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Abstract

The use of standardized anthropomorphic test devices and test conditions prevent

current vehicle development and safety assessments from capturing the breadth of

variability inherent in real-world occupant responses. The central idea of this disserta-

tion is that human body models used in simulations with a diverse range of real-world

impact scenarios can represent population variability and may be the key to overcome

the limitations of current vehicle assessment and development methodologies. In this

approach, a series of response surfaces are created that contain information about

the occupant responses as a function of different input variables. Subsequently, these

surfaces, in conjunction with real-world distributions of the population and impact

conditions, can be used to identify populations at risk, to illustrate injurious impact

scenarios, and to inform prioritization of countermeasure and design actions.

This dissertation develops a methodology to assess occupant response that accounts

for sources of intrinsic (human-related) and extrinsic (non-human-related) variability,

including uncertainty in the FE parameters. Although inherently generic in nature,

this methodology was applied to a far-side crash scenario in order to provide an

illustrative example.

For the far-side application, lateral head excursion and thoracic injury were identified

as the target occupant responses, while change in vehicle velocity, impact direction

and seatbelt load limiter were the extrinsic factors explored. The intrinsic factors were

occupant height, weight and waist circumference and were explored by morphing the

simplified GHBMC human body model. WorldSID tests were used in order to validate

and estimate the parameter uncertainty in the vehicle FE model. Five regression

techniques, namely, linear regression, logistic regression, LASSO linear and logistic

regression, and Neural Networks (NN), were used for the generation of the response

surfaces. The regression models were sequentially trained to represent the maximum

lateral head excursion and the probability of 3+ fractured ribs using a total of 405

FE simulation results. The performance of these regression techniques was assessed



based on their ability to predict out-of-sample datapoints. The NN showed equal or

improved performance with respect to the other regression techniques.

Based on far-side input conditions derived from US field data, Monte-Carlo simu-

lations used the head excursion and rib fracture response surfaces to calculate the

probability of head-to-intruding-door impacts and cases with 3+ fractured ribs. In

addition, the Monte-Carlo analysis predicted head contact and rib fracture reductions

subsequent to design changes in the restraint configuration. This analysis indicated

that the vehicle used in this study would lead to a range of 667 to 2,448 head-to-

intruding-door impacts and a range of 2,893 to 3,783 cases of 3+ fractured ribs,

depending on the seatbelt load limiter. In the US field data, the expected number of

cases with 3+ fractured ribs was 3,958. The far-side assessment illustrates how the

methodology incorporates the intrinsic and extrinsic variability, generates response

surfaces that characterize the effects of the variability, and ultimately permits vehicle

design considerations and injury predictions appropriate for real-world field condi-

tions.
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Chapter 1

Introduction

1.1 Background

1.1.1 Current state of occupant safety

Improvements in vehicle safety have contributed to saving over 600,000 lives from

1960 through 2012 in the US (Kahane, 2015). In spite of this success, more than

1.2 million people lose their lives on the road worldwide annually, and as many as

50 million others are injured (WHO, 2017). Even though high-income countries have

taken a number of actions to reduce these figures, the number of traffic-related injuries

and fatalities in these countries is still in the range of the millions and thousands per

year, respectively (NHTSA, 2019).

These global traffic statistics provide the overall summary of the millions of traffic

crashes and the individual occupant responses derived from them. The variability

observed in the individual responses is a consequence of the differences in the input

crash conditions. These input conditions, that can be defined by intrinsic (human-

related) and extrinsic (non-human-related) factors, can theoretically be described by

probability distributions and play a major role in the crash outcome (figure 1.1).

Current knowledge about the input distributions and their effects on the individual

occupant response is sparse and only relatively available for a limited number of

factors (e.g., ∆v, age). Therefore, the distributions, effects and interactions of most

1



of the input factors remain uncertain.

Figure 1.1: Flowchart from crash input factors to global crash statistics

1.1.2 Current strategies for the assessment and development

of occupant safety

Historically, most of the vehicle improvements for safety have been encouraged

by regulation and enabled by the development of biofidelic Anthropomorphic Test

Devices (ATD).

ATD are human surrogates developed to represent specific human populations

in specific crash conditions. These devices are designed to meet specific population

height and weight percentiles and response corridors based on PMHS and volunteer

data. Additional factors like sex and age are indirectly contemplated via injury risk

functions. The cost of developing, fabricating and using these devices limits the
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breadth of the population and impact conditions they can represent. Therefore, most

of the human variability and the interaction among human attributes remains totally

unexplored. Restrictions in their construction due to durability, manufacturability,

repeatability and reproducibility requirements, limit their ability to replicate human

behavior and can have a negative influence on biofidelity (Crandall et al., 2011).

The difficulty of reproducing omnidirectional human-like responses has led to the

development of direction-specific ATD. These devices are optimized to perform in a

particular environment, sitting posture and impact mode. Relatively small changes

in the impact conditions can lead to a severe drop in the ATD’s ability to represent

human-like responses (Sunnevång et al., 2014). Therefore, the interpretation of ATD

results in scenarios other than their design impact mode is questionable (Crandall

et al., 2011). This lack of versatility further limits our ability to explore human

response to changes in sitting posture, vehicle restraint, impact direction, etc. Since

most ATD cannot assess failure in a direct manner, these devices use kinematic and

kinetic injury criteria to assess injury risk. The metrics required for the different injury

criteria are measured by sensors build into the ATD. These sensors are located to

capture a limited number of load-case-specific injury mechanisms and are only capable

of recording body region kinetics and kinematics rather than tissue specific stress-

strain attributes. This may lead to missing multiple injury sources and mechanisms

when the ATD is used outside of its impact direction specifications or in non-standard

vehicle environments.

Current regulation includes a number of standardized physical tests, where oc-

cupant safety is assessed using specific ATD. In addition to regulatory tests, non-

governmental entities (e.g., IIHS, Euro NCAP) perform additional standard ATD-

based tests to inform consumers about the occupant safety levels of specific vehicles.

Given the limited resources and the expensive nature of ATD tests, the number of

input factors explored in these standardized tests is very reduced. These tests are

performed in specific impact configurations (e.g. velocity, angle, barrier overlap, etc.)

that are the same for all vehicles. These conditions are normally set through an esti-

mated benefit analysis or targeted to represent an average event based on impact or
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injury severity (Hollowell et al., 1998; Ellway et al., 2013).

Although many vehicle manufacturers implement some degree of human body

modeling in their decision making, most them rely on these ATD tests to assess and

develop their vehicles (figure 1.2). This approach to safety assumes that the individual

occupant responses can be represented using a very limited number of datapoints

and that, therefore, improving the vehicle’s performance in these tests would scale

to other, not represented, impact conditions and generate a positive impact in the

global statistics (e.g., total number of injuries).

Figure 1.2: ATD-based approach to vehicle assessment and development (main as-
sumptions in blue)
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1.2 Motivation

Although current vehicle safety assessment and development methodologies have

led to saving thousands of lives, future improvements require strategies targeted at

greater degrees of specificity of intrinsic and extrinsic factors. Current methodologies

show limitations that need to be addressed in order to increase current levels of vehicle

safety for a wider range of the population and impact conditions.

1.2.1 Limitations of current vehicle safety assessment and

development methodologies

Complying with vehicle safety regulations and consumer tests is still the main

safety focus of vehicle manufacturers. As a consequence, current vehicle development

is largely based on a very small sub-sample of impact scenarios unable to capture hu-

man response variability. This ATD-based approach prevents the exploration of the

effect that most of the input factors and their interactions have on human response

or restraint performance. This lack of variability exploration overlooks potential in-

jurious scenarios and may lead to hyper-optimized restraints. That is, restraints that

may not be effective for a large percentage of the population and impact conditions.

The consequences derived from these limitations may partially explain the differences

in protection observed for different segments of the population (Viano et al., 2008;

Bose et al., 2011; Forman et al., 2019).

Moreover, vehicle safety performance criteria would ideally be associated to the

probability of injury or fatality for the entire population in any impact condition.

This would directly target the global reduction of the injuries and fatalities observed

in the field. This requires a level of understanding of occupant, vehicle and restraint

response that ATD-based assessments cannot provide. The limited number of avail-

able tests forces these assessments to contemplate a limited number of populations

and impact conditions in their performance criteria. This leads to assessments that

rank vehicles and restraint systems according to their associated probability of injury

for a limited number of populations but are not able to quantify the effect that re-
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leasing a particular vehicle would have in the global number of injuries and fatalities

observed in the field.

Thus, improving vehicle safety requires the implementation of vehicle safety as-

sessment and development methodologies that take into account human response

variability to intrinsic and extrinsic factors.

1.2.2 Challenges in introducing human response variability

in the assessment and development of occupant safety

Current ATD-based vehicle safety assessments use ATD to understand human

response. However, these devices show limitations for their use in the exploration of

human variability.

ATD only represent a limited number of populations. This limits our ability to

explore human variability. Moreover, these devices are unidirectional in nature. That

is, they are designed to represent human kinematics and kinetics in a narrow range

of impact directions. The injuries these devices can represent are also limited to a

number of known injury mechanisms. These mechanisms are direction dependent

and, sometimes, also restraint dependent. Therefore, ATD offer very limited ability

to explore non-standard restraints or impact directions. These limitations, in combi-

nation with the time and cost associated with their development and use, make these

surrogates unfit to explore human response variability.

On the other hand, Finite Element (FE) Human Body Models (HBM) show char-

acteristics that make them the best available tool to understand human response

variability (Gayzik et al., 2011; Schwartz et al., 2015). HBM are computational mod-

els that, when correctly validated, are capable of predicting human response. These

models are developed to represent the anthropometry and, sometimes, morphology of

specific individuals or populations. The abilities of HBM are not constrained by limi-

tations or costs derived from physical manufacturing and, therefore, offer advantages

over ATD. Their computational nature allows for the creation of multiple models

to represent diversity in the population by changing their geometry (e.g., through
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morphing), connectivity or material properties. Moreover, provided appropriate vali-

dation, HBM can also be used in multiple impact modes and sitting postures. These

models also have the ability to predict not only injury risk through the use of injury

criteria but also strain-based tissue-level injury. Therefore, their injury prediction

abilities are not constrained to specific injury mechanisms. However, in spite of their

advantages and decades of use in research (Yang et al., 2006), their use in vehicle

development is still very limited. Although some manufacturers do implement these

models as part of their decision making, most of the development decisions are made

based on ATD results alone. This resistance to use HBM is multifactorial:

First, manufacturers have to comply with existing testing-based regulation. This

limits their ability to introduce additional human surrogates since potentially con-

flicting results need to be resolved to favor ATD performance.

Second, improvements based on HBM results are difficult to market since they

have no influence in regulation or consumer tests ratings. This limits their ability to

commit to the potential investments and costs derived from the use of surrogates not

contemplated in regulation or consumer tests.

Based on this, it is clear that implementing variability-based assessments in reg-

ulation and consumer tests is key for their introduction in vehicle design. Although

these entities have shown willingness to introduce HBM in their assessments (NHTSA,

2016; NCAP, 2017b) some key issues remain unaddressed:

First, utilizing HBM requires the use of FEM and therefore introduces uncertainty

in the assessment. Part of this uncertainty is inherent to any model, not only FEM,

since models are only approximations of reality. Another contributor to uncertainty is

the lack of knowledge of the specific parameter values to be used in the models (e.g.,

friction between parts). Controlling for uncertainty is key for a realistic assessment.

Therefore, methods for controlling uncertainty in the FEM need to be developed for

the introduction of HBM in standardized assessments.

Second, there is currently no published methodology for the evaluation of human

response variability that takes into account intrinsic, extrinsic and model uncertainty

factors.
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1.2.3 Central idea of the dissertation

The central idea of this dissertation is that HBM, capable of representing popula-

tion variability, in combination with validated vehicle models subjected to a diverse

range of field-based impact scenarios may be the key to overcome the limitations of

current ATD-based vehicle assessment and development methodologies. In this new

approach a series of response surfaces are created and contain information about the

occupant responses of interest as a function of intrinsic (human) and extrinsic (non-

human) factors. These response surfaces can be used, among other things, to quantify

the estimated number of injury or fatality cases associated to a vehicle design tak-

ing into account the underlying real-world distribution of the population and impact

conditions (figure 1.3).

Figure 1.3: Variability-based approach to vehicle assessment and development (main

assumptions in blue)
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One of the key differences of this new approach with respect to ATD-based assess-

ments is that the intrinsic and extrinsic factors explored in the assessment are defined

as distributions and not as discrete datapoints. The specific factors and the ranges to

be explored in this methodology depend on the specific end application. The goal is

to identify factors that may have an effect on human response for the identified case

of interest, the range of variation to explore and their probability of occurrence. In

order to reduce the number of input factors to a feasible exploration domain, their

selection may be conducted based on a prioritization methodology. Using probability

distributions as input factors, instead of discrete points, allows for the calculation of

the probability distributions of the human responses of interest, taking into account

variability in the population and impact conditions.

As in the selection of input factors, studies may focus on different human responses

(e.g., chest injury) depending on their end goal. However, these responses should be

selected with the aim of evaluating injury potential. These responses may be selected

and prioritized based on their frequency on the field, although selection based on

other criteria should also be considered, especially if the vehicle presents features that

may shift injury patterns from those observed in the field (e.g., particular restraint

configurations).

The HBM selected for the generation of the response surfaces should be able to

represent the responses of interest and the selected intrinsic factors. These factors

can be represented by modifying the model geometry, connectivity or constitutive

definitions in order to explore variability in anthropometry or tissue characteristics,

among others.

The vehicle environment should be validated using physical tests. These tests may

be created in a hierarchical manner and build up to a full model. Traditional FEM

calibrations (figure 1.4 - up) optimize the value of a number of model parameters

to match the results of physical tests. This deterministic approach does not take

into account any uncertainty in the estimation of the model parameters and leads

to a unique model with a unique set of model parameters (e.g., µseatbelt = 0.5). As

mentioned in section 1.2.2, controlling for model uncertainty is key for the acceptance
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of FEM in vehicle assessment. In order to ensure that uncertainty in the vehicle FEM

is taken into account, the calibration process should lead not to optimized parameter

values but to ranges of parameters that meet the a predetermined validation criteria

(figure 1.4 - down). This is especially important for those parameters that may have

an influence in occupant response. The resulting parameter ranges may be used to

explore the effects of model uncertainty in the resulting human response.

Figure 1.4: Traditional validation (up) and model parameter uncertainty ranges (bot-

tom)

Once the intrinsic, extrinsic and model uncertainty factors are identified, their

effects on the occupant responses of interests are evaluated running FE simulations

representing these factors. The simulation results are used to construct response sur-

faces as a function of the different input factors. These surfaces are generated using

Machine Learning regression techniques due to their ability to converge to the under-

lying mathematical model response. A Monte-Carlo (MC) analysis on these surfaces,

following the probability distribution of the inputs, leads to the calculation of the

probability distributions of the human responses of interest. Since the inputs follow

field-based probability distributions, the MC analysis results in field-equivalent oc-
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cupant response distributions. These resulting distributions are used to estimate the

effect that the assessed vehicle would have in the real-world (global statistics). That

is, the expected number of events (e.g., injuries) it would be involved in if released in

the field. If the data is available, this field-equivalent probability distributions could

be directly compared to current real-world data frequency distributions to establish

if the assessed vehicle would contribute to a reduction or an increment of injuries or

fatalities observed in the field. This would shift vehicle assessment and development

from an ATD-based approach, where the probability of injury is only estimated for a

very limited portion of the population in very specific impact cases, to an approach

able to predict human response and quantify the effect of the vehicle in the real-world

statistics.

1.3 Research Goal and Overview

The goal of this dissertation was to develop a methodology that accounts for

variability of intrinsic and extrinsic factors including model uncertainties for the eval-

uation of human response in vehicle impacts.

The proposed methodology, although sufficiently generic to be implemented in any

type of impact condition, will be explored using far-side impacts as an application

example. Far-side impacts have been recently introduced in Euro NCAP as one of

the vehicle safety assessments. Its recent adoption, the lack of a far-side specific ATD

and the possibility of testing the scenario in a simple sled environment makes this

load case ideal for virtual assessment.

Chapter 2 focuses on the definition of the extrinsic factors and occupant responses

to be explored and the HBM and vehicle environment to be used in the study. The

extrinsic factors, their frequency in the field and occupant responses were identified

based on previously-published field studies. Although multiple extrinsic factors could

be selected, this study focused on exploring ∆v, impact direction and seatbelt load

limiter, based on their, already established, significant effects on occupant response.

The vehicle environment was defined to represent the most injurious interior struc-
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Figure 1.5: Dissertation Flowchart

tures while maintaining model simplicity. The occupant responses to evaluate were

identified based on the most commonly injured body regions. Chapter 3 identifies the

intrinsic factors to be explore and how to represented them in the HBM. Although

multiple intrinsic factor could be selected, this study focuses on the implementation

of human anthropometry variability. This chapter presents a methodology for the

implementation of human anthropometry variability through morphing. The anthro-

pometry parameters to be controlled for are identified using previously published

PMHS tests. The ANSUR-II database is used as the representation of the occupant

population distribution. Chapter 4 presents a series of PMHS tests conducted using a

physical representation of the vehicle environment described in chapter 2. These tests

were conducted to better understand in-vehicle human kinematics and injury response

in far-side scenarios and to be used in the biofidelity evaluation of the surrogates used
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in this dissertation (i.e., the WorldSID and the simplified GHBMC). These biofidelity

evaluations are presented in chapter 5. In situations where occupant response and

surrogate biofidelity is sufficiently understood (e.g., frontal impacts), chapter 4 and

5 may not be necessary. In chapter 6, the vehicle FE model environment is vali-

dated based on WorldSID tests. This chapter identifies the model parameter ranges

(model uncertainty) to be explored in following steps of the methodology. Chapter 7

presents a methodology for the generation of response surfaces as a function of the in-

trinsic, extrinsic and model factors identified in chapters 2, 3 and 6, respectively. This

chapter uses and compares the performance of linear regressions, logistic regressions,

LASSO regularization, and neural networks for the generation of response surfaces.

Finally, chapter 8 uses the resulting response surfaces to illustrate their use to assess

the vehicle in the study. This assessment gives an estimation of the annual number

of occupants that would contact the intruding door or suffer 3+ fractured ribs as a

consequence of far-side impacts involving the assessed vehicle.
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Chapter 2

Representation of Far-Side

Scenarios

This chapter focuses on identifying the key aspects to be taken into account in the

representation of far-side scenarios. The results from this chapter are used to define

the vehicle environment to be used for the physical tests and the FEM simulations

in chapters 4, 5, 6 and 7 and to determine the human responses, the extrinsic factors

and their ranges and the HBM to be explored in chapter 7.

2.1 Introduction

Traditional ATD-based vehicle occupant safety assessment focuses on the eval-

uation of subsets of the occupant population in a limited number of impact con-

figurations. The expensive nature of physical tests prohibit a broad exploration of

variability in the occupant and impact conditions. Thus, the experimental approach

limits our ability to understand the performance of a vehicle and restraint configura-

tion for protecting society as a whole.

In far-side scenarios, the only available testing protocol, uses a sled buck with a

50th percentile WorldSID ATD on the driver seat subjected to a ∆v of approximately

33 km/h (depending on the vehicle) in a 75-degree PDOF (NCAP, 2017c). This

approach, although useful as an initial evaluation, lacks consideration of the effects
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that variability in the occupant or impact conditions may have on occupant response.

