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ABSTRACT

One of the most exciting emerging
technologies shaping the internet is
recommendation algorithms.
Recommendation systems take in countless
types of data to recommend new items to
users. This paper begins with an
introduction and summarizes the base
knowledge necessary to understand the
world of recommendation systems.
Following this, the paper will discuss
current technologies for the reader to
understand where the industry currently
stands. The paper will then delve into the
research conducted in the last few years, to
project the future of the industry. Finally, the
paper will conclude with what problems
have arisen and need to be solved in the
future.

1 INTRODUCTION

The exponential growth of online
content in the early twenty-first century has
made it increasingly difficult for consumers
to find content that suits their interests. This
has prompted developers and researchers
alike to manufacture methods to keep users
engaged with their platform and content
above all other outlets. One of the leading
solutions to keep users engaged has been
through the use of recommendation systems.

Machine learning is used by nearly
every large, online platform to curate posts

for individual users, with some of the most
successful examples being Netflix, Google,
Twitter, and more recently, TikTok.
According to Quinn (2022), machine
learning has heavily contributed to the
massive success of companies, such as
TikTok, which uses data retrieved from its
users to curate the perfect feed (para. 10). As
discussed by Munawar (2017), the
effectiveness and efficiency of these
algorithms are becoming increasingly
important to the success of businesses (p.
196). Due to this, research in the field of
recommendation systems has become of
prime interest to corporations and
universities around the world. This
explosion of research has produced
thousands of research papers, books, and
articles, many of which are extremely
complex and not consumable by the general
public. The goals of this state-of-the-art
report are to (1) provide base knowledge to
those not currently acquainted with the
world of recommendation systems and
machine learning, (2) give an in-depth
description of the current algorithms and
types of machine learning used in
recommendation systems, (3) explore and
subsequently discuss new methods being
discovered and employed by researchers
worldwide, and (4) theorize future
advancements based on the needs of the
industry.
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2 BASE KNOWLEDGE

To dive into the world of
recommendation systems, and the complex
algorithms that come with them, there must
first be a framework for understanding the
topics. This section will aim to achieve a
baseline comprehension of these topics for
those unfamiliar with the field of machine
learning and social media.

2.1 What are Recommendation Systems

Simply put, recommendation
systems are algorithms to suggest the most
relevant media, products, or information to
the current user. As an example, if a user
were to buy item X, is it more likely that
they would then be interested in item Y or
item Z? Recommendation systems are an
automatic means for answering these kinds
of questions quickly and accurately. These
algorithms are extremely useful in
modern-day applications as there can be
millions of possible items shown to users,
and offering these at random will mean that
most items are of no interest to the user1.

2.2 Why are Recommendation Systems
Used

As explained in Ricci (2015), there
are five main motivators for websites and
applications to use recommendation
systems; the first three of which will be
focused on in this section. These reasons
include (p. 5-6):

● To increase the number of items
being sold

● To sell a wider variety of items
● To increase user satisfaction

1 As an example, a tennis player is less likely to
be interested in golf clubs than a golfer. The
tennis player may prefer to be shown rackets.

● To increase user fidelity
● To have a better understanding of

what the user wants

The first motivator for recommender
systems, to increase the number of items
being sold, is perhaps the most important.
Ultimately, the goal of all companies using
these systems is to make money; thus, the
primary benefit to them is the increased
sales rate. This point is equivalent to
increasing user retention rates on social
media apps, such as TikTok and Twitter.
These applications make a large portion of
their income through advertisements,
meaning that the longer a user spends on the
application, the more money the company
will make.

The second motivator, to sell a wider
variety of items, is adequately explained by
Ricci (2015) when he gives the example that
“... in a tourist recommender system, the
service provider is interested in promoting
all the places of interest in a tourist area, not
just the most popular ones. This could be
difficult without a recommender system
since the service provider cannot afford the
risk of advertising places that are not likely
to suit a particular user’s taste.” (p. 5).

The third motivator, to increase user
satisfaction aims to make the entire
experience for the user better. In short, if the
user is only being shown items they are
interested in, they are much more likely to
enjoy their time on the website or
application and not feel as if their time has
been wasted by irrelevant items.

