
Towards a Comprehensive Model Based Safety
Assessment: A STPA-informed approach

A

Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial ful�llment

of the requirements for the degree

Doctor of Philosophy

by

Minghui Sun

August ����

©Copyright by Minghui Sun ����

All Rights Reserved

�

Abstract

With the rapidly increasing complexity of the modern safety-critical system, the

“model-based” approach has gainedmuch traction for safety assurance, thanks

to advancements in the computation capability and computational techniques.

We have seen many model-based applications in the industry, for example, us-

ing models to automatically generate software code and using models as �D

drawings directly for manufacture. Similarly, Model-based Safety Assessment

(MBSA) has been an important research topic in the safety engineering com-

munity over the past two decades. Numerous modeling languages and veri�-

cation platforms are developed to automatically translate the safety model di-

rectly from the design model for faster and more integrated safety assessment.

These models have a critical role for safety assurance because safety-critical

decisions are derived directly from them, and they are at the center of the ev-

idence chain for regulation compliance. Therefore, they need to be validated

before they can be used in any MBSA analysis. Unfortunately, the current MBSA

literature falls short in this regard. In general, MBSA literature focuses on veri-

fying properties and automating safety assessment, but there is relatively little

focus on making sure the model � that is used for the analysis is valid (i.e., free

from design errors that may lead to “false assurance” of the veri�cation pro-

gram) in the �rst place.

Therefore, there is a gap between MBSA and safety assurance caused by
�See the Appendix for a de�nition.

�

validation rather than veri�cation. Although “model validation” has been around

probably since simulation was introduced into engineering or even as far back

as the scienti�c revolution, our problem is different and potentially more chal-

lenging because, inMBSA (or Engineering Design in amore general sense), there

is no existing system to extract data from to validate themodel in the �rst place.

This dissertation is motivated to bridge this gap. First, because MBSA is

a loosely de�ned concept, a comprehensive investigation is conducted in the

literature to �nd the de�ning features and notable patterns of MBSA, and more

importantly, to provide evidence that there is indeed a lack of validation for the

model of current MBSA approaches. Second, a safety-guided design method-

ology, named STPA+ (based on STPA, a well-received hazard analysis method-

ology), is proposed to develop at the methodology level the requirements� for

the system design activity (not the system being designed) that, if ful�lled in

the speci�c design application, will lead to a valid set of system speci�cations�

that are ready to be translated into the model in the target MBSA language. Fi-

nally, a case study is conducted on a new Urban Air Mobility (UAM) concept to

demonstrate the effectiveness of the proposed methodology.

Keywords: Model-based Safety Assessment, STPA+, Reference Architecture,

Validation, Urban Air Mobility

�ibid.
�ibid.

�

Acknowledgements

I was going through my old application documents to UVa Fall ���6 the other

day, and realized that this dissertation is exactly the answer to the research

question I put in the Personal Statement when I applied for Dr. Fleming’s lab.

I think I have myself to thank, for being staying true to the course no matter how

hard and hopeless the future had looked like. I love the song “My Way” by Frank

Sinatra. It is a perfect depiction of my intellectual journey during all these years.

Although the future is still unclear at this point, at least I answered the calling

my way.

Second, I want to thankmy parents. They are the twomost important people

in my life. I have not been able to see them for almost 6 years at this point. I

am grateful for their understanding and support. I know they do not understand

many things happening in life as their life experience is completely different from

this one I am leading, but they always try, try their best to see things from my

perspective. The most precious thing is not howmuch helpful they can be in my

daily life, but really the care and the love I can feel from them, which is all I can

ask for. I owe them a lot.

Third, I would like to thank Cody. He tookme in in ���6, and we stick together

ever since. This advisor-student relationship is more like a friendship, although

I have a hard time thinking him as my friend mostly because of my Chinese

cultural teaching, always putting my seniors at a higher status. But anyway, we

have our ups and downs. We argued a lot. It took quite some time for us to

�

converge to the same page. Sometimes I felt he is annoying; sometimes I loved

him like my best buddy because he is probably the one who understands my

intellectual aspiration the most in this world. But most importantly, I grow in

this relationship. I now understand more about safety and engineering design

thanks to his continuous push to get things concrete. Hiswords: “get your hands

dirty”. I can now better articulate my question and communicate my solution

thanks to his “ruthless” criticism. Without his support, I cannot go this far. I

hope he also grows in this relationship.

Last but not the least, many thanks to my lovely friends Xiyuan, Yali, Wanjia,

Krista, Neil, Peng andMike who brought joy intomy life for the traveling, the food

adventure, the cooking, the hikes, the football game, those �shingweekends and

the kayaking trips, and all the others who helped me in my life.

6

Table of Contents

List of Tables ��

List of Figures �6

� Introduction ��

�.� Background . ��

�.� Motivations . ��

�.� Challenges and solutions . �6

�.� From STPA to STPA+ . ��

�.� Contribution . ��

� Literature review �8

�.� Characterizing and critiquing MBSA �8

�.� Contribution and �nding . ��

� Method �: Deriving the prescriptive constraints from the hazard and the

functional goal ��

�.� Preliminary . ��

�

�.� From the Unsafe Control Action to the safety constraints ��

�.�.� The implications of the UCA ��

�.�.� The safety constraints . ��

�.� Deriving the safety constraints from the hazard ��

�.�.� From safety constraints to hazard ��

�.�.� From hazard to safety constraints ��

�.� De�ning the safety constraints . ��

�.�.� The single hazard situation ��

�.�.� The multiple sub-hazards situation ��

�.� Contribution . 6�

� Method �: Deriving the descriptive constraints for the controlled pro-

cess. 6�

�.� Preliminary . 6�

�.� Constraining the controlled process 6�

�.� Constraining the process model 6�

�.� Contribution . 6�

� Method �: Reference architecture for the controller design 6�

�.� Preliminary . 6�

�.�.� The problem . 6�

�.�.� Scope of the safe controller ��

�.�.� Functional architecture . ��

8

�.� Three general tasks for a controller ��

�.� Four types of safety-critical scenarios �6

�.� Safety-critical scenarios of Task � ��

�.�.� The task . ��

�.�.� The safety-critical scenarios �8

�.� Safety-critical scenarios of Task � 8�

�.�.� The task . 8�

�.�.� The safety-critical scenarios 8�

�.6 Safety-critical scenarios of Task � 8�

�.6.� The task . 8�

�.6.� The safety-critical scenario 8�

�.� The reference architecture . 8�

�.8 Contribution . 88

6 A case study on Urban Air Mobility ��

6.� The problem setting . ��

6.� Method �: deriving the prescriptive constraints ��

6.�.� The functional constraints ��

6.�.� Inadequate altitude with respect to the traf�c �6

6.�.� Inadequate altitude with respect to the weather ��

6.�.� Inadequate altitude with respect to the terrain �8

6.�.� Inadequate altitude with respect to the airspace ���

�

6.� Method �: deriving the descriptive constraints ���

6.�.� The model structure . ���

6.�.� Deriving the constraint-assumption pair ���

6.� Method �: Architecting a safe controller ���

6.�.� The overall work�ow of the controller ���

6.�.� Task �: Perceive the prescriptive constraints to generate a

safe �d trajectory. ���

6.�.�.� The overall description ���

6.�.�.� The enabling action ���

6.�.�.� The main action ���

6.�.� Task �: Derive the �d waypoints from the desired �d tra-

jectory . ���

6.�.�.� The overall description ���

6.�.�.� The enabling action ��8

6.�.�.� The main action �6�

6.�.� Task �: Issue the instruction of speed and descent angle. ��6

6.�.�.� The overall description ��6

6.�.�.� The enabling action ���

6.�.�.� The main action �8�

6.� Summary . �8�

� Conclusion �86

��

�.� Summary . �86

�.� Contribution . �8�

�.� Future work . �8�

Appendix A: Terms ���

Appendix B: MBSA review ���

Appendix C: The design of the reference architecture ���

Appendix D: The reference architecture in a N2 diagram ���

Appendix E: The UAM controller in a N2 diagram ���

��

List of Tables

�.� The derivation of the safety constraints. ��

�.� The main actions that each theme includes. MA stands for main

action. 8�

6.� The constraints of the process model and assumptions of the

process model derived from each concern ���

6.� The input-output-transformation of MA1. ���

6.� The trigger event, the guard condition and the duration of MA1 . ���

6.� The input-output-transformation ofMA2. Note that nst30 is not in-

cluded in the table because it is addressed as the guard condition

ofMA3. The speci�c design application can deviate from the ref-

erence architecture as long as the deviation can be justi�ed. . . . ���

6.� The trigger event, the guard condition and the duration of MA2 . ���

6.6 The input-output-transformation of MA3. ���

6.� The trigger event, the guard condition and the duration of MA3 . ���

6.8 The input-output-transformation of MA4. ���

6.� The trigger event, the guard condition and the duration of MA4 . ���

��

6.�� The input-output-transformation ofMA5. Note that nst30 is not in-

cluded in the table because it has been addressed as the guard

condition ofMA4. This table is very similar to Table.6.�. The only

major difference is the last row, where ✏ is an in�nitesimal num-

ber. ��6

6.�� The trigger event, the guard condition and the duration of MA5 . ���

6.�� The input-output-transformation of MA6 ���

6.�� The trigger event, the guard condition and the duration of MA6 . ���

6.�� The input-output-transformation of MA7. ���

6.�� The trigger event and the guard condition of MA7 ���

6.�6 The input-output-transformation of MA9. ���

6.�� The trigger event, the guard condition and the duration of MA9 . ���

6.�8 The input-output-transformation of MA10. Note that msp30 is not

included in the table because it has been addressed as the guard

condition of MA9. ���

6.�� The trigger event, the guard condition and the duration of MA10 . ���

6.�� The input-output-transformation of MA11 ���

6.�� The trigger event, the guard condition and the duration of MA11 . ���

6.�� The input-output-transformation of MA12. ���

6.�� The trigger event, the guard condition and the duration of MA12 . ���

6.�� The input-output-transformation of MA13. Note that msp30 is not

included in the table because it has been addressed as the guard

condition of MA9. ���

��

6.�� The trigger event, the guard condition and the duration of MA13 . ���

6.�6 The input-output-transformation of MA14. ���

6.�� The trigger event, the guard condition and the duration of MA14 . ���

6.�8 The input-output-transformation of MA21. �6�

6.�� The trigger event, the guard condition and the duration of MA21 . �6�

6.�� The input-output-transformation of MA22. For Scenario �, � and

�, (x
i

, h
i

) = bs(t
d

0) and rta
i

= t
d

0 . �66

6.�� The trigger event, the guard condition and the duration of MA22 . �66

6.�� The input-output-transformation of MA23. �6�

6.�� The trigger event, the guard condition and the duration of MA23 . �6�

6.�� The input-output-transformation of MA24. �6�

6.�� The trigger event, the guard condition and the duration of MA24 . ���

6.�6 The input-output-transformation of MA25. ���

6.�� The trigger event, the guard condition and the duration of MA25 . ���

6.�8 The input-output-transformation of MA26. ���

6.�� The trigger event, the guard condition and the duration of MA26 . ���

6.�� The input-output-transformation of MA27. ���

6.�� The trigger event, the guard condition and the duration of MA27 . ���

6.�� The input-output-transformation of MA28. ���

6.�� The trigger event, the guard condition and the duration of MA28 . ���

6.�� The input-output-transformation of MA29. ��6

��

6.�� The trigger event, the guard condition and the duration of MA29 . ��6

6.�6 The input-output-transformation of MA30. �8�

6.�� The trigger event, the guard condition and the duration of MA30 . �8�

6.�8 The input-output-transformation of MA31. �8�

6.�� The input-output-transformation of MA32. �8�

6.�� The trigger event, the guard condition and the duration of MA32 . �8�

6.�� The input-output-transformation of MA33. �8�

6.�� The trigger event, the guard condition and the duration of MA33 . �8�

��

List of Figures

�.� Conceptually, STPA and MBSA can be integrated. ��

�.� STPA+ eliminates the modeling process of STPA, which hence

solves the model consistency problem. �8

�.� (a) is a basic control structure that is used by STPA; (b) is how

a hazard can happen caused by the different components of the

control structure (the bold font on the left side). CA stands for

“control action”. ��

�.� Designing out the causal factors �, �(a) and �(b) described on

Page �� is consistent with the functional design of the control

structure. ��

�.� STPA+ is comprised of threemethods to address the three casual

factors respectively when designing a system. ��

�.6 The process that how STPA+ is used to design a system and

how the results can support MBSA. M�, M� and M� are short for

Method �, � and �. ��

�.� Given the function and the hazard, themainstreamMBSAapproaches

(in the dotted box) contribute to safety assurance by verifying the

given design solution against the given properties. �6

�6

�.� Four types of automatic inference are identi�ed in the MSBA lit-

erature. ��

�.� The intended output behavior can cause the hazard by unsafe

start time, unsafe stop time and unsafe dynamic trajectory be-

tween the start time and the stop. The safety constraints on the

start time and stop time of the intended output behavior are af-

fected the performance constraints on the in-behavior and out-

behavior respectively. The dotted arrow means “derive”. ��

�.� The process to derive the safety constraints from the hazard. . . ��

�.� The scenarios ofmst and nst for a single hazard. Note that there

might be multiple sections of the nst, because for example a re-

peating in-behavior may enter the same must-not-start condition

periodically and not start the intended behavior. But there can

only be one section of mst, because by de�nition if the intended

behavior does not start before the mst_T expires, there will be a

hazard; but if the intended behavior starts within the mst_T , the

whole when-to-start conditions are not applicable any more be-

cause the intended behavior already started, at which time it is

the when-to-stop conditions that are applicable. ��

�.� The scenarios of mst for the multiple sub-hazards situation. . . . ��

�.� The model structure is abstracted into input ports, transforma-

tion and output ports. The reason that the internal state x(t) is

both input port and output port is that its value at the current step

affects its value at the next step through ẋ. Therefore, it has to be

treated differently depending on the situation. 6�

��

�.� We identi�ed eight arrows of constraints, a map to derive con-

straints for the process model. Each arrow reads as “the source

constrains the end”. 6�

�.� The scenarios that are not addressed by the reference architec-

ture. But all of these scenarios are covered by MBSA. ��

�.� The action to calculate the the total electrical power that a battery

contains. ��

�.� A controller must accomplish three general tasks, which forms a

functional structure of the controller. ��

�.� The six possible results that a decision-making process can lead

up to. �6

�.� The event sequence fromgenerating the control reference at t1, to

generating the control action at t2, to the control action issued at

t3 and �nally to the control action takes full effect at the controlled

process at t4. The time intervals of t1, t2 and t3 with t4 have to be

greater than the time delay T1, T2 and T3 de�ned in Fig.�.�. CR and

CA stand for control reference and control action respectively. . 8�

�.6 Task � is comprised of two themes: the generate theme and the

monitor theme. 86

�.� Task � is comprised of all three themes. 8�

�.8 Task � is comprised of all three themes. 88

�.� The reference architecture in an N2 diagram. The yellow, green

and blue cells are the interactions between the main actions and

the environment, within the main actions, and between the main

actions and the enabling actions respectively. 8�

�8

�.�� The interaction of the controller with the controlled process and

the external entities. The three white boxes are the three tasks

within a controller, and all the grey boxes are the entities external

to the controller. The detailed actions within the controller and

the interactions between them can be found in Appendix D. . . . 8�

6.� The case study focuses on the descent phase of a typical UAM

�ight. ��

6.� The UAM case study of avoiding the hazard of inadequate altitude ��

6.� Deriving the prescriptive constraints w.r.t. the functional goal. . . ��

6.� Deriving the prescriptive constraints w.r.t. the traf�c. �6

6.� Deriving the prescriptive constraints w.r.t. the weather. �8

6.6 Deriving the prescriptive constraints w.r.t. the terrain. ��

6.� Deriving the prescriptive constraints w.r.t. the airspace. ���

6.8 The process model for the descent. ���

6.� The structure of the process model. ���

6.�� The overall work�ow of the controller. FG stands for functional

goal. ���

6.�� The expected time intervals between key time points of the con-

troller’s decision-making process. ���

6.�� The three stages of Task �. But because we assume the descent

can stop and thus will stop immediately once Point B is arrived at

rta, only the �rst two stages are applicable in this case study. . . ���

6.�� The timeline of Task � is divided into four segments by the two

stages. ���

��

6.�� The de�nition of the stages of Task �. ���

6.�� 6possible (not considering failure) transitions between the stages

are identi�ed for this case study. The number associated with

each arrow represent the corresponding sub-action in the refer-

ence architecture. ���

6.�6 Graphical representation of EA1 for the case study. ��6

6.�� Graphical representation of EA2. ���

6.�8 Graphical representation of EA3 for the case study. ��8

6.�� Graphical representation of EA5. ���

6.�� The factors to decide the performance constraints of the descent. ���

6.�� The resulting desired descent trajectory s(T). ���

6.�� The control structure to achieve the target waypoints. The total

time delay introduced by the feedback loop is assumed T2. . . . ��6

6.�� An example to explain validity, feasibility and satis�ability. ��8

6.�� Graphical representation of EA6 for the case study. ���

6.�� Graphical representation of EA7 for the case study. �6�

6.�6 Graphical representation of EA8 for the case study. �6�

6.�� Graphical representation of EA9 for the case study. �6�

6.�8 Fourwaypoints are picked (x0, h0, rta0), (x1, h1, rta1), (x2, h2, rta2),

(x
B

, h
B

, rta) so that the resulting descent trajectory will be con-

�ned by the red boundaries. �6�

6.�� The target waypoint can be generated based on an outdated pre-

diction of the descent trajectory. �6�

��

6.�� Both the change of the current prediction and the deviation from

the current prediction requires new prediction. �6�

6.�� The time delay introduced by the controlled process is T3. ���

6.�� Zooming in to the time delay of T2 and T3 using the change of

headwind as an example. ���

6.�� Graphical representation of EA12 for the case study. ���

6.�� Applying the reference architecture to the case study result in the

N2 diagram, where the yellow cell represents the interaction be-

tween the main actions and the environment and the controlled

process, the green cell represents the interaction among themain

actions, and the blue cell represents the interactions between the

main actions and the enabling actions. Refer to Appendix E for

the full readable N2 diagram. �8�

�.� STPA+ in the context of the Systems Engineering process. M�,

M� and M� mean Method �, � and �. �8�

�.� A general engineering design process to de�ne (and distinguish)

some of the key terms used in the dissertation. ���

��

Chapter �

Introduction

�.� Background

The rapid advancement ofmodern science and technology poses twochallenges

to the safety community. For one, systems are increasing in complexity more

rapidly than ever. The possible states of a complex systemare astronomical and

make it impossible to exhaustively test out all the unsafe design errors [�]. For

two, the introduction of disruptive technology makes it extremely dif�cult (if not

impossible) for safety engineers to even imaginewhat can gowrong. The record

shows in an industry as highly regulated as commercial aviation that the intro-

duction of new systems or even new design features may lead to catastrophic

accidents, as the two most recent Boeing ���MAX accidents are still fresh in

the public’s memory [�]. The general public’s perception that civil aviation is the

safest means of transportation results from continuous learning from previous

accidents enforced by rigorous regulation and the relatively stable technology

perfected throughout decades of operation.

The safety community tackles these challenges at the process level and the

method level. At the process level, numerous safety industry standards (e.g.

IEC 6���8 [�], ISO �6�6� [�], DO-��8C [�], DO-��� [6], DO-��� [�] and DO-��� [8])

��

are developed for more rigorous engineering activities when developing safety-

critical systems. Compliancemust be demonstrated that the required design ac-

tivities and safety activities are all suf�ciently conducted in accordance with the

level of safety criticality (e.g., the Development Assurance Level in ARP����A [�]

and Automotive Safety Integrity Level in ISO �6�6� [�]). This approach of pro-

cess compliance is widely practiced by the aviation and automotive industry,

among others.

This dissertation focuses on themethod level, because bettermethodsmake

it easier and faster to achieve and demonstrate the process compliance. At the

method level, two different streams of safety philosophy have been dominat-

ing the research world. One is automatic inference: since the complexity of the

system has exceeded human cognitive capacity, computational models are in-

troduced to tackle the complexity. Thanks to the rapid advancement of both the

computational techniques and hardware capacity, the model-based approach,

speci�cally Model-based Safety Assessment (MBSA), was introduced over two

decades ago and had great potentials in this regard. The other is causal rea-

soning: regardless of the complexity, systems always follow certain underlying

patterns, which can be used to reason about what can go wrong with the sys-

tem through careful abstraction and methodical methodological aid. Multiple

methods are available in the safety community, such as Functional Hazard As-

sessment (FHA) [��], Fault Tree Analysis [��], and Hazard and Operability Anal-

ysis (HAZOP) [��]. One prominent and probably the most successful method in

this regard is the Systems Theoretic Process Analysis (STPA) [��]. Compared

with other traditional methods that are mainly based on an extended usage of

pure logic, the “underlying pattern” that STPA uses is hierarchical control, a well-

studied scienti�c theory, which provides both scienti�c rigor and engineering

intuition to reason about the possible causes of hazard.

However, both approaches have pros and cons. Automatic inference, usually

��

paired with a particular type of formalism, can provide a conclusion with (quan-

ti�able and/or logical) certitude that whether the collective behavior of a given

set of speci�cations are free from con�icts and satisfy speci�c properties �.

However, because automatic inference starts with a pre-de�ned set of speci�ca-

tions, automatic inference is not effective and even counter-productivewhen the

given speci�cations are incomplete, illegal (i.e., violating hard constraints), or

having unidenti�ed assumptions. On the other hand, causal reasoning, usually

conducted manually, can �nd new scenarios and missing assumptions through

the involvement of human experts with methodological guidance. However, it

is tough for the manual process to tell with certitude whether a property will be

satis�ed or not with the resulting speci�cations.

Obviously, neither approach is suf�cient for safety assurance on its own, but

when used together, they can overcome each other’s weaknesses. This disser-

tation stems from this observation.

�.� Motivations

MBSA is probably themost noticeable development of automatic inferencemeth-

ods in the safety community over the past two decades. It is a promising direc-

tion for safety assurance in the era of complex systems. Besides tackling the

increasing complexity, models in MBSA are digital proxies of the real systems

and can be built even before a prototype. This makes MBSA a perfect candi-

date to identify design problems early before they are too costly or impossible

to change later. Furthermore, the corner cases usually targeted in safety test-

ing are either too hard to generate in the real operational environment due to

their low probability or too dangerous to perform because of their severe con-

sequences. Amodel-based approach can easily test these scenarios safely and
�See Appendix A for the de�nition

��

suf�ciently in the virtual space.

However, MBSA has limitations. Similar to any other automatic inference

method, it can only work with a given set of speci�cations. Even assuming a per-

fect modeling process, the input speci�cations can be missing or illegal. Most

MBSA works leave the task of validating the input speci�cations to the mod-

eler, not because it is easy but because it is an ill-structured, hard-to-generalize

problem. Furthermore, models in MBSA are nothing more than a set of mathe-

matical expressions and hence have assumptions for the model to be valid in

the �rst place. In fact, assumptions are notoriously challenging to identify and

keep track of during the engineering process. Without having these problems

addressed, MBSA can lead to “false assurance”. It is not a trivial problem that

can be blindly brushed away, especially for safety, where accidents happen all

the time because of these “surprises” that aremissed in the very beginning (e.g.,

Arian � explosion [��]).

The limitation of MBSA is caused by a lack of validation of the input speci-

�cations. It is under the topic of “requirement validation”. However, the general

“requirement validation” community focuses more on the requirements related

to a system’s functionality rather than safety. Moreover, causal reasoning meth-

ods like FHA and HAZOP stop at the hazard level, and hence cannot be used to

generate the speci�cations. FTA, a deductive causal reasoningmethod, is the de

facto method to validate the speci�cations from the perspective of safety, such

as the PSSA process in ARP��6� [��]. However, as argued by [��], it becomes

less and less effective due to the complex interactions in the modern complex

system. Even if FTA is suitable for the particular target system, it is automated

away by MBSA (probably the most prominent feature of MBSA), transformed

from a causal reasoning method into an automatic inference method. In our

opinion, it is the irony of MBSA, solving one problem (i.e., consistency between

the design model and the safety model) but only creating another (i.e., model

��

validity). Another causal reasoning method, and probably the most prominent

one over the past decade, is STPA. STPA is well known in the safety engineer-

ing community for its power to identify inadequate design errors that might lead

to a hazard. Speci�cally, STPA abstracts a complex system into a hierarchical

control structure, a well-studied engineering construct, and uses it to pinpoint

the possible places and patterns that a design can go wrong. It seems STPA is

a perfect �t to address the problems of invalid speci�cations, complementing

the weakness of the current MBSA works.

As promising as STPA is to overcome the weakness of MBSA, it is not ready

to integratewithMBSAbecause (�) the STPAmodel is inexecutablewhichmakes

it impossible to run a model-based safety veri�cation on the STPA model di-

rectly; (�) because the STPA model is informal and “different than the architec-

tural models usually proposed for model-based system engineering today” [�6],

it is also dif�cult to integrate STPAwithMBSA throughmodel transformation; (�)

STPA is a hazard analysis technique, i.e., �nding out what-not-to-do, and hence

can not be directly used to generate MBSA speci�cations which by de�nition is

about what-to-do. Although showing great potential, all these differences be-

tween the STPA world and the MBSA world make it challenging to complement

MBSA with STPA.

Therefore, this dissertation is motivated towards the integration of MBSA

(automatic inference) and STPA (causal reasoning) at the methodology level.

�.� Challenges and solutions

Conceptually, it is possible to integrate STPAandMBSAunder the current paradigm.

As shown in Fig.�.�, given a set of design speci�cations, STPA �rst models them

into a control structure, on which the STPA hazard analysis will be conducted.

Second, the speci�cations are revised (possibly in multiple iterations) based on

�6

STPA MBSA

Safety
Assurance

Given
specification

Model Formalize

Informal Formal

Causal
reasoning

Automatic
inference

Given
specification

Validate Verify

To achieve

Is an instance Is an instance

To achieve

Figure �.�: Conceptually, STPA and MBSA can be integrated.

the STPA �ndings to eliminate the found design errors. Once no more design

errors can be found by applying STPA, the resulting speci�cations are passed to

MBSA for safety veri�cation. More iterations are possible if the properties are

not satis�ed during the MBSA analysis.

However, there are challenges to implementing such a concept for the in-

tegration of MBSA and STPA. As we will show now, the solution to these chal-

lenges (especially Challenge B and C) requires innovation at the methodology

level, i.e., a paradigm shift from STPA to STPA+.

Challenge A: The scope of MBSA. Although MBSA has been around for over

two decades, except for a few notable approaches such as AADL, HipHops, and

AltaRica, it is still not clear to the safety community what makes an approach

MBSA and what does not. Particularly, with other “model-based” disciplines

rising in the past several decades, such as Model-based Systems Engineering,

Model-based Design, and Formal Veri�cation, it gets more and more challeng-

ing to tell what MBSA even is. There are so many self-claimed MBSA modeling

languages that can contribute to safety assurance in so many different ways,

making the situation worse. It is crucial to have a comprehensive view of the

scope and the features of MBSA so that a basic generalization can be made in

terms of what MBSA can do and (more importantly) cannot do for safety assur-

ance, in order to eventually de�ne what is needed to complement MBSA.

Solution: An analysis is conducted based on a comprehensive review of the

��

current literature, to de�ne the general scope of MBSA as a collective research

effort . The general scope sets the stage for the methodology innovation of this

dissertation.

Challenge B: Model consistency. To start an STPA hazard analysis, a control

structure must be modeled from the speci�cations. However, information can

be lost or misinterpreted during this process, which creates a potential gap that

can only be avoided through the “art of modeling”, which can be error-prone and

hard to review. In essence, this gap is because STPA is inherently an analysis

technique, which by de�nition has to start with an existing design solution to

analyze. As a matter of fact, MBSA was originated from a similar concern that

the design model and safety model can be inconsistent due to such a modeling

process.

Solution: ASTPA-informed safety-guided designmethodology, namedSTPA+,

is developed to generate the requirements at the methodology level that, if ful-

�lled by the speci�c design application, will lead to valid system speci�cations.

In this way, no modeling process is needed, and hence the room for inconsis-

tency is naturally eliminated (Fig.�.�).

STPA

Function/
Hazard

Specification
Model

Formalize

MBSA

Design

Function/
Hazard

Specification

Translation

MBSA

STPA+

Figure �.�: STPA+ eliminates themodeling process of STPA, which hence solves
the model consistency problem.

Challenge C: Correct speci�cations. Replacing a hazard analysis technique

(STPA) with a design methodology (STPA+) eliminates the chance to examine

�8

the speci�cations after they are created, which requires that STPA+ results in-

correct speci�cations by construction. The obvious challenge is how to achieve

such “correct-by-construction” by a design methodology?

Solution: STPA+ treats a system as a control structure. Using the control

structure as an underlyingmap, STPA+ has away to systematically reason about

the possible safety-critical scenarios without the component-level failure and

puts in mechanisms to avoid the hazard and achieve the functional goal from

the beginning. In this way, STPA+ complements MBSA by starting with a correct

design model.

Challenge D: Formalization. The models used in MBSA are usually formal

models, i.e., mathematical models. Manually translating informal speci�cations

into a formalmodel is tedious and often error-prone. STPA does not result in for-

mal speci�cations, a challenge to further integrate it with any MBSA languages.

Solution: This dissertation does not particularly address this challenge. But

the output speci�cation of STPA+ is written in a language agnostic formalism

that has great potential to be automatically translated into awide range ofMBSA

languages. We will address this translation problem in the future as it is the last

step to truly integrate STPA+ with MBSA.

�.� From STPA to STPA+

This dissertation addresses the scope of MBSA (Challenge A) , model consis-

tency (Challenge B) and correct speci�cations (Challenge C). Challenge Awill be

addressed by Chapter �, and Challenge B and C will be addressed by the design

methodology STPA+. In this section, we give an overview of STPA+, speci�cally

how STPA+ is informed by STPA.

��

First, STPA is based on Systems Theory that views a system in terms of hier-

archical control, which leads to the fundamental observation of STPA: hazards

happen because of lack of control. At one level of control, the possible causes

of a hazard can be summarized as below (Fig.�.�).

Hazard to avoid

CA is not
defined or

unsafe

The defined
CA is safe

CA is not provided
by the controller

CA is provided
by the controller

CA is executed by the
controlled process

CA is not correctly
executed by the

controlled process

Hazard avoided

(a) The control structure (b) The possible causes of a hazard

Figure �.�: (a) is a basic control structure that is used by STPA; (b) is how a
hazard can happen caused by the different components of the control structure
(the bold font on the left side). CA stands for “control action”.

�. Given a hazard, the intended control action is not de�ned at the design time

or the intended control action cannot prevent the output of the controlled

process from reaching the hazardous states.

�. The safe control action is de�ned, but not provided as intended by the con-

troller.

(a) The process model is improperly de�ned at the design time;

(b) The controller is improperly de�ned at the design time.

(c) The controller is executed improperly at the operation time.

�. The intended control action is provided by the controller, but executed im-

properly by the controlled process at the operation time.

��

�. The actuation path or the observation path is executed improperly at the

operation time. �

STPA+, as a design methodology, is to design out these causal factors. It

focuses on getting the correct de�nition for �, �(a), and �(b) at the design time

and leaves out �(c), �, and � of improper execution at the operation time. This is

a decision made by choice, not a limitation. First, the target problem of “invalid

speci�cation” is a de�nition problem rather than an execution problem. Sec-

ond, given the correct de�nition, the execution problem (assuming perfect im-

plementation) can only be caused by component failure or human error, whose

occurrence cannot be prevented by a designmethodology. However, the impact

of failures can be mitigated and is already covered by MBSA, e.g., the failure-

safe principle. Finally, human error is covered by Human Factor as a discipline.

Therefore �, �(a), and �(b) are a proper scope of STPA+.

Output
behavior

Process
model

Controller

Controlled process

Function/hazard

1

2(a)

2(b)
Control

structure

Figure �.�: Designing out the causal factors �, �(a) and �(b) described on Page
�� is consistent with the functional design of the control structure.

Furthermore, to design out the casual factors, STPA+ follows the same pro-

cess as the functional design of the control structure. As shown in Fig.�.�, the
�We assume perfect de�nition of the actuation path and the observation path.

��

functional design of a control structure is subject to constraints from two direc-

tions: top-down and bottom-up, where the former represents the functional goal

from the higher level regardless of how the control structure is implemented,

and the latter represents the real process to be controlled (called “controlled

process” hereafter). Neither the top-down nor the bottom-up constraints can

be changed by the control structure; therefore, they are called prescriptive con-

straints and descriptive constraints respectively hereafter. With the prescriptive

constraints and the descriptive constraints de�ned, the functional design of the

control structure eventually boils down to the design of the controller, which is

to adequately interpret the implications of the constraints from both directions

and de�ne a control algorithm to generate the control action that can satisfy all

the constraints at the same time.

STPA+ follows the same process to design out the three causal factors �,

�(a), and �(b) described on page ��. First (corresponding to Causal factor �),

the hazard has to be avoided by the control structure as a whole regardless

of the speci�c implementation. Therefore, the hazard can be translated into

the prescriptive constraints and enter the design process the same way as the

functional goal. The only question is, on what the prescriptive constraints are

de�ned? The functional design de�nes them on the behavior of the output vari-

able (called output behavior hereafter, the top-down arrow in Fig.�.�), but STPA

de�nes them on the control action by assuming the “worst-case scenario” for

the controlled process. STPA+ follows the functional design and de�nes the pre-

scriptive constraints translated from the hazard on the output behavior. In this

way, no knowledge or assumption is required about the controlled process, and

the translation from the hazard to the constraints on the output behavior ismore

direct than to the control action. More importantly, the resulting constraints will

enter the design process just like the constraints from the functional goal, en-

abling seamless integration between the safety and the design. Having decided

to de�ne the hazard on the output behavior, the remaining question is, how to

��

adequately translate the hazard into the prescriptive constraints on the output

behavior?

Second (corresponding to Causal factor �(a)), the descriptive constraints

from the real process are manifested as a model of the real process (called

“process model” hereafter, the bottom-up arrow in Fig.�.�). The process model

has to adequately represent the real process in the �rst place for both functional

design and safety. Traditionally, in theoretical control and most “model-based”

work, the process model is usually a mathematical representation of the real

process, called system dynamics. However, the process model should be more

than a mathematical model especially for safety-critical systems because (a)

the mathematical model may have assumptions that have to be true for the

model to be valid in the �rst place, (b) constraints in the mathematical model

may change over time or attributes in the environment. For safety, an inade-

quate process model is much more dangerous than no model at all. Therefore,

the question is, how to adequately de�ne the model of the process under con-

trol?

