the administrative aspects of the entire doctoral

process; my o�cemates and friends, Kaushik Sinha, Zhijiang Shen, Himanshu Gupta,

Kangyuan Zhu, Emma Murray and Kanshukan Rajaratnam, with whom I have had

so much fun discussing our research projects and other topics.

iv

Chapter 0 Acknowledgement v

Finally, I would like to thank my family. I want to thank my parents for their

unconditional love and never-ending support throughout my life, and my entire

extended family who is always there for me when I need them. My husband has been

a tireless cheerleader on this academic journey and is the best partner one could ask

for in life. Last but certainly not least, I want to thank my son for teaching me what

is truly important in life.

Contents

Acknowledgement iv

Contents v
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Motivating Examples . 2

1.1.1 The Dial-Wait Problem . 2
1.1.2 A Decentralized Team Search Problem 5

1.2 Thesis Statement . 7
1.3 Dissertation Organization . 9

2 Background 10
2.1 Single Agent Decision Problems . 10
2.2 Multiagent Extensions of MDP and POMDP 13
2.3 Connection to Stochastic Games . 16
2.4 Previous Work . 18

3 Natural Solutions 28
3.1 Coordination in Strategic Games . 28
3.2 Defining Natural Solutions . 32
3.3 Static Agreement (SA) Games . 39

3.3.1 Verifying Assumption 1 for SA Games 39
3.3.2 Examples . 43
3.3.3 Descriptive Power of Natural Solution 46

3.4 Computational Issues . 48
3.4.1 The Parallel Reduction Algorithm (PRA) 48
3.4.2 Empirical Evaluation . 56
3.4.3 Discussion . 57

4 Decentralized Planning in Bayesian Team Search 59
4.1 Introduction . 59
4.2 Problem Formulation . 60

4.2.1 Basic Setup and Bayesian Hypothesis Testing 60

vi

Contents vii

4.2.2 The Need for Randomized Policy 62
4.2.3 Decentralized Planning . 63

4.3 Decentralized Planning Algorithms 65
4.3.1 Centralized Planning Problem As A Starting Point 66
4.3.2 Decentralized Uniform Heuristic 68
4.3.3 Decentralized Parallel Reduction Heuristic 71
4.3.4 Decentralized Policy Iteration Heuristic 72

4.4 Numerical Evaluation . 78
4.4.1 Case 1: Side by Side . 79
4.4.2 Case 2: Diagonal . 83

5 Summary and Future Work 86

Bibliography 90

List of Tables

3.1 Natural Solutions for the Examples 45

viii

List of Figures

1.1 The Dial-Wait Problem: expected number of stages to reestablish the
connection. 4

1.2 The Dial-Wait Problem as a strategic game. 4
1.3 Example of potential coordination dilemmas 6

3.1 Prisoners’ Dilemma . 29
3.2 Stag Hunt . 32
3.3 Example of display for number tasks. Reprinted from “Explaining focal

points: Cognitive hierarchy theory versus team reasoning, ” by Bardsley,
N., Mehta, J., Starmer, C., and Sugden, R, 2010, The Economic Journal,
120: 40-79. Reprinted with permission. 47

3.4 Example of display for number tasks. Reprinted from “Explaining focal
points: Cognitive hierarchy theory versus team reasoning, ” by Bardsley,
N., Mehta, J., Starmer, C., and Sugden, R, 2010, The Economic Journal,
120: 40-79. Reprinted with permission. 48

4.1 Network representing the search area 79
4.2 Type 1 Optimal Centralized Policy for the Side by Side Case 81
4.3 Type 2 Optimal Centralized Policy for the Side by Side Case 81
4.4 Type 3 Optimal Centralized Policy for the Side by Side Case 81
4.5 Expected total cost in the side by side case 82
4.6 Expected total cost in the diagonal case 84

ix

List of Figures x

Chapter 1

Introduction

With research advancements in robotics and software agents, multiagent systems have

received much attention in the past two decades [1, 2]. Multiagent systems consist

of multiple interacting intelligent agents that are able to perceive their environment

through sensors and exercise control over their behaviors. Robotic soccer, search and

rescue [3, 4], intruder capture [5], automated driving, and information systems are

just some of the applications of a multiagent system.

In a cooperative multiagent system, a team of autonomous agents work to ac-

complish a common task. Decentralized control of such systems, where each agent is

independently responsible for choosing its future action, is ideally suited to situations

where communication is limited or altogether prohibited. It allows the system to be

flexible in terms of its composition. We can envision scenarios where autonomous

agents join together in an ad hoc fashion to compete for resources (e.g. network load

balancing, routing) or accomplish a common task (robotic cop). It adds the scalability

and modularity required in large and complex engineering systems (e.g. the Internet,

smart electric grid). Furthermore, a decentralized control scheme enables the system

to be more robust in the sense that performance degradation due to component failure

tends to be much more graceful without centralized control serving as a single point of

1

Chapter 1 Introduction 2

failure. This is highly desirable in civil applications where reliability is directly linked

to economic outcomes. In military applications, this is absolutely necessary in order

to have a system design that is secured against enemy attacks that may identify and

destroy the centralized control and thus paralyze the entire system.

We study cooperative decentralized decision problems where a team of autonomous

agents work toward a common goal. Each decision maker independently makes its own

decision about its future actions, however, the common reward it receives and what

state the system transits to depend on the actions of every independent decision maker

in the system. On one hand, a full range of results developed in the area of automatic

control and operations research can serve as a basis for research in decentralized

control. On the other hand, adopting these results which are traditionally limited

to situations where a single or centralized decision maker exists proves to be very

challenging and therefore interesting. A central challenge in enabling a team of agents

to work toward a common goal is the coordination of agents, and we will illustrate

the type of coordination issues we are investigating with the following motivating

examples.

1.1 Motivating Examples

1.1.1 The Dial-Wait Problem

Suppose two people, Al and Betty, are engaged in a telephone conversation and the

line is cut in the middle of the conversation. Both Al and Betty wish to resume

their conversation as quickly as possible, but who should call whom? Let us adopt

a discrete-time model for the process by which Al and Betty reestablish connection,

and let us assume that both parties require the same amount of time to either dial a

number or to wait for a return call (per stage). There is clearly a coordination failure

to address:

1.1 Motivating Examples 3

1. If both Al and Betty redial, then both will receive busy signals and the line will

not be reconnected.

2. If both Al and Betty wait for the other to call, then again the line will not be

reconnected.

3. Only if exactly one of them places the call will the connection be made.

Thus, unless Al and Betty have previously established in advance a protocol for

who will dial and who will wait, they must play out a sequence of actions (dialing

and/or waiting) for the connection to be remade. What complicates the problem is

that Al and Betty do not have the opportunity to communicate with one another in

order to establish the best way to proceed.

Even though the Dial-Wait problem is very simple, it sheds light on a number of

interesting issues. First, observe that if either player arbitrarily decides to implement a

deterministic sequence of actions, say {W,D,D,W,D,W, ...}, where “W” corresponds

to “wait” and “D” corresponds to “dial”, then the other player could have also selected

the same sequence {W,D,D,W,D,W, ...}. This would result in the connection never

being reestablished. While it seems unlikely that Al and Betty would make the same

arbitrary choice, this is an example of the worst case outcome.

In contrast, randomized strategies make a lot of sense. For example, if Al imple-

ments a strategy of dialing with probability p 2 [0, 1] at each dial-wait opportunity,

independently of his or Betty’s actions at previous stages, and if Betty similarly dials

with probability q 2 [0, 1] at each stage, the expected number of stages until the

connection is reestablished works out to be 1/(p(1� q) + (1� p)q). Note that if Al

and Betty choose p = 0 and q = 1, respectively, then they reconnect in one stage and

therefore obtain the best possible outcome. What complicates matters is that another

solution achieves the same result, namely p = 1 and q = 0. If Al and Betty can not

agree on which one of these two solutions to pick, they wind up achieving the worst

Chapter 1 Introduction 4

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

q
p

ex
pe

ct
ed

 n
um

be
r o

f s
ta

ge
s

un
til

 re
co

nn
ec

tin
g

(lo
g 10

)

Figure 1.1: The Dial-Wait Problem: expected number of stages to reestablish the
connection.

possible outcome: either (p, q) = (0, 0) or (p, q) = (1, 1), for which the connection is

never reestablished.

Dial Wait
Dial 0,0 1,1
Wait 1,1 0,0

Figure 1.2: The Dial-Wait Problem as a strategic game.

If we analyze this example in game-theoretic terms, we can formulate the Dial-Wait

problem as a 2-player 2-action strategic game as shown in Figure 1.2. We observe that

both of the best-case solutions (p, q) = (1, 0) and (p, q) = (0, 1) are Nash equilibria in

this strategic game, since neither player can deviate unilaterally to achieve a higher

payo↵. There is also a third Nash equilibrium solution with a lower payo↵ of 0.5

where each player dials with probability 1/2. Note that when one player chooses to

1.1 Motivating Examples 5

dial with probability 1/2, he is guaranteed to receive the 0.5 payo↵ regardless of the

action of the other player. Assuming that Al and Betty will only play actions that

are consistent with Nash equilibrium solutions, then which equilibrium should they

choose? Should they choose one of the Nash equilibria with the highest payo↵ 1? If so,

which one? If Al and Betty disagree on the latter question then they experience the

worst case outcome. Should Al and Betty settle on the mixed strategy equilibrium

(p, q) = (.5, .5)? In what sense would this be rational?

1.1.2 A Decentralized Team Search Problem

We can illustrate coordination issues in decentralized cooperative decision problems

with a more visual example by considering a search problem represented by the network

in Figure 1.3. Each node in the network represents a search region. Let us assume

that traversing an edge takes one time period, and the objective of the problem is to

maximize the number of nodes visited before the end of the time horizon. Consider a

two-agent scenario in which agent A is located at node 1 and agent B is at node 3,

with one remaining time period. In such a situation, the objective will be maximized

if one agent visits node 2 in the single remaining time period, while the other agent

visits node 4. The di�culty is that there are two distinct ways to achieve optimality:

(Alternative 1) agent A visiting node 2 and agent B visiting node 4 and (Alternative

2) agent A visiting node 4 and agent B visiting node 2. Note that if agent A chooses

to pursue optimality through Alternative 1, then agent A will move to node 2. If

simultaneously agent B elects to pursue optimality through the equally attractive

Alternative 2 then both agents will end up at node 2, and optimality will be lost. We

call this type of situation a coordination dilemma.

Coordination dilemmas would not be troublesome if there existed a centralized

decision maker (perhaps one of the agents) who could implement an optimal policy

by dictating the course of action that each agent was to follow. This scheme may be

Chapter 1 Introduction 6

1

4

3

2

Figure 1.3: Example of potential coordination dilemmas

undesirable in applications where reliability is crucial as the centralized decision maker

readily serves as a single point of failure. Furthermore, a centralized decision maker

could potentially be hacked or hijacked and used to the advantage of adversaries.

Coordination can also be achieved through communication. One might imagine

the agents announcing and negotiating their intentions to the point where each agent

could predict with certainty the other’s actions. If communication is limited or costly,

it may be that neither is feasible. Allowing this line of communication also poses

security threats as future locations of the agents can be easily predicted by adversaries

who can eavesdrop on the agents.

Finally, we can enable coordination through the use of conventions or protocols

that are established beforehand to handle all conceivable coordination dilemmas. We

use social convention every day to avoid coordination failure in real life. Its use ranges

from the simplest and most mundane tasks such as how we greet each other to avoiding

potential congestions and accidents when driving. In engineering systems, one can

design and implement, for example, a shared lexicographical ordering in which all joint

actions are generated by all agents. In case of tie breaking, the first optimal joint action

on the list can be adopted by everyone and therefore coordination can be achieved

easily. Indeed, a lexicographic protocol can be constructed to handle all possible

coordination confusions that may appear in this small problem. Generally speaking,

establishment of an all powerful protocol or convention for multiagent systems is a

complex process that scales very poorly with problem size. It is also di�cult to include

all possible scenarios beforehand.

1.2 Thesis Statement 7

More importantly, protocols or conventions must depend on the consistent ordering

and labeling of agents, their actions and/or system states. For instance, a protocol

or convention might state that, among other rules for the example in Figure 1.3, the

agent currently at the lower numbered node will visit the lower number node next,

i.e. the agent at node 1 will go to node 2 and the agent at node 3 will go to node

4. While both agents perceive the same situation, their internal representation of

the situation is individually created and therefore the labeling of regions and indeed

of the agents themselves may very well di↵er. If the labeling of the regions is not

consistent among the two agents, it is possible that they disagree on who is at the

lower numbered node. Consequently, both of them can arrive at the same node and

result in a suboptimal outcome. This inconsistency leads to a coordination failure,

even though both agents follow the same previously established protocol that was

specifically designed to aid in the achievement of coordination. Not assuming the

availability of consistent labeling in the design of decentralized planning algorithms

maximizes flexibility in team composition, as new agents can join freely and current

agents can depart with no ill e↵ect.

1.2 Thesis Statement

In this thesis, we study the decentralized control of a team of cooperative autonomous

agents with a common objective. Each agent independently makes the decision about

which action to take in the future, however the common reward all agents receive and

the future state of the overall system is determined by everyone’s actions jointly. As

we have illustrated with the two motivating examples above, a significant challenge

in enabling the team of cooperative agents to work together e�ciently is resolving

coordination dilemmas associated with the presence of multiple optimal courses of

actions. We aim to resolve these coordination dilemmas without assuming the presence

Chapter 1 Introduction 8

of a centralized decision maker, the ability to negotiate or share intentions among the

team members, or a consistent internal representation of the multiagent system.

Markov decision processes (MDP) and its generalizations serve as the foundation in

the study of single agent control. Decentralized control of cooperative agents is often

framed as a multiagent extension of MDP, or as an identical interest stochastic game.

Finding a solution for both involves solving stage games that are identical interest

strategic games. Coordination dilemmas arise when multiple pareto-optimal Nash

equilibria exist; solving these stage games thus reduces to an equilibrium selection

problem. We propose a new solution concept as an equilibrium selection rule for a class

of symmetric identical interest games where players are rewarded for commonality in

their actions. The solution concept is endogenously salient and operates under the

principle that no arbitrary decisions are allowed. We develop a linear time heuristic

that 1) is theoretically guaranteed to compute the solution concept under certain

conditions; 2) is shown to be successful with overwhelming likelihood in practice.

Next, we consider a decentralized path planning problem for team Bayesian search,

as an example of multi-stage cooperative decentralized decision problems. A team

of agents is tasked with making observations in a search area where an unknown

number of targets exist. Each agent must formulate and solve a decentralized planning

problem to compute its future actions. This planning problem is formulated as a

partially observed MDP whose objective function is evaluated based on the assumption

that all agents will use the same mixed strategy policy. We propose three dynamic

programming heuristics for this planning problem - each can be used by agents in a

decentralized fashion to compute an individual policy. The heuristics are designed

such that all will arrive at the same policy as long as they use the same heuristics.

The resulting policies are evaluated empirically in two instances of the team Bayesian

search problem where resolving coordination dilemmas stemming from multiple optimal

courses of actions is critical.

1.3 Dissertation Organization 9

1.3 Dissertation Organization

This thesis is organized into five chapters. In Chapter 2, we first provide an overview

of MDP, multiagent extensions of MDP, and stochastic games. We review some

previously proposed approaches to resolving coordination issues stemming from the

existence of multiple optimal joint actions. In Chapter 3, we propose a new solution

concept for a class of symmetric identical interest games that satisfy a certain set of

assumptions. For this class of games, we formally define equivalence in actions and

build the solution concept of a natural solution based upon it. We show that static

agreement games (coordination games) belong to this class of games and demonstrate

the proposed linear time heuristic algorithm on these games. In Chapter 4, we turn

our attention to decentralized sequential decision making and study a decentralized

planning problem for Bayesian team search. We provide mathematical formulations of

the decentralized decision problem and the centralized version of the planning problem

before proposing three heuristics for decentralized policy computation. Empirical

evaluations of policies produced by these heuristics along with the centralized optimal

policy are provided to demonstrate e↵ectiveness and show the di↵erences in heuristics.

Finally we summarize and touch on future research directions in Chapter 5.

Chapter 2

Background

2.1 Single Agent Decision Problems

Traditionally, Markov Decision Process (MDP) serves as the foundation for research

in the control of a single autonomous agent.

Definition 1 (Markov Decision Process). A Markov Decision Process (MDP) is

defined as a 4-tuple (S,A,R, T), where S is the set of system states, A is the set of

actions, R : S ⇥ A ! R is the reward or payo↵ function, and T : S ⇥ A⇥ S ! [0, 1]

is the system transition function. For all s, s0 2 S, a 2 A, R(s, a) is the reward of

taking action a in state s and T (s, a, s0) is the probability of reaching state s0 when

taking action a in state s.

Generally, we also add a time horizon element to MDP. For example st denotes the

system state at time t and rt denotes the reward at time t. A deterministic policy or

strategy of an agent is a mapping from set of states to set of actions. A randomized

or mixed policy is a mapping from set of states to set of probability distributions over

actions. In MDP, there always exists an optimal stationary policy that is deterministic.

Therefore we generally limit our attention to deterministic policies and define a policy

for MDP as ⇡ : S ! A. The objective is to find a feasible ⇡ such that a reward

10

2.1 Single Agent Decision Problems 11

function will be optimized if policy ⇡ is followed. For infinite horizon MDPs, a common

reward function uses the total discounted expected reward. v
⇡

(s), the total discounted

expected reward if policy ⇡ is followed starting in initial state s, is defined as follows:

v
⇡

(s) =
1X

t=0

�tE(rt | ⇡, s0 = s), (2.1)

where � 2 [0, 1] is the time discount factor. Another common choice is the average

expected reward. A feasible policy ⇡⇤ is optimal if v
⇡

⇤(s) � v
⇡

0(s) for all s 2 S and

all feasible policies ⇡0.

It is well-known that any policy ⇡⇤ is optimal if and only if for all states s 2 S it

satisfies the following system of Bellman’s equations based on principles of optimality:

v
⇡

⇤(s) = max
a

[R(s, a) + �
X

s

02S

T (s, a, s0)v
⇡

⇤(s0)]. (2.2)

Therefore computing an optimal policy reduces to solving the system of equations

in (2.2). Two standard techniques are value iteration and policy iteration. In value

iteration, the algorithm starts with randomly assigned values v0 for all s 2 S. We

iteratively update vt+1 as

vt+1(s) = max
a

[R(s, a) + �
X

s

02S

T (s, a, s0)vt(s0)]. (2.3)

The sequence of functions vt converges to the optimal value v
⇡

⇤ in the limit and the

actions that maximize the right hand side of (2.3) form the optimal policy ⇡⇤. Note

that when multiple actions achieve the maximum, any one of them can be chosen to

form the optimal policy. This is however no longer the case in decentralized multi-agent

control settings where coordination among the decision makers is essential to avoid

incoperating incompatible optimal actions into the optimal policy.

Chapter 2 Background 12

In policy iteration, an initial policy ⇡0 is chosen arbitrarily. During each iteration,

⇡ = ⇡0 and the following computations are carried out for each state s:

v
⇡

(s) = R(s, ⇡(s)) + �
X

s

02S

T (s, ⇡(s), s0)v
⇡

(s0), (2.4)

⇡0(s) = argmax
a

[R(s, a) + �
X

s

02S

T (s, a, s0)v
⇡

(s0)]. (2.5)

Each iteration produces a policy with improving values until no further improvements

are possible. At that point, the resulting policy is guaranteed to be optimal. Again

when multiple actions satisfy the right hand side of Equation (2.5), any of these actions

can be successfully incorporated into the resulting policy.