2.3 Basics of How Recommendation
Systems Work

As previously mentioned,
recommender systems use complex algorithms
to predict the best item to show any given
user. The process often begins when a user
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first enters or signs up for a website or
application. Recommender systems almost
always use age, gender, current location, and
other similar, basic facts in their algorithms.
Many companies will go as far as keeping
track of every action a user makes, such as
the interaction time of each previous item,
the geographical location of each search
made, and more. This information is
tracked, stored, and sent through a data
pipeline to the algorithms being used. Once
reaching the recommender system, the data
associated with a user will be compared with
a filtered set of items and a list will be
created with the best items to show the user
next. The reason the full list of items is not
usually shown is that there can be billions of
possible items, and going through each
possible item for every user would be too
computationally intensive. Thus, some of
the previous information is used to narrow
down the list of initial items. As an example,
a United States resident will not be
considered for items that are only available
in a foreign nation. The exact way this list is
determined depends on the specific
algorithm being used, some of which will be
covered in depth in Section 3. Once the list
is compiled, however, items are simply
taken from the list and shown to the user,
and, periodically, the list will be updated
with new data, restarting the entire process.
Note, however, that the items are not usually
taken in the direct order given by the
recommender system. This is because often
extremely similar items will be ranked
closely. Going back to motivator two in
Section 2.2, one of the goals of these
systems is to show a wider variety of items.
Thus, the system will avoid showing items
that are too similar, too often.

Additionally, if items of near identical
similarity are shown in succession, the user
may become uninterested and exit the
system, going against motivator three.

3 CURRENT TECHNOLOGIES

There are a number of common
models used in the world of
recommendation systems, each of which has
its own advantages and disadvantages. In
this section, a few of the most common
systems will be explained and subsequently
discussed.

3.1 Collaborative Filtering
Recommendation Systems

One algorithm often used in
recommendation systems is the collaborative
filtering model. This model uses the history
of other users to predict the best items to
show a new user. An example of this
scenario is shown in Figure 1 where user A
has rated three different books highly, and
user B has rated two of the same books
similarly. Thus, when predicting a book that
user B will enjoy, we should predict with
relative ease, that user B will like Book Z.
This is the essence of collaborative filtering.

A major advantage of this system, as
pointed out by Kumar (2022), is that the
algorithm requires no metadata of the users
or the items. The users can be anyone with
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any background, and the items can be any
type of rateable item (book, song, movie,
game, etc.). The algorithm simply takes
users with similar patterns and history and
matches items based on this. One potential
downfall of this system is when only using
collaborative filtering in smaller datasets,
this could lead to extremely inaccurate
recommendations. Using the same scenario
as shown above, imagine that Book X and
Book Y are both romance novels, but Book
Z is a horror story. There is a chance that
user B has no interest in horror books, and
thus the system has failed with its
recommendation. Over time and with
enough data, this problem will be solved, as
the system will recognize that if theoretical
users C, D, and E did not read or enjoy Book
Z, then perhaps it should not be
recommended to user B. However, this
means that collaborative filtering falls
victim to the cold start issue, a widespread
problem in recommendation systems that
will be discussed in section five.

Another issue that arises in systems
that use collaborative filtering is shilling
attacks, which are defined by Sundar et al
(2020) as “a particular type of attack where
a malicious user profile is inserted into an
existing collaborative filtering dataset to
alter the outcome of the recommender
system” (p. 171704). In short, shilling
attacks are when a fake user account is
created and used to either inflate or deflate
the ratings of a particular item. In turn, this
rating deflation could cause the item to be
recommended to fewer users and have
financial ramifications. In naive
implementations, the issue can be quickly
compounded as described in Schafer et al
(2007), as real users may be swayed to
change their ratings to match those of the
fake users. This can lead to a domino effect,
in which otherwise good items spiral to the

bottom of the list for recommendations.
Regardless of these issues,

collaborative filtering can be an extremely
powerful and efficient recommendation
algorithm, as companies such as Amazon,
Netflix, and Spotify all employ it to some
degree, as stated by Kumar (2022).