FE models provide an opportunity to explore a broader range of occupant crash

and vehicle parameters. Therefore, instead of running a small number of physical test

in selected conditions, a virtual assessment can explore ranges of input conditions

across a larger portion of the population in a wider set of impact conditions.

The goal of this chapter is to identify the extrinsic factors to be explored in the

present methodology, identify the human responses to be evaluated, and the HBM

and vehicle environment to be used in this evaluation.

2.2 Methods

The existing literature was used to identify the most commonly injured body

regions, injury causation and the impact conditions that have an effect on human

kinematic response and injury in far-side crashes. This information is later used to

identify and establish ranges for the extrinsic factors to be explored, identify the

human responses to be evaluated in the assessment and the HBM and vehicle envi-

ronment to be used for the evaluation.

2.3 Results

Far-side impacts represent 9.5% and 8.3% of all police-reported automobile crashes

and MAIS3+ injury cases, respectively (Bahouth et al., 2015). Multiple far-side

studies point to the head and chest as the most commonly injured body regions

(Mackay et al., 1993; Frampton et al., 2000; Ryb et al., 2009; Viano and Parenteau,

2010; Bahouth et al., 2015). Current literature quantifies head and chest injury (figure

2.1) as being present in 50% and 69% of all MAIS 3+ occupant cases and 23% and

38% of all AIS 3+ injuries, respectively. Injuries to other body regions range from

7% to 14% of all MAIS 3+ occupant cases and 5% to 17% of all AIS 3+ injuries

(Yoganandan et al., 2014; Bahouth et al., 2015). This trend remains similar when

sampling only vehicles with good safety score ratings (Brumbelow et al., 2015). Far-

16



side injuries are presumably caused by intruding structures and other components of

the vehicle interior adjacent to the occupant including the seatbelt, center console

and seat (Mackay et al., 1993; Frampton et al., 2000; Ryb et al., 2009; Yoganandan

et al., 2014; Bahouth et al., 2015; Brumbelow et al., 2015). In particular, head injuries

were found to be mainly caused by the intruding side of the vehicle (figure 2.2) and

chest injuries were attributed to a wider variety of impact sources (figure 2.3).

Figure 2.1: Distribution of AIS 3+ injuries (AIS 1998) by body region, belted front

seat outboard occupants in far-side crashes NASS CDS 2004-2013 (Annualized data,

weighted) (Bahouth et al., 2015)

It is well established that human response varies significantly with changes in the

impact conditions. Occupant kinematics show significant differences in head excursion

with changes to the Principal Direction of Force (PDOF), ∆v and the use of a seatbelt

pretensioner (Forman et al., 2013). PDOF and ∆v also have a major effect on the

injury severity and location observed in the field (figure 2.4). The median ∆v is 15

km/h for all far-side cases and 32 km/h for MAIS 3+ injuries. Most of the far-side

events and injuries occur at a 60-degree PDOF followed by 90-degree cases. While

30-degree PDOF are also common impact directions, these event are often classified

as frontal-oblique rather that far-side scenarios.
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Figure 2.2: AIS 2+ and AIS 3+ head injuries (AIS 1998) by injuring contact for belted

front outboard seat occupants in far-side crashes NASS CDS 2004-2013 (Bahouth

et al., 2015)

Figure 2.3: AIS 2+ and AIS 3+ chest injuries (AIS 1998) by injuring contact for belted

front outboard seat occupants in far-side crashes NASS CDS 2004-2013 (Bahouth

et al., 2015)
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Figure 2.4: Left: Distribution of PDOF (Bahouth et al., 2015). Right: Distribution

and explored (shaded area) ∆v (Gabler et al., 2005)

2.4 Discussion

2.4.1 Extrinsic factors

Since literature indicates that PDOF and ∆v have an effect on occupant kinemat-

ics and injury, exploring these factors is essential to understand vehicle performance

in the field. This dissertation explored PDOF between and 60 degrees and 90 degrees

and ∆v between 22 km/h and 45 km/h (chapter 7). The ∆v range was selected to

represent injurious and non-injurious scenarios and to maintain simulation stability.

These ranges encompass most of the injurious PDOF and 50% of the injurious ∆v in

the field (figure 2.4).

The seatbelt is one of the most important sources of occupant restraint and injury.

Since seatbelt parameters have an important influence in restraint performance, this

methodology also explored the effect that changes in the seatbelt load limiter have in

occupant response.
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2.4.2 Vehicle environment

While virtual assessments have the ability to explore a large number of impact

scenarios in a relatively inexpensive manner, this computational costs can become

an important factor as the model complexity increases. Another important aspect to

take into consideration is that the uncertainty of the FE model increases with model

complexity. Therefore, the vehicle model environment should be as simple as possible

but still maintain the ability to assess the vehicle performance. In this dissertation,

relevant interior, restraint, as well as a the vehicle environment was represented by a

sled buck able to represent the different ∆v and PDOF.

Existing literature demonstrates that the seatbelt, seat and center console are the

most common injurious interior structures in far-side scenarios. Therefore, the FE

vehicle environment used in this dissertation included these interior structures. While

the literature also indicates that the intruding side of the vehicle is responsible for an

important percentage of the injuries, representing intrusion via FE can be costly and

complex. In order to represent intrusion, the model would need to represent at least

the Body in White (BiW), doors, door panels and the impacting counterpart. This

level of complexity would require a significantly longer time to run and introduce more

model uncertainty than a simpler sled configuration. Although this approach can be

implemented in future applications of the present methodology, in this application,

the intrusion was estimated as a function of ∆v based on literature data (Sunnevång

et al., 2010).

2.4.3 Occupant responses

Since head and chest are the most commonly injured body regions in far-side sce-

narios, the maximum lateral head excursion and the probability of 3+ fractured ribs

were evaluated for the occupant represented in the simulations. The minimum head-

to-intruding-door distance was calculated using maximum lateral head excursion in

combination with the estimated vehicle intrusion. This represents the majority of

the AIS3+ head injuries observed in the field (figure 2.2). The probability of 3+
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fractured ribs was calculated using a stochastic approach developed by Forman et al.

(2012). This probability represents an estimation of the probability of thoracic AIS 3

(AAAM, 2015). Since computational efficiency is prioritized for this particular appli-

cation, the simplified GHBMC was used to explore the methodology. The simplified

GHBMC exhibits a biofidelic chest model validated to match PMHS corridor force-

deflection and force time-history responses in frontal and side impacts (Schwartz et

al., 2015). Moreover, far-side-specific biofidelity evaluation regarding kinematics, ki-

netics and injury severity prediction indicate that the GHBMC surrogate exhibits

sufficient biofidelity to demonstrate the methodology presented in this dissertation

(chapter 5).
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Chapter 3

Identification and Representation

of Far-Side-relevant Intrinsic

Factors

This chapter identifies the anthropometry measurements to explore and presents

a morphing methodology for the representation of varied occupant anthropometries.

This methodology is used in chapter 7 for the exploration of the effect of human

variability on occupant response.

3.1 Introduction

Anthropometry variability has been shown to have significant effects on human

kinematic and injury response (Viano et al., 2008; Kent et al., 2010). The field of

biomechanics has traditionally overlooked a large part of this variability by dividing

the population in different height and weight percentiles with some consideration to

age and sex. Although current HBM are capable of incorporating other sources of

human variability, the traditional approach of only height-weight consideration con-

tinues to be the trend in the literature. Recent studies (Hwang et al., 2016; Hu et al.,

2017), introduced a methodology for the morphing of HBM to account for height,

weight, age and sex. Although this approach can generate a large number of surro-
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gates, it misses important sources of variation by failing to explore variability within

surrogates of the same height, weight, age and sex. The exploration of alternative

factors of variability factors and their interactions may be needed to fully understand

their contribution to human response. The methodology presented in this study en-

ables the exploration of any set of intrinsic factors and therefore, it encourages the

exploration of any factor that may contribute to human response.

Previous PMHS tests (Pintar et al., 2007; Forman et al., 2013) and epidemiol-

ogy studies (Mackay et al., 1993) have highlighted the effect of upper-body-to-belt

engagement in far-side kinematics and injury. Analysis of the results presented by

Forman et al. (2013) show that variability in the shoulder belt engagement cannot be

fully explained by accounting only for the surrogates’ height and weight (Perez-Rapela

et al., 2019b). The abdominal region of the surrogates contributes to differences in the

shoulder belt routing and the generation of a pocketing effect that prevents the shoul-

der belt from slipping out of the shoulder (figure 4.22). Since this factor may have

an effect on the occupant injury response, the present morphing methodology will

incorporate waist circumference as an intrinsic factor along with height and weight.

3.2 Methods

The ANSUR-II database (Gordon et al., 2014) was used to create a joint (mul-

tivariate normal) probability distribution between the population height, weight and

waist circumference. Once height, weight, and waist circumference of a particular in-

dividual were selected for morphing, the remaining anthropometric parameters (figure

3.1) (i.e., the non-controlled parameters) were obtained using a Simulated Annealing

(SA) optimization (Kirkpatrick et al., 1983; Vandekerckhove, 2008). The SA process

ensured that the weight of the final morphed model met the specified input weight

(figure 3.2). This optimization workflow started with the estimation of the Prediction

Intervals (PI) for each non-controlled parameter. These PI were created using a linear

regression with height, weight and waist circumference as regressors. Subsequently

the algorithm selected a random point for each non-controlled parameter within their
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corresponding PI. The coherence of each parameter with the remaining parameters

was checked to ensure compatibility among the different body regions. This was

done by ensuring that each parameter value was contained within the PI created

using the remaining parameters as regressors. A body (i.e., a set of anthropometric

measurements) was considered coherent if all its measurements met this criterion.

Once a coherent set of parameters were selected, a Neural Network (NN) was used

to provide the expected weight of the morphed HBM as a function of the selected

anthropometry parameters (appendix A). The expected HBM weight was compared

to the target weight. The anthropometry measurements were accepted for morphing

if the weight error was lower than 3% or the SA determined the optimization had

finished. Otherwise, a new set of non-controlled parameter values was selected and

the cycle continued.

Figure 3.1: Anthropometry measurements for morphing (Gordon et al., 2014)

25



Figure 3.2: Workflow for the selection of non-controlled anthropometry measurements

to optimize final HBM weight

Once all parameters were identified, the morphing procedure was conducted us-

ing an custom developed Matlab/Piper script (PIPER-Project, 2019) (figure 3.3).

This methodology morphed the HBM using a kriging interpolation (Trochu, 1993)

conducted in four steps. In a first step, the Matlab script read the original HBM

anthropometry, introduced control points in the internal and external structures of

the model, calculated the target control points and created a preliminary morph of

the model. This preliminary morph was only temporary and served to inform the

script of the pelvis deformation needed to maintain sphericity in the acetabulum area

in the subsequent morphing steps. In a second step, the target morphing points were

recalculated taking into account the acetabulum area and the HBM was morphed
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again. In this step the HBM was morphed to meet all anthropometry measurements

but the waist, arm, forearm, calf, lower thigh and thigh circumferences. In the third

step, the model was morphed to capture the waist, arm, forearm, calf and lower thigh

circumferences while maintaining a constant bone geometry. On the final step, the

thigh region was morphed while maintaining a constant bone geometry.

Figure 3.3: Matlab/Piper morphing process

300 surrogates were created to explore the ability of the morphing methodology to

represent 90% of the population described by the joint probability distribution using
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the simplified GHBMC. The accuracy of the morphing methodology was checked for

each body region. Additionally, the resulting Chest Wall Thickness (CWT), bicristal

breadth and pelvic link of the morphed models were compared to the population

distribution. CWT was measured as the distance between the skin and the pleural

cavity measured at the sternum (Frank et al., 2011). Bicristal breadth was measured

as the straight-line distance between the right and left iliocristale landmarks (i.e., the

superior aspect of the iliac wings) (Gordon et al., 2014). The pelvic link was measured

as the vertical distance between the iliocristale right landmark and the level of the

trochanterion landmark (Gordon et al., 2014).

3.3 Results

Table 3.1 shows the average and standard deviation error between the anthro-

pometries of the final morphed models and the targets used for their morphing. All

average errors and their standard deviations were below 2%. The final distributions

of height, weight and waist circumference of the HBM showed good agreement with

the underlying ANSUR-II population (figures B.1, B.2 and B.3). The resulting CWT

(figure B.4) of the morphed models followed the distribution of previously published

volunteer measurements (Frank et al., 2011). The bicristal breadth and the pelvic link

of the HBM were contained within the bounds of the ANSUR-II datapoints (figures

B.5 and B.6).

The morphing process required approximately 30 minutes per surrogate.
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Table 3.1: Morphing average and standard deviation error percentage

Measurement % Error (Std. Dev.)

Height 0.0 (0.0)

Weight 0.8 (0.6)

Waist circumference 1.6 (1.0)

Shoulder-elbow length 0.0 (0.0)

Elbow-wrist length 0.0 (0.0)

Thigh link 0.0 (0.0)

Lateral femoral epicondyle height 0.0 (0.0)

Waist breadth 0.0 (0.1)

Hip breadth 0.0 (0.1)

Waist depth 0.1 (0.2)

Biceps circumference 0.1 (0.2)

Thigh circumference 0.4 (0.6)

Lower thigh circumference 0.5 (0.4)

Chest circumference 0.1 (0.1)

Forearm circumference 0.1 (0.2)

Calf circumference 0.1 (0.1)

Foot length 0.0 (0.1)

Foot breadth 0.3 (0.4)
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Figure 3.4: Examples of morphed HBM
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3.4 Discussion

The present methodology was able to morph the HBM to accurately represent

the inputs anthropometries (table 3.1). The joint probability distribution created to

relate height, weight and waist circumference was able to represent the underlying

ANSUR-II population (figures B.1, B.2 and B.3).

This methodology, unlike those previously published (Hwang et al., 2016; Hu et al.,

2017), explores not only variability in height and weight but also waist circumference.

In previous studies, this dimension was confounded with height and weight since it was

calculated as a result of a deterministic relationship. This fact impedes our ability

to understand and account for the effects associated with differences in the shape

of the abdominal region. The addition of this dimension may generate meaningful

information and help to identify trends and to optimize restraint systems. This is

particularly important for load cases like far-side where belt interaction with the

abdomen has been shown to have an effect on occupant response (Forman et al.,

2013; Perez-Rapela et al., 2019b).

Previously published methodologies estimate the non-controlled parameters in a

deterministic fashion. This may lead to discrepancies between the final HBM weight

and the initial target weight. In contrast, the present methodology is able to ensure

that the final morphed model matches the target morphing weight with an average

error smaller than 1% by carrying out a stochastic optimization for the calculation of

the non-controlled parameters. This is critical because an uncontrolled weight may

lead to a reduction in the explored space or morphed models that do not represent the

underlying population. This optimization is conducted using a SA routine that loops

through thousands of possible anthropometries with the goal of obtaining a set of an-

thropometry parameters that minimizes the difference between the target weight and

the final model weight (figure 3.2). Since morphing thousands of models to optimize

the final weight is not feasible, this implementation uses a NN able to estimate the

final weight of the HBM, using the anthropometry measurements as an input vari-

ables. The optimization algorithm also ensures that the anthropometry parameters

31



selected in each iteration are coherent with each other. That is, it ensures that the

final anthropometry parameters represent a surrogate consistent with the underlying

population. It is important to note that, since the non-controlled parameters are es-

timated in a stochastic manner, the repeated use of this morphing methodology may

lead to slightly different surrogates, even if the controlled parameters (height, weight

and waist circumference) are kept constant.

The ANSUR database was the only available source of anthropometry information

for the development of this methodology. Since this database is a survey on military

personnel, the underlying population may not fully representative of the general pop-

ulation (figure 3.4). However, the present methodology is not limited to the use

of the ANSUR database and could be potentially followed using different databases

(e.g., CAESAR database). The use of broader databases (i.e., those with broader

anthropometry ranges) may need of slight modifications to the methodology (e.g.,

introduction of multiple initial HBM for different regions of the database). Similarly,

the methodology can be followed to represent the female population provided that

the initial model and database are representative of the female population.

The ANSUR database includes information mainly about external anthropometry.

Therefore, the size and shape of the internal bony structures cannot be controlled

for. In spite of that, the fact that the CWT, bicristal breadth and pelvis link of the

morphed models fit within the underlying population distributions shows that the

final morphed models are able to represent the chest and pelvis gross size.

The population exploration was limited to 90% of the space since this is the

maximum range of population that can be explored without extrapolation in the

controlled parameters (table 3.2).

32



Table 3.2: Percentage of population database
90 % of

population*

95 % of

population*

ANSUR

(min-max)

Height [mm] 1585 - 1928 1565 - 1948 1491 - 1993

Weight [kg] 51.5 - 119.1 47.5 - 123.0 39.9 - 145.6

Waist Circumference [mm] 661 - 1220 628 - 1253 648 - 1379

* based on the joint probability distribution

A particular challenge of morphing surrogates in a seated posture is the modifi-

cation of the abdomen, pelvis and lap region. Since these body regions are adjacent,

modifications in the shape of the abdominal region lead to unrealistic pelvic bone

and thigh section shapes and, therefore, to potentially incorrect occupant interaction

with the lap belt. The morphing methodology presented in this chapter overcomes

these issues by conducting independent morphing steps for the pelvis, abdomen and

thigh regions. This ensures models with realistic pelvic bones shapes (e.g., spherical

acetabula) and thigh sections.

The morphing methodology presented in this chapter was followed to morph the

HBM used in this dissertation (chapter 7).
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Chapter 4

PMHS Kinematic and Injury

Response in Far-Side Events in a

Vehicle-Based Test Environment

This chapter presents a series of PMHS tests conducted to complement current

literature and, to understand better the in-vehicle far-side occupant kinematic and

injury responses. The sled buck used in these PMHS tests was designed following the

requirements defined in chapter 2. The PMHS head and shoulder motion, seatbelt

forces, chest deflection and probability of rib fractures will be used in chapter 5 for

the biofidelity evaluation of the WorldSID and the simplified GHBMC. These results

have been published in Perez-Rapela et al. (2019a).

4.1 Introduction

Far-side impacts represent 9.5% of all automobile crashes and 8.3% of all MAIS3+

injury cases (Bahouth et al., 2015). Numerous studies point to the head and thorax

as the most commonly injured body regions (Mackay et al., 1993; Frampton et al.,

2000; Ryb et al., 2009; Viano and Parenteau, 2010; Yoganandan et al., 2014; Bahouth

et al., 2015; Brumbelow et al., 2015) with a typical intrusion profile between 3 and

4 for AIS 3+ injury severity based on the SAE collision deformation standard (SAE,
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1980; Gabler et al., 2005; Yoganandan et al., 2014). These injuries are presumably

caused by intruding structures and adjacent components of the vehicle including the

seatbelt, center console and seat (Mackay et al., 1993; Frampton et al., 2000; Ryb

et al., 2009; Yoganandan et al., 2014; Bahouth et al., 2015; Brumbelow et al., 2015).

Understanding human response and improving vehicle performance in this impact

condition have recently become the focus of certain consumer test programs (NCAP,

2017c; Pipkorn et al., 2018).

Recent studies have focused on understanding the kinematic and kinetic responses

of Post-Mortem Human Subjects (PMHS) in far-side impacts in oversimplified test

environments (Fildes et al., 2002; Pintar et al., 2007; Forman et al., 2013). Although

these studies have contributed to the understanding of PMHS response in far-side

scenarios, they offer limited information about their response in a realistic vehicle

environment. Moreover, the parametric evaluations conducted in most of these stud-

ies required the repeated use of each PMHS. This limits the evaluation of injury

occurrence, causation and timing.

