
Reconstructing an Epidemic Outbreak
Using Steiner Connectivity

A
Thesis

Presented to
the faculty of the School of Engineering and Applied Science

University of Virginia

In partial fulfillment
of the requirements for the degree

Master of Science

in

Computer Science
by

Ritwick Mishra

December 2022

APP A T

is

is s bmi e i ar ial l illme o e re ireme s
or e e ree o

or

isor

isor

ommi ee ember

ommi ee ember

ommi ee ember

ommi ee ember

ommi ee ember

ommi ee ember

e e or e ool o i eeri a lie ie e

e i er es ool o i eeri a lie ie e

Thesis

Master of Science

Ritwick Mishra

This Thesis has been read and approved by the examining committee:

Anil Vullikanti

Abhijin Adiga

Jundong Li

Madhav Marathe

December 2022

© Copyright by Ritwick Mishra 2022

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box

1866, Mountain View, CA 94042, USA.

http://creativecommons.org/licenses/by/4.0/

Acknowledgements

I would like to sincerely thank my advisors Professors Anil Vullikanti and Abhijin Adiga for their constant

guidance and encouragement throughout my time working with them. It is only due to their steadfast support

that I have been able to meet the myriad challenges involved in writing and defending this Thesis. I would

like to thank my collaborators Gursharn Kaur and Jack Heavey for their valuable inputs and for our fruitful

discussions.

I would like to thank Professors Jundong Li and Madhav Marathe for taking the time to be on my Thesis

examining committee. I am privileged to be part of the Biocomplexity Institute here at UVA. I would also

like to thank my professors at the department of Computer Science for creating an environment for learning

and research.

I dedicate this Thesis to my mother, whose love and support is my foundation. This work would not be

possible without the blessings of my grandparents.

iv

Abstract

Only a subset of infections is actually observed in an outbreak, due to multiple reasons such as asymp-

tomatic cases and under-reporting. Therefore, inferring the state of the epidemic, given some observed cases,

is an important step in formulating our response. We consider two approaches for reconstructing a cascade

and inferring epidemic properties.

First, we consider the problem of finding a maximum likelihood (MLE) solution to the cascade re-

construction problem for the Independent Cascade (IC) model (referred to as CASCADEMLE). This is a

common approach in many inference problems, and can be shown to be a variation of the classical Steiner

subgraph problem, which connects a subset of observed infections. In contrast to prior works on epidemic re-

construction, which consider the standard Steiner tree objective, we show that a solution to CASCADEMLE,

based on the actual MLE objective, has a very different structure. We design a logarithmic approximation

algorithm for CASCADEMLE, and evaluate it on multiple synthetic and social contact networks, including

a contact network constructed for the University of Virginia (UVA) hospital. Our algorithm has significantly

better performance compared to a prior baseline.

The MLE solution might not be very informative in many regimes, as our experiments show. In such

settings, it is useful to consider the actual distribution of cascades, which are consistent with the observed

infections. This can be shown to correspond to the problem of sampling Steiner trees which contain a set of

terminal nodes, with a probability that depends on both the edges in the tree and the edges not in the tree.

While there has been a lot of work on random sampling of spanning trees, random sampling of Steiner trees

is open. A prior approach considers random generation of spanning trees with probability proportional to the

product of probabilities of edges in the tree. We show that this gives a very different distribution on Steiner

trees. We discuss partial progress in generating Steiner trees with the correct distribution.

v

Table of Contents

Acknowledgements iv

Abstract v

List of Figures viii

1 Introduction 1

1.1 Our Contributions . 4

1.2 Related work . 5

1.2.1 Cascade reconstruction and source detection . 5

1.2.2 Connections to Steiner tree problems . 6

1.2.3 Sampling trees . 7

2 Finding the MLE cascade 8

2.1 Preliminaries . 8

2.1.1 Spread model . 8

2.1.2 Probability of a cascade . 8

2.1.3 MLE solution . 9

2.1.4 The CASCADEMLE problem . 9

2.2 Difference between CASCADEMLE and Steiner tree solutions 10

2.3 Our approach . 11

vi

2.3.1 Observed uninfected nodes . 15

2.4 Experimental Results . 18

2.4.1 Dataset and methods . 18

2.4.2 Results . 20

3 Sampling Cascades 26

3.1 Difference in the cascade distributions . 27

3.2 Sampling minimal Steiner trees . 28

3.2.1 Preliminaries . 28

3.2.2 Analysis of the early-termination LERW algorithm 30

3.2.3 Our approach . 32

3.3 Ongoing work . 34

4 Summary and Future Work 35

References 37

vii

List of Figures

1.1 In this example, node 1 is the source (or root), the red nodes are the infections, and the red
edges represent the infection cascade Tr. Here, δTr = {(2, 4), (3, 4), (1, 8), (5, 9), (5, 7)},
and λTr = {(4, 5), (6, 5)}. Each edge e in Tr contributes pe to P (Tr), while each edge e in
δTr

and λTr
contributes (1 − pe), except for edge (4, 5). Neighbors 4 and 5 get infected at

the same time, so they cannot attempt to infect each other. 3

2.1 In this example, node r is the root, and S = {r, t} is the set of terminals. A1 ∪ A2 is
a complete bipartite graph on nodes w1, . . . , wN+1, and nodes w′

1, . . . , w
′
N+1. T1 is the

purple path between r, t through w1, w
′
1, while T2 is the red path between r, t through nodes

u1, .., uN . 12
2.2 Percentage error between Cost(T) and Cost(T) for cascades on random power-law graphs

with varying diffusion probability p and power-law exponent. 21
2.3 Performance of MINCOSTSTEINERTREE for random and frontier observation schemes.

(a) G(300, 0.02); (b) arxiv; and (c) hospital-icu, with fixed p = 0.10 22
2.4 Performance of MINCOSTSTEINERTREE for (a) G(300, 0.02) with p = 0.05; (b) arxiv

with p = 0.20; and (c) hospital-icu with p = 0.05. 23
2.5 More results for performance of MINCOSTSTEINERTREE for random and frontier

observation schemes, with 25 trials. Network: arxiv with transmission probability: sub-
figures (1-4) 0.05, (5-6) 0.20. 24

2.6 More results for performance of MINCOSTSTEINERTREE for random and frontier
observation schemes, with 50 trials. (1-4) Averaged over 5 random G(300, 0.02) networks:
with diffusion probability p = (a) 0.10, (b) 0.20; and (5-6) hospital-icu for p = 0.05. . 25

viii

Chapter 1

Introduction

In most kinds of outbreaks, including COVID-19 [16], Hospital Associated Infections (HAIs), such as

Methicillin-resistant Staphylococcus aureus (MRSA), plant and livestock diseases [12], it is important to

have adequate knowledge of the spread of the disease to respond effectively. In most instances, only a subset

of infections is known at any time, due to multiple reasons such as prevalence of asymptomatic cases [6],

delays in discovery of pests and pathogens, etc. Such outbreak events require a prompt response, such as

isolation of infected patients or quarantining infested farms. However, responding to such outbreaks is ham-

pered by the lack of knowledge about the state of the epidemic. If we could reconstruct the cascade (or the

who-infected-who subgraph corresponding to a diffusion outcome), for instance, by finding the most likely

cascade or by sampling a probable cascade, we would be able to not only identify the undetected infections

but also gain insight into how the infection spreads. This inferred knowledge could play a crucial role in

both surveillance and control of the epidemic.

The problem of cascade reconstruction as well as the closely related problem of source detection has

been studied extensively for several classes of network diffusion models on networks [14, 6, 20, 15]. These

works assume partial information is available about the cascade, e.g., a subset of nodes which are known to

be infected [6], or both infection state and time of infection [14, 20, 15]. In Rozenshtein et al. (2016), the

input consists of a temporal interaction network, and a sample of nodes observed as infected. Their goal is

to recover the flow of the spread, which would allow them to discover the sources, as well as the missing

1

infections. They use a directed Steiner tree based approach in which they minimize a cost depending only on

the edges within the tree. Jang et al. (2021) argue for the consideration of node attributes in the problem of

recovering the asymptomatic infections. They formulate this problem as a directed prize-collecting Steiner

tree problem, in which the cost is still based only on the edges contained in the tree.