This process begins with the
development of a nearest-neighbors model.
A nearest-neighbors model simply groups
users (or items) based on several variables.
Whenever a new item is added to the model,
it is placed within a group based on
distances to items around it. A very simple
version of this is depicted in a
two-dimensional graph in Figure 2.

However, with large amounts of data, it
becomes difficult for the model to efficiently
parse through all other users. Thus, a KNN
model is used, where K is the number of
neighbors accounted for. This model is
similar to the nearest-neighbors model, but
only a certain number of other neighbors (K
= 3 in Figure 2) are taken into account. This
allows for a large increase in efficiency, for
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a potential decline in accuracy. The way this
KNN model is created is through the use of
a user similarity equation.

Following the KNN model's
creation, another prediction formula must be
created. There are several equations possible
for the basis of collaborative filtering. One
of the more simple equations2 is defined by
Schafer et al (2007), shown below in Figure
3, and the definitions of variables used are
contained in the index (Figure 4).

This equation attempts to predict the
rating of item i for a user, u. The equation
uses the ratings of other similar users, n
(found by utilizing KNN model explained
above), to achieve this goal. The first step in
the process is retrieving the current
neighbors' similarity score. This score is
then multiplied by the current neighbor's
rating of the item being predicted, minus the
same neighbor's average rating of all items.
This process is repeated for each neighbor of
user u and summed into a total. This total is
then divided by the sum of all user's
similarities. Finally, the current user average
rating is added to the value resulting from
the previous division. This process can be

2 In the article, there are several equations that
are worked through. Some become extremely
complex and take into account issues that come
with collaborative filtering. The equation used in
this example is neither the most complex nor the
most basic. It is somewhere in the middle,
allowing it to demonstrate some of the most
important adjustments made to the base equation
while still being digestible to most readers.

hard to follow so the following page will
contain a full walkthrough with example
data.

The reason that Schafer et al (2007)
gives for the averages being included in the
equation for both the neighbor and the
current user is to account for users who are
generally more negative versus generally
more positive3. As previously mentioned,
this formula is a moderate equation
regarding complexity. Some equations take
many more variables into account. Some of
these could include time since ratings
occurred, weighted ratings based on an
item's overall popularity, or even using other
methods of machine learning to find
accounts associated with shilling attacks,
and subsequently ignoring them in the
models. These additional levels of
complexity are out of the scope of this
paper, and thus will not be discussed in
detail.

Section 3.1 has summarized and
given one example of a collaborative
filtering model, along with discussing some
of the potential downfalls of the system, and
how these may be solved.

3 For some users, a “good” book may be a rating
of 3.5/5; whereas, for other users, an equally
good book may be a 4.5/5. Even though these
two users enjoyed the book the same amount,
they gave it different ratings. This equation
attempts to take that discrepancy into account.
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Below shows a step-by-step walkthrough of three users, their ratings of previous items, and a
prediction of a future item for one of the three users. The example data is given in Figure 5.
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3.2 Content-Based Recommendation
Systems

Another common and naive model
used in recommendation systems is the
content-based algorithm. This recommender
takes the opposite approach of collaborative
filtering models. While collaborative
filtering models find similar users and
recommend items based on those
similarities, content-based recommenders
find the items a user likes and recommends
more items that are similar to the original.
This is briefly shown in Figure 6 to the right.

There are countless pros and cons to
this model, however, perhaps the most
blatant negative is how susceptible the
model is to the cold start problem– a
challenge that will be further discussed in
Section 5.

Additionally, as explained
throughout chapter four of Ricci (2015), this
method is only at its peak with text-based
data. Content-based models that work with
items such as images, videos, or other forms
of media require those other media types to
first be processed and categorized as text4.

This is because most content-based
filtering uses a method of filtering called
Term Frequency-Inverse Document
Frequency (TF-IDF). The goal of this
method is to collect the frequent terms of
one item while deciphering how common
the term is in general.