Third (corresponding to causal factor �(b)), same as the functional design,

this is to design the controller to �nd the control action to satisfy the constraints

from both directions. However, the controller is more than a “control algorithm”

in theoretical control. It decides not only the right value (or magnitude) of the

control action but also the right timing to issue the control action and validity

condition before the control action can be issued, which are all subject to the

prescriptive constraints and the descriptive constraints. Therefore, the question

is, how to adequately de�ne the controller to address the constraints from both

directions?

Inadequacy in addressing any of the causal factors above will lead to invalid

speci�cations, eventually leading to false assurance. For example, causal fac-

tor � may lead to inadequate safety property, causal factor �(a) may lead to in-

��

adequate representation of the reality, and �(b) may lead to inadequately con-

strained control algorithm concerning the constraints from either direction. As

a result, three methods are developed for STPA+ to address the three casual

factors respectively (Fig.�.�).

Figure �.�: STPA+ is comprised of three methods to address the three casual
factors respectively when designing a system.

Method �: A method to derive the prescriptive constraints from the hazard

and the function for the control structure as a whole. This will be explained in

Chapter �.

Method �: A method to de�ne the process model as the descriptive con-

straints for the control structure as a whole. This will be explained in Chapter

�.

Method �: Amethod to derive the speci�cations for the controller so that the

constraints fromboth directionswill be enforced by the control actions. This will

be explained in Chapter �.

When using STPA+ to design a system (Fig.�.6), given the functional goal

and the hazard under study, the designer �rst applies Method � to derive the

prescriptive constraints for the control structure. Then based on a basic scien-

ti�c understanding about the controlled process, the designer applies Method

� to derive the descriptive constraints (i.e. the process model) for the control

structure. Finally, the designer follows Method � to de�ne the speci�cations for

��

Figure �.6: The process that how STPA+ is used to design a system and how the
results can support MBSA. M�, M� and M� are short for Method �, � and �.

the controller so that the constraints from both directions will be satis�ed by the

control structure through the issued control action.

In the future, the safety constraints will be translated as the properties that

a MBSA program will verify against, and the process model and the controller

speci�cations will be translated as the input model of the MBSA program.

�.� Contribution

The mainstream MBSA approaches (Fig.�.�) start with a given design solution

by formalizing it into a design model in the target languages; then faults and

failures are modeled to achieve a safety model; �nally, veri�cation is conducted

to see whether the given properties (functional or safety, deterministic or prob-

abilistic) are satis�ed.

However, there is a gap. Even assuming MBSA (or formal veri�cation in a

more general sense) can exhaustively check all the possible scenarios captured

by the design solution, there are still open challenges. If certain safety-critical

scenarios are not included or considered in the given design solution (the left

shoulder of Fig.�.�), or the properties do not correctly re�ect the hazard (the

��

Figure �.�: Given the function and the hazard, themainstreamMBSAapproaches
(in the dotted box) contribute to safety assurance by verifying the given design
solution against the given properties.

right shoulder of Fig.�.�), the results of MBSA cannot be fully trusted for safety

assurance.

This dissertation contributes to the literature by bridging that gap. Overall,

this dissertation develops a safety-guided design methodology (called STPA+)

to identify and address the safety-critical scenarios without component-level

failure for the de�nition of the design solution. Compared to the original STPA,

STPA+ derives the design solution directly to avoid the potential inconsistency

between the design model and the STPA model. Moreover, STPA+ provides bet-

ter methodological support in re�ning the hazardous scenarios associated with

decision making and control into the safety-critical scenarios that the design

solution can directly act upon. Therefore, STPA+ contributes to identifying and

addressing “hazards without failure”.

Speci�cally, STPA+ is comprised of three methods. Method � converts the

logic of the STPA “unsafe control action” to “what is safe”. It derives safety con-

straints from the hazard to make sure the safety constraints adequately re�ect

the hazard under study. Compared to the original STPA, Method � generates the

safety constraints directly instead of indirectly from the “unsafe control action”.

Themethod provided to de�ne the constraints on the start and stop times is a re-

�nedway to identify the “context” associatedwith the original STPA “unsafe con-

trol action”. Compared with the guide words of the traditional hazard identi�ca-

�6

tion techniques (e.g., HAZOP), Method � has a more precise and more concrete

structure that explains why a speci�c intended output behavior starts/stops too

early/late, which hence is also a contribution to the general hazard identi�cation

literature.

Method�de�nes themodel of the controlled process tomake sure themodel

is properly constrained both explicitly and implicitly. Compared with the orig-

inal STPA, Method � has a speci�c mathematical construct of the controlled

process, making the analysis more precise and less ambiguous. Furthermore,

compared with traditional analytical approaches (e.g., theoretical control) that

usually take a model as given, Method � focuses on the de�nition of the bound-

ary conditions (i.e., operational envelop) and the assumptions of the model of

the controlled process. Therefore, Method � contributes to both the safety com-

munity and the general model-based design community.

Method�de�nes a safe controller by providing a reference architecture to en-

sure the controller de�ned based on the reference architecture has all the safety-

critical scenarios (without component-level failure) addressed. Compared with

the original STPA, which only provides a small size of guide words in identify-

ing design errors of a controller, Method � provides more detailed support to

identify the design errors of a controller and addresses them from the begin-

ning with a reference architecture. To the best of our knowledge, there are no

such works in the current literature, whichmakesMethod � a contribution to the

safety community.

Eventually, Method �will strengthen the right shoulder of Fig.�.�; Method �&�

will strengthen the left shoulder of Fig.�.�. Together, “STPA+MBSA”will provide a

strong and comprehensive argument for the safety assurance of a safety-critical

system.

��

Chapter �

Literature review

�.� Characterizing and critiquing MBSA

MBSA has been around for over two decades. The bene�ts of MBSA have been

well-documented in the literature, such as tackling complexity, introducing for-

mal methods to eliminate the ambiguity in the traditional safety analysis, us-

ing automation to replace the error-prone manual safety modeling process, and

making sure the consistency between the design model and the safety model

[��]. However, there is still a lack of consensus on what MBSA even is. Major

modeling languages such asAADL-EMV� [�8–��], AltaRica [��–��] andHipHops

[�6,��] are generally considered as MBSA, which according to [�8] are the only

three languages that“have matured beyond the level of research prototypes”.

However, a question such as what makes them MBSA is left unanswered. For

example, is Formal Methods applying to safety analysis MBSA? Does safety

analysis even mean the same thing in the context of Formal Methods? The am-

biguity has signi�cant implications. From a System Safety Engineering point of

view, without a clear de�nition and boundary, MBSA can quickly become a buz-

zword that any other discipline can claim as long as the work uses a computer

model and is safety-related (e.g., [��,��]). This is good to the extent that differ-

�8

ent schools of expertise enrich MBSA as an active research topic. However, this

also jeopardizes the identity of MBSA as a leading research thrust of the Sys-

tem Safety Engineering community. For this reason, a comprehensive review

was conducted on MBSA to decide what MBSA can do and cannot do.

As a summary, this work characterizesMBSAwith the following de�ning fea-

tures and notable patterns. Further details can be found inAppendix B: “De�ning

and Reasoning about Model-based Safety Analysis: A Review".

• Three de�ning features are identi�ed that an MBSA work must have:

�. Verifying fail-safe property, i.e., no single point failure and the overall

system must satisfy the risk objective.

�. Assuring architecture consistency between the designmodel and the

safety model, which is the initial motivation of MBSA.

�. Automating safety analysis such as FTA, FMEA, and Common Cause

Analysis.

• Five notable patterns are identi�ed that an MBSA work may have:

�. As important as deductive analysis is, currentMBSA literature is over-

whelmingly inductive analysis.

�. A general framework is created to summarize how the literaturemod-

els fault activation from the component and fault effect on the com-

ponent.

�. Threeways to achieve architecture consistency are identi�ed: injected,

referred, and coupled.

�. Three types of the formalism of the modeling languages are summa-

rized: explicit, implicit, and comprehensive.

�. Nine types of safety analysis are identi�ed from the literature.

��

Functional
property

Safety
property

Nominal
behavior

Off-nominal
behavior

1
2 3

4

Valid? Fault

MBSA

Figure �.�: Four types of automatic inference are identi�ed in the MSBA litera-
ture.

�.� Contribution and �nding

Contribution: We characterized MBSA with three de�ning features and �ve no-

table patterns. This characterization givesMBSAadiscernible identity and sepa-

rates it fromother “model-based” safety-relatedwork, which helps preventMBSA

from evolving into a research buzzword.

Finding: One of the most important �ndings of this work is that the current

MBSA works are overwhelmingly automatic inference, and there is a lack of ex-

plicit causal reasoning in currentMBSA literature tomake sure the speci�cations

are valid in the �rst place.

The automatic inference is necessary because it veri�es whether the mod-

eled behavior (nominal or off-nominal)will satisfy the functional and safety prop-

erties. Fig.�.� are the four possible types of automatic inference, which are all

addressed by the MBSA literature.

• Arrow � focuses on verifying the “goodness” of the design. The intended

function has to be achieved by the designed behavior in nominal condi-

tions. This is the foundation of all other types of analysis.

• Arrow � ensures that the designed behavior in nominal conditions will not

lead to hazardous situations. For example, [��] conducted a series of

��

safety assessments to prove that all the possible trajectories of the au-

tonomous cars are not in con�ict by using reachability analysis.

• Arrow � focuses on verifying the “fail-operational” [��] property of a sys-

tem design, i.e., the desired function is still achievable even in the case

of device malfunction. This is a subject of robustness analysis [��], a de-

pendability concept that is closely related to safety.

• Arrow � focuses on verifying the fail-safe property. As explained in the

previous section, this is one of the minimal requirements for any work to

be considered MBSA.

However, theMBSA literature is signi�cantly unbalanced in terms of address-

ing the causal reasoning explicitly, which, as shown in Fig.�.�determineswhether

the model is valid in the �rst place. More speci�cally, the automatic inference

can only work with a set scope of speci�cations, while it relies on the causal rea-

soning to set the scope. [��] calls for a systematic approach to achieve con�-

dence in the completeness of the analysis. As pointed out by [��], completeness

of the causal factorsmay only be proven concerning those captured. “If a failure

mode is not even part of the formal model, then it is impossible to reason about

it. However, �nding a complete set of failuremodes for a given component is not

an easy task.” In fact, most of the MBSA innovation focuses on model speci�-

cation notations and algorithms for possible manipulations of the models [��].

But very little research is asking whether the safety model is valid, a question

that is and will always be at the center of System Safety Engineering discipline.

“The major open issue is how to reason about the choice of models, and not so

much how to reason about the properties of the models [�6]". This unbalanced

development between the automatic inference and the explicit causal reasoning

prevents applying MBSA to the safety assurance in the actual industry practice.

More explicit causal reasoning techniques need to be developed.

��

Chapter �

Method �: Deriving the prescriptive

constraints from the hazard and the

functional goal

�.� Preliminary

First of all, by “prescriptive constraints”, we mean the constraints that are de-

�ned without considering the implementation details of the system.

Second, like STPA, STPA+ is designed also from the systems-theoretic per-

spective: any system can be modelled with a (hierarchical) control structure.

When the system is modeled as a control structure, both the function that the

system seeks to achieve and the hazard that the system seeks to avoid are de-

�ned on the output variable of the controlled process (called “output variable”

for short hereafter), because the output variable is the goal of the control struc-

ture. For example, for the hazard of “a power plant being too hot”, the output

variable to be controlled is the temperature of the power plant, and the safety

requirement is that the temperature has to be lower than a certain level; for the

hazard of “an airplane �ying too low to the terrain”, the output variable to control

��

is the altitude of the airplane, and the safety requirement can be de�ned as the

altitude has to be above a certain altitude.

In the context of the control structure, we make the following de�nitions:

• Output behavior: The evolution of the output variable along the time axis�

y(t) where t 2 [st, sp].

– y(t) is called the dynamic trajectory of the output behavior.

– st is the start time of the output behavior.

– sp is the stop time of the output behavior.

• Functional constraints: The prescriptive constraints that are derived from

the functional goal and de�ned for the output behavior. If satis�ed by the

output behavior, the functional goal will be achieved.

• Safety constraints: The prescriptive constraints that are derived from the

hazard and de�ned for the output behavior. If satis�ed by the output be-

havior, the hazard will be avoided.

Translating the functional goal into the functional constraints is straight for-

ward. We focus on how to derive the safety constraints from the hazard in this

chapter.

�.� From the Unsafe Control Action to the safety constraints

To reiterate, the safety constraints are de�ned for the output behavior y(t)where

t 2 [st, sp]. Therefore, the question is how to derive constraints for {y(t), st, sp}

from the hazard. STPA has four types of Unsafe Control Action (UCA), which are

basically four ways that a control action can lead to a hazard. The idea is that,
�Here, we assume the output variable is continuous. A discrete variable is just a special case of
a continuous one

��

if a control action can be constrained in a way so that all the four types of UCA

can be avoided, then the resulting constraints are the safety constraints that the

control structure should satisfy. [��] uses a simliar to derive safety constraints

from the UCAs.

�.�.� The implications of the UCA

STPA has four types of UCA that are “provably complete” [�6].

UCA�: Not providing the control action leads to a hazard.

Cause �-�: The necessary control action to avoid the hazard is not de�ned.

Implication �-�: There must be at least one control action de�ned for each

hazard.

Cause �-�: The necessary control action to avoid the hazard is de�ned, but

the necessary “must-start” condition is not de�ned or de�ned incorrectly.

Implication �-�: The “must-start” condition (if applicable) must be correctly

de�ned for each control action.

UCA�: Providing the control action leads to a hazard.

Cause �-�: A de�ned control action has a “must-not-start” condition to avoid

a hazard, which however is not de�ned or de�ned incorrectly.

Implication �-�: The “must-start” condition (if applicable) must be correctly

de�ned for each control action.

Cause �-�: The performance (or value) of the control action is de�ned incor-

rectly.

Implication �-�: The performance constraints of the control action must be

correctly de�ned.

��

UCA�: Providing a potentially safe control action but too early, or too late.�.

Cause �: “A potentially safe control action” means the control action is not

in “must-not-start” condition, and is hence either in the “must-start” condition or

“can-start” condition (a condition that is neither must-start nor must-not-start).

This UCA happens because the safe time interval for the control action to start

is not de�ned or de�ned incorrectly.

Implication �: The acceptable time intervals for “must-start” and “can-start”

condition must be correctly de�ned.

UCA�: The control action lasts too long or is stopped too soon (for continu-

ous control actions, not discrete ones).

Cause �-�: Similar to the start scenarios, the “must-stop” or “can-stop” or

“must-not-stop” condition to avoid the hazard is not de�ned or de�ned incor-

rectly.

Implication �-�: The the “must-stop” or “can-stop” or “must-not-stop” condi-

tion (if applicable) must be correctly de�ned.

Cause �-�: Similar to the start scenarios, the acceptable time intervals asso-

ciated with the “must-stop” condition and the “can-stop” condition are not de-

�ned or de�ned incorrectly.

Implication �-�: The acceptable time intervals for “must-stop” and “can-stop”

conditions must be correctly de�ned.

�.�.� The safety constraints

The implications of UCA are in fact the constraints that if is satis�ed, a control

action will be safe. Therefore, we de�ne the safety constraints based on these

implications.
�The “wrong order” in the original STPA de�nition will be addressed in the future work

��

• (mst,mst_T): A set of conditions when the output behavior must start and

a time window within which the output behavior must start.

For example, a car sitting in the intersection at green light waiting for the

left turn must start once the light turns yellow and before it turns red.

• (nst, nst_T): A set of conditions when the output behavior must not start

and a duration of such conditions.

For example, a carmust not start the left turn when the light is the red, until

the light turns green.

• (cst, cst_T): A set of conditions when the output behavior can start; if the

output behavior is to start, a timewindowwithin which the output behavior

must start.

For example, a car sits at the intersection by itself waiting for the left turn.

It can make the left turn when the light is green, but it does not have to.

But if it choose to turn left, it has to do it before the light turn red.

• (msp,msp_T): A set of conditions where the output behavior must stop

and a time window within which the output behavior must stop.

For example, a car (just initiated the left turn) must stop the left turn when

it spots another car coming in with the right of way, before it gets in the

way of the other car.

• (nsp, nsp_T): A set of conditions where the output behavior must not stop

and a duration of such conditions.

For example, a car must not stop the left turn when it is in the lanes for

straight driving, until it is completely out of the intersection.

• (csp, csp_T): A set of conditions when the output behavior can stop; if the

output behavior is to stop, a time windowwithin which the output behavior

must stop.

�6

For example, a car can both make a left turn or take a U-turn. It initiates

with the left turn but it can stop the left turn (and make a U turn) before it

exits the intersection.

• pc: A set of constraints on the intended performance of the output behavior

to avoid a hazard.

For example, a car initiates the left turn at the green light, but driving too

low to exit the intersection.

As a result, the output behavior y(t) where t 2 [st, sp] must satisfy the safety

constraints:
8
>>>>>><

>>>>>>:

y(t) 2 pc

st 2 mst_T _ st 2 cst_T ^ st 62 nst_T

sp 2 msp_T _ sp 2 csp_T ^ sp 62 nsp_T

�.� Deriving the safety constraints from the hazard

Although we have explained what the safety constraints for the output behav-

ior should look like, how the safety constrains can be derived from the hazard

is still unanswered. We answer this question in this section by �rst explaining

how violating the safety constraints may lead to the hazard, and then reasoning

backward about how the safety constraints can be derived from the hazard.

�.�.� From safety constraints to hazard

We take a close look at how violating the safety constraints can lead to hazard.

• If the performance constraints pc are violated by the dynamic trajectory

y(t), the hazard will happen.

��

Implication: After the intended output behavior starts and before it stops,

hazard happens if y(t) 62 pc.

• If the intended output behavior does not start before the must-start time

window mst_T expires, the hazard will happen.

Implication: Since the intended output behavior has not started yet, the

hazard happens because the dynamic trajectory of the output variable be-

fore the intended output behavior violates its corresponding performance

constraints. We call the evolution of the output variable before the in-

tended output behavior the “in-behavior” in this dissertation. Therefore, the

must-start condition and timewindow is de�ned to prevent the in-behavior

from violating its own performance constraints.

• If the intended output behavior starts during the must-not-start time win-

dow nst_T , the hazard will happen.

Implication: Since the hazard happens after the intended output starts, it

is caused by the intended output behavior violating its own performance

constraints. Therefore, the must-not-start condition and time window is

de�ned to prevent the intended output behavior from violating its own per-

formance constraints at the very beginning.

• If the intended output behavior does not stop before the must-stop time

window msp_T expires, the hazard will happen.

Implication: Since the hazard happens when the intended output behav-

ior is still ongoing, it is caused by the intended output behavior violating

its own performance constraints. Therefore, the must-stop condition and

time window is de�ned to prevent the intended output behavior from vio-

lating its own performance constraints.

• If the intended output behavior stops during the must-not-stop time win-

dow nsp_T , the hazard will happen.

Implication: Since the hazard happens after the intended output behav-

�8

ior stops, it is caused by the dynamic trajectory of the output variable af-

ter the intended output behavior violating its corresponding performance

constraints. We call the evolution of the output variable after the intended

output behavior the “out-behavior” in this dissertation. Therefore, themust-

not-stop condition and time window is de�ned to prevent the out-behavior

from violating its own performance constraints.

Figure �.�: The intended output behavior can cause the hazard by unsafe start
time, unsafe stop time and unsafe dynamic trajectory between the start time and
the stop. The safety constraints on the start time and stop time of the intended
output behavior are affected the performance constraints on the in-behavior and
out-behavior respectively. The dotted arrow means “derive”.

As shown in Fig.�.�, the performance constraints for the intended output be-

havior, the in-behavior and the out-behavior are pc, pci and pco. Hazard happens

when pc, pci or pco is violated. Because the start time is also the stop time for

the in-behavior, the safety constraints on the start time of the intended output

behavior is determined by the both pc and pci. Similarly, the safety constraints on

the stop time of the intended output behavior is determined by both pc and pco.

For example, “too close to the air traf�c” has different minimal distances (i.e.

the performance constraint) for “approach”, “descent” and “landing”. Obviously,

the airplane can only be undergoing one of the three behaviors at one speci�c

time, and the applicable performance constraint (i.e. the minimal distance) de-

pends on which behavior is ongoing. Furthermore, these three behaviors are

��

temporally adjacent. The start time of the descent must make sure not only the

constraints on the “descent” are satis�ed, but also the constraints on the “ap-

proach” cannot be violated by the time the airplane stops the “approach” and

starts the “descent”. The stop time of the “descent” must make sure not only

the constraints on the “descent” are satis�ed, but also the constraints on the

“landing” cannot be violated when the airplane starts the “landing”.

In summary, the safety constraints are de�ned to prescribe the start time, the

stop time and the dynamic trajectory of the intended output behavior. Violating

the safety constraints leads to the hazard in the following ways:

• The safety constraints on the start time is violated, causing the violation

of pci or/and pc.

• The safety constraints on the stop time is violated, causing the violation

of pco or/and pc.

• The safety constraints on the dynamic trajectory is violated, causing the

violation of pc.

�.�.� From hazard to safety constraints

The previous section explained how violating safety constraintsmay lead to haz-

ard. We reason backward in this section about how to derive the safety con-

straints from the hazard.

In general, the safety constraints of the intended behavior are derived from

the hazard as shown in Fig.�.�. First, given the hazard under study, the per-

formance constraints (pci, pc and pco) are de�ned for in-behavior, the intended

behavior and the out-behavior. Then the must-start condition and the asso-

ciated time window (mst and mst_T) are determined based on pci; the must-

not-start condition, the must-stop condition, and the associated time windows

��

Figure �.�: The process to derive the safety constraints from the hazard.

(nst, nst_T,msp and msp_T) are determined based on pc; the must-stop condi-

tion and the associated timewindow (msp andmsp_T) are determined based on

pco. Finally, the can-start condition, can-stop condition and the associated time

windows (cst, cst_T, csp and csp_T) are determined based on themust-start con-

dition, must-not-start condition, must-stop condition, must-not-stop condition

and the associated time windows.

Must-start. The must-start condition mst and the time window mst_T are de-

�ned to prevent the dynamic trajectory of the in-behavior from violating its own

performance constraints pci. If the prediction of the in-behavior shows that the

dynamic trajectory of the in-behavior will violate pci at some time in the future,

the intended behaviormust start before that time to stop the in-behavior in order

to avoid the violation. In some cases, the violation is projected in the far future

where many uncertain factors may change the prediction of the in-behavior. It

is possible to have “look-ahead time”, meaning only violation within the “look-

ahead time” will be counted as a violation and used to de�ne themst andmst_T .

Therefore, a must-start conditionmst is true if the in-behavior will eventually

violates its performance constraints pci; mst_T is how much time left before

such violation happens, which can be calculated based on the prediction of the

dynamic trajectory of the in-behavior.

��

Must-not-start. Themust-not-start conditionnst and the timewindownst_T are

de�ned to prevent the intended behavior from starting when the performance

constraints pc are not satis�ed at the time the intended behavior starts. If the

prediction of the in-behavior shows that the dynamic trajectory of the in-behavior

will violate pc at some time in the future, the intended behavior must not start

as long as pc is not satis�ed.

Therefore, a must-not-start condition nst is true if the in-behavior will imme-

diately violate the performance constraints pc, if the intended behavior starts;

nst_T is the time window(s) when such unsatis�ability lasts, which can be cal-

culated based on the prediction of the dynamic trajectory of the in-behavior.

Must-stop. The must-stop condition msp and the time window msp_T are de-

�ned to prevent the intended behavior from violating its own performance con-

straints pc. If the planned dynamic trajectory of the intended behavior is going

to violate pc at some time point in the future, then the intended behavior must

stop before that time in order to avoid the violation. Similar to the “must-start”

condition, a “look-ahead time” is also possible here to avoid looking too far into

the future.

Therefore, a must-stop condition msp is true if the intended behavior will

eventually violates its performance constraints pc;msp_T is how much time left

before such violation happens, which can be calculated based on the planned

dynamic trajectory of the intended behavior.

Must-not-stop. The must-not-stop condition nsp and the time window nsp_T

are de�ned to prevent intended behavior stops at a point where the dynamic

trajectory of the out-behavior will violate its own performance constraints pco. If

the planned dynamic trajectory of the intended behavior is going to violate pco

at some time point in the future, then the intended behavior must not stop as

��

long as pco is not satis�ed.

Therefore, amust-not-stop condition nsp is true if the out-behavior will imme-

diately violate the performance constraints pco, if the intended behavior stops;

nsp_T is the time window(s) when such unsatis�ability lasts, and can be calcu-

lated based on the planned of the dynamic trajectory of the intended behavior.

Can-start & Can-stop. The can-start and can-stop condition and the associated

time windows can calculated using the following expression:

8
>>>>>>>>>><

>>>>>>>>>>:

cst = ¬(mst _ nst)

cst_T = ¬(mst_T [nst_T)

cst = ¬(mst _ nst)

cst_T = ¬(mst_T [nst_T)

In summary, as shown in Fig.�.�, the safety constraints of the intended be-

havior are de�ned based on the in-behavior, the intended behavior and the out-

behavior and the associated performance constraints. Table.�.� is a summary

what are needed to derive the proposed safety constraints.

Finally, to reiterate, the safety constraints are de�ned for the intended be-

havior, i.e. the behavior under study. The possible in-behavior and out-behavior

must be identi�ed before the safety constraints can be de�ned. The possible in-

behaviors and out-behaviors can be derived from the design process. But this

particular derivation process is out of the scope of this dissertation.

�.� De�ning the safety constraints

In general, the safety constraints can be derived directly following Table.�.�.

However, there are two practical problems to be addressed before the proposed

��

Table �.�: The derivation of the safety constraints.

Safety constraints Derivation
Performance
constrains pci, pc and pco Derived directly from the hazard with re-

spect to the in-behavior, the intended be-
havior and the out-behavior.

Must-start mst and mst_T The prediction of the in-behavior, pci and
the look-ahead time (optional)

Must-not-start nst and nst_T The prediction of the in-behavior and pc.
Can-start cst and cst_T cst = ¬(mst _ nst), cst_T = ¬(mst_T [

nst_T)
Must-stop msp and msp_T The planned intended behavior, pc, and

the look-ahead time (optional).
Must-not-stop nsp and nsp_T The planned intended behavior and pco.
Can-stop csp and csp_T csp = ¬(msp_nsp), csp_T = ¬(msp_T[

nsp_T)

safety constraints can be fully applied to real problems.

The �rst ismst and nst (same asmsp and nsp) can both be true at the same

time, because they are de�ned with respect to different behaviors (i.e. the in-

behavior and the intendedbehavior) subject to potentially different performance

constraints (i.e. pci and pc). Obviously, it is not acceptable to have such con�ict

in a set of safety constraints.

The second is that, in real practice there are usually sub-hazards under a gen-

eral hazard. For example, the hazard of “inadequate altitude of an airplane” can

havemultiple sub-hazards such as inadequate altitude to the airspace boundary,

to the terrain, to the weather, etc. As a result, the safety constraints with respect

to the hazard of “inadequate altitude” has to integrate all the sub-requirements

from the sub-hazards. However, the sub-requirements with respect to one sub-

hazard may also pose con�icts to the sub-requirements from other sub-hazard.

Therefore, there must be a way to integrate the (sub-)requirements so that their

will not be any internal con�icts among them.

��

�.�.� The single hazard situation

Figure �.�: The scenarios of mst and nst for a single hazard. Note that there
might be multiple sections of the nst, because for example a repeating in-
behavior may enter the samemust-not-start condition periodically and not start
the intended behavior. But there can only be one section of mst, because by
de�nition if the intended behavior does not start before themst_T expires, there
will be a hazard; but if the intended behavior starts within the mst_T , the whole
when-to-start conditions are not applicable any more because the intended be-
havior already started, at which time it is the when-to-stop conditions that are
applicable.

For a single hazard situation, there are �ve types of scenarios in terms of the

relationship of mst_T and nst_T (Fig.�.�).

• Scenario (a): the mst and nst have no overlapping between each other. In

this case, the intended output can start/not start accordingly to the de�ned

time windows.

• Scenario (b): the nst overlaps the later part of the mst. In this case, the

intended behavior must start before it enters the nst.

• Scenario (c): the nst overlaps the earlier part of the mst. In this case, the

intended behaviormustwait till thenst expires and start before the remain-

ing mst_T expires.

��

• Scenario (d): the nst is included in the mst. In this case, the intended be-

haviormust start within time interval either before the included nst or after.

Note that by excluding the nst_T from the mst_T , we create multiple sec-

tions of themst_T . But it is different because the relationship between the

resulting sections are “OR”, rather than the “AND” as for the nst sections.

• Scenario (e): the mst is included in the nst. The hazard is guaranteed in

this case because there is no viable time stamp for the intended behavior

to start before the mst_T expires.

In fact, we can succinctly summarize the scenarios above mathematically:

If mst_T 6= ;, mst_T := ¬nst_T \mst_T

Finally, by de�nition if the intended behavior does not start before themst_T

expires, the hazard will happen, which will render any “safety constraints” after

that time point meaningless. In other words, the time frame of interest (denoted

as TF) is from the current time to the right bound of the mst_T . Therefore, we

introduce the frame operation, denoted as TF := frame(mst_T) to acquire TF

based on the mst_T , within which all the time windows mst_T , nst_T and cst_T

are de�ned.

As a result, for the single hazard situation, the time windows can be inte-

grated as below:

If mst_T = ;, cst_T := ¬nst_T ;

If mst_T 6= ;,

8
>>>>>><

>>>>>>:

TF := frame(mst_T)

mst_T := TF \ ¬nst_T \mst_T

cst_T := TF \ ¬(mst_T [nst_T)

The “stop” conditions can be addressed in the same way as the “start” con-

ditions.

�6

If msp_T = ;, csp_T := ¬nsp_T ;

If msp_T 6= ;,

8
>>>>>><

>>>>>>:

TF := frame(msp_T)

msp_T := TF [¬nsp_T \msp_T

csp_T := TF [¬(msp_T [nsp_T)

.

�.�.� The multiple sub-hazards situation

When there are multiple sub-hazards (assuming from � to N), all the safety con-

straints with respect to each sub-hazard must be integrated into the safety con-

straints for the hazard under study. The basic idea is similar with the single

hazard situation, where the mst_T and nst_T are determined �rst and then the

cst_T can be simply derived from them.

First, for the “must-not-start” condition, as long as there is one sub-hazard

requiring “must-not-start”, then the intended behavior must not start. Therefore,

the nst as a whole is a disjunction of the nst
i

of all the sub-hazards (i = 1, ..., N).

Therefore, nst_T can be de�ned as below mathematically:

nst_T = nst1_T [... [nst
N

_T

Figure �.�: The scenarios of mst for the multiple sub-hazards situation.

Second, the integration of the “must-start” conditions is much more com-

plicated. We assume two sub-hazards for the sake of explanation, and derive

exhaustively six scenarios for the integration (Fig.�.�).

��

• Scenario (a): themst2 ends both before themst1 starts. In this case, the in-

tended behavior must start within themst2_T before it expires and causes

Sub-hazard �. After the intended behavior starts, the originalmst1_T is not

applicable any more and hence does not need to be satis�ed.

• Scenario (b): the mst2 starts before the mst1 starts, and ends after the

mst1 starts but before it ends. In this case, the intended behavior must

start within themst2_T , but with two different interpretations depending on

which section it starts. If the intended behavior starts beforemst1 starts, it

is similar to Scenario (a) where the start of the intended behavior renders

mst1 inapplicable. However, if the intended behavior starts after mst1_T

starts, it satis�es the “must-start” conditions for both sub-hazards at the

same time.

• Scenario (c): the mst2 starts before the mst1 starts but ends after mst1

ends. In this case, the intended behavior must start before the mst1 ends.

As for it starts before mst1 starts or not, it is the same as Scenario (b).

• Scenario (d): themst2 starts after themst1 starts and ends before themst1

ends. In this case, the intended behaviormust start aftermst1_T starts and

before the mst2_T ends. If it starts before the mst2_T starts, it satis�es

mst1 and makes mst2 inapplicable, which is acceptable; if it starts within

mst2_T , it satis�es both mst1 and mst2 at the same time.

• Scenario (e): the mst2 starts after the mst1 starts and ends after the mst1

ends. In this case, the intended behavior must start within mst1_T . If it

starts before the mst2_T starts, it satis�es mst1 and makes mst2 inappli-

cable, which is acceptable; if it starts after mst2 starts and before mst1

ends, it satis�es both mst1 and mst2 at the same time.

• Scenario (f): the mst2 starts after mst1 ends. In this case, the intended

behavior must start withinmst1_T , which will satisfymst1 and rendermst2

inapplicable.

�8

In summary, the intended behavior must start between the earliest left bound

(denoted as mst
i

) and the earliest right bound (denoted as mst
i

) of all mst
i

_T .

If it starts at a time before some of the mst
i

_T starts, it just renders them in-

applicable, which is acceptable; if it starts at a time which is an element of the

conjunction of all the mst
i

_T , the intended behavior satis�es all the mst
i

at the

same time. Therefore, mathematically, the mst_T after the integration can be

written as below:

mst_T = [earliest(mst
i

), earliest(mst
i

)], where i = 1, ...N.

After the nst and mst are integrated from the sub-hazards, they can be fur-

ther integrated in the same way as the single hazard situation. Furthermore, the

“stop” conditions can be addressed in the same way. Finally, for the multiple

sub-hazards situation, the time windows can be integrated as below:

Let

8
>>>>>>>>>><

>>>>>>>>>>:

mst_T = [earliest(mst
i

), earliest(mst
i

)]

nst_T = nst1_T [... [nst
N

_T

msp_T = [earliest(msp
i

), earliest(msp
i

)]

nsp_T = nsp1_T [... [nsp
N

_T
If mst_T = ;, cst_T = ¬nst_T ;

If mst_T 6= ;,

8
>>>>>><

>>>>>>:

frame(mst_T)

mst_T := ¬nst_T \mst_T

cst_T = ¬(mst_T [nst_T)

;

If msp_T = ;, csp_T = ¬nsp_T ;

If msp_T 6= ;,

8
>>>>>><

>>>>>>:

frame(msp_T)

msp_T := ¬nsp_T \msp_T

csp_T = ¬(msp_T [nsp_T)

.