In many potential applications for MDP, the decision maker does not have access

to the exact value of the current state. For example, sensors used for measurement

may be inaccurate. When the state of the system is not known exactly but rather

only a noisy observation of the true value of the state is available, the control problem

is typically formulated as a partially observable Markov decision process (POMDP), a

generalization of MDP [6].

Definition 2 (Partially Observable Markov Decision Process). A partially observable

Markov decision process (MDP) is defined as a 6-tuple (S,A,R, T,⌦, O), where S is

the set of system states, A is the set of actions, R : S⇥A ! R is the reward or payo↵

function, and T : S ⇥ A⇥ S ! [0, 1] is the system transition function, ⌦ is the finite

set of observations, and finally O : A⇥ S ⇥ ⌦! [0, 1] is the observation function.

An information vector for a POMDP includes a complete history of observations

and actions until the current decision period. Instead of searching for an optimal

policy that maps the system state to an optimal action, solving an POMDP involves

recasting it as a fully observable MDP with a state space that consists of all possible

information vectors. Su�cient statistics which ideally reflect all relevant information

2.2 Multiagent Extensions of MDP and POMDP 13

about the process at a specific time, but are of a more manageable dimension than the

information vector are often used in place of the information vector. The probability

distribution of states conditional on the information vector often serves as a su�cient

statistic. Value iteration and policy iteration can be used to solve POMDP exactly,

although often times the complexity of computing an exact solution is prohibitive,

even for a small problem.

2.2 Multiagent Extensions of MDP and POMDP

A decentralized decision process can be formulated either as a multiagent version of

a MDP or as a stochastic game. As we shall see from their definitions they are in

fact closely related to each other. There is no standard approach to extending fully

observable MDP to the multiagent setting (see [7, 8, 9] for some previously proposed

approaches). In a typical decentralized multiagent extension of a fully observable

MDP, a group of agents collectively control the decision process. Each agent makes

its own individual decision on which individual action to take and the system transits

based on the joint action of all individual actions. A common reward is received by

all agents based on this joint action as well. We follow the definition given in [10] and

define a Multi-agent Markov Decision Process (MMDP) as follows:

Definition 3 (MMDP). A Multi-agent Markov Decision Process (MMDP) is a 5-tuple

(S,N, {A
i

}
i2N , R, T), where S is the set of system states, N = {1, . . . , n} is the set of

agents, A
i

is the set of actions for agent i, R : S ⇥ A1 ⇥ · · ·⇥ A
n

! R is the reward

or payo↵ function, and T : S ⇥ A1 ⇥ · · · ⇥ A
n

⇥ S ! [0, 1] is the system transition

function.

We let A = ⇥
i2NAi

be the set of joint actions and use a without a subscript to

denote a joint action a = (a1, . . . , an) in A. An individual policy ⇡
i

: S ! �(A
i

) is a

mapping from the set of states to the set of probability distributions over actions. ⇡
i

is

Chapter 2 Background 14

deterministic if �(A
i

) consists of only probability distributions that place probability

1 on a single action in A
i

. Otherwise we say that ⇡
i

is mixed or randomized. Here we

no longer limit our attention to only deterministic policies. Let ⇡ = (⇡1, . . . , ⇡n) be a

joint policy, as in the case of MDP, we can define the reward function associated with

joint policy ⇡ as follows:

v
⇡

(s) =
1X

t=0

�tE(rt|⇡, s0 = s), (2.6)

where � 2 [0, 1] is the time discount factor. A feasible joint policy ⇡⇤ is optimal if

v
⇡

⇤(s) � v
⇡

0(s) for all s 2 S and all feasible joint policies ⇡0. The goal of a control

algorithm in MMDP is to find individual policies that together would form an optimal

joint policy.

Given that MDP has well-understood algorithms that produce optimal policies,

it is tempting to think that extending these techniques to decentralized decision

processes would be straightforward. While in limited circumstances these techniques

can lead to an optimal joint policy, the decentralized nature of decision making here

makes applying value iteration or policy iteration successfully quite challenging. The

main di�culty lies with cases where multiple incompatible optimal joint policies exist.

Take for example the value iteration update in (2.3) and modify a to mean a joint

action in the setting of MMDP. While all agents can compute the value function

vt+1(s), when multiple joint actions maximize the right hand side it is not clear how

decentralized decision makers can agree on which maximizing joint action to choose.

It is not di�cult to see that each agent can choose a di↵erent optimal joint action and

incorporate the individual action prescribed by said joint action into its individual

policy, and the resulting joint policy may not produce the actual function value every

agent has in mind. These types of coordination failures can occur during each update

in value or policy iteration.

2.2 Multiagent Extensions of MDP and POMDP 15

Many di↵erent approaches to extend POMDP to include a team of agents have been

proposed [11, 12, 13]. Typical formulations have agents make their own observations of

the system, and future rewards and observations depend on the joint actions of agents.

Observations may or may not be shared, depending on the specific communication

setup of the formulation. Much of the research in decentralized POMDP assumes

an optimal policy is computed by a centralized decision maker and that policy is

distributed among the agents for execution [14, 15, 16, 17]. The primary concern

in terms of agent coordination is how each agent can act optimally in the collective

sense without knowing exactly what the other agents have just observed. In other

words, during the execution of the team task, each agent is fully aware of the policy

or decision rule the other agents are operating under since each is equipped with the

common policy predetermined by a centralized decision maker. However, each agent

does not have an accurate picture of what the other agents are basing their decision

on and this can lead to coordination failure.

While this line of research is very challenging, and there is a wide array of

applications that can benefit from various proposed results, we want to emphasize

here that what we are primarily interested in is the study of decentralized decision

making. In other words, we are interested in the development of algorithms that can

be used by individual agents to independently compute a policy. We can certainly

include the assumption that observations are never shared or shared with a time delay

in our problem setting, however, the same kind of coordination issues due to multiple

optimal joint actions will still be present. In order to isolate the coordination issues

we are interested in from the coordination issues stemming from partial information,

we assume that individual observations are shared among the team of agents in the

multiagent POMDP we investigate in Chapter 4.

Chapter 2 Background 16

2.3 Connection to Stochastic Games

Game theory deals with interactions among multiple decision makers. In fact, MMDP

and multiagent extensions of POMDP are closely related to stochastic games [18] and

partially observable stochastic games. In a stochastic game, players play a sequence

of one-shot strategic games. After concurrently and independently playing each game,

players receive payo↵s specified by the payo↵ structure of the strategic game and

proceed to the next game whose identity depends on the current game and the players’

actions. Stochastic games are played in the game theoretically noncooperative setting,

i.e. agents cannot form an enforceable agreement. More formally, we present the

standard definition of stochastic games as follows [19]:

Definition 4 (Stochastic Games). A stochastic game is a tuple (S,N, {A
i

}
i2N ,

{R
i

}
i2N , P), where S is the set of system states, N is the set of players, A

i

is the set

of actions for player i, R
i

: S ⇥ A1 ⇥ · · ·⇥ A
n

! R is the reward or payo↵ function

for player i, and P : S ⇥ A1 ⇥ · · · ⇥ A
n

⇥ S ! [0, 1] is the transition function that

specifies the system dynamics.

Each state is associated with a N-player stage game in strategic form where the set

of actions for each player is A
i

and the payo↵s are specified by reward/payo↵ function

R
i

. MMDP is essentially a stochastic game where R
i

= R
j

for all i, j 2 N , i.e. MMDP

is an identical interest stochastic game. Stochastic games provide the most general

setting for considering decentralized decision processes because they can be used to

model situations where decision makers have competing or complementary objectives.

An individual policy or strategy ⇡
i

: S ⇥ A
i

! [0, 1] for agent i is a mapping from

states to probability distributions over its individual actions. We let ⇡ = (⇡1, . . . , ⇡n)

be a joint policy of all agents. ⇧
i

denotes the set of all feasible individual policies for

agent i and ⇧ be the set of all feasible joint policies. We define a reward function for

2.3 Connection to Stochastic Games 17

each agent i as follows:

v
i

(s, ⇡1, . . . , ⇡n) =
1X

t=0

�tE(rt
i

|⇡1, . . . , ⇡n, s0 = s). (2.7)

In a strategic game, a Nash equilibrium is a joint strategy such that no single

agent can attain a higher individual payo↵ by unilaterally deviating from that strategy

[20]. Using a common game theory notation, we let ⇡�i

be the joint strategy of all

the agents except i. Nash equilibrium for a stochastic game can be similarly defined

as follows:

Definition 5. In a stochastic game, a Nash equilibrium is a joint strategy (⇡⇤
1, . . . , ⇡

⇤
n

)

such that for all s 2 S, i 2 N , ⇡
0
i

2 ⇧
i

,

v
i

(s, ⇡⇤
i

, ⇡⇤
�i

) � v
i

(s, ⇡
0

i

, ⇡⇤
�i

) (2.8)

A stochastic game can have multiple Nash equilibria. While Nash equilibrium

policy should be the goal, with the exception of some special subclasses of stochastic

games it is generally not clear which Nash equilibrium should be included in the Nash

equilibrium policy. In identical interest or fully cooperative stochastic games, i.e.

MMDPs, finding a Pareto-optimal Nash equilibrium maximizing payo↵s for all players

and therefore the objective for optimization is well-defined. When multiple Pareto-

optimal Nash equilibria exist in a fully cooperative stochastic game, coordination

failures can occur when players carry out actions prescribed by incompatible policies.

Incompatibility of policies are defined as follows:

Definition 6. We say that in a fully cooperative stochastic game, two policies ⇡ and

⇡
0
are incompatible if there exists a state s 2 S such that v(s, ⇡) = v(s, ⇡

0
) and a set

of agents B ⇢ N such that v(s, {⇡
i

}
i2B, {⇡0

j

}
j2N�B

) < v(s, ⇡).

Chapter 2 Background 18

2.4 Previous Work

In this section, we discuss some of the common approaches to resolving coordination

issues due to multiple optimal joint policies in existing literature. In the last decade

or so, there has been a great deal of research e↵ort devoted to formulating and solving

multiagent versions of MDP and POMDP. However, as previously mentioned, much

of this research assumes that the policy computation is carried out by a centralized

planner. Agents receive this pre-established policy and execute it in a distributed

fashion during run-time. Agents generally are not assumed to have the most up to date

local information other agents are basing their actions on (according to the commonly

known policy) and therefore must compensate for this uncertainty over information

with intelligent guesses (belief state modeling is commonly used toward that end).

Even when policy computation is carried out in a decentralized fashion, the type of

coordination issue we investigate is not commonly recognized in the control literature.

It is perhaps not surprising that from a control point of view it is instinctive to think

homogeneous agents can reach the same decision independently. The following is

representative of the assumptions typically made about agents’ ability to coordinate:

“We assume that each agent behaves rationally and has the same mind power,

i.e., they will independently (without any communication) reach the exactly

same conclusion given a common problem as such as solving a Markov decision

process (MDP). This implies that all know the current global state (perfect

coordination). This is because in such case all agents are now presented with

the same decision problem (given global state, global reward function, and a

common start condition), thus they will independently solve the decision problem,

reaching the exactly same decision - which is an optimal decision, and each agent

then implements the local part of this decision. Note that all this is done in an

independent fashion.” [7]

2.4 Previous Work 19

In one of the first works framing MDP in the decentralized setting, Boutilier

proposed the MMDP framework and pointed out the substantial coordination chal-

lenges if one were to extend single MDP solution techniques to this new problem [10].

Treating MMDP as a stochastic game, there may be multiple optimal joint actions in

a stage game. Without resorting to the use of a centralized coordinator or negotiation,

Boutilier proposed forming a smaller identical interest strategic form game whose

action set involves precisely those individual actions that are part of an optimal joint

action. Coordinating on one of the optimal joint actions therefore is reduced to an

equilibrium selection problem. He suggested that either conventions that rely on

lexicographical ordering of agents and actions or learning algorithms can be used as a

selection tool. A simple reinforcement learning algorithm was proposed and tested.

In [21] and [22] exact and approximating dynamic programming algorithms using

generalized belief state are developed for partially observable stochastic games (POSG).

Each agent maintains a belief over the underlying state as well as policies of other

agents. The algorithms involve agents forming and solving strategic games in parallel

during each stage of the dynamic programming process. To solve these strategic form

games, iterated elimination of dominated strategies is proposed. Coordination issues

arise when the iterated elimination of dominated strategies does not produce a game

with an unique Nash equilibrium. The authors propose standard equilibrium selection

rules as a way to resolve coordination dilemmas but fail to recognize the limitations

of these standard selection rules.

In [23], decentralized decision making in a team of robots is modeled as a POSG.

Similar complexity issues exist for solving POMDP exist in POSG and therefore solving

for exact solutions is generally intractable. They propose an algorithm in which each

agent approximates the POSG with smaller but related Bayesian games. Each agent

uses the alternating-maximization algorithm (holding still actions of all agents’ but one

and finding the best-response action) to find the Bayesian Nash equilibrium. Since the

Chapter 2 Background 20

equilibrium produced by the alternating-maximization algorithm is only guaranteed to

be a local optimum, random restarts are used to decrease the likelihood of being stuck

at a pareto-dominated equilibrium. Since all of this is done independently by each

agent in parallel, it is essential that agents can formulate the same Bayesian games

and coordinate on the same equilibrium. Toward this end, a synchronized random

number generator is proposed to ensure coordinated restarts during the execution of

the alternating-maximization algorithm. However, it is not clear how tie-breaking

is handled when multiple best-response actions exist. A similar approach using

synchronized random number generation is proposed in the online planning algorithm

for decentralized POMDP when communication is limited [24]. Here, predetermined

tie-breaking rules (i.e. convention) are used when multiple best-response actions exist

during the alternating-maximization process.

Recognizing the limitations of various equilibrium selection rules, Gmytrasiewicz

and Doshi propose a new framework for decentralized POMDP called interactive

POMDP (I-POMDP) as a decision theoretical alternative to game theoretical ap-

proaches involving Nash equilibrium selection [12]. Belief state is used to model not

only the physical environment but also the other agents preferences, capabilities, and

beliefs. Each agent’s belief is a probability distribution over states of the environment

and the models of other agents which include their observations and decision rules

that map observations to actions. Belief update involves updating possibly infinitely

nested beliefs and therefore approximation methods are generally employed. One such

approximation method is to consider only finite nestings in the belief update. It is

shown that value iteration converges in finitely nested I-POMDPs. When multiple

optimal actions exist for another agent, it is assumed that each optimal action will be

played with equal probability.

In the remainder of this section, we discuss how coordination issues are handled in

multiagent reinforcement learning. Reinforcement learning enables an autonomous

2.4 Previous Work 21

agent to obtain optimal behavior through repeated interaction with the environment.

Rather than requiring that reward structure and system dynamics be known before

optimal control can be planned, optimal policy is learned through repeatedly taking

an action and observing its consequences. Algorithms such as Q-learning are e↵ective

at learning an optimal policy in MDP [25, 26]. Much e↵ort has been made to

extend reinforcement learning to the multiagent setting [27], however applying existing

learning techniques faces the same type of coordination challenges we described in the

motivating examples.

In the basic Q-learning algorithm, a function Q is defined for each state and action

pair:

Q⇤(s, a) = R(s, a) + �
X

s

02S

T (s, a, s0)v
⇡

⇤(s0), (2.9)

where Q⇤(s, a) is the total discounted reward of taking action a in state s and thereafter

following the optimal policy ⇡⇤. Notice that by Bellman’s equation (2.2), we have

v⇤(s) = max
a

Q⇤(s, a), and therefore the optimal policy associated with v⇤(s) can be

identified by finding the actions that maximize Q⇤(s, a). The problem is then reduced

to computing the function Q⇤(s, a) instead of searching for the optimal value of v⇤(s)

directly. To achieve that goal, Q-function updates proceed as follows:

Qt+1(s, a) = (1� ↵t)Qt(s, a) + ↵t(rt + �(max
a

0
[Qt(s0, a0)])) (2.10)

where rt and s0 are the reward and state the system transits to after taking action a0

in state s. ↵t 2 [0, 1) denotes the learning rate. Watkins and Dayan [25] showed that

the sequence Qt(s, a) in (2.10) converges to Q⇤(s, a) under the following assumptions:

1) the learning rate ↵t should take decreasing values such that
P1

t=1 ↵
t = 1 and

P1
t=1; 2) each state and action pair (s, a) is visited an infinite number of times. Singh

[28] showed that Q-learning converges to optimal Q-function value and optimal policy

when GLIE (greedy in the limit with infinite exploration) exploration is used. An

Chapter 2 Background 22

exploration/exploitation strategy is GLIE if 1) each action is executed infinitely often

in every state that is visited infinitely often; 2) in the limit, the learning policy is

greedy with respect to the Q-value function with probability 1. Examples of a GLIE

exploitation strategies include ✏-greedy exploration and Boltzmann exploration.

After convergence is reached, the optimal policy ⇡⇤ can be found by letting

⇡⇤(s) = argmax
a

Q⇤(s, a). When Q-learning is used to learn an optimal policy in

MMDP, coordination dilemmas arise when multiple actions achieve the optimal Q-

function values. In applications to stochastic games, it is generally agreed upon that

the optimal policy the learning algorithms converges to should be a Nash equilibrium

policy. However, incompatible Nash equilibrium policies are often present in both the

entire stochastic game and stage games. Indeed, the convergence of Q-function value

is relatively easily accomplished especially in identical interest stochastic games while

the convergence in policy is di�cult to achieve because of coordination failure.

In Nash Q-learning proposed by Hu and Wellman [29], the optimal Q value of

taking an action is assumed to be the discounted sum of current reward and future

rewards given that a Nash equilibrium strategy for each stage game is followed by

all agents thereafter. In order to compute a Nash equilibrium for the stage games,

each agent must be able to first form the stage game whose payo↵s are specified by

every agent’s Q-function values. This is accomplished by having each agent maintain

a model of every other agent’s Q-functions. Convergence conditions include the two

basic assumptions about infinite sampling and decaying of the learning rate. These

conditions are necessary but far from su�cient. Note that every agent has a model of

all agents’ Q-functions and must update these Q-functions during each iteration. Every

agent’s model of Q-functions shares the same value by default at t = 0. Assuming

that at time t, they are still identical and therefore all agents recognize the same stage

game (Qt

1(s
0), . . . , Qt

n

(s0)). If there exists a single Nash equilibrium for the stage game

(Qt

1(s
0), . . . , Qt

n

(s0)), then all agents can compute the same equilibrium and therefore

2.4 Previous Work 23

update Q-functions in a way that in iteration t + 1 everyone’s model Q-functions

remain the same. However, when there are multiple Nash equilibria for the stage

game, if agents are not able to coordinate on the same equilibrium value in Q-function

update then their Q-function models will diverge from that point on. This leads to

the break down of Nash Q-learning as convergence in Q-function value can not be

guaranteed. The following additional convergence conditions are therefore proposed

to ensure the convergence of Q-function values:

• Every stage game (Q1
t

(s), . . . , Qn

t

(s)) for all t and s has a global optimal point

and agents’ payo↵s in this equilibrium are used to update their Q-functions.

• Every stage game (Q1
t

(s), . . . , Qn

t

(s)) for all t and s has a saddle point and agents’

payo↵s in this equilibrium are used to update their Q-functions.

A joint action of a strategic game is a saddle point if it is a Nash equilibrium and

each agent will receive a higher payo↵ when at least one of the other agents deviates

from this joint action. All saddle points of a game are equivalent in their values.

Note in particular that the same condition has to hold for all stage games for Nash

Q-learning to converge, i.e. the choice of global optimal point and saddle point has

to be consistent throughout the learning process. These conditions ensure that the

values of the Nash equilibrium selected by all the agents are the same and leads to

the convergence of Q-function value. Even when this restrictive condition is met,

there is still no guarantee that convergence in policy will result unless agents can

coordinate on the same equilibrium. Hu and Wellman propose that Nash equilibrium

be chosen based on its expected reward or the fixed order in which it is generated by

a common algorithm. Coordination is therefore resolved by using a common list and

pre-established convention.