The related problem of sampling probable cascades from a distribution consistent with the observed

infections can be especially important in cases where the Maximum Likelihood cascade is not very infor-

mative. Sampling cascades can also be used to find the probability of infection of nodes for which there

is no state information [19]. This problem is less well-studied in comparison to the problem of finding the

maximum likelihood cascade.

The simplest SIR type network model, also referred to as the independent cascade (IC) model [8] de-

scribes an epidemic process where an infection spreads on each edge e of a contact network G = (V,E) with

probability pe. In this process, each infected node gets one chance to infect its susceptible neighbors, after

which it is removed from the process. The probability of a cascade generated by such a process depends not

only on the infections that succeeded but also on the attempts which failed. Thus we must take into account

the edges that make up the cascade as well as the edges not in the cascade across which infection attempt

failed.

Consider a cascade Tr rooted at root r on a network G = (V,E) under this diffusion model. Let δTr
be

the set of edges not in Tr with exactly one endpoint in Tr, i.e., δTr = {(u, v) ∈ E \E(Tr) : u ∈ V (Tr), v /∈

V (Tr)}. Let λTr
be the set of edges not in Tr with both endpoints in Tr, i.e. λTr

= {(u, v) ∈ E \ E(Tr) :

u, v ∈ V (Tr). Let dTr
(r, u) denote the distance between root node r and u, in the subgraph Tr. Under the

IC dynamics, the probability of the cascade subgraph Tr is:

P (Tr) =
∏

e∈E(Tr)

pe
∏

e∈δTr

(1− pe)
∏

e=(u,v)∈λTr

dTr (r,u)̸=dTr (r,v)

(1− pe) (1.1)

The first term corresponds to the contribution of edges in the subgraph. Since every infected node gets a

single chance to infect a susceptible neighbor, we have two kinds of (1− pe) terms contributed by edges not

in Tr: (a) with exactly one endpoint in Tr, and (b) with both endpoints in Tr, which are at different distances

from the root. Please see Figure 1.1 for an illustrative example.

2

Figure 1.1: In this example, node 1 is the source (or root), the red nodes are the infections, and the red
edges represent the infection cascade Tr. Here, δTr

= {(2, 4), (3, 4), (1, 8), (5, 9), (5, 7)}, and λTr
=

{(4, 5), (6, 5)}. Each edge e in Tr contributes pe to P (Tr), while each edge e in δTr
and λTr

contributes
(1− pe), except for edge (4, 5). Neighbors 4 and 5 get infected at the same time, so they cannot attempt to
infect each other.

Let S ⊆ V be the subset of observed infections. The cascade reconstruction problem (referred to as

CASCADEMLE) involves finding a connected subgraph Tr of G such that S ⊆ V (Tr). Using the natural

maximum likelihood estimation (MLE) approach, the goal of the CASCADEMLE problem is to find a Tr

which maximizes the probability as given by Equation 1.1. Most prior work on reconstructing epidemic

cascades has mainly been restricted to the regular Steiner tree objective, e.g., [6, 14], which corresponds to

the the product of probabilities of edges only within Tr. This immediately connects with the vast literature

on algorithms for the Steiner tree problem. We note that Zhu and Ying (2014) consider the actual cost from

the source detection perspective, but mainly focus on trees for rigorous analysis (which is then extended to

general graphs through various heuristics).

The MLE solution may not always be informative. In some regimes, the MLE cascade does not recover

any part of the ground-truth cascade as we show in our study. In such settings, it is useful to consider

the actual distribution of cascades, which are consistent with the given partial observations. Instead of

finding the MLE cascade, we could sample from this distribution to gain information not provided by the

MLE and make inferences about missing infections. This problem of sampling cascades was first studied

3

in Xiao et al. (2018). However they do not consider the actual probability distribution which consists of

contributions not only from edges within the cascade but also from edges outside the cascade corresponding

to unsuccessful infections, as specified by Equation 1.1.

1.1 Our Contributions

We study the problem of finding an MLE solution for reconstructing an epidemic cascade for the IC model,

referred to as the CASCADEMLE problem, in Chapter 2.

• We show that a solution to CASCADEMLE can have very different structure from one found using the

regular Steiner tree objective. In particular, there exist instances where the solution to CASCADEMLE

has diameter Θ(n), where as the Steiner tree solution can have constant diameter. We observe a

significant difference in real instances as well.

• We study the conditions under which the MLE based solution to the cascade reconstruction problem

will fail. We find that the MLE based approach is not good when the graph is very dense.

• The CASCADEMLE hasn’t been studied before. For the independent cascade model, we present an

algorithm with a logarithmic approximation factor, under natural assumptions about the structure of

social contact networks.

• Finally, we evaluate our formulation and algorithms for several synthetic and realistic contact net-

works, including a contact network for the University of Virginia (UVA) Hospital, constructed using

Electronic Health Record (EHR) data. Our results show improved performance compared to a prior

baseline in identifying missing infections.

In our next study, we consider the problem of sampling probable cascades spanning the observed infec-

tions, and present some partial results in Chapter 3.

• We show that the correct distribution of cascades, under IC dynamics, is very different from the

distribution of Steiner trees as studied in the prior work [19].

4

• We observe that Propp and Wilson’s algorithm of sampling random spanning trees, when adapted for

Steiner trees, has a distribution which is very different to the one claimed in Xiao et al. (2018).

• We propose a sampling importance resampling method to correct for the bias in the distribution of the

adapted Propp and Wilson’s algorithm.

1.2 Related work

1.2.1 Cascade reconstruction and source detection

Several types of inference problems have been studied in the context of diffusion processes on networks.

These works vary in terms of what is observed, knowledge of network and diffusion model class, inference

objective etc. A popular inference problem is the source detection problem which is closely related to the

cascade reconstruction problem. Shah and Zaman (2011) were the first to study the source detection problem.

They consider the SI model, and assume that all the infections are given but the infection times are unknown,

and the goal is to determine the source. They study the ML estimator for the source detection problem,

and show that it can be solved exactly on trees using a notion of rumor centrality. Zhu and Ying (2014)

extend this work to the SIR model and formulate the true ML estimator under this model. They recognize

the intractability of this optimization problem and propose a simpler and more tractable version. In this

sense, their formulation of the source detection problem is similar to our formulation of the CASCADEMLE

problem. In their work, they assume that they know the network and all the infected nodes, and the goal is

then to infer the source of the infection. There are numerous formulations and estimators proposed for the

source detection problem over the past decade [7].

The problem of cascade reconstruction has been less well-studied in comparison. Rozenshtein et al. (2016)

introduce a directed Steiner tree based algorithm, CULT, for reconstructing an epidemic cascade, when the

underlying network is dynamic, and a subset of infections, along with their times, are given. They do

not make any assumptions about the diffusion model and achieve the current state-of-the-art performance

among Steiner tree-based cascade reconstruction frameworks. Jang et al.(2021) improve on this approach

especially for HAIs, by formulating the missing infection detection problem as a directed prize-collecting

5

Steiner tree problem. They use this approach to detect asymptomatic cases of HAIs when the hospital

mobility log is represented as a temporal network and a (hidden) disease model that starts independently

from multiple sources. They argue that it is important to take into account individual risk factors in the

form of node attributes in addition to the disease spread along the edges. They note that in the absence of

node attributes, their method reduces to CULT. Both these works consider a general cost structure, but only

incorporate costs of edges in the subgraph; in contrast, we consider the true MLE cost.

Another approach to reconstruct cascades is by sampling from the set of epidemic cascades, instead of

finding the MLE solution. Xiao et al.(2018) map this to the problem of sampling Steiner trees. However,

they only consider the probability of edges within the tree, and ignore the contribution of edges on which

transmission failed. We examine this work in detail as part of our research into sampling probable cascades.

1.2.2 Connections to Steiner tree problems

Steiner trees have found natural connection to the problem of cascade reconstruction. Given the vast amount

of literature on Steiner tree problems, there is considerable value in formulating cascade reconstruction

as a Steiner tree problem. Rozenshtein et al. (2016) adapt the best known approximation algorithm for

the directed Steiner tree problem given by Charikar et al. (1999), into a more-efficient form by leveraging

the specific structure of their problem. The Charikar algorithm is a greedy algorithm which recursively

constructs ρ-level trees by joining subtrees based on minimizing the marginal normalized length. It has an

approximation guarantee of ρ(ρ−1)|S|1/ρ, where ρ is a depth of the recursion and S is the set of terminals.