��

�.� Contribution

Thanks to the UCAs de�ned by STPA that are “provably complete”, Method �

provides structured guidance to systematically identify hazardous scenarios.

The resulting prescriptive constraints are solutions to address these scenar-

ios and are also desired properties that the system must be designed for as

a whole. Imagine if there is one scenario missing, the associated constraints

which should have been designed for are also likely to be missed. As a result,

the missing properties will never be examined explicitly by the veri�cation pro-

gram, which will eventually lead to “false assurance”.

6�

Chapter �

Method �: Deriving the descriptive

constraints for the controlled

process.

The descriptive constraints for the control structure are manifested as the pro-

cess model, which represents what the controlled process in the system (to be

built) can possibly do under what condition. Although the process model varies

from case to case, the methodology to de�ne it can be derived by generalizing

this process based on a general structure of the process model. This section

introduces the general structure based on General Systems Theory and then ex-

plains how the process model can be de�ned based on the general structure.

�.� Preliminary

First, We adopt from General Systems Theory [�8] the general system represen-

tation as a general model structure of the process model.

(u(t), x(t), p)
f�! (ẋ, y(t))T (�.�)

6�

• y is the set of output variables of the process under control.

• u is the set of control input variables, from the controller into the controlled

process.

• x is the set of internal state variables.

• p is the set of parameters. A parameter can be varying among operations

and even during a single operation, such as the weight of an airplane. It is

different from the internal state variables in that it cannot be changed by

the control input.

• f is not only the transformation between (u(t), x(t), p) and (ẋ, y(t))T , but

also represents the mechanism that is going to be used directly from the

physical laws or be implemented by the underlying devices.

Second, given themodel structure above, the rangeof each variable/parameter

has to be de�ned to complete the de�nition of the process model. They are the

domain/co-domain of f as a mathematical function, see (�.�) below. Note that

parameter may also change within a bound, and constant parameter is just a

special case.

(u(t), x(t), p, ẋ, y(t)) 2 (U,X, P, Ẋ, Y) (�.�)

In most analytical works, the de�nition of the process model stops here.

They take (�.�) and (�.�) as the process model (or system dynamics) and start

the design, for example designing a control algorithm, from here. Safety in

these works is hence translated into a Constraint Satisfaction Problem [��], i.e.,

guaranteeing the constraints can never be violated under the respective design.

However, this is insuf�cient. More precisely, satisfying (�.�) is necessary for

safety, but not suf�cient, because every mathematical model has assumptions.

In the model-based world, we are good at computing properties based on the

given constraints, but not so much when it comes to identifying the associated

6�

assumptions, which is usually how a “surprise” happens and causes accidents.

Before these assumptions are explicitly identi�ed and speci�cally managed in

the design, no safety assurance can be claimed from such design.

Method � is aimed to address this inadequacy by asking the following two

questions:

• Where does the constraints in (�.�) come from?

• Are there assumptions that (�.�) and (�.�) are predicated on?

Finally, a process model is comprised of the following three parts. The rest

of this section is to answer the two questions above.

Process model = {Model Structure, Constraints, Assumptions}

�.� Constraining the controlled process

The two questions raised in the previous section are to make sure the process

model will be a representation of the controlled process to be built. The process

model cannot be valid on its own. It has to be consistent with how the controlled

process will work in the real operation. Therefore, we study how the controlled

process may be constrained in this section.

First, the controlled process is a desired mechanism(s) that accomplishes

speci�c tasks. It operates on actual components. For the components that are

out of the design scope (i.e., the designer has no control), we call them “en-

vironment”. Components within the design scope are the “system” to be built

or further re�ned, or “human” to be trained. Therefore, the operation of the de-

sired mechanism(s) can be constrained by the state of the environment and the

states of the underlying components. For example, the airplane is not supposed

6�

to take off in strong wind and heavy rain; the airplane is not supposed to land

with the auto-brake when one of the hydraulic systems is down.

Furthermore, the mechanism can be viewed as an input-output transforma-

tion (�.�), which is obviously comprised of three parts: the input ports, the out-

put ports and the transformation. The“input port” means the independent vari-

able of the mathematical transformation and “output port” means the depen-

dent variable of themathematical transformation. The environment and the sys-

tem/human may have constrains on all the three parts of the mechanism. For

example, a human pilot can only exert a certain of force on the yoke to manipu-

late the control surface of an airplane in the early ages, a case of the underlying

component constraining the input ports; a car has to run at a speed below the

limit imposed by the government, a case of the environment constraining the

output ports.

!
" #
$ #
%

$̇
' #

$ #
Input port Transformation Output port

Figure �.�: The model structure is abstracted into input ports, transformation
and output ports. The reason that the internal state x(t) is both input port and
output port is that its value at the current step affects its value at the next step
through ẋ. Therefore, it has to be treated differently depending on the situation.

Finally, the transformation may constrain the input ports and output ports.

For example, when using Bernoulli’s law to compute the airspeed, the input air-

speed cannot be too high, a case of the transformation constraining the input

ports.

�.� Constraining the process model

The process model is just a representation of the controlled process, and hence

it is constrained in the same way as the controlled process. According to the

6�

way that the controlled process is constrained, we develop the following map in

Fig.�.� to derive the constraints and the associated assumptions of the process

model.

First, f represents concrete mechanisms (engineered or natural) of the ac-

tual process. It may only be able to process a �nite set of the inputs and hence

have constraints on the inputs (Arrow �).

Second, the controlled process operates on actual components. For those

that are out of the design scope (i.e., the designer has no control), we call them

“environment”. Components within the design scope are the “system” to be built

or further re�ned, or “human” to be trained. For the environment, it may have a

set that includes all the possible inputs (Arrow �) and another set in which all

the possible outputs must be included (Arrow �). For the system/human, it is

always subject to �nite design/manufacture/natural capacities that may yield

constraints on both inputs and outputs (Arrow �).

Third, (u, x, p, ẋ, y) is internally constrained by f . Therefore, the constraints

on (u, x, p, ẋ, y) also need to satisfy f mathematically (Arrow �).

Finally, each constraint may have assumptions on the environment and the

system/human for the constraint to be valid in the �rst place. Constraints and

assumptions should always appear in pairs, and any isolated constraint or as-

sumption must be justi�ed.

Figure �.�: We identi�ed eight arrows of constraints, amap to derive constraints
for the process model. Each arrow reads as “the source constrains the end”.

Therefore, all the constraint-assumption pairs need to be identi�ed based on

6�

Fig.�.� to properly constrain the model of the controlled process. We are now

explaining each of them.

• Arrow �: The transformation constrains the input ports: the transforma-

tion is only valid when the values of the input ports are within a certain

range. For example, the linear relationship between the AoA and the lift

co-f�cient requires the AoA to be within a certain range.

– Constraint: The range of AoA to maintain the linear relationship.

– Assumption: The range of AoA may vary over the wing con�guration,

for example icing condition. The wing con�guration is hence the as-

sumption.

• Arrow �: The environment constrains the input ports: The environment

(natural environment or other system) has a set that includes all the pos-

sible input values. For example, the airplane internal environment control

system takes the air temperature as an input. Say, the aircraft is intended

to �y no higher than ��,��� feet, then all the possible air temperatures

from the ground level to ��,��� feet form a set constraints on the input of

air temperature.

– Constraint: The range of the possible environment temperature from

the ground level to ��,��� feet.

– Assumption: The temperature rangemay vary over the locations, such

as close to equator vs. the north pole. The location is hence the as-

sumption.

• Arrow �: The environment constrains the output ports: The environment

restricts the range of the allowed output values, such as a noise limit of

the aircraft at certain altitude.

– Constraint: The acceptable range of noise level by regulation.

66

– Assumption: The acceptable range of noisemay vary over the ground

habitat, for example dessert or city. The ground habitat is hence the

assumption.

• Arrow �: The system/human constrains the input/output ports: The sys-

tem/human can only accept a �nite range of the input values and produce

a �nite range of output values due to limits of the capacities. For example,

the electrical aircraft can �y with x KG payload at its maximal capacity at

a maximal altitude Y .

– Constraint: The acceptable range of payload X is a constraint on the

input, and the maximal altitude Y is a constraint on the output.

– Assumption: These constraints all depend on the battery level. Lower

batter level means less X and Y . The battery level is hence the as-

sumption.

• Arrow �: The transformation constrains the input and output ports: Math-

ematically, the transformation is a mapping, which by de�nition is a con-

straint on the input ports and the output ports.

– Constraint: The transformation itself, for example the Pascal’s law.

– Assumption: Pascal’s law only workswhen the environment tempera-

ture is above the freezing point of the hydraulic �uid. The environment

temperature is hence the assumption.

�.� Contribution

Method � contributes to assuring the validity of the process model, which is

fundamental to avoid “false assurance”. Speci�cally, Method � develops a map

to properly identify all the constraints and associated assumptions for a given

model structure. As a result, Method � can help de�ne a valid process model,

6�

even when there is no existing system to model from, by systematically extract-

ing all the relevant information of the elements involved in the model struc-

ture. Furthermore, when the process model is derived from an existing system

through scienti�c modeling, Method � can still be helpful to cross-check the

validity (including identifying assumptions) of the resulting process model. Sci-

enti�cmodeling starts from the existing system to �nd amodel to represent the

system. Method � is just the opposite, starting from a given model (structure)

to �nd out what is implied about the real system. These two are dual processes

that can be used to complement each other.

Caveat: Method � is a methodology to de�ne the process model but can-

not replace (aerospace/electrical/mechanical/etc.) engineer’s scienti�c theory

about the real process. In other words, Method � is not the theory, rather the

engineering application of the theory. If there is something wrong with the engi-

neer’s understanding of the science, Method � cannot necessarily identify those

mistakes.

68

Chapter �

Method �: Reference architecture for

the controller design

�.� Preliminary

�.�.� The problem

So far, Method � has de�ned the prescriptive constraints:
8
>>>>>><

>>>>>>:

y(t) 2 pc

st 2 mst_T _ st 2 cst_T ^ st 62 nst_T

sp 2 msp_T _ sp 2 csp_T ^ sp 62 nsp_T

Method � has de�ned the descriptive constraints:

(u(t), x(t), p)
f�! (ẋ, y(t))T and (u(t), x(t), p, ẋ, y(t)) 2 (U,X, P, Ẋ, Y)

Mathematically, the next task is to design a controller to issue the right con-

trol inputs u at the right time so that the prescriptive constraints can be satis�ed

subject to the descriptive constraints that the controlled process should satisfy

for all time.

6�

However, a safe controller in the actual system is more than a mathematical

problem solver. It is a decision maker that constantly monitors the environment

and the controlled process, watches out for hazards, reacts to changes and ad-

justs the decisions in real time. To design such a safe controller is to identify the

safety-critical scenarios and design mechanisms into the controller to address

all the safety-critical scenarios.

In this chapter, we will �rst explain in detail how the safety-critical scenarios

can be identi�ed, and then brie�y propose a reference architecture for the con-

troller to address all the safety-critical scenarios. Details of how the reference

architecture is developed can be found in Appendix C.

�.�.� Scope of the safe controller

Figure �.�: The scenarios that are not addressed by the reference architecture.
But all of these scenarios are covered by MBSA.

Ideally, a safe controller must be able to handle all the safety-critical scenar-

ios regardless of whether failure is involved. However, as explained in Chapter �,

we only consider the “hazard without failure” in this work, because failures have

been extensively addressed inMBSA. Therefore, in this section we explain those

failure-related safety-critical scenarios that are not addressed in this work.

��

Fig.�.� is a description of the control structure and the external entities that

interact with the control structure. There are 6 causal factors that are not ad-

dressed by the controller. In other words, the hazardous scenarios associated

with these causal factors cannot be avoided or mitigated by the proposed ref-

erence architecture. However, all the 6 causal factors are usually covered by

MBSA.

�. What information needs to be taken in from the external entities is cov-

ered by the proposed reference architecture, but we assume that the input

information is correct and always received in time. It is possible in reality

that the input information is incorrect from the source, is corrupted during

transmission or outdated due to delay.

�. The correctness of the control action, both in terms of its value and timing

is covered by the reference architecture, but we assume perfect actuator.

It is possible that control action might not be successfully exerted on the

controlled process or is exerted with a delay.

�. What information needs to be taken in from the controlled process is cov-

ered by the proposed reference architecture, but we assume perfect sen-

sor at both value and timing aspect. It is possible that the information

received is incorrect, corrupted, or delayed.

�. The actions that the controller must take are covered by the reference

architecture, but we assume that the controller will perform all these ac-

tions correctly. It is possible that the controller fails, just like human con-

troller make errors, software controller crashes, andmechanical controller

brakes.

�. How to adjust themodel of the controlled process according to the change

of the implicit constraints is covered by the reference architecture, but we

assume the controlled process actually follows the de�ned transforma-

��

tion. It is possible that the controlled process may not behave as de�ned

by the process model due to real-time failures or implementation prob-

lems.

6. The disturbance can change the parameter and/or the states of the con-

trolled process. The proposed reference architecture only consider the

scenarios where the parameter and/or states have a “sudden jump” due

to the disturbance. Other possible effect of the disturbance such as a

value change for an extended time or a permanent structural change of

the controlled process are not considered.

�.�.� Functional architecture

Finally, the proposed reference architecture is functional architecture rather than

physical architecture. In other words, the proposed architecture speci�es what

to do instead of who and how to do it, i.e. design intent vs. the implementation.

The decision to stay at the functional level is because the goal of the reference

architecture is to avoid hazardous scenarios due to inadequate functional de-

sign (assuming perfect implementation) rather the failure to ful�ll the de�ned

functions.

Figure �.�: The action to calculate the the total electrical power that a battery
contains.

For example, the controller of an eVTOL needs to calculate the total electrical

power that a battery contains in real time. Assuming the battery power can be

calculated with the the battery health, the current environment temperature and

the current battery percentage level through a mapping f (Fig.�.�). The action

��

at the functional level only requires the latest information of the battery health,

but does not specify where to get this information and how to get it. It is possi-

ble that the battery health information is input by the maintenance people at the

last maintenance time; it is also possible the information provided to the �ight

manager and is input at the pre-�ight phase; it is also possible that this infor-

mation is received in real time from the battery health tracking system of the

battery manufacture. Different ways of implementation are vulnerable to differ-

ent failures. However, at the functional level, an adequate design only asks for

the latest battery health without specifying where the information comes from

and how it is received.

�.� Three general tasks for a controller

In the most general sense, the controller as a decision maker needs to accom-

plish three tasks.

First, the prescriptive constraints are independent from the control structure,

and hence can only be derived by observing the information from the environ-

ment, which implies that the �rst task of a controller is to decide the prescriptive

constraints by observing the environment. We name the task “perceive prescrip-

tive constarints” in the rest of the paper.

Second, the controller only affects the controlled process through the control

actions, which implies that the last task of a controller is to decide the control

action. We name the task “generate control action” hereafter.

Third, the prescriptive constraints are not always suitable to generate the

control action. In fact, the controller must have at least one control reference to

decide a control action, which implies that the control referencemust be planned

as a stepping stone from the prescriptive constraints to the control action. We

name the task “plan control reference”.

��

Figure �.�: A controller must accomplish three general tasks, which forms a
functional structure of the controller.

Combining the three tasks, we obtain a general functional structure of a con-

troller in Fig.�.�, which is a generic characterization of all controllers. Another

way to reason about this structure is from the bottom to top. Because the con-

trolled process is manipulated by the control action, there must be a task in the

controller to “generate the control action”; because at least one control refer-

ence must exist so that the control action can be generated, there must be task

in the controller to “plan the control reference”; because the control reference

always serves a control goal (i.e. the prescriptive constraints de�ned the out-

put variable of the controlled process), there must be a task in the controller to

generate such constraints by interpreting the higher level control command in a

hierarchical structure or collecting information from the environment for its own

goal, i.e. “perceive the prescriptive constraints”.

Because this structure is “functional”, it can be tailored in the speci�c de-

sign applications based on the implementation choices. For example, Task �

can be unnecessary if the prescriptive constraints are directly passed from the

��

higher level, or they are constant and baked in the controller at the design time;

Task � can be unnecessary if the prescriptive constraints happen to be �t as

a control reference, for example the temperature of the power plant must cool

down below x degree from y degree by z seconds; Task � can be unnecessary if

the control reference is the same as the control action such as in the waypoint-

based air traf�c �owmanagement [��]. Note that although the structure can be

tailored in the speci�c application, it does not mean the structure is not general.

Each task plays a unique role in the decision making process of the controller,

and tailoring happens only because one set of actions can serve multiple roles

but does not eliminates the roles in the �rst place.

Furthermore, the output of the task “perceive prescriptive constraints” is the

“safety enforcing behavior (SEB)” instead of the “prescriptive constraints”. As

explained in Method �, the prescriptive constraints are for the output behavior

(i.e. the dynamic trajectory of the output variable of the controlled process),

which contain the constraints on the start time, the stop time and the trajectory

between the start time and the stop time. The SEB is a set of output behaviors

whose start time, stop time and the trajectory in-between satisfy the respective

constraints from the prescriptive constraints. As long as the eventual output

behavior satisfy the SEB, the prescriptive constraints are automatically satis-

�ed. Therefore, the SEB is just a proxy of the prescriptive constraints with a

more direct connection with the output behavior. In addition, the SEB can be a

re�nement (i.e. a subset) of the prescriptive constraints. Such a re�nement re-

lationship provides �exibility to de�ne the control goals in accordance with the

uncertainty level of the controlled process. Themore exact the control goals are,

the more precise the prediction of the dynamic trajectory can be. On one hand,

when there is no uncertainty in the controlled process, the SEB can be re�ned

into an exact dynamic trajectory, which if achieved, will be exactly the same as

the eventual output behavior. On the other hand, if the controlled process is sub-

ject to a high level of uncertainty, SEB can be the same as the prescriptive con-

��

straints (i.e. no re�nement) in order to maximize the likelihood to �nd a control

action. In summary, SEB is a �exible re�nement of the prescriptive constraints,

and hence �ts in the general structure of Fig.�.�.

Finally, as shown in Fig.�.�, we de�ne that the expected time duration of Task

�, Task � and the controlled process is T1, the expected time duration of Task �

and the controlled process is T2, and the expected time delay of the controlled

process is T3. We will explain the safety-critical scenarios due to these time

duration later.

�.� Four types of safety-critical scenarios

Each of the three tasks that a controller has to make is a decision-making pro-

cess. Regardless of the speci�c decision being made, each decision-making

process may lead up to the six possible results in Fig.�.�.

Figure �.�: The six possible results that a decision-making process can lead up
to.

First, a decision making process can either �nds a solution or (�) no solution

can be found. Second, if a solution is found, the found solution can either be

(�) correct or incorrect. Third, for the incorrect solution, it can be caused by

the value of the solution is incorrect, (�) the time that the solution is made is

too late or (�) a solution that is previously correct becomes incorrect due to

change. Finally, a solution with incorrect value be caused by (�) incorrect math

or (6) the coupling relationship between the value aspect and the time aspect is

�6

not considered.

Five of the six possible results are unsafe. Among the �ve unsafe results,

“incorrect math” is addressed extensively by theoretical control or formal meth-

ods. Therefore, we do not consider this scenario in this work. The rest of four

unsafe results are the four types of scenarios that must be addressed properly

to avoid, which by de�nition are the safety-critical scenarios that a controller

must be designed for.

Therefore, we consider the following four types of safety-critical scenarios

for all the three tasks that a controller must accomplish.

• No-solution: It refers to the scenarios where no solution can be found.

• Previously safe: It refers to the scenarios where an already generated de-

cision becomes unsafe due to change.

• Unsafe timing: It refers to the scenarios where the decision is made too

late, so much so that the timing constraints in the prescriptive constraints

cannot be met as the operation of the rest of the system also takes time.

• Time coupling: It refers to the scenarios where the result of a decision is

affected by the time delay of the system, i.e. time and value are coupled,

such as the phenomenon of Pilot-induced Oscillations.

�.� Safety-critical scenarios of Task �

�.�.� The task

We summarize Task � in this subsection. The detailed derivation process can

be found in Appendix C.

Task � is to generate the prescriptive constraints based on Method �. The

��

prescriptive constraints of the output behavior y(t) where t 2 [st, sp] can be

de�ned in (�.�), and (Y (t), ST, SP) are the �nal prescriptive constraints.

8
>>>>>><

>>>>>>:

y(t) 2 Y (t) ✓ pc, where t 2 [st, sp]

st 2 ST ✓ mst_T [cst_T \ ¬nst_T

sp 2 SP ✓ msp_T [csp_T \ ¬nsp_T

(�.�)

Before the desired output behavior starts, Task � takes in the functional goal

FG and the prediction of the in-behavior, and observes a set of information from

the environment E and the controlled process CP , to generate the prescriptive

constraints and make sure the desired output behavior starts before mst_T ex-

pires.

(E,FG, In-B,CP)! (pc,mst_T, cst_T, nst_T)! (ST, SP, Y (t)) (�.�)

After the desired output behavior starts, the current prescriptive constraints

might need an update. BesidesE,FG and CP explained above, the prescriptive

constraints to be updated, Y 0(t) and SP 0, may also be needed to calculate the

deadline msp_T 0 to stop seeking the current prescriptive constraints and starts

seeking the new prescriptive constraints (ST, SP, Y (t)).

(E,FG,CP, Y 0(t), SP 0)! (msp_T 0, pc,msp_T, csp_T, nsp_T)! (ST, SP, Y (t))

(�.�)

�.�.� The safety-critical scenarios

Based on the description of Task �, we examine the possible safety-critical sce-

narios that Task � must address.

No-solution. For (�.�), the entire must-start time window is included by the

�8

must-not-start time window (i.e. mst_T ✓ nst_T). For (�.�), the entire must-

stop time window is included by the must-not-stop time window (i.e. msp_T ✓

nsp_T).

Previously safe. This scenario can be caused by the change of the prescrip-

tive constraints, or the deviated output behavior due to uncertainty. The former

case can be caused by the changes of {E,FG, In-B,CP} that make the current

(ST, SP, Y (t)) invalid or unsafe. The latter case can be caused by the actual

output behavior y(t) does not start/ stop within ST/SP , or violates Y (t) due to

uncertainty.

Unsafe timing. This scenario is caused by the prescriptive constraints are de-

cided too late. For (�.�), the prescriptive constraints must be decided before

mst_T � T1 so that there will be enough time for the execution of the rest of the

system, so that the output behavior can eventually start before mst_T expires.

For (�.�), the prescriptive constraintsmust be decided beforemsp_T 0�T1 for the

execution of the rest of the system, so that the output behavior can eventually

switch to the new prescriptive constraints before msp_T 0 expires.

Time coupling. This scenario is not applicable. Coupling between time and

value is a phenomenon where the current decision is made based on a future

condition that is predicted based on the current condition. The decision that

this task makes is only predicting the safe condition in the future based on

the current condition. In other words, coupling is decision made on prediction,

where the correctness of the decision relies on the correctness of the predic-

tion. Hence they are coupled. But Task � is only making a prediction and thus

no coupling.

��

�.� Safety-critical scenarios of Task �

�.�.� The task

Task � is to generate the control reference r so that the resulting output behav-

ior y(t) will satisfy the prescriptive constraints Y (t) during [st, sp]. We brie�y

demonstrate how r can be derived in the subsection mathematically.

Based on the General Systems Theory, the process model and the control

algorithm can be represented in (�.�).

8
>><

>>:

Process model: (u(t), x(t), p) f�! (ẋ, y(t))T

Control algorithm: (r, x(t), p) g�! u(t)

(�.�)

Plug g into f , we get:

(r, x(t), p)
(f,g)��! (ẋ(t), y(t))T (�.�)

For an extended period of time t 2 T = [st, sp], (�.�) can be written as below:

(r, x(st), p)
(f,g)��! (x(T), y(T))T (�.6)

Focusing on the output, we can get (�.�) by inverse function (f · g).

(y(T), x(st), p)
(f ·g)�1

����! r (�.�)

Note that (�.�) is not necessarily valid mathematically because (f · g)�1 might

not exist. But it reveals the fact that the desired output behavior, f , g, the initial

condition and the parameter all together determine the control reference. As

a result, a more general depiction of such relationship is (�.8), where Y (T) =

{y(t) 2 Y (t)|T = [st, sp]}, and the arrow simply means a mapping (not neces-

8�

sarily a function) exists between the two sides.

(Y (T), x(st), p, f, g)! r (�.8)

Finally, based on �.6, once r is selected, the trajectory evolution of the con-

trolled process is also determined given the initial condition x(st) and the pa-

rameter p. As a result, functionally speaking, the r has to be picked not only

to satisfy the prescriptive constraints Y (t), but also the descriptive constraints

(U,X, P, Ẋ, Y). Therefore, Task � is to generate the control reference by execut-

ing (�.8) subject to (u(t), x(t), p, ẋ, y(t)) 2 (U,X, P, Ẋ, Y).

�.�.� The safety-critical scenarios

Based on the description of Task �, we examine the possible safety-critical sce-

narios that Task � must address.

No-solution. The controller cannot �nd a control reference to satisfy Y (T) and

the descriptive constraints (U,X, P, Ẋ, Y) at the same time, or (f, U,X, P, Ẋ, Y)

is invalid because the implicit constraints are not satis�ed.

Previously safe. The prescriptive and/or descriptive constraints can be violated

due to the change of the constraints or the deviation of the actual controlled

process from the planned trajectory evolution.

• The prescriptive constraints are going to be violated by the output behavior.

This scenario can either be caused by the change of Y (T) from Task �, or the

deviation of the trajectory evolution due to uncertainty.

• The descriptive constraints are going to be violated by the trajectory evolution.

This scenario can either be caused by the change of (f, U,X, P, Ẋ, Y), or the

deviation of the trajectory evolution due to uncertainty.

8�

• The descriptive constraints being violated by the current states of the con-

trolled process. This scenario can either be causedby the changeof (f, U,X, P,

Ẋ, Y), or the sudden change of the current states of the controlled process.

• The prescriptive constraints being violated by the current states of the con-

trolled process. This scenario is addressed by the “previously safe” scenario

of Task �.

Unsafe timing. This scenario is caused by the control reference is issued too

late, later than T2 before it is supposed to take effect on the controlled process.

Time coupling. The value of the control reference can be affected by the time

delay.

In the most general sense (Fig.�.�), the control reference starts to be gener-

ated at t1 and the controlled process starts to seek the control reference at t4.

When such event sequence operates fast enough, the states observed at t1 can

be considered the same as the actual states at t4. However, when the time delay

between t1 and t4 is unneglectable, the initial states used to generate the control

reference should not be the states observed at t1, but rather the predicted states

at t4 based on the observation at t1.

Figure �.�: The event sequence from generating the control reference at t1, to
generating the control action at t2, to the control action issued at t3 and �nally
to the control action takes full effect at the controlled process at t4. The time
intervals of t1, t2 and t3 with t4 have to be greater than the time delay T1, T2 and
T3 de�ned in Fig.�.�. CR and CA stand for control reference and control action
respectively.

8�

Therefore, x(st) in (�.8) in general should be predicted based on the observa-

tion of a state at least T1 time before st, and updatedwhen necessary. Therefore,

the generation of r is coupled with the time delay through x(st).

�.6 Safety-critical scenarios of Task �

�.6.� The task

Task � is the same as the “control algorithm” in theoretical control: generating

the control actions based on the given control references (�.�).

(r, x(t), p)
g�! u(t)

s.t. {x(t), u(t)}T 2 {X,U}T
(�.�)

Note that the constraint {x(t), u(t)}T 2 {X,U}T is automatically satis�ed be-

cause it has been addressedwhen generating r at Task �, which is different from

the regular theoretical control practice. The difference is because the standard

formulation of a theoretical control problem is to generate the control actions

that will satisfy both the prescriptive constraints and the descriptive constraints

based on given control references, and (in some cases) to request new control

references when no control action can be found. However, when given the ini-

tial condition, the control algorithm and the process model, whether a control

action can be found has already been determined by the selection of the control

references. In other words, a control action cannot be found is because of the

wrong control reference.

In fact, (u(t), x(t), p, ẋ, y(t)) 2 (U,X, P, Ẋ, Y) is a requirement that simply

says that the trajectory evolution of the controlled process (u(t), x(t), p, ẋ, y(t))

cannot violate the descriptive constraints (U,X, P, Ẋ, Y). This requirement can

be assigned to Task � or Task �. In some applications, mathematical guarantees

8�

can bemade through reachability analysis at design time that the control action

can always be found, i.e. (u(t), x(t), p, ẋ, y(t)) 2 (U,X, P, Ẋ, Y) is always true,

if the control references are selected from a speci�c set. In this case, such

requirement is assigned to the design. Therefore, as a general task and under

the principle of “making the right decision in the beginning”, this requirement is

assigned to Task �.

�.6.� The safety-critical scenario

Based on the description of Task �, we examine the possible safety-critical sce-

narios that Task � must address.

No-solution. It has been explained in the previous section that as long as a con-

trol reference is generated, the control action can always be found. However, if

the generated control reference needs to be updated, only the control reference

after t
c

+ t4� t1 can be updated (t
c

is the current time) because of the time delay

t4 � t1 in Fig.�.�. As a result, the control action within [t
c

, t
c

+ t4 � t1] must be

updated in a way that the constraints (prescriptive and descriptive) can be sat-

is�ed at the same time. No-solution scenario is hence when such control action

cannot be found.

Previously safe. For systems that operate at a slower pace, the control actions

may be issued a certain time before being executed. As shown in Fig.�.�, the

control action is issued over T3 time delay before it is supposed to take effect

at the controlled process. It is possible the issued control actions may lead

to a violation of the constraints (prescriptive and descriptive) due to either the

change of the constraints or the deviation of the controlled process from the

predicted trajectory evolution.

Granted, some of the issued control actions will be updated because of the

control references are updated due to this scenario. However, same as the no-

8�

solution scenario, there is always a period of time in the immediate future that

the control references will not be updated due to the time delay. Therefore, this

scenario still needs to be addressed appropriately by Task �.

Unsafe timing. This scenario is caused by the control action is issued too late,

later than T3 before it is supposed to take effect on the controlled process.

Time coupling. Similar to the time coupling scenario in Task �, x(t) in (�.�) in

general should be predicted based on the observation of a state at least T2 time

before t, and updated when necessary. Therefore, the generation of u is coupled

with the time delay through x(t).

�.� The reference architecture

The safety-critical scenarios identi�ed above can already be used to examine

whether an existing controller design is safe. However, we take one step further

by de�ning “actions” within each task to address all the safety-critical scenar-

ios. As a result, �� main actions and �� enabling action and the interactions

among them are de�ned for the reference architecture. In this section, we give

an overview of the reference architecture. Instead of explaining all the actions,

we focus on the level of “theme” for each task. A theme is a group of actions that

work together to achieve a common goal. In this way, we make a high level ex-

planation about how the proposed reference architecture addresses the safety-

critical scenarios for each task. The detailed process to derive the reference

architecture can be found in Appendix C.

In general, three themes are de�ned for the reference architecture: the gen-

erate theme, the predict theme and the monitor theme. The generate theme

addresses the no-solution and the unsafe timing scenario; the predict theme

addresses the time coupling scenario; the monitor theme addresses the previ-

ously safe scenario. We now explain them for each task.

8�

Task �. Task � includes two themes: the generate theme and the monitor theme

(Fig.�.6). The generate theme is to generate/update the prescriptive constraints,

and to make sure the controller will response properly if no prescriptive con-

straint can be found (i.e. no-solution) or the prescriptive constraints are found

too late (i.e. unsafe timing). The monitor theme is to make sure the generated

prescriptive constraints stay safe, and request the generate theme to update the

prescriptive constraints if they are not safe anymore (i.e. previously safe).

Figure �.6: Task � is comprised of two themes: the generate theme and the
monitor theme.

Task �. Task � includes all three themes (Fig.�.�). The generate theme is to gen-

erate/update the control reference, and tomake sure the controller will response

properly if no control reference can be found (i.e. no-solution) or the control ref-

erence is found too late (i.e. unsafe timing). The predict theme is to predict

the trajectory evolution of the controlled process based on the current control

reference. On one hand, the trajectory evolution is sent to the generate theme

for the x(st) in (�.8) (i.e. time coupling). On the other hand, the trajectory evo-

lution is sent to the monitor theme to make sure the trajectory evolution led by

the current control reference will not violate the prescriptive constraints or the

descriptive constraints (i.e. previously safe). Furthermore, the monitor theme

also addresses the scenario when the current state of the controlled process

violates the descriptive constraints.

86

Figure �.�: Task � is comprised of all three themes.

Task �. Task � includes all three themes (Fig.�.8). The generate theme is to gen-

erate/update the control action, and to make sure the controller will response

properly if no control action can be found (i.e. no-solution) or the control action

is found too late (i.e. unsafe timing). The predict theme is to predict the trajec-

tory evolution of the controlled process based on the control actions that are

already generated. On one hand, the trajectory evolution is sent to the generate

theme for the x(t) in (�.�) (i.e. time coupling). On the other hand, the trajectory

evolution is sent to the monitor theme to make sure the trajectory evolution led

by the current control actions can achieve the current control references, and

will not violate the prescriptive constraints or the descriptive constraints (i.e.

previously safe).

As a result, the main actions that are included in each task can be summa-

rized in (Table.�.�).

Table �.�: The main actions that each theme includes. MA stands for main ac-
tion.

Generate theme Predict theme Monitor theme
Task � MA1, ...,MA3,MA9, ...,MA17 NA MA4, ...,MA11,MA18, ...,MA20

Task � MA21,MA22 MA23,MA24 MA25, ...,MA29

Task � MA30,MA31 MA32 MA33

Finally, the reference architecture for the controller is de�ned in Fig.�.� to

8�

Figure �.8: Task � is comprised of all three themes.

address all the identi�ed safety-critical scenarios. The interactions of the main

actions with other main actions, the enabling actions, the controlled process

and the external entities are depicted in the colored cells. Particularly, the inter-

action of the controller with the controlled process and the external entities are

presented in Fig.�.��. The reference architecture works like a class (as in Ob-

ject Oriented Programming). In the speci�c design applications, engineers only

need to instantiate the reference architecture and tailor it for its own problem,

which will yield a controller that has all the safety-critical scenarios automati-

cally addressed. The full readable reference architecture in N2 diagram can be

found in Appendix D.