As a simple example, imagine you
are reading an article about Ancient Egypt–
some possible unique frequent terms in this
article would be “Pyramid”, “Monarchy”, or
“Cleopatra”. This issue arises when the

4 As an example, a picture of a red train in the
desert is not enough. Either an individual needs
to label this image as a “red train in the desert”,
or another form of machine learning needs to do
so automatically– but this is outside the scope of
the paper.

actual most common words are terms such
as “the”, and “or”. We don’t want other
articles that have a lot of the word “the”, that
most readings! We want only readings that
have words specific (or mostly specific) to
those of Ancient Egypt. This is where the
“IDF” portion comes in. This section
calculates the overall frequency of a term
compared to all documents and compares
that with the target item. This means that
only words that are usually not frequent
(“Cleopatra”), will receive a high score, and
commonly used words across all articles
(“the”), will receive a low score.

The equation for TF-IDF is relatively
simple and is given below in Figure 7.
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Due to the usage of logarithms, words that
are extremely common in the English
language will not be given a score. For
example, if there were 100 documents, and
all 100 documents had a word appear, this
would lead to a score of 0, as the logarithm
of 1 (100/100), is 0. This means that no
matter how many times this term was to
appear in any given document, its score
would remain 0.

Alternatively, given an uncommon
word, such as the above example of
“Pyramid”, and given 100 documents, it
may only appear in 10. This leads to a score
of 10 times the number of times the word
appears in the target document.

This simple formula is an extremely
effective basis for finding similar text-based
items, and thus recommending text-based
data extremely well. The next step of the
process is to put all items into a matrix of
their words, removing any words that are too
common (above a certain threshold of the

TF-IDF value), or too rare (very few other
documents have them, and thus not useful
for recommendations), and removing them.

Finally, using a nearest-neighbors
model (similar to what is described in
section 3.1), create groups of items and
categorize them.

An example of this process is given
in the 2016 paper written by Titipat
Achakulvisut et al. The paper describes the
above process and adds the additional step
of using a Latent Semantic Analysis (LSA)
to preprocess the data more and create a
2-dimensional set of data that can be used
for grouping in the nearest neighbors model.

Achakulvisut et al. used his proposed
model to create an example for the
conference he was attending, in which he
had different researchers pre-group articles
written into several groups such as
“Neuroscience”. These groups were then
given letter symbols and the articles were
plotted on a two-dimensional graph,
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representative of the nearest-neighbors
model created in the process. This was done
to visualize how manually grouped data (the
letters/colors) compared to the groupings
created by the algorithm. The result is
shown above in Figure 8.

As can be seen, the example model
does a good job of clustering the topics
using TF-IDF, and implementing a
content-based filtering model from this point
is trivial. The next step is to find the items
that are the closest distance to past “liked”
items and recommend those to the user.

This model has its own set of issues
though. In the same way as collaborative
filtering models, content-based models also
struggle with the cold-start problem, and
without a history of likes and dislikes from a
user, the model will not know what to
recommend. More uniquely, though,
content-based models struggle with the issue
of never recommending new items to a user.
Once a user gets a base set of “likes”, the
system will always try to recommend the
same items. Expanding on the example from
Figure 6 on page 7, if a user starts rating
romance novels highly, they will never be
recommended horror novels, or other genres
in general. More generally this problem
could be called overfitting– the idea that
only recommending the closest possible
items could lead to an overall worse
algorithm. Another clear issue is that these
systems are natively language-locked.
Translations can be implemented, but basic
versions cannot be implemented worldwide,
which is a non-issue for collaborative
filtering.

3.3 Hybrid Recommendation Systems

One method of attempting to deal
with the negatives of each of the
above-described recommendation models, is
to use a hybrid of models. There are many
ways to go about this, many of which were
explained by Jeffrey Chiang in his 2021
article 7 Types of Hybrid Recommendation
Systems, some of which are described
below. The idea of a hybrid model is to take
two or more distinct models (commonly
content-based and collaborative filtering)
and combine them in some fashion to
maximize the positives of each while
negating the cons as much as possible.
Below are three of the most common forms
of hybrid models described.