It is generally very di�cult to find stochastic games that satisfy the strict con-

vergence conditions proposed for Nash Q-learning. In order to relax the convergence

Chapter 2 Background 24

conditions, Littman [30] proposed the use of adversarial equilibrium and coordina-

tion equilibrium in Friend-or-Foe Q-learning. An adversarial equilibrium is a Nash

equilibrium in which no player is hurt by changes by other players (either jointly or

individually). A coordination equilibrium is a Nash equilibrium in which all players

attain their highest possible reward. An adversarial equilibrium always exists in two

player zero-sum games while a coordination equilibrium always exists in identical

interest games. Whenever a stage game has a coordination (adversarial) equilibrium,

all of them will have the same value. These facts can be used to provide a less

restrictive convergence condition. Two versions of Friend-or-Foe Q-learning exist.

Of particular interest to us is the use of the coordination equilibrium and this is

called Friend Q-learning. The Q-function is updated with the current reward plus

the discounted future reward assuming all agents follow the coordination equilibrium

strategy from there on. Again, several coordination equilibria of the same value can

exist for a stage game. Even though Q-functions may converge to the optimum value

the learned policies may not be optimal due to agents using incompatible equilibria.

Littman does not propose a fixed order generation mechanism to resolve coordination

dilemmas but simply observes that for some games even though convergence occurs

the resulting policy is suboptimal. Littman shows that Friend-Q learns the value for

a Nash equilibrium policy if the game has a coordination equilibrium for the entire

game, however this does not guarantee a Nash equilibrium policy will result from the

Q-function.

While Nash Q-learning and Friend-or-Foe Q-learning employ a Nash equilibrium

solution concept in the computation of Q-function, Correlated-Q Learning [31] uses

correlated equilibrium in much the same way. Nash equilibria in general can be

di�cult and costly to compute. Correlated equilibrium has the advantage that the set

of correlated equilibria is a convex polytope and therefore they can be more easily

computed using linear programming. Just like methods using Nash equilibria, the

2.4 Previous Work 25

equilibrium selection problem is still central to coordination as there can exist more

than one correlated equilibrium in any stage game. When multiple equilibria with the

same payo↵ exist, a centralized mechanism is proposed to select the same correlated

equilibrium.

In Optimal Adaptive Learning (OAL) [32], equilibrium selection is achieved using

a model-based technique called Biased Adaptive Play (BAP). After each iteration of

Q-function update, a virtual game (VG) for state s is constructed such that payo↵

of a joint action a is 1 if Q(s, a) is within ✏
t

of the optimal Q value of taking any

action in state s. Payo↵ is set to 0 for all other joint actions. If this VG is weakly

acyclic, i.e. there exists a directed path leading from any vertex to a sink in its best

response graph, Adaptive Play (AP) proposed by Young [33] will converge to a strict

deterministic Nash equilibrium with probability 1. However, there is no guarantee

that a VG is always weakly acyclic, and strict deterministic Nash equilibrium do not

always exist for VG. The authors propose modifying the VG and AP as follows. Each

VG is constructed as above with the addition of a biased set D which includes all

of the joint actions with payo↵ 1. Let SP
t

be the set of k samples from the most

recent m joint actions at time t. While both AP and BAP use sampled recent plays

to compute the presumed stationary mixed strategy of other agents, they di↵er when

the best response (BR) set to this mixed strategy contains more than one element.

In AP each agent will randomize uniformly among the elements in the BR set. BAP

proceeds exactly like AP except for when the following BAP conditions are met:

1. There exists a joint action a0 2 D such that for all a 2 SP
t

, a�i

= a0�i

,

2. D \ SP
t

6= ;.

When BAP conditions are met, there exists a joint action in both SP
t

and D such that

it is a best response to every element in SP. The most recently sampled such action

in SP
t

is chosen and individual action is carried out accordingly. This makes the

Chapter 2 Background 26

selection of Nash equilibrium deterministic and ensures the coordination on the same

equilibrium among all agents. The result is that with probability 1 BAP converges

to either a Nash equilibrium in D or a strict Nash equilibrium in VG. Since VG is

constructed such that D contains all the ✏-optimal joint actions, coordination on

✏-optimal joint actions is achieved. It is shown theoretically that for any identical

interest game OAL converges to an optimal Nash equilibrium with probability 1

under conditions that are easily met. While OAL has a strong theoretical guarantee,

in practice BAP conditions are not easily met therefore coordination on the same

equilibria may be slow. Consequently, convergence in policy may also be slow.

Finally, Rmax is a model-based deterministic learning algorithm originally proposed

for MDP and later extended to identical interest stochastic games in [34] and fixed-sum

stochastic games in [35]. It is model-based in the sense that each agent maintains and

updates its own model of the reward structure and transition structure of the game

and optimizes with regard to this model during each iteration. It is deterministic in the

sense that the order in which joint actions are explored is fixed according to a common

list all agents are given. Rmax is shown to converge to near optimal value in identical

interest stochastic games in polynomial time in terms of the problem parameters.

When choosing between multiple optimal joint actions, tie breaking is based on the

order joint actions appear on the common list. The authors recognize that this is only

feasible with agents sharing common labelings of agents and their actions. When this

common labeling is not available, it is proposed that agents can learn the labelings

during an preliminary order exploration phase. For example, if common labeling of

the agents is available, labeling of each agent’s actions can be learned as follows: each

agent will play its actions one after another until it returns to its first action. A

lexicographic ordering over the joint actions can then be produced. A more di�cult

scenario is when agents do not have a commonly known labeling of the agents. In this

case, during the order exploration phase each agent will randomly select an ordering

2.4 Previous Work 27

over the agents and carry out Rmax based on this randomized ordering. Rmax is

carried out with a su�ciently long time so that with high probability a near optimal

reward is produced, provided an identical ordering was chosen by all agents. This is

repeated for a su�ciently large number of trials so that with high probability agents

will choose the same ordering during one of the trials. Once all trials are completed,

each agent selects the ordering with the best reward in the order exploration phase

and executes the policy generated with that ordering for a number of steps. After

each step, the reward is checked against the reward obtained during order exploration.

If the di↵erence is significant, with high probability the orderings used by agents are

not identical and agents will move to the next best ordering. It is worth noting that

in theory any existing solution technique for single agent MDP can be extended to

the multiagent setting if agents can successfully learn common labelings. The authors

do not provide experimental results showing how e�ciently labels can be learned in

practice.

Chapter 3

Natural Solutions

Successful application of single decision control algorithms to decentralized control

of cooperative agents often requires the agents to solve identical interest strategic

games. The success of these control algorithms depends on the agents’ ability to

coordinate on the same pareto-optimal Nash equilibrium. Research has focused on

either endogenous qualities of various Nash equilibria or indigenous qualities that are

derived from the fact that learning algorithms are shown to converge to these equilibria.

In this chapter, we consider a class of symmetric games of identical interests where

multiple pareto-optimal Nash equilibria are present. We argue that arbitrary actions

are neither optimal nor rational, and a “natural solution” can be defined without

arbitrary actions on the players’ part. We will illustrate the concept for specific

examples and discuss computational issues associated with this solution concept.

3.1 Coordination in Strategic Games

Game theory has been used to both explain interactions among presumed rational

decision makers and prescribe strategic decision making in a wide array of economic and

social situations. While game theory was initially proposed to solve fixed sum games

in which opponents’ interests are diametrically opposed, game theorists soon turned

28

3.1 Coordination in Strategic Games 29

their attention to games that model situations where decision makers may benefit from

cooperation. In the Prisoners’ Dilemma depicted in Figure 3.1, for instance, the best

outcome for the players as a whole is that neither confesses. However, individually,

each has the incentive to confess regardless of what the other player chooses. This

results in the worst outcome for the players as a group.

Don’t Confess Confess
Don’t Confess 3,3 0,4

Confess 4,0 1,1

Figure 3.1: Prisoners’ Dilemma

Thomas Schelling, in his seminal work The Strategy of Conflict [36], considered

cases where two individuals must coordinate on the same action in order to receive

a common positive reward. It is hard for us to believe 50 years later, but before

Schelling’s groundbreaking work these types of identical interest coordination games

were generally considered to be uninteresting or unproblematic. For instance, none

other than the great Luce and Rai↵a [37] claimed that any group of players “which

can be thought of as having a unitary interest motivating its decisions can be treated

as an individual in the theory.” They insisted that solving games in which all players

are equipped with identical preference order over outcomes is trivial.

In The Strategy of Conflict, Schelling described informal experiments where he

asked people to choose between Heads or Tails, name a number in a series of numbers,

or select a place to meet in a given city. Two people who agree on the same choice

would each receive a common positive (though hypothetical) payo↵ regardless of which

specific choice they agree on. Otherwise they would receive a zero payo↵. In most

instances, people seem to have an uncanny ability to coordinate on the same choice

without prior communication. When 42 people were asked to choose between Heads

or Tails, 36 chose Heads. The number 1 is by far the most popular number in the

number naming experiment. Grand Central Station is the most common answer for

Chapter 3 Natural Solutions 30

a meeting place in New York City. This leads Schelling to argue that some strategy

combination or outcome has properties of prominence or conspicuousness. He termed

such a strategy combination a focal point. Lewis [38] coined the term salience to

describe the property of an outcome that is “unique in some way that the subjects

will notice, expect each other to notice.” Although the payo↵ associated with an

outcome can be a source of its salience, what Schelling was primarily investigating

with his experiments was the salience associated with decision or action labels. People

gravitate toward decisions and actions whose labels are salient, and this salience is

often rooted in common experience or cultural background of the players. When a

“salient” solution presents itself [39, 40], all players instinctively focus on a specific

equilibrium, often the option that is closer, easier, brighter, or something cognitively

distinct.

Many have attempted to explain how salience came to be. One such theory of

particular interest is the theory of team reasoning [41, 42]. An individual that team

reasons asks ”what should we do?” rather than ”what should I do?” There are many

versions of team reasoning theory, but roughly speaking each player will choose the

team optimal joint action profile and act out its part accordingly. When people

attempt to coordinate they often choose the action they perceive as most likely chosen

by others rather than choosing their preferred action. While team reasoning does not

apply directly to the coordination problems we study in this chapter, it nonetheless is

in the same spirit as other parts of the dissertation.

In the absence of consistent common labels, salience derived from labels cannot be

depended upon as the basis for decision making. Instead, decisions have to be made

based solely on the utility or the payo↵ of the strategic game, and this is in fact more

inline with the traditional game theoretic approach. We will formally define strategic

games and introduce the solution concept of Nash equilibrium.

Definition 7. A strategic game consists of

3.1 Coordination in Strategic Games 31

• a finite set of N players

• for each player i 2 N a nonempty set of actions A
i

• for each player i 2 N a preference relation %
i

on A = ⇥
j2NAj

.

Generally the preference relation %
i

is represented by a payo↵ function u
i

: A ! R
where u

i

(a) � u
i

(b) if and only if a %
i

b. We can then refer to a strategic game

with the 3-tuple hN, (A
i

), (u
i

)i. The Nash equilibrium has emerged as the dominant

solution concept for strategic games. It captures a steady state in which no single

player can benefit by unilateral deviation. In a Nash equilibrium, each individual

player’s action is best-response given the action profile of the other players’ actions.

Definition 8. A Nash equilibrium of a strategic game hN, (A
i

), (u
i

)i is a profile a⇤ 2 A

of actions with the property that for every player i 2 N we have

u
i

(a⇤�i

, a⇤
i

) � u
i

(a⇤�i

, a
i

) for all a
i

2 A
i

.

The assured existence of a Nash equilibrium in mixed strategies is one of the key

results that helped to shape the field in its early days [43]. However, in application

its non-uniqueness proves to be problematic if it was to be used to aid coordination.

Consider the game of Stag Hunt in Figure 3.2. Two individuals go on a hunting trip

together. Each can choose to hunt a stag or a hare. However, they will only successfully

hunt the more valuable stag if they cooperate. There are two Nash equilibria in this

game: when both hunt the stag or when both hunt the hare. While one can argue the

(2,2) joint action is the one players should coordinate on, if one player believes the

other player will choose to hunt the hare then the only rational thing to do would be

to hunt the hare too.

In response, various equilibrium refinement and selection schemes have been

proposed. Deductive selection methods focus on reasoning and the inherent property

Chapter 3 Natural Solutions 32

Stag Hare
Stag 2,2 0,1
Hare 1,0 1,1

Figure 3.2: Stag Hunt

of a specific Nash equilibrium. Examples of this include payo↵ dominance and risk

dominance [44]. A Nash equilibrium weakly payo↵ dominates another Nash equilibrium

if each player’s payo↵ in the former is at least as good as his payo↵ in the latter. A

Nash equilibrium piecewise risk dominates another if adherents of the former do better

than adherents of the latter against players that play each Nash equilibrium with

equal probability. The ability of these deductive methods to narrow the field down

to a single Nash equilibrium is, however, generally limited. Furthermore, they often

lead to conflicting outcomes. In the game of Stag Hunt, payo↵ dominance will lead

to (2,2) and risk dominance prefers (1,1). Inductive selection methods use adaptive

dynamics such that players through trial and error can hopefully converge to a single

equilibrium. The most famous example of this is Fictitious Play [45, 46, 47].

Many of the proposed equilibrium selection mechanisms above seek to resolve a

natural tension between objective individual self-interest and uncertainty about how the

game will be played, and this tension seems generally unavoidable in non-cooperative

games. However, for identical interest games, where self interest is synonymous with

group interests, this tension is perhaps easier to resolve. We seek to exploit symmetry

and common interests in deriving a new solution concept that is both technically

precise and also endogenously salient. Furthermore, its guaranteed uniqueness ensures

coordination when all players choose to take their respective actions accordingly.

3.2 Defining Natural Solutions

Definition 9. A strategic game hN, (A
i

), (u
i

)i is a symmetric game of identical interest

if

3.2 Defining Natural Solutions 33

• A
i

= A
j

for all players i and j

• u
i

(y1, . . . , yN) = u
j

(y1, . . . , yN) for all players i and j when the group plays the

profile y1, . . . , yN

• the common payo↵ is the same for any permutation of y1, . . . , yN .

We can denote the common set of actions with A and the common payo↵ function

with u : AN ! R. It is a well-known fact that symmetric strategic games generally

have symmetric mixed strategy equilibria x = (x, . . . , x), where x is a mixed strategy

over A [48, 49].

Assumption 1. The common set of pure strategies A is finite, and the payo↵ function

is such that given a subset of actions G ✓ A, there is a unique symmetric mixed

strategy Nash equilibrium x(G) = (x(G), . . . , x(G)) for which the support of each

player’s equilibrium is precisely G. In addition, using v(G) to denote the expected

payo↵ (“value”) associated with the equilibrium x(G), the following properties hold:

P.1 Given G1 ✓ G2 ✓ A, then

v(G1) � v(G2), (3.1)

and the inequality is strict if G1 is a strict subset of G2.

P.2 Given disjoint G1, G2, G3 (all subsets of A), then

v(G1) = v(G2) () v(G1 [G3) = v(G2 [G3). (3.2)

For convenience, we refer to any subset of actions G ✓ A as an action group. Also,

we let X(G) denote the set of all mixed strategies x whose support is precisely G. One

implication of Assumption 1 is that a specific (unique) mixed strategy equilibrium

x(G) is implied by the decision to (i) put positive probability on each of the actions

Chapter 3 Natural Solutions 34

a 2 G and (ii) put zero probability on all of the actions b 2 A \G. Thus, the problem

of selecting a symmetric mixed strategy equilibrium is in a sense equivalent to the

problem of selecting an action group.

The solution concept we propose for games that satisfy Assumption 1 is tightly

coupled to the payo↵s that can be achieved when individual players make no arbitrary

decisions about what actions to play. Some additional notation will be helpful. For

any a 2 A, let the function ũ
a

: AN�1 7! < be defined by

ũ
a

(y2, . . . , yN) = u(a, y2, . . . , yN). (3.3)

We can interpret ũ
a

as the payo↵ function for the game that is defined by Player

1 unilaterally declaring his intent to play a 2 A. We are now equipped to define a

notion of equivalence between actions.

Definition 10 (Equivalent Actions). Two distinct actions a and a0 are equivalent,

denoted a $ a0, if there exists a bijective function �
a,a

0 : AN�1 7! AN�1 such that

ũ
a

(↵) = ũ
a

0(�
a,a

0(↵)), 8 ↵ 2 AN�1. (3.4)

In other words, two actions are equivalent if, after they are selected by Player 1, they

o↵er the Players 2 through N the same opportunities to receive payo↵s, i.e. if the

games defined by ũ
a

and ũ
a

0 are equivalent. We now proceed to define an important

building block for our solution concept.

Definition 11 (Atomic Action Groups). An action group G is atomic if for all a 2 G

1. the actions a and a0 are equivalent (i.e. a $ a0) for all a0 in G, and

2. the actions a and b are not equivalent for any b 2 A \G.

For singleton action groups G = {a}, the first requirement above holds vacuously,

though the second may not. As a convention, we do not consider the empty set ; to be

3.2 Defining Natural Solutions 35

atomic. The definitions above imply that G is atomic if (i) for any action a 2 G the

(N � 1)-player game defined by ũ
a

is equivalent to the (N � 1)-player game defined

by ũ
a

0 for any other a0 2 G and (ii) G contains all such actions.

Definition 12 (Proper Action Groups). An action group G is proper if (i) it is a

union of atomic action groups and (ii) it is such that if F ✓ G is an atomic action

group then G contains all atomic action groups H ✓ A such that v(H) = v(F). An

action group is improper if it is not proper.

Note that an atomic action group F is itself proper only if it is the unique atomic

action group with the value v(F). Strict subsets of atomic action groups are improper.

Any action group involving a strict subset of an atomic action group is improper. By

convention, the empty set is improper. The full set of actions A is itself necessarily

proper.

Proper action groups have the following properties:

Proposition 1. The union of two proper action groups is also itself proper.

Proof. Let F and G be proper action groups. It is easy to see that F [G is the

union of atomic action groups. Suppose that the union F [G is not proper, then by

definition it must be the case that there exists an atomic action group H ✓ F [G and

an atomic action group H 0 ✓ A \ (F [G) such that v(H) = v(H 0). Since H is atomic,

either H ✓ F or H ✓ G. Without loss of generality let H ✓ F . H 0 ✓ A \ (F [G)

implies H 0 ✓ A \ F . Since v(H) = v(H 0) then by definition F cannot be proper.

This contradicts our initial assumption and therefore the union must itself also be

proper.

Proposition 2. If F and G are proper action groups and G ✓ F , then F \G is also

proper.

Proof. To show that F \G is the union of atomic action groups, let a be an action

in F \ G and b be any action that is equivalent to a. Since F is proper, we have

Chapter 3 Natural Solutions 36

b 2 F . Additionally, b can not be contained in the proper group G since otherwise

a will also be contained in G. Therefore b 2 F \ G and F \ G is a union of atomic

action groups. It remains to prove that F \ G also satisfies the second part of the

definition. Suppose this is not the case and therefore there exists an atomic action

group H ✓ F \G and an atomic action group H 0 ✓ A\(F \G) such that v(H) = v(H 0).

A \ (F \ G)) = (A \ F) [G, so H 0 is either a subset of G or a subset of A \ F . H 0

is a subset of G implies that G is not proper. If H 0 is a subset of A \ F , then F is

not proper. Both cases contradict our initial assumption and therefore F \G must be

itself proper.