We can trade efficiency for quality by our choice of ρ. Rozenshtein et al. propose a approximation-preserving

improvement to the efficiency of this algorithm by pre-computing all the shortest path distances for all pairs

of nodes.

Jang et al. (2021) formulate the asymptomatic infection detection problem as a directed prize-collecting

Steiner tree problem. By taking into account the special aspects of their problem setting, they reduce this

to a directed Steiner tree problem, following which they also use the Charikar algorithm to approximately

solve their problem.

In our work, we map the CASCADEMLE to the node-weighted Steiner tree problem, under the inde-

pendent cascade (IC) model. The first nearly best-possible approximation algorithm for the node-weighted

6

Steiner tree problem is given by Klein and Ravi (1995). This polynomial-time algorithm to approximate

the minimum weighted Steiner tree has a logarithmic approximation factor of 2 ln |S|, where S is the set of

terminals. They also note that due to its connection to the set cover problem, there is no polynomial-time

algorithm that achieves a better approximation factor than logarithmic. Guha and Khuller (1999) improve

the approximation factor slightly by generalizing some of the notions presented in Klein and Ravi [9].

1.2.3 Sampling trees

The problem of sampling trees and other combinatorial structures from graphs has been extensively re-

searched in the community [2, 13]. Of relevance is the problem of sampling random spanning trees. Propp

and Wilson (1998) present a loop-erased random walk (LERW)-based algorithm to generate random span-

ning anti-arborescences of a directed graph in accordance with the distribution given by the product of the

weights on its edges. They analyze this LERW-based algorithm by showing that it is equivalent to a cycle-

popping algorithm based on a deterministic view of the random walk called the stack model. Using this

equivalence, they show that the output of the LERW algorithm is governed by the proper distribution. The

problem of sampling Steiner trees is the main subject of Xiao et al. (2018), and we examine their proposed

algorithms in detail as part of our research. Besides this, there seem to be no other works discussing this

problem, as far as we know.

7

Chapter 2

Finding the MLE cascade

2.1 Preliminaries

2.1.1 Spread model

We consider the simplest form of the Susceptible-Infected-Recovered (SIR) model called the Independent

Cascade model on a contact graph G = (V,E). In this model, each node is in one of Susceptible (S),

Infectious (I) or Recovered (R) state. We start off with all nodes in Susceptible state except the source nodes

which are in Infected state. At each time-step, an infected node u can infect each susceptible neighbor v

with probability pu,v , independent of other neighbors of v. Each infected node gets only one opportunity

to spread the infection following which they enter into Recovered state. Here, we state the likelihood and

problem for the IC model.

2.1.2 Probability of a cascade

An outbreak, starting at a node r, is referred to as a cascade, and can be represented as a subgraph Tr =

(V (Tr), E(Tr)), rooted at r. Let δTr be the set of edges not in Tr with exactly one endpoint in Tr, i.e.,

δTr
= {(u, v) ∈ E \ E(Tr) : u ∈ V (Tr), v /∈ V (Tr)}. Let λTr

be the set of edges not in Tr with both

endpoints in Tr, i.e. λTr
= {(u, v) ∈ E \ E(Tr) : u, v ∈ V (Tr). Under the IC dynamics, the probability of

8

the cascade Tr is:

P (Tr) =
∏

e∈E(Tr)

pe
∏

e∈δTr

(1− pe)
∏

e=(u,v)∈λTr ,
dTr (r,u)̸=dTr (r,v)

(1− pe) (2.1)

where dTr
(r, u) denotes the distance between root node r and u, in the subgraph Tr. The first term corre-

sponds to the contribution of edges in the subgraph. Since every infected node gets a single chance to infect

a susceptible neighbor, we have two kinds of (1− pe) terms contributed by edges not in Tr: (a) with exactly

one endpoint in Tr, and (b) with both endpoints in Tr, which are at different distances from the root. Please

see Figure 1.1 for an example.

2.1.3 MLE solution

We assume that subsets S0, S1 are given where S0 is a set of nodes which are known not to be infected in

the outbreak, while S1 is a set of nodes known to be infected. We also assume the outbreak starts at a single

node, which need not be in S1. We say that a cascade Tr is consistent with (S0, S1) if S1 ⊂ V (T) and

S0 ⊂ V − V (T). The MLE problem involves finding a connected subgraph Tr = (V (Tr), E(Tr)) rooted at

a node r which is consistent with the given (S0, S1), and maximizes P (Tr); this is equivalent to the optimal

sample path detection problem as described in [20]. Taking the log of the probabilities in P (Tr), we can

define the cost of Tr as

Cost(Tr) =
∑

e∈E(Tr)

ce +
∑

e∈δTr

de +
∑

e=(u,v)∈λTr ,
dTr (r,u) ̸=dTr (r,v)

de (2.2)

Here, ce = − log pe is the cost of including an edge e in the subgraph and de = − log (1− pe) is the cost of

excluding an edge e from the subgraph.

2.1.4 The CASCADEMLE problem

Given subsets S0, S1, the goal is to find a connected subgraph Tr rooted at some node r, which is consistent

with (S0, S1), and minimizes Cost(Tr).

9

We say a solution Tr is an α-approximation if Cost(Tr) ≤ αCost(T ⋆
r⋆), where T ⋆

r⋆ is an optimal solution

to the instance of CASCADEMLE. Note that the root of Tr and T ⋆
r⋆ need not be the same; we only need that

Tr be consistent with (S0, S1).

Remark: In practice, the costs of exclusion of the edges between same-level nodes in the cascade,∑
(u,v)∈λT ,dT (r,u)=dT (r,v) d(u,v), is a very small fraction of Cost(Tr) (as we verify in our experiments).

This is also supported by the analysis of [1] that many realistic social and information networks are tree-like,

where this condition will hold. In such a setting, P (T) is a good approximation to Pr(Tr):

P (T) =
∏

e∈E(T)

pe
∏
e∈δT

(1− pe)
∏
e∈λT

(1− pe). (2.3)

Observe that P (T) does not depend on the root. We consider the corresponding cost,

Cost(T) =
∑

e∈E(T)

ce +
∑
e∈δT

de +
∑
e∈λT

de (2.4)

and will focus on minimizing Cost(T).

Our algorithm (described in section 2.3) considers the setting where we are given an undirected contact

graph G = (V,E, p) with edge infection probabilities p, and a set of observed infections S. The set of

observed infected nodes S forms the terminal set in the output Steiner tree. Next we show that with a slight

modification, this approach extends to the setting where we are also given the set of observed uninfected

nodes. For a node u, let Ne(u) denote the set of edges incident on it.

2.2 Difference between CASCADEMLE and Steiner tree solutions

As mentioned earlier, previous works [14, 6] minimize the regular Steiner tree cost which consists of only

the first term in Cost(T), namely Costst(T) =
∑

e∈E(T) ce. Here we show that a solution which minimizes

Costst(T), can have a very different structure compared to the CASCADEMLE solution. We also observe

that there exist instances in which the CASCADEMLE solution does not recover the true cascade.

10

Observation 2.2.1. There exist instances in which a CASCADEMLE solution T = argminT ′ Cost(T ′) has

diameter Θ(n), while the Steiner tree solution Tst = argminT ′ Costst(T
′) has diameter Θ(1).

Proof. Consider the class of graphs in Figure 2.1 where A1∪A2 form a complete bipartite graph with |A1| =

|A2| = N + 1 and terminal node set S = {r, t}. Assume the homogeneous setting i.e. ce = c, de = d for

every e ∈ E. Consider trees T1 = (r, w1, w
′
1, t), and T2 = (r, u1, . . . , uN , t). Observe that Costst(T1) = 3c

and Costst(T2) = (N +1)c. It can be verified that T1 minimizes the Costst(·) objective. On the other hand,

we have Cost(T1) = 3c+ 2Nd+ 2d and Cost(T2) = (N + 1)c+ 2d. It can be verified that there exists a

sufficiently low value of p for which T2 minimizes Cost(·), and thus, is the CASCADEMLE solution. Hence

there exist regimes in which the CASCADEMLE solution has a diameter θ(n), while the Steiner tree solution

has a diameter θ(1).

Observation 2.2.2. There exist instances in which a CASCADEMLE solution does not recover the true

cascade.