The present study evaluates PMHS kinematics, kinetics and injury response in a

vehicle-based sled environment subjected to far-side impacts.

4.2 Methods

4.2.1 Specimen selection and instrumentation

Five male PMHS, were selected for a series of five far-side sled tests (Table 4.1).

The specimens were selected targeting the 50th percentile male and were acquired

and prepared in accordance with the policies and procedures of the UVa Center

for Applied Biomechanics Oversight Committee. The subjects were preserved by

freezing and confirmed free of infectious diseases including HIV and Hepatitis B and

C. Full-body Computed Tomography (CT) scans were taken of each subject prior

to testing to confirm the absence of bony trauma and abnormalities. Dual-energy

X-ray absorptiometry (DXA) or Quantitative Computed Tomography (QCT) was
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performed to assess bone quality. Additional surrogate information can be found

in Appendix C. The extremities and upper body of the subjects were wrapped in

CobanTM(3MTM) prior to testing to limit the spread of biological fluids, to serve as a

marking surface and to protect the instrumentation wires. This technique has been

successfully used in past PMHS tests (Shaw et al., 2009; Forman et al., 2013) and

does not affect kinematics when used in moderation (i.e., applying only one or two

layers). Short cotton/polyester pants were used to cover the upper section of the

lower body (i.e., lap and buttock).

Table 4.1: Specimen information

Test

no.

Donor

no.
Age

Cause of

Death

Weight

[kg]

Stature

[cm]

Chest

Breadth*

[mm]

BMI
Bone

Quality

490 758** 69
Alcoholic

Liver Failure
72 168 327 25.5 Osteopenia

491 847*** 44 Colon Cancer 58 175 302 18.9 Normal

492 764 65
Stage IV

Melanoma
81 183 345 24.1 Osteopenia

512 897 70 Liver Cancer 61 169 308 21.3 Osteopenia

513 765 67
Cardiogenic

Shock
87 178 356 27.6 Osteopenia

* Measured at chestband (ISO, 2013)

** Bilaterally amputated at wrist

*** Bilaterally amputated at proximal forearm

The PMHS were instrumented with 6 degree-of-freedom accelerometer and angular

rate sensor packages mounted to the head, T1, T8, L2 and pelvis and with one degree-

of-freedom accelerometer mounted to the sternum. A chestband was wrapped around

the torso at the height of the sixth and the eighth ribs. Strain gauge rosettes were

affixed to the left clavicle and fourth, sixth and eighth right ribs. A 3D tracking array

of retroreflective targets was mounted to the head and single 3D tracking markers
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were attached to thorax, upper and lower limbs. The accelerometers and angular

rate sensors were rigidly attached to the different bony structures (figure 4.1). The

head sensor package was affixed to the superior aspect of the head using screws to

attach it rigidly to the skull. The sternum accelerometer was rigidly attached to the

anterior aspect of the sternum to measure anterior-posterior acceleration. The sensor

packages for T1, T8, L2 and the pelvis were located underneath the skin in order to

allow the use of a standard vehicle seatback (figure 4.2). The spine sensor packages

were mounted on a bracket surgically attached to the corresponding vertebral body.

These brackets allowed the sensor packages to be located between the spinous and

the transverse process of the corresponding vertebra. The pelvis sensor package was

rigidly attached to the posterior aspect of the sacrum.

Figure 4.1: Specimen sensor packages (left), detail of vertebral mount (right)
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Figure 4.2: Close-up of the suture around spine instrumentation

The accelerations and angular rates for the head, spine and pelvis were trans-

formed to the head center of gravity (Robbins, 1983), the center of the corresponding

vertebral body and the Posterior Superior Iliac Spine (PSIS), respectively. The local

coordinate systems were defined per Robbins (1983) for the head and following a

process similar to Wu et al. (2002) for the spine and pelvis (figure 4.3).
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Figure 4.3: Local coordinate systems

Strain gauge rosettes (Micro-Measurements R© C2A-06-062WW-350) were affixed

to locally exposed sections of the left clavicle and fourth, sixth and eighth right

ribs. The resulting in-plane maximum principal strain (MPS) was computed, when

possible, based on the individual channels.

A 1000-Hz three-dimensional (3D) camera-based motion capture system (Vicon

MXTM) was used to track the PMHS motion. A four-marker 3D tracking array was

affixed to the superior aspect of the head using screws to rigidly attach it to the skull.

The resulting motion was transformed to the head center of gravity (Robbins, 1983)

using the method described by Lessley et al. (2011) and Shaw et al. (2009). Individual

3D tracking markers were attached to both acromia, elbows, wrists, knees and ankles

(figure 4.4). The present study reports the motion in the vehicle coordinate system

defined with the X coordinate pointing front to back in the longitudinal axis of the

vehicle, the Y coordinate pointing left to right in the transverse axis of the vehicle

and the Z coordinate pointing up in the vertical axis (figure 4.5).
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Figure 4.4: PMHS instrumentation and position

4.2.2 Test environment

The tests were performed using a reverse acceleration sled system (Seattle Safety

(Kent, WA) 1.4 MN ServoSled R©). The test fixture was designed to accurately repre-

sent the vehicle interior of a commercially available mid-size sedan (figure 4.5). The

vehicle fixture included the driver and passenger seat, center console and seatbelt.

The seatbelt included the webbing, latch, buckle, D-ring and a retractor with a 2

kN load-limiter and a pretensioner activated 6 ms into the event. Two driver seat

designs, with the same external side bolster shape but different sizes of internal side

bolster structures, were tested (figure 4.7). The difference between the large and

small bolster structure consist on a 60 mm by 230 mm metal bracket. All the parts,

including the bolster structure bracket, were OEM originals from the same vehicle

year model. The parts were located in the vehicle geometric position and replaced

after each test. The seats were attached to the floor using their original deformable

mounting brackets. The floor and the tunnel of the vehicle were replicated in the
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fixture using flat rigid metal parts. The lower edge of the dashboard was replicated

with a rigid tubular bar (figure 4.6).

Figure 4.5: Sled fixture and vehicle coordinate system

Figure 4.6: Detail of floor pan, tunnel and center console area
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Figure 4.7: Different bolster structure and seatback angle
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Figure 4.8: EPP blocks in center console and passenger seat

The spaces between the passenger seat and the frame and center console were filled

with EPP60 to represent the behavior of the struck side seat and center console due

to crash-induced intrusion and deformation following Euro NCAP guidelines (NCAP,

2017c). The EPP blocks were dimensioned and positioned to fill up the available

space and constrain the motion of the seat and center console (figure 4.8). The tests

were performed with the surrogate always positioned in the driver seat. The driver

and passenger seats were positioned to represent the standard Euro NCAP position

(NCAP, 2017c). The driver and passenger seatbacks were set to an angle of 17◦

measured as the projection in the sagittal plane of the angle between the line joining

the recliner and the headrest bar at the point where it exits the seatback and the

transverse plane of the vehicle (figure 4.7).

The PMHS were positioned with their greater trochanter matching the X-coordinate

of the position of the WorldSID H-point in Euro NCAP configuration. The PMHS

head and arms were held on the head rest and above the lap, respectively, using

painters tape. This tape was nicked to ensure it tore easily at the beginning of the
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test. A foam pad was located between the knees of the surrogates to ensure a con-

stant initial distance between them for all the surrogates. The Frankfurt plane of the

PMHS was set to zero degrees with the horizontal and kept in position using painters

tape and a foam pad between the head and the headrest. The shoulder belt angle at

the torso, and between the shoulder and angle D-ring were kept constant at around

52 and 34 degrees, respectively, by moving the D-ring location in the frontal plane.

These angles are representative of the resulting WorldSID seatbelt angles in the Euro

NCAP test configuration.

The tests were recorded using two off-board and five on-board high-speed video

cameras operating at 1000 Hz. The off-board cameras provided images of the front

and back of the sled. These images were used to provide an overall view of the sled

motion. The on-board cameras (figure 4.9) were located in front, on top and on

the left-hand-side of the occupant and, in front and on the right-hand-side of the

passenger seat.

Figure 4.9: On-board high-speed cameras

The fixture was instrumented with accelerometers on the upper left side of the
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seatback structure of both seats, the left side of the interior compartment of the

center console and the sled floor. The accelerations of the seat and the center console

were measured in the direction perpendicular to the mounting surface. The sled

acceleration was measured in the longitudinal and transverse direction. A four-marker

3D tracking array was located on the sled floor to create a local coordinate reference

frame. Additional single 3D tracking markers were located in the center console,

seatbelt webbing, seatbelt D-ring and the superior aspect of both headrests. The

seatbelt webbing was instrumented with three tension gauges located between the

retractor and the D-ring, in the upper shoulder belt between the surrogates shoulder

and the D-ring and in the lap belt between the surrogates pelvis and the lateral lap

belt anchor.

4.2.3 Test matrix

A total of five PMHS tests was performed using a 16.5 g, 33.5 km/h trape-

zoidal pulse (figure 4.10) in a 75-degree Principal Direction of Force (table 4.2). The

pulse was obtained from a near-side Euro NCAP barrier test following the recently-

developed Euro NCAP far-side assessment protocol (NCAP, 2017a,c). The resulting

pulse represents approximately the median ∆v for far-side related MAIS 3+ injuries

(Gabler et al., 2005). The 75-degree PDOF represents a common impact direction

in the field (Bahouth et al., 2015) and matches the angle used in the Euro NCAP

far-side assessment protocol (NCAP, 2017c).
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Figure 4.10: Test pulse target

Table 4.2: Test matrix
Test# Surrogate Bolster

support
490 PMHS# 758 Large
491 PMHS# 847 Large
492 PMHS# 764 Large
512 PMHS# 897 Small
513 PMHS# 765 Small

4.2.4 Analysis

Kinematic and kinetic evaluation

The overall upper body motion and shoulder belt retention of the PMHS were

qualitatively evaluated and compared using video images. The different kinematic

phases and surrogate interactions were investigated using the surrogate and seat 3D

tracking information and the center console accelerometer.

In order to investigate chest deflection, the different chestband contours were

compared between the surrogates. The chestband was divided into four different
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regions of interest: the center of the sternum, the region in contact with the seatbelt,

the most lateral point of the rib cage and the region in contact with the bolster (figure

4.11). Chest deflection was calculated for each point in the different regions as the

change in distance between that point and the center of the chest. This value was

normalized using the initial distance from that point to the center of the chest. The

maximum normalized deflection is reported for each region.

Injury evaluation

The injuries sustained by the PMHS were identified via autopsy and classified

according to their AIS score (AAAM, 2015). The source and timing of each injury

were estimated based on different sources of information including the strain gauges,

chestband contours and 3D tracking information.

Figure 4.11: Chestband regions

4.3 Results

4.3.1 Kinematic and kinetic evaluation

Figures 4.13 and 4.14 and appendix I show the responses of the PMHS in the

tests as seen from the frontal driver and passenger on-board cameras. Figures 4.13

and 4.14 correspond to the tests conducted with the large and small bolster structure,
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respectively. The motion started with the surrogates and the seat moving at the same

time. This was a consequence of the deformation of the seat mounting brackets, seat

track and seat back. Between 35 and 40 ms, the seat stopped after contacting the

center console and the occupant started to slide over the seat. Peak acceleration of the

center console occurred between 40 and 50 ms into the event. This peak acceleration

was caused by the surrogate impacting the center console through the seat bolster.

The center console was damaged in each test as a consequence of these loads. The

damage was concentrated where the center console attached to the sled (figure 4.12).

Figure 4.12: After test center console damage

There was little variation in the times the surrogates reached the driver and pas-

senger edge lines (i.e., 50±1 ms and 86±2 ms, respectively). The maximum head

excursion occurred at around 120 ms for all surrogates. All the surrogates exhib-

ited similar maximum head excursion with the exception of PMHS# 897 (i.e., test#

S0512) that showed a lateral head excursion 47 mm lower than the PMHS average

(figures 4.14 and 4.15).

All but one PMHS (# 847) remained in contact with the shoulder belt. As

observed in figure 4.13 at the t=175 ms image. In spite of this difference in shoulder

belt retention, PMHS# 847 exhibited a maximum head excursion similar to the rest
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of PMHS. The effect of losing contact with the seatbelt appeared to only significantly

influence the occupant kinematics during the rebound phase. In this phase, only the

PMHS that maintained contact with the shoulder belt returned to a relatively upright

position.

PMHS spine accelerations (appendix D) did not show any noticeable bolster-

related effects. That is, the use of a large bolster did not substantially affect spine

accelerations. The suture used to keep the spine instrumentation under the skin

remained intact throughout the event in the different tests. There was no evidence of

artifactual signals cause by the direct interaction of the sensor with the environment.
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Figure 4.13: PMHS# 758, 847 and 764 kinematics (left to right) with large bolster

structure at 0, 50, 85, 120 and 175 ms (up to down). The dotted, dashed and solid

lines are located approximately at the inboard edge of the driver seat, the inboard

edge of the passenger seat and the center of the passenger seat, respectively.
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Figure 4.14: PMHS# 897 and 765 kinematics (left to right) with small bolster struc-

ture at 0, 50, 85, 120 and 175 ms (up to down). The dotted, dashed and solid lines

are located approximately at the inboard edge of the driver seat, the inboard edge of

the passenger seat and the center of the passenger seat, respectively.
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Figure 4.15: Maximum head excursion

Figure 4.16: Maximum head excursion

The different bolster structures did not substantially affect overall kinematics

or seatbelt forces (figure 4.17). The 3D tracking system lost visibility of the left

shoulder markers in the middle section of three PMHS tests, since they were blocked

by the shoulder belt in its outward motion. All surrogates exhibited qualitatively

similar head excursion with the exception of PMHS# 847 which showed increase

head downwards motion. The shoulder belt forces for all surrogates reached the load

limiter. PMHS# 847, and to some degree PMHS# 897, showed an earlier reduction

in shoulder belt force.
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Figure 4.17: PMHS responses with large (solid line) and small (broken line) bolster

structure

Figure 4.18 shows the maximum chest deflection in the different chestband regions.

The seatbelt and the side bolster area generated the largest chest deflections. Two

of the three PMHS tested with the large bolster structure (i.e., PMHS# 758 and

764) exhibited the maximum chest deflection in the bolster region. Two of the five

PMHS showed the greatest deflection in the seatbelt area (i.e., PMHS# 847 and

897). PMHS# 765 that showed similar deflection in both regions. The small bolster

structure led to a 50% reduction in average deflection in the bolster region. For one
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of the PMHS tested with the small bolster (# 765), the lateral deflection increased

156% from the average of the PMHS tested with the large bolster. The sternum and

lateral points showed the lowest deflection numbers for all PMHS. The lateral aspect

of the chest underwent different degrees of expansion after the seatbelt pretensioner.

This can be observed at around 10 ms in the bottom left plot of figure 4.19. Maximum

anterior-posterior deflection was reached at around 50 ms (figure 4.19 - top left and

right). At this point in time the lateral and posterior aspect of the chest begun to be

compressed (figure 4.19 - bottom left and right).

Figure 4.18: Chestband maximum deflection per region

55



Figure 4.19: Chestband deflection time histories

4.3.2 Injury evaluation

While rib fractures were identified in post-test autopsies (table 4.3 and figure

4.21), no injuries were identified in the head, spine, limbs, joints or soft tissue. The

number of rib fractures varied from 0 in the surrogate with the best bone quality

(PMHS# 847) to 15 (including a unilateral flail chest) in a surrogate with worse bone

quality (PMHS# 758).

The injuries occurred as a result of the combined load of the seatbelt, seat bolster

and center console. Initially, the seatbelt deformed the chest. When the occupant

contacted the seat bolster, which was already in contact with the center console, the

chest underwent a deflection in the posterior aspect that forced the chest to expand

forward (figure 4.20). This phenomenon can also be observed in the PMHS chest

deformation time-histories (figure 4.19), which show how the sternum and seatbelt

area of the chest expanded as the bolster-related chest deflection increased in the

PMHS at around 50 ms into the event. Information about the individual PMHS

bone quality and injuries can be found in appendices C and F, respectively.
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Figure 4.20: Combined load in chest

Table 4.3: Autopsy results
Test PMHS

Age
Bone Fractured Ribs AIS

no. no. Quality Left Right 2015**

490 758 69 Osteopenia
Ant:4,5*,6*,7* Ant:3,4,5,6 450212.3

Post:9,10,11,12 450203.3

491 847 44 Normal No fractures No fractures 0

492 764 65 Osteopenia No fractures Lat: 8 450201.1

512 897 70 Osteopenia Ant: 4
Ant: 4

450203.3
Post: 11

513 765 67 Osteopenia Ant: 2,3,4 Lat: 9 450203.3

*Fracture present in two different locations

**(AAAM, 2015)

57



Figure 4.21: Rib fractures identified in the autopsies

4.4 Discussion

4.4.1 Kinematic and kinetic evaluation

The test results give insight into PMHS responses in a realistic vehicle environment

subjected to a far-side event. In this environment, all surrogates showed very similar

kinematic response, reaching the different vehicle points virtually at the same time

(figures 4.13, 4.14 and 4.17).

The PMHS tests conducted in the present study exhibited similar maximum lat-

eral head excursion to previously-published PMHS tests conducted in simplified en-

vironments (Pintar et al., 2007; Forman et al., 2013). In contrast to the response

observed in some of those tests (Forman et al., 2013), the surrogate whose shoulder

lost contact with the shoulder belt (i.e., test# 491) did not exhibit greater head ex-

cursion. Loss of shoulder belt engagement seemed to only affect the PMHS motion
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during rebound. During this phase, only the PMHS that retained the shoulder belt

engagement returned to the driver seat immediately after the event.

The shoulder belt remained engaged with the shoulder in four of the five PMHS

tests due to the pocketing effect caused by the deformation of the chest and abdominal

soft tissue. As the left arm moved forward relative to the upper body, it contacted and

deformed the chest tissue preventing the shoulder belt from slipping off the shoulder

(figure 4.22 - right). A similar behavior was identified by Forman et al. (2013).

Another mechanism that prevented shoulder belt slippage was the deformation of the

abdominal region (figure 4.22 - left). This was particularly noticeable in PMHS with

an already prominent abdomen (e.g., PMHS# 758). The PMHS that slipped out

of the shoulder belt (i.e., # 847) presented a relatively low amount of soft tissue in

the abdomen and chest. Moreover, this surrogate was bilaterally amputated at the

proximal forearm which may have influenced the ability of the arm to locally deform

the chest tissue. These two factors may have influenced its ability to pocket the

seatbelt.
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Figure 4.22: Abdomen (left) and chest/shoulder (right) pocketing effects in PMHS#

758

Although both seat bolster structures resulted in virtually equal overall body

kinematics, they did generate large differences in chest deflection (figure 4.19 and

appendix E). The addition of a large bolster structure consistently increased chest

deflection in the bolster region in the PMHS tests (figure 4.18). On the other hand,

the large bolster structure reduced lateral chest deflection in certain circumstances.

This effect can be observed in PMHS# 764 and 765 which had similar height, weight

and chest breadth and were tested with the large and small bolster, respectively

(figure 4.19 and appendix E). Although the different bolster structures showed some

degree of trade-off between the lateral and bolster region deflection, the large bolster

generated a larger net chest deflection.
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4.4.2 Injury evaluation

During the autopsy performed after the tests, multiple rib fractures were identified

in all but one PMHS. While past studies include injurious far-side PMHS tests (Pintar

et al., 2007; Forman et al., 2013), these studies conducted repeated tests with the same

PMHS, which may have contributed to more severe injuries. The injuries found in

the present study are comparable to those encountered by Pintar et al. (2007) in the

only PMHS that was subjected to a single test.