�.8 Contribution

Method � �rst identi�es the safety-critical scenarios (without failure at the com-

ponent level) that a controllermust address, and then provides a reference archi-

tecture that addresses the safety-critical scenarios in the beginning. Any con-

troller that is designed according to the reference architecture will have these

safety-critical scenarios automatically addressed, resulting in a safe-by-construction

controller.

88

Figure �.�: The reference architecture in an N2 diagram. The yellow, green and
blue cells are the interactions between the main actions and the environment,
within the main actions, and between the main actions and the enabling actions
respectively.

Figure �.��: The interaction of the controller with the controlled process and the
external entities. The three white boxes are the three tasks within a controller,
and all the grey boxes are the entities external to the controller. The detailed
actions within the controller and the interactions between them can be found in
Appendix D.

8�

Chapter 6

A case study on Urban Air Mobility

We apply all the three methods to an early design for Urban Air Mobility (UAM).

Speci�cally, we focus the hazard of “inadequate altitude” associated with the

functional goal of “descent”. Through this case study, we show how the three

methods can help design a system that can avoid the hazard and achieve the

functional goal at the same time.

6.� The problem setting

A UAM typical �ight includes �ve phases (Fig.6.�): take-off, climb to enroute,

enroute, descent and landing. The case study focuses on the descent phase,

speci�cally to design a guidance system to direct the UAM vehicle to descend

from the cruise trajectory to the hover point above a landing pad, which is in

fact the functional goal to achieve. Furthermore, we select the hazard of inad-

equate altitude as an example in this case study to demonstrate how the UAM

is designed to avoid hazards. Although there might be other hazards, the same

process that is demonstrated in the case study can also be applied to those

other hazards.

��

Figure 6.�: The case study focuses on the descent phase of a typical UAM �ight.

Speci�cally, as shown in Fig.6.�, the functional goal under study is to guide

a UAM vehicle to descend and arrive at Point B at rta from the cruise phase.

The hazard of inadequate altitude is re�ned into four sub-hazards: inadequate

altitude with respect to weather/traf�c/terrain/airspace.

Figure 6.�: The UAM case study of avoiding the hazard of inadequate altitude

Finally, we assume that the descent can always stop immediately once Point

B is arrived at rta. In this way, the out-behavior will not be considered when

deciding the constraints on the stop time of the descent. Because deriving the

constraints on the stop time is similar to deriving the constraints on the start

time, this assumption as a result will reduce the size of this case study without

sacri�cing too much coverage of the methodology.

��

6.� Method �: deriving the prescriptive constraints

In this section, we show how the individual prescriptive constraints are identi�ed

with respect the functional goal and the (sub-)hazard.

The in-behavior, the intend behavior and the out-behavior are respectively

cruise, descent and go-around when descent becomes unsafe or infeasible.

6.�.� The functional constraints

With respect to the functional goal, the functional constraints comes from the

environment and the feasibility of the control structure. We assume, rta might

change after initially issued, but Point B does not change once issued.

Figure 6.�: Deriving the prescriptive constraints w.r.t. the functional goal.

From the environment, we identify three requirements as below , speci�cally

the “procedure” in this case study. Of note, there might be more requirements

from the environment, but identifying them rely on the domain knowledge and

does not affect the demonstration of the method. Therefore, we only use the

��

following three requirements for example.

• The top of descent can only be a point between the ceiling and the �oor of

Fig.6.�.

• The vehicle can � only start the descent if it is cleared.

• The vehicle has to stop the descent if the clearance is revoked.

From the perspective of the feasibility of the functional goal, the following

two performance constraints are identi�ed.

• Thedescent trajectorymust be boundedby the green coneof Fig.6.� formed

by the lower upper bound and the upper bound of descent angle of the ve-

hicle.

• The vehicle must arrive at Point B at rta, neither before or after.

All of three requirements from the environment and two performance con-

straints from the perspective of feasibility are then translated into the prescrip-

tive constraints below. Note that multiple prescriptive constraints may be de-

rived from one requirement due to the translation from the natural languages to

pure logic.

�. Performance constraint (pc10): The descent trajectory must be bounded

within the green cone before Point B is reached.

Assumption: The determination of the green cone depends on attributes

from both the environment and the vehicle. The shape of the green cone,

for example, may depends on the headwind (w) and the weight of the pay-

load (weight).

�. Performance constraint (pc20): The vehicle must arrive at Point B at rta.
�The “can” actually means “must-not-start”. The “can” condition is neither the “must” nor “must-
not”.

��

�. Must-start condition (mst10): The vehicle must start the descent once it

level �ies into the shaded area before it exits the shaded area.

• The associated time window mst_T 1
0 can be calculated based on the

predicted vehicle speed and the length of the horizontal cross section.

Assumption: The ceiling and the �oor are decided by the procedure for

descent. They can be changed by factors such as the cloud and visibility,

which are the assumption for this constraint.

�. Must-start condition (mst20): The vehicle must start the descent when t
c

2

[rta� �1, rta� �2].

• The associated time window mst_T 2
0 is [max(t

c

, rta� �1), rta� �2].

Assumption: This constraint is based on the assumption that the vehicle

is in its nominal operation mode; �1 and �2 can be adjusted based on the

headwind.

�. Must-not-start condition (nst10): The vehicle must not start the descent if it

is outside the shaded area.

• The associated time window nst_T 1
0 is from the current time t

c

to the

time that the vehicle is projected to enter the shaded area, or all the

time after the time the vehicle is projected to leave the shaded area.

6. Must-not-start condition (nst20): The vehicle must not start the descent if

t
c

62 [rta� �1, rta� �2].

• The associated time window:

nst_T 2
0 =

8
>>>>>><

>>>>>>:

[t
c

, rta� �1],when t
c

< rta� �1

[rta� �2,+1],when t
c

2 [rta� �1, rta� �2]

[t
c

,+1],when t
c

> rta� �2.

�. Must-not-start condition (nst30): The vehicle must not start the descent if it

is not cleared.

��

8. Can-start condition (cst0): False, because cst0 = ¬(mst10 _ nst10 _ mst20 _

nst20 _ nst30) is always at any time before the descent start. No associated

time window is de�ned because cst0 = false.

�. Must-stop condition (msp10): The descent must stop if the planned trajec-

tory is going to exit the green cone before rta (for example because of the

change of the green cone).

• The associated time window msp_T 1
0 is from the current time t

c

to

the time that the vehicle is projected to exit the green cone. Note that

the determination of the time window depends on what is considered

safe (or feasible in this case). Therefore, it may vary based on the

preference on the safety margin.

��. Must-stop condition (msp20): The descent must stop if the planned trajec-

tory cannot guide the vehicle to arrive at Point B on time due to the change

of rta.

• The associated time windowmsp_T 2
0 is from the current time t

c

to the

current stop time or the new rta, whichever is earlier. Note that if the

current SEB stops too late, the controller may not be able to �nd a

new SEB, which is an example that satisfying constraints in this task

does not necessarily leads to feasibility.

��. Must-stop condition (msp30): The descent must stop immediately if the

clearance is revoked before rta.

��. Must-not-stop condition (nsp0): The current time is before rta and the ve-

hicle is not at Point B. Intuitively, this means the descent is not �nished

and it is not impossible to reach Point B on time.

• The associated time window nsp_T0 = [t
c

, rta].

��. Can-stop condition (csp0): The descent can stop if the vehicle arrives at

Point B at rta.

��

• The associated time window csp_T0 = [rta,+1].

6.�.� Inadequate altitude with respect to the traf�c

The respective performance constraints are de�ned in below (Fig.6.�):

• pci1: During cruise, the minimal clearance with other vehicle is x1 radius.

• pc1: During descent, and the minimal clearance with other vehicle is y1

radius.

Assumption: The minimal clearance is for example based on the vehicle type of

the traf�c and the battery level of the vehicle.

Figure 6.�: Deriving the prescriptive constraints w.r.t. the traf�c.

Accordingly, the prescriptive constraints with respect to the traf�c can be

de�ned as following:

�. The must-start condition (mst1): The descent must start when the traf-

�c is projected to enter the x1 feet radius of the vehicle. Note that if the

look-ahead time is de�ned, then mst1 is true only when such entrance is

projected to happen from the current time less than the look-ahead time.

• The associated time windowmst_T1 is from the current time t
c

to the

�6

time that the traf�c is projected to enter the x1 feet radius of the ve-

hicle.

�. The must-not-start condition (nst1): The descent must not start when the

traf�c is within y1 radius of the vehicle.

• The associated time window nst_T1 is from the current time t
c

to the

time that the traf�c is projected to exit the y1 feet radius of the vehicle.

�. The can-start condition (cst1): cst1 = ¬(mst1_nst1) and cst_T1 = ¬(mst_T1[

nst_T1).

�. The must-stop condition (msp11): The descent must stop when the traf�c

is projected to enter the y1 feet radius of the vehicle.

• The associated time window msp_T 1
1 is from the current time t

c

to

the time that the traf�c is projected to enter the y1 feet radius of the

vehicle.

�. The can-stop condition (csp1): csp1 = ¬msp1 and csp_T1 = ¬msp_T1.

6.�.� Inadequate altitude with respect to the weather

The performance constraint for the cruise (pci2) and the descent (pc2) is the

same, which is the vehicle must stay out of the area that is impacted by the

weather.

Accordingly, the prescriptive constraintswith respect to theweather (Fig.6.�)

can be de�ned as following:

�. The must-start condition (mst2): The predicted trajectory of the level �ight

is going to cross a weather impacted area.

• The associated time windowmst_T2 is from the current time t
c

to the

time that the traf�c is projected to enter the weather impacted area.

��

Figure 6.�: Deriving the prescriptive constraints w.r.t. the weather.

�. Themust-not-start condition (nst2): The vehicle is in the weather impacted

area.

• The associated time window nst_T2 is from the current time t
c

to the

time that the vehicle is projected to exit the weather area.

�. The can-start condition (cst2): cst2 = ¬(mst2_nst2) and cst_T2 = ¬(mst_T2[

nst_T2). For example, the can-start condition can be when there is no

weather in the way of the predicted level �ight, or the vehicle has exited

the weather area.

�. The must-stop condition (msp12): The planned trajectory must stop when

the vehicle is projected to enter the weather area (because the weather

can form unexpectedly).

• The associated time windowmsp_T 1
2 is from the current time t

c

to the

time that the vehicle is projected to enter the weather area.

�. The can-stop condition (csp2): csp2 = ¬msp2 and csp_T2 = ¬msp_T2.

6.�.� Inadequate altitude with respect to the terrain

The hazard with respect to the terrain is the altitude of the vehicle is less than

a minimal distance with the terrain (Fig.6.�). The corresponding performance

�8

Figure 6.6: Deriving the prescriptive constraints w.r.t. the terrain.

constraints with respect to the cruise and the descent are pci3 = x3 and pc3 = y3

respectively.

Assumption: The minimal distance from the terrain is for example based on

the ground habitat, such as residence, power grid and natural area.

Accordingly, the prescriptive constraints with respect to the terrain (Fig.6.6)

can be de�ned as following:

�. The must-start condition (mst3): There is terrain that is higher or less than

x3 lower than the the predicted trajectory of the level �ight.

• The associated time windowmst_T3 is from the current time t
c

to the

time that the vehicle is projected to enter the con�icting terrain area.

�. The must-not-start condition (nst3): The vehicle is less than y3 above the

terrain.

• The associated time window nst_T3 is from the current time t
c

to the

time that the vehicle is projected to bemore than y3 above the terrain.

�. The can-start condition (cst3): cst3 = ¬(mst3_nst3) and cst_T3 = ¬(mst_T3[

nst_T3). For example, the can-start condition can be when the level �ight

altitude is way higher than x3 and y3 above the terrain.

�. The can-stop condition (csp3): csp3 = ¬msp3 and csp_T3 = ¬msp_T3.

��

Note that we assume the terrain does not change in real time. Therefore, the

planned trajectory can guarantee the pc3 is always satis�ed. Although the real

output behavior can still deviate from the planned one, it does not affect the

de�nition of the prescriptive constraints.

6.�.� Inadequate altitude with respect to the airspace

Figure 6.�: Deriving the prescriptive constraints w.r.t. the airspace.

The hazard with respect to the terrain is the altitude of the vehicle is less than

a minimal distance with the ceiling of the airspace (Fig.6.�). The corresponding

performance constraints with respect to the cruise and the descent are pci4 = x4

and pc4 = y4 respectively.

Assumption: The minimal distance from the ceiling is for example based on

the category of the adjacent airspace.

Accordingly, the prescriptive constraints with respect to the terrain (Fig.6.�)

can be de�ned as following:

�. The must-start condition (mst4): The current level �ight altitude is above

or less than x4 below the airspace ceiling some points at the projected

trajectory.

• The associated time windowmst_T4 is from the current time t
c

to the

time that the vehicle is projected to be higher than or less than x4

���

below the airspace.

�. The must-not-start condition (nst4): The vehicle is above or less than y4

below the ceiling.

• The associated time window nst_T3 is from the current time t
c

to the

time that the vehicle is projected to bemore than y4 below the ceiling.

�. The can-start condition (cst4): cst4 = ¬(mst4_nst4) and cst_T4 = ¬(mst_T4[

nst_T4).

�. The must-stop condition (msp14): Some section of the planned trajectory is

higher or less than y4 lower than the ceiling.

• The associated time window nst_T 1
4 is from the current time t

c

to the

time that the vehicle is projected to be higher than or less than y4

below the ceiling.

�. The can-stop condition (csp4): csp4 = ¬msp4 and csp_T4 = ¬msp_T4.

6.� Method �: deriving the descriptive constraints

6.�.� The model structure

Thedescent process rather than the vehicle is the process under control (Fig.6.8).

The controller is to eventually manipulate two output variables of the descent

process: the real descent angle � and the real longitudinal velocity v. The con-

trol input of the process is the instructed descent angle (Des) and the instructed

longitudinal velocity (V el). The head wind, denoted as w, is blowing horizontally

right to left. Mathematically, the process model can be written as below:

���

8
>>>>>><

>>>>>>:

� = Des

v = V el � w · cos�

s(t) = s0 + vt

where

• Control input: (V el,Des)T .

• Parameter: w.

• System states: (�, s)T , where s = (x, h).

• Derivatives: v is the derivative of s(t).

• Output variable: s(t).

Figure 6.8: The process model for the descent.

Graphically, the input ports and the output ports can be represented in Fig.6.�.

Figure 6.�: The structure of the process model.

���

6.�.� Deriving the constraint-assumption pair

Each constraint-assumption is derived for a reason. Wecall that reason “concern”

in this work. “Constraint” is de�ned to address the concern and can only suc-

cessfully address the concernwhen the “assumptions” are satis�ed in the actual

operation.

First, because the highest order derivatives of the system states must (be

considered) change instantaneously, the process model above can only be ap-

plied in the scenarios where the longitudinal velocity v and the descent angle �

can be considered change instantaneously. Various constraints can be derived

from this concern, such as the congestion level of the airspace, the type of the

vehicle, the expected maneuver, the terrain, the weather etc. The derivation of

the constraints highly relies on the domain knowledge and may vary from case

to case. For example:

• Concern �: The longitudinal velocity must be considered to change instan-

taneously.

– Constraint: the gap between the instructed velocity and the current

velocity must be less than �� knots, i.e. |V el � v|  20 knots.

– Assumption: The traf�c congestion level must be low (however the

congestion level ismeasured), i.e. congestion = low so that the airspace

is sparse enough that such approximation is proper.

• Concern �: The descent angle must be considered to change instanta-

neously.

– Constraint: the gap between the instructed descent angle and the cur-

rent descent angle must be less than 15�, i.e. |Des� �|  15�.

– Assumption: The headwind must be less than �� knots, i.e. w < 50

knots as stronger headwind takes longer time to maneuver.

���

Second, we derive the constraint-assumption pair based on the map pro-

vided by Method �.

Arrow �: The transformation constrains the input ports.

• Concern �: {v, �, w}T must be within a speci�c envelop, so that the vehicle

can maintain a constant descent angle and a constant longitudinal speed.

– Constraint: The envelop can characterized by h(v, �, w) = 0 where

v < 200 knots, � 2 [35�, 55�] and w 2 [25, 45] knots

– Assumption: The crosswind must be less than �� knots, i.e. cw 2

[0, 30] knots, so that the envelop is valid.

Arrow �: The environment constrains the input ports. Environment here means

the elements that are external to the controlled process. All three variables in the

input ports may have concerns with respect to the environment. For example:

• Concern �: The air traf�c center may prescribe that instructed descent

velocity V el cannot be too high due to the limitation of the surveillance

infrastructure.

– Constraint: The instructed velocity must be less than ��� knots, i.e.

V el  200 knots.

– Assumption: V el  200 may be applicable to a speci�c weather con-

dition, for example sunny days vs. days with heavy rain. Therefore,

the weather condition may be an assumption of the process model

here, and hence V el  200must be updated accordingly if necessary.

• Concern �: The descent procedure may prescribe that the descent angle

� must be bounded by a speci�c range to maintain a “�ow” pattern of the

descent traf�c.

���

– Constraint: The descent angleDesmust be bounded between 30� and

60�, i.e. Des 2 [30�, 60�].

– Assumption: Des 2 [30�, 60�] is procedure-speci�c. If a new proce-

dure is applied for example due to emergency, the bound forDesmust

be updated accordingly.

• Concern 6Theweather service provider prescribe that the headwind around

the vertiport cannot be too high in order to guarantee the quality of their

service for the vertiport operation (not necessarily for the descent pro-

cess).

– Constraint: The headwind must be less than �� knots i.e. w < 50

knots.

– Assumption: w < 50 knots may only re�ect the normal capability of

the weather service provider. If the provider is in a degraded service

mode due to some of its internal issues (e.g. outage), w < 50 must

be updated accordingly.

Arrow �: The environment constrains the output ports. All three variables in the

output ports may have concerns with respect to the environment. For example:

• Concern �: The descent proceduremay prescribe that real descent velocity

v cannot be too low in order to maintain a minimal traf�c throughput.

– Constraint: The real velocitymust be greater than �� knots, i.e. v > 50

knots.

– Assumption: v > 50may based on an estimation of the regular traf�c.

If the traf�c load is extraordinarily high due to for example temporary

airspace restriction, theminimal velocity may be increased to accom-

modate the heavier traf�c, and hence this constraint of the process

model must be updated accordingly.

���

• Concern 8: The vertiport operation may prescribe that the descent angle

� cannot be too small in order to avoid interference between operation of

the adjacent landing pad.

– Constraint: The descent angle � must be greater than 45�, i.e. � > 45�.

– Assumption: � > 45� is conditioned on a speci�c layout of the ver-

tiport. If new landing pads are added or back-up landing pads are

activated, the range of � must change accordingly.

• Concern �: The vehiclemustmaintain aminimal vertical distance from the

ground to minimize the disturbance to the public.

– Constraint: The vertical distance from the ground elevation (denoted

as GE) must be greater than H , i.e. h > H +GE.

– Assumption: The minimal distance H is affected by the usage of

the ground area, such as residence, natural habitat and high-voltage

power line. Therefore, H must be updated accordingly in real time if

necessary.

Arrow �: The system/human constrains the input ports and the output ports

The device/human must be able to accept all the values within the range of the

input ports. V el andDes are the instruction from the controller, which depending

on the speci�c implementation can be vocal or digital. However, they are just

numbers, and hence no constraints are derived for them. Only the headwind w

is constrained.

• Concern ��: The headwind is observed by the on-board sensor, and hence

is constrained by the capacity of the sensor.

– Constraint: The headwindmust be less than 60 knots in order to guar-

antee the accuracy of the on-board sensor, i.e. w < 60 knots.

��6

– Assumption: The sensor data is only accurate for example when the

environment temperature is between [�10, 50]�C. Therefore, the as-

sumption of the process model for w < 60 is tem 2 [�10, 50]�C.

• Concern ��: The vehicle has a capacity limit for the descent angle.

– Constraint: The real descent angle is bounded between 30� and 75�,

i.e. � 2 [30�, 75�]

– Assumption: The range of the descent angle may vary over many

factors. For example, the vehicle that transport freight can have a

steeper descent angle than those commuting human passengers; the

heavier of the payload is, the narrower of the descent angle bound;

the stronger the headwind is, the less steeper the maximal descent

angle is. There might be more factors, but as an example we de-

�ne the assumptions of the process model for � 2 [30�, 75�] is the

type of payload is passenger commute, the payloadweight is between

weight 2 [1000, 1500] lbs and the headwind is less than 6� knots.

• Concern ��: The vehicle has a capacity limit for the descend altitude.

– Constraint: The allowable descent altitdue is between ���� feet to

���� feet, i.e. h 2 [1000, 2500] feet ASL.

– Assumption: h 2 [1000, 2500] feet is measured in ASL. Such limit

varies over the local ground elevation (denoted as GE). We de�ne

the assumption of the process model for h 2 [1000, 2500] feet ASL is

that GE 2 [200, 500] feet ASL.

• Concern ��: The vehicle has a capacity limit for the longitudinal velocity of

descent.

– Constraint: The longitudinal velocity of descent is bounded within

[150, 250] knots, i.e. v 2 [150, 250] knots.

���

– Assumption: v 2 [150, 250] knots varies over the descent angle � and

the payload weight: the steeper the descent angle is and the heavier

the payload is, the slower the longitudinal velocity is. We de�ne the

assumption of the process model for v 2 [150, 250] is � 2 [35�, 55�]

and weight 2 [950, 1450] lbs.

Arrow �: The transformation constrains the input ports and the output ports.

• Concern ��: The crosswind cannot be too strong so that the vehicle can

maintain a constant descent angle and a constant longitudinal speed.

– Constraint: f .

– Assumption: The crosswind must be less than �� knots, i.e. cw 2

[0, 40] knots.

• Concern ��: The battery level cannot be too low, so that the vehicle can

maintain a constant descent angle and a constant longitudinal speed.

– Constraint: f .

– Assumption: The battery level must be above ��%.

In summary, all the constraint-assumption pairs can be summarized in Ta-

ble.6.�.

Therefore, the process model is:

8
>>>>>><

>>>>>>:

� = Des

v = V el � w · cos�

s(t) = s0 + vt

subject to the constraints below:

��8

Table 6.�: The constraints of the processmodel and assumptions of the process
model derived from each concern

Concern Constraint Assumption
� |V el � v|  20 knots Traf�c congestion level is low
� |Des� �|  15� w < 50 knots
� h(v, �, w) = 0 where v 

200 knots � 2 [35�, 55�] and
w 2 [25, 45] knots

cw  30 knots.

� V el  200 knots Weather is sunny
� Des 2 [30�, 60�] A speci�c descent procedure
6 w < 50 knots Operation status of weather provider

is normal
� v > 50 knots Expected traf�c throughput is normal
8 � > 45� Vertiport layout
� h > H +GE Type of ground usage
�� w < 60 knots tem 2 [�10, 50]�C
�� � 2 [30�, 75�] Payload type; weight 2 [1000, 1500]

lbs; w  60 knots
�� h 2 [1000, 2500] feet ASL GE 2 [200, 500] feet ASL
�� v 2 [150, 250] knots � 2 [35�, 55�] and weight 2 [950, 1450]

lbs
�� f cw  40 knots
�� f Battery Level is greater than ��%

EC =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

h(v, �, w) = 0

|V el � v|  20 knots

|Des� �|  15�

V el  200 knots

Des 2 [35�, 55�]

w 2 [25, 45] knots

v 2 [150, 250] knots

� 2 [45�, 55�]

h 2 [max(H +GE, 1000), 2500] feet ASL

subject to the assumptions below:

���

IC =

8
>><

>>:

Traf�c congestion level is low;

The weather is sunny;

The speci�c descent procedure;

The operation status of the weather provider is normal;

The expected traf�c throughput is normal;

The vertiport layout;

Type of the ground habitat;

tem 2 [�10, 50]�C

Payload type is passenger commute;

weight 2 [1000, 1450] lbs;

GE 2 [200, 500] feet ASL;

cw  30 knots;

The battery level is greater than ��%

6.� Method �: Architecting a safe controller

The reference architecture forces the speci�c design application to consider a

wide variety of safety-critical scenarios of the environment, the controller and

the controlled process, in order to identify and address the safety-critical sce-

narios (without the presence of the component level failure) at the same time

when the controller is being de�ned.

In this case study, we will show how the actions de�ned in the reference ar-

chitecture can help the descent example to identify the safety-critical scenarios

and de�ne an architecture of the controller that addresses them in the begin-

ning.

���

6.�.� The overall work�ow of the controller

As shown in Fig.6.��, from left to right is the expected logic for the vehicle to

descend to Point B on time and avoid the hazards at the same time. The vehicle

�ies at the instructed speed to catch the designated waypoints on time, so that

the vehicle �ies a desired �d-trajectory that can achieve the functional goal and

avoid the hazard at the same time. The work�ow of controller is in an exact op-

posite order. Task � is to de�ne a desired �d-trajectory based on the prescriptive

constraints, that if achieved the vehicle an reach Point B on time and avoid the

hazards at the same time; Task � is to select �d-waypoints on the desired �d

trajectory so that if the �d-waypoints are respected, the desired �d trajectory is

achieved; Task � is to issue the instructions on the longitudinal speed V el and

the descent angle Des to arrive at the �d-waypoint on time.

Figure 6.��: The overall work�ow of the controller. FG stands for functional
goal.

Finally, action takes time. Fig.6.�� is a summary of the expected time inter-

vals (T1, T2 and T3) between the key time points of the decisionmaking process

of the controller. The key time points are at the �d descent trajectory is decided,

the �d waypoints are decided, the instruction on velocity and descent angle is

issued and the vehicle position is actually affected. Obviously, T1 � T2 is the

expected time duration for Task �; T2 � T3 is the expected time duration Task

�; T3 is the expected time duration of one execution of the controlled process.

We are now explain each task one by one.

���

Figure 6.��: The expected time intervals between key time points of the con-
troller’s decision-making process.

6.�.� Task �: Perceive the prescriptive constraints to generate a safe �d tra-

jectory.

6.�.�.� The overall description

Overall, this task is to perceive the prescriptive constraints to determine the

safety enforcing behavior (SEB). According to RA, three stages are de�ned for

the case study (Fig.6.��). However, because Stage � and Stage � are similar as

they are subject to the same hazards, we assume that the descent can always

stop immediately once Point B is arrived at rta to avoid repetition. Therefore,

only the �rst two stages are applicable in this case study, which is why Stage �

in Fig.6.�� is in dotted line.

Figure 6.��: The three stages of Task �. But because we assume the descent
can stop and thus will stop immediately once Point B is arrived at rta, only the
�rst two stages are applicable in this case study.

As a result, the two stages divides the timeline of Task � into � segments be-

low (Fig.6.��), and each stage is de�ned in Fig.6.�� with two variables fgStatus

and OB de�ned as below:

���

Figure 6.��: The timeline of Task � is divided into four segments by the two
stages.

Figure 6.��: The de�nition of the stages of Task �.

• fgStatus represents the status of the descent instruction, i.e. “arrive at

Point B at rta”.

– false: The instruction for descent has not been issued, or the instruc-

tion is cancelled, or the descent is accomplished.

– Requested: The descent instruction is issued but the descent has not

been accomplished.

– Achieved: The descent instruction is issued and the descent is ac-

complished. Note that this is only transient state because it is also a

postStage.

• OB represents whether the descent has started yet.

– on: The descent has started and still on.

– off : The descent has not started or already stops.

6.�.�.� The enabling action

EA1: Deciding the stages. Based on the de�nition of the stages in Fig.6.��, 6

possible transitions are identi�ed (Fig.6.��), each of which corresponds to one

sub-action de�ned in the reference architecture.

���

Figure 6.��: 6 possible (not considering failure) transitions between the stages
are identi�ed for this case study. The number associated with each arrow rep-
resent the corresponding sub-action in the reference architecture.

Transitioning from preStage to Stage1.

• Trigger event: fgStatus : false! Requested �.

• Guard condition: OB = off .

• Input: None.

• Output: The stage.

• Transformation: stage Stage1�.

This action corresponds to Sub-action � of the reference architecture.

Transitioning from Stage1 to Stage2.

• Trigger event: OB : off ! on.

• Guard condition: fgStatus = Requested.

• Input: None.

• Output: The stage.

• Transformation: stage Stage2.
�The notation x : a! b means the value of variable x transitions from a to b.
�The notation x a means assign value a to variable x.

���

This action corresponds to Sub-action � of the reference architecture.

Transitioning from postStage to preStage.

• Trigger event: fgStatus : Achieved! false.

• Guard condition: OB = off .

• Input: None.

• Output: The stage.

• Transformation: stage preStage.

This action corresponds to Sub-action � of the reference architecture.

Transitioning from Stage1 to preStage.

• Trigger event: fgStatus : Requested! false.

• Guard condition: OB = off .

• Input: None.

• Output: The stage.

• Transformation: stage preStage.

This action corresponds to Sub-action 6 of the reference architecture.

Transitioning from Stage2 to postStage.

• Trigger event: {fgStatus : Requested! Achieved} ^ {OB : on! off}.

• Guard condition: NA.

• Input: None.

• Output: The stage and fgStatus.

���

• Transformation: stage postStage and fgStatus false.

This action corresponds to Sub-action 8 of the reference architecture.

Transitioning from Stage2 to contingency mode.

• Trigger event: fgStatus : Requested! false.

• Guard condition: OB = on.

• Input: None.

• Output: CM15.

• Transformation: CM15 true.

This action corresponds to Sub-action � of the reference architecture.

As a result, EA1 can be represented in Fig.6.�6 graphically.

Figure 6.�6: Graphical representation of EA1 for the case study.

EA2: Start/stop watcher. This action is to address the possibility that mst_T

ormsp_T is violated. Speci�cally, if the descent does not start beforemst_T ex-

pires, or the descent does not stop beforemsp_T expires, the systementers con-

tingency mode by sending out CM4. Therefore, the following two sub-actions

are de�ned.

Sub-action �:

• Trigger event: mst_T expires.

��6

• Guard condition: stage = Stage1.

• Input: OB.

• Output: CM4.

• Transformation: If OB = false, then CM4 true.

Sub-action �:

• Trigger event: msp_T expires.

• Guard condition: stage = Stage2.

• Input: OB.

• Output: CM4.

• Transformation: If OB = true, then CM4 true.

Graphically, Action EA2 can be represented in Fig.6.��.

Figure 6.��: Graphical representation of EA2.

EA3: Deviation handler. This action is to address the situation where the vehi-

cle �ies beyond the planned �d-trajectory (bound). Although beyond the planned

�d-trajectory (bound) does not necessarily lead to inadequate altitude, the haz-

ard is not actively controlled and hence safety cannot be proactively enforced

by the controller.

• Trigger event: {es(t) 62 s(t)} transitions from false to true.

���

• Guard condition: stage = Stage2.

• Input: NA.

• Output: CM17.

• Transformation: CM17 true.

As a result, EA3 can be represented in Fig.6.�8 graphically.

Figure 6.�8: Graphical representation of EA3 for the case study.

EA5: SEB statusmonitor. This action is to record the satis�ability of the desired

trajectory. It is assigned false once the monitor themes detects unsatis�ability

of the desired trajectory and is assigned true once the generate theme �nd a

new desired trajectory. In addition, if the unsatis�ability is not found at Stage1,

then the SEB is set to false to prevent the execution of an unsatisfactory SEB.

As a result, we de�ne the following two sub-actions for EA5:

Sub-action �:

• Trigger event: sebStatus1_sebStatus2_sebStatus3_sebStatus4_sebStatus5 :

true! false.

• Guard condition: stage! = (preStage _ postStage).

• Input: NA.

• Output: sebStatus.

• Transformation: sebStatus false.

��8

Sub-action �:

• Trigger event: sebStatus1 _ sebStatus2 _ sebStatus3 : true! false.

• Guard condition: stage = Stage1.

• Input: NA.

• Output: (st, y(t), sp).

• Transformation: (st, y(t), sp) false.

Sub-action �:

• Trigger event: s(T) changes.

• Guard condition: stage! = (preStage _ postStage) ^ s(T)! = false

• Input: NA.

• Output: sebStatus.

• Transformation: sebStatus true.

Graphically, Action EA5 can be represented in Fig.6.��.

Figure 6.��: Graphical representation of EA5.

���

6.�.�.� The main action

We go through each main action of Task � for this case study. For each applica-

blemain action, we �rst identify the safety-critical scenarios that are revealed by

the reference architecture; then we specify the action based on the de�nition of

the reference architecture with the inputs, the outputs, the guard condition, the

trigger event and the intent of the transformation. After that, we obtain a set of

connected actions (or black boxes) with well-de�ned ports, which by de�nition

is the architecture of the controller for the descent example.

MA1: Generate the performance constraints at Stage �. This action is de-

�ned in the reference architecture because the performance constraints might

change over the functional goal, the environment and the controlled process.

Safety-critical scenario. De�ning this action according to the reference archi-

tecture for this case study reveals the following Safety-critical scenario (SCS):

Figure 6.��: The factors to decide the performance constraints of the descent.

���

SCS�: The shape of the green cone of Fig.6.�� is affected the headwind and the

weight of the payload. Therefore, the shape of the green cone must adjust

accordingly if the headwind and the weight of the payload change.

SCS�: The minimal distance from the traf�c (the dotted red circle in Fig.6.��) is

affected by the type of the vehicle in the traf�c and the battery level of the

vehicle. Therefore, the red circle must adjust accordingly if the type of the

vehicle in the traf�c and the battery level of the vehicle change.

SCS�: The minimal distance from the terrain (the red shaded area above the ter-

rain in Fig.6.��) is affected by the type of the ground habitat. Therefore, the

minimal distance must adjust accordingly if the type of the ground habitat

changes.

SCS�: The minimal distance from the airspace (the red shaded area below and

above the airspace boundaries in Fig.6.��) is affected by the category of

the adjacent airspace. Therefore, the minimal distance from the airspace

boundariesmust change if the category of the adjacent airspace changes.

SCS�: MA1 may take too long to generate the performance constraint, so long

that there is not enough time for MA2 to generate mst_T before mst_T

actually expires �.

SCS�-SCS� are the assumptions that are derived inMethod � for pc10, (pci1, pc1, pco1),

(pci3, pc3, pc
o

3) and (pci4, pc4, pc
o

4) respectively. Not considering the �rst four safety-

critical scenarios SCS�-SCS� can lead to incorrect performance constraints, which

may further lead to hazard and is impossible to be identi�ed by any veri�cation

program.