1) The simplest. and perhaps the most
common form of a hybrid recommendation
system is the weighted recommendation
system. In this method, two other systems
have distinct weights that add up to a sum,
and the final model takes portions of each to
predict scores for a user. For example, 50%
comes from a collaborative model, and 50%
comes from a content-based model.
Alternatively, depending on the data, the
weights could lean 70/30 in some direction.
This model, and many other hybrid methods
may have performance.

2) Another form of a hybrid model is the
switching model, in which the recommender
systems recognize a situation and apply
unique models on a case-by-case basis. This
allows recommendation systems to be used
during their strengths, and avoided during
their weaknesses.

3) The third most common hybrid model is
the mixed model. This model allows all (two
or more) models to work independently, and
compare results at the end, creating one
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combined list of predicted items that is used
as a master list. This method is graphically
similar to the weighted model, however, the
end result will be different. This model can
also struggle with performance, as many
models must be executed for every user for
each new recommendation list created.

3.4 Other Common Recommendation
Systems

Countless other models are used for
recommendation systems, many of which
are extremely sophisticated and are not
relevant to the core goals of this paper.
These include complex clustering models,
bayesian networks, neural networks, or even
simpler concepts such as a decision tree.
Each of these alternative models has
positives and negatives that make them
suitable for one situation or another, which
is largely why hybrid models were
developed.

Within each category is an incredible
amount of research and testing to minimize
problems any given model may have. Due to
this research, countless new technologies
have been developed and improved upon,
leading to the incredibly efficient models
seen today in companies such as TikTok,
Netflix, and Google Advertisements.

4 EMERGING TECHNOLOGIES

As stated, there is an immense
amount of research occurring around the
globe to create the best possible
recommendation algorithm. Some research
aims to solve current problems, such as the
aforementioned “cold start” issue, and others
are attempting to create entirely new
standalone systems, such as TikTok’s
Monolith. This section will discuss some of
the most exciting new developments, and

how they may affect the future of social
media users.

4.1 Cold Start Issue

Perhaps the most consistent issue
among all recommendation systems is the
cold start problem. As previously
mentioned, the cold start problem is the idea
that whenever a new item or user is added to
a model, there is no historical data for that
item or user, and thus no strong method for
recommending them. As an example, in the
aforementioned model for collaborative
filtering in Figure 3, if there is no way to
calculate the user similarity or a user's past
average ratings, the model is essentially
guessing. This will remain the case for some
time (depending on the platform). For
applications such as TikTok, where users
may go through 5+ items a minute, the
model will get sufficient data very quickly.
However, for a platform such as Netflix,
where a user may only watch and finish one
show a week, it can become much more
difficult.

Research conducted by Shilong Liu
et al. found a potential solution to this cold
start issue. Their recommendation is to
leverage a combination of meta-learning and
attention-based learning to combat items and
users with little to no prior data.
Meta-learning is a concept in machine
learning that is essentially a model “learning
to learn”. The model will use the output of
its own experiments to change itself to better
suit the needs of the problem.
Attention-based learning is similarly a
model learning what sections of data to pay
attention to during calculations. This allows
for potentially irrelevant data to be entirely
ignored.

Liu et al. initially discuss other
methods of solving the cold start problem.
First, the paper mentions using the
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“perspective of bandits… to embed the
preference of new users in a social network.
(pg. 2). Multi-armed bandits are in short,
when there exist multiple choices for some
question, where there is an optimal choice to
be made. One example given in an article by
Optimizely is a gambler in front of a line of
slot machines– one machine will have the
biggest payout, however, this machine is not
yet known to the gambler. There are varied
solutions to this problem, again described in
the Optimizely article, such as the
Epsilon-Greedy algorithm, in which the
option with the highest historical payout is
provided, except for on some occasions
when a random option is chosen. Another is
the upper confidence bound solution, in
which all options are sorted by their highest
possible payoff given historical data. Finally,
there is the Thompson Sampling solution,
which simply says to choose the highest
expected value model in any given
distribution.

Another method Liu et al. discuss is
the matrix factorization method. Liu et al.
briefly describe this message stating that "It
[matrix factorization] is to find out user item
latent factors based on the available users’
preferences.” (pg. 3).