Multiple studies point at the seatbelt as one of the major contributors to chest

injury in the field (Mackay et al., 1993; Digges and Dalmotas, 2001; Gabler et al.,

2005; Fildes et al., 2007). In the present study, sixteen of the twenty-three rib frac-

tures observed in the PMHS occurred in the anterior section of the rib cage and are

consistent with seatbelt-related injury patterns. The strain gauges located in the

vicinity of these fractures indicate that the fractures occur as soon as 50 ms into the

event (figures F.2, F.3 and F.5). The number of seatbelt-related fractures indicates

that the seatbelt alone may not be able to successfully restrain the occupant and

prevent thoracic injuries even when a low load-limiter is used (in this test 2 kN at

the retractor). Additional countermeasures may be needed to reduce belt-related in-

juries, providing additional engagement of the torso prior to the onset of rib fractures

(approximately 50 ms into the event).

The seatback and center console may also contribute to injury, as observed in the

present study and in past studies (Digges and Dalmotas, 2001; Gabler et al., 2005;

Fildes et al., 2007). Although there was no direct measurement of timing or causation,

lateral and posterior injuries seemed to be caused by interaction of the occupant with

the seat and center console. The large bolster structure generated a larger deflection

on the posterior aspect of the chest (appendix E). This may have influenced injury

occurrence in the vicinity of the seat bolster.

PMHS# 758 sustained the largest number of rib fractures, most likely as a result

of its lower bone quality. On the other hand, PMHS# 847 exhibited no rib fractures.

This surrogate was the youngest and presented the smallest chest breadth and the
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best bone quality. This combination of intrinsic factors led to the lowest overall

lateral deflection and lowest bolster-related deflection out of the PMHS used in the

configuration with the large bolster structure (figure 4.15).

In summary:

• All PMHS showed similar head excursions.

• The seat bolster structure had no noticeable effect on the overall PMHS kine-

matics and kinetics but did have an effect on the local chest deformation.

• All but one PMHS remained engaged with the shoulder belt throughout the

event. Loss of contact with the shoulder belt did not lead to a larger lateral

head excursion in this particular surrogate.

• A total of twenty-three rib fractures was identified in the post-test autopsies.

The injury mechanism involved a complex loading by the seatbelt, bolster and

center console. These fractures began to occur as soon as 50 ms into the event.

Additional restraint may be needed to generate an effective occupant restraint

in less than 50 ms in order to mitigate thoracic injuries.

Some results from the present study will be used in chapter 5 along with previously

published PMHS tests by Forman et al. (2013) in order to evaluate the ability of the

WorldSID and the simplified GHBMC to capture PMHS-like kinematics and injury

severity.
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Chapter 5

Simplified GHBMC and WorldSID

Kinematic, Kinetic and Injury

Response in Far-Side Events in a

Simplified and a Vehicle-Based

Test Environment

The WorldSID and the simplified GHBMC were used in the methodology pre-

sented in this dissertation for the estimation of the FE vehicle model uncertainty

factors (chapter 6) and the exploration of occupant response (chapter 7), respec-

tively. However, their biofidelity has not been fully established in the literature. This

chapter used previously published PMHS tests in a simplified environment and the

PMHS tests presented in chapter 4 in order to evaluate the biofidelity of the World-

SID and the simplified GHBMC. These results have been published in Perez-Rapela

et al. (2018, 2019a,b).
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5.1 Introduction

Understanding the biofidelity of the HBM and ATD used in the evaluation of

occupant response is critical for the correct assessment of vehicle performance and

restraint design. HBM and ATD have been evaluated in the most commonly tested

impact directions (Shaw et al., 2002; Paek et al., 2006; Gayzik et al., 2011; Park

et al., 2013; Shaw et al., 2013; Schwartz et al., 2015; Kim et al., 2016). In spite of the

introduction of physical tests for the evaluation of far-side impacts (NCAP, 2017c),

little has been done to understand the surrogates’ response in this impact direction.

The biofidelity of the simplified GHBMC has not been evaluated in far-side scenarios

and the only WorldSID far-side biofidelity evaluation is the work of Pintar et al.

(2007). While the kinematic evaluations conducted in the cited study focused on

head excursions, the neck of the WorldSID introduces some level of passive muscle

response, thus the motion of other body regions (e.g., T1) may provide a better insight

on occupant motion and restraint interaction. Moreover, the cited study conducted

repeated tests with the same PMHS. Therefore, the results are not suitable for injury

evaluation.

Traditional biofidelity evaluations investigate the surrogates’ ability to represent

PMHS-like kinematic, kinetic and injury responses in isolated impact conditions. This

approach establishes the degree of biofidelity of the surrogates by comparing their re-

sponses to PMHS corridors or their probability of injury considering each load case

independently. While this approach provides an initial assessment of the surrogates’

biofidelity, it does not provide information about the surrogates’ ability to represent

PMHS-like response to changes in the impact conditions. This is particularly im-

portant in cases where the surrogate is used to evaluate human response to multiple

impact conditions (e.g., multiple PDOF, different restraint configurations, etc.).

This chapter utilized existing PMHS tests in simplified far-side sled environments

(Forman et al., 2013) in order to evaluate the kinematic and kinetic biofidelity of the

WorldSID and the simplified GHBMC (also referred to as GHBMC in this chapter).

This evaluation explored upper body motion and interaction with the shoulder belt.
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These PMHS tests also formed the basis for evaluation of the surrogates’ sensitivity

to changes in the impact conditions. The vehicle-based sled PMHS tests presented in

chapter 4 were used to evaluate the in-vehicle kinematic, kinetic and injury response

of the surrogates.

5.2 Methods

5.2.1 Simplified sled environment

This part of the study employed six different impact configurations (table 5.1)

selected from Forman et al. (2013). Variations in pulse intensity (34 km/h and 14 g,

16 km/h and 6.6 g), impact direction (oblique 60-degree, lateral 90-degree), D-ring

location (forward, intermediate, back), pretensioner usage (yes, no) and additional

pelvic restraint (yes, no) were studied. The low-severity sled pulse represents the

median severity of far-side tow-away crashes. The high severity pulse represents the

median severity at which MAIS3+ injuries occurred (Gabler et al., 2005). The pelvic

restraint consists of a metal plate rigidly attached to the right-hand side of the seat.

It was implemented into the test matrix to simulate the presence of a center console.

Table 5.1: Impact configurations

Conf. # ∆v Impact D-Ring Pretensioner Pelvic
(km/h) Direction Position restraint

1 16 Oblique Intermediate No No
2 16 Oblique Intermediate Yes No
3 34 Oblique Intermediate Yes No
4 16 Oblique Back Yes Yes
5 16 Lateral Forward Yes No
6 34 Lateral Intermediate Yes No

WorldSID tests

For the present study, nineteen sled tests were conducted with the WorldSID to

represent the configurations in table 5.1. The tests were conducted on the same sled,

sled fixture and restraint systems as the PMHS tests presented in Forman et al. (2013).
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The sled fixture was designed to approximate a vehicle-based restraint environment

while providing repeatable and reproducible test conditions and lines of sight for

motion capture. The seat consisted of an aluminium plate mounted on top of a

six-axis load cell, covered by a 6.25 mm layer of neoprene rubber (durometer value

30A). The seatback consisted of two horizontal aluminium bars whose position could

be adjusted in the anterior-posterior and superior-inferior directions to produce the

desired postures (figure 5.1). The seat and seatback were instrumented with single-

axis accelerometers oriented with the PDOF. The restraint system consisted of a

3-point seat-belt with optional pretensioner and a 4 kN - 2.5 kN degressive load

limiter. The shoulder- and lap-belt tension were tracked using four Messring 15 kN

seatbelt load cells. The retractor was mounted on a six-axis load cell to verify the

accuracy of the seatbelt load cells.

Figure 5.1: WorldSID on simplified test fixture

The ATD was positioned to match the average PMHS pelvic position, pelvis-to-

shoulder angle and shoulder to D-ring vector for each D-ring position. The ATD was

instrumented with its standard sensors, including linear accelerometers and angular

velocity sensors for the head, T12 and pelvis. The rib deflection was measured by 2D

IR-TRACC and RibEye technology in paired tests. The ATD kinematic data were
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captured using a 500-Hz Vicon MXTMthree-dimensional (3D), camera-based motion

capture system, and three high-speed video cameras. Vicon markers were located on

the ATDs surface for point tracking on shoulders, arms, legs and torso. Head, T1

and pelvis position and orientation were tracked by placing an array of markers.

GHBMC simulations

For the present study, six FE simulations were conducted in LS-Dyna v7.1.0 repli-

cating the PMHS test configurations (table 5.1) using the simplified GHBMC v1.8.3.1

with some modifications to ensure model stability. These modifications, that did not

substantially change the response of the surrogate, consisted in the definition of inte-

rior contacts and the use of the detail GHBMC soft-tissue material definition in the

thorax and left arm of the model.

The FE model of the physical buck was created based on the original CAD parts.

Model parts were defined as rigid, when possible, for time efficiency (figure 5.2). The

seatbelt retractor parameters were reversed engineered based on quasi-static tests in

combination with information derived from the WorldSID tests. The friction between

the different model components was set based on quasi-static friction tests (table 6.3).

Based on these tests, the friction between the HBM and the seatbelt webbing was set

to 0.5.
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Figure 5.2: Simplified sled fixture FEM; gray: rigid; blue: deformable

The six configurations were replicated with the simplified GHBMC matching the

average PSIS location and upper body angle of the PMHS used in each configuration.

The HBM was settled by gravity using a one second simulation and the resulting stress

and strain information was carried to define the initial state of the final simulation.

Analysis

The resulting WorldSID and GHBMC kinematics and kinetics were averaged for

each impact configuration and compared to the PMHS corridors developed in Perez-

Rapela et al. (2018). The coordinate system for the kinematic evaluation was defined

at the center of the upper surface of the seat pan with its axis following the SAE

J670 standard (SAE, 2008). The surrogates’ biofidelity was evaluated using a COR-

relation and Analysis (CORA) method (Gehre et al., 2009). The CORA method

assigns a correlation score between the surrogate and the PMHS responses by ap-

plying two methods: the corridor method, and the cross-correlation method. The

corridor method analyzes the fitting of the response into the PMHS corridor. The

cross-correlation method compares the phase, shape and area below the surrogate

and PMHS responses. The final CORA score is calculated as a weighted average of
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the two methods:

CORAscore = 0.5·Scorecorridor+0.5·(0.5·Scoreshape+0.25·Scorephase+0.25·Scorearea)

A linear regression of the lateral head excursion was calculated for the World-

SID and the GHBMC using the impact parameters as predictors. The sensitivity to

the different test parameters (not including the pelvic restraint) was evaluated and

compared to the PMHS data.

5.2.2 Vehicle-based sled environment

This part of the study used the PMHS results presented in chapter 4 to evaluate

WorldSID and GHBMC in-vehicle kinematic, kinetic and injury response. Based on

the PMHS results, no distinctions were made between the cases with large and small

seat bolster structure in the HBM’s and ATD’s responses except for the assessment

of chest deflection.

WorldSID tests

Four WorldSID tests were conducted on the same sled fixture as the PMHS tests

(chapter 4). The WorldSID was instrumented with the standard built-in sensors

including accelerometers and angular rate sensors in the head, upper spine, T4, T12

and pelvis and a 2D IR-TRACC system to measure rib deflection. A chestband (of

the same make and model as in the PMHS tests) was used in two of the four tests

(table 5.2). The chestband was located around the third thoracic rib of the WorldSID

to represent the same area of deflection as in the PMHS. The contour of the chestband

was reconstructed using the same script used for the PMHS tests.

A 1000-Hz Vicon MXTMthree-dimensional (3D) camera-based motion capture sys-

tem was used to track the WorldSID motion. Two 3D tracking markers were affixed

to each side of the WorldSIDs head laterally to its center of gravity. The resulting

motion was transformed to the head center of gravity. Individual 3D tracking mark-

ers were attached to both shoulders, the distal section of the arm, trunk, knee and

ankles.
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Figure 5.3: WorldSID instrumentation and position

Table 5.2: Test matrix

Test#
Chestband

use

Bolster

support

485 No Large

486 No Large

510 Yes Large

511 Yes Small

GHBMC simulations

For the present study, two Finite Element (FE) simulations were conducted in

LS-Dyna v7.1.0 replicating the PMHS test configurations with large and small seat

bolster in chapter 4 using the simplified GHBMC v1.8.3.1 with some modifications to

ensure model stability. These modification did not substantially change the response

of the surrogate.

The FE model of the physical buck was created based on the original OEM FE

parts (figure 5.4). The metal parts of the buck (figure 5.4 - gray) were defined as rigid
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and OEM parts preserved their original definition. The seatbelt retractor parameters

were reversed engineered based on the information derived from the WorldSID tests.

The friction between the different model components was set based on quasi-static

friction tests (table 6.3). Based on these tests, the friction between the HBM and the

seatbelt webbing was set to 0.5.

Figure 5.4: Vehicle-based sled fixture FEM

Analysis

The WorldSID and GHBMC in-vehicle kinematics and kinetics were averaged

and compared to the PMHS information presented in chapter 4. The WorldSID and

the GHBMC were also assessed in their ability to predict thoracic deformation and

injury severity. The WorldSID chest injury severity prediction was estimated using its

chest deflection injury risk curves. The GHBMC chest injury severity prediction was

estimated following a strain-based methodology (Forman et al., 2012). The predicted
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injury severities were compared to the actual PMHS injury severities pooling the cases

with large and small seat bolster structure.

5.3 Results

5.3.1 Simplified sled environment

Seatbelt engagement and upper body motion

Since the WorldSID and GHBMC neck introduces some level of muscle response

in their definitions, this section focuses on T1 instead of head excursion. Moreover,

since the shoulder lateral motion is highly correlated to that of T1, only the fore-aft

left shoulder motion was presented in this section. More kinematic results and images

can be found in appendix G and H.

Oblique impact direction

The GHBMC replicated the shoulder-to-belt engagement of at least one of the

PMHS used in each configuration with the exception of the high-speed case (figures

5.5, H.1, H.2, H.3, H.4). In this loading condition, the abdomen of the PMHS ex-

panded forward preventing the shoulder belt from sliding (figure 5.6). This led to a

change in body kinematics that the GHBMC was not able to represent. In all cases,

the PMHS tended to rotate towards the shoulder belt. In general the GHBMC showed

a more neutral upper body rotation. On the other hand, the WorldSID consistently

rotated away from the shoulder belt. This can also be observed in the increased

rearward motion of the WorldSID’s left shoulder, particularly in the high-speed case

(configuration 3) (figure 5.7). In spite of the differences in shoulder belt engage-

ment, T1 lateral motion showed relatively good agreement with PMHS corridors in

the oblique impact direction for both surrogates (figure 5.7). T1 fore-aft motion was

better captured by the WorldSID.

The shoulder belt forces exerted by the WorldSID met the PMHS corridors in all
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cases except in the case with a pelvis block (configuration 4). The GHBMC showed

slightly reduced shoulder belt force. Lap belt forces were captured by both surrogates

in all cases except in the high-speed case (configuration 3) (appendix G).

Figure 5.5: PMHS (top row), GHBMC (middle row) and WorldSID (bottom row)

responses in configurations 1 to 4 (left to right) at 150 ms
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Figure 5.6: Abdominal response in PMHS (#602 - top row, #591 - middle row) and

GHBMC (bottom row) at 0 ms., 50 ms., and 75 ms. in configuration 3
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Figure 5.7: GHBMC and WorldSID upper body kinematics in oblique impact

directions: Configuration 1 to 4 (up to down). CORA scores in parenthesis

(GHBMC/WorldSID)

Lateral impact direction

The WorldSID and the GHBMC showed PMHS-like fore-aft motion in the lateral

impact direction (figure 5.9). Although the seatbelt contacted the surrogates laterally

in a similar location, both surrogates overestimate T1 lateral motion. This overpre-
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dicted lateral excursion was more acute for the GHBMC in the low-speed case where

the surrogate also showed an increased loss of shoulder belt engagement (figure 5.8).

The WorldSID and GHBMC slightly underestimated shoulder force in configura-

tion 5. The rest of the seatbelt forces exerted by the WorldSID and the GHBMC

followed the PMHS response (appendix G).

Figure 5.8: PMHS, GHBMC and WorldSID responses (up to down) in configurations

5 (left) and 6 (right)
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Figure 5.9: GHBMC and WorldSID upper body kinematics in lateral impact di-

rections: Configuration 5 and 6 (up to down). CORA scores in parenthesis

(GHBMC/WorldSID)

Sensitivity to parameters

Head excursion increased with increased pulse intensity and decreased with the use

of a pretensioner for the PMHS, the GHBMC and the WorldSID. While purely lateral

impact directions generated increased lateral head excursion compared to oblique

impact direction for the WorldSID and the GHBMC, the opposite was true for the

PMHS (figure 5.10).
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Figure 5.10: Sensitivity to parameters of PMHS (black), WorldSID (red) and GHBMC

(blue)

5.3.2 Vehicle-based sled environment

Seatbelt engagement and upper body motion

Due to the use of a standard vehicle seat, the T1 motion could not be captured

in the PMHS. Head and shoulder motion are reported in this section. Video images

can be found in appendix I.

The WorldSID, GHBMC and PMHS reached the driver and passenger edge around

the same time (i.e., 50 ms and 85ms, respectively). The maximum head excursion

occurred at around 120 ms for all surrogates. The WorldSID and the GHBMC con-

sistently slipped out of the shoulder belt during the event. Shoulder belt engagement

was similar to that of the PMHS that also slipped out of the shoulder belt (PMHS#

847) (appendix I). In spite of that, the WorldSID and the GHBMC showed PMHS-

like lateral excursion, although fore-aft head excursion was only correctly captured

up to the point of maximum excursion. From that point on, all the PMHS return to

the seat faster than the WorldSID and the GHBMC. While shoulder fore-aft motion

was slightly better represented by the GHBMC, the WorldSID showed better lateral

shoulder excursion (figure 5.11).

The GHBMC showed larger shoulder belt force compared to the WorldSID but

both surrogates were able to replicate the PMHS loads. The PMHS lap belt forces
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were captured by the WorldSID and the GHBMC, although both surrogates showed

a more pronounced bimodal response.

Figure 5.11: WorldSID (red), GHBMC (blue) and PMHS (black) in-vehicle response

Chest deflection and injury response

The GHBMC overestimated sternum deflection compared to the PMHS but it

captured the PMHS response for the regions with the largest chest deflection (i.e.,

the seatbelt and the bolster regions). On the other hand, the WorldSID captured

sternum and, to some extent, lateral deflection but did not capture the deflection in

the seatbelt or bolster area. Overall, the GHBMC model response was closer to the

PMHS than the WorldSID dummy (figure 5.12).
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Figure 5.12: Maximum normalized chest deflection for average PMHS (black), World-

SID (red) and GHBMC (blue) with large (solid bar) and small (broken bar) seat

bolster structure

The WorldSID chest deflection was calculated using the 2-D IR-TRACC elonga-

tion and angle in the transverse plane following the Euro NCAP protocol (NCAP,

2017a). The WorldSID maximum rib deflections were 15.4 and 25.0 mm for the cases

with large and small bolster structure, respectively. These are associated with 0% and

1.6% probability of AIS 3+ injury to the thorax for a 63-year-old occupant (Petitjean

et al., 2012), respectively. These results contrast with the PMHS tests in which three

of the five surrogates (i.e., 60%) sustained in AIS 3+ chest injuries.