Definition 13 (Natural Action Groups). An action group G is natural if it is proper

and has the property that for any proper action group F ✓ G there is no proper action

group H ✓ A \G such that v((G \ F) [H) = v(G). If an action group is not natural,

then we refer to it as unnatural.

Thus, to be “natural” an action group G must be proper and must also be such that

no subset of G that is proper can be replaced by a proper action group that is disjoint

to G. Note that the full set of actions A is itself natural vacuously since there are no

proper action groups H ✓ A \ A. Observe also that if G is natural and H ✓ A \G
is such that v(H) = v(G), then H cannot be proper. Indeed, if G \ H = ;, then
H would be a disjoint proper action group whose value is the same as G, and this

would contradict the fact that G is natural. More generally, we have the following

proposition.

Proposition 3. If G is a natural action group and action group H 6= G is such that

v(H) = v(G), then H cannot be proper (and thus cannot be natural).

Proof. Let G and H be as stated in the proposition. As we have already observed,

if G and H are disjoint, then H cannot be proper. To address the remaining case

in which G \H 6= ;, let us suppose to the contrary that H is proper. The fact that

3.2 Defining Natural Solutions 37

v(G) = v(H) implies through property P.1 that neither G nor H is nested within the

other. Thus, since G 6= H, it must be true that G \ H, H \ G, and G \ H are all

nonempty. Now let a be an action in the intersection G\H. Since both G and H are

proper, they must both contain all actions b 2 A that are equivalent to a, and thus

G \H is a union of atomic action groups. In addition, for any atomic action group

F ✓ G\H, the fact that G and H are both proper implies that they both contain all

atomic action groups with value equal to v(F). Thus, G \H must itself be proper.

Consequently, G \H and H \ G must also be proper. Now, since G is natural and

G \H and H \G are proper, we have that

v(G) 6= v((G \ (G \H)) [(H \G))

= v(H)

which is a contradiction. Thus, H cannot be proper.

By Proposition 3, if G is natural, there can be no other natural action groups

H 6= G with the same value as G. In other words, there is no remaining ambiguity

about how to achieve the value of a natural action group. Consequently, we are

motivated to make the following definition.

Definition 14 (Natural Solutions). A natural action group G⇤ for a given strategic

game is the natural solution of the game if all other natural action groups G are such

that v(G) < v(G⇤). We use v⇤ to denote the value of the natural solution v(G⇤).

From our earlier observations, A itself is always natural, and, from property P.1, A is

the the only action group with value less than or equal to v(A). Since there can be

only finitely many distinct natural action groups, a natural solution must exist.

The following proposition describes a convenient equivalent characterization of

natural action groups.

Chapter 3 Natural Solutions 38

Proposition 4. A proper action group G is natural if and only if for any proper action

group F ✓ G and any proper action group H ✓ A \G it is true that v(F) 6= v(H).

Proof. By property P.2, the existence of action groups F ✓ G and H ✓ A \ G

such that v(F) = v(H) is equivalent to v((G \ F) [F) = v((G \ F) [H). Thus,

the hypothesis that v(F) 6= v(H) for all pairs of proper action groups F ✓ G and

H ✓ A \G is equivalent to the hypothesis that G is natural.

Clearly, for any game satisfying Assumption 1 the natural solution is a (possibly

mixed) Nash equilibrium. Thus, we may regard “natural-ness” as an equilibrium

selection mechanism, in the same vein as payo↵ dominance [44]. What we achieve in

selecting a natural solution is a form of uniqueness: to paraphrase Proposition 3, If G

is the natural solution, then any other action group H with equivalent value cannot be

proper, meaning that H must be comprised of some but not all elements of an atomic

action group. Moreover, the natural solution G⇤ is the natural action group that o↵ers

the highest expected payo↵.

Assumption 1 certainly is key in deriving our main results. The assumption begins

by requiring that a unique mixed strategy equilibrium be associated with the resolve

(on the part of all players) to put positive measure on any action group G ✓ A. Note

that the existence of such a mixed strategy equilibrium is clear from [48, 49, 43], and

the uniqueness requirement is what makes this an assumption. Property P.1 requires

that the equilibrium payo↵ associated with an action group G becomes strictly worse

as new actions are added, i.e. played with positive probability. This property is the

driving force behind Proposition 3 and also the assured existence of a natural solution.

In a sense, P.1 creates an essential tradeo↵ between (i) the value that can be achieved

by all players agreeing on particular actions and (ii) the cost of uncertainty about

which action to choose. Property P.2 is a more technical requirement and is used

mainly in validating the test for natural-ness in Proposition 4. Games that reward

commonality in action selection tend to satisfy property P.1. In the next section,

3.3 Static Agreement (SA) Games 39

we illustrate this for a class of static “agreement” games, where positive reward is

associated only with every player agreeing on an action.

3.3 Static Agreement (SA) Games

Definition 15. (Static Agreement Games) A static agreement game is an N-player

symmetric game defined by a common set of actions A = {a1, a2, . . . , an} and a payo↵

vector u = (u
a1 , ua2 , . . . , uan)

0 > 0 such that u
ai is the common payo↵ if all players

select the same action a
i

2 A and the common payo↵ otherwise is zero.

Note that when there is a unique maximum u⇤ among the payo↵s {u
a1 , ua2 , . . . uan},

then it is reasonable to take the unique Nash equilibrium that achieves the value of u⇤

as an “optimal solution”. All players should put probability 1 on the corresponding

action in A. However, when the maximum payo↵ is not uniquely achievable, then what

constitutes a reasonable solution becomes much less clear. Unfortunately, existing

equilibrium selection mechanisms, such as the payo↵ and risk dominance criteria

of [44], which are designed to identify pure strategy equilibria, do not provide a clear

answer.

3.3.1 Verifying Assumption 1 for SA Games

We now show that static agreement games satisfy Assumption 1. To simplify notation,

let v(x) denote the expected payo↵ associated with all players using the same mixed

strategy x, i.e.

v(x) =
nX

i=1

u
aix

N

ai
. (3.5)

Similarly, let

v(x, x̄) =
nX

i=1

u
aix

N�1
ai

x̄
ai . (3.6)

Chapter 3 Natural Solutions 40

denote the expected payo↵ given that N � 1 players agree on x 2 X and a single

player deviates by choosing x̄ 2 X.

Now given an action group G ✓ A, consider the mixed strategy

x(G) = k
G

· (1
a12G · u�1/(N�1)

a1
, 1

a22G · u�1/(N�1)
a2

,

. . . , 1
an2G · u�1/(N�1)

an
)0 2 X(G), (3.7)

where

k
G

=
1

P
a2G u�1/(N�1)

a

(3.8)

is a normalizing constant and 1
ai2G is an indicator variable that evaluates to one if

a
i

2 G and zero otherwise.

Lemma 1. Let G be an action group for a static agreement game. The mixed strategy

profile x(G) = (x(G), . . . , x(G)), having value

v(G) = v(x(G)) = kN�1
G

, (3.9)

is the unique symmetric mixed strategy Nash equilibrium in X(G)

Proof. We first show that x(G) is a Nash equilibrium. Note that

v(x(G), x̄) =
nX

i=1

u
ai

✓
k
G

· 1
ai2G · u

�1
N�1
ai

◆
N�1

x̄
ai

= kN�1
G

nX

i=1

1
ai2G · x̄

ai

 kN�1
G

= v(x(G)),

where the third line holds with equality when x̄ 2 X(G). Since no individual player

can deviate from x(G) to obtain a higher expected payo↵, x(G) is a Nash equilibrium.

3.3 Static Agreement (SA) Games 41

To establish uniqueness, suppose that (x,x) 2 X(G) is a Nash equilibrium.

If we list the elements of G as a(1), . . . , a(|G|), it must be the case that u
a(i)

xN�1
a(i)

=

u
a(i+1)

xN�1
a(i+1)

for i = 1, . . . , |G|� 1. To see this, suppose without loss of generality that

u
a(i)

xN�1
a(i)

> u
a(i+1)

xN�1
a(i+1)

, then any individual player can improve its payo↵ by playing

action a(i) with probability x
a(i) + x

a(i+1) and a(i+1) with probability zero. These

equalities along with the requirement that x
a(1)

+ · · ·+ x
a(|G|) = 1 defines system of

linear equations that can only be satisfied by one vector in X(G), namely x(G).

Lemma 2. Let G1, . . . , Gm

be mutually disjoint action groups for a static agreement

game. Then,

v([m

i=1Gi

) =
1

[
P

m

i=1(v(Gi

))�1/(N�1)]N�1 (3.10)

Proof. Since

(v(G
i

))�1/(N�1) =

"
X

a2Gi

u�1/(N�1)
a

#
, i = 1, . . . ,m,

we have that

v ([m

i=1Gi

) =
1

hP
a2G u�1/(N�1)

a

i
N�1

=
1

hP
m

i=1

P
a2Gi

u�1/(N�1)
a

i
N�1

=
1

hP
m

i=1 (v(Gi

))�1/(N�1)
i
N�1 .

Some easy consequences of Lemma 2 are the following.

Chapter 3 Natural Solutions 42

Corollary 1. Let G1 and G2 be action groups for a static agreement game such that

G1 ✓ G2. Then,

v(G1) � v(G2), (3.11)

and the inequality is strict if G1 is a strict subset of G2.

Corollary 2. Let G1, G2, and G3 be mutually disjoint action groups for a static

agreement game. Then,

v(G1) = v(G2) () v(G1 [G3) = v(G2 [G3). (3.12)

Corollary 3. Let G1, G2, . . . , Gm

be mutually disjoint action groups with equal value,

i.e. v(G1) = v(G2) = . . . = v(G
m

) = . Then,

v ([m

i=1Gi

) =


mN�1
. (3.13)

Corollaries 1 and 2, along with Lemma 1, imply that static agreement games satisfy

the requirements of Assumption 1, and thus the solution concept of natural solutions

applies.

We point out that for any a 2 A, the value of the singleton action group {a} is u
a

.

Thus, if a is such that u
a

� u
ā

for all ā 2 A, then u
a

is the highest value any action

group can have. On the other hand, from Corollary 1, thinking of A itself as an action

group, v(A) is the smallest value that an action group can have and no other action

group can achieve that value.

Note also that an action group G ✓ A is atomic if all of the actions that it contains

have individually equivalent payo↵s, and no other actions b 62 G have the same payo↵

as those represented by G. In particular, G is not atomic if it involves some, but not

all, actions a that achieve a particular value.

3.3 Static Agreement (SA) Games 43

3.3.2 Examples

We now illustrate our solution concept in the context of some specific examples.

Example 1. Consider the two-player SA game defined by the payo↵ vector

u = (4, 4, 2, 2).

Here, the only atomic action groups are G1�2 = {a1, a2} and G3�4 = {a3, a4}. Since
v(G1�2) 6= v(G3�4), both are proper. A itself is also proper. All three proper action

groups are natural. In particular, the action group G1�2 is natural despite the fact

that is has the same value as G3 = {a3} (and as G4 = {a4}) – the action groups G3

and G4 are not proper.

Example 2. Consider the two-player SA game defined by the payo↵ vector

u = (4, 4, 6, 6, 6, 8, 8, 8, 8).

Here, using the same notation as in the preceding example, the action groups G1�2,

G3�5, and G6�9 are atomic. However, since v(G1�2) = v(G3�5) = v(G6�9), none of

the atomic action groups are individually proper. Similarly, any pair of atomic action

groups is improper. The only proper action group is A itself, which is also natural.

Example 3. Consider the two-player SA game defined by the payo↵ vector

u = (3, 6, 6, 6).

Here, G1 and G2�4 are the atomic action groups. The proper action groups are G1,

G2�4, and A itself. Note that the action group G1 is natural since the only disjoint

proper action group G2�4 has a di↵erent value. (It is important to note that G1 is

natural despite the fact that other disjoint action groups have the same value – all

Chapter 3 Natural Solutions 44

such disjoint action groups, i.e. G2�3, G2,4, and G3�4, fail to be proper.) The action

group G2�4 is also natural since its value is not the same as the disjoint proper action

group G1. Finally, the third (and final) natural action group for this game is A itself.

Example 4. Consider the two-player SA game defined by the payo↵ vector

u = (3, 6, 12, 12, 18, 18, 18)

for which the atomic action groups are G1, G2, G3�4, and G5�7. The action group

G1 is proper since no other atomic action groups have the same value. Any action

group involving some but not all of G2, G3�4, and G5�7 is improper. On the other

hand G2�7 and A itself are proper. Since v(G1) 6= v(G2�7), all three proper action

groups are natural.

Example 5. Consider the two-player SA game defined by the payo↵ vector

u = (2, 2, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6)

for which the atomic action groups are G1�2, G3�4, G5�9, and G10�12. The proper

action groups are G1�2,5�9, G3�4,10�12 and A itself. Since v(G3�4,10�12) > v(G1�2,5�9),

all three proper action groups are natural.

Example 6. Consider the two-player SA game defined by the payo↵ vector

u = (8, 8, 8, 8, 2, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6)

for which the atomic action groups are G1�4, G5, G6�7, G8�12, and G13�15. The proper

action groups are G1�7,13�15, G8�12 and A itself. Since v(G8�12) > v(G1�7,13�15), all

three proper action groups are natural.

3.3 Static Agreement (SA) Games 45

Example 7. Consider the two-player SA game defined by the payo↵ vector

u = (2, 2, 8, 8, 12, 12, 12, 5, 5, 5, 5, 5, 6, 6, 6)

for which the atomic action groups are G1�2, G3�4, G5�7, G8�12 and G13�15. The

proper action groups are G13�15, G1�2,8�12, G1�2,8�15, G1�12, A, G3�7, and G3�7,13�15,

of which only G1�2,8�12, A, and G3�7,13�15 are natural.

Example 8. Consider the two-player SA game defined by the payo↵ vector

u = (18, 18, 18, 12, 12, 6, 2, 4, 8, 16, 32, 32),

for which the only natural action group is A itself (even though there are many proper

action groups).

Table 3.1: Natural Solutions for the Examples

Example Proper Action Groups Natural Action Groups Natural Solution

1 G1�2, G3�4, A G1�2, G3�4, A G1�2

2 A A A
3 G1, G2�4, A G1, G2�4, A G1

4 G1, G2�7, A G1, G2�7, A G1

5 G1�2,5�9, G3�4,10�12, A G1�2,5�9, G3�4,10�12, A G3�4,10�12

6 G1�7,13�15, G8�12, A G1�7,13�15, G8�12, A G8�12

7 G13�15, G1�2,8�12, G1�2,8�12, A, G3�7,13�15 G3�7,13�15

G1�2,8�15, G1�12, A,
G3�7, G3�7,13�15

8 too many to list A A

Summary results for Examples 1-8 are shown in Table 3.1. All of the examples

point to an important property of “natural solutions,” namely the discontinuity of

the solution. For instance, in Example 1, the natural solution is G1�2 with value

v(G1�2) = 2. By infinitesimally reducing the payo↵ associated with action a2, the

Chapter 3 Natural Solutions 46

natural solution becomes G1, with value 4. Thus, the concept itself is inherently

extremely sensitive to small variations in payo↵s.

3.3.3 Descriptive Power of Natural Solution

While our interest in the development of natural solution, a new game theoretical

solution concept, mainly lies in its prescriptive power, it is worthwhile to briefly discuss

whether it has any descriptive power as a solution concept. In other words, is the kind

of rationalization we proposed in the definition of natural solution evident when real

human beings make decisions when coordination dilemmas are present?

While searching for an explanation for salience of focal points, Bardsley etc.

[50] conducted experiments during which test subjects were asked to play repeated

coordination games. The number tasks they designed are akin to the SA games.

Examples of displays (how number tasks are presented to test subjects) are shown

in Figure 3.3 and 3.4. In Figure 3.3, the discs containing numbers bounce around

randomly on the computer screen. The lines next to the discs indicate movement

and are not actually shown to test subjects. In the coordination game, two test

subjects were each asked to choose one object. They are told that if the same object is

chosen by both, then both will receive the number of points indicated on that object.

Otherwise neither of them receives anything. The presentation of the number task is

designed such that the payo↵s alone are meant to influence decisions. In other words,

the actions are presented in a way such that it is impossible for the test subjects to

derive salience from their presentations alone.

In one set of experiments, the array of points carried by the set of objects are as

follows:

• Type 1: {10, 10, 10,9}, {10, 10, 10, 10, 10,9}, {10, 10, 10,9, 8, 7},
{10, 10, 10, 9, 9,8}, {10, 10, 10, 10,9,9},

3.3 Static Agreement (SA) Games 47

The corresponding instructions in the guessing treatment were:

Each !film" in part 2 is one that your partner had during part 1, in which he or
she just clicked on an object and received the number of points written on it.
Again, you have to click on one object for each task, and confirm your decision.
This time, though, you have to guess what your partner did during part 1. If you
click on the same object as your partner, you will receive the number of points
indicated on that object. If not, you will receive nothing for that task.

In the coordination treatment, the instructions were:

Each task shows a set of moving objects, with a number on each one. The
display in each task can be thought of as a short !film". Your partner has the
same set of films. For each task, you have to click on one object in each film,
using your mouse. . . . If you click on the same object as your partner, you will
both receive the number of points indicated on that object. If not, neither of
you will receive anything for that task.

In the Nottingham experiment, tasks were presented in booklets. Each task appeared
as a row of five objects, and the subject selected one by marking a tick below it. Subjects
who had been paired with one another saw the same five objects, but the order in which
these were displayed from left to right was randomised across subjects (and subjects
were told this). Each object was represented as a box, subdivided into two parts. The
lower part stated the number of points associated with the object. In text tasks, the
upper part of each box contained a distinct string of text; Figure 3 shows a typical
example. In number tasks, the upper part of each box contained a distinct pattern of

task: 2 3 4group: Click on an object then confirm time left:

9

98

10

10

10

Fig. 2. Display for Amsterdam Number Tasks

54 [M A R CHTH E E CONOM I C J O U RN A L

! The Author(s). Journal compilation ! Royal Economic Society 2009

Figure 3.3: Example of display for number tasks. Reprinted from “Explaining focal
points: Cognitive hierarchy theory versus team reasoning, ” by Bardsley, N., Mehta,
J., Starmer, C., and Sugden, R, 2010, The Economic Journal, 120: 40-79. Reprinted
with permission.

• Type 2: {10, 9}, {10,10,10, 9, 9, 9}, {10,10,10,10,10, 1}.

The natural solutions are indicated with the bold face above. Test subjects (university

students) were able to select the natural solution overwhelmingly in all of these

coordination games except for the last one under each type. There far more subjects

still choose the natural solution. Notice for each array of points, there is a unique

atomic action group with maximum group value. None of them involves two atomic

action groups with the same group value, for which selecting the natural solution

involves another layer of reasoning on the test subject’s part. It is uncertain how

many layers of reasoning a typical human being is mentally capable of or motivated

enough to even attempt.

Chapter 3 Natural Solutions 48

symbols; Figure 4 shows an example. These five patterns were generated by separate
runs of a common computer program which included a random component. Patterns
were generated independently for each pair of subjects. Our intention was that these
patterns, although clearly constituting distinct labels, would be perceived as non-
descript.
The relevant instructions (given both orally, to all participants together, and in

print) were:

[Picking treatment] Your objective is the same for each task: to pick one of the
boxes. You are required to indicate which box you have chosen by putting a tick
just below the box. . . . For each of the sixteen tasks, you will be awarded the
number of points specified in the box you have picked. The total number of
points awarded to you for all the tasks determines how much money you win in
this part of the experiment.