Proof. Consider the class of graphs in Figure 2.1. Suppose T1 is the ground-truth cascade comprising nodes

{r, t, w1, w
′
1}. Given terminal set S = {r, t}, the MLE approach will pick T2 over T1, unless the cost of

excluding the bipartite edges is insignificant, i.e., p is small enough. Thus, there exist regimes in which the

MLE solution fails to recover any part of the true cascade.

2.3 Our approach

Assumption 1. For every edge in the network, pe ≤ 1/2 or, equivalently, c(e) ≥ d(e), for all e ∈ E.

Lemma 2.3.1. Under assumption 1, a CASCADEMLE solution T ⋆ is a tree.

Assumption 1 states that the cost of including an edge is greater than than the cost of excluding it. This

implies that an optimal subgraph is a tree, as we can always reduce the cost of the subgraph by excluding

(rather than including) any edge that forms part of a cycle. Without this assumption, there exist instances

where an optimal solution could have cycles. For example, in the homogeneous setting where all edges have

the same costs c and d and c < d, an optimal solution could be one which spans the whole graph. Thus,

11

Figure 2.1: In this example, node r is the root, and S = {r, t} is the set of terminals. A1 ∪A2 is a complete
bipartite graph on nodes w1, . . . , wN+1, and nodes w′

1, . . . , w
′
N+1. T1 is the purple path between r, t through

w1, w
′
1, while T2 is the red path between r, t through nodes u1, .., uN .

under Assumption 1, we formulate the problem of finding an optimal subgraph, consistent with observed

infected nodes S, as the problem of finding a minimum weighted Steiner tree with terminal nodes S on a

node-weighted graph, in our algorithm MINCOSTSTEINERTREE.

In Algorithm 1, we weigh each node by the sum of the costs of exclusion of each of its incident edges,

and each edge by the difference between its costs of inclusion and exclusion. Note that under Assumption 1,

the edge weights would always be non-negative. Following the reduction to a purely node-weighted graph,

this becomes a node weighted Steiner tree problem, where our goal is to find the minimum-weighted Steiner

tree with terminal set S.

Algorithm 1 runs in polynomial time as we can construct the node-weighted graph in polynomial time

and the Klein and Ravi (1995) algorithm has a polynomial time implementation. We now prove that this

algorithm has a logarithmic approximation factor.

Theorem 2.3.2. Let T̂ be the tree returned by Algorithm 1, and let T ∗ be an optimal solution to the CAS-

CADEMLE instance. Then T̂ is consistent with S, and

Cost(T ∗) ≤ Cost(T̂) ≤ 4 ln |S| · Cost(T ∗) (2.5)

12

Algorithm 1 MINCOSTSTEINERTREE

Input: An undirected contact graph G = (V,E, p) and a set of observed infected nodes S
Output: Tree Tr consistent with S

1: for each edge e do
2: Compute the cost of inclusion ce = − log pe and cost of exclusion de = − log (1− pe)
3: end for
4: Construct a node and edge-weighted graph G′ from G, by assigning weights as below:
5: for each node u do
6: w(u)←

∑
e∈Ne(u)

de
7: end for
8: for each edge e do
9: w(e)← ce − de

10: end for
11: Convert G′ to a purely node-weighted graph Ĝ by splitting each edge with a new node having the same

weight.
12: Find the minimum weighted Steiner tree T̂ in Ĝ with terminal set S, using Klein and Ravi’s (1995)

algorithm for the node-weighted Steiner tree problem.
13: Let r be any node in T̂
14: return T̂ , with root r

Proof of Theorem 2.3.2. For any Steiner tree T,

∑
u∈V (T)

w(u) +
∑

e∈E(T)

w(e) =
∑

u∈V (T)

∑
e∈Ne(u)

de +
∑

e∈E(T)

(ce − de)

=
∑

u∈V (T)

∑
e∈Ne(u)∩E(T)

de +
∑

u∈V (T)

∑
e∈Ne(u)∩λT

de

+
∑

u∈V (T)

∑
e∈Ne(u)∩δT

de +
∑

e∈E(T)

(ce − de)

= 2
∑

e∈E(T)

de + 2
∑
e∈λT

de +
∑
e∈δT

de +
∑

e∈E(T)

(ce − de)

=
∑

e∈E(T)

ce +
∑

e∈E(T)

de + 2
∑
e∈λT

de +
∑
e∈δT

de

13

= Cost(T) +
∑

e∈E(T)

de +
∑
e∈λT

de (2.6)

⇒
∑

u∈V (T)

w(u) +
∑

e∈E(T)

w(e) ≥ Cost(T) (2.7)

Continuing from (2.6) and using Assumption 1,

∑
u∈V (T)

w(u) +
∑

e∈E(T)

w(e) ≤ Cost(T) +
∑

e∈E(T)

ce +
∑
e∈λT

de

= 2 Cost(T)−
∑
e∈δT

de

≤ 2 Cost(T) (2.8)

From 2.7 and 2.8, for any Steiner tree T , we have

Cost(T) ≤
∑

u∈V (T)

w(u) +
∑

e∈E(T)

w(e) ≤ 2 Cost(T) (2.9)

This holds for T̂ , the Steiner tree returned by the Algorithm.

Cost(T̂) ≤
∑

u∈V (T̂)

w(u) +
∑

e∈E(T̂)

w(e) (2.10)

Klein and Ravi’s algorithm has a worst-case approximation factor of 2 ln |S|. Hence,

∑
u∈V (T̂)

w(u) +
∑

e∈E(T̂)

w(e) ≤ 2 ln |S|

 ∑
u∈V (T∗)

w(u) +
∑

e∈E(T∗)

w(e)

≤ 4 ln |S| Cost(T ∗) (2.11)

Combining (2.10) and (2.11),

Cost(T̂) ≤ 4 ln |S| Cost(T ∗) (2.12)

14

2.3.1 Observed uninfected nodes

Our approach extends easily to the setting where the set of observed uninfected nodes S0 is given in addition

to the set of observed infected nodes S1. Our goal is to find an optimal subgraph consistent with S0, S1. Note

that we assume the observed uninfected nodes were never part of the cascade, i.e., they remained uninfected

throughout the spreading process.

Let κ = {(u, v) ∈ E \E(T) : u ∈ S0, v ∈ T} be the set of edges with one endpoint in S0 and the other

in the cascade T . In this setting, define δT the set of edges not in cascade with one endpoint in cascade and

the other in set V \ (S0 ∪ V (T)), i.e., δT = {(u, v) ∈ E \E(T) : u ∈ V (T), v ∈ (V \ (S0 ∪ V (T))}. Here

λT is the same as before, i.e, λT = {(u, v) ∈ E \ E(T) : u, v ∈ T}. Then the cost of a subgraph T , under

IC dynamics, can be defined as:

Cost(T) =
∑

e∈E(T)

ce +
∑
e∈λT

de +
∑
e∈δT

de +
∑
e∈κ

de (2.13)

Our goal is to find a connected subgraph consistent with S0, S1, and which minimizes Cost(T). Here we

present algorithm MINCOSTSTEINERTREE-OBS-UNINFECTED, which is only a slight modification of our

previous algorithm: we remove the nodes known to be uninfected, after constructing the node and edge-

weighted graph. This ensures that the returned tree is consistent with S0.

Algorithm 2 has the same approximation ratio as the previous algorithm 1.

Theorem 2.3.3. Let T̂ be the tree returned by Algorithm 2, and let T ∗ be an optimal solution to the CAS-

CADEMLE instance. Then T̂ is consistent with S0, S1, and

Cost(T ∗) ≤ Cost(T̂) ≤ 4 ln |S1| · Cost(T ∗) (2.14)

15

Algorithm 2 MINCOSTSTEINERTREE-OBS-UNINFECTED

Input: An undirected contact graph G = (V,E, p), set of observed uninfected nodes S0, a set of observed
infected nodes S1

Output: Tree Tr consistent with S0, S1.
1: for each edge e do
2: Compute the cost of inclusion ce = − log pe and cost of exclusion de = − log (1− pe)
3: end for
4: Construct a node and edge-weighted graph G′ from G, by assigning weights as below:
5: for each node u do
6: w(u)←

∑
e∈Ne(u)

de
7: end for
8: for each edge e do
9: w(e)← ce − de

10: end for
11: Remove all the nodes in S0 (and their edges) from G′.
12: Convert G′ to a purely node-weighted graph Ĝ by splitting each edge with a new node having the same

weight.
13: Find the minimum weighted Steiner tree T̂ in Ĝ with terminal set S1, using Klein and Ravi’s (1995)

algorithm for the node-weighted Steiner tree problem.
14: Let r be any node in T̂ .
15: return T̂ , with root r.