Figure 5.13 shows the GHBMC rib fracture probability prediction for a 65-year-

old occupant, the PMHS results and the PMHS results discarding the most injured

PMHS. The GHBMC rib fracture probability captured the PMHS rib fracture trend

and frequency, especially for values larger than 3+ fractured ribs.

80



Figure 5.13: Probability of rib fracture for the GHBMC and PMHS (w/o costal

cartilage)

5.4 Discussion

5.4.1 Kinematic and kinetic response

The WorldSID and the GHBMC showed improved kinematic and kinetic response

in the vehicle-based sled compared to the simplified sled. This is likely due to the

additional constraints provided by the vehicle interior. Both surrogates generated

PMHS-like loads in the vehicle environment. This can be observed in the seatbelt

loads (figure 5.11) and the motion of the seat and center consoles of the vehicle

(appendix H).

In general, both surrogates were able to replicate PMHS lateral excursions al-

though the GHBMC showed better upper body kinematics and a more biofidelity

engagement with the shoulder belt. The WorldSID shows a clear lack of anterior-

posterior chest deflection, which, in combination with the lack of shoulder motion,

limits the ability of the ATD to correctly engage the shoulder-belt (appendix H). This
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is especially noticeable in the cases with a pretensioner. In these cases, the PMHS

chest deforms around the shoulder-belt while the ATD torso tends to rotate out of

the seat-belt. This behavior is a consequence of the ATD upper body construction

whose main design focus was to represent human response in purely lateral, near-side

events (ISO, 2013). The inability of the WorldSID and the GHBMC to represent the

PMHS soft tissue expansion (figure 5.6) may be a contributing factor in the differences

observed in shoulder belt interaction.

The WorldSID and the GHBMC also showed limited ability to capture PMHS

sensitivity to changes in impact direction. This may be an issue related to the limited

PMHS sample size or to the performance of the ATD and the HBM. This lack of

biofidelic sensitivity may affect the ability of the WorldSID and the GHBMC to

correctly assess or optimize occupant response as a function of PDOF.

5.4.2 Chest deflection and injury response

Although the WorldSID partially captured the effect of the bolster structure with

the use of the chestband, the standard WorldSID only includes 2D IR-TRACC sensors

attached to the center of the rib and, therefore, the system is only able to capture

the motion of the lateral aspect of the rib. This, in combination with the low chest

injury prediction values and the lack of a biofidelity chest deflection in the seatbelt

and bolster areas (figure 5.12), suggests that the WorldSID is not able to capture a

substantial portion of the rib fractures and their injury mechanisms (seat and seatbelt

loading). While existing literature suggests that improving the sensor location in

the WorldSID (e.g., using RibEye) may improve its injury prediction capabilities

(Pintar et al., 2007), this may not be sufficient to capture the complexity of the

injury mechanism. This issue is three-fold: first, the anterior aspect of the WorldSID

is represented by a flexible joint which prevents the correct load transfer between the

ipsi- and contralateral sides of the thorax; second, due its construction, the WorldSID

is not able to represent realistic anterior-posterior thoracic response as reflected in

the poor seatbelt-related chest deflections (figure 5.12); and third, the inner rib bands

of the WorldSID (i.e., the instrumented bands) are not in contact with the antero-
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or posterolateral aspect of the torso (figure 5.14). Due to the separation between

the inner and outer rib bands in the oblique aspect of the ribcage, additional sensors

located anterior and posterior to the stock IR-TRACC location may not be able to

capture external rib deflection resulting from oblique loading from the seatbelt or

seatback.

Figure 5.14: Detail of the distance between WorldSID interior and exterior rib bands

The GHBMC showed improved chest deflection compared to the WorldSID. The

GHBMC, unlike the WorldSID, captures the deflection of the most affected body

chest regions (i.e., seatbelt and bolster regions). Although there are aspects the

can be improved (e.g., the ribs are not attached to the surrounding tissue), these

results indicate that the GHBMC is able to represent the complex thoracic loading

generated in the tests. The GHBMC was also able to predict the probability of rib

fracture resulting from the PMHS tests.

5.4.3 General remarks

In spite of the relatively poorer performance of the WorldSID, it is important to

remember that the ATD is only used in this dissertation to validate the vehicle FEM

(chapter 6). Therefore, the level of biofidelity required of the ATD is lower than for

the HBM. In the methodology presented in this dissertation, the ATD only needs

to exhibit sufficient external biofidelity in order to load the vehicle environment in a

realistic manner. On the other hand, the HBM is used to explore occupant response,
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create the corresponding response surfaces (chapter 7) and eventually assess the vehi-

cle performance (chapter 8). Therefore, the HBM should show improved kinematic,

kinetic and injury biofidelity. In this case, the GHBMC shows improved biofidelity

with respect to the WorldSID and, at least, similar biofidelity with compared to other

HBM (Katagiri et al., 2016; Pipkorn et al., 2018).

Overall, the WorldSID and the GHBMC have showed sufficient biofidelity to il-

lustrate the methodology presented in this dissertation.
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Chapter 6

Identification of Modeling

Uncertainty Factors

This study estimates the uncertainty ranges of modeling parameters (model un-

certainty) to be explored in chapter 7.

6.1 Introduction

The calibration and validation of the vehicle FEM is critical for the correct rep-

resentation of the vehicle environment. Moreover, generating trust in the process

is key for the acceptance of HBM in official vehicle test protocols (e.g., legislation).

Traditional FEM calibration approaches focus on optimizing a series of model param-

eters (e.g., friction) to match specific physical tests responses (e.g., vehicle intrusion).

These methodologies start with a range of possible values for the model parameters

and optimize each parameter to determine a single final value (figure 6.1 - up). These

approaches assume all the disparity between the tests and the simulation results are

caused by differences in the calibration parameter values. However, this assumption

may not be true when representing phenomena as complex as vehicle impacts. In

these scenarios, there are multiple known and unknown factors that may have an

effect on the response used to calibrate the FEM. Therefore, although a correct vali-

dation may partially reduce this effect, these deterministic calibration approaches may
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lead to hyper-optimized model parameters. That is, models whose parameter values

optimize the effective response of the system but differ from the actual parameter

values. Moreover, the selection of a single set of modeling parameters generates cer-

tain susceptibility to model tampering. That is, the selection of modeling parameters

that lead to artificially improved vehicle assessments (e.g., lesser injuries). Therefore,

current calibration and validation approaches are not able to generate sufficient trust

in the vehicle FEM.

Figure 6.1: Traditional validation approach (up) and approach with model parameter
uncertainty ranges (bottom)

In order to generate trust in the FEM, the validation of the vehicle model should

be approached in a different manner. The alternative approach presented in this study

assumes that all the values in the initial model parameter ranges are valid unless they

fail to meet a predetermined validation criterion. Therefore, in this new approach,

the model parameters are not optimized based on a particular response but rejected

if they fail to represent it. This leads to a more conservative model validation that

introduces uncertainty in the model parameters and reduces the hyper-optimization

of the system and the risk of model tampering.
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Variations in the friction coefficients tend to have a noticeable effect on the FE

results (Cochran et al., 2015; Poulard et al., 2016; Xiao et al., 2016; Klug et al.,

2017; Umale et al., 2018). Moreover, some of the injury causing structures may

show variation in their mechanical properties. This is particularly true for injected

polymer parts (e.g., center console) whose ultimate strain typically shows a noticeable

degree of variation around its average value (Thomason, 2002). In this study, a series

of simulations and physical tests were conducted to identify the friction and center

console ultimate strain uncertainty ranges to be explored in chapter 7.

6.2 Methods

6.2.1 WorldSID tests

A total of six WorldSID tests (table 6.1) were conducted using the setup and

vehicle-based sled environment described in section 5.2.2. These tests included the

four WorldSID tests conducted in chapter 5 and two additional tests conducted with-

out the center console of the vehicle. All the tests were conducted in a 75-degree

PDOF.

Table 6.1: Test matrix
Test # PDOF

[degrees]
∆v

[km/h]
Center
console

485 75 33.5 Yes
486 75 33.5 Yes
510 75 33.5 Yes
511 75 33.5 Yes
487 75 33.5 No
488 75 33.5 No

6.2.2 WorldSID simulations and estimation of parameter un-

certainty ranges

The vehicle-based sled FEM described in section 5.2.2 was used to simulate the

WorldSID tests using the LSTC.WorldSID_50TH.180611_V1.100_BETA. A total
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of six simulations were conducted in LS-Dyna v7.1.0 varying the seatbelt friction

coefficient and the center console ultimate strain (table 6.2). Head lateral excursion,

seat and center console lateral motion and seatbelt forces were compared between the

FEM and the physical tests. CORA scores were calculated for these responses using

the standard weighting:

CORAscore = 0.5 · Scoreshape + 0.25 · Scorephase + 0.25 · Scorearea

Table 6.2: Simulation matrix

PDOF
[degrees]

∆v
[km/h]

Seatbelt
friction

Center
console

Center
console

ultimate
strain

75 33.5 0.375 No N/A
75 33.5 0.5 No N/A
75 33.5 0.375 Yes 90% OEM
75 33.5 0.375 Yes 110% OEM
75 33.5 0.5 Yes 90% OEM
75 33.5 0.5 Yes 110% OEM

Seatbelt friction uncertainty range

A series of quasi-static tests were conducted to determine the friction coefficients

between the different materials in contact in the FEM. Based on these tests, the

initial seatbelt friction range was defined from 0.375 to 0.5. The seatbelt friction final

uncertainty range was estimated using the tests and simulations conducted without

the center console. The final modeling parameter uncertainty ranges were defined as

those that led to a "good" CORA score (i.e., CORA≥0.65) (ISO, 1999) in the different

responses.

Center console ultimate strain uncertainty range

Once the seatbelt friction uncertainty range was established, the center console

ultimate strain uncertainty range was estimated using the test and simulation con-

ducted with the center console. The initial range for the center console ultimate
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strain was defined as ±10% of the OEM-reported ultimate strain (Thomason, 2002).

The final modeling parameter uncertainty ranges were defined as those that led to a

"good" CORA score in the different responses.

6.3 Results

Table 6.3 shows the friction coefficients obtained in the quasi-static tests for dif-

ferent pair of materials. The friction coefficient for the neoprene was greater than

1 for contacts with CobanTMand fabric. This was the consequence the neoprene’s

tendency to adhere to its sliding counterpart. Another interesting effect is that the

seatbelt friction coefficient depends of the sliding direction and varies between 0.375

and 0.5 for contacts with CobanTM.

Table 6.3: Friction coefficients
Coban Fabric

Aluminum 0.73 0.25
Leather 0.62 0.44
Neoprene 1.23 1.04
Seatbelt 0.38 0.21
Seatbelt (transverse direction) 0.50 0.30

6.3.1 Seatbelt friction uncertainty range

The simulations conducted to replicate the physical tests without center console

showed that the boundary values in the initial seatbelt friction range (i.e., 0.375 -

0.5) led to similar responses and successfully generated CORA scores greater than

0.65 (figure 6.3). Therefore, any value within the range is a valid friction coefficient

and the uncertainty range cannot be reduced.
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Figure 6.2: WorldSID test and simulation (µ=0.5) without center console at 0, 50,

85 and 120 ms

Figure 6.3: Comparison of FE response with different friction coefficients to physical

test without center console. CORA scores in parenthesis (µ=0.375 / µ=0.5)
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6.3.2 Center console ultimate strain uncertainty range

The simulations conducted with the center console showed that variations of the

center console ultimate strain did not noticeably influence the responses or affect

the CORA scores. Therefore, any value within the initial parameter range is a valid

center console ultimate strain and the uncertainty range cannot be reduced.

Figure 6.4: WorldSID test and simulation with center console (µ=0.5 and εf=90%

OEM) at 0, 50, 85 and 120 ms
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Figure 6.5: Comparison of FE response with different friction coefficients and center

console ultimate strain to physical test without center console. CORA scores in

parenthesis (in legend order)

6.4 Discussion

The approach described in this study assigns a range of possible values to those

FE parameters whose values are uncertain (i.e., modeling uncertainty factors). In this

particular application the seatbelt friction and the center console ultimate strain were

identified as model uncertainty factors. The uncertainty range in the seatbelt friction

was estimated using the tests without a center console in order to isolate the effect

of the seatbelt friction. Once the seatbelt friction uncertainty range was established,

the center console ultimate strain uncertainty was estimated using the tests with the
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center console. The specific model uncertainty factors to explore may vary depending

on the end application. However, regardless of the end application, these factors can

be defined as those that show an inherent variability (e.g., ultimate strain in injected

polymers), those whose actual values are uncertain or those whose application in FE

environments is complex or unfeasible (e.g., direction-dependent friction).

This study used lateral head excursion, seat and console lateral motion and seat-

belt forces as the responses to be evaluated. Lateral motions were used since the

uncertainty factors are assumed to have a larger effect on that direction with the

recognition that other studies may evaluate other responses (e.g., level of vehicle

intrusion).

In the present approach, the reduction of a parameter range (i.e., its uncertainty)

is only possible if a validation criterion has been previously defined. In this particular

application, the validation criterion was based on the CORA scores of the individual

responses. However, many other validation criteria can be used (e.g., average CORA

score, weighted scoring, etc.) for the evaluation of the FEM and reduction of the pa-

rameter uncertainty ranges. The key characteristic of this approach is that regardless

of the validation criterion, the FE parameters are not obtained by optimization of a

single value to meet the FE response but by reducing their range of values to those

that meet the validation criterion.

This study identified initial uncertainty ranges for the seatbelt friction and center

console ultimate strain. After evaluating the FEM, these uncertainty could not be

reduced. Therefore, chapter 7 will use the seatbelt friction and center console ultimate

strain as modeling uncertainty factors ranging from 0.375 to 0.5 and from 90% to 110%

of the OEM value, respectively.
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Chapter 7

Multidimensional Domain

Exploration and Response Surface

Generation

Previous chapters 2, 3 and 6 have identified two occupant responses to be evaluated

as well as a number of intrinsic, extrinsic and modeling factors that may have an

effect on them (table 7.1) This chapter presents an efficient method for the predictive

exploration these two multidimensional spaces based on Neural Networks (NN) and

compares its performance to more traditional regression approaches. The resulting

response surfaces are the cornerstone of this methodology since they contain all the

information needed to assess human response variability. These surfaces will be used

as inputs in chapter 8 for their use in the variability-based vehicle assessment.

7.1 Introduction

The generation of FE model response surfaces consists in generating a continu-

ous response based on a discrete sample of simulations in a multidimensional space.

Therefore, a successful domain exploration technique leads to the prediction of the

entire response surface given a finite number of datapoints. The techniques used in

the literature vary from ordinary linear regressions to the use of Neural Networks
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(NN) depending the complexity of the problem at hand.

The field of biomechanics has traditionally used, among others, ordinary linear

regressions in order to understand the effect that different input factors have on a

particular response (Hardy et al., 2007; Forman et al., 2013; Prasad and Weston,

2011). This approach provides a direct quantification of the effects of each indepen-

dent predictor, since the coefficient associated with them are proportional to their

effect on the response. However, this technique has a number of limitations for its

use in the generation of multidimensional response surfaces.

First, the relationship between the regression coefficients and the effect of the

corresponding predictors is only valid if the inputs are independent (Rawlings et al.,

1998). This poses a problem since the biomechanical data tends to be correlated (e.g

height and weight). Moreover, as the order of the regression increases to represent

non-linear responses, it becomes difficult to interpret the meaning of each regression

coefficient (Stimson et al., 1978).

Second, ordinary linear regressions require the definition of the underlying math-

ematical model response (i.e., y = ax + b). Model selection is critical for the proper

functioning of the regression since an artificially low-order model would overlook non-

linearities in the data and an artificially high-order model would lead to overfitting

the data. The problem arises when, as in this application, the underlying mathemat-

ical model response is unknown and the relationship between the predictors and the

response cannot be observed due to the multidimensionality of the problem. In these

cases, the approach used to explore the domain needs to be able to converge to the

underlying mathematical model response with no a priori knowledge of the system.

Third, traditional methodologies for the estimation of the regression coefficients,

like the ordinary least squares (OLS) method, often use all the available data to

regress the predictors and, therefore, are not able to optimize the underlying model

based on its ability to predict out-of-sample data, potentially leading to overfitting

the response.

More recent techniques for the estimation of regression coefficients, like Ridge or

LASSO (i.e., Least Absolute Shrinkage and Selection Operator) regularization (Ho-
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erl and Kennard, 1970; Tibshirani, 1996), in conjunction with cross-validation (CV)

techniques (James et al., 2013), are able to reduce the complexity of the model in

order to optimize out-of-sample data prediction. The basics of any regularization

technique consist in imposing a penalty to the value of the regression coefficients. In

this scenario, the loss function to minimize in a polynomial regression is no longer just

the sum of square errors LOLS = ‖ yactual−yestimated ‖2 but Lreg = LOLS +λ
∑

n f(β̂n),

where β̂n are the predictor coefficients and λ is the regularization parameter. Some

regularization techniques, like LASSO, eliminate predictors if they do not contribute

to a substantial improvement of the error, reducing the model complexity and im-

proving out-of-sample prediction. Although these methodologies have the potential to

reduce overfitting, they have not been popularized in the field of injury biomechanics.

Another common technique for the creation of response surface is the use of inter-

polation techniques (Nie et al., 2013). These techniques are, by definition, overfitting

the data since their resulting surfaces perfectly match the given datapoints. This leads

to surfaces unable to learn and adapt, specially when dealing with noisy responses

(Jin et al., 2001).

NN have been present for decades in multiple research fields that are rich in data,

like economics (Nicholas Refenes et al., 1994), chemistry (Otto, 2016) and linguistics

(Elman, 1990). On the other hand, the field of injury biomechanics has traditionally

lacked the amount of data needed to use these powerful regression techniques. The

irruption of Human Body Models (HBM), however, allows the field to generate the

amounts of data that would benefit from the use of NN. These regression techniques

offer a series of advantages that favor their use when sufficient data is available.

Since the primary criterion for the evaluation of model performance is its pre-

dictive accuracy on out-of-sample data, rather than goodness of fit on training data

(Huddleston and Brown, 2019), correctly trained NN are able to represent the under-

lying mathematical model response of the system. NN, unlike ordinary regressions or

interpolation methods, avoid under- and overfitting (also known as the bias-variance

trade-off) by varying their complexity (e.g., number of neurons) to optimize out-of-

sample prediction (figure 7.1). One of the most commonly used techniques for this
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optimization is cross-validation (CV) (Lawrence et al., 1998; James et al., 2013).

During the CV phase, the training data is divided in k groups, hence the name

k-fold CV. Once the groups are created, a number of NN with different topologies

(i.e., number of neurons, their connectivity and activation functions) and learning al-

gorithms (e.g., backpropagation algorithms) are trained using k-1 groups as a training

set. The resulting network performance is evaluated based on its error in predicting

the responses in the remaining group (validation set). This process is repeated k times

using each group once as a validation set. At the end of this process, the network

with the minimum average validation error is selected as the final network topology

(figure 7.2). This procedure generates a NN that generalizes well.