Liu et al. believed that these methods
were not strong enough solutions to the cold
start problem, however, and aimed to
develop a new method. As previously stated,
this new method combines meta-learning
and attentive recommendation models in
order to provide items to new users, and vice
versa.

Their proposed method begins with
the use of a model-agnostic meta-learning
(MAML) model. Model-agnostic simply
means that the input that is created can be
used as an input for different types of
models. The alternative is a model-specific
input, in which the data can only be used to

train and test one type of machine learning
model. This is important for the second
portion of MAML, which is meta-learning.
Meta-learning, as previously mentioned, is
the idea of a model “learning to learn”. In
the context of the proposition by Liu et al.,
meta-learning is used to decide which type
of model to use for any given batch of users.
What this means is that every user or item
may be on a different type of
recommendation system, depending on the
amount and type of data that the system has
access to.

As an example, a user who rates
every item they receive may be more suited
for a content-based model, whereas a user
who has never rated an item may be more
conducive to a collaborative filtering
algorithm.

The MAML works by testing a set of
different algorithms (F ) on a parameter (ϕ)
with a support set of data (Ds) for each user
(ui) in a set, and then choosing the algorithm
with the lowest test loss gradient for a
query/test set of data (DQ) (L). This
algorithm is shown below in Figure 9.

In short, the MAML model tests
many possible algorithms with each user and
chooses the initial model that works the best
for each user.

This process ends with an output of
an initial model that can then be tweaked to
be better than the initial option. The next
step of the process is using the attention
network in order to give the correct level of
weighting to the different factors used. The
architecture for the process is shown in
Figure 10.
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The inputs to the network (Eu
u and

Eu
v) are vectors for the users and items that

are then put through the algorithm to
correctly weigh each of the user's and items'
contents.

This Attentional Meta-Learned User
preference estimator (AMeLU) proposed by
Liu et al. proves to be extremely efficient in
comparison with some other common
solutions and is shown in the results section
of the paper. Figures 11 and 12 show both
the MAE and RMSE values compared to the
algorithm's counterparts. Mean absolute
error values (MAE) are better when lower,
as it measures the average error margin of a
model when making predictions. As shown,
the AMeLU and MeLU models perform
significantly better than the PPR and
Wide&Deep models at all cold rates,
especially at cold rates approaching 1.0.
Root-mean-square error behaves similarly to
MAE and thus has a similar graph.

Some of the potential issues with the
model though are its complexity along with
time complexity, as the time complexity of
the attention network alone is O(n2·d) as
stated on page 7 of the paper.

Overall, the AMeLU model performs
better than the other three common models,
even if only marginally so over the MeLU
model. Even though there are still countless
improvements to be made in the cold start
problem, Liu et al. propose a very strong
model to solve the issue, albeit with some
concerns in terms of efficiency and
complexity.
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4.1 Concept Drift

Another pressing issue faced in the
modern world of recommendation systems
is concept drift. In short, concept drift is the
idea that a user's interests will shift over
time– the most obvious case being that of
political positions. This is more technically
defined in Gama et al’s. article, A survey on
concept drift adaptation, where they state
“Concept drift primarily refers to an online
supervised learning scenario when the
relation between the input data and the
target variable changes over time.” (2014,
pg. 1) A naive solution to this would be to
remove data after a certain amount of time
has been reached, whether it be a week or a
year, there would be a hard cut-off that
removes data from the model for a user.

This idea can of course be improved
upon. Some of these methods are discussed
in Gama et al’s. 2014 article. They offer up
two main aspects of concept drift
improvement, being memory and
‘forgetting’. For memory, there is single and
multiple memory, with single memory being
storing each data point individually.
Multiple on the other hand, will store many
single data points within a model, and these
models can then be used and updated. The
former can struggle to update quickly
enough with concept drift, while the latter
improves upon this.

Within the memory groups, there is a
sub-question of whether data should exist in
a fixed sized window or variable size
window. For example, should exactly 100
data points always be used, or should any
data points in the past two weeks be used.
Or some combination (up to 100 data points,
but must be within the last two weeks).