Proof for Theorem 2.3.3. For any Steiner tree T ,

∑
u∈V (T)

w(u) +
∑

e∈E(T)

w(e) =
∑

u∈V (T)

∑
Ne(u)

de +
∑

e∈E(T)

(ce − de)

=
∑

u∈V (T)

∑
Ne(u)∩E(T)

de +
∑

u∈V (T)

∑
Ne(u)∩λT

de +
∑

u∈V (T)

∑
Ne(u)∩δT

de

+
∑

u∈V (T)

∑
Ne(u)∩κ

de +
∑

e∈E(T)

(ce − de)

16

= 2
∑

e∈E(T)

de + 2
∑
e∈λT

de +
∑
e∈δT

de +
∑
e∈κ

de +
∑

e∈E(T)

(ce − de)

=
∑

e∈E(T)

ce +
∑

e∈E(T)

de + 2
∑
e∈λT

de +
∑
e∈δT

de +
∑
e∈κ

de

= Cost(T) +
∑

e∈E(T)

de +
∑
e∈λT

de (2.15)

⇒
∑

u∈V (T)

w(u) +
∑

e∈E(T)

w(e) ≥ Cost(T) (2.16)

Continuing from 2.15 and using Assumption 1,

∑
u∈V (T)

w(u) +
∑

e∈E(T)

w(e) ≤ Cost(T) +
∑

e∈E(T)

ce +
∑
e∈λT

de +
∑
e∈δT

de +
∑
e∈κ

de −
∑
e∈δT

de −
∑
e∈κ

de

= 2 Cost(T)−
∑
e∈δT

de −
∑
e∈κ

de

≤ 2 Cost(T) (2.17)

From (2.16) and (2.17), for any Steiner tree T , we have

Cost(T) ≤
∑

u∈V (T)

w(u) +
∑

e∈E(T)

w(e) ≤ 2 Cost(T)

This holds for T̂ , the Steiner tree returned by the algorithm 2.

Cost(T̂) ≤
∑

u∈V (T̂)

w(u) +
∑

e∈E(T̂)

w(e) (2.18)

Klein and Ravi’s algorithm has a worst-case approximation factor of 2 ln |S1|. Hence,

∑
u∈V (T̂)

w(u) +
∑

e∈E(T̂)

w(e) ≤ 2 ln |S1|

 ∑
u∈V (T∗)

w(u) +
∑

e∈E(T∗)

w(e)

≤ 4 ln |S1| Cost(T ∗) (2.19)

17

Combining (2.18) and (2.19),

Cost(T̂) ≤ 4 ln |S1| Cost(T ∗) (2.20)

2.4 Experimental Results

2.4.1 Dataset and methods

We experimentally study the CASCADEMLE problem and evaluate the performance of MINCOSTSTEIN-

ERTREE algorithm on several real-world and synthetic networks. The networks are listed in Table 2.1 and

described here.

1. arXiv High Energy Physics-Theory (HEP-TH): This is an academic collaboration network in the High

Energy Physics-Theory community based on the citations in the arXiv preprints published between

January 1993 and April 2004 [4, 10]. Taking the largest connected component, we generate a subgraph

with n = 500 nodes, obtained by BFS starting from a random node. We refer to it as arxiv.

2. Erdős-Rényi random graphs: We generate several G(n, q) graphs for evaluating the performance of

our method and include results for G(n = 300, q = 0.02).

3. Hospital ICU network: This is a contact network of patients and healthcare providers built using the

Electronic Health Records (EHR) of the UVA Hospital’s ICU between Jan 1, 2018 and Jan 8, 2018.

We choose the largest connected component for our experiments and refer to it as hospital-icu.

4. Power-law networks: We generate power-law networks with n = 1000 nodes, varying the exponent γ

in the range [1.5, 3.5].

First, we study the error in approximation of the cost by comparing the true Cost and our approxima-

tion Cost. The MINCOSTSTEINERTREE algorithm is evaluated with respect to network structure, diffusion

18

model parameters, and the observation set. We compare our method against CULT [14] which is the state-

of-the-art Steiner tree-based cascade reconstruction method. Since CULT takes an additional time-of-report

information while MINCOSTSTEINERTREE does not, we consider three variants of this method:

1. CULT-DEL: all nodes are reported as infected at the last time step,

2. CULT-RAND: each node is reported as infected at a time step chosen randomly in between the time

of infection and the last time step, and

3. CULT-NOS: all nodes reported as infected at the time step of infection (NOS means No-Shift).

Note that these CULT variants are ordered in the increasing amount of information provided to the algorithm.

We use the homogeneous probability setting for our experiments where we set the diffusion probability p

across all edges to be the same. We generate the infection cascades under IC dynamics for a single source

chosen uniformly at random. In our experiments for evaluating the algorithm, we have considered cascade

sizes to be within (0.02n, 0.1n), where n is the network size so that sufficient number of observed nodes

can be extracted from the cascade.

Next, to create the observation node sets from the generated infection cascades, we use two different

schemes:

(a) random: We randomly sample a fixed % of nodes from the infected node set to form the observed

node set.

(b) frontier: Here, nodes in the cascade at a distance at least d from the source are chosen as observed.

This corresponds to the scenario in which we have observed the more recent infections and our goal

is to infer the rest.

These schemes are inspired from Rozenshtein et al. (2016), and can help evaluate the performance of our

method in two distinct observational settings.

We choose Matthews correlation coefficient (MCC) [11] and F1-score as in [14, 6], to evaluate the quality

of the reconstructed cascades with the ground-truth. All reported values are averaged over 100 trials.

19

Graph Name Nodes Edges Clustering
coefficient

Average short-
est path length

G(n, q) random graph 300 897∗ 0.015 3.45
arxiv 500 895 0.52 12.5

hospital-icu 879 3575 0.59 4.31
Power-law networks 1000 660–6613 – –

∗Average value reported.

Table 2.1: Networks and their properties

2.4.2 Results

Difference between Cost(T) and Cost(T)

We created several power-law networks on 1000 nodes for various values of the power-law exponent γ in

the range [1.5, 3.5]. We generated cascades starting from a source chosen uniformly at random, varying

the probability p from 0.05 to 0.49. For each such cascade, we computed the error between the two costs.

Representative results are in Figure 2.2 (the results are consistent across replicates of the networks). We

observe that the difference in the costs depends on both the probability p as well as the network structure

(which is decided by γ). We recall that the difference between the two costs is d = − log(1 − p) times

the number of node pairs in the cascade that satisfy the property that both nodes are at equal distance from

the source. For very low values of p, the difference is low across networks as the cost of including an

edge c = − log(p) ≫ d. As p increases, we observe that the network structure comes into play. For very

low values of the power-law exponent γ, there are several nodes with high degree leading to the presence of

dense subgraphs. This increases the chances of node pairs where the nodes at equal distance from the source

of the cascade, and in turn, leads to a larger difference in the two costs. On the other hand, for lower γ (2.5–

3.5), the graph is more tree-like, and therefore, we see a very low error even for probability approaching 0.5.

For γ = 2 in particular, we note that the error is 10% for p as high as 0.3.

Performance of MINCOSTSTEINERTREE

In Figure 2.3, the MCC scores are plotted for MINCOSTSTEINERTREE and CULT for the two observation

schemes and a diffusion probability of 0.1. We observe that MINCOSTSTEINERTREE performance is supe-

rior compared to CULT-DEL across observation schemes, networks and diffusion probabilities. We recall

20

0.1 0.2 0.3 0.4 0.5

Diffusion probability p

0

20

40

60

80

100

%
er

ro
r

Power law exp.

1.5

2.0

2.5

3.0

3.5

Figure 2.2: Percentage error between Cost(T) and Cost(T) for cascades on random power-law graphs with
varying diffusion probability p and power-law exponent.

that the MINCOSTSTEINERTREE algorithm accounts for the diffusion model while the versions of CULT

do not. However, CULT-NOS and, to some extent CULT-RAND, account for the time of infection. In

particular, for the G(300, 0.02) graph and the hospital-icu, we observe that the performance of MIN-

COSTSTEINERTREE is much better than that of CULT. We note that arxiv has a large average shortest

path length (and low diameter) compared to the other two networks even though its clustering coefficient

is large. Even though hospital-icu has a large clustering coefficient, it has a small average shortest

path length like G(300, 0.02). In Figure 2.4, we have representative plots of the MCC and F1-scores under

diffusion probabilities 0.05 and 0.20. The performance is similar to that in Figure 2.3 for G(300, 0.02) and

hospital-icu. For the higher probability, we observe inferior performance in the case of arxiv as the

distance from source increases under the frontier observation scheme.