Figure 7.1: Bias-Variance trade-off

Figure 7.2: Generic 5-fold Cross-Validation workflow (adapted from Huddleston and
Brown (2019))

This final topology is trained with the totality of the training set and its prediction
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error measured using the testing set (figure 7.3). This error is, as mentioned before,

the primary criterion for the evaluation of model performance.

NN allow for the training process to be conducted in an iterative manner where the

data set is progressively increased. This process minimizes the number of simulation

to run since the prediction error can be checked after each iteration and the process

stopped after the error meets a certain predetermined threshold.

Figure 7.3: Generic training and testing of selected topology

All these characteristics and methods for NN make very robust regression tech-

niques able to manage noisy systems and converge to the true underlying model

response when sufficient training data is provided.

In this chapter, a total of 405 simulations were conducted in an iterative man-

ner in order to generate and to evaluate the response surfaces for maximum lateral

head excursion and probability of 3+ fractured ribs using ordinary linear and logistic

regressions, LASSO regularization and NN techniques. Although this chapter only

explores these three regression techniques, the methodology itself can be followed

using any regression technique with sufficient out-of-sample predictive performance.

7.2 Methods

A total of 405 simulations generated in nine iterations were used for the definition

of the response surfaces for the maximum lateral head excursion and the probability

of 3+ fractured ribs to explore the intrinsic, extrinsic and modeling factors described
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in table 7.1.

Table 7.1: Responses and input factors for domain exploration
Responses

Maximum Lateral Head Excursion
Chest Deflection

Input Factors Ranges

Intrinsic
Height 158 - 193 cm
Weight 51 - 119 kg
Waist Circumference 66 - 122 cm

Extrinsic
∆v 22 - 45 km/h
PDOF 60 - 90 degrees
Seatbelt Load Limiter 1 - 5 kN

Modeling Seatbelt Friction 0.375 - 0.5
Center Console Ultimate Strain ±10% of OEM value

These simulations involved the use of the vehicle environment developed in chapter

6 and series of HBM morphed following the methodology described in charter 3. The

simulations were run in LS-Dyna v7.1.0 using an in-house developed Matlab script

that is able to morph, settle, position the seatbelt, run and post-process any number

of simulations in parallel in a fully automated manner in batch-mode. A general

workflow can be found in image 7.4.
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Figure 7.4: Methodology workflow

7.2.1 Sampling strategy

The space was sampled in series of 45 datapoints in order to generate a saturated

quadratic sample in each iteration (figure 7.4 - 1). That is, each iteration provided

sufficient information to estimate the parameters of an eight-dimensional, second

order polynomial equation. The sampling strategy was set up to fill up the sampling

space comprised by the intrinsic, extrinsic and modeling factors with equidistant

points in each iteration. A model-free, distance-based sampling method (Santner

et al., 2003; Pronzato and Müller, 2012) was coded in Matlab and utilized for creating

the space-filling design (figure 7.5). This led to a uniformly explored space (i.e., all

points had the same probability of being selected). In this sampling strategy, a

different HBM was morph for each individual simulation following the methodology

described in chapter 3 with the goal of covering 90% of the ANSUR II database male
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population (figure 7.4 - 2). The performance of the in-house Matlab script was bench-

marked against the literature, based on its ability to maximize the distance between

samples. More information about the sampling algorithm and its performance can

be found in appendix J.

Figure 7.5: Example of two iterations of 45 anthropometry samples each obtained

using the filling-space in-house Matlab script

7.2.2 HBM positioning and settling

Based on observations by Manary et al. (1994), the hip-joint-center (HJC) of the

different HBM were positioned to match PMHS fore-aft target position described in

chapter 5. The extremities and upper body were positioned in the same angles for

all models before the settling phase. During this phase (figure 7.4 - 3), the HBM

was seated by gravity and the upper body was allow to rotate to conform to the seat

back. The upper and lower extremities were constrained to represent an occupant in

a driving position.
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7.2.3 Simulation run and data cleaning

The seat and HBM pre-stresses were extracted after the settling phase and im-

posed back in the final run. The vertical position of the d-ring was varied to maintain

a constant angle with the occupant’s shoulder in the sagittal plane in order to keep

comparable shoulder belt angles among the different models (figure 7.6).

Figure 7.6: Models settled for final simulation run

Upon completion, the simulations with numerical instabilities (e.g., "exploding"

elements) were identified and discarded. Valid simulations were defined as those that

ran at least until the time of maximum head excursion. The data generated beyond

that point was discarded (figure 7.4 - 4).

The maximum lateral head excursion and the probability of 3+ fractured ribs

were calculated for all valid simulations. The methodology for the estimation of the

probability of 3+ fractured ribs involves (Forman et al., 2012):

1. Collection of the maximum strain of each rib

2. Calculation of the probability of fracture for each rib using a risk curve derived

from coupon testing
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3. Use the binomial distribution defined by the resulting probabilities in order to

estimate the probability of 3 or more fractured ribs

7.2.4 Surface testing

Once a new set of simulations was run, it was used to evaluate the performance

of the surfaces created in the previous iteration (figure 7.4 - 5). The average error

between the response predicted by the different surfaces and the actual response of

the FE models were compared for the three regression methods. Once the error was

deemed to be stable below 10% of the range of the response, the surfaces from the last

iteration were considered sufficient for the exploration of the methodology presented

in this dissertation and the domain exploration concluded (figure 7.4 - 7).

7.2.5 Surface generation

In each iteration, a new set of surfaces was created using all the available infor-

mation (including that of previous iterations) to train the different regression models

(figure 7.4 - 6). In all cases, the data inputs were standardized between -1 and 1 in

order to unify scales before training the models. The parameters used as inputs in

for the different regression techniques are summarized in table 7.2.

Table 7.2: Input parameters for surface generation*
Height Weight Waist Circ.

Eye Height Sitting Shoulder-Elbow Length Elbow-Wrist Length
Thigh Link Lateral Femoral Epicondyle Height Waist Breadth
Hip Breadth Waist Depth Biceps Circ.
Thigh Circ. Low Thigh Circ. Chest Circ.

Forearm Circ. Calf Circ. Foot Length
Foot Breadth Chest Wall Thickness Pelvic Link

Bicristal Breadth ∆v PDOF
Seatbelt Friction Center Console Ultimate Strain Load Limiter

*The anthropometry measurement definitions can be found in Gordon et al. (2014)

The regression techniques used to generate the different response surfaces were:

• Ordinary linear regression
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• Logistic regression

• LASSO regularization for linear and logistic regressions

• NN

Ordinary linear regression

Ordinary linear regressions were conducted using the predictors in table 7.2 to

regress maximum lateral head excursion.

Logistic regression

Logistic regressions were conducted using the predictors in table 7.2 to regress the

probability of 3+ fractured ribs.

LASSO regularization

LASSO regularization, also referred to as LASSO regression, was used to reduce

the number of predictors in the linear and logistic regressions (Tibshirani, 1996).

This regularization technique uses Lreg = L + λ
∑

n |(β̂n)| as loss function, where

L is the ordinary least square error or the negative log likelihood for linear and

logistic regressions, respectively. For each response, the regularization parameter λ

was selected to optimize the validation error using all the available data in a 3-fold

CV. After the optimal λ is obtained, the final regression model is calculated using

this parameter and all the available data as a training set (figure 7.7).
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Figure 7.7: CV and training of LASSO models

Neural Network

Two NN were trained to regress the response surfaces using the predictors in table

7.2. The NN were limited to one hidden layer using sigmoid activation functions. The

output neuron used a linear activation function (figure 7.9). The output was later

bounded between 0 and 1 for the rib fracture probability surface. For each response

a 3-fold CV was used to identify the best network topology ranging from 1 to 10

neurons in the hidden layer. This range was selected since it was able to generate

sufficiently complex responses to capture the optimum model (figure 7.1). Once the

optimal topology was identified, it was trained with the totality of the available data

as training set (figure 7.8). In all cases, the training was conducted using Bayesian

regularization backpropagation (Buntine and Weigend, 1991; Burden and Winkler,

2009).
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Figure 7.8: CV and training of NN

Figure 7.9: Neural network topologies used in this chapter

7.2.6 Weighted error

The final prediction errors were also calculated weighting the datapoints propor-

tionally to their probability of occurrence in the field using the information described

in chapters 2 and 3. This error gives an estimation of the expected error in predicting
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societal responses.

7.2.7 Additional approaches

Additional approaches were followed for the regression of 3+ fractured ribs in the

NN models. These approaches included:

• Use of 10-fold CV

• Introduction of upper body angle in the sagittal plane as a regression feature

(i.e., as an input)

• Reduction of the number of regression features to those shown in table 7.3

• Use of rectified linear unit (ReLu) as activation function

• Use of Levenberg-Marquardt (LM) backpropagation (Yu and Wilamowski, 2011)

• Oversampling the training data

Table 7.3: Reduced number of inputs*
Weight Eye Height Sitting Waist Breadth

Waist Depth ∆v PDOF
Seatbelt Friction Center Console Ultimate Strain Load Limiter
*The definition of anthropometry measurements can be found in Zhou et al. (2016)

7.3 Results

Figure 7.10 shows the evolution of the testing error for the prediction of the

maximum lateral head excursion. The head excursion response surface was better

capture by the NN. The linear and LASSO regressions showed approximately four

times larger average error (iteration 8). The best and worst performing models in

the first iteration, where data was sparse, were the LASSO and the ordinary linear

regression, respectively (iteration 1). The ordinary linear regression model converged
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to the LASSO model in the second iteration. The error stabilizes on the 2nd iteration

for the linear and LASSO regression and on the 6th iteration for the NN. Similar

responses were found in the weighted error (figure 7.11).

The predicted and actual values of the testing points for the final iteration (figure

7.12) show that the NN captured the response in all the range. The final average

prediction error, the weighted average predicted error and the maximum predicted

error can be found in table 7.4.

Figure 7.10: Prediction error for maximum lateral head excursion
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Figure 7.11: Weighted prediction error for maximum lateral head excursion

Figure 7.12: Predicted and actual maximum lateral head excursion (iteration: 8)
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Table 7.4: Last iteration excursion prediction error [mm] (% with respect to the actual

response range)
Linear Reg. LASSO Reg. NN

Average error 24 (4%) 23.7 (4%) 8.6 (2%)

Weighted average error 16 (3%) 14 (2%) 11.2 (2%)

Maximum error 68 (12%) 74 (13%) 32.7 (6%)

Figure 7.13 shows the evolution of the testing error for the prediction of the

probability of 3+ fractured ribs. The three models captured the probability of 3+

fractured ribs to a similar degree of accuracy (iteration 8). The best and worst

performing model in the first iteration were the LASSO logistic regression and the

logistic regression, respectively (iteration 1). The logistic regression model converged

to the LASSO and NN models in the third iteration. The average error stabilizes at

around 10% for all the models. The NN resulted in an improved final weighted error

(figure 7.14).

Figure 7.15 shows that the response trend is captured although the prediction

accuracy is lower than for the maximum lateral head excursion prediction. The final

average prediction error, the weighted average predicted error and the maximum

predicted error can be found in table 7.4.
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Figure 7.13: Prediction error for probability of 3+ fractured ribs

Figure 7.14: Weighted prediction error for the probability of 3+ fractured ribs
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Figure 7.15: Predicted and actual probability of 3+ fractured ribs (iteration: 8)

Table 7.5: Last iteration 3+ fractured ribs prediction error
Log. Reg. LASSO Log. Reg. NN

Average error 10% 9% 9%
Weighted average error 3% 3% 2%
Maximum error 38% 35% 33%

The models for excursion and probability of rib fracture do not show systematic

errors with respect to the independent variables (figures K.19, K.20, K.21 and K.22).

More results, including the evolution of λ in the LASSO models and the number of

neurons in the NN, and the prediction of the PMHS response using NN are available

in appendix K. The use of additional approaches for the NN regression of 3+ fractured

ribs did not substantially improve the performance of the network (figure 7.16).
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Figure 7.16: Probability of 3+ fractured ribs prediction error whiskers using NN with

alternative approaches

7.4 Discussion

This chapter describes a methodology for the development of biomechanical re-

sponse surfaces. An important particularity of biomechanical data is that it normally

leads to non-rectangular, correlated sampling spaces. One of the difficulties in explor-

ing these kind of domains lies on the fact that traditional distance-based sampling

techniques (e.g., Latin Hypercube) assume rectangular, orthogonal sampling spaces

and, therefore, are not suitable for the task. On the other hand, model-free, distance-

based approaches are able to explore non-rectangular, correlated spaces. Since these

sampling techniques do not discretize the space, they also allow for uncomplicated

sequential sampling (figures 7.5 and 7.17). As part of this dissertation, a model-free,

distance-based sampling methodology (Santner et al., 2003; Pronzato and Müller,

2012) was developed to allow sequential sampling and overcome the limitations of

traditional sampling techniques. More information can be found in appendix J.
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Figure 7.17: 10 points sampled using Latin Hypercube Sampling (LHS) and model-

free sampling

In order to better train the models, the sampling algorithm was allowed to choose

a new anthropometry for each datapoint. Therefore, each simulation was conducted

with a different morphed model. This approach provides more information to the

regression models since the space is more homogeneously explored. However, this is

done at the expense of increased pre-processing time. Implementing this procedure

requires an important degree of automation of the entire process. In a situation

where the morphing and settling of the models had to be performed manually, the

same sampling methodology could be followed with a pre-populated set of morphed

models. This would limit the number of models to morph and settle at the expense

of a potentially worse overall regression performance.

An important step in the training of any regression model is ensuring the valid-

ity of all the datapoints used in the process. Invalid datapoints in simulation are

caused by numerical instabilities that generate artificial responses (e.g., "exploding"

elements). Another important characteristic of valid data samples is that all data-

points in the sample must represent the same well-defined event. For this particular

application, the event was defined as a far-side impact from the initial state to the
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state of maximum lateral head excursion. All data beyond the time of maximum

head excursion was discarded. Failing to correctly define the event of interest can

lead to simulations that represent different realities. For example, in this particular

application, if the data was collected at the end of the simulation instead of at the

time of maximum head excursion, the occupants would have experienced different

degrees of rebound. Some of them may have contacted rigid parts of the sled leading

to an artificially large injury risk and generating noise in the data.

In this chapter, five different regression techniques were used and evaluated in their

ability to generate response surfaces for maximum lateral head excursion and prob-

ability of 3+ fractured ribs: ordinary linear regressions, logistic regressions, LASSO

regularization for the linear and logistic regressions and NN. The use of interpolation

techniques was discarded because they lead to purely over-fitted models unable to

manage any kind of noise in the data (Jin et al., 2001). It is important to notice that,

although the sampling process only controlled for height, weight and waist circum-

ference, the measurements for the rest of the body regions included in the morphing

process (e.g., length of extremities) were obtained as part of a stochastic methodology

(chapter 3) and may have an effect on the responses. Therefore, they were also used

as inputs in the different regression models (table 7.2).

The ordinary and LASSO regression models were limited to a linear polynomial

since the interpretation of the regression coefficients, probably the greatest advan-

tages of polynomial regressions, becomes less intuitive as the order of the polynomial

increases (Stimson et al., 1978). Although the goal of this chapter was to predict the

response and not necessarily quantify the effect of each factor, it is important to un-

derstand that the high level of correlation present in anthropometric data in general,

and in this application in particular, poses a serious challenge to the interpretation

of the regression coefficients estimated in ordinary linear regressions (Rawlings et al.,

1998). This limitation was addressed with the use of the LASSO regularization since,

as any other regularization technique, it reduces the effects of collinearity (Dormann

et al., 2013). Therefore, the coefficients regressed using LASSO regularization are a

more accurate quantification of the effect of the predictors. Moreover, LASSO regu-
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larization also reduces overfitting since it is able to eliminate "unimportant" predictors

from the model. This effect was particularly noticeable when little data was available

(figures 7.10 and 7.13 - iteration 1).

It is important to notice that the testing errors presented in this document (figures

7.10, 7.13, etc.), represent the ability of the response surfaces created in the iteration

’n’ to capture the response of the datapoints generated in the iteration ’n+1’. As a

consequence, the models and testing points are different in each iteration. This leads

to oscillations in the testing errors. This effect is accentuated for the NN where the

training process itself is non deterministic.

The LASSO model showed better performance compared to the other models in

the first iteration. This model outperformed the NN at this point because the NN,

unlike the polynomial regressions, do not have a pre-established underlying mathe-

matical model response and, therefore, they need sufficient data to not only regress

coefficients (or weights) but also choose the topology of the network. This lack of

data in the initial stages prevented the NN from selecting an optimum topology in the

CV phase. This could be due to multiple reasons from which one of them could be

poor distribution of samples in the CV groups. Nevertheless, the NN outperformed

the polynomial regressions in predicting head excursions as data became more avail-

able from the 2nd iteration onward (figure 7.10). All three regression models showed

similar testing error in predicting the probability of 3+ fractured ribs. Moreover, it

is interesting to observe that these models, not only perform similarly in regards to

their average error (figure 7.13 - last iteration) but also to their error distribution

(figures K.10, K.11, K.12 - last iteration).

Although the average prediction error for 3+ fracture ribs meets the criteria to stop

the training (i.e., stable at around 10%) and is sufficient to explore the methodology

presented in this dissertation, the error is larger than that of the maximum lateral

head excursion prediction. These differences may be related to the complexity of

the phenomenon or the metric (e.g., non linearities). Rib fractures can occur as

a consequence of interactions with multiple interior structures. Small changes in

the occupant anthropometry, occupant position or impact conditions may have a
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large effect on the probability of rib fracture, if those changes lead, for example, to

avoiding impact with the injury-causing structure. This causes a non-linearity that

may be difficult to capture. The calculation of the injury metric itself also introduces

mathematical complexity. The methodology for the estimation of fracture probability,

described in 7.2.3, relies on the maximum rib strain for the calculation of the metric.

As mentioned before, different parts of the ribs get in contact with different parts

of the vehicle environment for the different anthropometries and impact conditions.

In addition, different sections of the rib have different element quality which may

increase noise in the results. The binomial distribution used in the calculation of the

combined probability of fracture also introduces large non linearities in the calculation

since the function is non-injective. That is, different inputs can generate the same

output. In this case, different rib strain distributions can lead to the same probability

of injury. This level of non-linearity in the phenomenon and the injury metric, and the

disparity in the mesh quality may explain the relatively larger testing error (figures

7.13, K.10, K.11 and K.12).

Training any regression model requires the use of multiple approaches in order

to identify the best performing model. Additional approaches were followed in this

study in order to improve the performance of the NN model for the prediction of

the probability of 3+ fractured ribs. Previous studies indicate that increasing the

number of CV folds have an effect on the bias-variance tradeoff (Rodriguez et al.,

2010). In this particular application, increasing the number of folds did not yield any

noticeable improvement in performance. Changing the activation function and the

backpropagation algorithm also showed very little effect on the model performance

(figure 7.16).

Adding features to the models may improve performance if those features are re-

sponsible for part of the variability observed in the data. However, if the model uses

too many features, the system may have difficulties to converge to the true under-

lying mathematical model response with a limited number of simulations. In such

scenarios, reducing the number of inputs could contribute to a better performance.

In this particular study, the upper body angle in the sagittal plane was explored as an
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additional feature, but this addition did not improve the model. On the other hand,

reducing the number of features (table 7.3) reduced the error variance, but increased

the median error (i.e., bias).