[Guessing treatment] There is an even number of people taking part in this
room, and we have randomly divided you into pairs for the duration of this part
of the experiment. What you see in your second booklet is the same as your
partner saw in their first booklet when you were all asked to pick one of the five
boxes for each task. So for each task in your second booklet, your partner has
already chosen one of the five boxes and scored the corresponding number of
points, which they keep regardless of what you do next. Your objective for each

Calais Paris Berlin Prague Rome

10 points 10 points 10 points 10 points 10 points

Fig. 3. Display for Nottingham Text Tasks

9 points 10 points 10 points 10 points 10 points

Fig. 4. Display for Nottingham Number Tasks

2010] 55E X P L A I N I N G F O C A L P O I N T S

! The Author(s). Journal compilation ! Royal Economic Society 2009Figure 3.4: Example of display for number tasks. Reprinted from “Explaining focal
points: Cognitive hierarchy theory versus team reasoning, ” by Bardsley, N., Mehta,
J., Starmer, C., and Sugden, R, 2010, The Economic Journal, 120: 40-79. Reprinted
with permission.

3.4 Computational Issues

As discussed in the previous section, a natural solution is guaranteed to exist under

Assumption 1. Clearly, for any instance of the game the computation can be done

via brute force enumeration of all the natural action groups. We conjecture that

computing a natural solution is NEXP-complete, and the worst-case complexity of

finding an exact solution is potentially prohibitive. It is therefore worthwhile to

consider whether there are e�cient heuristics that can produce the natural solution

almost consistently. In this section, we propose a heuristic that we refer to as the

“parallel reduction algorithm (PRA)”. We investigate when PRA is guaranteed to

produce the natural solution, what happens when it fails to find the natural solution,

and then demonstrate empirically its e↵ectiveness on SA games.

3.4.1 The Parallel Reduction Algorithm (PRA)

The Parallel Reduction Algorithm involves aggregating unions of atomic action groups

of like value in a stagewise process. We use the term “parallel” to indicate that

possible unions of like-valued action groups are aggregated simultaneously, as opposed

3.4 Computational Issues 49

to for instance only aggregating the like-valued action groups with highest value. PRA

is presented in Algorithm 1.

Algorithm 1 Parallel Reduction Algorithm (PRA)

Initialization
Given a symmetric identical interest game with action set A and payo↵ vector u.
Partition A into atomic action groups

{G
↵

1
1
, G

↵

1
2
, . . . , G

↵

1
m1
},

where v(G
↵

1
i
) � v(G

↵

1
i+1

), for i = 1, . . . ,m1 � 1.
Recursion
In the k-th iteration:
if v(G

↵

k
1
) > v(G

↵

k
2
) then

stop and output G
↵

k
1
as the solution.

else
aggregate action groups to obtain a coarser partition

{G
↵

k+1
1

, G
↵

k+1
2

, . . . , G
↵

k+1
mk+1

},

where (i) each G
↵

k+1
i

is an exhaustive union of k-th stage action groups with like

value and (ii) v(G
↵

k+1
i

) � v(G
↵

k+1
i+1

), for i = 1, . . . ,m
k+1 � 1.

end if

Proposition 5. If PRA terminates within k = 2 stages, then it produces a natural

solution.

Proof. The first round of parallel reduction results in the partitioning of A into atomic

action groups

{G
↵

1
1
, G

↵

1
2
, . . . , G

↵

1
m1
},

where we may assume that v(G
↵

1
i
) � v(G

↵

1
i+1

), for i = 1, . . . ,m1 � 1. PRA terminates

at this point with G
↵

1
1
as the “answer” if v(G

↵

1
1
) > v(G

↵

1
2
). Would this answer be

correct? Termination implies that G
↵

1
1
is necessarily proper; it would in fact have to

be natural, since (i) there are no strict subsets of G
↵

1
1
that are proper and (ii) any

other disjoint proper action group would have to have value less than v(G
↵

1
1
). Thus,

the “answer” would indeed be the natural solution of the SA game.

Chapter 3 Natural Solutions 50

If PRA fails to terminate in the first iteration, then it must have been the case

that v(G
↵

1
1
) = v(G

↵

1
2
), and the second stage of reduction results in a new, coarser

partition of A:

{G
↵

2
1
, G

↵

2
2
, . . . , G

↵

2
m2
},

where we may assume that v(G
↵

2
i
) � v(G

↵

2
i+1

), for i = 1, . . . ,m2 � 1. Note that by

the definition of PRA each G
↵

2
i
is an exhaustive union of like-valued atomic action

groups and is thus necessarily proper. PRA terminates with G
↵

2
1
as the “answer” if

v(G
↵

2
1
) > v(G

↵

2
2
). To see if this answer would be correct, suppose that the termination

condition is satisfied. Note that no strict subset of G
↵

2
1
can be proper, thus, to prove

that G
↵

2
1
is natural, it remains to show that no disjoint proper action group has the

same value. We now establish that this is the case. First, note that any action group

that involves a part, but not all of G
↵

2
i
for any i, cannot be proper. Thus, proper

action groups that are disjoint to G
↵

2
1
must involve unions of G

↵

2
i
for i > 1. Since

v(G
↵

2
1
) > v(G

↵

2
i
) for i > 1, all such unions must have strictly lower value, and G

↵

2
1

and must be natural. To see that G
↵

2
1
is the natural solution, we must show that all

other natural action groups have lower value. In order for a group to be a natural

action group, it must first be proper. Since any action group that involves a part

but not all of G
↵

2
i
for any i cannot be proper, any proper action groups must involve

unions of G
↵

2
i
. This implies that its value is less than or equal to the value of G

↵

2
1
.

If the value is less than the value of G
↵

2
1
, then even if it is a natural action group it

cannot be the natural solution. If it has the same value as G
↵

2
1
, then it must be the

case that it is G
↵

2
1
itself, otherwise the termination condition would not be have been

met. Thus we have concluded that G
↵

2
1
is the natural solution.

Lemma 3. Let {G
↵

k
1
, G

↵

k
2
, . . . , G

↵

k
mk

} be the set of partitions during k-th stage of

PRA. For all k � 2, if no strict subset in {G
↵

k+1
1

, G
↵

k+1
2

, . . . , G
↵

k+1
mk+1

} is natural, then

no strict subset in {G
↵

k
1
, G

↵

k
2
, . . . , G

↵

k
mk

} is natural.

3.4 Computational Issues 51

Proof. For all k � 2, each non-empty subset in {G
↵

k
1
, G

↵

k
2
, . . . , G

↵

k
mk

} is a proper

action group. By Proposition 4, for any subset in {G
↵

k
1
, G

↵

k
2
, . . . , G

↵

k
mk

} to be natural

it has to include all or none of the elements in {G
↵

k
1
, G

↵

k
2
, . . . , G

↵

k
mk

} with the same

group value v(G
↵

k
i
). Since in PRA each G

↵

k+1
i

is an exhaustive union of k-th stage

action groups with the same group value, any natural subset of {G
↵

k
1
, G

↵

k
2
, . . . , G

↵

k
mk

}
corresponds to a subset in {G

↵

k+1
1

, G
↵

k+1
2

, . . . , G
↵

k+1
mk+1

}. Since no strict subset in

{G
↵

k+1
1

, G
↵

k+1
2

, . . . , G
↵

k+1
mk+1

} is natural, no strict subset in {G
↵

k
1
, G

↵

k
2
, . . . , G

↵

k
mk

} is

natural.

Proposition 6. If PRA terminates with full support, then it produces the natural

solution.

Proof. Suppose PRA terminates with full support in the T -th iteration. The T

level partition must be a single action group {G
↵

T
1
}. Let the T -1 level partition be

{G
↵

T�1
1

, G
↵

T�1
2

, . . . , G
↵

T�1
mT�1

}. It must be the case that v(G
↵

T�1
1

) = v(G
↵

T�1
2

) = . . . ,=

v(G
↵

T�1
mT�1

). If T = 2, then {G
↵

T�1
1

, G
↵

T�1
2

, . . . , G
↵

T�1
mT�1

} are atomic action groups all

with the same group value. By the definition of proper action groups, A is the only

proper action group hence the only natural action group. PRA in this case produces

the natural solution since it terminates with the action group A. If T = 1 the case is

trivial.

Now consider the remaining case of when T � 3, i.e. T � 1 � 2. Each G
↵

T�1
i

is a

proper action group, and consequently, any subset of {G
↵

T�1
1

, G
↵

T�1
2

, . . . , G
↵

T�1
mT�1

}
is also proper as it is the union of proper action groups. Let F be any strict

subset of {G
↵

T�1
1

, G
↵

T�1
2

, . . . , G
↵

T�1
mT�1

}, and without loss of generality let G
↵

T�1
1

⇢
{G

↵

T�1
1

, G
↵

T�1
2

, . . . , G
↵

T�1
mT�1

} \ F . Clearly F contains at least a proper action group

with the same value as G
↵

T�1
1

which is outside of F . By Proposition 4, F then cannot

be natural. Therefore no strict subset of {G
↵

T�1
1

, G
↵

T�1
2

, . . . , G
↵

T�1
mT�1

} can be natural.

If T > 3, by repeat application of Lemma 3, we can conclude that no strict subset of

{G
↵

2
1
, G

↵

2
2
, . . . , G

↵

2
m2
} is natural. Note that this also holds true when T = 3. Observe

Chapter 3 Natural Solutions 52

that by definition of proper action groups, every proper action group is a subset of

{G
↵

2
1
, G

↵

2
2
, . . . , G

↵

2
m2
}. Since no strict subset of {G

↵

2
1
, G

↵

2
2
, . . . , G

↵

2
m2
} is natural, no

proper action group other than the entire set {G
↵

2
1
, G

↵

2
2
, . . . , G

↵

2
m2
} can possibly be

natural. Therefore A is the only natural group and hence the natural solution for

the game. Therefore, in this case PRA also produces the natural solution when it

terminates with the action group A.

One implication of Proposition 5 is that the parallel reduction algorithm will

always correctly identify natural solutions in games with three or fewer distinct atomic

action groups. Unfortunately, PRA fails to produce the natural solution in general.

To see this, consider the two-player SA game of Example 8 in Section 3.3.2, defined

by the payo↵ vector

u = (18, 18, 18, 12, 12, 6, 2, 4, 8, 16, 32, 32).

This game reduces by PRA as follows1:

u0 = (18, 18, 18, 12, 12, 6, 2, 4, 8, 16, 32, 32)

u1 = (6, 6, 6, 2, 4, 8, 16, 16)

u2 = (2, 2, 4, 8, 8)

u3 = (1, 4, 4)

u4 = (1, 2),

Terminating with G8�12, whose value is v(G8�12) = 2. While G8�12 is proper, it is

unnatural since it has the same value as the disjoint proper action group G7. It

1In implementing the PRA algorithm “by hand” we often find it convenient to not reorder action
groups according to value.

3.4 Computational Issues 53

turns out for this game that the only natural solution is A itself, whose value is

v⇤ = v(A) = 2/3. (Interestingly, PRA produces a natural action group for the SA

game defined by u = (6, 6, 6, 2, 4, 8, 16, 16), i.e. u1 above.)

While the action group produced by PRA is not guaranteed to be the natural

solution of the game (indeed, as shown in the above example it may not even be

natural), we can show that its value is at least as good as the value of the natural

solution of the game.

Given a symmetric identical interest strategic game hN, (A), (u)i that satisfies

Assumption 1, we can define a new symmetric identical interest strategic game

hN, (G), (u)i for any G ✓ A. It is easy to verify that this new game also satisfies

Assumption 1 and therefore natural solution is well-defined in this new game. For

notational simplicity, we denote hN, (G), (u)i with g(G).

Lemma 4. Given a strategic game hN, (A), (u)i and suppose PRA terminates after

T iterations. Let G be any T level partition i.e. G = G
↵

T
i
for i = 1, 2, . . . ,mT and

H ✓ G. Then H is an atomic action group in g(G) if and only if H is an atomic

action group in the original game.

Proof. Let g(A) be the original strategic game. Let H ✓ G be an atomic action group

in g(G). Then by definition, all actions in H are equivalent and no action in G \H
is equivalent to any action in H. To show that H is also an atomic action group in

g(A), it remains to show that no action in A \ H is equivalent to any action in H.

Suppose this is not the case, and there exists an action a 2 A \ H such that a is

equivalent to any action in H. Since H contains all actions in G equivalent to any

action in H, it must be true that a /2 G, i.e. a 2 A \ G. During the initialization

phase of PRA, all actions equivalent to a are grouped into a single partition. This

single partition is never split during subsequent iterations of PRA, therefore it is

either entirely contained in G or disjoint from G. If it is entirely contained in G, then

a 2 G. If it is disjoint from G, then every action equivalent to a is also in A \G and

Chapter 3 Natural Solutions 54

consequently H 2 A \G. Either case leads to a contradiction, and therefore H must

be an atomic action group in g(A).

To show the other direction, let H ✓ G be an atomic action group in g(A). By

definition all actions in H are equivalent and no action in A \H is equivalent to any

action in H. This means no action in G \H is equivalent to any action in H, and by

definition H is an atomic action group in g(G).

Lemma 5. Given a strategic game hN, (A), (u)i, suppose PRA terminates after T

iterations with T � 2. Let G be any T level partition i.e. G = G
↵

T
i
for i = 1, 2, . . . ,mT

and H ✓ G. Then H is a proper action group in g(G) if and only if H is a proper

action group in the original game.

Proof. If H ✓ G is a proper action group in g(G) then by definition 1) H is union of

atomic action groups in g(G); 2) if F ✓ H is an atomic action group in g(G), then

H contains all atomic action groups in g(G) with the same value as F . By Lemma

4, H is the union of atomic action groups in g(A). We just have to show that for

each F ✓ H, where F is an atomic action group in g(A), H contains all the atomic

action groups in g(A) of the same value as F . Suppose this is not true, and there

exists F ✓ H, with F an atomic action group in g(A), K ✓ A \H, and K an atomic

action group in g(A), such that v(F) = v(K). Since F ✓ G and F is an atomic action

group in g(A), by Lemma 4 F is also an atomic action group in g(G). If K ✓ G, then

K is also an atomic action group in g(G). This implies H cannot be a proper action

group in g(G), thus K * G. By virtue of how PRA operates, all atomic action groups

in g(A) with the same value are grouped into the same partition in the second stage,

and this partition will either be entirely contained in G or disjoint from it. Since both

F and K are atomic action groups in g(A) with v(F) = v(K), F and K are either

both in G or disjoint from it. Since we have already established that K is not in G, it

must be the case that both F and K are disjoint from G, but this contradicts the fact

that F is in G. Therefore H must be a proper action group in g(A).

3.4 Computational Issues 55

To prove the other direction, suppose H is a proper action group in g(A). H is the

union of atomic action groups in g(A). Since these atomic action groups are contained

in G, by Lemma 4, H is the union of atomic action groups in g(G). Now suppose H

does not satisfy the second part of the definition of proper action groups, then there

exists F ✓ H, with F an atomic action group in g(G), K ✓ G \H, and K an atomic

action group in g(G), such that v(F) = v(K). F and K are both subsets of G and

therefore are atomic action groups in g(A) by Lemma 4. This together with the fact

that K ✓ A \H contradicts the assumption that H is a proper action group in g(A).

This concludes our proof.

Proposition 7. Given a strategic game hN, (A), (u)i, suppose PRA terminates after

T iterations with T � 2. G
↵

T
1
, the solution produced by PRA, has group value at least

as good as the value of the natural solution of the game.

Proof. Consider the strategic game g(G
↵

T
1
). If we apply PRA to this new game the

algorithm should proceed in the same way as it did when it was applied to the original

game. Therefore PRA should terminate with full support in g(G
↵

T
1
). Given Proposition

6, we know that G
↵

T
1
is the natural solution of g(G

↵

T
1
). If a group F ⇢ G

↵

T
1
, F a proper

action group in g(G
↵

T
1
), is natural for the new game, then we know v(F) > v(G

↵

T
1
).

This contradicts the fact that G
↵

T
1
is the natural solution in g(G

↵

T
1
), therefore, no

F ⇢ G
↵

T
1
such that F is a proper action group in g(G

↵

T
1
) is natural in g(G

↵

T
1
). Let

{G
↵

2
i
}
G

↵T
1

denote the set of second stage partitions that make up G
↵

T
1
, then it must

be the case that no strict subset of {G
↵

2
i
}
G

↵T
1

is natural in g(G
↵

T
1
).

Next we show that no proper group in g(A) containing a strict subset of {G
↵

2
i
}
G

↵T
1

(and not {G
↵

2
i
}
G

↵T
1

) can be natural in g(A). Suppose this is not true and let Ḡ be a

natural group in g(A) containing a strict subset of {G
↵

2
i
}
G

↵T
1

(and not {G
↵

2
i
}
G

↵T
1

). Let

F = G
↵

T
1
\ Ḡ. G

↵

T
1
is the union of proper action groups in g(A), so it is also a proper

action group in g(A). Therefore, F , the intersection of two proper action groups in

g(A), is a proper action group in g(A). By Lemma 5, F is also a proper action group

Chapter 3 Natural Solutions 56

in g(G
↵

T
1
) and thus F cannot be natural in g(G

↵

T
1
). This means there exists K ⇢ F ,

K proper action group in g(G
↵

T
1
), and H ✓ G

↵

T
1
\F , H proper action group in g(G

↵

T
1
),

such that v(K) = v(H). Since (G
↵

T
1
\ F) \ Ḡ = ;, H ✓ G

↵

T
1
\ F implies H ✓ A \ Ḡ.

Note that both K and H are proper action groups in g(A). Therefore Ḡ cannot be

natural in g(A) by definition and this shows that no proper group in g(A) containing

strict subset of {G
↵

2
i
}
G

↵T
1

(and not {G
↵

2
i
}
G

↵T
1

) can be natural in g(A).

This means any natural group in the original game has to either contain G
↵

T
1
or

be disjoint from it. If a natural group contains G
↵

T
1
, then its value is at most v(G

↵

T
1
).

Equality holds only when that natural group is G
↵

T
1
itself. Similar analysis as we did

for G
↵

T
1
can be applied to all other G

↵

T
i
with i > 1. If a natural group is disjoint from

G
↵

T
1
, the highest value of that natural group is v(G

↵

T
2
). Since v(G

↵

T
2
) < v(G

↵

T
1
), we

conclude that the value of the natural solution in the original game is at most v(G
↵

T
1
)

with equality only possible when G
↵

T
1
is natural.

3.4.2 Empirical Evaluation

PRA is guaranteed to correctly identify natural solutions under the conditions described

in Proposiition 5 and Proposition 6. Given its lack of guarantee in general, we are

interested to see just how often PRA fails in practice. Toward this end, we applied

PRA to a set of SA games that are specially designed to exaggerate PRA’s chances of

failing. Each SA game is generated as follows: 10 integers are uniformly and randomly

chosen with replacement from the set of integers {1, 2, . . . , 16}. x copies of the chosen

integer are added to the set of payo↵s, where x is uniformly chosen from {1, 2, . . . , 10}.
All experiment parameters are empirically tested to maximize the probability that

PRA will fail to terminate within 2 stages.

In total, 107 SA games are generated. We apply PRA to this set of SA games and

compare the action group produced by PRA to the natural solution of each game. The

3.4 Computational Issues 57

result is quite stark: the number of times PRA fails to identify the natural solution is

consistently less than 20 out of 107.

3.4.3 Discussion

The fact that PRA may fail to produce a natural solution raises some interesting

points. By definition, PRA always terminates finitely with a mixed strategy Nash

equilibrium. As we have demonstrated in Proposition 7, when PRA does not terminate

with the natural solution, the Nash equilibrium it produces has value strictly better

than the value of the natural solution. Moreover, PRA is “robust” in the sense that

whenever independent players implement the algorithm for a game it will always

produce the same set of actions (and corresponding mixed strategy Nash equilibrium)

regardless of how the players have labeled the actions. Consequently, we could drop

the notion of “natural solutions” altogether and adopt PRA as a purely algorithmic

approach to equilibrium selection.