Furthermore, SCS� implies the following hazardous scenario: because the

deadline to start the descent is calculated basedon the performance constraints,
�Ifmst_T is generated aftermst_T expires, it is unsafe. ButMA1 takes too long so that there is
not enough time to generate the desired descent trajectory is not necessarily unsafe. So, this
scenario is relevant because it has safety implication. This is why the reference architecture is
“safety-guided”.

���

if it takes too long to calculate the performance constraints, it is possible that

the constraints on the start time are already violated before the controller is even

aware of the constraints in the �rst place. In this case, the vehicle enters the haz-

ardous situation while it is still trying to �gure out what is safe and unsafe.

Therefore, SCS� requires an explicit requirement that the time duration of

this action must be signi�cantly shorter than the mst_T (for example, from the

descent command is received to cruising out of the green cone) to rule out such

possibility in the real system. If SCS� is not considered in the design in the �rst

place, it will require modeling a longer duration of MA1 than mst_T in order to

retrieve SCS� through veri�cation, which is unusual if themodeler does not have

the hazardous scenario mentioned above in mind. As a result, the hazardous

scenario can be easily omitted by a veri�cation program.

De�ning the action. According to the reference architecture, the input-output-

transformation of this action are de�ned in Table.6.�. The inputs are all the fac-

tors identi�ed in Method � that affect the performance constraints. SCS�-SCS�

are addressed by Table.6.�.

Table.6.� is the trigger event, the guard condition and the duration of this ac-

tion. SCS� is addressed by the duration. The expected time duration e1 must be

short enough so that the performance constraints are not going to be generated

after mst_T expires. However, there is always a chance that e1 is too long that

MA2 eventually generatesmst_T aftermst_T expires. Therefore, a long enough

look-ahead time must be selected to decide mst_T early to lower the likelihood

of an expired mst_T to an acceptable level.

MA2: Generate the constraints on the start time at Stage �. This action is de-

�ned to identify the constraints on the start time of descent. These constraints

are used not only to de�ne the desired descent trajectory, but also to inform the

controller the deadline to decide the start time and the desired trajectory.

���

Table 6.�: The input-output-transformation of MA1.

Input
source

Input output Transformation

Weather
service
provider

Headwind bw(t)
pc10

Generate/update the shape
of the green cone.

The vehi-
cle

The weight of pay-
load pl.

MA1 pc20
Higher
level of
control

Point B and rta pc20 Generate/update Point B and
rta.

The traf�c
surveil-
lance

Vehicle type of the
traf�c vt

pci1, pc1
Generate/update the mini-

mal distance from the traf�c.

The vehi-
cle

The battery level of
the vehicle bl

NA NA pci2, pc2 Pre-de�ned
Terrain
map
provider

The ground habitat gh pci3, pc3 Generate/update the min-
imal distance from the
terrain.

Airspace
info
provider

The category of the
adjacent airspace cat

pci4, pc4 Generate/update the min-
imal distance from the
airspace boundary.

Table 6.�: The trigger event, the guard condition and the duration of MA1

Content Info Source

Trigger {stage : preStage! Stage1}
_{sebStatus : true! false}

stage EA1

sebStatus EA5

Guard {sebStatus = false} ^ {stage = Stage1} stage EA1

sebStatus EA5

Duration e1 must be short enough, so that there will be
enough time forMA2 to generatemst_T before
mst_T expires.

NA

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS6: The acceptable altitude of top of descent is affected by the cloud and

visibility.

���

SCS�: The viable time to start the descent is affected by the operational mode

of the vehicle and the headwind.

SCS8: It is possible that there is con�ict between mst_T and nst_T , in which

case it is impossible to �nd a start time.

SCS�: It is possible that the vehicle deviates from the projected cruise trajectory

or cruise speed.

SCS��: MA2 may take too long to generate mst_T , so long that mst_T already

expires by the time mst_T is generated.

SCS��: It is possible that MA2 waits too long for the resolution of the con�ict

between mst_T and nst_T , so long that there is not enough time left to

generate and start the desired descent trajectory beforemst_T expires�.

SCS6 and SCS� are the assumptions that are derived in Method � for mst10

and mst20 respectively. Not considering them may lead to failure to achieve the

functional goal regardless of the hazard, an omission that can never be retrieved

by veri�cation. SCS8 is caused by speci�c combinations of the sub-hazards

that make starting the descent impossible. If the de�ned hazards happen to not

include such combinations, this scenario can never be captured by veri�cation.

SCS� is about the possibility that projection of the cruise trajectory and speed

can be wrong due to for example deviation caused by aleatoric uncertainty. If

the projection is wrong, then the constraints on the start time can also bewrong.

In a veri�cation program, because such projection comes from outside the con-

troller being designed, it is reasonably taken as given and out of the scope of

veri�cation. However, if such possibility is not explicitly designed for, the sys-

tem will enter the hazardous condition by faithfully operating as designed.

SCS�� implies that MA2 must be accomplished in a short time because the
�The reason that they are relevant (i.e. should not be abstracted away) is that they may lead to
hazard, which is why this is safety-guided, not say ef�ciency-guided.

���

controller needs to know the deadline ofmst_T to act accordingly. SCS�� implies

when {mst_T, nst_T, cst_T} has internal con�icts, MA2 can only wait for the

resolution till some time before mst_T because after that point there will be no

time left to generate a new descent trajectory and actually start it. In complete

randomness, there is no guarantee that a veri�cation program can capture the

two possibilities above with model execution due to state explosion.

De�ning the action. The input-output-transformation of MA2 is de�ned in

Table.6.� to decide the constraints on the start time. SCS6-SCS� are addressed

in mst_T 1
0 and mst_T 2

0 . If SCS8 becomes true, then RfR1 is sent to higher level

of control for a new descent command. In addition, if SCS�� becomes true (i.e.

t
c

> mst_T � T1 � e3), then CM1 is sent for the system to enter contingency

mode.

Table 6.�: The input-output-transformation of MA2. Note that nst30 is not in-
cluded in the table because it is addressed as the guard condition of MA3. The
speci�c design application can deviate from the reference architecture as long
as the deviation can be justi�ed.

Input source Input Output Transformation

MA1 pc10

mst_T 1
0

Generate the time

window for the must-start

condition with respect to

Point B.

Weather ser-

vice provider

Cloud cd, visibility vb

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

MA2 mst_T 1
0 nst_T 1

0 nst_T 1
0 = ¬mst_T 1

0

MA1 pc20

mst_T 2
0

Generate the time

window for the must-start

condition w.r.t. rta.

The vehicle Vehicle operation mode vm

Weather ser-

vice provider

Headwind bw(t)

MA2 mst_T 2
0 nst_T 2

0 nst_T 2
0 = ¬mst_T 2

0

���

Input source Input Output Transformation

MA1 pci1

mst_T1

Generate the time

window for the must-start

condition w.r.t. the traf�c.

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Traf�c surveil-

lance provider

The projected traf�c trajec-

tory bs
tf

, the projected traf�c

speed bv
tf

.

MA1 pc1

nst_T1

Generate the time win-

dow for the must-not-

start condition w.r.t. the

traf�c.

The vehicle The current vehicle position

es

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Traf�c surveil-

lance provider

The projected traf�c trajec-

tory bs
tf

, the projected traf�c

speed bv
tf

, the current traf�c

position es
tf

.

MA2 mst_T1, nst_T1 cst_T1 cst_T1 = ¬(mst_T1 [

nst_T1)

MA1 pci2

mst_T2

Generate the time

window for the must-start

condition w.r.t. the

weather.

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Weather ser-

vice provider

The projected weather im-

pacted area cwa

��6

Input source Input Output Transformation

MA1 pc2

nst_T2

Generate the time

window for the

must-not-start condition

w.r.t. the weather.

The vehicle The current vehicle position

es

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Weather ser-

vice provider

The projected weather im-

pacted area cwa, the current

weather impacted area fwa

MA2 mst_T2, nst_T2 cst_T2 cst_T2 = ¬(mst_T2 [

nst_T2)

MA1 pci3

mst_T3

Generate the time

window for the

must-start condition

w.r.t. the terrain.

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Terrain map

provider

The location of the terrain lt,

the elevation of the terrain

et.

MA1 pc3

nst_T3

Generate the time

window for the

must-not-start condition

w.r.t. the terrain.

The vehicle The current vehicle position

es

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Terrain map

provider

The location of the terrain lt,

the elevation of the terrain

et.

���

Input source Input Output Transformation

MA2 mst_T3, nst_T3 cst_T3 cst_T3 = ¬(mst_T3 [

nst_T3)

MA1 pci4

mst_T4

Generate the time

window for the

must-start condition w.r.t.

the airspace boundary.

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Airspace info

provider

The projected airspace

boundary bab.

MA1 pc4

nst_T4

Generate the time

window for the

must-not-start condition

w.r.t. the airspace

boundary.

The vehicle The current vehicle position

es

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Airspace info

provider

The current airspace

boundary eab, the projected

airspace boundary bab.

MA2 mst_T4, nst_T4 cst_T4 cst_T4 = ¬(mst_T4 [

nst_T4)

MA2

mst_T 1
0 , nst_T 1

0 ,mst_T 2
0 ,

nst_T 2
0 ,mst_T1, nst_T1,

cst_T1,mst_T2, nst_T2,

cst_T2,mst_T3, nst_T3,

cst_T3,mst_T4, nst_T4,

cst_T4

mst_T ,

nst_T ,

cst_T

Aggregate the individual

constraints.

RfR1 If there is no viable st,

then send RfR1.

CM1 If t
c

> mst_T � T1� e3

According to the reference architecture, the trigger event, the guard condi-

tion and the duration are summarized in Table.6.�. Intuitively, if the the projected

��8

cruise trajectory is deviated, no desired descent trajectory can be made before

the deviation is corrected. This is actuallySCS�, which is addressed by the guard

condition {bsi(t) = eh} ^ {bvi(t) = ev}. Furthermore, e2 must be short enough so

that mst_T will not be generated after mst_T expires. However, there is always

a chance that e2 is too long thatmst_T is generated aftermst_T expires. There-

fore, a long enough look-ahead time must be selected to decide mst_T early to

lower the likelihood of an expired mst_T to an acceptable level. This addresses

SCS��.

Table 6.�: The trigger event, the guard condition and the duration of MA2

Content Info Source
Trigger NA NA

Guard
{sebStatus = false}
^{stage = Stage1}
^{bsi(t) = es} ^ {bvi(t) = ev}

stage EA1

sebStatus EA5

bsi(t), bvi(t) The controller
for cruise

ev, es The vehicle
Duration e2 must be short enough, so that

mst_T can be generated before
mst_T expires.

NA

MA3: Generate the desired descent �d trajectory at Stage �. This action is

to generate the desired descent trajectory that satisfy all the prescriptive con-

straints, so that Point B can be reached on time and in the meantime hazards

can be avoided.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS��: It can be impossible to �nd the desired descent trajectory due to the in-

ternal con�icts among the sub-hazards.

SCS��: It is impossible to decide the descent trajectory if the projected cruise

trajectory is deviated.

���

SCS��: MA3 may take too long to generate the desired descent trajectory, so long

that there is not enough time left to actually start the desired descent

trajectory before mst_T expires.

SCS��: It is possible that MA3 waits too long for the resolution of the con�ict

among the sub-hazards, so long that there is not enough time left to start

the desired descent trajectory before mst_T expires.

SCS��, SCS��, SCS�� and SCS�� are similar to the SCS8, SCS� SCS�� and SCS��

respectively. Consequently, they can bemissed by a veri�cation program for the

same reasons.

De�ning the action. The input-output-transformation of MA3 is de�ned in

Table.6.6. If SCS�� happens,RfR2 is sent to the higher level of control for a new

descent instruction. If SCS�� or SCS�� happens, CM2 is sent for the system to

enter the contingency mode.

According to the reference architecture, there is no trigger event for this ac-

tion, and the guard condition is summarized in Table.6.�. The guard condition

^{bsi(t) = eh} ^ {bvi(t) = ev} is to address SCS��; {dc = true} is the implementa-

tion of nst30 that is speci�c to this case study.

The resulting desired descent trajectory s(T) is shown in Fig.6.��. Note that

s(T) does not have to be a single trajectory. In fact, it is more likely to be a

set of trajectories due to the unavoidable aleatoric uncertainty and the lack of

knowledge of the operational details of controlled process. As shown in Fig.6.��,

s(T) is any trajectory within the area con�ned by the red line, as long as the

vehicle can descend to altitude h1 between [t1, t2] and h2 between [t3, t4].

Note that an improper selection of [t1, t2] and [t3, t4] canmake the desired tra-

jectory infeasible. But this is not captured in the prescriptive constraints, which

is aligned with the observation that the prescriptive constraints only rules out

some of “the infeasible” but does not guarantee feasibility.

���

Table 6.6: The input-output-transformation of MA3.

Input
source

Input Output Transformation

MA2 mst_T , nst_T ,
cst_T

Start time of the descent st Decide the start
time of the de-
scent.

MA1 pc10, pc
2
0, pc1,

pc2, pc3, pc4

• s(T) = {s(t)|t 2 [st, rta]}
where s(st) must be
consistent with the
projected cruise trajectory;
• RfR2 if s(T) cannot
be found;
• CM2 if t

c

> mst_T � T1

Decide the
desired descent
trajectory s(T),
where
T = [st, rta]

The con-
troller for
cruise

The projected
cruise trajec-
tory bsi(t), the
projected cruise
speed bvi(t)

Traf�c
surveil-
lance
provider

The projected
traf�c trajec-
tory bs

tf

, the
projected traf�c
speed bv

tf

.
Weather
service
provider

The projected
weather im-
pacted area cwa.

Terrain
map
provider

The location of
the terrain lt,
and elevation of
the terrain et.

Airspace
info
provider

The projected
airspace bound-
ary bab

Table 6.�: The trigger event, the guard condition and the duration of MA3

Content Info Source
Trigger NA NA

Guard
{sebStatus = false}
^{stage = Stage1} ^ {bsi(t) = es}
^{bvi(t) = ev} ^ {dc = true}

stage EA1

sebStatus EA5

bsi(t), bvi(t) The controller
for cruise

ev, es The vehicle
dc Vertiport

Duration NA NA

MA4: Update the performance constraints at Stage �. This is the �rst action

of the monitor theme of Stage �. Once a desired descent trajectory is created,

���

Figure 6.��: The resulting desired descent trajectory s(T).

this action updates the performance constraints if any of the inputs changes.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios. Note that SCS�-SCS�

also applies to MA4. But because they have been explained in MA1 and will

be addressed by MA4 in the same way as MA1, they are not mentioned here to

avoid repetition.

SCS�6: The change in the descent instruction, the environment or the vehicle

may render the original performance constraints invalid, whichmaymake

the start time or the desired descent trajectory unsatisfactory before the

descent even starts.

SCS��: MA4 may take too long to update the performance constraints, so long

that there will be no enough time for MA5 to generate mst_T and nst_T

before the selected st passes or before mst_T expires.

SCS�6 implies that the desired descent trajectory can become unsatisfactory

due to input changes before the descent even starts. If such possibility is not

built into the model, a veri�cation program cannot �nd it. SCS�� is similar to

SCS�, and hard to capture if it is not explicitly built in the model.

���

De�ning the action. The activities to update the performance constraints are

the same as those to generate the performance constraints. As a result, MA4

has a similar input-output-transformation with MA1 in Table.6.8. Because of

the assumption that an action always respond to the latest input values (see the

“assumption” section of the reference architecture), if any of the inputs changes,

MA4 will be activated to recalculate the performance constraints. This addresses

SCS�6.

The trigger event, the guard condition and the duration of MA4 (Table.6.�)

are different from MA1. According to the reference architecture, MA4 is only

triggered when a new desired descent trajectory is generated, which is charac-

terized by sebStatus transitioning from false to true. Once triggered,MA4 keeps

monitoring the change of the inputs as long as there is a de�ned descent trajec-

tory and the stage is still at Stage1, i.e. {sebStatus = true} ^ {stage = Stage1}.

{dc = true} in the guard condition is the implementation of nst30 that is speci�c

to this case study. Furthermore, the e4 must be short enough so that there will

be enough time for MA5 to generate mst_T and nst_T before the selected st

passes and before mst_T expires. However, there is always a chance that e4

is too long that MA5 eventually generates mst_T and nst_T after st passes or

mst_T expires. Therefore, a long enough look-ahead time must be selected to

decidemst_T early to lower the likelihood of an expiredmst_T or a passed st to

an acceptable level. This addresses SCS��.

MA5: Update the constraints on the start time at Stage �. This action is to

update the constraints on the start time before the descent even starts.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios. Note that SCS6-SCS�

also applies to MA5. But because they have been explained in MA2 and will

be addressed by MA5 in the same way as MA2, they are not mentioned here to

���

Table 6.8: The input-output-transformation of MA4.

Input
source

Input output Transformation

Weather
service
provider

Headwind bw(t)
pc10

Generate/update the shape of the
green cone.

The vehi-
cle

The weight of
payload pl.

MA4 pc20
Higher
level of
control

Point B and rta pc20 Generate/update Point B and rta.

The traf�c
surveil-
lance

Vehicle type of
the traf�c vt

pci1, pc1
Generate/update the minimal
distance from the traf�c.

The vehi-
cle

The battery
level of the
vehicle bl

NA NA pci2, pc2 Pre-de�ned
Terrain
map
provider

The ground
habitat gh

pci3, pc3 Generate/update the minimal dis-
tance from the terrain.

Airspace
info
provider

The category
of the adjacent
airspace cat

pci4, pc4 Generate/update the minimal dis-
tance from the airspace boundary.

Table 6.�: The trigger event, the guard condition and the duration of MA4

Content Info Source
Trigger {sebStatus : false! true} sebStatus EA5

Guard {sebStatus = true}
^{stage = Stage1} ^ {dc = true}

stage EA1

sebStatus EA5

dc Vertiport
Duration e4 must be short enough so that MA5

can generate mst_T and nst_T before st
passes and mst_T expires.

NA

avoid repetition.

SCS�8: The change of the performance constraints, the projected cruise trajec-

tory, the environment or the vehicle may render the original constraints

on the start time invalid, which may make the desired descent trajectory

���

unsatisfactory before the descent even starts.

SCS��: MA5 may take too long to update the constraints on the start time, so

long that mst_T and nst_T are generated after the st passes or mst_T

expires.

SCS��: It is possible that MA5 waits too long for the resolution of the con�ict

betweenmst_T and nst_T , so long that it is after the descent starts at st.

SCS��: It is possible thatMA5 waits too long for the resolution of the con�ict be-

tweenmst_T and nst_T , so long that there is no enough time to generate

a new descent trajectory and actually starts it.

SCS�8 and SCS�� are similar to SCS�6 and SCS��. SCS�� implies the scenario

where the previously decided st is within the updated nst_T . SCS�� implies the

scenario where the descent does not start after the updated mst_T expires.

De�ning the action. The input-output-transformation asMA5 in summarized

in Table.6.��. Because the activities to update the constraints on the start time

are the same as those to generate the constraints on the start time, Table.6.�� is

very similar with Table.6.�. The only major difference is that MA5 responds dif-

ferently to the con�ict between mst_T and nst_T from MA2, i.e. the last row of

both tables. Because of the assumption that an action always respond to the lat-

est input values (see the “assumption” section of the reference architecture), if

any of the inputs changes,MA5 will be activated to recalculate the performance

constraints. This addresses SCS�8. When there is con�ict between mst_T and

nst_T ,RfR3 is sent to higher level of control for resolution. In themeantime, if st

is passed while there is con�ict between mst_T and nst_T , then the de�ned de-

scent trajectory is set to false and hence will not be executed. This addresses

SCS��. If mst_T expires then the controller enters the contingency mode by

sending out CM3 to EA4. This addresses SCS��.

The guard condition of MA5 (Table.6.��) is different from MA2. Once any

���

of the inputs changes, MA5 recalculates the constraints on the start time as

long as there is a de�ned descent trajectory, the stage is still at Stage1, and the

projected cruise trajectory is not deviated, i.e. {sebStatus = true} ^ {stage =

Stage1} ^ {bsi(t) = eh} ^ {bvi(t) = ev}. In additoin, e5 to generate mst_T and nst_T

must be short enough so that there will be enough time to generate mst_T and

nst_T before the selected st starts andmst_T expires. However, there is always

a chance that e5 is too long thatmst_T and nst_T are generated after st passes

or mst_T expires. Therefore, a long enough look-ahead time must be selected

to decidemst_T early to lower the likelihood of an expiredmst_T or a passed st

to an acceptable level. This addresses SCS��.

Table 6.��: The input-output-transformation of MA5. Note that nst30 is not in-
cluded in the table because it has been addressed as the guard condition of
MA4. This table is very similar to Table.6.�. The only major difference is the last
row, where ✏ is an in�nitesimal number.

Input source Input Output Transformation

MA4 pc10

mst_T 1
0

Generate the time

window for the

must-start condition

w.r.t. Point B.

Weather ser-

vice provider

Cloud cd, visibility vb

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t).

MA5 mst_T 1
0 nst_T 1

0 nst_T 1
0 = ¬mst_T 1

0

MA4 pc20
mst_T 2

0

Generate the time

window for the

must-start condition

w.r.t. rta.

The vehicle Vehicle operation mode vm

Weather ser-

vice provider

Headwind bw(t)

MA5 mst_T 2
0 nst_T 2

0 nst_T 2
0 = ¬mst_T 2

0

MA4 pci1

��6

Input source Input Output Transformation

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t).

mst_T1

Generate the time

window for the

must-start condition

w.r.t. the traf�c.

Traf�c surveil-

lance provider

The projected traf�c trajec-

tory bs
tf

, the projected traf�c

speed bv
tf

.

MA4 pc1

The vehicle The current vehicle position

es

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t).

nst_T1 Generate the time

window for the

must-not-start condition

w.r.t. the traf�c.Traf�c surveil-

lance provider

The projected traf�c trajec-

tory bs
tf

, the projected traf�c

speed bv
tf

, the current traf�c

position es
tf

.

MA5 mst_T1, nst_T1 cst_T1 cst_T1 = ¬(mst_T1 [

nst_T1)

MA4 pci2

mst_T2

Generate the time

window for the

must-start condition

w.r.t. the weather.

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t)

Weather ser-

vice provider

The projected weather im-

pacted area cwa

MA4 pc2

���

Input source Input Output Transformation

The vehicle The current vehicle position

es

nst_T2

Generate the time

window for the

must-not-start condition

w.r.t. the weather.

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t).

Weather ser-

vice provider

The projected weather im-

pacted area cwa, the current

weather impacted area fwa

MA5 mst_T2, nst_T2 cst_T2 cst_T2 = ¬(mst_T2 [

nst_T2)

MA4 pci3

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t).

mst_T3

Generate the time

window for the

must-start condition

w.r.t. the terrain.Terrain map

provider

The location of the terrain lt,

the elevation of the terrain

et.

MA4 pc3

nst_T3

Generate the time

window for the

must-not-start condition

w.r.t. the terrain.

The vehicle The current vehicle position

es

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t).

Terrain map

provider

The location of the terrain lt,

the elevation of the terrain

et.

��8

Input source Input Output Transformation

MA5 mst_T3, nst_T3 cst_T3 cst_T3 = ¬(mst_T3 [

nst_T3)

MA4 pci4

mst_T4

Generate the time

window for the

must-start condition w.r.t.

the airspace boundary.

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t).

Airspace info

provider

The projected airspace

boundary bab.

MA4 pc4

The vehicle The current vehicle position

es

The controller

for cruise

The projected cruise tra-

jectory bsi(t), the projected

cruise speed bvi(t).
nst_T4

Generate the time window

for the must-not-start

condition w.r.t. the

airspace boundary.Airspace info

provider

The current airspace

boundary eab, the projected

airspace boundary bab.

MA5 mst_T4, nst_T4 cst_T4 cst_T4 = ¬(mst_T4 [

nst_T4)

MA5

mst_T 1
0 , nst_T 1

0 ,mst_T 2
0 ,

nst_T 2
0 ,mst_T1, nst_T1,

cst_T1,mst_T2, nst_T2,

cst_T2,mst_T3, nst_T3,

cst_T3,mst_T4, nst_T4,

cst_T4

mst_T ,

nst_T ,

cst_T

Assign false if there is no

viable st and t
c

= st� ✏.

RfR1 If there is no viable st,

then send RfR1.

CM1 If t
c

> mst_T � T1� e6 �

e1 � e2 � e3

���

Table 6.��: The trigger event, the guard condition and the duration of MA5

Content Info Source
Trigger NA NA

Guard
{sebStatus = true}
^{stage = Stage1}
^{bsi(t) = eh} ^ {bvi(t) = ev}

stage EA1

sebStatus EA5

bsi(t), bvi(t) The controller
for cruise

ev,eh The vehicle
Duration e5 must be short enough so that

mst_T and nst_T can be generated
before st passes andmst_T expires.

NA

MA6: Monitor the satis�ability of the desired start time at Stage �. This ac-

tion is to decide whether the previously de�ned start time of the descent is still

satisfactory when mst_T and nst_T are updated.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the safety-critical scenarios below.

SCS��: The change of mst_T and nst_T may make the previously de�ned st un-

satisfactory.

SCS��: MA6 may take too long, so long that st passes before MA6 �nishes.

SCS�� is similar to SCS�8. SCS�� implies the scenario where MA6 takes too

long to calculate whether the de�ned start time is satisfactory under the new

constraints, so long that the decision cannot be made before the descent is

supposed to start. If that is the case, the descent will start without knowing

whether the start time will lead to a hazard. There is no guarantee that a veri�-

cation program can capture this scenario if it is not speci�cally designed in the

veri�cation program.

De�ning the action. The input-output-transformation ofMA6 is de�ned in Ta-

ble.6.��, which addresses SCS�� and SCS��. The trigger event, guard condition

and the duration are de�ned in Table.6.��.

���

Table 6.��: The input-output-transformation of MA6 .

Input
source

Input Output Transformation

MA3 The start
time st

sebStatus1
If st ✓ nst_T, sebStatus1 false;
If st ✓ mst_T [cst_T, sebStatus1 true;
If the decision cannot made before st,
sebStatus1 false.

MA5 mst_T ,
nst_T ,cst_T

Table 6.��: The trigger event, the guard condition and the duration of MA6

Content Info Source
Trigger NA NA

Guard {sebStatus = true} ^ {stage = Stage1} stage EA1

sebStatus EA5

Duration NA NA

MA7: Monitor the satis�ability of the descent trajectory at Stage �. This ac-

tion is to decide whether a de�ned descent trajectory is satisfactory before the

descent starts.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the two safety-critical scenarios below.

SCS��: The previously decided descent trajectory can becomeunsatisfactory be-

fore it even starts due to the change of the performance constraints, the

projected cruise trajectory and the environment.

SCS��: MA7 may take too long to check the satis�ability of s(T), so long that the

descent starts at st without knowledge of the satis�ability of s(T).

SCS�6: The de�ned descent trajectory may become impossible if the projected

cruise trajectory is deviated.

A veri�cation program may �nd that the change of the environment may lead to

unsatis�ability of a planned descent trajectory by the occurrence of an accident

during the descent. Measures such as monitoring the change of the environ-

ment may be taken to rule out this scenario during the descent. But the real

���

problem is that, if the controller �nds the planned descent trajectory is unsatis-

factory before the descent, then the descent should not have started in the �rst

place unless a new satisfactory descent trajectory can be found. SCS�� re�ects

such a basic safety-guide design philosophy, which cannot be instilled through

veri�cation.

SCS�� and R�6 is similar to SCS�� and SCS�� respectively.

De�ning the action. The input-output-transformation of MA7 is de�ned in

Table.6.�� to address SCS��. The transformation is to examine the satis�ability

of performance constraints {pc10 ^ pc20 ^ pc1 ^ pc2 ^ pc3 ^ pc4} by examining s(T)

with respect to {bs
tf

^bv
tf

^cwa^lt^ct^ bab}. If any of the performance constraints is

violated, then sebStatus2 is assigned false, otherwise is assigned true. If such

a decision cannot be made before st, then sebStatus2 is assigned false. This

addresses SCS��.

The trigger event, guard condition and the duration are de�ned in Table.6.��.

{bsi(t) = eh} ^ {bvi(t) = ev} is to make sure that the projected cruise trajectory is

not deviated, which addresses SCS�6.

MA9: Update the performance constraints at Stage �. This is the �rst action

of the monitor theme of Stage �. It updates the performance constraints on

the de�ned descent trajectory in real time. Because the assumption that the

descent can always stop immediately once Point B is arrived at rta, there is no

constraint from pco on the stop time. Therefore, only pc is considered here.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios. Note that SCS�-SCS�

also applies to MA9. But because they have been explained in MA1 and will

be addressed by MA9 in the same way as MA1, they are not mentioned here to

avoid repetition.

���

Table 6.��: The input-output-transformation of MA7.

Input
source

Input Output Transformation

MA3 The desired de-
scent trajectory
s(T)

sebStatus2

• Compare s(T) with
{pc10 ^ pc20 ^ pc1 ^ pc2 ^ pc3 ^ pc4}
in the context of
{bs

tf

^ bv
tf

^ cwa ^ lt ^ ct ^ bab}
• If the decision cannot made
before st, sebStatus2 false.

MA4 pc10, pc
2
0, pc1,

pc2, pc3, pc4
MA3 st

The con-
troller for
cruise

The projected
cruise trajec-
tory bsi(t), the
projected cruise
speed bvi(t)

Traf�c
surveil-
lance
provider

The projected
traf�c trajec-
tory bs

tf

, the
projected traf�c
speed bv

tf

.
Weather
service
provider

The projected
weather im-
pacted area cwa.

Terrain
map
provider

The location of
the terrain lt and
elevation of the
terrain et.

Airspace
info
provider

The projected
airspace bound-
ary bab

Table 6.��: The trigger event and the guard condition of MA7

Content Info Source
Trigger NA NA

Guard {sebStatus = true} ^ {stage = Stage1}
^{bsi(t) = eh} ^ {bvi(t) = ev}

stage EA1

sebStatus EA5

bsi(t), bvi(t) The con-
troller for
cruise

ev,eh The vehicle
Duration NA NA

���

SCS��: The change in the descent instruction, the environment or the vehicle

may lead to the change of the performance constraints, which may po-

tentially make the descent trajectory that has not been executed unsat-

isfactory.

SCS�8: MA9 may take too long to update the performance constraints, so long

that there will be no enough time forMA10 to generatemsp_T and nsp_T

before the rta passes and msp_T expires.

SCS�� and SCS�8 are similar with SCS�6 and SCS�� respectively.

De�ning the action. The activities to update the performance constraints are

summarized in Table.6.�6. Because of the assumption that an action always

respond to the latest input values (see the “assumption” section of the reference

architecture), if any of the inputs changes, MA9 will be activated to recalculate

the performance constraints. This addresses SCS��.

According to the reference architecture, the trigger event, the guard condi-

tion and the duration of MA9 are summarized in Table.6.��. {dc = true} in the

guard condition is the implementation ofmsp30 that is speci�c to this case study.

Furthermore, the e9 must be short enough so that there will be enough time for

MA10 to generate msp_T and nsp_T before the rta passes and before msp_T

expires. However, there is always a chance that e9 is too long thatMA10 eventu-

ally generates msp_T and nsp_T after rta passes or msp_T expires. Therefore,

a long enough look-ahead timemust be selected to decidemsp_T early to lower

the likelihood of an expired msp_T or a passed rta to an acceptable level. This

addresses SCS�8.

MA10 : Update the constraints on the stop time at Stage �. This action is to

update the constraints on the stop time of the descent in real time.

Safety-critical scenarios. De�ning this action according to the reference ar-

���

Table 6.�6: The input-output-transformation of MA9.

Input
source

Input output Transformation

Weather
service
provider

Headwind
bw(t) pc10

Generate/update the shape of the
green cone.

The vehi-
cle

Theweight of
payload pl.

MA9 pc20
Higher
level of
control

Point B and
rta

pc20 Generate/update Point B and rta.

The traf�c
surveil-
lance

Vehicle type
of the traf�c
vt

pc1
Generate/update the minimal
distance from the traf�c.

The vehi-
cle

The battery
level of the
vehicle bl

NA NA pc2 Pre-de�ned

Terrain
map
provider

The ground
habitat gh

pc3
Generate/update the minimal
distance from the terrain.

Airspace
info
provider

The category
of the adja-
cent airspace
cat

pc4
Generate/update the minimal
distance from the airspace boundary.

Table 6.��: The trigger event, the guard condition and the duration of MA9

Content Info Source
Trigger {stage : Stage1 ! Stage2} _

{sebStatus : false! true}
sebStatus EA5

Guard {stage = Stage2} ^ {sebStatus = true}
^{dc = true}

stage EA1

sebStatus EA5

dc Vertiport
Duration e9 must be short enough so thatMA10

can generatemsp_T and nsp_T before
rta passes and msp_T expires.

NA

chitecture reveals the following safety-critical scenarios.

SCS��: The change in the performance constraints, the environment or the ve-

���

hicle may lead to the change of the constraints on the stop time, which

may potentially make the descent trajectory that has not been executed

unsatisfactory.

SCS��: MA10 may take too long to update the constraints on the stop time, so

long that msp_T and nsp_T are generated after the rta passes or msp_T

expires.

SCS��: It is possible there is con�ict between msp_T and nsp_T .

SCS��, SCS�� and SCS�� are similar with SCS��, SCS�8 and SCS8.

De�ning the action. The input-output-transformation asMA10 in summarized

in Table.6.�8. Because of the assumption that an action always respond to the

latest input values (see the “assumption” section of the reference architecture),

if any of the inputs changes,MA10 will be activated to recalculate the constraints

on the stop time. This addresses SCS��. Moreover, when there is con�ict be-

tween msp_T and nsp_T , a new descent trajectory is generated to resolve such

con�ict by assigning the outputs to false. This addresses SCS��.

The guard condition ofMA10 in summarized in Table.6.��. e10 must be short

enough so that msp_T and nsp_T are generated before rta passes and msp_T

expires. However, there is always a chance that e10 is too long that msp_T

and nsp_T are generated after rta passes or msp_T expires. Therefore, a long

enough look-ahead time must be selected to decide msp_T early to lower the

likelihood of an expired msp_T or a passed rta to an acceptable level. This ad-

dresses SCS��.

��6

Table 6.�8: The input-output-transformation of MA10. Note that msp30 is not in-
cluded in the table because it has been addressed as the guard condition of
MA9.

Input

source

Input Output Transformation

MA9 pc10

msp_T 1
0

Generate the time window for the

must-stop condition w.r.t. the green

cone.