Impact of different types of observations

For the random observation scheme, we observe that MINCOSTSTEINERTREE performance drastically

increases with increase in the number of observed nodes. This is particularly true for the real-world networks.

Typically, we see good performance when at least 40% of the infected nodes are observed. In the case of

FRONTIER observation scheme, we observe that when the distance from the source is ≥ 4, the cascades

constructed are quite inferior. This puts emphasis on early discovery of the outbreak.

21

0.4 0.5 0.6 0.7 0.8

#observed nodes/#infected nodes

0.4

0.6

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5

Distance from source

0.4

0.5

0.6

0.7

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.5

0.6

0.7

0.8

0.9

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.5

0.6

0.7

0.8

0.9

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.4

0.5

0.6

0.7

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.4

0.5

0.6

0.7

0.8

0.9

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

Figure 2.3: Performance of MINCOSTSTEINERTREE for random and frontier observation schemes.
(a) G(300, 0.02); (b) arxiv; and (c) hospital-icu, with fixed p = 0.10

22

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.4

0.6

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.3

0.4

0.5

0.6

0.7

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.4

0.5

0.6

0.7

0.8

0.9

F
1

sc
or

e

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5

Distance from source

0.5

0.6

0.7

0.8

0.9

F
1

sc
or

e

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.4

0.6

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.4

0.6

0.8

F
1

sc
or

e

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

Figure 2.4: Performance of MINCOSTSTEINERTREE for (a) G(300, 0.02) with p = 0.05; (b) arxiv
with p = 0.20; and (c) hospital-icu with p = 0.05.

23

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.5

0.6

0.7

0.8

0.9

M
C

C
Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.4

0.5

0.6

0.7

0.8

0.9

F
1

sc
or

e

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.4

0.5

0.6

0.7

0.8

0.9

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.4

0.6

0.8

F
1

sc
or

e

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.5

0.6

0.7

0.8

0.9

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5

Distance from source

0.6

0.7

0.8

0.9

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

Figure 2.5: More results for performance of MINCOSTSTEINERTREE for random and frontier obser-
vation schemes, with 25 trials. Network: arxiv with transmission probability: sub-figures (1-4) 0.05, (5-6)
0.20.

24

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.4

0.6

0.8

M
C

C
Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.4

0.5

0.6

0.7

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.4

0.6

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.4

0.6

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

0.2 0.4 0.6 0.8

#observed nodes/#infected nodes

0.4

0.6

0.8

F
1

sc
or

e

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

2 3 4 5 6

Distance from source

0.4

0.6

0.8

M
C

C

Method

MinCostSteinerTree

CuLT-Del

CuLT-Rand

CuLT-NoS

Figure 2.6: More results for performance of MINCOSTSTEINERTREE for random and frontier ob-
servation schemes, with 50 trials. (1-4) Averaged over 5 random G(300, 0.02) networks: with diffusion
probability p = (a) 0.10, (b) 0.20; and (5-6) hospital-icu for p = 0.05.

25

Chapter 3

Sampling Cascades

In this chapter, we take a different view of the cascade reconstruction problem. Instead of finding the MLE

cascade, we consider the actual distribution of cascades, which are consistent with the partial observations.

Our goal now is to sample cascades from this distribution, according to their probability which is composed

of contributions from edges corresponding to both successful and failed infection attempts. These generated

cascades can be utilized for a variety of purposes. We can use them to estimate the probability of a node being

infected or to identify edges which play an important role in the spread, which can inform our monitoring

and control strategies.

As we saw in Section 2.2, the MLE cascade may not recover the ground-truth cascade in some situations.

In such settings, it could be valuable to consider the actual distribution of cascades. We could sample

cascades from this distribution to glean information about the possible pathways of infection spread and

about missing infections, which we could not attain from the MLE solution alone.

A brute-force approach would be to run the simulator a number of times, reject instances that are not con-

sistent with the partial observations, and obtain the required statistic from the remaining samples. However,

this is not scalable as running simulations for complex models on large networks is an expensive process,

and this rejection sampling might require a very large number of replicates. Thus the goal is to efficiently

sample cascades consistent with the observations.

26

Xiao et al. (2018) map the problem of sampling probable cascades given observations to the problem

of sampling Steiner trees given the terminals. Their goal is to sample probable cascades in order to do

Monte-Carlo estimation of the probability of a node being infected, given the partial observations. However,

there are two issues. Firstly, the distribution considered in their work is different from the actual distribution

under the IC model. In their approach, they apply a loop-erased random walk-based (LERW) approach [13]

for sampling Steiner trees. The second issue is that this approach samples Steiner trees according to a

distribution different from the one intended. We show that their early-termination adaptation of Propp and

Wilson’s LERW algorithm samples Steiner trees according to a different distribution than has been claimed.

We also outline some preliminary approaches to generate Steiner trees with the correct distribution.

3.1 Difference in the cascade distributions

Xiao et al. [19] consider the following problem:

Problem 3.1.1. Given a weighted directed contact network G = (V,E, p), a root node r ∈ V , and a set

S ⊂ V of terminal nodes, sample a directed Steiner tree TS , rooted at r, spanning terminal nodes S, with

probability proportional to

Pr(TS) ∝
∏

(u,v)∈TS

puv

When they map the problem of sampling cascades to Problem 3.1.1, they make some implicit assump-

tions:

• The structure of the cascade is a directed tree.

• The probability of the cascade depends only on the probability of the transmission of infection across

the edges contained in it.

We argue that these assumptions do not hold for many commonly-used disease models. Consider the

Independent Cascades (IC) model. To formalize the problem of sampling cascades under IC dynamics, given

observed infections, we can write the following:

27

Problem 3.1.2. Given a weighted directed contact network G = (V,E, p), a source node r ∈ V , and a set

S ⊂ V of observed infections, sample an IC cascade CS , with source r, spanning observed infected nodes

S, with probability proportional to

Pr(CS) ∝
∏

(u,v)∈CS

puv
∏

(u,v)∈G\CS

u∈V (CS),v∈V (G\CS)

(1− puv)
∏

(u,v)∈G\CS

u,v∈V (CS)
dCS

(r,u) ̸=dCS
(r,v)

(1− puv)

where dCS
(r, u) is the distance of node u from source r in the cascade CS .

The target distribution in Problem 3.1.2 consists of probability contributions from edges in the cascade

(the puv terms) as well as from edges outside the cascade corresponding to failed infection attempts (the 1−

puv terms). We observe that the target distributions in the Problems 3.1.1 and 3.1.2 are quite different.

Firstly, the IC cascade need not be a directed tree, as there can be more than one parent for a node in the IC

cascade. Secondly, the probability of the sampled cascade must take into account not only the edges in the

cascade but also the edges outside it across which the attempted infection must have failed, so as to result in

the sampled cascade.

3.2 Sampling minimal Steiner trees

We call a Steiner tree, given a set of terminals S, minimal if all its leaves are terminals A Steiner tree

is minimal in the way each edge is on at least one of the directed paths from the root to the terminals.

Xiao et al. [19] propose an early-termination version of Propp and Wilson [13]’s algorithm (presented here

as Algorithm 3) which we find only samples minimal Steiner trees, although they do not make this key

observation. Moreover, we show that this algorithm does not generate minimal Steiner trees according to

the target distribution in their problem (presented here as Problem 3.1.1).

3.2.1 Preliminaries

The random walk sampler in Propp and Wilson [13] generates in-directed trees, also called, anti-arborescences,

where every edge points inwards towards the root. Even though we would like to sample directed trees with

28

edges pointing outwards from the root, i.e. arborescences, we can employ this random walk model by simply

reversing the edges in the original graph and then undoing the reversal in the sampled anti-arborescence.