Imbalances in the training data may also lead to reduced performance. Although

this phenomenon has been studied in more depth for classification problems (Alejo

et al., 2007; Masko and Hensman, 2015), imbalanced training data also affects regres-

sion problems (Krawczyk, 2016). The training data should ideally cover all possible

responses of the system without over- of under-representing cases, but, in the real

world, not all outputs are equally likely. Therefore, training outputs often show a

skewed distribution. In this particular application, a greater portion of the training

data is associated to zero probability of 3+ fractured ribs (figure K.23 - left). There-

fore, datapoints with low probability of injury are over-represented in the training

sample. This may limit the ability of the model to predict injurious cases since these

are under-represented in the sample. Oversampling techniques reduce skewness in

the training data by generating interpolated datapoints (Chawla et al., 2002; Torgo

et al., 2015). The resulting dataset is used to train the models (figure K.23 - right).

In this particular application, this approach did not lead to substantial improvements

in the model performance.

The prolonged error plateau (figure 7.13) and the fact that the logistic regression,

the LASSO logistic regression and all the NN models show similar error bias and

variance (figures K.10, K.11,K.12 and 7.16) are an indication that the remaining

error may be irreducible (i.e., noise). Since this error is inherent to the training data

(Rodriguez et al., 2010), it may vary in different applications of the methodology

presented in this dissertation.

After evaluating the response surfaces created by the different regression tech-

niques, the NN have shown improved performance in predicting head excursion and

similar performance in predicting 3+ fractured ribs compared to the rest of the mod-

els. Therefore, these NN will be used in the chapter 8 in order to illustrate their use

for vehicle assessment. Although the NN are the regression techniques selected for

this particular application, the methodology introduced in this dissertation does not
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limit its applicability to the use of NN. Therefore, it enables the use of any regression

technique with sufficient out-of-sample predictive performance.
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Chapter 8

Variability-based Vehicle

Assessment

Chapter 7 has developed a series of response surfaces representing the entire pop-

ulation of impacts defined within the limits described in table 7.1. This chapter uses

these surfaces in the quantification of vehicle safety using the response of the entire

population of interest.

8.1 Introduction

Traditional ATD-based vehicle assessment and regulations use the response of

ATD in standardized physical tests in order to study the probability of injury of

certain populations in specific impact conditions. Given the expensive nature of

these tests, the number of events and surrogates represented in them are very limited.

Therefore, these tests need to be defined based on an estimated benefit analysis or

targeted to represent an average event based on impact or injury severity (Hollowell

et al., 1998; Ellway et al., 2013).

Although this ATD-based approach has largely contributed to the reduction of

traffic-related fatalities, targeting specific load cases with no exploration of variabil-

ity in the occupant or impact conditions may lead to potentially hyper-optimized

restraint systems. That is, restraints optimized to protect a narrow percentage of

121



the population in a limited number of event but that may not be effective for a

large percentage of the population and impact conditions. Although manufacturers

normally have their own internal safety standards, standardize tests are their main

design targets. Current lack of variability exploration allows manufacturers to de-

velop vehicles that past the tests but overlook potential injurious impact conditions.

This lack of variability exploration also generates vehicle assessments that are able

to rank vehicles according to their ability to protect specific populations in specific

impact conditions but cannot estimate the effect that deploying the vehicle will have

of the total burden of traffic-related injuries and fatalities.

The only available far-side ATD test consists in conducting a sled test with the

50th percentile WorldSID on a 75-degree PDOF using the pulse generated in the

Euro NCAP pole or barrier near-side impact test (NCAP, 2017c). The test evaluates

maximum lateral head excursion and the injury risk for a number of body regions

based on the near-side WorldSID injury risk curves. Although the study summarized

in chapter 5 shows that the WorldSID exhibit PMHS-like lateral head excursion, the

validity of the ATD to predict far-side injury and the use near-side WorldSID injury

risk curves are, at the very least, questionable.

Figure 8.1: Head excursion limits in the Euro NCAP far-side assessment (NCAP,
2017c)

In the Euro NCAP far-side test, three different lateral head excursion distance

are defined: the maximum intrusion line (red), the seat center-line and a line 250 mm

122



inboards from the seat center-line called the occupant interaction limit (figure 8.1).

The vehicle loses points in the assessment as the head of the occupant reaches the

different levels. This methodology reduces all the possible far-side impact scenarios

to a single test.

A new approach to safety that takes into account variability in the population

and impact conditions is needed. This chapter presents an innovative approach to

safety that uses the response of the entire studied population in a comprehensive set

of impact conditions. The results from applying this methodology can be directly

interpreted as the number of events (e.g. injuries) expected to occur in the field

involving this vehicle. Specifically, this chapter will present the expected number of

head-to-intruding-door impacts and the expected number of 3+ fractured ribs as a

consequence of deploying the vehicle in the field.

8.2 Methods

A Monte-Carlo (MC) analysis was conducted to estimate the expected number of

head-to-intruding-door impacts and the expected number of cases with 3+ fractured

ribs. One million responses were generated for maximum lateral head excursion and

probability of 3+ fractured ribs using the NN developed in chapter 7. The anthro-

pometry inputs for the NN were defined to represent 90% of the ANSUR II male

database. Inputs for height, weight and waist circumference followed the joint proba-

bility distribution described in chapter 3. The CWT was regressed from Frank et al.

(2011). The rest of the anthropometry parameters (table 7.2) were obtained as a

linear regressions of the first three. The PDOF and ∆v were defined within the lim-

its described in table 7.2 following the cumulative density functions for the number

of occupants involved in far-side impacts described in chapter 2 (figure 2.4). Three

different seatbelt load limiters were used in each of the MC analysis: 1 kN, 2.5 kN

and 5kN. The model parameter uncertainty (i.e., the seatbelt friction and the center

console ultimate strain) was explored using a uniform distribution.

A linear regression was conducted using information from Sunnevång et al. (2010)
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to estimate the door intrusion as a function of ∆v. This regression was used to

estimate the door intrusion for each MC sample. The head-to-intruding-door distance

was calculated for each sample as D0 −∆yhead − Intrusion, where D0 was the initial

distance head-to-door distance and ∆yhead was the maximum lateral head excursion of

the sample. Those cases with negative head-to-intruding-door distance were defined

as having sustained a head-to-intruding-door impact.

Once the responses where generated, the total number of expected head-to-intruding-

door impacts and cases with 3+ fractured ribs were calculated using the total number

of occupants involved in the accidents covered in the NN training (chapter 2). The

resulting expected values are an estimation of the total number of head-to-intruding-

door impacts and cases with 3+ fractured ribs that would occur in the field if all

the vehicles performed like the one being assessed. This will be referred to as field-

equivalent metric. The field-equivalent metrics for this vehicle were compared to the

current field data.

8.3 Results

The cumulative density distribution for head-to-intruding-door distance (figure

8.2) indicated that, for the assessed vehicle, a number between 1.8 % and 6.6% of the

occupants involved in a far-side accident within the impact factors defined in table

7.1 would contact the intruding door with their heads depending on the load limiter

used. The expected number of cases with 3+ fractured ribs (figure 8.3) varied from

7.8 % to 10.2% depending on the load limiter used.
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Figure 8.2: Head-to-intruding-door distance probability density for different seatbelt

load limiters (green: no-contact cases, red: contact cases)

Figure 8.3: Probability density for the probability of 3+ fractured ribs for different

seatbelt load limiters (green: cases below average, red: cases above average)

The histograms in figures 8.2 and 8.3 represent the occupant response in impacts
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between 22 and 45 km/h and between 60 and 90 degrees PDOF. Based on the data

provided in chapter 2, 37,085 far-side impacts occur within these definition in the US.

Figure 8.4 shows the total number of head-to-intruding-door impacts and cases with

3+ fractured ribs that would be observed in the field if all vehicles performed like the

evaluated vehicle (e.i., field-equivalent metrics). The number of field-equivalent head

impacts decreased from 2,448 to 667 cases with the use of larger seatbelt load limiter

values. The opposite was true for 3+ fractured ribs where the number increased

from 2,893 to 3,783. Adding the number of head impacts cases and with those of 3+

fracture ribs (figure 8.4 - black line) generated an inflection point at 2.5 kN.

Figure 8.4: Number of head impacts, 3+ fractured rib cases and sum of both metrics

8.4 Discussion

This study introduces a new approach to vehicle assessment that transitions from

ATD-based assessments, where a very limited number of tests are conducted to eval-

uate a vehicle, to a scenario in which the vehicle is evaluated in its ability to reduce

the actual number of injuries and fatalities in the field. Therefore, this methodology,

rather than only ranking the vehicle with respect to others, enables the quantification
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of the impact that the vehicle would have in the field. This approach is superior to

ATD-based assessments even in situations in which improving the vehicle for the 50th

percentile would generalize for other populations since ATD-based assessments are

not able to quantify the actual improvement. Moreover, the proposed method can be

used not only for assessing the vehicle but also for optimizing its restraint systems.

Assessments and optimizations conducted using this methodology have an impact in

all levels of society and not only on the discrete number of populations and impact

cases represented in ATD-based assessments.

The present methodology can be scaled to incorporate additional input factors

or adapted to represent other impact scenarios (e.g., frontal impacts). Moreover,

although this dissertation evaluated the probability of head impact and 3+ fractured

ribs as a vehicle to explore the methodology, other injury types (e.g., TBI) and

severities (e.g., cases of AIS 6) or other outcomes (e.g., level of disability) can be

alternatively or concurrently utilized to evaluate vehicle performance depending on

the impact scenario or the design goals (e.g., fatality reduction, disability reduction,

etc.).

The assessment of the vehicle environment used in this dissertation estimates a

number between 2,893 and 3,783 field-equivalent cases with 3+ fractured ribs. This

number can be directly compared to the field data using the information provided in

chapter 2. Each year around 10,555 far-side-related thoracic AIS3 + occur in the US.

Since our ∆v and PDOF ranges encompass approximately 50% and 75% of the AIS

3+ cases (Gabler et al., 2005; Bahouth et al., 2015), respectively, this results in 3,958

field cases within the impact parameters defined in table 7.1. Although 3+ fractured

ribs are not the only injury that leads to thoracic AIS 3+, it is reasonable to conclude

that the deployment of the vehicle used in this dissertation would contribute to a

reduction in the injuries observed in the field.

The MC analysis and, therefore, the field-equivalent metrics were calculated as-

suming that the current ∆v and PDOF distributions apply for the evaluated vehicle.

However, this assumption is not inherit to the methodology. If the vehicle included

any type of active system that allows it to reduce the impact speed (e.g. Auto-
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matic Emergency Breaking) or modify the impact direction (e.g., active steering)

this information could be introduced in the MC analysis by modifying the sampling

distribution for ∆v and PDOF according to the capabilities of the system.

The ability of the proposed methodology to create field-equivalent metrics enables

vehicle manufacturer, non-governmental entities and policy makers to prioritize ac-

tions taking into account the actual effect of the vehicle in the field rather than its

effect on a very narrow percentage of the population.

128



Chapter 9

Conclusions

9.1 Concluding remarks

The goal of this dissertation was to develop a methodology for the evaluation

of human response in vehicle impacts that accounts for variability of intrinsic and

extrinsic factors including model uncertainties (figure 9.1).

Figure 9.1: Dissertation Flowchart
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In order to fulfill this goal, chapter 2 used the literature to identify the most

commonly injured body regions and the impact parameters that have an effect on

human kinematics and injury outcome. With this information, this chapter identified

the injury metrics to evaluate in the HBM, the extrinsic factors to explore and the

vehicle environment to represent the scenarios in chapter 7.

Chapter 3 identified height, weight and waist circumference as the intrinsic fac-

tors to be represented in the HBM. The chapter presented a methodology for the

implementation of anthropometry variability controlling for these three intrinsic pa-

rameters. The presented methodology, unlike previously-publish methodologies, was

able to generate morphed models that successfully match the target weight. This

was achieved using a non-linear optimization in combination with a NN. The result-

ing methodology was able to represent 90% of the ANSUR-II database using a fully

automated in-house Matlab/Piper script. The resulting morphed models accurately

represented external anthropometry as well as pelvis and rib cage sizes. This method-

ology was employed in chapter 7 to explore the effect of the intrinsic factors in human

response.

Chapter 6 identified the seatbelt friction coefficient and the center console ultimate

strain as model uncertainty factors. Initial ranges for these parameters were defined

and FE simulations were conducted and compared to WorldSID physical tests in

order to identify parameter values that did not meet the validation criterion. The

final ranges for the seatbelt friction coefficient and the center console ultimate strain

were used in chapter 7 to explore the contribution of the model uncertainty factors

in human response.

The studies in chapters 4 and 5 were conducted to complement the limited existing

far-side-related literature. Chapter 4 presented a detailed insight into far-side in-

vehicle human kinematics, kinetic and injury responses. The information generated

in this chapter did not only contribute to improve the current state-of-the-art of

the literature but was also used in chapter 5 in order to evaluate the biofidelity of

the WorldSID and the simplified GHBMC. Chapter 5 conducted these biofidelity

evaluations in a simplified and a vehicle-based sled. The WorldSID and the simplified
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GHBMC correctly represented lateral excursion, although the HBM showed improved

shoulder belt interaction. The HBM, unlike the ATD, was also able to represent the

probability of rib fracture observed in the PMHS tests. The study concluded that

the GHBMC shows improved biofidelity with respect to the WorldSID, although both

surrogates showed sufficient biofidelity in order to explore the methodology presented

in this dissertation.

The intrinsic, extrinsic and modeling uncertainty factors identified in chapters 2,

3 and 6, respectively, were explored for the creation of occupant response surfaces for

maximum lateral head excursion and the probability of 3+ fractured ribs in chapter 7.

Five different regression techniques were used for the creation of the response surfaces:

linear regressions, logistic regressions, LASSO linear and logistic regressions, and NN.

The models were trained (or regressed) using an iterative scheme in combination

with a fully-automated process coded in an in-house Matlab script. The performance

of the regression models was evaluated using out-of-sample datapoints. The NN

outperformed the other regression techniques in its ability to predict lateral head

excursion (|ε| < 3%). The three regression models showed similar performance in the

prediction of 3+ fractured ribs (|ε| < 10%). Alternative approaches were used for the

NN training but the performance could not be improved. This lack of improvement

in combination with the fact that all regression models showed similar error indicates

that the remaining error may be irreducible (i.e., noise). The response surfaces created

in this chapter are a continuous representation of occupant response as a function of

the intrinsic, extrinsic and modeling uncertainty factors.

In chapter 8, a Monto-Carlo analysis was conducted using the response surfaces

created in chapter 7 and the field-related distributions for the different factors ex-

plored in the dissertation in order to assess the vehicle far-side safety performance.

This evaluation, unlike ATD-based assessments, did not focus on the probability of

injury for a particular population in a single impact scenario but rather on estimating

the number of injurious cases for the entire population represented by the intrinsic

factors (i.e., 90% of that ANSUR-II population) in the impact scenarios represented

by the extrinsic factors (i.e., PDOF = [60-90] degrees, ∆v = [22-45] km/h and seat-
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belt load limiter = [1-5] kN). The assessment proposed in this chapter led to injury

figures comparable to those present in injury databases (e.g., NASS-CDS) by esti-

mating the number of cases (e.g.,injuries) that would be observed in the field if all

the vehicles performed like the assessed vehicle. These estimations are referred to

as field-equivalent cases. These field-equivalent cases can be directly compared to

the current number of injuries present in the databases to determine if deploying the

assessed vehicle would improve or worsen the current level of safety in the field. This

allows designers to use the expected number field injuries or fatalities as an objective

function rather than the probability of injury for a particular population. In the par-

ticular case of the vehicle used for this dissertation, 3.2% of all crashes are expected

to result in head-to-intruding-door impacts and 8.6% are expected to result in 3+

fractured ribs using a 2.5 kN load limiter. Using the total number of far-side crashes

observed in the field and the results from this assessment, it can be estimated that

this vehicle would lead to 1,187 head-to-intruding-door field-equivalent impact cases

and 3,189 field-equivalent cases of 3+ fractured ribs. If we compared the latter figure

with the current number of thoracic AIS 3+ cases (i.e., 3,958), it can be concluded

that the deployment of the vehicle used in this dissertation would contribute to a

reduction in the injuries observed in the field.

9.2 Future research and limitations

The performance of the methodology and its implementation in regulatory and

NCAP programs would benefit from a series of research lines in the areas of FEM

uncertainty quantification, HBM biofidelity, morphing techniques, stochastic method-

ologies and machine learning.

9.2.1 FEM uncertainty quantification

This methodology has demonstrated the implementation of model uncertainty us-

ing a vehicle-based sled. The simplicity of the model helps to keep the number of

uncertain parameters low. Implementations of this methodology in more complex
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impact scenarios (e.g., full vehicle impacts) will require of ad-hoc identification of the

uncertainty factors and their interactions. Research should be targeted to identify the

FE parameters with the largest effect on the HBM response for specific impact sce-

narios (e.g., seatbelt friction) and develop physical tests to quantify their uncertainty

in the FEM of the vehicle to be assessed or developed.

9.2.2 HBM biofidelity and injury prediction

Another field of potential improvement is the biofidelity and injury prediction of

HBM. While future research should focus on improving HBM biofidelity in general,

a particular emphasis should be the placed in improving the HBM’s ability to pre-

dict injury. The present dissertation used a methodology by Forman et al. (2012)

to estimate rib fracture probability in HBM. Although the methodology seems to

provide a sufficient level of prediction in far-side scenarios, a more formal and com-

prehensive validation may be needed for the implementation of HBM in regulation

and NCAP programs. Moreover, future research should also focus on implementing

similar probabilistic approaches for other body regions.

HBM improvement should not lead to an unnecessary increase in model complexity

since overly complex models could cause an important increase in computational time,

reducing our ability to conduct the number of simulations needed to generate the

response surfaces. Therefore, HBM selection and development should be conducted

in a case-specific manner, taking into consideration the trade-offs between model

performance and time efficiency.

9.2.3 Morphing techniques

The proposed methodology was demonstrated using the ANSUR-II database. This

database only includes military personnel and, therefore, cannot represent the in-

tegrity of civilian population. More comprehensive databases (e.g., CAESAR database)

could be used in conjunction with the morphing methodology presented in this disser-

tation. It is possible that the representation of a large percentage of the population
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in these databases require the development of additional base models. That is, in-

stead of using the 50th percentile as a base model, other percentiles may need to

be introduced as base models in order to ensure mesh quality and correct model

connectivity. Similarly, the morphing methodology can be followed using a female

anthropometry database if the original HBM is based on the female population. Fu-

ture methodologies for the exploration of population variability should incorporate

additional intrinsic factors (e.g., bony structure variability) and their interactions.

9.2.4 Stochastic methodologies

Another important aspect of this new paradigm is the use of stochastic (proba-

bilistic) safety evaluations instead of the current deterministic approaches. Further

research needs to be conducted to promote a gradual implementation of stochastic

approaches in the field of vehicle safety and disseminate their advantages over deter-

ministic approaches.

9.2.5 Machine Learning

Results from the NN regressions indicate that different metrics incorporate dif-

ferent levels of noise. The identification and development of low-noise metrics and

methodologies will be beneficial to future implementations of machine learning tech-

niques. Future research should also be directed to investigate the possibility of reduc-

ing the number of training datapoints (i.e., simulations) by incorporating previous

knowledge in the development of the response surfaces.