Following this is the question of
how, and when, to forget data. There are a
number of options, but the two broad groups

are to abruptly forget data, meaning to take
it completely out of the models without
leaving any reminisce, or to gradually forget
data, meaning have the data matter less and
less in the model over time.

All of the above options can work,
and do work for different situations, and so
there is no true one size fits all approach.
However, as we will see in the upcoming
section, some large social media developers
tend to use the concept of gradually
forgetting, but with heavy bias on recency.

4.2 Monolith

Although the cold start issue is a
large issue for all recommendation systems,
a select few have more pressing problems.
These issues are saved for the giants of the
tech and social media industry, such as
TikTok, Google, Instagram, Netflix, etc.
These problems relate to the storage and
speed of their massive models that encounter
billions of data points a day. Preliminary
solutions to these problems are proposed by
Liu et al., in their 2023 paper titled
Monolith: Real-Time Recommendation
System With Collisionless Embedding
Tables. The paper is an analysis of the
Monolith recommendation system, used by
Bytedance, the company that owns TikTok.
Within the introduction of the paper, the
authors bring about two primary points they
have found within modern recommendation
systems in which changes must be made.
They are as follows:

“(1) The features are mostly sparse,
categorical, and dynamically changing.

(2) The underlying distribution of training
data is non-stationary, aka Concept Drift
[discussed section 4.1].” (Liu et al, pg. 1)
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These two points lead to two obvious
improvements that can be made to the
model, being an increase in the number of
times per session a user’s model is updated,
and the speed in which data can be
processed by the model for these more
consistent changes.

The first step Liu et al. take is to
create a collisionless hash table. Hashmaps
using key-value pairs are the main method
TikTok uses for storage and thus, they need
a fast and memory-efficient means to store
and access data. Hashmaps, in layman's
terms, are a method of storing data that
allows for faster look-ups of regularly
accessed data than standard data types in
programming. Their chosen solution is the
cuckoo hashmap (CITE). This hashing
method manages to have a collisionless
insertion, which is important to avoid any
overwriting of previous data. Additionally,
the algorithm maintains the pros of a
standard hashtable, such as an O(1) time
complexity (meaning the worst case is
constant time) lookup and deletion, along
with amortized (usually) O(1) insertion.

Liu et al. continue their
improvements, though. The next issues that
arise are:

In short, what Liu et al. are saying is
that first, some items will rarely be seen, and
thus having them take up the same amount
of memory as items with millions of views
and interactions is pointless (they won’t
contribute to the model significantly) and
secondly, that old items (in some cases
years), also are less relevant for
recommending new content to users. As an
example, a video from a 2019 trend is less
likely to be of interest to a user than a video
about a trend from right now.

The solutions implemented for these
two problems are as expected. First, new
items are filtered by the probability of them
being useful to the models, and second, all
items are set to be inactive after a certain
duration.

To summarize the first issue and
solution proposed by Liu et al., there is a
need for a fast and memory-efficient means
to handle data for mass recommendation
systems such as the one used in TikTok, and
Liu et al. have discovered a way to do this,
while also cleverly avoiding any data that is
irrelevant for any reason.

The next goal Liu et al. bring up is
the goal of attempting to have consistent and
live changes in user models. They solve this
issue seamlessly with a number of steps and
procedures, beginning with the separation of
batch training and online training. They
describe this separation, with batch training
being offline and similar to standard
TensorFlow training. Liu et al. state that:
“Batch training is useful for training

historical data when we modify our model
architecture and retrain the model.” (Liu et
al. pg. 4)

What this means is that the batch
training section is primarily useful for large
changes in a users model– when changes
more than just slight tweaks to parameters
need to be made, and the changes will take
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longer to compute.
Alternatively, Liu et al. also describe

an Online training stage, which consists of
live changes to a user model, that allows for
small changes to be made while a user is on
the app. Liu et al. describe this process more
in-depth as:

“a training worker consumes
realtime data on-the-fly and updates the
training PS [Parameter Server]. The training
PS periodically synchronizes its parameters
to the serving PS, which will take effect on
the user side immediately. This enables our
model to interactively adapt itself according
to a user’s feedback in real time.” (Liu et al.
pg. 4)

In simpler terms, this is saying that a
training recommendation model will make
changes as a user is using the application,
and periodically these changes will be sent
to the live recommendation model that the
user is currently being recommended from.
The next step in updating models live is to
do so in an efficient manner. As stated on
page 5 of Liu et al’s. paper, user models tend
to be multiple terabytes in size. Updating a
model of this size, for each user, every
minute, is simply unachievable. Liu et al.
solve this problem by separating variables
into sparse and dense variables. Sparse
embedding tables are simply those with little
data, being dominated by 0’s, whereas dense
variables are those that are mostly non-zero
values. This concept is shown below in
Figure 13.

As Liu et al. state, sparse parameters
dominate the size of models, even though
they will be updated much less often. As a
naive example, imagine embedding tables
that have the goal of calculating what a
given article is about. One table about
professional sports may have counts of
words such as “ball”, “score”, or “referee”.
However, another table may keep count of
the topic of World War II, in which words
such as “war”, “tank”, or “politics” may be
used. If the article is in fact, about
professional sports, only that table will be
heavily filled, and most other tables on other
topics will have little to no data. Due to the
fact that there are countless more topics the
article doesn’t apply to, many more tables
will be left nearly or entirely empty than
those that will be filled. This is similar to the
concept of why recommendation systems
will have more sparse variables than dense
ones. Liu et al. leverage this fact to only
occasionally update a user’s dense variables,
and tend to update a few sparse variables
with each live model update, instead. Liu et
al. claim this outright when they state:

“We push the subset of sparse
parameters whose keys are in the
touched-keys set with a minute-level
interval from the training PS to the online
serving PS.” (pg. 5)

Additionally, it is discussed that
dense parameters are only updated daily,
allowing for updates to the larger portions of
user models on a consistent basis, while not
hindering the network to an extreme degree.
Liu et al. further optimize this process with
the following:

“... dense parameters, since they are
synchronized daily, we choose to schedule
the synchronization when the traffic is
lowest (e.g. midnight).” (pg. 8)

meaning that dense parameter
updates for all users of a region are only
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implemented when network traffic is at a
daily low for that area, and thus making the
overall process more efficient and
server-friendly.

The two aforementioned changes to
standard TensorFlow neural networks allow
for massive optimizations and an incredibly
powerful recommendation system. This is
briefly proven in the evaluation section of
the paper. In Figure 14 below, some analysis
is provided for different live model update
times (5hr, 1hr, 30min), and how these
intervals affect a model's performance over
the course of 50 hours. The results are clear;
a shorter live model update time means a
slight increase in model performance. As
stated in a previous quote, the production
model of Monolith uses a one-minute
interval, which means the model is
performing at even better rates than those
shown in the figures.

5 CHALLENGES, FUTURE
TECHNOLOGIES, AND CONCLUSION

Recommendation systems are
currently faced largely with the same major
issues that face all technological research–
speed and size. Many optimizations outside
of those mentioned in this paper are centered
heavily on making the algorithms faster, and
work as well while taking up less space.
These topics will likely never truly be gone,
as there will always be room for
improvement in both aspects. Outside of
this, comes the challenge of more efficiency
and accuracy, some of which was covered
above. With the increase of the general
effectiveness of recommendation systems,
though, comes perhaps the most daunting
challenge of all, being the social perception
and ethical use of recommendation systems.

As is covered in my paper An
Analysis of Recommendation System’s
Effect on Society and the Engineers
Involvement (2023), recommendation
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algorithms are potentially a major reason for
the decline of mental health worldwide.
With social media addiction being in the
spotlight, developers need to come up with a
way to keep users interacting with their
platforms, while decreasing the negative
consequences that come with extremely
powerful systems. Recommendation systems
will continue to improve at exponential
rates, however it is the job of the researchers
and engineers to make sure they create
software that is useful for users, rather than
detrimental to their health and wellbeing.
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