MA3/MA14 s(T)

MA9 pc20
msp_T 2

0

Generate the time window for the

must-stop condition w.r.t. rta.MA3/MA14 s(T)

MA9 pc20 nsp_T 1
0 Generate the time window for the

must-not-stop condition with re-

spect to rta.

MA10 msp_T 1
0 ,

msp_T 2
0 , nsp_T 1

0

csp_T0 Generate the time window for the

can-stop condition w.r.t. the green

cone and rta.

MA9 pc1

MA3/MA14 s(T)

Traf�c

surveil-

lance

provider

The projected

traf�c tra-

jectory bs
tf

,

the projected

traf�c speed

bv
tf

.

msp_T 1
1

Generate the time window for the

must-stop condition w.r.t. the traf�c.

MA10 msp_T 1
2 csp_T 1

2 Generate the time window for the

can-stop condition w.r.t. the traf�c.

MA9 pc2

MA3/MA14 s(T)

���

Input

source

Input Output Transformation

The

weather

service

provider

The projected

weather im-

pacted area

cwa

msp_T 1
2

Generate the time window for the

must-stop condition w.r.t.

the weather.

MA10 msp_T 1
2 csp_T 1

2 Generate the time window for

the can-stop condition w.r.t. the

weather.

MA9 pc4

msp_T 1
4

Generate the time window for the

must-stop condition w.r.t. the

airspace boundary.

MA3/MA14 s(T)

Airspace

info

provider

The projected

airspace

boundary
bab

MA10 msp_T 1
4 csp_T 1

4 Generate the time window for the

can-stop condition with respect to

the airspace boundary.

MA10

msp_T 1
0 ,msp_T 2

0 ,

nsp_T 1
0 , csp_T0,

msp_T 1
1 , csp_T 1

2 ,

msp_T 1
2 , csp_T 1

2 ,

msp_T 1
4 , csp_T 1

4

msp_T ,

nsp_T ,

csp_T

Assign false if there is con�ict

between msp_T and nsp_T .

MA11: Monitor the satis�ability of the desired stop time at Stage �. This ac-

tion is to decide whether the previously de�ned stop time of the descent is still

satisfactory when msp_T and nsp_T are updated.

��8

Table 6.��: The trigger event, the guard condition and the duration of MA10

Content Info Source
Trigger NA NA

Guard {stage = Stage2} ^ {sebStatus = true} stage EA1

sebStatus EA5

Duration e10 must be short enough so that so
that msp_T and nsp_T are generated
before rta passes and msp_T expires.

NA

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the safety-critical scenarios below.

SCS��: The update of msp_T and nsp_T may make the previously de�ned rta

unsatisfactory.

SCS��: MA11 may take too long, so long that the descent stops before this action

determines the satis�ability of rta.

SCS�� and SCS�� are similar to SCS�� and SCS�� respectively.

De�ning the action. The input-output-transformation of MA11 is de�ned in

Table.6.��, which addresses SCS�� and R��. The trigger event, guard condition

and the duration are de�ned in Table.6.��.

Table 6.��: The input-output-transformation of MA11 .

Input
source

Input Output Transformation

MA3/MA14 The stop
time rta sebStatus4

If rta ✓ nsp_T, sebStatus4 false;
If rta ✓ msp_T [csp_T ,
sebStatus4 true;
If the decision cannot made before
rta, sebStatus4 false.

MA10 msp_T ,
nsp_T ,
csp_T

MA12: Generate the performance constraints at Stage �. This action updates

the performance constraints on the de�ned descent trajectory in real time.

���

Table 6.��: The trigger event, the guard condition and the duration of MA11

Content Info Source
Trigger NA NA

Guard {sebStatus = true} ^ {stage = Stage2} stage EA1

sebStatus EA5

Duration NA NA

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS��: MA12 may take too long to update the performance constraints, so long

that there will be no enough time forMA13 to generatemsp_T before the

rta passes and msp_T expires.

SCS�� is similar to SCS��.

De�ning the action. MA12 is the similar toMA9. The input-output-transformation

is summarized in Table.6.��. According to the reference architecture, the trig-

ger event, the guard condition and the duration of MA12 are summarized in Ta-

ble.6.��. {dc = true} in the guard condition is the implementation of msp30 that

is speci�c to this case study. Furthermore, the e12 must be short enough so that

there will be enough time for MA13 to generate msp_T before the rta passes

and before msp_T expires. This addresses SCS��. However, there is always

a chance that e12 is too long that MA13 eventually generates msp_T after rta

passes or msp_T expires. Therefore, a long enough look-ahead time must be

selected to decide msp_T early to lower the likelihood of an expired msp_T or a

passed rta to an acceptable level.

MA13: Generate the must-stop time window at Stage �. This action is to gen-

erate the must-stop time window as a potential deadline for MA14 to generate

the new descent trajectory.

Safety-critical scenarios. De�ning this action according to the reference ar-

���

Table 6.��: The input-output-transformation of MA12.

Input source Input output Transformation
Weather service
provider

Headwind bw(t)
pc10

Generate/update the shape
of the green cone.

The vehicle The weight of
payload pl.

MA12 pc20
Higher level of
control

Point B and rta pc20 Generate/update Point B and
rta.

The traf�c
surveillance

Vehicle type of
the traf�c vt

pc1
Generate/update the minimal
distance from the traf�c.

The vehicle The battery
level of the
vehicle bl

NA NA pc2 Pre-de�ned

Terrain map
provider

The ground
habitat gh

pc3
Generate/update the minimal
distance from the terrain.

Airspace info
provider

The category
of the adjacent
airspace cat

pc4

Generate/update the minimal
distance from the airspace
boundary.

Table 6.��: The trigger event, the guard condition and the duration of MA12

Content Info Source
Trigger {sebStatus : true! false} sebStatus EA5

Guard {stage = Stage2} ^ {sebStatus = false}
^{dc = true}

stage EA1

sebStatus EA5

dc Vertiport
Duration e12 must be short enough so that MA13

can generate msp_T before rta passes
and msp_T expires.

NA

chitecture reveals the following safety-critical scenarios.

SCS��: MA13 may take too long to update the performance constraints, so long

that msp_T is generated after the rta passes and msp_T expires.

SCS�� is similar to SCS��.

De�ning the action. The input-output-transformation is summarized in Ta-

���

ble.6.��, and the trigger event, the guard condition and the duration are summa-

rized in Table.6.��. Note that the e13 must be short enough so that msp_T will

be generated before the rta passes and before msp_T expires. This addresses

SCS��. However, there is always a chance that e13 is too long thatmsp_T is gen-

erated eventually after rta passes or msp_T expires. Therefore, a long enough

look-ahead time must be selected to decide msp_T early to lower the likelihood

of an expired msp_T or a passed rta to an acceptable level.

Table 6.��: The input-output-transformation of MA13. Note that msp30 is not in-
cluded in the table because it has been addressed as the guard condition of
MA9.

Input source Input Output Transformation

MA12 pc10

msp_T 1
0

Generate the time window for

the must-stop condition w.r.t.

the green cone.

MA3/MA14 s(T)

MA12 pc20

msp_T 2
0

Generate the time window for

the must-stop condition w.r.t.

rta.

MA3/MA14 s(T)

MA12 pc1

msp_T 1
1

Generate the time window for

the must-stop condition w.r.t.

the traf�c.

MA3/MA14 s(T)

Traf�c surveil-

lance provider

The projected traf-

�c trajectory bs
tf

,

the projected traf�c

speed bv
tf

.

MA12 pc2

msp_T 1
2

Generate the time window for

the must-stop condition w.r.t.

the weather.

MA3/MA14 s(T)

The weather

service provider

The projected

weather impacted

area cwa

MA12 pc4

���

Input source Input Output Transformation

MA3/MA14 s(T) msp_T 1
4

Generate the time window for

the must-stop condition w.r.t.

airspace boundary.

Airspace info

provider

The projected

airspace boundary
bab

MA13 msp_T 1
0 ,msp_T 2

0 ,

msp_T 1
1 ,msp_T 1

2 ,

msp_T 1
4

msp_T Generate msp_T

Table 6.��: The trigger event, the guard condition and the duration of MA13

Content Info Source
Trigger NA NA

Guard {stage = Stage2} ^ {sebStatus = false} stage EA1

sebStatus EA5

Duration e13 must be short enough so thatmsp_T is gen-
erated before rta passes and msp_T expires.

NA

MA14: Generate the new descent trajectory at Stage �. This action is to gen-

erate a new satisfactory descent trajectory before it is too late.

Safety-critical scenarios.De�ning this action according to the reference archi-

tecture reveals the following safety-critical scenarios.

SCS�6: It can be impossible to �nd a new satisfactory descent trajectory due to

the con�icts among the sub-hazards.

SCS��: MA14 may take too long to generate the desired descent trajectory, so

long that there is not enough time left to actually start the new descent

trajectory before msp_T expires and rta passes.

���

SCS�8: It is possible that MA14 waits too long for the resolution of the con�ict

among the sub-hazards, so long that there is not enough time left to start

the new descent trajectory before msp_T expires and rta passes.

SCS�6, SCS�� and SCS�8 are similar to SCS��, SCS�� and SCS��.

De�ning the action. The input-output-transformation of MA14 is de�ned in

Table.6.�6, and the trigger event, the guard condition and the duration are sum-

marized in Table.6.��. If SCS�6 happens, RfR5 is sent to the higher level of

control for a new descent instruction. If SCS�� or SCS�8 happens, CM5 is sent

for the system to enter the contingency mode.

Table 6.�6: The input-output-transformation of MA14.

Input
source

Input Output Transformation

MA13 msp_T {st < rta}
^{st < msp_T}

Decide the start
time st of the new
descent trajectory.

MA14 rta

MA12 pc10, pc
2
0, pc1,

pc2, pc3, pc4

s(T) = {s(t)|t 2 [st, rta]}
where s(st) must be
consistent with the old
descent trajectory at st;

Or RfR5 if s(T) cannot
be found;

Or CM5 if s(T) has not
been found, while
{t

c

> mst_T � T1}
_{t

c

> rta� T1}

Decide the new
descent trajectory
s(T), where
T = [st, rta].

MA14 s(T)

Traf�c
surveil-
lance
provider

The projected
traf�c trajec-
tory bs

tf

, the
projected traf�c
speed bv

tf

.
Weather
service
provider

The projected
weather im-
pacted area cwa.

Terrain
map
provider

The location of
the terrain lt,
and elevation of
the terrain et.

Airspace
info
provider

The projected
airspace bound-
ary bab

���

Table 6.��: The trigger event, the guard condition and the duration of MA14

Content Info Source
Trigger NA NA

Guard {stage = Stage2} ^ {sebStatus = false} stage EA1

sebStatus EA5

Duration NA NA

6.�.� Task �: Derive the �d waypoints from the desired �d trajectory

6.�.�.� The overall description

The desired descent trajectory s(T) decided in Task � is shown in Fig.6.��. Any

trajectory con�ned by the red boundaries is satisfactory, as long as the vehicle

can descend to altitude h1 between [t1, t2] and to h2 between [t3, t4]. Furthermore,

the processmodel de�ned inMethod� is denoted as pm = {Des, V el, �, v, w, s(t)},

whereDes and V el are the control inputs,w is the parameter, � and v are the sys-

tem state, and s(t) is both the output and the system state.

The generate theme. According to the reference architecture, there are three

themes for this task. The generate theme is to generate the control references

for the controlled process. In this example, the control references are a set of

�d waypoints. To generate the control reference, the control algorithm needs to

be de�ned �rst. It is possible that multiple control algorithms are de�ned for the

same process model, however we only de�ne one in this example as below:

8
>>><

>>>:

Des = � = arctan
e
h�hr
xr�ex

V el = v =
p

(xr�ex)2+(hr�e
h)2

tr�tc
+ w · cos�

(6.�)

where (ex,eh, t
c

) is the current �dt waypoint, and (x
r

, h
r

, t
r

) is the target �dt way-

point. Using this control algorithm, the vehicle �ies straight to the target �d

waypoint with a constant speed.

���

Furthermore, according to the reference architecture, the control references

can be generated in different ways, i.e. “single”, “all at once” and ‘one (batch) by

one (batch)”, with the last one as the most general way to generate the control

references. In this case study, we choose the most general way to generate the

target �dt waypoints one segment by one segment. Each segment is guided by

one target �dt waypoint.

Finally, the target waypoints (x
r

, h
r

, t
r

) are to be achieved by Task �, i.e. the

control structure in Fig.6.��. We assume the total time delay introduced by the

feedback loop is T2. According to the reference architecture, the time interval

between two �dt waypoints must be greater than T1 � T2, which is the time to

generate the target waypoint based on the desired descent trajectory.

Figure 6.��: The control structure to achieve the target waypoints. The total
time delay introduced by the feedback loop is assumed T2.

The predict theme The predict theme is to predict the evolutionary trajectory

of the process model based on the selected waypoints. In this example, the dy-

namic trajectory of the processmodel is denoted as cpm = {dDes,dV el, b�, bv, bw(t), bs(t)}.

The headwind as the parameter is �rst predicted bw(t). Second, given the tar-

get waypoint (x
r

, h
r

, t
r

), the dynamic trajectory of the process can be predicted

as below:

��6

8
>>>>>>><

>>>>>>>:

dDes = b� = arctan
e
h�hr
xr�ex

dV el = bv =
p

(xr�ex)2+(hr�e
h)2

tr�tc
+ bw(t) · cosb�

bs(t) = (ex+ bv · t · cos(b�),eh� bv · t · sin(b�))

The monitor theme According to the reference architecture, a process model

has a set of constraints of the process model (EC) and a set of assumptions

of the process model (IC). As long as IC is satis�ed (i.e. ic 2 IC), the process

model is subject to EC. Furthermore, there can be a mapping between IC and

EC , meaning different IC may lead to different EC. However, as previously

de�ned, we only consider a speci�c set of IC and EC. In other words, if IC

is not satis�ed (ic 62 IC), then EC is invalid, which in turn makes the process

model invalid.

The monitor theme checks three “ilities”:

• Validity: whether the process model is in real time applicable to the con-

trolled process, i.e. pm 2 EC. To make sure EC is valid, ic 2 IC needs to

be monitored in real time.

• Feasibility: whether the evolution of the controlled process will make the

process model inapplicable, i.e. cpm 2 EC. To make sure EC is valid,

bic 2 IC must be predicted for the time span under study.

• Satis�ability: whether the resulting descent trajectory will be bounded by

the red boundaries, i.e. bs(T) 2 s(T).

We use Fig.6.�� to explain these three concepts. The red boundary is the

intended descent trajectory derived in Method � with respect to the hazard of

“inadequate altitude”. Furthermore, in Method �, it is de�ned that the vehicle

must maintain a distance from the ground in order to minimize the disturbance

���

Figure 6.��: An example to explain validity, feasibility and satis�ability.

to the ground habitat. In the processmodel, such distance is de�ned as the con-

straint of the process model of the process model. In the �gure, such distance

is represented by the green box above the blue box (which represents the ter-

rain). Originally, the vehicle is descending following the solid arrow within the

red boundaries. However, for some reason, the vehicle suddenly drops altitude.

If it drops to Point C and still tries to reach the original waypoint, because the

dotted trajectory overlaps with the green box, such trajectory is infeasible as it

will violate the constraint of the process model of the process model. As a so-

lution, the controller must select a new waypoint before the vehicle enters the

green box. If the vehicle drops to point D, because it is already within the green

box, meaning the constraint of the process model is already violated, therefore

the process model is invalid. If the vehicle drops to point E, because it is out-

side the red boundary, the output behavior is unsatisfactory. As a result, safety

cannot be enforced.

6.�.�.� The enabling action

EA6: Predicting the parameter. This action is to predict the headwind dur-

ing the desired descent time period. Such information is needed for all three

themes.

��8

• Trigger event: None.

• Guard condition: stage = Stage1 _ Stage2.

• Input: The headwind prediction from the a service provider bw(t), and the

desired descent trajectory s(T).

• Output: bw(t) is the predicted headwind during the desired descent time

period.

• Transformation: bw(t) { bw(t)|t 2 T}.

As a result, EA6 can be represented in Fig.6.�� graphically.

Figure 6.��: Graphical representation of EA6 for the case study.

EA7: Segmenting the SEB. This action is to divide the desired descent trajec-

tory into segments. The waypoints are then generated segment by segment.

• Trigger event: None.

• Guard condition: stage = Stage1 _ Stage2.

• Input: bw(t) from EA6 and s(T).

• Output: The segmented prediction of the headwind bw(t)(T) and the seg-

mented desired descent trajectory s(T).

• Transformation: Diving the desired descent period into segments so that

(�) the parameter in each segment is constant and (�) the time span of

each segment is longer than T1� T2.

���

Because the desired descent trajectory in Fig.6.�� already has three segments,

descending from h0 to h1, from h1 to h2, and from h2 to Point B. We divide the

desired segment into the three segments so that (�) the time span of each seg-

ment is longer than T1� T2 and (�) the headwind is not predicted to change in

each segment.

As a result, EA7 can be represented in Fig.6.�� graphically.

Figure 6.��: Graphical representation of EA7 for the case study.

EA8: Determining the scenario. This action re�ects the scenario and t
d

for the

generate theme.

• Trigger event: NA.

• Guard condition: NA.

• Input: Sat and t
d1 are the value and the associated deviation point of sat-

is�ability; Fea and t
d2 are the value and the associated deviation point of

the feasibility. They are all outputs of the monitor theme.

• Output: Scea is the speci�c scenario of the generate themebasedon {Sat, Fea};

t
d

is the associated deviation point that will go into the generate theme.

• Transformation:
8
>>>>>>>>>><

>>>>>>>>>>:

Scea = 1 and t
d

= false, if Sat = true ^ Fea = true

Scea = 2 and t
d

= t
d2, if Sat = false ^ Fea = true

Scea = 3 and t
d

= t
d1, if Sat = true ^ Fea = false

Scea = 4 and t
d

= min(t
d1, td2), if Sat = false ^ Fea = false

�6�

Figure 6.�6: Graphical representation of EA8 for the case study.

Graphically, Action EA8 can be represented in Fig.6.�6.

EA9: Determining the priority. This action is to set the priority for the generate

theme and the monitor theme when the inputs of predict theme or the monitor

theme change.

• Trigger event: NA.

• Guard condition: NA.

• Input: {{b�⇤, bv⇤, bs⇤}, bw(t)(T), {e�, ev, es}, ew}, and {s(T), IC}.

• Output: gen and mon.

• Transformation: If {{b�⇤, bv⇤, bs⇤}, bw(t)(T), {e�, ev, es}, ew} changes, gen false

and mon false; after the predict theme is updated, mon true; after

the monitor theme is updated, gen true. If {s(T), IC} changes, gen

false; after the monitor theme is updated, gen true.

Graphically, Action EA9 can be represented in Fig.6.��.

Figure 6.��: Graphical representation of EA9 for the case study.

6.�.�.� The main action

MA21: Determining the steering point. This action is to determine the steer-

ing point t
d

0 for Scenario �, � and �. Refer to the reference architecture for the

de�nition of the steering point.

�6�

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS��: The predicted trajectory or the processmodel may change whileMA21 is

deciding t
d

0 based on the old prediction or process model. Such change

may make t
d

or Scea become outdated already when t
d

0 is being gener-

ated.

SCS��: MA21 may take too long to calculate the steering point, so long that there

is less than T1 time before the feasibility or satisfiability is going to be

violated.

De�ning the action. The input-output-transformation of MA21 is de�ned in

Table.6.�8. If SCS�� happens, RfR7, CM9 and CM10 are sent accordingly. Ac-

cording to the reference architecture, there is no trigger event for this action.

The guard condition is summarized in Table.6.��, where gen = true is to make

sure when the prediction or the process model is being updated, this action is

paused until all the updates are completed, which addresses SCS��.

Table 6.�8: The input-output-transformation of MA21.

Input
source

Input Output Transformation

EA8 Scea, t
d

t
d

0 , if it is generated before t
d

� T1;
otherwise,
• Scenario �: Send RfR7 to get a new
descent trajectory.
• Scenario �: Enter the contingency
mode by issuing CM9.
• Scenario �: Enter the contingency
mode by issuing CM10.

Decide the
steering point.

Scea, t
d

Pass Scea, t
d

from the input.

MA22: Determining the �dt waypoints. This action is to determine the �dt

waypoints segment by segment. Four �dt waypoints are selected (Fig.6.�8):

�6�

Table 6.��: The trigger event, the guard condition and the duration of MA21

Content Info Source
Trigger NA NA

Guard {stage = Stage1 _ Stage2} ^ {Scea = {2, 3, 4}}
^{gen = true}

stage EA1

Scea EA8

gen EA9

Duration NA NA

(x0, h0, rta0), (x1, h1, rta1), (x2, h2, rta2), (xB

, h
B

, rta). The predicted descent tra-

jectory is hence comprised of the lines between two adjacent waypoints. In this

way, the resulting descent trajectory is con�ned by the red boundaries, where

all hazards with respect to “inadequate altitude” can be avoided. Furthermore,

as explained in the reference architecture, the duration of T2 and rta
i+1 � rta

i

matters for the prediction. In this case study, we prescribe T2 < rta
i+1 � rta

i

.

In other words, the waypoints must be selected in a way that T2 < rta
i+1 � rta

i

always holds.

Figure 6.�8: Four waypoints are picked (x0, h0, rta0), (x1, h1, rta1), (x2, h2, rta2),
(x

B

, h
B

, rta) so that the resulting descent trajectory will be con�ned by the red
boundaries.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS��: It is possible that a �dt waypoint that is feasible for its own segment

makes the next segment infeasible. For example, rta2 is selected too

�6�

close to rta, which makes it impossible to descend to Point B on time.

SCS��: It is possible two target waypoints are too close in time, so close that

there is not enough time to generate the next waypoint. For example,

(x1, h1, rta1) has to be decided before rta0 � T2, and the controller must

start generate (x2, h2, rta2) before rta1 � T1. If (x1, h1, rta1) is generated

at rta0 � T2, then rta1 � T1 must be after rta0 � T2 (i.e. T1 � T2 <

rta1�rta0) because (x2, h2, rta2) can only be generated after (x1, h1, rta1)

is generated.

SCS��: It is possible that the target waypoint is generated based on an outdated

prediction of the descent trajectory. As shown in Fig.6.��, currently the

vehicle is descending following the predicted trajectory to waypoint w�.

At time t1, the vehicle starts to generate the next waypoint. Before the

next waypoint is generated, a wind gust blows the vehicle off of the origi-

nal trajectory to waypoint w�. After that, at time t2, the next waypoint w�

is generated. Because w� is generated based on the original prediction

of the descent trajectory, the descent angle to w� is �. However, the real-

ity is that vehicle has to descend from w� to w�, which yields a descent

angle �0. Obviously, �0 > �. It is possible that �0 is greater than the upper

bound of the acceptable descent angle, which leads to the vehicle into

infeasibility for descent. Root cause of this problem is that, the generate

theme is updated based on outdated output of the predict theme and/or

the monitor theme.

SCS��: It is possible that the {Scea, t
d

} used to generate t
d

0 becomes outdated

when t
d

0 reaches MA22, because MA21 takes too long to generate t
d

0 .

SCS��: It is possible that the predicted cruise trajectory or velocity changes, which

will lead to the change of the initial waypoint (x0, h0, rta0) and all the way-

points after.

�6�

Figure 6.��: The target waypoint can be generated based on an outdated pre-
diction of the descent trajectory.

SCS�6: It is possible that the controller reacts too fast to the change of head-

wind prediction bw(t), the desired descent trajectory s(T) or the predicted

dynamic trajectory of the process model {bv, b�, bs(t)}. For example, when

bw(t) changes, the controller needs to wait after {bv, b�, bs(t)} is updated to

update the target waypoints; when s(T) or {bv, b�, bs(t)} changes, the con-

troller needs to wait after the Scea is updated to update the target way-

points. Root cause of this possibility is that both the generate theme

and themonitor theme take time, and the generate thememust wait until

these two themes are properly updated to maintain the synchronization.

SCS��: It is possible that the target waypoint cannot be found.

SCS�8: It is possible that the target waypoint is found too late.

De�ning the action. The input-output-transformation of MA22 is de�ned in

Table.6.��. SCS�� is addressed by considering EC when generating the �dt

waypoint; SCS�� is addressed by selecting a rta
i+1 that makes rta

i+1 � rta
i

>

T1�T2; SCS�� is addressed bySyn; SCS�� is addressed by taking bsi(t) and bvi(t)

as inputs; SCS�6 is addressed by taking s(T) fromMA29 and (bv
i

, b�
i

, bs(T
i

), bw(t)
i

)

from MA28, where (bv
i

, b�
i

, bs(T
i

), bw(t)
i

) is the prediction of (v, �, s(t), w) between

rta
i

and rta
i+1; SCS�� andSCS�8 are addressedby sending outRfR6, RfR7, CM8, CM9

and CM10. According to the reference architecture, the trigger event, the guard

�6�

condition and the duration of MA22 are summarized in Table.6.��. SCS�� is

addressed by the guard condition gen = true.

Table 6.��: The input-output-transformation of MA22. For Scenario �, � and �,
(x

i

, h
i

) = bs(t
d

0) and rta
i

= t
d

0 .

Input
source

Input Output Transformation

MA21 Scea, t
d Syn

Syn true if
(Scea, t

d

) from the
two sources are the
same, otherwise
Syn false.

EA8 Scea, t
d

MA22 Syn
bs(0), bv(0), (x

i+1, hi+1, rtai+1).
If (x

i+1, hi+1, rtai+1) cannot
be found, or is found too
late, then send:
• RfR6 and CM8 for
Scenario �;
• RfR7 for Scenario �;
• CM9 for Scenario �;
• CM10 for Scenario �.

If Syn = false, do
nothing; otherwise
generate the next �dt
waypoint
(x

i+1, hi+1, rtai+1)
so that
rta

i+1 � rta
i

> T2.

MA28 (x
i

, h
i

, rta
i

)

The con-
troller for
cruise

bsi(t), bvi(t)

MA29 s(T)

MA21 t
d

0

MA28
bv
i

, b�
i

, bs(T
i

),
bw(t), EC

Table 6.��: The trigger event, the guard condition and the duration of MA22

Content Info Source
Trigger s(T) : false! true s(T) EA7

Guard {stage = Stage1 _ Stage2} ^ {gen = true} stage EA1

gen EA9

Duration NA NA

MA23: Predicting the system states and the output behavior. This action is

to predict the system states and the output behavior so that the monitor theme

can check track the “feasibility” and “satis�ability” in real time.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS��: It is possible that the predicted cruise trajectory or velocity changes, which

may lead to the change of the predictions of descent trajectory.

�66

SCS��: It is possible that MA23 takes too long to make a prediction.

SCS��: It is possible that the real states (i.e. ev, es and e�) or parameter (i.e. ew)

deviates from the predicted value, in which case a new prediction must

be made.

SCS��: It is possible that the predicted initial condition (i.e. bv, bs and b�) or param-

eter (i.e. bw(t)) changes, in which case a new prediction must be made.

SCS�� and PR�� are straightforward. We are now explaining SCS�� and SCS��.

As shown in Fig.6.��, the vehicle is currently descending to (x
i

, h
i

, rta
i

), and the

nextwaypoint is (x
i+1, hi+1, rtai+1), with the two solid arrows as the predicted tra-

jectory. For example, if the predicted headwind bw(t)
i+1 for the second segment

changes, although the position bs(t) may not need to change, the prediction of

the instructed velocity dV el
i+1 needs to change. The changed dV el

i+1 may lead to

|dV el
i+1 � bv

i

| > 20 knots, a violation of the constraint of the process model. This

is an example of SCS��, where the prediction of the parameter changes.

Figure 6.��: Both the change of the current prediction and the deviation from
the current prediction requires new prediction.

Furthermore, another example is that when the vehicle drops altitude at Point

C, which is deviation from the predicted trajectory. Because the vehicle needs

�6�

at least T2 to issue a new instruction, the vehicle continue executing the old

instruction before the new instruction is received, which leads to the blue tra-

jectory parallel to the �rst solid arrow. Assuming Point C is far enough from

(x
i

, h
i

, rta
i

) so that this waypoint still can be reached on time. The new pre-

dicted trajectory is the last segment of the blue arrow. However, the predicted

velocity bv
i

and the descent angle b�
i

are not the same. This changes the initial

condition for the segment between rta
i

and rta
i+1, which leads to an update of

the prediction. This is an example of both SCS�� and SCS��.

Moreover, if the vehicle drops altitude at point D that is close to (x
i

, h
i

), (x
i

, h
i

, rta
i

)

cannot be reached any more. The vehicle �rst �ies the purple trajectory par-

allel to the �rst solid arrow due to the T2 duration, and then �ies directly to

(x
i+1, hi+1, rtai+1) in the last segment of the purple arrow. This is also an ex-

ample of both SCS�� and SCS��, but with a more obvious demonstration of the

trajectory change.

Finally, the two segments (blue and purple) that are parallel to the �rst solid

arrow are calculated based on the control inputs of the next task (i.e. dV el
i+1 and

dDes
i+1 in this case), they corresponds to the bx⇤(T ⇤) of the reference architecture.

De�ning the action. The input-output-transformation of MA23 is de�ned in

Table.6.��. SCS�� is addressed by taking bs(0) and bv(0) as the inputs; SCS��

and SCS�� are addressed by following f24|25|26 of the reference architecture. Ac-

cording to the reference architecture, there is no trigger event for this action, and

the guard condition is summarized in Table.6.��. SCS�� is partially addressed

by the requirement on the duration of this action.

MA24: Predicting the control input. This action is to calculate the control input

(dV el
i

, dDes
i

) (and (dV el
i+1, dDes

i+1)) based on the process model using the pre-

dicted system states (b�
i

, bv
i

) (and (b�
i+1, bvi+1)) and the predicted parameter bw(t).

Safety-critical scenarios. De�ning this action according to the reference ar-

�68

Table 6.��: The input-output-transformation of MA23.

Input
source

Input Output Transformation

MA32 bs⇤(t), br⇤, bv⇤
bs(T

i

), bs(T
i+1), b�i, b�i+1,

bv
i

, bv
i+1, bw(t), (xi

, h
i

, rta
i

),
(x

i+1, hi+1, rtai+1).

Predict the states
and the output by
following f24|25|26
of the reference
architecture, and
update them when
necessary.

Weather
service
provider

bw(t), ew

The vehi-
cle

es(t), e�, ev

MA22

(x
i+1, hi+1, rtai+1)

(x
i

, h
i

, rta
i

),
bs(0), bv(0)

Table 6.��: The trigger event, the guard condition and the duration of MA23

Content Info Source
Trigger NA NA
Guard stage = Stage1 _ Stage2 stage EA1

Duration The duration of this actionmust be as short as pos-
sible. The �rst e23 time must be removed from the
prediction.

NA

chitecture reveals the following safety-critical scenarios.

SCS��: It is possible that MA24 takes too long to make the prediction.

De�ning the action. The input-output-transformation ofMA24 is de�ned in Ta-

ble.6.��; the trigger event, the guard condition and the duration are summarized

in Table.6.��. SCS�� is partially addressed by the requirement on the duration

of this action.

Table 6.��: The input-output-transformation of MA24.

Input
source

Input Output Transformation

MA23

bs(T
i

), bs(T
i+1), b�i,

b�
i+1, bvi, bvi+1, bw(t),

(x
i

, h
i

, rta
i

),
(x

i+1, hi+1, rtai+1).

dV el
i

, dDes
i

,dV el
i+1, dDes

i+1,
bs(T

i

), bs(T
i+1), b�i, b�i+1, bvi,

bv
i+1, bw(t), (xi

, h
i

, rta
i

),
(x

i+1, hi+1, rtai+1).

Predicting the
instructed velocity
and the descent
angle.

�6�

Table 6.��: The trigger event, the guard condition and the duration of MA24

Content Info Source
Trigger NA NA
Guard stage = Stage1 _ Stage2 stage EA1

Duration The duration of this actionmust be as short as pos-
sible. The �rst e24 time must be removed from the
prediction.

NA

MA25: Examining the assumptions of the process model at the current mo-

ment. This action is to check whether the assumptions of the process model of

the process model de�ned in Method � are satis�ed, to make sure the process

model is valid for the descent at the current moment.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS��: The process model can become invalid due to the violation of the as-

sumptions.

SCS��: It is possible that MA25 takes too long to decide the satis�ability of the

assumptions.

De�ning the action. The input-output-transformation of MA25 is de�ned in

Table.6.�6, which is entirely to address SCS��. The trigger event, the guard

condition and the duration are summarized in Table.6.��. SCS�� is partially ad-

dressed by the requirement on the duration of this action.

MA26: Examining the constraints of the processmodel at the currentmoment.

This action is to check whether the constraints of the process model of the pro-

cess model de�ned in Method � are satis�ed, to make sure the process model

is valid for the descent at the current moment.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

���

Table 6.�6: The input-output-transformation of MA25.

Input
source

Input Output Transformation

The
vertiport

The current traf�c
congestion level, tcl

• The explicit
constraints
• CM11 if the
assumptions of the
process model
are not satis�ed.

Output the explicit
constraints de�ned in
Method �, if all the
assumptions of the
process model
are satis�ed.

The current descent
procedure, dp
The current require-
ment on the traf�c
throughput, ttp
The current vertiport
layout, vl

The
weather
provider

The current weather
condition, wc
The current oper-
ational status of
the weather service
provider, swp

The
vehicle

The current cross-
wind, cw
The current battery
level, bl
The current tempera-
ture, tem
The payload type, pt

Terrain
map
provider

The ground elevation,
ge

The type of ground
habitat, gh

Table 6.��: The trigger event, the guard condition and the duration of MA25

Content Info Source
Trigger NA NA
Guard stage = Stage1 _ Stage2 stage EA1

Duration The duration of this actionmust be as short as pos-
sible.

NA

SCS�6: The process model may become invalid because of the violation of the

constraints.

SCS��: It is possible that the states/parameter changes while the satis�ability

���

of the constraints of the process model is being decided.

SCS�8: It is possible that MA26 takes too long to decide the applicability of the

process model.

De�ning the action. The input-output-transformation of MA26 is de�ned in

Table.6.�8, which is entirely to address SCS�6 and SCS��. The trigger event,

the guard condition and the duration are summarized in Table.6.��. SCS�8 is

partially addressed by the requirement on the duration of this action.

Table 6.�8: The input-output-transformation of MA26.

Input
source

Input Output Transformation

The vehi-
cle

ev, e�, es, ew
CM12 If {ev, e�, es, ew} 62 EC , then send CM12.