In general, machine learning techniques enable us to process and incorporate com-

plex information into our evaluations. The field of injury biomechanics should try

to benefit from any improvement in the field of data science. The exploration of

new machine learning implementations and their adaptation to the field of injury

biomechanics will help maximize our impact in the field.
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9.2.6 Other considerations

This particular application of the methodology utilized previously-publish field

data in order to identify the extrinsic factors to be explored. Based on these studies,

∆v and PDOF were considered independently. Moreover, intrusion was only con-

sidered a function of ∆v. Future applications of this methodology could benefit of

ad-hoc field studies to evaluate the correlations among the different factors used in

the methodology and full-vehicle simulations to establish the relationship between

intrusion and the different extrinsic factors. This would improve the Monte-Carlo

analysis and generate outcome distributions that better represent the field.

9.3 Contributions

The main contribution of this dissertation is the creation of a methodology for

the evaluation of human response in vehicle impacts that accounts for variability in

the population and impact conditions. This methodology can be used, among other

things, to identify populations at risk or injurious impact scenarios, inform interven-

tion prioritization or conduct comprehensive, variability-based vehicle assessments.

This dissertation guides the transition from deterministic ATD-based safety as-

sessments to stochastic HBM-based safety assessments. The field would benefit of a

progressive adoption of the proposed framework by implementing it initially in sim-

plified impact scenarios (e.g., sled-based assessments) and progressively adapt it to

more complex load cases (e.g., full vehicle assessments).

The variability-based vehicle assessment explored in this dissertation overcomes

the limitations of current ATD-based assessments that tend to hyper-optimize re-

straints by focusing on a very limited set of populations and impact directions. One

of the main benefits of this methodology is its ability to generate information that

relates directly to field injury data. This allows manufacturers to design their vehicles

with the target of reducing the actual field-related injuries and fatalities rather than

the probability of injury for a particular population.

The introduction of uncertainty in the intrinsic and extrinsic factors allows not
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only for the evaluation of human response but also its distribution (probability of

occurrence). Trends in these distributions can be used to identify populations at

risk or previously overseen hazardous loading conditions, helping prioritize action.

This is a great advantage over ATD-based assessments which cannot provide any

information about the underlying distribution of responses. Moreover, the proposed

methodology improves the confidence in the vehicle FEM by introducing uncertainty

in the modeling parameters, since improving trust in the model and reducing the risk

of modeling tampering is key for the adaptation of the methodology in regulation and

NCAP.

This dissertation also provides the first detailed comparison of the prediction

abilities of traditional regression techniques (e.g., linear regression) and those of NN

in the field of injury biomechanics. This comparison showed equivalent or improved

prediction with the use of NN. This dissertation presented an iterative method to

track error evolution and identify the optimal regression performance. That is, those

regression models that have achieved irreducible error (i.e., noise).

This dissertation presents not only a morphing technique that explores population

variability beyond height and weight, but it also demonstrates its utility to explore its

effects on human response. Moreover, this morphing methodology is the first able to

ensure that the final morphed model meets the initial target weight, which is crucial

for the correct exploration of human variability.

This dissertation provides an in-depth characterization of human response in far-

side scenarios, including the first in-vehicle PMHS tests in the literature. The study

of the PMHS chest deflection led to the identification of the main far-side thoracic

injury mechanism. This mechanism was found to involve a seatbelt-related chest

compression followed by a seat-related chest deformation and a subsequent chest

expansion. The seatbelt was identified as the major contributor to injury. Injury

causation occurred as soon as 50 ms into the event. Conclusions derived from these

PMHS tests will have a deep impact in the improvement of human surrogates and

restraint systems for far-side scenarios. This dissertation also identified restraint-

related trade-offs between head and thoracic injury and predicted the effect of a
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specific vehicle on the injuries observed in the field.

Overall, the proposed framework will provide a fundamental contribution to the

improvement of vehicle safety by incorporating diversity in the population and the

impact conditions in the vehicle design process.
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Appendix A

NN to Estimate Morphed Model

Final Weight

This NN is used in chapter 3 as part of the optimization carried out to select mor-

phing anthropometry measurements to generate models that meet the target weight.

So the goal of the NN is to be able to estimate the final weight of a morphed HBM

based on the input morphing anthropometry measurements.

In order to train the NN, 300 morphed models were generated following the

methodology explain in chapter 3 with the difference that the non-controlled parame-

ters were selected only to maintain body coherence since they could not be optimized

to meet a certain target weight. The points were selected to maximize the space

between them, following the methodology presented in appendix J.

The dataset was divided in a training and a testing set following a 80/20 distribu-

tion. The final topology of the NN was obtained using 5-fold CV. Figure A.1 shows

the performance of the NN to estimate the out-of-sample final HBM weight.
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Figure A.1: NN performance in out-of-sample final HBM weight prediction
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Appendix B

Distributions Resulting from the

Morphing Methodology

Figure B.1: Height and weight distribution for the ANSUR-II population and mor-

phed and original HBM
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Figure B.2: Height and waist circumference distribution for the ANSUR-II population

and morphed and original HBM

Figure B.3: Weight and waist circumference distribution for the ANSUR-II popula-

tion and morphed and original HBM
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Figure B.4: CWT distribution for the morphed (red) and original HBM (green) and

volunteer measurements (black) by Frank et al. (2011)

Figure B.5: Bicristal breadth and waist breadth distribution for the ANSUR-II pop-

ulation and morphed and original HBM
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Figure B.6: Pelvic link and stature distribution for the ANSUR-II population and

morphed and original HBM
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Appendix C

Surrogate Information

Table C.1: Surrogate general information
Cadaver ID No. 758 847 764 897 765

Age at Time of Death 69 44 65 70 67
Sex Male Male Male Male Male

Cause of Death
Alcoholic

Liver
Failure

Colon
Cancer

Stage IV
Melanoma

Liver
Cancer

Carcinogenic
Shock

Preservation Method Freezing Freezing Freezing Freezing Freezing
Bone Mineral Density

T-Score at Lumbar
Spine (modality)

-1.9 (DXA) 0.4 (DXA) -3.25
(QCT)* -1.6 (DXA) -2.2 (DXA)

* T-Scores calculated with QCT and DXA cannot be directly compared to each other. Bone quality is
specified in Table 4.1
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Table C.2: Surrogate anthropometry information (in mm unless noted)
Cadaver ID No. 758 847 764 897 765
Body Mass (kg) 71.7 58 80.7 61 87.1

Stature 1676 1753 1829 1690 1778
Vertex-to-Symphision Length 920 1000 980 950 1010
Top-of-Head to Trochanterion 810 930 935 855 950
Shoulder (Acromial) Height 1455 1524 1564 1465 1505
Waist Height (at Umbilicus) 960 955 1045 1030 1025
Waist Depth (at umbilicus) 216 171 168 160 204

Waist Breadth 312 284 341 344 382
Shoulder Breadth (Biacromial) 308 307 341 318 318

Chest Breadth - 4th Rib 329 292 331 304 371
Chest Breadth - 8th Rib 334 288 332 315 370
Chest Depth - 4th Rib 228 197 224 227 228
Chest Depth - 8th Rib 237 203 225 247 232

Hip Breadth 308 269 301 291 365
Buttock Depth 174 164 172 160 197

Shoulder-to-Elbow 365 375 375 345 395
Forearm-to-Hand 280 170* 455 455 485

Tibiale Height 480 475 520 455 470
Ankle Height (Outside) 80 68 80 70 70

Foot Breadth 87 85 93 89 87
Foot Length 235 245 260 245 250
Head Length 181 202 204 171 202
Head Breadth 158 155 145 142 151
Head Height 235 223 238 195 175

Head Circumference 588 587 583 554 545
Neck Circumference 395 366 354 378 410

Chest Circumference - 4th Rib 988 841 971 954 1091
Chest Circumference - 8th Rib 1002 843 1000 1010 1065

Waist Circumference - At
Umbilicus 1000 753 928 879 1059

Waist Circumference - 8cm above
Umbilicus 1057 791 948 979 1071

Waist Circumference - 8 cm below
Umbilicus 962 816 1006 909 1021
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Table C.3: Surrogate anthropometry information (in mm unless noted) (cont.)
Buttock Circumference 885 870 1040 914 1034
Thigh Circumference 412 400 514** 470 545

Lower Thigh Circumference 335 317 442** 390 429
Knee Circumference 359 340 453** 380 389
Calf Circumference 274 265 340** 325 338

Ankle Circumference 231 240 291** 255 255
Scye (Armpit) Circumference 380 390 420 390 465

Bicep Circumference 230 240 280 260 308
Elbow Circumference 238 240 300 250 264

Forearm Circumference 207 190 270 223 224
Wrist Circumference 164* —* 180 170 153

Seated Chest Breadth - 4th Rib 295 284 319 290 350
Seated Chest Breadth - 8th Rib 332 319 336 326 363

Seated Chest Breadth - at
Chestband 327 302 345 308 356

Seated Chest Depth - 4th Rib 235 190 253 255 245
Seated Chest Depth - 8th Rib 271 236 259 280 287

Seated Chest Circumference - 4th
Rib 970 820 980 900 1035

Seated Chest Circumference - 8th
Rib 1010 902 1010 970 1118

Seated Abdominal Breadth
(Umbilicus) 344 277 331 295 371

Seated Interacromial Distance 389 381 394 360 364
Seated Top of Head to T1 265 240 285 257 235

* Amputated
** Asymmetric
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Appendix D

PMHS Spine Acceleration

Figure D.1: PMHS spine accelerations with large (left) and small (right) bolster

structure)
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Appendix E

PMHS Chestband Contours

Figure E.1: PMHS chestband contours with large (left) and small (right) bolster

structure)
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Figure E.2: PMHS chestband contours with large (left) and small (right) bolster

structure) (cont.)
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Appendix F

PMHS Individual Injury

Evaluations

PMHS# 758

This surrogate sustained eleven anterior and four posterior rib fractures including

a unilateral flail chest (figure 4.21). The anterior section of the chest presented a

combination of ipsilateral and contralateral fractures along the shoulder belt path.

Figure F.1 shows the PMHS chestband deflection at 85 ms. The left anterolateral

deflection indicates that the rib fractures had already occurred in that area at this

point in time. The strain values (figure F.2) dropped for the fourth and sixth rib

gauges indicating that the rib fractures occurred between 60 to 65 ms into the event.

The MPS could not be calculated for the 6th rib due to the malfunction of two of

the three rosette channels. Only the information of the first channel (channel A) is

available.
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Figure F.1: Chestband deformation in PMHS# 758

Figure F.2: Rib strain in PMHS# 758

PMHS# 847

This surrogate did not sustain any injuries (figure 4.21). This surrogate showed

the lowest overall bolster-related deflection and lowest center console related deflection

out of the PMHS used in the configuration with the large bolster structure (figure

4.18).
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PMHS# 764

This surrogate sustained a single rib fracture (figure 4.21). This fracture occurred

on the eighth left rib close to the strain gauge location. The strain gauge was found

detached during the autopsy. The sudden increase in the strain reading (figure F.3),

of around 1000 µε/ms, was most likely due to deformation or failure of the gauge

once detached. This indicates that the strain gauge detached at around 62 ms.

Figure F.3: Rib strain in PMHS# 764

PMHS# 764

This surrogate sustained two anterior and one posterior rib fractures (figure 4.21).

The anterior rib fractures occurred on rib four bilateral to the seatbelt path. Figure

F.4 shows the PMHS chestband deflection at 75 ms. The left anterolateral deflection

indicates that the rib fractures had already occurred in that area at this point in

time. Figure F.5 shows how the strain increased with the shoulder belt force followed

by two consecutive drops in strain. This sudden drops in strain indicate that the rib

fractured in a time frame between 50 and 60 ms.
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Figure F.4: Chestband deformation in PMHS# 758

Figure F.5: Rib strain in PMHS# 758

PMHS# 765

This surrogate sustained three anterior and one lateral rib fracture (figure 4.21).

The anterior fractures occurred contralaterally, close to the shoulder belt path. The

lateral fracture occurred in the proximity of the center console. There was no instru-

mentation near the fractures. Therefore, no timing or additional information could

be gathered.

156



Appendix G

WorldSID and GHBMC Kinematic

and Kinetic Results
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Figure G.1: GHBMC (blue), WorldSID(red) and PMHS corridors (gray) for configu-

ration 1. CORA scores in parenthesis (GHBMC/WorldSID)
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Figure G.2: GHBMC (blue), WorldSID(red) and PMHS corridors (gray) for configu-

ration 2. CORA scores in parenthesis (GHBMC/WorldSID)
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Figure G.3: GHBMC (blue), WorldSID(red) and PMHS corridors (gray) for configu-

ration 3. CORA scores in parenthesis (GHBMC/WorldSID)
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Figure G.4: GHBMC (blue), WorldSID(red) and PMHS corridors (gray) for configu-

ration 4. CORA scores in parenthesis (GHBMC/WorldSID)
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Figure G.5: GHBMC (blue), WorldSID(red) and PMHS corridors (gray) for configu-

ration 5. CORA scores in parenthesis (GHBMC/WorldSID)
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Figure G.6: GHBMC (blue), WorldSID(red) and PMHS corridors (gray) for configu-

ration 6. CORA scores in parenthesis (GHBMC/WorldSID)
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Appendix H

WorldSID and GHBMC Video

Snapshots in Simplified Sled
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Figure H.1: WorldSID, GHBMC and PMHS response for configuration 1 at 50 ms

(up), 100 ms (center) and 150 ms (down)
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Figure H.2: WorldSID, GHBMC and PMHS response for configuration 2 at 50 ms

(up), 100 ms (center) and 150 ms (down)
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Figure H.3: WorldSID, GHBMC and PMHS response for configuration 3 at 50 ms

(up), 100 ms (center) and 150 ms (down)
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Figure H.4: WorldSID, GHBMC and PMHS response for configuration 4 at 50 ms

(up), 100 ms (center) and 150 ms (down)
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Figure H.5: WorldSID, GHBMC and PMHS response for configuration 5 at 50 ms

(up), 100 ms (center) and 150 ms (down)
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Figure H.6: WorldSID, GHBMC and PMHS response for configuration 6 at 50 ms

(up), 100 ms (center) and 150 ms (down)
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Appendix I

PMHS, WorldSID and GHBMC

Video Snapshots in Vehicle-Based

Sled
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Appendix J

Sampling Technique

Sampling the space for this particular application requires the exploration of a

non-rectangular, correlated space. For this purpose, a model-free, distance-based

algorithm was coded in Matlab. The sampling algorithm operates in the eight-

dimensional space formed by the parameters shown in table 7.1. The algorithm

uses a Simulated Annealing (SA) optimization technique (Kirkpatrick et al., 1983).

This non-linear optimization technique requires the definition of a loss function to be

minimized, a second algorithm to generate a valid first guess for the introduction of

new datapoints and a third algorithm the generate random, valid samples for the SA

algorithm to iterate.

The base Simulated Annealing optimization script was adopted from Vandekerck-

hove (2008). The loss function was set to create a maximin-distance criterion. That

is, the goal of the loss function is to maximize the minimum distance between any

two points. The loss function was defined as L = exp{ 1
N
[
∑N

i=1 log(d
∗
i )]}, where d∗i is

the distance from the ith point to its nearest neighbor and "N" is the total number

of datapoints in the sample, including the points from the current and all previous

iterations. (Pronzato and Müller, 2012).

The "first guess" algorithm to generate "n" new eight-dimensional points follows

these steps:

1. Estimate the probability (Pmin) of the elements that conform the boundaries
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of 90% of the ANSUR II population using Monte-Carlo analysis on the joint

probability distribution defined in chapter 3

2. Identify the absolute maximum and minimum height, weight and waist circum-

ference within the 90% of the population

3. Randomly select N points with their anthropometry measurements defined

within the anthropometry measurements within the limits defined in step 2

and the rest of the parameters defined within the limits defined in table 7.1

4. Re-sample the anthropometry points until all the points show a probability of

occurrence greater than Pmin

5. Algorithm finished

The algorithm to generate a random valid point for the SA algorithm to iterate

follows these steps:

1. Randomly select one point with its anthropometry measurements defined within

the limits defined in step 2 of the previous list and the rest of the parameters

defined within the limits defined in table 7.1

2. Re-sample the anthropometry until all the points show a probability of occur-

rence greater than Pmin

3. Algorithm finished

The SA parameters (e.g. cooling speed) were set to approximate the performace

of other maximin algorithms found in the literature (Auffray et al., 2012). The com-

parative performance of the algorithm was considered to be a good balance between

sampling optimization and computational time (table J.1)

180



Table J.1: Comparative performance of sampling algorithm
Present Algorithm Auffray et al. (2012)

# Samples 400 400

# Dimensions 8 8

dmin 0.61 0.66

# Iterations 450k 1M

Max # iteration 1M 1M

Time to completion 1h N/A
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Appendix K

Detailed Regression Model

Information

The following plots can be found in this appendix:

• Evolution λ and the number of neurons in the regression models

• Predicted PMHS response using NN

• Predicted and actual values

• Error whiskers

• Weighted error whiskers

• Prediction error for the last two iteration models created in chapter 7 with

respect to the control sampling parameters.

• Training output histogram before and after oversampling in the last iteration

The predictions shown in figures K.3 and K.4 include uncertainty in seatbelt

friction, center console ultimate strain and the anthropometry parameters that could

not be measured during the tests (i.e., pelvic link, thigh link and bicristal breadth).
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Figure K.1: Evolution of the number of neurons in the hidden layer

Figure K.2: Evolution of λ in the LASSO regressions
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Figure K.3: PMHS maximum lateral head excursion predicted by the NN (box plots)
and PMHS actual maximum lateral excursion (red points)

Figure K.4: PMHS probability of 3+ fractured ribs predicted by the NN (box plots)
and PMHS actual number of fractured ribs (red points)
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Figure K.5: Predicted and actual maximum lateral head excursion
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Figure K.6: Predicted and actual probability of 3+ fractured ribs
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Figure K.7: Maximum lateral head excursion prediction error whisker for linear re-
gression

Figure K.8: Maximum lateral head excursion prediction error whisker for LASSO
regression
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Figure K.9: Maximum lateral head excursion prediction error whisker for NN regres-
sion

Figure K.10: Probability of 3+ fractured ribs prediction error whisker for logistic
regression
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Figure K.11: Probability of 3+ fractured ribs prediction error whisker for LASSO
logistic regression

Figure K.12: Probability of 3+ fractured ribs prediction error whisker for NN regres-
sion
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Figure K.13: Maximum lateral head excursion weighted prediction error whisker for
linear regression

Figure K.14: Maximum lateral head excursion weighted prediction error whisker for
LASSO regression
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Figure K.15: Maximum lateral head excursion weighted prediction error whisker for
NN regression

Figure K.16: Probability of 3+ fractured ribs weighted prediction error whisker for
logistic regression
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Figure K.17: Probability of 3+ fractured ribs weighted prediction error whisker for
LASSO logistic regression

Figure K.18: Probability of 3+ fractured ribs weighted prediction error whisker for
NN regression
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Figure K.19: Maximum lateral head excursion prediction error in iteration 7 (blue:
linear regression; red: LASSO regression; green: NN)
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Figure K.20: 3+ fractured ribs prediction error in iteration 7 (blue: logistic regression;
red: LASSO logistic regression; green: NN)
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Figure K.21: Maximum lateral head excursion prediction error in iteration 8 (blue:
linear regression; red: LASSO regression; green: NN)
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Figure K.22: 3+ fractured ribs prediction error in iteration 8 (blue: logistic regression;
red: LASSO logistic regression; green: NN)
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Figure K.23: Training output histogram before and after oversampling in the last
iteration
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