However, for a number of reasons, a purely algorithmic mechanism for equilibrium

selection can be unsatisfying. First, PRA is not the only algorithm that can unam-

biguously identify mixed strategy Nash equilibria. For example, any algorithm that

always produces the action group A itself as the answer can be interpreted as one

that robustly selects Nash equilibria, whereas clearly PRA may not always elect to

put positive measure on all actions. Indeed, there are many robust algorithms for

selecting action groups, all of which may produce distinct solutions, and consequently

the equilibrium selection problem is “pushed up” one level to a problem of algorithm

selection.2 Another problem with a purely algorithmic response to equilibrium selec-

tion is the fact that, unless the algorithm happens to produce natural solutions, the

2Perhaps it is possible to define a solution concept in terms of an optimization over equilibria
that can be robustly computed, i.e. out of all robust algorithms that can be applied to a particular
game, hopefully there is one that uniquely produces an equilibrium with highest value, and we would
call that equilibrium the solution to the game. Of course, there are problems with this approach if
the maximum is not unique.

Chapter 3 Natural Solutions 58

resulting solution can be such that no player is motivated to implement the solution.

Consider again Example 8 where the PRA algorithm outputs the action group G8�12

with value v(G8�12) = 2. In this case, a rational player may well consider playing the

proper action group G7, which as a singleton o↵ers the same value as the five-action

group G8�12.

Chapter 4

Decentralized Planning in Bayesian

Team Search

4.1 Introduction

We now turn our attention to a problem of decentralized planning in Bayesian team

search. Single agent search and hypothesis testing problems have been considered

extensively in the literature [51, 52, 53]. With the development of intelligent mobile

sensing platforms, there has been a great deal of interest in enabling a team of

autonomous agents to carry out a common search task. With limited communication

capability, it is often assumed that agents do not share their individual observations

perfectly or in a timely fashion. This poses one of the main di�culties in extending

existing results in the area of partially observed Markov decision processes (POMDP)

from the single agent Bayesian search problem to team Bayesian search. However,

even if we assume that observation sharing is perfect and happens in a timely manner,

decentralized planning meant to be carried out by individual team members separately

still engenders very substantial issues of coordination.

59

Chapter 4 Decentralized Planning in Bayesian Team Search 60

4.2 Problem Formulation

4.2.1 Basic Setup and Bayesian Hypothesis Testing

Consider a finite-horizon formulation of the search problem, in which the fixed amount

of time available for the task is discretized into N+1 equal time periods t = 0, 1, . . . , N .

The search area is modeled as a undirected graph G = (V,E) with |V | = v and |E| = e

such that the nodes represent the search regions. It is assumed that given a pair of

nodes in V , they are adjacent in G if and only if agents can travel between them

in exactly one time period. We assume that each search region is large enough in

footprint for agents to loiter over the region indefinitely and therefore self loops are

allowed in the graph G.

A set of mutually exclusive and all inclusive hypotheses is defined for each node.

Without loss of generality, we consider the simple case of two hypotheses defined for

each node i 2 V .

• Hypothesis Hi

0 states that there exist one or more targets at node i.

• Hypothesis Hi

1 states that no targets exist at node i.

The finite set of possible observations is the same for all nodes at all times. We denote

this set by Z. Initially, all agents are given the prior probability that Hi

0 is true

for all i 2 V . In each time period, each agent makes a decision about which node

to visit next based on the priors and all past and current observations made by all

agents. At the end of period N , for each node a single hypothesis is accepted among

the hypotheses defined for that node. The other hypotheses are rejected. Node i is

classified to be containing one or more targets if Hi

0 is accepted and it is classified

to contain no targets otherwise. Since the total number of targets contained in the

search area is unknown, the following assumption holds for our problem.

4.2 Problem Formulation 61

Assumption 2. For any i, j 2 V with i 6= j, hypothesis Hi

0 and Hj

0 are independent

of each other.

As an immediate consequence of Assumption 2, Hi

1 and Hj

1 are independent of

each other for all distinct pairs of nodes i and j. Given that all agents are homogenous,

while time varying conditions such as weather, camouflage or movements on the ground

may a↵ect observations, we assume that the observations made of the same region

during the same time period are identical. More formally, following assumptions hold

throughout the chapter.

Assumption 3. All observations made about a single node during a single time period

have the same value. Furthermore, they are counted as one single common observation

of that value.

Assumption 4. All observations made about a single node during di↵erent time

periods are conditionally independent and identically distributed regardless of whether

they are made by the same agent or di↵erent agents.

Finally, f i is the probability density function over Z if Hi

0 is true and gi is the

probability density function over Z if Hi

1 is true. Let pi be the prior conditional

probability that Hi

0 is true and {z0, . . . , zm} be a set of independent and identically

distributed observations taken at node i. For k = 1, . . . ,m, p̂i(k), the posterior

conditional probability that Hi

0 is true given observations z0 through z
k

can be

computed iteratively with Bayesian Theorem as follows:

p̂i(0) =
pif i(z0)

pif i(z0) + (1� pi)gi(z0)
,

p̂i(k) =
p̂i(k � 1)f i(z

k

)

p̂i(k � 1)f i(z
k

) + (1� p̂i(k � 1))gi(z
k

)
.

Chapter 4 Decentralized Planning in Bayesian Team Search 62

We can deduce from the above equations that for k = 0, . . . ,m,

p̂i(k) =
pi
Q

k

l=0 f
i(z

l

)

pi
Q

k

l=0 f
i(z

l

) + (1� pi)
Q

k

l=0 g
i(z

l

)
. (4.1)

4.2.2 The Need for Randomized Policy

In order to have a well-defined mathematical formulation of the decentralized planning

problem, we must resolve the question of whether the policies should be the same for

all agents. The answer appears to be yes, in the sense that if the positions of any two

agents were exchanged at any point during the search process we should rationally

expect the search to continue as if the exchange had not been made at all. Without

prior agreement or protocol as to the roles that each will play, the agents have no

rational basis for developing anything but identical policies because all have identical

capability, information, and intention. Yet it is clear that if the agents adopt identical

deterministic policies the performance of the group on many problems may be quite

poor.

Consider, as an extreme example, a problem in which the agents all start out at

the same location. If each agent is limited to deterministic action choices, the agents

will move as a body through the search area, and so collectively perform no better

than any one of the agents could have done entirely on its own as multiple visits

at the same time only produce one observation. Indeed, in general it is clear that

any deterministic policy adopted by all the agents will produce a collective policy

that would rank among the worst choices for a centralized planner. The situation for

decentralized planning improves dramatically if we allow agents to adopt policies that

involve a random choice of action. With such randomization, an agent can follow the

same policy as the other agents and yet act di↵erently than them, at least some of

the time.

4.2 Problem Formulation 63

4.2.3 Decentralized Planning

Now we describe a framework in which randomization over individual maneuvers is

allowed in a policy. Each agent makes a control decision on the basis of its current

position (which limits where it can visit next) and the set of common information

shared by all agents. The agent’s current position at time k is denoted by x(k). For

each node j 2 V , y
j

(k) is the number of agents at that node at time k, and z
j

(k) 2 Z

is the common observation made about node j at time k. Here, we will make a

slight modification of the set Z by adding a NULL observation to the set. A NULL

observation will be made at node j at time k if and only if y
j

(k) = 0, i.e. no agent is

visiting node j at the time. To simplify notation, let

y(k) = (y1(k), . . . , yv(k)),

z(k) = (z1(k), . . . , zv(k)).

We can then refer to y(k) as the location vector and z(k) as the observation vector

at period k. We write the system state as ⇠(k) = (x(k),↵(k)), where ↵(k) =

(y(k), z(0), . . . , z(k)) is the common information shared by all agents. Let pj be the

prior conditional probability for node j and pj(↵(k)) be the posterior conditional

probability that Hj

0 is true given the current state ↵(k). Since the sequence of

observations at each node i satisfies Assumption 3, we can simply apply Equation

(3.1) to compute the posterior pj(↵(k)):

pj(↵(k)) =
pj

Q
k

l=0 f
j(z

j

(l))

pj
Q

k

l=0 f
j(z

j

(l)) + (1� pj)
Q

k

l=0 g
j(z

j

(l))
.

Let Lj

0 and Lj

1 be the cost incurred respectively when Hj

0 and Hj

1 are falsely accepted.

We can think of Lj

0 as the cost associated with false alarms and Lj

1 the cost associated

Chapter 4 Decentralized Planning in Bayesian Team Search 64

with misses. The total final Bayes risk of the final state ↵(N) is defined as follows:

R(↵(N)) =
X

j2V

min{(1� pj(↵(N)))Lj

0, p
j(↵(N))Lj

1},

where a classification decision at each node is made to minimize the Bayes risk at that

node.

In order to allow randomization in the decision making, the control vector u(k)

is defined as a v-dimensional probability vector where the jth component of u(k)

corresponds to the probability that the agent visits node j next. Let U(⇠(k)) be the

set of all possible nodes the agent can travel to in the next time period given ⇠(k), i.e.

U(⇠(k)) = {j 2 V |(x(k), j) 2 E}. u(k) has the following properties:

1. If j /2 U(⇠(k)), then uj(k) = 0,

2. For all j 2 {1, . . . , v}, 0  uj(k)  1,

3.
P

j2U(⇠(k)) u
j(k) = 1.

A mapping µ
k

from S(k), the set of possible states in time k, is admissible if and

only if µ
k

(⇠(k)) satisfies the properties outlined above. A policy � = {µ
0
, . . . , µ

N�1
}

is admissible if and only if µ
k

is admissible for all k.

In order to evaluate a particular admissible policy �, it is important to recognize

that the evaluation must be carried out under the assumption that all agents implement

the policy �. Under this assumption, ↵(k)’s are random variables with distribution

defined through the system transition equation

↵(k + 1) = G(↵(k), µ
k

(·,↵(k))). (4.2)

To illustrate how the system behaves according to G, first observe that z
j

(k + 1) is

distributed according to either f j or gj when y
j

(k + 1) > 0 and takes on the value

4.3 Decentralized Planning Algorithms 65

NULL with probability 1 otherwise. We will now focus exclusively on the location

vector y(k+ 1), and for this purpose it is best to look at the following simple example.

Suppose that y(k) = (1, 0, 0, 1) and µ
k

(1,↵(k)) = µ
k

(4,↵(k)) = (0, 1/2, 1/2, 0). It is

clear that y(k + 1) takes on the value (0, 1, 1, 0) with probability 1/2, (0, 2, 0, 0) with

probability 1/4, and (0, 0, 2, 0) with probability 1/4.

Let G
�

(↵(N)) denote the expected cost of policy � = {µ
0
, . . . , µ

N�1
} starting at

initial state ↵(0).

G
�

(↵(0)) = E[R(↵(N))], (4.3)

where the system dynamic is described by Equation (4.2) and the expectation is

taken over the random variables ↵(k). Here the randomness of ↵(k) results from

the uncertainty in the observations as well as the uncertainty in the locations. The

objective of a decentralized planning algorithm is to compute a policy that would

minimize the expected cost as expressed in Equation (4.3).

4.3 Decentralized Planning Algorithms

In this section we introduce three decentralized planning heuristics for the Bayesian

team search problem. All are designed to be run independently by all agents and

serve to resolve complex situations where agents perceive equivalent but incompatible

opportunities in conducting their search of the environment. We do not assume that

agents have the ability to control or predict with certainty the actions of any other

agent.

While the goal of this section is to develop decentralized planning heuristics, it is

convenient to begin with a formal description of how the search planning problem

would be formulated and solved from a centralized perspective. The centralized

version of the planning problem di↵ers from the decentralized problem in that a single

decision maker has the authority to control all agents at each stage of the process.

Chapter 4 Decentralized Planning in Bayesian Team Search 66

Coordination failures cannot take place and only deterministic actions are needed.

(When, from a given state of the process, the centralized planner identifies two or

more equal-value action profiles for the agents, the planner will make an arbitrary

selection and command all agents accordingly.)

4.3.1 Centralized Planning Problem As A Starting Point

The centralized version of the planning problem is an partially observed Markov decision

process, as follows. The state of the system at time k is ↵(k) = (y(k), z(0), . . . , z(k))

where y(k), z(0), . . . , z(k) are defined in the same way as in the decentralized formula-

tion. The set of all possible states for time period k is denoted by A(k). Let u(k), a

vector of dimension v, be the control vector at time k. Then uj(k), jth component, is

the number of agents at node j at time k + 1. The agent location component of the

system transition is deterministic in the sense that y(k + 1) = u(k) with probability

1. Let U(↵(k)) be the set of all possible control vector given the current system

state ↵(k). A mapping µ
k

from A(k) to [
↵(k)2A(k)U(↵(k)) is said to be admissible if

µj

k

(↵(k)) 2 U(↵(k)) for all ↵(k) 2 A(k). A policy = {µ0, . . . , µN�1} is admissible if

and only if µ
k

is admissible for every k = 0, 1, . . . , N � 1.

Given an initial state ↵(0) and an admissible policy = {µ0, . . . , µN�1}, the states
↵(k) are random variables with distribution defined through the system equation

↵(k + 1) = F(↵(k), µ
k

(↵(k))), k = 0, 1, . . . , N � 1. (4.4)

The expected cost of starting at ↵(0) is

F

(↵(0)) = E[R(↵(N))]. (4.5)

In Equation (4.5), the expectation is taken over the random variables ↵(k). Here the

randomness stems from uncertainties associated with observations at time k alone.

4.3 Decentralized Planning Algorithms 67

Let be the set of all admissible policies, then an optimal policy ⇤ associated with

a given initial state ↵(0) is one that minimizes the cost function F

, i.e.

 ⇤ = argmin
 2

F

(↵(0)). (4.6)

The optimal cost starting from state ↵(0) is therefore F

⇤(↵(0)). In fact, a policy

that is optimal for each possible initial states can be found using standard dynamic

programming methods.

Observe that one or more distinct joint individual maneuvers can lead to the same

control vector u. This is precisely the situation we described in Example 1.3. The

reason why we can simply specify the control vector as we do here is because the

existing centralized decision maker is presumed to have the authority to force all

agents to adopt the same joint individual maneuvers. For the same reason, agents are

able to implement the same policy if multiple optimal policies exist as well.

This partially observed stochastic optimization problem can be solved by using the

standard value iteration technique with the following dynamic programming recursion:

J
N

(↵(N)) = R(↵(N)), (4.7)

J
k

(↵(k)) = min
u(k)2U(↵(k))

E
↵(k+1)[Jk+1(F(↵(k), u(k))] 8 k = 0, . . . , N � 1.(4.8)

The expectation in Equation (4.8) is taken over the set of all possible ↵(k+1)’s, however

as we noted above the randomness of ↵(k + 1) stems entirely from the randomness in

observations z(k+1). Therefore, the expectation here is really taken over the set of all

possible observations z(k + 1) given the current posterior probabilities pi(↵(k)) for all

i 2 V . The set of optimal controls given state ↵(k) and time k include all of the control

vectors that achieve J
k

(↵(k)), and we denote this set by U⇤
k

(↵(k)). The optimal policy

obtained with this dynamic programming algorithm states that when the system state

is ↵(k) at time k agents should implement the same centrally determined control

Chapter 4 Decentralized Planning in Bayesian Team Search 68

vector from U⇤
k

(↵(k)). Furthermore, when a chosen control vector is achievable with

multiple distinct joint individual maneuvers, the agents can successfully implement the

chosen control vector by carrying out its individual maneuver accordingly. Function

J is often referred to as the cost-to-go function. It represents the expected cost of

following an optimal policy from this point on. For a given initial state ↵(0), J0(↵(0))

is the unique optimal expected misclassification cost.

4.3.2 Decentralized Uniform Heuristic

It is clear that with individual labeling (i.e. each agent has its own internal representa-

tion of the world it perceives), each agent is capable of formulating the same centralized

planning problem up to permutation of nodes and agents. Furthermore each agent is

able to solve the centralized planning problem with the dynamic programming value

iteration recursion in Equation (4.8). More specifically, each agent is capable of taking

⇠(k) and splitting it into x(k) and ↵(k) and then finding a set U⇤
k

(↵(k)) that achieves

the minimum in that recursion. What is problematic in the decentralized setting is

the lack of means to guarantee that: 1) agents can agree on a single optimal action in

U⇤
k

(↵(k)) when the optimal set has cardinality greater than one; 2) agents can agree

on a single joint individual maneuver when a particular optimal action (number of

agents at each location in the next period) can be achieved by multiple distinct joint

individual maneuvers. When agents choose di↵erent optimal actions in U⇤
k

(↵(k) or

adhere to distinct joint individual maneuvers that accomplish the same future location

vector, their collective behavior may very well be di↵erent from the optimal behavior

prescribed by any optimal policy for the centralized planning problem. Consequently,

the cost-to-go function value is no longer an accurate reflection of the cost of following

an optimal policy. Therefore, additional care must be taken in order to successfully

apply dynamic programming techniques in the decentralized setting.

4.3 Decentralized Planning Algorithms 69

Since every joint individual maneuver achieving a control vector in U⇤(↵(k)) has the

same cost-to-go, preferences based on that alone would dictate that each agent chooses

each joint individual maneuver with equal probability. Without consistent labeling

of the joint individual maneuvers (and control vectors) in U⇤(↵(k)), perhaps this is

the best the agents can achieve in the decentralized decision setting. We argue that

this also adheres to the “no arbitrary decision” principle we operate under throughout

this thesis. This suggests a uniform probability distribution over the set of optimal

joint individual maneuvers in a policy. Given that the cost-to-go function values must

reflect the risk and cost of coordination via this uniform randomization procedure,

the cost-to-go function must be modified accordingly in the dynamic programming

recursion.

Given x(k), ↵(k) and u, the control vector containing the number of agents at each

node in the next time period, one can find the set of joint individual maneuvers that

achieve the control u. Toward this end, the agent labels itself as agent 1 and arbitrarily

labels the others. With this labeling in mind, one can compute n-dimensional vectors

such that 1) the ith element is agent i’s individual maneuver (choice of node to visit

next); 2) moves by all agents will together implement u. In the worst case, this can

be done with enumeration of all possible joint individual maneuvers. We will denote

this set with M(x(k),↵(k), u). Define

M⇤
k

(x(k),↵(k)) = [
u2U⇤

k (⇠(k))
M(x(k),↵(k), u). (4.9)

In other words, given appropriate cost-to-go functions J , M⇤
k

(x(k),↵(k)) contains all

the joint individual maneuvers that achieve the minimum in the centralized dynamic

programming recursion for time period k. Let µj

k

(x(k),↵(k)) be the probability

of visiting node j next when the agent randomly selects a single joint individual

Chapter 4 Decentralized Planning in Bayesian Team Search 70

maneuvers from M⇤
k

(x(k),↵(k)) with equal probability. It can be computed as

µj

k

(x(k),↵(k)) =

P
m2M⇤

k (x(k),↵(k))
1j
m

|M⇤
k

(x(k),↵(k))| (4.10)

for every k = 0, . . . , N � 1. Here 1j
m

takes the value 1 if m1 = j and 0 otherwise.

Let µj

k

’s be the basis forming � = {µ
0
, . . . , µ

N�1
}, the policy produced by our first

decentralized planning heuristic. This heuristic would compute a policy in which each

agent would randomly choose any joint individual maneuver in U⇤
k

(↵(k)) with equal

probability and implement the individual maneuver prescribed by that particular joint

individual maneuver.

Together, Equations (4.9) and (4.10) transform a set of deterministic centralized

control vectors into a single decentralized randomized control vector. We call this

transformation the uniform randomization procedure. For notational simplicity, from

now on we represent this transformation with the function U. Decentralized Uniform

Heuristic can be summarized in Algorithm 2.