We must also transform the given graph into a Markov chain in which every node’s weighted out-degree

is required to be 1. Using the transformation described in Xiao et al. [19], we set the edge-weights in the

Markov chain G̃ as w(u, v) = pvu/p(u) where p(u) =
∑

v∈Nin(u)
pvu i.e. the weighted in-degree of u in

the original graph G. Propp and Wilson [13] ’s random walk method samples a tree T̃ on Markov chain G̃,

according to the weight of the tree given by w(T̃) =
∏

(u,v)∈T w(u, v). This normalization introduces a

bias:

∏
(u,v)∈T

puv = w(T̃)
∏

u∈V [T̃]\r

p(u) (3.1)

Algorithm 3 EARLY-TERMINATION LERW [19]

Input: A Markov chain G̃ = (V,E,w), a root node r, and a terminal set S.
Output: A random minimal Steiner tree TS

1: Let V be numbered from 1 to n.
2: Let InTree be an array to denote if node is in current tree.
3: Let Parent be an array to denote the parent of each node in current tree.
4: for i← 1...n do
5: InTree[i]← false
6: end for
7: Parent[r]← nil
8: InTree[r]← true
9: for i ∈ S do

10: u← i
11: while not InTree[u] do
12: Parent[u]← RandomSuccessor(u)
13: u← Parent[u]
14: end while
15: u← i
16: while not InTree[u] do
17: InTree[u]← true
18: u← Parent[u]
19: end while
20: end for
21: return Parent

29

Thus, after sampling the tree T̃ according to its weight w(T̃), we must resample with probability pro-

portional to
∏

u∈V [T̃]\r p(u), using the sampling importance resampling method [17]. As the final step, we

reverse the direction of the edges in T̃ to get the tree T on the original graph.

We denote the set of spanning trees of G̃, rooted at r, and containing TS as a sub-tree, as STS
(G̃). In

order to analyze the distribution of the proposed algorithm, we describe a contraction scheme as introduced

by Xiao et al. [19]. We denote the contracted graph of TS on G̃ as G̃c[TS]. In this contraction, we merge all

the nodes of TS into a meta-node. All the now-parallel edges between TS and rest of G̃ are also merged by

summing up the weights of edges between the same pair of endpoints and introducing a label denoting the

number of such parallel edges. Let Nout(u) denote the set of outgoing edges from node u. We define the

Laplacian matrix of G̃ as:

Lij(G̃) =

∑
vk∈Nout(vi)

w(vi, vk) if i = j

−w(i, j) if i ̸= j and (vi, vj) ∈ E

0 otherwise

(3.2)

Let Lk(G̃) denote the Laplacian matrix of G̃ with k-th row and k-th column removed. We can now proceed

to the analysis.

3.2.2 Analysis of the early-termination LERW algorithm

We show here that the early-termination LERW algorithm (3) proposed by Xiao et al. [19] samples minimal

Steiner trees with a different distribution than has been claimed.

Theorem 3.2.1. The early-termination LERW algorithm (3) returns a random Steiner tree TS rooted at r

with probability proportional to w(TS).det(Lr(G̃c[TS]), where w(TS) is given by the product of the weights

of its constituent edges and det(Lr(G̃c[TS]) is the determinant of the Laplacian matrix of G̃C [TS] with row

and column r removed.

Proof of Theorem 3.2.1. We will use the fact that the LERW of Xiao et al. [19] is simply an early-termination

version of the original LERW algorithm of Propp and Wilson [13]. Wilson’s original algorithm samples

30

random spanning trees with probability proportional to their weight given any arbitrary ordering of the

vertices. Imagine an ordering of the vertices such that all the terminals are at the beginning (in any order),

followed by the rest of the vertices (in any order). Note that if we run Wilson’s algorithm with this ordering

and stop after |S| iterations, i.e., when all the terminals are part of the current tree, it would return a Steiner

tree TS . This is exactly what the LERW algorithm of [19] does. Now if we resume Wilson’s algorithm and

proceed till it ends, it would return a random spanning tree τ ∈ STS
(G̃), with probability proportional to its

weight w(τ).

Claim 3.2.2. The current tree in the algorithm is a Steiner tree TS after the first |S| iterations if and only if

the eventual spanning tree τ returned by the algorithm belongs to the set STS
(G̃).

Proof of Claim 3.2.2. Every spanning tree corresponds to exactly one minimal Steiner tree. This means that

if we get a spanning tree from STS
(G̃) at the end, then we must have had the Steiner tree TS at some point

as the then-current tree. The current tree after |S| iterations is the union of all loop-erased random-walks

starting from one of the terminals to the root. This implies that all the leaves are terminals, which means that

the current tree is a minimal Steiner tree, containing all the given terminals.

The converse is true because if, at some point, we have the Steiner tree as the current tree, then it can

only grow from that point into a spanning tree from the set STS
(G̃), as we never remove any edges in the

LERW algorithm.

Claim 3.2.2 implies that the event of getting the Steiner tree TS after the first |S| iterations is the union of

the mutually exclusive events of getting each of the spanning trees in set STS
(G̃), at the end of the algorithm.

Let the event of getting Steiner tree TS after |S| iterations be denoted by E(TS). Let the event of ending

with the spanning tree τ be Eτ . Thus,

E(TS) =
⋃

τ∈STS
(G̃)

E(τ) (3.3)

31

By the probability rule of sum,

Pr(TS) =
∑

τ∈STS
(G̃)

Pr(τ)

∝
∑

τ∈STS
(G̃)

w(τ) (3.4)

=
∑

Tc∈S(G̃c[TS])

w(TS)w(Tc)

= w(TS)
∑

Tc∈S(G̃c[TS])

w(Tc)

= w(TS) det(Lr(G̃c[TS]) (3.5)

In step 3.4, we use the fact that the Propp and Wilson [13] LERW algorithm generates random span-

ning trees proportional to the product of the weights of their constituent edges. In step 3.5, we use Tutte

et al. (1984)’s Matrix Tree Theorem for spanning trees on weighted directed graphs, which states that the

sum of the weights of all spanning trees rooted at k is the determinant of the k-th row and column removed

Laplacian of the graph. These steps are taken from the analysis found in Xiao et al. [19] for the distribution

of the other algorithm that they proposed called TRIM.

3.2.3 Our approach

In order to correct for the bias term in the early-termination LERW algorithm as given by Theorem 3.2.1,

we can use the method of sampling importance resampling.

32

Algorithm 4 SAMPLEMINIMALSTEINER

Input: A Markov chain G̃ = (V,E,w), a root node r, and a terminal set S.
Output: A random Steiner tree TS from the space of minimal Steiner trees rooted at r the probability of
sampling which is proportional to w(TS) =

∏
e∈TS

we

1: Sample a large number N of random Steiner trees using the early-termination LERW algorithm 3.
2: for each tree TS do
3: Compute its weight w(TS) =

∏
e∈TS

w(e).
4: Compute det(Lr(G̃c[TS]) by first contracting TS on G̃, and then computing the determinant of

the Laplacian after deleting the r-th row and column.
5: end for
6: To each tree T

(i)
S , assign sampling weights equal to∑N

j=1 w(T
(j)
S) det(Lr(G̃c[T

(j)
S])

det(Lr(G̃c[T
(i)
S])

∑N
j=1 w(T

(j)
S)

or, in other words, inversely proportional to det(Lr(G̃c[T
(i)
S])

7: Return a random minimal Steiner tree by resampling according to the assigned weights.

Theorem 3.2.3. The algorithm SAMPLEMINIMALSTEINER returns a random Steiner tree TS from the space

of all minimal Steiner trees rooted at r with probability proportional to w(TS).

Proof. The probability of a Steiner tree TS returned by SAMPLEMINIMALSTEINER is given by:

Pr(TS returned by Algorithm 3)Pr(TS is resampled | the set of N Steiner trees)

=
w(TS) det(Lr(G̃c[TS])∑N

j=1 w(T
(j)
S) det(Lr(G̃c[T

(j)
S])

∑N
j=1 w(T

(j)
S) det(Lr(G̃c[T

(j)
S])

det(Lr(G̃c[TS])
∑N

j=1 w(T
(j)
S)

=
w(TS)∑N

j=1 w(T
(j)
S)

∝ w(TS)

Note that we would have to do another round of sampling importance resampling in order to correct for

the bias in the transformation back to the original contact graph, as given by equation 3.1.