MA25 The constraints
of the process
model EC

Table 6.��: The trigger event, the guard condition and the duration of MA26

Content Info Source
Trigger NA NA
Guard stage = Stage1 _ Stage2 stage EA1

Duration The duration of this actionmust be as short as pos-
sible.

NA

MA27: Examining the assumptions of the process model for the time period

under study. This action is to check whether the assumptions of the process

model will be satis�ed for the time period under study. If the assumptions of

the process model are predicted to be violated at some time point, the process

model is only valid before that time.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

���

SCS��: The process model can become invalid at some time point in the future

due to the violation of the assumptions of the process model.

SCS6�: It is possible that MA27 takes too long to decide the satis�ability of the

assumptions of the process model.

De�ning the action. The input-output-transformation of MA27 is de�ned in

Table.6.��, which is entirely to address SCS��. The trigger event, the guard

condition and the duration are summarized in Table.6.��. SCS6� is partially ad-

dressed by the requirement on the duration of this action.

Table 6.��: The input-output-transformation of MA27.

Input
source

Input Output Transformation

The
vertiport

The predicted traf�c
congestion level, ctcl

• The explicit
constraints EC.
• CM13 if the
assumptions of the
process model
will be violated.

Output the explicit
constraints de�ned in
Method �, if all the
assumptions of the
process model
will be satis�ed
during the time
period under study.

The planned change
of the descent proce-
dure, cdp
The planned change
of the requirement on
the traf�c throughput,
cttp
The planned change
of the vertiport layout,
bvl

The
weather
service
provider

The predicted
weather condition, cwc
The predicted op-
erational status of
the weather service
provider, dswp
The predicted cross-
wind, ccw
The predicted tem-
perature, dtem

The ve-
hicle

The predicted battery
level, bbl

MA28: Examining the constraints of the process model for the time period

���

Table 6.��: The trigger event, the guard condition and the duration of MA27

Content Info Source
Trigger NA NA
Guard stage = Stage1 _ Stage2 stage EA1

Duration The duration of this actionmust be as short as pos-
sible.

NA

under study. This action is to check whether the constraints of the process

model will be violated during the achievement of the control references, i.e. the

“feasibility” of the control reference.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS6�: The process model can become invalid at some time point in the future

due to the violation of the constraints of the processmodel. For example,

the headwind is predicted to become so strong that the descent is not

feasible.

SCS6�: It is possible that the predict theme needs update whileMA28 is deciding

the feasibility of the control reference.

SCS6�: It is possible that MA28 takes too long to decide the feasibility of the

control reference.

De�ning the action. The input-output-transformation of MA28 is de�ned in

Table.6.��, which is entirely to address SCS6�. The trigger event, the guard con-

dition and the duration are summarized in Table.6.��. SCS6� is addressed by

the guard condition mon = true, and SCS6� is partially addressed by the re-

quirement on the duration of this action.

MA29: Examining the satis�ability of the predicted descent trajectory. This

action is to check whether the predicted descent trajectory will satisfy the de-

���

Table 6.��: The input-output-transformation of MA28.

Input
source

Input Output Transformation

MA24

dV el
i

, dDes
i

,dV el
i+1,

dDes
i+1, bs(Ti

),
bs(T

i+1), b�i, b�i+1,
bv
i

, bv
i+1, bw(t),

(x
i

, h
i

, rta
i

),
(x

i+1, hi+1, rtai+1).

CM14 if bw(t)
violates EC ,
otherwise Fea,EC ,
t
d1, bs(Ti

), bs(T
i+1),

b�
i

, b�
i+1, bvi, bvi+1, bw(t),

(x
i

, h
i

, rta
i

),
(x

i+1, hi+1, rtai+1)

Check whether dV el
i

, dDes
i

,
dV el

i+1, dDes
i+1, bs(Ti

), bs(T
i+1),

b�
i

, b�
i+1, bvi, bvi+1, bw(t)

satis�es EC.
MA27 The constraints

of the process
model EC

Table 6.��: The trigger event, the guard condition and the duration of MA28

Content Info Source
Trigger NA NA

Guard {stage = Stage1 _ Stage2} ^ {mon = true} stage EA1

mon EA9

Duration The duration of this actionmust be as short as pos-
sible.

NA

sired descent trajectory during the achievement of the control references, i.e.

the “satis�ability” of the descent trajectory.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS6�: The predicted descent trajectory can violate the desired descent trajec-

tory at some time point in the future.

SCS6�: It is possible that the predicted descent trajectory needs update while

MA29 is deciding the satis�ability of the descent trajectory.

SCS66: It is possible that MA29 takes too long to decide the satis�ability of the

descent trajectory.

De�ning the action. The input-output-transformation of MA29 is de�ned in

���

Table.6.��, which is entirely to address SCS6�. The trigger event, the guard con-

dition and the duration are summarized in Table.6.��. SCS6� is addressed by

the guard condition mon = true, and SCS66 is partially addressed by the re-

quirement on the duration of this action.

Table 6.��: The input-output-transformation of MA29.

Input
source

Input Output Transformation

MA24 bs(T
i

), bs(T
i+1) sat, t

d2, s(T)
Deciding the satis�ability of the
predicted descent trajectory.EA7 s(T)

Table 6.��: The trigger event, the guard condition and the duration of MA29

Content Info Source
Trigger NA NA

Guard {stage = Stage1 _ Stage2} ^ {mon = true} stage EA1

mon EA9

Duration The duration of this actionmust be as short as pos-
sible.

NA

6.�.� Task �: Issue the instruction of speed and descent angle.

6.�.�.� The overall description

Overall, Task � is to generate the control action based on the given control ref-

erence from Task �. In this example, this task is to generate the instruction for

the descent speed and the descent angle following (6.�). Furthermore, there are

two delays in this task. One is the time delay introduced the control loop, which

is T2 as previously explained. The other is the time for the control input to fully

take effect at the output of the controlled process. We de�ne such delay as T3

as shown in Fig.6.��. T3 implies that the controller cannot change the states of

the controlled process within T3 from the current time stamp. T2 implies that

the controller has to start calculating the control action at least T2 in advance

in order to change the state of the controlled process at one time point.

��6

Figure 6.��: The time delay introduced by the controlled process is T3.

Because of T2 and T3, Task � has to achieve more than (6.�). We zoom in to

the actions happening due to the time delays and use the following example in

Fig.6.�� to explain the generate theme, themonitor theme and the predict theme

of Task �.

Figure 6.��: Zooming in to the time delay of T2 and T3 using the change of
headwind as an example.

First, at the current time t
c

, the controller is to generate the control action

that is to take effect at t
c

+ T2 +�
T2. This is a common practice, especially for

a system that operates at a slower pace. For example, the air traf�c controller

usually issues the instruction a certain before the time that the instruction is

supposed to be followed, so that the pilot can have enough time to execute the

���

instructions. As a result, the system states of [t
c

, t
c

+ T2 + �
T2] are already

determined by the control action decided at [t
c

� T2��
T2, tc].

However, if at the same time the headwind w is predicted to change at some

point within [t
c

, t
c

+ T2 + �
T2], the control actions that are already generated

during [t
c

� T2 ��
T2, tc] must change accordingly. For example, the headwind

could be predicted to change during [t
c

, t
c

+ T3] at t
w1. Because of the time

delay T3, the earliest time to adjust the control action is at t
c

+ T3. New control

action can only be given starting from t⇤
upt1 = t

c

+ T3, where the system states

can be predicted by calculating the original control action u with the original

headwindw for [t
c

, t
w1] (denoted as (u, w)|[t

c

, t
w1]) andwith the newheadwindw1

for [t
w1, tc +T3] (denoted as (u, w1)|[t

w1, tc +T3]). However, because it takes T2

for the controller is to generate a control action following the control algorithm,

the controller can only issue default control action u
d

for [t
c

+ T3, t
c

+ T2], and

hence the system states at t
c

+ T2 (denoted as bx(t
c

+ T2)) can be predicted by

calculating u
d

and w1 for [t
c

+ T3, t
c

+ T2]. With bx(t
c

+ T2) and w1, new control

actions u0 can be generated for [t
c

+ T2, t
c

+ T2 + �
T2]. In this example, the

predict theme calculates the system states of [t
c

, t
c

+T2+�
T2]with the original

u and w before t
w1 and w1 for [t

w1, tc +T2+�
T2]; the monitor theme selects the

time point that the control action needs to be updated, i.e. t⇤
upt1 = t

c

+ T3 in this

example; the generate theme decides the control action to be issued after t⇤
upt1,

i.e. u
d

for [t
c

+ T3, t
c

+ T2] and u0 for [t
c

+ T2, t
c

+ T2 +�
T2].

Similarly, if the change of the headwind happens at t
w2 during [t

c

+T3, t
c

+T2],

the predict theme �rst calculates the system states of [t
c

, t
c

+T2+�
T2]with the

original u and w before t
w2 and w2 during [t

w2, tc +T2+�
T2]; the monitor theme

selects t
w2 to update the control action; the generate theme decides to issue u

d

for [t
w2, tc + T2] and u0 for [t

c

+ T2, t
c

+ T2 +�
T2].

Finally, if the change of the headwind happens at t
w3 during [t

c

+T2, t
c

+T2],

the predict theme �rst calculates the system states of [t
c

, t
c

+T2+�
T2]with the

��8

original u and w before t
w3 and w3 during [t

w3, tc +T2+�
T2]; the monitor theme

selects t
w3 to update the control action; the generate theme decides to issue u0

for [t
c

+ T2, t
c

+ T2 +�
T2].

6.�.�.� The enabling action

Because the segments in this example are determined by the �dt waypoints and

the control input (i.e. the instruction) are supposed to be the same for each �dt

waypoints, EA10 and EA11 does not apply to this example. As a result, we only

explain EA12.

EA12: Setting the priority. This action is to set the priority for the generate

theme and the monitor theme when the inputs of predict theme or the monitor

theme change.

• Trigger event: NA.

• Guard condition: NA.

• Input: { bw(t)(T), {e�, ev, es}, bsi(t), bvi(t)}, and (x
i

, h
i

, rta
i

).

• Output: gen1 and mon1.

• Transformation: If { bw(t)(T), {e�, ev, es}, bsi(t), bvi(t)} changes, gen1 false

and mon1 false; after the predict theme is updated, mon1 true;

after the monitor theme is updated, gen1 true. If (x
i

, h
i

, rta
i

) changes,

gen1 false; after the monitor theme is updated, gen1 true.

Graphically, Action EA9 can be represented in Fig.6.��.

Figure 6.��: Graphical representation of EA12 for the case study.

���

6.�.�.� The main action

MA30: Generating the descent instruction. This action is to generate the con-

trol action, i.e. the instruction for descent speed and descent angle.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS6�: The generated waypoint (x
i

, h
i

, rta
i

), the predicted headwind bw(t), the

predicted cruise trajectory and speed bsi(t), bvi(t), the time point to update

the control action T ⇤
upt

and the predicted state states x⇤(T ⇤)may change,

which requires a recalculation of the instruction for the descent speed

and the descent angle.

SCS68: If x⇤(T ⇤) changes, it is possible that the instruction is updated before T ⇤
upt

is updated accordingly �rst.

SCS6�: If bsi(t), bvi(t) or bw(t) changes, it is possible that the instruction is updated

before the predict theme and the monitor theme is updated accordingly

�rst.

SCS��: If the generated waypoint (x
i

, h
i

, rta
i

) changes, it is possible that the in-

struction is updated before T ⇤
upt

is updated accordingly �rst.

SCS��: MA30 can take too long, so long that the instruction cannot be updated

from T ⇤
upt

.

De�ning the action. The input-output-transformation of MA30 is de�ned in

Table.6.�6, which is entirely to address SCS6�. The fact that bx⇤(T ⇤) comes from

MA23 is to address SCS68. The trigger event, the guard condition and the du-

ration are summarized in Table.6.��. SCS6� and SCS�� are addressed by the

guard condition gen1 = true, and SCS�� is partially addressed by the require-

ment on the duration of this action.

�8�

Table 6.�6: The input-output-transformation of MA30.

Input
source

Input Output Transformation

MA32
The time to update
the instruction T ⇤

upt

The descent
instruction u(T ⇤)

Calculating the
descent instruction.

The predicted system
states bs⇤(t), br⇤, bv⇤

MA22 The generated way-
point (x

i

, h
i

, rta
i

)

The
weather
service
provider

The predicted head-
wind bw(t)

Controller
for
cruise

The predicted trajec-
tory bsi(t)
The predicted speed
bvi(t)

Table 6.��: The trigger event, the guard condition and the duration of MA30

Content Info Source
Trigger NA NA
Guard gen1 = true gen1 EA12

Duration The duration of this actionmust be as short as pos-
sible.

NA

MA31: Issuing the instruction. This action is to issue the default control action

when MA30 cannot �nd the instruction from t
c

+ T3 and after.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS��: It is possible that the instruction cannot be found or cannot be found in

time.

De�ning the action. The input-output-transformation ofMA31 is de�ned in Ta-

ble.6.�8, which is entirely to address SCS��. No trigger event or the guard con-

dition are de�ned for this action, and this action is considered instantaneous.

�8�

Table 6.�8: The input-output-transformation of MA31.

Input
source

Input Output Transformation

MA30 u(T ⇤) u(T ⇤) When u(t
c

+ T3) = false, then u(t
c

+ T3)
true.

MA32: Predicting the system states. This action is to predict the systemstates

based on the previously issued instructions. Note that the prediction made by

this action is different from the predication in Task � in that this action makes

prediction based on the previously issued instruction, while the prediction in

Task � is based on the prediction of future instruction. As a result, the prediction

made by this action is on a shorter time scale. In fact, the prediction made in

this action is one of the inputs for the prediction of Task � (see MA23).

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS��: The predicted headwind bw(t), the predicted cruise trajectory and speed

bsi(t), bvi(t) and the descent instruction can change, which requires a re-

calculation of the prediction of the system states.

SCS��: It is possible that the current real states (es, ev, e�) deviates from the previ-

ous prediction.

SCS��: It is possible that this action takes too long.

De�ning the action. The input-output-transformation of MA32 is de�ned in

Table.6.��, which is entirely to address SCS�� and SCS��. The trigger event,

the guard condition and the duration are summarized in Table.6.��. SCS�� is

partially addressed by the requirement on the duration of this action.

MA33: Monitoring the issued descent instruction. This action is tomonitor the

issued descent instructions in case they need to be updated, and decide from

�8�

Table 6.��: The input-output-transformation of MA32.

Input
source

Input Output Transformation

The vehi-
cle

The current states
es, e�, ev The predicted

system states
bs⇤(t), br⇤, bv⇤

Calculating the
predicted system states.

MA31 The descent instruc-
tion u(T ⇤)

The
weather
service
provider

The predicted head-
wind bw(t)

The
controller
for
cruise

The predicted trajec-
tory bsi(t)
The predicted speed
bvi(t)

Table 6.��: The trigger event, the guard condition and the duration of MA32

Content Info
Source

Trigger NA NA
Guard NA NA
Duration The duration of this actionmust be as short as possible.

The �rst e24 time must be removed from the prediction.
NA

which time point to update.

Safety-critical scenarios. De�ning this action according to the reference ar-

chitecture reveals the following safety-critical scenarios.

SCS�6: The generated waypoint (x
i

, h
i

, rta
i

), the predicted headwind bw(t), the

predicted cruise trajectory and speed bsi(t), bvi(t), and the predicted state

states x⇤(T ⇤)may change, which can require an update of the previously

issued instruction.

SCS��: If bsi(t), bvi(t) or bw(t) changes, it is possible that the time point to update

is decided before the new x⇤(T ⇤) is generated.

SCS�8: MA33 can take too long, so long that the instruction cannot be updated

for T ⇤
upt

.

�8�

De�ning the action. The input-output-transformation of MA33 is de�ned in

Table.6.��, which is entirely to address SCS�6. The trigger event, the guard con-

dition and the duration are summarized in Table.6.��. SCS�� is addressed by

the guard condition mon1 = true, and SCS�8 is partially addressed by the re-

quirement on the duration of this action.

Table 6.��: The input-output-transformation of MA33.

Input
source

Input Output Transformation

MA32 The predicted system
states bs⇤(t), br⇤, bv⇤ The time point T ⇤

upt

to
update the instruction,
and bs⇤(t), br⇤, bv⇤ passed
from MA32.

Calculating T ⇤
upt

.MA22 The generated way-
point (x

i

, h
i

, rta
i

)

The
weather
service
provider

The predicted head-
wind bw(t)

The
controller
for cruise

The predicted trajec-
tory bsi(t)
The predicted speed
bvi(t)

Table 6.��: The trigger event, the guard condition and the duration of MA33

Content Info Source
Trigger NA NA
Guard mon1 = true gen1 EA12

Duration The duration of this actionmust be as short as pos-
sible.

NA

6.� Summary

In this case study, we applied the reference architecture to the design of a de-

scent function guided by the hazard of “inadequate altitude”. As a result, we

identi�ed �8 safety-critical scenarios that need to be addressed adequately oth-

erwise may lead to hazardous situation. Furthermore, a functional architecture

(Fig.6.��) of the controller is developed based on the reference reference, to

�8�

achieve the descent goal and avoid the �8 safety-critical scenarios developing

into hazardous situation. The full readable N2 diagram can be found in Appendix

E.

Figure 6.��: Applying the reference architecture to the case study result in the
N2 diagram, where the yellow cell represents the interaction between the main
actions and the environment and the controlled process, the green cell repre-
sents the interaction among the main actions, and the blue cell represents the
interactions between the main actions and the enabling actions. Refer to Ap-
pendix E for the full readable N2 diagram.

�8�

Chapter �

Conclusion

�.� Summary

Model-based Safety Assessment (MBSA) has gained tremendous traction for

the past two decades in the safety community. However, to apply MBSA for cer-

ti�cation, one still needs to demonstrate that the model used in MBSA includes

all the possible safety-critical scenarios that the actual system will encounter in

the actual operation. The current MBSA approaches are not equipped for this

task.

To tackle this problem, we propose a new safety-guided design methodol-

ogy (called STPA+) to complement MBSA for safety assurance. STPA+ treats

a system as a control structure, and is comprised of three methods. Method �

derives safety constraints from the hazard to make sure the safety constraints

adequately re�ect the hazard under study; Method � de�nes the model of con-

trolled process to make sure the model is properly constrained both explicitly

and implicitly; Method � de�nes a safe controller by providing a reference archi-

tecture to make sure the controller de�ned based on the reference architecture

has all the safety-critical scenarios (without failure) addressed.

�86

Finally, Method � andMethod� are the requirement analysis step, andMethod

� is the functional analysis in the context of Systems Engineering (Fig.�.�). Usu-

ally, safety assessment (MBSA in this case) takes places after the initial func-

tional architecture is determined. Fig.�.� shows that STPA+ is accomplished

right before MBSA is supposed to start, which implies that STPA+ and MBSA

also �t together temporally. Together, “STPA+MBSA” provides a strong and com-

prehensive argument for safety assurance.

Figure �.�: STPA+ in the context of the Systems Engineering process. M�, M�
and M� mean Method �, � and �.

�.� Contribution

In general, this dissertation identi�es a gap of MBSA, which is that most MBSA

approaches take the “model” as given. If certain safety-critical scenarios are not

included or considered in the given design solution (the left shoulder of Fig.�.�),

or the properties do not correctly re�ect the hazard (the right shoulder of Fig.�.�),

the results of MBSA cannot be fully trusted for safety assurance.

Speci�cally, we claim four contributions for this dissertation.

• Overall, this dissertation develops a safety-guided design methodology

STPA+ to identify and address the safety-critical scenarioswithout component-

�8�

level failure for the de�nition of the design solution. Compared with the

original STPA, STPA+ provides better methodological support in re�ning

the hazardous scenarios associated with control into the safety-critical

scenarios that the design solution can directly act upon. It is a contribution

to identifying and addressing “hazards without failure”.

• Method � converts the logic of the STPA “unsafe control action” to “what

is safe” to make sure the safety constraints derived from the hazard ad-

equately re�ect the hazard under study. The method provided to de�ne

the constraints on the start and stop times is a re�ned way to identify the

“context” associated with the original STPA “unsafe control action”. Com-

pared with the guide-words-based traditional hazard identi�cation tech-

niques (e.g., HAZOP), Method � has a more precise and more concrete

model that explains why a speci�c intended output behavior starts/stops

too early/late, which hence is also a contribution to the general hazard

identi�cation literature.

• Method � de�nes the model of the controlled process to make sure the

model is properly constrained both explicitly and implicitly. It focuses on

the de�nition of the boundary conditions (i.e., operational envelop) and the

assumptions of the model of the controlled process, which is a contribu-

tion to both the safety community and the general model-based design

community.

• Method � de�nes a safe controller by providing a reference architecture to

ensure the controller de�ned based on the reference architecture has all

the safety-critical scenarios (without component-level failure) addressed.

It provides detailed support to identify the design errors of a controller and

address them from the beginningwith a reference architecture. To the best

of our knowledge, there are no such works in the current literature.

In summary, Method � strengthens the right shoulder of Fig.�.�; Method �&�

�88

strengthens the left shoulder of Fig.�.�. Together, “STPA+MBSA” provides a

strong and comprehensive argument for the safety assurance of a cyber-physical

human system.

�.� Future work

We have identi�ed three future directions for STPA+.

First, STPA+ is developed to complement MBSA. The speci�cations result-

ing from STPA+ are organized in the construct of {input, output, transformation,

trigger, guard}, which is very common in many MBSA languages. The next step

is to translate this construct to one or more mainstream MBSA languages. In

this way, the result of STPA+, a design solution, can be directly translated into a

model that is ready for MBSA analysis. Because the problem of missing safety-

critical scenarios due to non-failure causal factors has already been addressed

by STPA+, the safety engineers can entirely focus on modeling failures and con-

ducting the MBSA analysis with the tool supports available to the speci�c lan-

guages. This is the solution to Challenge D explained on Page ��.

Second, STPA+ focuses on addressing the safety-critical scenarios that do

not involve failures/faults. There is an ISOstandard under development, “ISO/PAS

����8: Road vehicles — Safety of the intended functionality (SOTIF)”. This stan-

dard is aboutminimizing the hazardous scenarios caused by non-failure factors.

STPA+ can be used precisely to demonstrate the compliance of SOTIF.

Finally, STPA+ is developed initially to insist on de�ning the design solution

from the beginning. However, it is also possible that STPA+ cannot be applied

when the system is built, for example, a legacy system or an AI-based system.

Because STPA+ does not need an existing design solution to identify the safety-

critical scenarios, STPA+ can also be used to design a run-time safety monitor

as a safety enhancement to these systems by identifying critical scenarios and

�8�

providing run-time alerts, and intervening when the human/AI controller fails to

act.

���

Appendix A: Terms

We acknowledge the fact that some terms used in this dissertation are over-

loaded. They can mean different things in different contexts in the general Sys-

tems Engineering and System Safety community. To avoid confusion, we de-

�ne these terms for this dissertation and this dissertation only. Obviously, the

Systems Engineering community needs to agree on uni�ed de�nitions of these

terms, but this is by no means our intention here.

Function/
Hazard

Specification Model (to
compute)

Property
Translate

Translate

VerifyDesign

Problem

Solution

Figure �.�: A general engineering design process to de�ne (and distinguish)
some of the key terms used in the dissertation.

Model: In general, we de�ned (in the attached MBSA report) a spectrum of

models in the model-based world. At one end is “model-to-describe” (such as

engineering drawing, SysML model, etc.), to describe the design solution to the

problem; on the other end is “model-to-compute” (such as a state-space repre-

sentation), while is also a representation of the design solution, mainly to verify

whether the design solution indeed solves the problem through computation.

Most modeling language positions somewhere between the two ends, having

different capabilities in expression and computation. However, in this disserta-

tion, “model” speci�cally refers to “model-to-compute” or the computation ca-

pability of the model.

Speci�cation: Speci�cations are a representation of the design solution to

achieve to given functional goal and/or avoid hazard (Fig.�.�). Although speci-

���

�cations can also be organized in the form of a model, they are mainly used to

describe the intended design solution. In this sense, speci�cation is the “model-

to-describe”. The translation from the speci�cation (or “model-to-describe”) to

the model (-to-compute) often loses information.

Property: It is a representation of the given functional goal and hazard par-

ticularly for veri�cation (Fig.�.�). In Model Checking, they are called liveness

property for the functional goal and safety property for the hazard.

Requirement: Requirement and speci�cation are usually used interchange-

ably in the Systems Engineering community. But in this dissertation, require-

ments are speci�cally referred to the design activities that need to be accom-

plished according to STPA+.

���

Appendix B: MBSA review

���

March 2021

NASA/CR�20205009755

Defining�DnG�5eDVRning�DERXW�0RGeO�EDVeG�
6DfeW\�$nDO\ViV��$�5eYieZ

Minghui Sun, Cody H. Fleming, and Milena Milich
University of Virginia, Charlottesville, Virginia

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

x TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

x TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

x CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

x CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

x SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

x TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

x Access the NASA STI program home page at
http://www.sti.nasa.gov

x Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/
and select the “General” help request type.

March 2021�

NASA/ CR�20205009755

Defining�DnG�5eDVRning�DERXW�0RGeO�EDVeG�
6DfeW\�$nDO\ViV��$�5eYieZ

Minghui Sun, Cody H. Fleming, and Milena Milich
University of Virginia, Charlottesville, Virginia

National Aeronautics and Space
Administration

Langley Research Center
Hampton VLrJLQLa 2���1�21��

3rHSarHG IRr /aQJOH\ 5HVHarch &HQWHr
XQGHr &RRSHraWLYH $JrHHPHQW 11;1�$.��$

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

ii

Table of Contents
1. Introduction ... 1
2. Setting the Stage: A General Process of MBA ... 2

2.1 The MBD Process ... 2
2.2 The MBA Process ... 4

3 MBSA: Problem Statement... 8
3.1 The Defining Feature: The Fail-Safe Property ... 8
3.2 The Notable Pattern: The Inductive Analysis ... 9

3.2.1 The Inductive Analysis ... 10
3.2.2 The Deductive Analysis .. 10

4 MBSA: Engineering Solution (The Global Effect) .. 11
4.1 Engineering Solution: The Off-Nominal Behavior ... 11
4.2 The Defining Feature: Architecture Consistency ... 12
4.3 The Notable Pattern of Architecture Consistency .. 13
4.4 Comparing the Notable Patterns ... 15

4.4.1 Flexibility for Complex Behavior ... 15
4.4.2 Human Effort .. 16
4.4.3 Automation ... 17
4.4.4 Observation ... 17

5 MBSA: Engineering Solution (The Causal Scenario and the Local Effect) 18
5.1 A Framework for the Component Fault Process ... 18
5.2 The Structure of the Phenomenon-centric Framework ... 19
5.3 The Notable Patterns to Specify the Phenomenon-centric Framework 20

5.3.1 Causal Factors ... 20
5.3.2 Activation Mechanism .. 22
5.3.3 Impact Mechanism .. 22
5.3.4 Effects on the Component ... 23

5.4 The Phenomenon-centric Framework for the Component Fault Process 24
6 MBSA: The Desired Analysis .. 24

6.1 Mathematical Construct .. 25
6.2 Safety Analysis ... 28

6.2.1 Automatic FTA ... 29
6.2.2 Notable Patterns of Safety Analysis ... 29

7 Conclusion .. 30

iii

7.1 Defining Features and Notable Patterns ... 30
7.2 Suggestions Moving Forward. .. 31

8 References ... 0
Appendix ... 8

1

1. Introduction
Model-based safety analysis (MBSA) has been around for over two decades. The benefits of

MBSA have been well-documented in the literature, such as tackling complexity, introducing
Formal Methods to eliminate the ambiguity in the traditional safety analysis, using automation to
replace the error-prone manual safety modeling process, and ensuring consistency between the
design model and the safety model [1].

However, there is still a lack of consensus on what MBSA even is. Prominent modeling
languages such as AADL-EMV2 [2]–[4], AltaRica [5][9], and HipHops [10][11] are generally
considered MBSA, which, according to [12], are the only three languages that “have matured
beyond the level of research prototypes.” However, the question “what makes them MBSA” is left
unanswered. For example, do Formal Methods apply to safety analysis MBSA? Does safety
analysis even mean the same thing in the context of Formal Methods? The ambiguity has
significant implications.

From a System Safety Engineering* point of view, without a clear definition and boundary
MBSA can quickly become a buzzword that any other disciplines can claim as long as the work
uses computer models and is safety-related (e.g., refs. [102] and [103]). This is good because
MBSA as an active research topic is enriched by different schools of expertise. However, this also
jeopardizes the identity of MBSA as a main research thrust of the System Safety Engineering
community. Research development has flourished over the years, with Software Engineering
(especially Formal Methods) seeming to have a stronger presence in the MBSA literature. As
pointed out by reference [100], most MBSA innovation focuses on model specification notations
and/or algorithms for possible manipulations of the models, but very little research is asking
whether the safety model is valid, a question that is and will always be at the center of System
Safety Engineering.

Therefore, “the major open issue is how to reason about the choice of models, and not so much
how to reason about the properties of the models ” [13]. Toward this end, this paper reviews MBSA
by answering the following three specific research questions from the perspective of System Safety
Engineering:

(1) What is a minimal set of defining features that a work must have to be considered MBSA?

Three defining features are identified and can be seen as the negating criteria of MBSA. In
other words, if a work satisfies the whole set of the defining features, it is MBSA.

(2) What are the different schools of thoughts, i.e., the notable patterns, in the current MBSA
literature? This can be seen as the specific ways to implement the defining features.
Through the review, we will show different notable patterns along each step of the MBSA
process. In the end, we will conclude with the mapping on how the notable patterns
implement the defining features.

(3) What are the issues of current MBSA practice, and what are the suggestions moving
forward from the perspective of System Safety Engineering?

We put forward the main findings here first and will discuss in detail at the end of this paper:

*System Safety Engineering is a discipline to identify hazards and then to eliminate the hazards or reduce the associated
risks when the hazards cannot be eliminated [124].

2

• There is a lack of emphasis on deductive safety analysis in MBSA and the deductive analysis
cannot and should not be automated.

• There is a lack of “hard facts” to anchor safety modeling as those fundamental laws (e.g.,
fluid dynamics and heater transfer) in other scientific modeling communities. This makes it
difficult in safety modeling to make explicit decisions about abstraction, i.e., what is (and is
not) included in the safety model.

• Automation is closely related to MBSA, but automation does not necessarily ensure high
quality safety analysis. Instead, it might give a false sense of complacency that compromises
the trustworthiness of safety assurance.

• There is a tradeoff between the specificity and flexibility of a modeling language.

Finally, a review paper must have a set scope of papers to review. However, a MBSA review

does not have that privilege because MBSA is ill-defined. Therefore, constraints must be added as
the minimal assumptions to establish at least a broad scope of MBSA to start with. For this reason,
we broadly assert that “MBSA is an application of model-based design to hazard analysis.”
Because there is no consensus on an exact definition of MBSA, it is difficult to find concise, direct
evidence to support this assertion. However, this assertion is consistent with one of the MBSA
seminal works [14] which says MBSA is an extension of safety analysis to model-based design.
More importantly, our confidence in beginning with this assertion is in its broadness, meaning
MBSA, however defined, can only be a subset of it. We start from this assertation and refine all
the way down to a minimal set of features that any MBSA work must have and a set of notable
patterns that a MBSA work might have. In this way, we believe our approach is valid in terms of
not missing characteristics by starting off with a too narrow view. In section 2, a general model-
based analysis (MBA) process is derived based on model-based design (MBD). MBSA follows
this MBA process with a specific purpose of safety analysis. In other words, MBSA is an instance
of MBA.

In sections 3, 4, 5, and 6, for each step identified in the MBA process, detailed discussions are
conducted about the activities that have to take place specifically for MBSA. The discussions are
tasked with two goals: identifying the defining features of MBSA and describing the notable
patterns of MBSA.

In section 7, a discussion is conducted for the most important future directions of MBSA.

2. Setting the Stage: A General Process of MBA
The MBA process described in this paper is derived from the MBD process, as MBA itself is

not a widely used concept. In this section we start with MBD to provide a context for MBA and
then zoom in to MBA to further provide a context for MBSA later.
2.1 The MBD Process

First of all, we are aware that MBD is an overloaded term, as numerous papers tried to
differentiate it from “model-driven engineering,” “model-driven design,” and “model-driven
architecture” [104] [105]. It is not our intention to define these terms. However, we need a clear
understanding of MBD to conduct meaningful discussion about the body of literature pertaining
to (or not pertaining to) MBSA. Hence, we adopt the process proposed by [106] as the “ground
truth” of our discussion. The left of figure 1 shows the proposed MBD process which can be
mapped to the detailed 10 steps of reference [106] on the right. Two loops, an inner loop and an

3

outer loop, are identified for the MBD process. We explain all the involved steps in this section
and will zoom in on the inner loop in the next section.

Figure 1. The MBD process. The arrows on the left can be mapped to the steps to the right
(adopted from ref. [106]). The inner loop (shaded area) is the model-based analysis.

An MBD process starts with a problem statement (Step A) which details the goal of the design

activities, such as a set of functions with performance requirements and safety constraints.
Second, an engineering solution is derived based the engineer’s domain knowledge. Although

three independent steps (Steps B, C, and D) are identified by reference [106], we acknowledge this
process in reality can be quite fuzzy, because the engineer’s thought process varies from person to
person, depending on their own expertise and nature of the problem at hand. Nevertheless, we
prescribe the process always ends with a solution (valid or not) to the stated problem from the
perspective of the specific engineering discipline.

Third, a modeling language is selected to faithfully represent the engineering solution with a
model of computation (Step E). Compared to a simulation model that is created to loosely “get a
feel” of the proposed engineering solution, the model in MBD is a faithful computational copy of
the engineering solution and hence used as the primary artifact [114]. Models in MBD are directly
evolved into full-fledged implementations without changing the engineering medium, tools, or
methods [107]. Specifications and even software code of the implementation are (automatically)
derived from the model [108][134]. Therefore, the modeling language must be fully equipped to
express the engineering solution.

Fourth, the model of computation is automatically analyzed to gain a required level of
confidence of the engineering solution before building the prototype or the real system (Step G).
This step closes the inner loop. Analysis techniques with different level of mathematical rigor,
such as simulation and Formal Methods, are usually required in accordance with the required level
of confidence. Obviously, this not only begs the question of the availability of the tool support for
the analysis, which itself is an entire research area, but also whether the semantics of the modeling
language can be formalized in a way that tools can be developed for the desired automated analysis.