Algorithm 2 Decentralized Uniform Heuristic

J̄1
N

(↵(N)) = R(↵(N)).
For k = N � 1, . . . , 0,

Ū⇤
k

(↵(k)) = argmin
u(k)

E[J̄
k+1(F(↵(k), u(k))], (4.11)

µ̄
k

(x(k),↵(k)) = U(x(k), Ū⇤
k

(↵(k))) 8 x(k) 2 V, (4.12)

J̄
k

(↵(k)) = E
↵(k+1)[J̄k+1(G(↵(k), µ̄k

(·,↵(k))))]. (4.13)

In Equation (4.13), G(↵(k), µ̄
k

(·,↵(k)) equals to the random variable ↵(k+1). The

randomness of ↵(k + 1) stems from the uncertainties of locations of agents and also

the observations in the next time period. While Equation (4.11) finds Ū⇤
k

(↵(k)), the

uniform randomization procedure performed on this set may put positive probability

4.3 Decentralized Planning Algorithms 71

on undesirable future states. The principle of optimality is therefore possibly violated

when the minimum is achievable by multiple u(k)’s in Equation (4.11).

4.3.3 Decentralized Parallel Reduction Heuristic

Before introducing our next decentralized planning heuristic, we make the following

observation about the Decentralized Uniform Heuristic. While Equation (4.11) finds

Ū⇤
k

(↵(k)) the set that minimizes the future cost-to-go, uniform randomization proce-

dure performed on this set may put positive probability on undesirable future states.

At the same time, there may exist a di↵erent set of control vectors Ū
0
k

(↵(k)) where

1) individually every control vector in Ū
0
k

(↵(k)) leads to a higher cost-to-go than

every control vector in Ū⇤
k

(↵(k)); 2) applying the uniform randomization procedure to

Ū⇤
k

(↵(k)) leads to a higher expected cost-to-go than applying the same operation to

Ū
0
k

(↵(k)). A sensible question to ask then is whether Ū 0
k

(↵(k)) in this case makes a

more attractive candidate than Ū⇤
k

(↵(k)) as the set of control vectors our dynamic

programming recursion should focus on.

To take this reasoning one step further, suppose now we have two di↵erent sets of

control vectors Ū
k

(↵(k) and Ū 0
k

(↵(k)) such that 1) any control vector from the first set

has a di↵erent cost-to-go than any control vector from the second set; 2) the future

cost-to-go of applying uniform randomization procedures to both sets are equal. That

is

E
↵(k+1)[J̄k+1(G(↵(k), µ̄k

(·,↵(k)))] = E
↵(k+1)[J̄k+1(G(↵(k), µ̄0

k

(·,↵(k)))]

where µ̄
k

and µ̄0
k

are the policy resulting from applying uniform randomization pro-

cedure to Ū
k

(↵(k)) and Ū 0
k

(↵(k)) respectively. While one could make the argument

to favor one over the other based on metrics such as cardinality of the sets, a simple

choice here is to implement each policy with equal probability.

Chapter 4 Decentralized Planning in Bayesian Team Search 72

Indeed, we can take inspiration from the Parallel Reduction Algorithm introduced

in the previous chapter and incorporate a similar parallel reduction procedure into

our dynamic programming recursion. While at this point we are not formally defining

symmetry and equivalence as we did for symmetric games that satisfy Assumption

1, in practice we can partition the set of all feasible control vectors U(↵(k)) into

peer sets based on future cost-to-go associated with them. Uniform randomization

procedure is applied to each partition to compute the expected cost of choosing any

joint individual maneuvers associated with the partition with equal probability. We

call this cost the partition value to di↵erentiate it from the common cost of the control

vectors in the same partition. When there exists a partition with a unique minimum

partition value, the control vector resulting from applying U to it is included in the

optimal policy. Otherwise, partitions with a common value are aggregated to form a

coarser partition. In each subsequent iteration i, let P be a i-th iteration partition.

Rather than applying U to partition P directly, the control vector applied to P would

choose to implement the control vector associated with i� 1 iteration partitions that

form P with equal probability. The resulting control vector - when parallel reduction

satisfies its termination condition - is taken to be the optimal control. This heuristic

is presented in Algorithm 3.

4.3.4 Decentralized Policy Iteration Heuristic

The final decentralized heuristic is inspired by dynamic programming policy iteration.

It is policy iteration in the sense that we start with a policy and then iteratively

obtain a new policy with an equal or improved cost. However, unlike most policy

iteration procedures, we start with a carefully chosen policy instead of a randomly

generated one. We also apply the uniform randomization procedure (denoted by U,

as before) as part of the policy iteration procedure. As a result, the same complex

interactions that may cause the decentralized uniform heuristic to fail to satisfy the

4.3 Decentralized Planning Algorithms 73

Algorithm 3 Parallel Reduction Heuristic

Ĵ
N

(↵(N)) = R(↵(N)).
For k = N � 1, . . . , 0,
Initialization:
Partition U(↵(k)) into {P01(↵(k)), . . . , P0N0(↵(k))} such that u(k) and u0(k)
belong to the same partition if and only if E[Ĵ

k+1(F(↵(k), u(k)))] =
E[Ĵ

k+1(F(↵(k), u0(k)))].

µ0i(x(k),↵(k)) = U(x(k), P0i(↵(k)))

v0i(↵(k)) = E(↵(k+1))[Ĵk+1(G(↵(k), µ0i(·,↵(k))))]

In the m-th iteration:

if there exists unique minimum v
mj

(↵(k)) then

j⇤ = argmin v
mj

(↵(k))

Ĵ
k

(↵(k)) = v
mj

⇤(↵(k))

µ̂
k

(x(k),↵(k)) = µ
mj

⇤(x(k),↵(k))

else
aggregate P 0

mj

s to obtain a coarser partition
{P

m+1,1(↵(k)), . . . , Pm+1,Nm+1(↵(k))} such that P
m+1,i is an exhaustive union of m

stage partitions with like values.

µ
m+1,i(x(k),↵(k)) =

X

j s.t. Pmj2Pm+1,i

µ
mj

(x(k),↵(k))

number of m level partitions in P
m+1,i

v
m+1,i(↵(k)) = E

↵(k+1)[Ĵk+1(G(↵(k), µm+1,i(·,↵(k))))]

end if

Chapter 4 Decentralized Planning in Bayesian Team Search 74

principle of optimality are in play here as well, and a worsening of the cost is possible

with a newer iteration of the policy. We mitigate that risk by allowing the agent to

revert back to the previous policy for the state if cost increases, thereby achieving a

non-increasing sequence of costs overall.

Our policy iteration begins with solving the centralized planning problem with

dynamic programming value iteration recursion. As we have previously noted the

centralized version of the problem can be formulated and the dynamic programming

value iteration can be successfully carried out by all agents. Uniform randomization

procedure is applied to the set of centralized optimal control vectors to obtain the

initial policy for the polity iteration. Decentralized Policy Iteration Heuristic is

presented in Algorithm 4.

Decentralized Policy Iteration Heuristic always produces a sequence of policies

with non-increasing costs. Additionally, if we say that the policy iteration converges if

H i

k

(↵(k)) = H i+1
k

(↵(k)) for every feasible ↵(k) for all k, then we can show that this

policy iteration converges after no more than N + 1 iterations where N is the number

of decision periods for the search problem. These results are stated and proven below.

To simplify our notations, we write H i

k

= Hj

k

to mean that H i

k

(↵(k)) = Hj

k

(↵(k)) for

every feasible ↵(k) and H i

k

 Hj

k

to mean that H i

k

(↵(k))  Hj

k

(↵(k)) for every feasible

↵(k).

Proposition 8. For k = 0, . . . , N and i = 1, 2, . . . , H i+1
k

 H i

k

.

Proof. We will prove this proposition using induction. The base case where k = N is

true since H i+1
N

= H i

N

= R. Now assume that H i+1
k+1  H i

k+1. There are two cases to

consider given any feasible state ↵(k). The first case is when H̃ i+1
k

(↵(k))  H i

k

(↵(k))

during the iteration to find H i+1
k

. In this case we know that H i+1
k

(↵(k))  H i

k

(↵(k)).

The second case is when H̃ i+1
k

(↵(k)) > H i

k

(↵(k)). If this is true, µi+1
k

(x(k),↵(k)) =

4.3 Decentralized Planning Algorithms 75

Algorithm 4 Decentralized Policy Iteration Heuristic

Iteration 1
H1

N

(↵(N)) = R(↵(N)).
For k = N � 1, . . . , 0,

U⇤
k

(↵(k)) = argmin
u(k)

E[J
k+1(F(↵(k), u(k))]. (4.14)

µ1
k

(x(k),↵(k)) = U(x(k), U⇤
k

(↵(k))) 8 x(k) 2 V, (4.15)

H1
k

(↵(k)) = E
↵(k+1)[H

1
k+1(G(↵(k), µ1

k

(·,↵(k))))]. (4.16)

Subsequent Iterations
H i

N

(↵(N)) = R(↵(N)).
For k = N � 1, . . . , 0,

U i

k

(↵(k)) = argmin
u(k)

E[H i

k+1(F(↵(k), u(k))]. (4.17)

µ̃i+1
k

(x(k),↵(k)) = U(x(k), U i

k

(↵(k))) 8 x(k) 2 V (4.18)

H̃ i+1
k

(↵(k)) = E
↵(k+1)[H

i+1
k+1(G(↵(k), µ̃i+1

k

(·,↵(k))))] (4.19)

if H̃ i+1
k

(↵(k))  E
↵(k+1)[H

i+1
k+1(G(↵(k), µ̃i

k

(·,↵(k))))] then

µi+1
k

(·,↵(k)) = µ̃i+1
k

(·,↵(k))
H i+1

k

(↵(k)) = H̃ i+1
k

(↵(k))

else

µi+1
k

(·,↵(k)) = µi

k

(·,↵(k)) (4.20)

H i+1
k

(↵(k)) = E
↵(k+1)[H

i+1
k+1(G(↵(k), µi

k

(·,↵(k))))] (4.21)

end if

Chapter 4 Decentralized Planning in Bayesian Team Search 76

µi

k

(x(k),↵(k)) 8 x(k). Since H i+1
k+1  H i

k+1,

E
↵(k+1)[H

i+1
k+1(G(↵(k), µi

k

(·,↵(k))))]  E
↵(k+1)[H

i

k+1(G(↵(k), µi

k

(·,↵(k))))]

Note that the left hand side is just H i+1
k

(↵(k)) as indicated in Equation (4.21). The

right hand computes the expected cost of using control µi

k

(·,↵(k)) with the future

cost H i

k+1, which is by definition H i

k

(↵(k)). Therefore, H i+1
k

(↵(k))  H i

k

(↵(k)). Since

↵(k)) can be any feasible state in period k, H i+1
k

 H i

k

.

Proposition 9. If H i

k+1 = H i+1
k+1 = H i+2

k+1, then H i+1
k

= H i+2
k

for all i � 1.

Proof. Consider any feasible state ↵(k) for period k. The first step in computing either

H i+1
k

(↵(k)) and H i+2
k

(↵(k)) is to find the vector µ̃i+1
k

(x(k),↵(k)) and µ̃i+2
k

(x(k),↵(k))

respectively for all x(k). For any given ↵(k), the set of feasible u(k)’s and the

future state associated with each u(k) remain the same regardless of which iteration

Equation (4.17) is employed in. Together with the assumption that H i

k+1 = H i+1
k+1,

we can conclude that U i

k

(↵(k)) = U i+1
k

(↵(k)). We then apply uniform randomization

procedure to U i

k

(↵(k)) and U i+1
k

(↵(k)) to obtain µ̃i+1
k

(x(k),↵(k)) and µ̃i+2
k

(x(k),↵(k))

respectively. It is clear that since we are applying the same procedure to two identical

sets of vectors, the resulting control vectors should be identical as well, i.e.

µ̃i+1
k

(·,↵(k)) = µ̃i+2
k

(·,↵(k)).

Using Equation (4.19), we compute costs H i+1
k

(↵(k)) and H i+2
k

(↵(k)) as follows,

H̃ i+1
k

(↵(k)) = E
↵(k+1)[H

i+1
k+1(G(↵(k), µ̃i+1

k

(·,↵(k))))],

H̃ i+2
k

(↵(k)) = E
↵(k+1)[H

i+2
k+1(G(↵(k), µ̃i+2

k

(·,↵(k))))].

4.3 Decentralized Planning Algorithms 77

It immediately follows that

H̃ i+1
k

(↵(k)) = H̃ i+2
k

(↵(k)).

There are two cases to consider: 1) H̃ i+2
k

(↵(k))  E
↵(k+1)[H

i+1
k+1(G(↵(k), µ̃i

k

(·,↵(k))))]
and 2) H̃ i+2

k

(↵(k)) > E
↵(k+1)[H

i+1
k+1(G(↵(k), µ̃i

k

(·,↵(k))))].
Case 1: During iteration i+ 1, we obtain µi+1

k

(x(k),↵(k)) = µ̃i+1
k

(x(k),↵(k)) and

H i+1
k

(↵(k)) = H̃ i+1
k

(↵(k)). Now consider iteration i+ 2. Since

H̃ i+2
k

(↵(k)) = H̃ i+1
k

(↵(k))

= H i+1
k

(↵(k))

= E
↵(k+1)[H

i+1
k+1(G(↵(k), µ̃i+1

k

(·,↵(k))))]

= E
↵(k+1)[H

i+2
k+1(G(↵(k), µ̃i+1

k

(·,↵(k))))],

by definition of the heuristic iteration, µi+2
k

(·,↵(k)) = µ̃i+2
k

(·,↵(k)) and H i+2
k

(↵(k)) =

H̃ i+2
k

(↵(k)). Since we’ve established that H̃ i+1
k

(↵(k)) = H̃ i+2
k

(↵(k)), it follows that

H i+1
k

(↵(k)) = H i+2
k

(↵(k)).

Case 2: During iteration i + 1, we must follow the else clause and therefore

µi+1
k

(·,↵(k)) = µi

k

(·,↵(k)) and

H i+1
k

(↵(k)) = E
↵(k+1)[H

i+1
k+1(G(↵(k), µi

k

(·,↵(k))))]

= E
↵(k+1)[H

i

k+1(G(↵(k), µi

k

(·,↵(k))))]

= H i

k

(↵(k)).

Since H̃ i+1
k

(↵(k) > H i

k

(↵(k)) and H̃ i+2
k

(↵(k) = H̃ i+1
k

(↵(k)), it must be the case that

H̃ i+2
k

(↵(k) > H i+1
k

(↵(k)) = E
↵(k+1)[H

i+2
k+1(G(↵(k), µ̃i+1

k

(·,↵(k))))] during iteration i+2.

Therefore,

H i+2
k

(↵(k)) = E
↵(k+1)[H

i+2
k+1(G(↵(k), µi+1

k

(·,↵(k))))].

Chapter 4 Decentralized Planning in Bayesian Team Search 78

Since we have established during iteration i+1 that µi+1
k

(·,↵(k)) = µi

k

(·,↵(k)), together
with the assumption that H i+1

k+1 = H i+2
k+1 we conclude that H i+1

k

(↵(k)) = H i+2
k

(↵(k)).

For period N , the H i

N

’s are the same for all i = 1, 2, From this, we can conclude

that H2
N�1 = H i

N�1 for all i � 3. Similarly, we can conclude that H3
N�2 = H i

N�2 for

all i � 4 and so on. Indeed, it is easy to show by induction that

Hk+1
N�k

= H i

N�k

8 i � k + 2.

If we set k = N , we have

HN+1
0 = H i

0 8 i � N + 2.

Therefore, for every k H i

k

converges or stabilizes after at most N + 1 iterations.

Additionally, {H i

k

} is a non-increasing sequence of cost functions for k = 0, . . . , N by

Proposition 8.

4.4 Numerical Evaluation

To gain a practical understanding of the absolute and relative behavior of our proposed

heuristics, we present computational results from several instances of the search

problem. In these computational experiments, the team consists of two homogeneous

agents. In addition, other than the artificial NULL observation associated with

nodes that are not visited, there are two feasible observations: 0 and 1. f i(1) = 0.9.

gi(1) = 0.1. The misclassification cost is set to be 100 for each false alarm and miss.

Note that in general the optimal policy for the centralized planning problem will

always outperform any decentralized heuristic. This numerical evaluation serves to

reveal what kind of performance gaps can be expected among the heuristics relative

4.4 Numerical Evaluation 79

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 4.1: Network representing the search area

to the centralized optimal policy. Furthermore, even though we cannot say that one

heuristic always dominates the others, we can assess their e↵ectiveness in terms of

achieving coordination with specially designed problems that exaggerate the cost of

coordination failures.

4.4.1 Case 1: Side by Side

Consider the case where the search area is represented by the network in Figure 4.1.

Both agents are initially located at node 1. Node 13 and 14 have equal non-zero priors

while all the other nodes have zero priors. N is set to be 4, i.e. there are 5 total time

periods t = 0, 1, . . . , 4. Note that when agents visit node 13 or 14 together only one

meaningful observation is made. Because of the constraints given by the number of

time periods, the most damaging coordination failures occur in the first time period.

The maximum number of observations at node 13 and 14 the two agents can

manage within the time frame is 3. In a centralized planning problem, a policy that

Chapter 4 Decentralized Planning in Bayesian Team Search 80

makes no observations at node 14 is always suboptimal. However, whether one or two

observations are necessary at node 13 for centralized optimality depends on the first

observation made at node 13. Regardless, it is generally desirable to have both agents

reach nodes 13 and/or 14 as quickly as possible. Several types of optimal policies

exist for the centralized planning problem. They are presented in Figures 4.2, 4.3,

and 4.4. In the first type of optimal centralized policies, one agent stays at node 1

while the other agent visits node 5 in time period 1. They will travel down one in

front of the other in the next two time periods. What’s optimal next depends on the

observation made at node 13. The second type of optimal centralized policies would

have one agent visit node 2 and the other agent visit node 5 initially before both

traveling downward. Again what is optimal depends on the first observation made

at node 13. The final type of optimal centralized policies have both agents travel

together to arrive at node 13 in time period 3. At that point, whether they try to

make one or two additional observations depend on the observation made at node 13.

Expected total costs for the optimal policy for the centralized planning problem

and policies resulting from the three decentralized heuristics are presented in Figure

4.5. Note that the expected cost functions are symmetric with respect to 0.5 prior

probability, thus we only present the result up to 0.5 prior probability. While it is

di�cult to tell from Figure 4.5, with the chosen parameters Decentralized Parallel

Reduction always produces a better policy than Decentralized Policy Iteration with

these priors.

The policy produced by Decentralized Uniform Heuristic will generally try to

implement the first type of optimal behavior above. However, there are two ways to

achieve this initially. The policy resulting from the uniform randomization procedure

has each agent stay at node 1 or visit node 5 with equal probability. The end result

in time period 1 is as follows: both agents stay at node 1 with probability 1/4, one

agent visits node 5 and another stays at node 1 with probability 1/2, and both agents

4.4 Numerical Evaluation 81

1 2 3 4

6 7 8

9 10 11 12

13 14 15 16

5

(a) t=0

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) t=1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(c) t=2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(d) t=3

Figure 4.2: Type 1 Optimal Centralized Policy for the Side by Side Case

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) t=0

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) t=1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(c) t=2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(d) t=3

Figure 4.3: Type 2 Optimal Centralized Policy for the Side by Side Case

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) t=0

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) t=1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(c) t=2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(d) t=3

Figure 4.4: Type 3 Optimal Centralized Policy for the Side by Side Case

Chapter 4 Decentralized Planning in Bayesian Team Search 82

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

45

50

Prior Probability

Ex
pe

ct
ed

 T
ot

al
 C

os
t

centralized cost
uniform heuristic
policy iteration
parallel reduction

Figure 4.5: Expected total cost in the side by side case

reach node 5 with probability 1/4. When both agents stay at node 1 in time period 1,

only a single observation at node 13 will be managed and no observation at node 14 is

possible at that point.