33

3.3 Ongoing work

Having studied the problem of sampling minimal Steiner trees, we suggest that it is important to consider the

distribution of all Steiner trees. This problem of sampling any Steiner tree, with a probability proportional to

the product of its constituent edges, has not been studied in any previous work as far as we know. We have

some initial ideas towards solving this problem.

We could first sample a minimal Steiner tree, and in the next step, randomly grow it to a bigger Steiner

tree, which may no longer be minimal. This would make use of our previously presented approach, although

we would have to take care of any bias terms this may introduce. One way to randomly grow a minimal

Steiner tree could be to contract it to a meta-node and initiate a diffusion process from this meta-node.

Another approach could be to iteratively choose new edges to include in the growing tree from the set of all

edges originating from nodes in the tree and terminating at nodes outside it.

However, these approaches would need to be further modified when we consider our original problem of

sampling from the actual distribution of cascades as stated in Problem 3.1.2. A naive but inefficient approach

could be to run many simulations of the IC process from the source and accept only those which contain all

the observed infected nodes. Thus, the problem is to find an efficient algorithm which would return cascades

containing the observed infections and governed by the correct distribution.

34

Chapter 4

Summary and Future Work

In Chapter 2, we studied the problem of reconstructing an epidemic cascade given a subset of infections

as observed nodes under IC dynamics. We presented an algorithm with a logarithmic approximation factor

using a node-weighted Steiner tree approach, and evaluated its performance on several synthetic and real-

world networks. An important future direction is to extend our approach to reconstruct cascades resulting

from more complex SEIR processes with delayed recovery, SI, and the SIS models. Another direction is

to incorporate additional information about the cascade such as reporting time or order of infections that

can help overcome the limits of the MLE problem studied here. It might also be worthwhile to extend our

methods to directed graphs and time-expanded graphs, as this would broaden their applicability.

Chapter 3 covers our study of the problem of sampling probable cascades, given observed infections. We

showed that the prior approach leads to a very different distribution than had been claimed. We presented a

sampling importance resampling method to correct for the bias in the distribution of the early-termination

LERW algorithm. We also outlined some preliminary ideas in our ongoing work of sampling cascades

according to the correct distribution.

35

References

[1] Aaron B. Adcock, Blair D. Sullivan, and Michael W. Mahoney. Tree-like structure in large social
and information networks. In 2013 IEEE 13th International Conference on Data Mining, pages 1–10,
2013. doi: 10.1109/ICDM.2013.77.

[2] Andrei Z. Broder. Generating random spanning trees. 30th Annual Symposium on Foundations of
Computer Science, pages 442–447, 1989.

[3] Moses Charikar, Chandra Chekuri, To yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and Ming Li.
Approximation algorithms for directed steiner problems. Journal of Algorithms, 33(1):73–91, 1999.
ISSN 0196-6774. doi: https://doi.org/10.1006/jagm.1999.1042. URL https://www.sciencedirect.com/
science/article/pii/S0196677499910428.

[4] Johannes Gehrke, Paul H. Ginsparg, and Jon M. Kleinberg. Overview of the 2003 kdd cup. SIGKDD
Explor., 5:149–151, 2003.

[5] Sudipto Guha and Samir Khuller. Improved methods for approximating node weighted steiner trees
and connected dominating sets. Inf. Comput., 150:57–74, 1999.

[6] Hankyu Jang, Shreyas Pai, Bijaya Adhikari, and Sriram V. Pemmaraju. Risk-aware temporal cascade
reconstruction to detect asymptomatic cases : For the cdc mind healthcare network. In 2021 IEEE
International Conference on Data Mining (ICDM), pages 240–249, 2021. doi: 10.1109/ICDM51629.
2021.00034.

[7] Rong Jin and Weili Wu. Schemes of propagation models and source estimators for rumor source
detection in online social networks: A short survey of a decade of research. Discrete Mathematics,
Algorithms and Applications, 13(04):2130002, 2021. doi: 10.1142/S1793830921300022. URL https:
//doi.org/10.1142/S1793830921300022eprint={https://doi.org/10.1142/S1793830921300022}.

[8] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a so-
cial network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’03, page 137–146, New York, NY, USA, 2003. Associ-
ation for Computing Machinery. ISBN 1581137370. doi: 10.1145/956750.956769. URL https:
//doi.org/10.1145/956750.956769.

[9] P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted steiner trees.
Journal of Algorithms, 19(1):104–115, 1995. ISSN 0196-6774. doi: https://doi.org/10.1006/jagm.
1995.1029. URL https://www.sciencedirect.com/science/article/pii/S0196677485710292.

36

https://www.sciencedirect.com/science/article/pii/S0196677499910428
https://www.sciencedirect.com/science/article/pii/S0196677499910428
https://doi.org/10.1142/S1793830921300022 eprint = { https://doi.org/10.1142/S1793830921300022 }
https://doi.org/10.1142/S1793830921300022 eprint = { https://doi.org/10.1142/S1793830921300022 }
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
https://www.sciencedirect.com/science/article/pii/S0196677485710292

[10] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, 2014. Accessed: 2022-7-25.

[11] B.W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–451, 1975. ISSN 0005-2795.
doi: https://doi.org/10.1016/0005-2795(75)90109-9. URL https://www.sciencedirect.com/science/
article/pii/0005279575901099.

[12] Joseph McNitt, Young Yun Chungbaek, Henning Mortveit, Madhav Marathe, Mateus R. Campos,
Nicolas Desneux, Thierry Brévault, Rangaswamy Muniappan, and Abhijin Adiga. Assessing the multi-
pathway threat from an invasive agricultural pest: Tuta absoluta in Asia. Proceedings of the Royal
Society B: Biological Sciences, 286(1913):20191159, October 2019. ISSN 0962-8452. doi: 10.1098/
rspb.2019.1159. Publisher: The Royal Society.

[13] James Gary Propp and David Bruce Wilson. How to Get a Perfectly Random Sample from a Generic
Markov Chain and Generate a Random Spanning Tree of a Directed Graph. Journal of Algorithms,
27(2):170–217, May 1998. ISSN 01966774. doi: 10.1006/jagm.1997.0917. URL https://linkinghub.
elsevier.com/retrieve/pii/S0196677497909172.

[14] Polina Rozenshtein, Aristides Gionis, B. Aditya Prakash, and Jilles Vreeken. Reconstructing an epi-
demic over time. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, page 1835–1844, New York, NY, USA, 2016. Asso-
ciation for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939865. URL
https://doi.org/10.1145/2939672.2939865.

[15] Devavrat Shah and Tauhid Zaman. Rumors in a network: Who’s the culprit? Information Theory,
IEEE Transactions on, 57:5163 – 5181, 09 2011. doi: 10.1109/TIT.2011.2158885.

[16] Jeffrey Shaman et al. An estimation of undetected covid cases in france. Nature, 590:38–39, 2020.

[17] Adrian F. M. Smith and Alan E. Gelfand. Bayesian statistics without tears: A sampling-resampling
perspective. Quality Engineering, 37:645–648, 1992.

[18] W.T. Tutte, G.C. Rota, and C.S.J.A. Nash-Williams. Graph Theory. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1984. ISBN 9780521302418. URL https://books.
google.com/books?id=9p GjgEACAAJ.

[19] Han Xiao, Çigdem Aslay, and A. Gionis. Robust cascade reconstruction by steiner tree sampling. 2018
IEEE International Conference on Data Mining (ICDM), pages 637–646, 2018.

[20] Kai Zhu and Lei Ying. Information source detection in the sir model: A sample-path-based approach.
IEEE/ACM Transactions on Networking, 24(1):408–421, 2014.

37

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://www.sciencedirect.com/science/article/pii/0005279575901099
https://www.sciencedirect.com/science/article/pii/0005279575901099
https://linkinghub.elsevier.com/retrieve/pii/S0196677497909172
https://linkinghub.elsevier.com/retrieve/pii/S0196677497909172
https://doi.org/10.1145/2939672.2939865
https://books.google.com/books?id=9p_GjgEACAAJ
https://books.google.com/books?id=9p_GjgEACAAJ

	Acknowledgements
	Abstract
	Table of Contents

	List of Figures
	Introduction
	Our Contributions
	Related work

	Finding the MLE cascade
	Preliminaries
	Difference between CascadeMLE and Steiner tree solutions
	Our approach
	Experimental Results

	Sampling Cascades
	Difference in the cascade distributions
	Sampling minimal Steiner trees
	Ongoing work

	Summary and Future Work
	References