The policy produced by Decentralized Policy Iteration directs each agent to stay

with 1/5 probability, visit node 2 with probability 1/5 and visit node 5 with probability

3/5 in time period 1. We believe the e↵ect is akin to applying uniform randomization

procedure to all optimal control mentioned above for that initial period. However, the

iterative procedure makes it di�cult to state that with absolute certainty. Nonetheless,

the probability distribution of agent locations in time period 1 is as follows: both

agents at node 1 with probability 1/25, both agents at node 2 with probability 1/25,

both agents at node 5 with probability 9/25, node 1 and node 2 with probability 2/25,

4.4 Numerical Evaluation 83

node 1 and node 5 with probability 6/25, node 2 and 5 with probability 6/25. The least

desirable outcomes are associated with co-locating at node 1 or 2 and probabilities of

these events are much smaller compared to those resulting from Decentralized Uniform

Heuristic.

Finally, the policy produced by Decentralized Parallel Reduction always sends

both agents together to node 13 via nodes 5 and 9. While this policy avoids the initial

coordination dilemma at the starting point, it does present a coordination dilemma

when both agents arrive at node 13. However, failing to coordinate here has a far less

detrimental e↵ect on the final expected cost than failing to coordinate in the first time

period.

4.4.2 Case 2: Diagonal

The second case we investigate is when node 4 and 13 have equal non-zero priors

while all the other nodes have zero priors. As before the search area is represented

by the network in Figure 4.1. Both agents are initially located at node 1. N is set

to be 4, i.e. there are 5 total time periods t = 0, 1, . . . , 4. The optimal policy to the

centralized planning problem sends one agent to node 4 and one agent to node 13

in period 3. Depending on the observations made at node 4 and 13 at that time, it

may be optimal to make additional observations at both of these nodes in the last

time period. Or, it may be optimal to forgo the additional observation at one of these

nodes. Regardless of what is optimal down the road, the optimal thing to do in the

centralized setting is to always direct agents to split up and head toward non-zero

prior nodes as soon as possible.

Policies resulting from Decentralized Uniform and Decentralized Policy Iteration

both recognize the optimal policy in the centralized controlled scenario and attempt

to send one agent to node 2 and the other agent to node 5 in time period 1. However,

decentralized agents face a coordination dilemma because there are two distinct ways

Chapter 4 Decentralized Planning in Bayesian Team Search 84

to achieve this. Both of these policies will uniformly randomize over the two ways

to achieve centralized optimality and send each agent to node 2 and 5 with equal

probability. The end result is with probability 1/2 agents will arrive at node 2 and 5

successfully in time period 1 but also with probability 1/2 both will end up at the

same node in time period 1. When both of them arrive at node 2 in time period 1, no

observation at node 13 is possible. Similarly, when both of them arrive at node 5 in

time period 1, no observation at node 4 is possible. Both are always suboptimal.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

45

50

Prior Probability

Ex
pe

ct
ed

 T
ot

al
 C

os
t

centralized cost
uniform heuristic
policy iteration
parallel reduction

Figure 4.6: Expected total cost in the diagonal case

Decentralized Parallel Reduction for the most part produces a policy with very

di↵erent behaviors. Each agent stays at node 1 with 1/2 probability and visits node 2

and 5 with 1/4 probability. The probability distribution for agent locations in period

1 is therefore: both agents stay at node 1 with probability 1/4, both agents at node 2

4.4 Numerical Evaluation 85

with probability 1/16, both agents at node 5 with probability 1/16, agents at node 1

and 5 with probability 1/4, agents at node 1 and 2 with probability 1/4, and finally

agents at node 2 and 5 with probability 1/8. When agents are at node 1 and 2 in time

period 1, the agent at node 1 will continue to node 4 and the agent at node 1 will

visit node 13 according to the policy. Therefore, while they may not manage to make

4 observations when that is optimal, they are able to make 3 observations when that

is optimal. Similar analysis holds true for when agents are at node 1 and 5 in time

period 1. The least desirable (and also clearly always suboptimal) outcomes are when

agents both reach node 2 or node 5. The probability of these events are much lower

compared to those in the other decentralized policies.

Expected total costs for the optimal policy for the centralized planning problem

and policies produced by three decentralized heuristics are presented in Figure 4.6.

Policies from Decentralized Uniform and Decentralized Policy Iteration heuristics o↵er

almost identical expected costs. This is not surprising as the policies produced by

both are similar. Parallel Reduction produces a much better expected cost because

coordination dilemmas are handled much more e↵ectively in the initial decision period.

Chapter 5

Summary and Future Work

Decentralized control of a team of cooperative agents has received much attention

in the past two decades. Much of the previous work in this area focuses on devising

centrally computed policies that can be implemented in a distributed fashion to

optimize team performance. In this thesis, we study decentralized decision problems

each agent must formulate and solve in order to compute its own policy independently.

Single agent sequential decision problems are typically formulated and solved as a

MDP or a POMDP. Cooperative multiagent sequential decision problems can be

formulated as a multiagent extension of MDP or POMDP, or as an identical interest

stochastic game. Extending traditional solution techniques such as value iteration or

policy iteration to these multiagent extensions is challenging because multiple optimal

joint actions may exist and it is not clear how decentralized agents can coordinate on

the same optimal joint action.

Solving cooperative decentralized decision problems often involves solving stage

games that are identical interest strategic games. Coordination dilemmas arise when

multiple pareto-dominant Nash equilibria exist. Solving these stage games thus

reduces to an equilibrium selection problem. We propose the natural solution, a

new solution concept, for a class of symmetric identical interest games in which a

86

Chapter 5 Summary and Future Work 87

symmetric Nash equilibrium is uniquely determined by putting positive probability

on a subset of actions and zero probability on all other actions. Therefore, selecting

a Nash equilibrium in these games is reduced to selecting a subset of actions. We

formally define equivalent actions and argue that the only rational thing to do is to

treat all equivalent actions exactly the same. What this entails when we select a

subset of actions is that we include all or none of the equivalent actions. We build

the concept of atomic, proper and natural action groups upon this principle. There is

no remaining ambiguity over how to achieve the expected payo↵ associated with the

unique symmetric Nash equilibrium whose support is a natural action group. We define

the natural solution to be the natural group whose uniquely determined symmetric

Nash equilibrium o↵ers the highest expected payo↵. The natural solution’s guaranteed

existence and uniqueness means that it can be used as a equilibrium selection rule.

Finally we show that static agreement games satisfy our assumptions, and therefore

a natural solution is guaranteed to exist. We develop a linear time heuristic called

Parallel Reduction Algorithm (PRA) for finding natural solutions. It is guaranteed to

compute the natural solution when the heuristic terminates within 2 stages or with

full support of the whole action set. While PRA is not guaranteed to always find the

natural solution, empirical data shows that it does so with overwhelming likelihood in

static agreement games. In the few instances where it terminates with an action group

other than the natural solution of the game, the unique Nash equilibrium associated

with the group is strictly better than the natural solution Nash equilibrium.

Static agreement games (pure coordination games) are an important class of games

where existing equilibrium selection rules generally fail to produce a unique Nash

equilibrium. Using the natural solution concept, a Nash equilibrium that assumes no

arbitrary decisions among equivalent choices is guaranteed. While Nash equilibrium

for strategic games is expensive to compute in general, finding a pure strategy Nash

equilibrium for static agreement games (and indeed identical interest games in general)

Chapter 5 Summary and Future Work 88

is much easier. Unfortunately, computing the natural solution for static agreement

games is conjectured to be NEXP-complete. We suggest that the linear time heuristic

PRA can be used as an equilibrium selection tool in practice since 1) it finds the

natural solution fairly consistently; 2) when it fails to produce the natural solution it

still produces a Nash equilibrium with better value than the natural solution Nash

equilibrium. Therefore, if we were to use the concept of natural solution in a stochastic

game whose stage games are static agreement games, we believe the result from PRA

provides a reasonable approximation. In general, stage games are not going to be

static agreement games. In order to apply the concept of natural solution to stochastic

games in general, we may have to relax our assumptions while maintaining the qualities

that ensure the existence and uniqueness of a natural solution.

The second part of the thesis is devoted to a decentralized planning problem for

team Bayesian search. A team of agents is tasked with making observations in a

search area where an unknown number of targets exist. Each agent must make its own

individual decision about where its next observation will be. The common cost every

agent tries to minimize is set to be the total final Bayes risk, given the observations

made by all the agents. Each agent must formulate and solve a decentralized planning

problem to compute its future actions. This planning problem is formulated as a

POMDP whose objective function is evaluated based on the assumption that all agents

will use the same mixed strategy policy. We propose three dynamic programming

heuristics for this planning problem. Each of them can be used by agents in a

decentralized fashion to compute an individual policy. The heuristics are designed

such that all will arrive at the same policy so long as they use the same heuristics.

We evaluated the performance of policies resulting from these heuristics using two

instances of the planning problem where resolving coordination dilemmas is critical.

The first two heuristics can be viewed as distributed dynamic programming value

iteration while the third heuristic can be viewed as distributed dynamic programming

Chapter 5 Summary and Future Work 89

policy iteration. Policies resulting from these heuristics exhibit distinct behaviors when

coordination dilemmas arise. In both instances, the policy produced by Decentralized

Uniform Heuristic fares the worst and the policy produced by Parallel Reduction

Heuristic performs the best. Decentralized Policy Iteration heuristic performs similarly

to the uniform heuristic in one instance and the parallel reduction heuristic in the other.

Since each round of the policy iteration involves recalculating the cost-to-go function

for each state, Parallel Reduction Heuristic is significantly more e�cient in terms of

computational complexity. As with most POMDPs, the curse of dimensionality means

that we can only realistically solve problems of limited size. In the future, we plan

to explore approximating methods such as limited lookahead for the decentralized

planning problem.

The partially observed nature of the team search problem limits the size of problems

our heuristics can be applied to in empirical evaluation. Furthermore, it does not allow

the clearest di↵erentiation among the resulting decentralized policies. We believe our

heuristics can be easily extended to the general class of MDP or identical interest

stochastic games. Our aim is to find problems that can serve as benchmark problems,

not only for the proposed heuristics but also for future research in decentralized

decision making in general.

Our heuristics also suggest methods of applying dynamic programming value

iteration and policy iteration in the decentralized setting. We would like to extend

this to decentralized learning algorithms that face similar coordination dilemmas due

to multiple Nash equilibria. More specifically, we are interested in using uniform

randomization procedure in the development of joint action reinforcement learning

algorithms for MMDP or identical interest stochastic games.

Bibliography

[1] G. Weiss. Multiagent Systems: a Modern Approach to Distributed Artificial
Intelligence. The MIT Press, Cambridge, 1999.

[2] J. Doran, S. Franklin, N. Jennings, and T. Norman. On cooperation in
multi-agent systems. The Knowledge Engineering Review, 12(3):309–314, 1997.

[3] M. Flint, M. Polycarpou, and E. Fernandez-Gaucherand. Cooperative control for
multiple autonomous UAV’s searching for targets. In Proceedings of the 41st
IEEE Conference on Decision and Control, pages 2823–2828, 2002.

[4] R. Beard and T. McLain. Multiple UAV cooperative search under collision
avoidance and limited range communication constraints. In Proceedings of the
42nd IEEE Conference on Decision and Control, pages 25–30, 2003.

[5] L. Barri, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by
mobile agents. In Proceedings of the Fourteenth Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 200–209, 2002.

[6] L. Kaelbling, M. Littmann, and A. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[7] P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent
cooperation: models and experiments. In Proceedings of the Fifth International
Conference on Autonomous Agents, pages 616–623, 2001.

[8] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling.
Learning to cooperate via policy search. In Proceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence (UAI-2000), 2000.

[9] Alessandra Russo Luke Dickens, Krysia Broda. Modelling MAS as finite analytic
stochastic processes. In Proceedings of the AISB Symposium on Behaviour
Regulation in Multi-Agent Systems, 2008.

[10] Craig Boutilier. Planning, learning and coordination in multiagent decision
processes. In Proceedings of the Sixth Conference on Theoretical Aspects of
Rationality and Knowledge, pages 195–210, 1996.

90

Bibliography 91

[11] David Pynadath and Milind Tambe. The communicative multiagent team
decision problem: Analyzing teamwork theories and models. Journal of Artificial
Intelligence Research, 16:389–423, 2002.

[12] Piotr J. Gmytrasiewicz and Prashant Doshi. A framework for sequential
planning in multi-agent settings. Journal of Artificial Intelligence Research,
24:24–49, 2005.

[13] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.
The complexity of decentralized control of markov decision processes.
Mathematics of Operations Research, 27:819–840, 2002.

[14] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella. Taming
decentralized POMDPs: Towards e�cient policy computation for multiagent
settings. In Proceedings of the Twentieth National Conference on Artificial
Intelligence, pages 133–139, 2005.

[15] Praveen Paruchuri, Milind Tambe, Fernando Ordez, and Sarit Kraus. Security in
multiagent systems by policy randomization. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multiagent Systems,
2006.

[16] Frans Oliehoek, Matthijs Spaan, and Nikos Vlassis. Optimal and approximate
Q-value functions for decentralized POMDPs. Journal of Artificial Intelligence
Research, 32:289–353, 2008.

[17] Byung Kon Kang and Kee-Eung Kim. Exploiting symmetries for single and
multi-agent partially observable stochastic domains. Artificial Intelligence,
182:32–57, 2012.

[18] L. Shapley. Stochastic games. In Proceedings of the National Academy of
Sciences of the United States of America, pages 1095–1100, 1953.

[19] Frank Thusijsman. Optimality and equilibria in stochastic games. Centrum voor
Wiskunde en Informatica, 1992.

[20] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

[21] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic
programming for partially observable stochastic games. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence, pages 709–715, 2004.

[22] Akshat Kumar and Shlomo Zilberstein. Dynamic programming approximations
for partially observable stochastic games. In Proceedings of the Twenty-Second
International FLAIRS Conference, pages 547–552, 2009.

Bibliography 92

[23] Rosemary Emery-Montemerlo, Geo↵rey Gordon, Je↵ Schneider, and Sebastian
Thrun. Approximate solutions for partially observable stochastic games with
common payo↵s. In Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 136–143, 2004.

[24] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. Online planning for
multi-agent systems with bounded communication. Artificial Intelligence,
175:487–511, 2011.

[25] C.J.C.H. Watkins and P. Dyan. Q-learning. Machine Learning, 8(3/4):279–292,
1992.

[26] Richard S. Sutton. Learning to predict by the methods of temporal di↵erences.
In Machine Learning, pages 9–44. Kluwer Academic Publishers, 1988.

[27] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. A comprehensive
survey of multiagent reinforcement learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 38:156–172, 2008.

[28] Satinder Singh, Tommi Jaakkola, Michael Littman, and Csaba Szepesvri.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine Learning, 38:287–308, 2000.

[29] Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum stochastic
games. Journal of Machine Learning Research, 4:1039–1069, 2003.

[30] Michael Littman. Friend-or-Foe Q-learning in general-sum games. In Proceeding
of the Eighteenth International Conference on Machine Learning, pages 322–328,
2001.

[31] Amy Greenwald and Keith Hall. Correlated-Q learning. In Proceedings of AAAI
Spring Symposium, pages 242–249, 2003.

[32] Xiaofeng Wang and Tuomas Sandholm. Reinforcement learning to play an
optimal Nash equilibrium in team Markov games. In Advances in Neural
Information Processing Systems, pages 1571–1578, 2002.

[33] H. Peyton Young. The evolution of conventions. Econometrica, 61:57–84, 1993.

[34] Ronen Brafman and Moshe Tennenholtz. Learning to coordinate e�ciently: A
model-based approach. Journal of Artificial Intelligence Research, 19:11–23,
2003.

[35] Avraham Bab and Ronen I. Brafman. Multi-agent reinforcement learning in
common interest and fixed sum stochastic games: An experimental study.
Journal of Machine Learning Research, 9:2635–2675, 2008.

[36] Thomas Schelling. The Strategy of Conflict. Harvard University Press,
Cambridge, 1960.

Bibliography 93

[37] R. Duncan Luce and Howard Rai↵a. Games and Decisions: Introduction and
Critical Survey. Wiley, New York, 1957.

[38] David Lewis. Convention: A Philosophical Study. Harvard University Press,
Cambridge, 1969.

[39] D. Gauthier. Coordination. Dialogue, 14:195–221, 1975.

[40] M. Gilbert. Rationality and salience. Philosophical Studies, 57:61–77, 1989.

[41] Natalie Gold and Robert Sugden. Collective intentions and team agency. The
Journal of Philosophy, 104:109–137, 2007.

[42] Michael Bacharach. Beyond Individual Choices: Teams and Frames in Game
Theory. Princeton University Press, Princeton, 2006.

[43] John Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36:48–49, 1950.

[44] J. Harsanyi and R. Selton. A General Theory of Equilibrium Selection in Games.
MIT Press, Cambridge, 1988.

[45] G. W. Brown. Some notes on computation of games solutions. The RAND
Corporation, 1949.

[46] D. Foster and H. Young. On the nonconvergence of fictitious play in
coordination games. Games and Economic Behavior, 25:79–96, 1998.

[47] A. Sela and D. Herreiner. Fictitious play in coordination games. International
Journal of Game Theory, 28:189–197, 1999.

[48] Johannes Becker and Damian Damianov. On the existence of symmetric mixed
strategy equilibria. Economics Letters, 90:84–87, January 2006.

[49] Shih-Fen Cheng, Daniel M. Reeves, Vorobeychik Yevgeniy, and Michael P.
Wellman. Notes on equilibria in symmetric games. In Proceedings of the Sixth
Workshop on Game Theoretic and Decision Theoretic Agents at the Third
Conference on Autonomous Agents and Multi-Agent Systems, pages 23–28, 2004.

[50] Nicholas Bardsley, Judith Mehta, Chris Starmer, and Robert Sugden. Explaining
focal points: Cognitive hierarchy theory versus team reasoning. The Economic
Journal, 120:40–79, 2010.

[51] L. Stone. Theory of Optimal Search. Academic Press, 1975.

[52] B. O. Koopman. Search and Screening: General Principles with Historical
Applications. Pergamon Press, 1980.

[53] D. Castanon. Optimal search strategies in dynamic hypothesis testing. In
Proceedings of the 32nd IEEE Conference on Decision and Control, pages
265–270, 1993.

	Acknowledgement
	Contents
	List of Tables
	List of Figures

	Introduction
	Motivating Examples
	The Dial-Wait Problem
	A Decentralized Team Search Problem

	Thesis Statement
	Dissertation Organization

	Background
	Single Agent Decision Problems
	Multiagent Extensions of MDP and POMDP
	Connection to Stochastic Games
	Previous Work

	Natural Solutions
	Coordination in Strategic Games
	Defining Natural Solutions
	Static Agreement (SA) Games
	Verifying Assumption 1 for SA Games
	Examples
	Descriptive Power of Natural Solution

	Computational Issues
	The Parallel Reduction Algorithm (PRA)
	Empirical Evaluation
	Discussion

	Decentralized Planning in Bayesian Team Search
	Introduction
	Problem Formulation
	Basic Setup and Bayesian Hypothesis Testing
	The Need for Randomized Policy
	Decentralized Planning

	Decentralized Planning Algorithms
	Centralized Planning Problem As A Starting Point
	Decentralized Uniform Heuristic
	Decentralized Parallel Reduction Heuristic
	Decentralized Policy Iteration Heuristic

	Numerical Evaluation
	Case 1: Side by Side
	Case 2: Diagonal

	Summary and Future Work
	Bibliography