Fifth, specification is derived from the model of computation (Step F); hardware is constructed
in accordance with the specification (Step H), and software is developed or automatically

4

generated from the model and synthesized with the hardware (Step I). This is what makes the
“model” in MBD different from models for simulation because (1) specifications for constructing
a prototype of the real system are derived from the model, for example a CATIA model can be
used for both structural analysis and directly as 3D drawings for manufacture [110], and (2)
software code sometimes can even be automatically generated from it, which is the perhaps the
main reason for MBD’s growth of popularity in the first place [111].

Finally, Step J closes the outer loop. The prototype or the real system is verified, validated,
and tested against the problem statement made at the beginning of the MBD process.

Clearly, as shown in figure 1, an MBD process consists of an inner loop and an outer loop,
where the former is about modeling and analysis, and the latter is about construction (automated
or not) and testing. As defined by reference [112], a hazard analysis is “the process of identifying
hazards and their potential causal factors.” Although it is a highly iterative process, meaning
verification is still required after the construction (e.g., the SSA process of ref. [113]), the hazard
analysis mostly happens during the inner-loop so that safety-critical decision can be made early
before construction of the prototype or the real system.

Therefore, for MBSA, we mainly focus on the inner loop, which is the shaded area in figure 1,
and we call this inner loop “model-based analysis” (MBA).
2.2 The MBA Process

In this section, we take a closer look at the inner loop of figure 1 to derive a more general MBA
process. As shown in figure 2, the artifacts on the righthand side are adopted from figure 1. The
activities to generate these artifacts are expressed in more general terms, and the supports for the
activities are displayed on the left-hand side, both of which will be explained in great detail in this
section.

Figure 2. The MBA process, where the artifacts on the right-hand side are adopted from
the inner loop of figure 1 and the left-hand side are the supports for the respective
activities.

First, from the perspective of an application engineer, the MBA process consists of three steps:

“formulate,” “express,” and “analyze” (the right workflow in figure 2).
Step 1. Given a design problem, the engineers first use their domain knowledge to formulate

an engineering solution to that problem. Informally, the engineering solution is the engineer’s
understanding of the real behavior of the system-to-be-built and his/her decisions about what to
capture from this “real” behavior by applying his/her domain knowledge. Although the resulting

5

engineering solution has to be represented eventually in a certain modeling language, and any
modeling language has a limit of expressiveness, in theory this formulate process has to be
language-neutral, meaning solely determined by applying the domain knowledge, not limited by
the modeling language. For example, the engineering solution of a control system should solely
be determined by the physical dynamics and preferred control policy rather than the modeling
language such as Matlab and Modelica.

However, in reality, this formulate process is more complicated. As explained in section 2.1
about MBD, because primary artifacts such as specification, software code and safety decision are
made from this process, the engineering solution has to be faithfully represented by the model of
computation, meaning the modeling language has to be fully equipped to express the engineering
solution. Two possibilities exist for this concern. One is to find the appropriate modeling language
after the engineering solution is developed or design a new modeling language if none of the
current ones fit. The other is to have one or multiple candidates modeling languages in mind
beforehand, use the modeling languages to formulate the engineering solution, and finally pick the
most appropriate one. In reality, for most engineers who use models to develop their own systems,
the latter is most dominant. In fact, the structured semantics of a modeling language can help
engineers to perceive the problem and manage the cognitive complexity in the problem-solving
process.

This observation has a significant implication because although the formulate process focuses
on problem solving and highly relies on the domain knowledge, the resulting engineering solution
has to be practical enough so that it can be expressed by a modeling language. Hence, two
“support” arrows (figure 2) from the domain knowledge and the language semantics go into the
engineering solution. We make the following assertion, which is similarly referred to as “the
abstraction challenge” in reference [107].

Assertion 1: The modeling language, especially its semantics, has to be able to represent the

engineering solution.

Step 2. The engineering solution, already consistent with the semantics of the modeling

language, is mapped accordingly to the language syntax and eventually yields the model of
computation. We call this process “express” because it is simply a “faithful” representation of a
well formulated engineering solution (in whatever form) to a well-defined explicit model in the
computer. Note that, this process is only to “express.” Information shall neither be subtracted from
the engineering solution nor added to it.

Step 3. The model of computation is “analyzed” automatically, so that a required level of
confidence can be established. Specifically, different levels of confidence require different analysis
techniques such as step-wise trace demonstration, stochastic simulation and model checking,
which in turn has an implication on the formalism of the modeling language. In other words,
analysis techniques must be available for the desired analysis with the selected language, thus the
arrow from the “semantics” to the “analysis” in figure 2. Therefore, we make the following
assertion, which is similarly referred to as “the formality challenge” in reference [107].

Assertion 2: The modeling language, especially its semantics, has to be analyzable by

computer programs for the desired analysis.

From the perspective of the methodological support (the left workflow in figure 2), it includes

language support and tool support. The modeling language, particularly its semantics, has to be

6

expressive enough to fully represent the engineering solution (Assertion 1) and techniques and
tools must be developed for the modeling language for the desired analysis (Assertion 2).
Obviously, the semantics of the modeling language plays a center role here. As shown in figure 3,
it affects the formulation of the engineering solution (the upper loop) and the feasibility of the
desired analysis (the lower loop).

For language support, we further assert that the semantics of a modeling language in the MBA
process must simultaneously have a context-specific modeling construct for the engineer to
represent the engineering solution (the upper loop) and a context-free mathematical construct for
the computer to conduct the desired analysis (the lower loop). For example, a Simulink block at
the same time has both a specific engineering meaning at the front end and a context-free purely
mathematical expression at the back-end, such as a high-pass filter has a modeling construct that
means signals below a cutoff frequency are attenuated and a mathematical construct that is usually
represented by a first-order mathematical transfer function. The transition in a Markov process can
mean at the same time both the triggering of a failure event (i.e., the modeling construct) and a
context-free Poisson process (i.e., the mathematical construct). In fact, the modeling construct and
the mathematical construct are consistent with the concepts of a “pragmatic model” and a “formal
model” in reference [15]. The difference is that the modeling construct and the mathematical
construct are two aspects of the same model rather than two different types of model as argued in
reference [15].

There is usually a unique mapping between the modeling construct and the mathematical
construct, to translate between the context-specific concepts and the context-free mathematical
expression. Depending on the specific situations, this translation is bi-directional. The engineer
can use an appropriate modeling construct directly to formulate the engineering solution, such as
modeling in Simulink. The resulting model is translated (usually automatically by the modeling
environment) into the context-free mathematical model (i.e., the downward translation) for the
desired analysis later. It is also possible the engineer uses the mathematical construct directly to
formulate the engineering solution, such as writing state space model in a Matlab file. They then
need to reconstruct the modeling construct (i.e., the upward translation) manually from the
mathematical construct to link with the context-specific concepts in order to make sure the
resulting mathematical model faithfully represents the solution in the specific engineering context.
It is worth mentioning that it can be very difficult to formulate the engineering solution directly
with the mathematical construct especially for complex systems because manually mathematically
modeling a complex system is error prone, and the resulting pure math model is very difficult to
communicate and review, which is why modeling with Simulink has gained much more traction
than modeling directly with Matlab script files. Therefore, the upward translation is not considered
for the rest of the paper.

For tool support, algorithms are developed around the mathematical construct of the modeling
language for the desired analysis. Sometimes in order to reuse existing algorithms, “model
transformation” algorithms such as AADL to GSPN [115] are developed to translate the
mathematical construct of the current modeling language to the formalism that the target
algorithms can be applied to.

Although algorithms can be developed for the desired analysis or model transformation, an
inappropriate abstraction level of the modeling language can render the desired analysis infeasible.
For example, a traditional fault tree cannot generate the critical event sequence for a top-level
event, simply because the sequence information is abstracted by the semantics of the traditional
fault tree. More information has to be included (hence less abstract), such as the Dynamic Fault

7

Tree [16] [17], for the desired analysis. This echoes our previous claim that the semantics of the
modeling language not only affect the formulation of the engineering solution, but the feasibility
of the desired analysis.

Figure 3. The semantics of the modeling language are at the center of an MBA process in
the view of a methodology developer.

To conclude, table 1 is a summary of the MBA process. From the perspective of the domain

engineer, the process mainly consists of three activities: formulate, “express,” and “analyze.” Each
of the activities requires different methodological supports, which are essentially application and
manipulation of the “modeling construct,” “mathematical construct,” and “syntax” of the modeling
language.

Table 1. The summary of the MBA process.

Domain engineer
Methodology developer

Language support Tool support

Manual
Formulate Modeling construct NA

Express Syntax to express the
engineering solution

Modeling environment

Automated Analyze

Mathematical construct to be
translated.

Programs for model
transformation

Mathematical construct to be
analyzed.

Programs for the
desired analysis

Finally, we focus this paper on how the modeling language supports the MBSA process rather

than how the modeling language is supported and implemented by tools, as the former is closer to
the System Safety Engineering community while the latter is mostly Software Engineering. For
this reason, we adapt the MBA process of figure 3 into figure 4 below, with a more explicit

8

depiction of the relationship between the MBA process and the modeling language. The rest of the
paper will follow closely with figure 4.

Figure 4. The MBA process and the language support. While the analytical process
represents a series of (iterative) steps [right], it is supported by particular choices with
respect to the modeling language [left]. The discussion of MBSA will follow closely with
this process.

3 MBSA: Problem Statement
Figure 4 is a general MBA process and MBSA is an application of this process to the domain

of hazard analysis. In other words, MBSA follows the MBA process and specifies each MBA step
for hazard analysis. In the rest of the paper, we will review MBSA following the steps in the MBA
process with the goal to identify the defining features and notable patterns for MBSA. We focus
this section on the “problem statement.”
3.1 The Defining Feature: The Fail-Safe Property

The problem statement determines the goal and the scope of an analysis. As asserted in section
1, the goal of MBSA is broadly hazard analysis. Although there is no definitive prescription about
the scope of hazard analysis in System Safety Engineering, we posit that MBSA, like any other
system safety analysis, is mostly concerned with hazard related to system function. In other words,
a work that uses a “model-based” approach and has safety implications does not necessarily make
it MBSA. It has to focus on the violation of functional safety [116][117] by analyzing the dynamic
behavior of the system. For example, the “model-based” approach is also applied to analyzing
hazards in other disciplines such as structural safety [118]–[120] and occupational safety
[121][122], but because they do not address hazard from the perspective of system function, they
are trivially ruled out for MBSA.

Furthermore, according to reference [123], hazard analysis is performed to identify hazards,
hazard effects, and hazard causal factors. This definition is widely accepted in the community. For

9

example, aviation industry specifies three prominent tasks [113]: function hazard assessment
(FHA), preliminary system safety assessment (PSSA) and system safety assessment (SSA), where
FHA sets up the safety requirements by identifying the potential hazards and their effects, PSSA
validates the system architecture by identifying the possible causal factors, and SSA verifies that
the risk of the causal factors leading to the hazard is acceptable.

Clearly, the overarching goals of hazard analysis are achieved through the following three
tasks:

• Task (1) determines the safety requirement by hazard identification.
• Task (2) identifies the possible causal factors through a deductive analysis.
• Task (3) makes sure the system is still safe in the presence of the causal factors through an

inductive analysis.

In the safety community, Task (1) is usually referred to as “hazard identification” [124], and

safety analysis usually refers to Tasks (2) and (3). Methodologically, Task (1) is different from
Tasks (2) and (3) in both the goals they seek to achieve and methods they follow. Therefore, we
do not include hazard identification as a potential area of MBSA. It is worth mentioning that there
are works (mostly based on UML/SYSML) to partially automate the hazard identification process
[18]–[22]. Neither UML/SYSML language nor the partial automation can change the fact that
hazard identification is generally not considered safety analysis in the System Safety Engineering
community. As pointed out by reference [23], “the focus of classical safety analysis techniques
lies on supporting the reasoning of possible failures and on recording the causal relationships in
failure events.” Rather, hazard identification is the input of a safety analysis, but not the safety
analysis itself. Therefore, we do not include in the scope of MBSA.

In terms of Task (2) and Task (3), although they are fundamentally different analyses, they
both share the same goal to ensure the system is safe in the presence the causal factors. While there
are many types of causal factors, such as design error, manufacture defect, human error, and
component failure, a minimal requirement for a safety analysis is that it must address component
failure. In other words, the goal of a safety analysis must at least involve proving the system is
fail-safe. A defining feature of MBSA is that it must at least be able to argue whether a system is
fail-safe. In fact, most MBSA works focus on modeling component failure with an exception of
the EAST-ADL framework [24][25], where the process faults (systematic faults such as design,
implementation, installation, operation, and overstress faults) are considered in the modeling
semantics. However, it is unclear from the literature how process faults are identified, mitigated,
and implemented by the framework.
3.2 The Notable Pattern: The Inductive Analysis

Tasks (2) and (3) both have the fail-safe feature but Task (2) is a “deductive analysis” (also
called top-down [26][27] or effect-to-cause [28]), and Task (3) is an “inductive safety analysis”
(also called bottom-up [26] [27] or cause-to-effect [28]). At this point, “inductive analysis” is
widely practiced in the MBSA literature, which makes it a notable pattern. Note that the lack of
emphasis on the “deductive analysis” has a significant impact on the quality of the “inductive
analysis.”

10

3.2.1 The Inductive Analysis
A notable pattern of MBSA is that most works in the literature are inductive analysis. The

inductive analysis is a notable pattern rather than a defining feature, meaning MBSA does not
necessarily have to be an inductive analysis. But in this section, we focus on this pattern of MBSA.

 We already knew that an inductive safety analysis is a bottom-up safety analysis. A bottom-
up analysis in the context of MBA will, given a set of properties (or requirements) and a model,
verify whether the model satisfies the given requirements. In the context of MBSA, there are
generally two types of properties (functional property and safety-critical property) and two types
of models (nominal model and off-nominal model). As shown in figure 5, a property-model
combination yields four types of inductive analysis.

Arrow 1 verifies the “goodness” of the design. The intended function has to be achieved by the
designed behavior in nominal conditions. This is the foundation of all other types of analysis.

Arrow 2 verifies that the designed behavior in nominal conditions will not lead to hazardous
situations. For example, reference [103] conducted a series of safety assessments to prove that all
the possible trajectories of autonomous cars are not in conflict by using reachability analysis.

Figure 5. Four types of inductive safety analysis. The start of the arrow is verified against
the end of the arrow. No. 4 is one of the defining features of MBSA.

Arrow 3 verifies the “fail-operational” [126] property of a system design, i.e., the desired

function is still achievable even in the case of device malfunction. This is a subject of robustness
analysis [127], a dependability property that is closely related to safety.

Arrow 4 verifies the fail-safe property. As explained in the previous section, this is one of the
minimal requirements for any work to be considered as MBSA.

It is worth mentioning that all four arrows can be implemented by Formal Methods. In Model
Checking, a safety property is even explicitly defined in the methodology. However, if a formal
analysis does not include Arrow 4, it is not MBSA, even if a safety-critical property is verified
against.

3.2.2 The Deductive Analysis

The deductive analysis is not the notable pattern of MBSA as very few works address it. But
the lack of emphasis on the “deductive analysis” has a significant impact on the quality of the
current inductive MBSA practice. More specifically, inductive analysis can only work with a set
scope of system, while it relies on the deductive analysis to set the scope.

Out-scope. Compared to inductive analysis, where the scope of the system is taken as given,
the deductive analysis takes a more holistic view and can identify contributing factors that can be
hard to capture if no structured method is provided. Reference [29] calls for a systematic approach
to achieve confidence in the completeness of an analysis, but as pointed out by reference [30],

11

completeness of the causal factors may only be proven with respect to those captured: “If a failure
mode is not even part of the formal model, then it is impossible to reason about it. But, finding a
complete set of failure modes for a given component is not an easy task.” Current MBSA practices
do not address how the failure modes are derived in the first place.

Furthermore, the inductive analysis focuses too quickly on failures. It is true that failures at the
device level are usually well-studied and well-recorded in the industry. A complete list of failure
modes of all the devices is presumably accessible from the industry record. This is perhaps why
most MBSA works are failure oriented. However not all the devices are well-studied especially
for those newly designed. The 737MAX accident perfectly exemplifies that a new system or a new
feature (i.e., the MCAS system) can have surprising behaviors that may cause catastrophic
accidents. More importantly, it has been widely accepted that hazards can also be caused by non-
failures [125]. The inductive safety analysis needs a deductive approach such as STAMP-STPA
[128] and FRAM [129] to out-scope the analysis boundary so that other casual factors and
unintended interactions are also captured.

Down-scope. Another benefit of deductive analysis is down-scope. The combination of all the
possible device failures can dramatically increase the complexity of the inductive analysis. So far,
this problem is mitigated by abstraction. But abstraction has a price. The more abstract a model is,
the less precise the result will be (see ref. [31] for the comparisons). Furthermore, as pointed out
by reference [32], “the combinatorial diversity of each plausible (fault) event interacting with each
other set of events within and without the system makes bottom-up analysis intractable, so
heuristics on system behavior need to be employed to narrow the search space of critical
scenarios.” This is why reference [30] claims the completeness of the failure modes but only at a
lower device level. Clearly, inductive analysis alone is not sustainable to analyze a complex
system. It has to be complemented with a deductive analysis, as a deductive analysis only identifies
the casual factors that are relevant to the hazard of interest, which significantly reduces the
complexity of the analysis.

4 MBSA: Engineering Solution (The Global Effect)

4.1 Engineering Solution: The Off-Nominal Behavior
We move to the “engineering solution” of figure 4 now. Although not unique to MBA (or even

engineering), the formulation of engineering solutions is intended to solve the stated problem. In
the context of MBSA, the problem statement is to argue whether a system is fail-safe, which, as
shown in figure 5, requires a set of safety-critical properties and a model of off-nominal behavior.
The properties are usually derived from the hazard identification process, which is not part of
MBSA and hence for the purposes of this paper we simply assume the existence of the set of
properties, and do not discuss how it is created. The engineering solution in the context of MSBA
is the off-nominal behavior.

We reiterate that the engineering solution in MBA focuses on depicting the actual behavior of
the system-to-be-built with as much fidelity as possible and the formulate process is language-
neutral. Similarly, regardless of the modeling language, to formulate the off-nominal behavior is
to decide how a fault happens in reality and its effect on both the local component and other
components. This is consistent with the three propositions proposed by reference [33] for any fault
logic modeling. Specifically, it includes defining the following three subprocesses:

• Causal scenario: the condition for a component fault to happen;
• Local effect: the effect of the fault on its respective component;

12

• Global effect: how the local effect affects the system behavior as a whole.

In this section, we will show how the specific ways to implement the global effect subprocess
lead to a defining feature of MBSA. The casual scenario and the local effect subprocesses will be
addressed in the next section.
4.2 The Defining Feature: Architecture Consistency

It is usually argued in the MBSA literature that MBSA adds value to the current safety
engineering practices at the following aspects:

(1) Handling the increasing complexity of safety-critical system.
(2) Integrating the design view and the safety view.
(3) Finding design shortcomings and flaws early.
(4) Reusing previously developed artifacts.
(5) Introducing automation to reduce time and cost and improve quality.
(6) Structuring unstructured information.

However, these benefits are also claimed by the general MBD community [105]

[109][114][130][131][133] except (2). As argued by reference [132], MBD is just a tool for
realizing the integration among the different domain of systems and must be supported by an
integrated design methodology. MBSA is exactly such a methodology to support the view
integration of design and safety. This is also consistent with the claim made by one of the seminal
MBSA works [34] that MBSA is about maintaining the consistency between the design model
and the safety model, and this consistency is unique to MBSA compared with traditional safety
analysis.

However, the component fault and the local effect subprocesses have no logical consistency
with the nominal function of the component, because while the fault of a component might
eventually affect the intended function, how it happens and how the fault affects the component
are not determined by how the component is supposed to work in the first place. It is worth
mentioning that in some works (such as the Generic Failure Model Library [35] [36]), a fault
library is developed to associate each component with a fault model. We argue the association is
not integration because association is enabled by numerous reuses of the same component in the
same (or at least very similar) systems. In fact, the association is a result of the MBD approach
being able to structure unstructured information and use computer models as media to store
institutional knowledge for reuse, i.e., benefit (4) and (6) discussed above.

In fact, it is the specific ways to implement the global effect subprocess that leads to the
consistency between the design model and safety model. The global effect is to model how the
fault effect of an individual component affects the system behavior as a whole. While the fault
effect of an individual component varies from case to case, the propagation path does have (at least
partially) resemblance with the interaction path in the nominal behavior. This resemblance is the
basis of the consistency between the design model and safety model. Because the propagation path
and the interaction path are the architectures of the safety model and the design model, we call the
consistency Architecture Consistency in this paper, and it is one of the defining features of
MBSA.

13

4.3 The Notable Pattern of Architecture Consistency
Three different ways of achieving Architecture Consistency is found in the MBSA literature

(figure 7). This classification is an extension of the model provenance in reference [25] and the
ESACS project in references [37] and [[38].

But first, an important distinction has to be made between “views” and “behaviors” (figure 6).
The nominal view means the semantics adopted to describe the nominal behavior (Arrow 1) are
the same as the off-nominal view (Arrow 4). However, an off-nominal behavior can also be
described in a nominal view (Arrow 2). For example, a current overflow can be called out by off-
nominal semantics as a faulty state. It can also be simply represented, as any other nominal current
is measured, by a number of Amperes that happens to be higher than intended by the designer.
Being off-nominal does not change the nature of the current, therefore it can still be represented
using the nominal semantics. Similarly, the nominal behavior can also be represented using off-
nominal semantics (Arrow 3). For example, off-nominal semantics can be equipped with all the
complex off-nominal behaviors, but a “healthy” state can be all it needs to represent all the nominal
behaviors.

Figure 6. Nominal behaviors can be represented in both the nominal and the off-nominal
views. Same for the off-nominal behavior. The arrow means “represent” in this figure.

14

Figure 7. Notable patterns to achieve Architecture Consistency.

Now, we are ready to explain the notable patterns to achieve Architecture Consistency (figure

7).
The first class injects faults into the components of the design model. The off-nominal behavior

of the individual component is described in the nominal view and then is injected into the design
model. No information of the propagation paths of the off-nominal behavior is defined. Instead,
the propagation paths are generated automatically by reusing the interaction paths of the nominal
behavior. This leads to the Architecture Consistency of the design model and the safety model.
From the perspective of the safety engineer, the integration is achieved at the component level, as
the generation of the architecture of the safety model is shielded from him/her by the automation.
A typical example is the FSAP/NuSMV-SA language [39].

The second class involves formulating the off-nominal behavior using a dedicated off-nominal
view. Compared to the injected class, off-nominal behaviors are explicitly called out as a set of
behaviors that are separate from the nominal behaviors. The architecture of the design model is
manually referred when defining the off-nominal behavior for each individual component.
Architecture Consistency is hence achieved through the shard architecture. This class is also called
“architecture-based evaluation methodologies” in reference [40]. Two subgroups exist depending
on whether the design model is explicitly required for the construction of the safety model, or only
has to be implicitly referred.

For the “explicit” case, an explicit design model is required. For each component, the off-
nominal behavior and/or the nominal behavior are defined by the engineer using the dedicated off-
nominal semantics. The propagation paths between the components are then defined manually.
Finally, the whole safety model is built (usually automatically) by aggregating all the well-defined
components and interactions. The Architecture Consistency is achieved manually, but the method
and the modeling tool enforces Architecture Consistency by requiring a dedicated component in
the off-nominal model for each component in the design model. A typical example is the AADL-
EMV2 [41].

15

The “implicit” case follows the same process as the explicit case. The safety model is organized
and constructed in a compositional way [42]. However, it does not require an explicit design
model, hence there is no way to enforce the Architecture Consistency except by completely relying
on the engineer’s discretion. Note that the traditional FTA also does not require an explicit design
model, but because it is not a compositional approach no implication of ensuring Architecture
Consistency can be made. Many methods belong to this subclass, such as Component Fault Tree
[43], Failure Propagation and Transformation Notation (FPTN) [44], Fault Propagation and
Transformation Calculus (FPTC) [45] and State Event Fault Trees (SEFTs) [46].

The final class attempts to “couple” both the nominal behavior and the off-nominal behavior
in the same model by describing them within by the same semantics. Models are structured in a
compositional way; each component contains both the nominal behavior and the off-nominal
behavior; the interactions between the components can be both the nominal interaction and the
fault propagation. Architecture of both the nominal behavior and off-nominal behavior are aligned
with the same compositional structure of the resulting model, which also leads to Architectural
Consistency by construction. From the perspective of the safety engineer, this is true integration
as the modeling semantics ensure the nominal behavior and the off-nominal behavior are weaved
organically in the same model. However, to achieve this, the safety engineer has to have a more
“holistic view” and approach the modeling task at a more comprehensive system level. A typical
example is the AltaRica modeling language [1].

Finally, we are aware there are a handful of works claiming to be MBSA that do not show a
clear way to achieve Architecture Consistency, such as reference [47]. This lack of Architecture
Consistency is mainly caused by a loose usage of the terminology in these works. In fact, reference
[47] even defines MBSA as an approach in which the system and safety engineers share a common
system model created using a model-based development process, which is consistent with our
definition.
4.4 Comparing the Notable Patterns

As shown in figure 7, the four different classes (counting the two subclasses) of Architecture
Consistency have different ways of integration and different means to achieve Architecture
Consistency. In this section, we will show the different ways integrations lead to different levels
of flexibility to describe complex (off-nominal) behaviors and interactions, and that the different
means to achieve Architecture Consistency can lead to different efforts from humans and
automation. Therefore, we compare the four classes from three perspectives: flexibility for complex
behavior, human efforts, and automation efforts.

4.4.1 Flexibility for Complex Behavior

For the injected class, the off-nominal behavior is described with the nominal semantics.
However, it is known that faults can create new component behaviors (i.e., the unintended
behaviors) and new interactions between them (i.e., the unintended interactions). These new
behaviors and interactions cannot be planned in advance in the nominal model. They cannot be
addressed in the injected way unless the original design model is adapted accordingly. However
changing the original design model just for the construction of the safety model not only violates
the current industry practices, but also defeats the purpose of MBSA, because in this way the safety
model is only consistent with a model that is different from the original design model, so the
inconsistency is guaranteed by construction. Similar argument can also be found in [48].

Compared with the injected class, the referred (including both implicit and explicit) class has
more flexibility to define the new behaviors and interactions, as the off-nominal model is defined

16

in a stand-alone model using dedicated off-nominal semantics. However, the off-nominal view
taken by this class limits the options of modeling the nominal behaviors. For example, instead of
modeling the real dynamics of the nominal behavior, it is usually abstracted as some discrete
modes, such as “working” and “healthy” [49] [50]; in some cases, the nominal behavior is even
completely left out of the off-nominal model, such as HipHops and Component Fault Tree. This
significantly reduces the flexibility of modeling especially those faults whose presence or effects
depend on specific nominal conditions.

Finally, the coupled class takes a holistic view to include both nominal behavior and off-
nominal behavior in the same model. On the one hand, it gives the safety engineers more flexibility
to describe the behaviors that they identify from the specific domain; on the other hand, however,
it relies on the safety engineers to make the important modeling decisions, such as decomposition
and abstraction. Nevertheless, this class indeed has the greatest flexibility in describing complex
behaviors.

In summary, we conclude coupled > implicit = explicit > injected in terms of the flexibility
to describe complex behaviors.

4.4.2 Human Effort

Different classes of Architecture Consistency require different levels of human effort to
achieve Architecture Consistency. Note that the effort here means the work to specifically achieve
Architecture Consistency rather than the overall manual efforts in constructing the safety model.
The manual efforts in the construction of the safety model will be addressed in the next subsection
from the perspective of the overall automation support for that purpose.

Furthermore, “human” here means both the methodology developer who sets out the working
process and develops tool support, and the safety engineer who follows the working process to
actually execute the MBSA analysis. Two metrics are used to compare the human efforts: the
primary one is how much the methodology relies on the efforts of the safety engineer to achieve
Architecture Consistency, and the secondary one is how much effort is required from the
methodology developer to develop automation for Architecture Consistency. For each class, the
primary standard is compared first; if they are at the same level, then the secondary standard is
compared.

In this regard, the coupled class requires the least effort from the safety engineer to achieve
Architecture Consistency, because the modeling language inherently guarantees it between the
design view and safety view. No extra effort is required from the safety engineer, and no
automation is needed, specifically for Architecture Consistency.

Second is the injected class where Architecture Consistency is ensured by the automation. No
extra effort is required from the safety engineer but automation has to be developed by the
methodology developer beforehand to enable the derivation of the safety model from the design
model. Using the metrics above, the injected class requires less human effort, specifically for
Architecture Consistency.

Third is the “referred” class where Architecture Consistency is achieved manually by the safety
engineer. However, compared to the implicit class, the explicit class has a specific modeling
process for the safety engineer to follow and the consistency usually can be examined by
automation, while the implicit class instead is completely reliant on the discretion of the safety
engineer. Therefore, the explicit class requires less effort from the safety engineer than the implicit
class, specifically for Architecture Consistency.

In summary, we conclude coupled > injected > explicit > implicit in terms of the least
requirement of human effort.

17

4.4.3 Automation

In general, automation serves two purposes in supporting the construction of the safety model.
One is achieving Architecture Consistency, and the other is aggregating a complete safety model
from the individual components and the interactions among them.

In this regard, the injected class has the most automation support, because both Architecture
Consistency and the aggregation are supported by automation. The second is the explicit class,
because it usually provides automation support to examine Architecture Consistency and build the
complete safety model from the defined off-nominal components and the propagation paths
between them.

Finally, the implicit and the coupled classes do not have the automation support to examine
the Architecture Consistency because no explicit design model is available in these two cases. The
aggregation of the safety model can be automated from the off-nominal components and the
propagation paths between them, such as in reference [51]. Therefore, they are at the same level
of automation support.

In summary, we conclude injected > explicit > implicit > coupled in terms of overall
automation support.
4.4.4 Observation

The evaluation results are summarized in table 2.

Table 2. Evaluation of the four different classes of Architecture Consistency.

Perspective Results
Flexibility coupled > implicit = explicit > injected
Human efforts for
Architecture Consistency coupled > injected > explicit > implicit

Automation injected > explicit > implicit = coupled

Architecture Consistency and automation. Based on the information in table 2, automation

is neither a sufficient condition nor a necessary condition for Architecture Consistency. This
defeats the general belief in the MBSA community that the automation leads to the consistency
between the design model and safety model. In fact, only Architecture Consistency in the injected
class is achieved by automation; Architecture Consistency in the explicit class can only be
examined by automation and in other classes are completely achieved by humans. Furthermore,
automation can be used for automatic aggregation, but aggregation is a different concept from
Architecture Consistency. No correlation can be made between automatic aggregation and
Architecture Consistency. Therefore, while Architecture Consistency is a defining feature of
MBSA, it is inaccurate to equate MBSA with automatic construction of safety model.

The Pareto tradeoff. A simple pareto analysis on the evaluation results in table 2 reveals that

no single class of MBSA is globally superior or inferior. The four different classes perform
differently based on the specific perspective taken.

However, with the three identified standards, the implicit class is dominated by the explicit
class. Compared to the explicit class, the implicit class requires more involvement from the safety
engineer to maintain the architectural consistency, receives less automation support as it does not
have an explicit design model, and has about the same flexibility in modeling complex off-nominal

18

behavior. Therefore, if only the three standards are considered for the tradeoff, the implicit class
should never be selected over the explicit.

Finally, the “Flexibility” row of table 2 has the opposite ranking to the “Automation” row. The
coupled class can model more complex behaviors, but the safety engineer has to be responsible for
the most modeling work as it is the least supported by automation. While the injected class can
model less complex behaviors, the automation can take care of the most modeling activities
including Architecture Consistency and aggregation. The referred class is in between and, to a
certain extent, can be seen as a balance of the trade-off between flexibility and automation.

5 MBSA: Engineering Solution (The Causal Scenario and the Local Effect)
To reiterate, the engineering solution in the context of MBSA is the depiction of the actual off-

nominal behavior with as much fidelity as possible, which is supposed to be language neutral. In
this section, we focus on the other two language-neutral subprocesses to formulate the off-nominal
behavior, the causal scenario, and the local effect. Because the two subprocesses describe how a
fault develops in a component and affects the component, we call them together as a “component
fault process” for simplicity.
5.1 A Framework for the Component Fault Process

Figure 8. Formulating the component fault process top down and bottom up.

Ideally, the component fault process is supposed to depict the actual off-nominal behavior

based on the safety engineer’s domain knowledge. Then a MBSA modeling language can be
selected to represent the component fault process in the safety model. This is the top-down process
in figure 8 and is widely practiced in the scientific modeling community; however, this is
challenging for safety engineering. In the traditional scientific modeling community, there are
usually a set of fundamental laws and principles to describe how the subject under study works in
the real world. These laws and principles are hard facts that the engineers can use to formulate a
language-neutral process. However, the authors are not aware of any such hard facts or if it is even
possible to ask for such hard facts in the safety engineering community. Admittedly, there are a
variety of high-level accident models [112] [129], but none of them are specific enough for a safety
engineer to formulate how a fault develops within a component. As a result, this top-down
approach relies heavily on the expertise of the safety engineer, which in our opinion makes the
safety modeling hard to repeat, to review, and to assure.

Consequently, in practice, many safety engineers rely on the modeling language (specifically
the modeling construct) to formulate the component fault process. This is the bottom-up process

19

in figure 8 where the modeling language provides a structure for modeling, reviewing, and
assurance. This is problematic, because all modeling languages are (rightfully) an abstraction of
the reality (the subprocesses in our context), and this automatically abstracts away the real
phenomenon that is not captured by the modeling language. Using a language correctly does not
mean the correct language is selected in the first place. For example, by selecting FTA, the safety
engineers immediately abstract away the fault propagation among the components. They can select
AADL-EMV2 instead to capture the propagation, but what else is abstracted away by AADL-
EMV2? Most MBSA modeling languages present their own modeling construct without even
addressing what real phenomenon they cannot model, and so safety engineers make abstractions
already without even knowing what is abstracted away by only deciding what modeling language
is going to be used. Abstraction is not the problem here, as a model by definition is an abstraction,
but the point is to make these abstractions explicit.

Therefore, the problem is that there are no hard facts akin to the scientific modeling community
for the component fault process in the safety engineering community. In fact, we doubt whether
there will be any a priori principle such as Newton’s law that can completely depict the component
fault process. However, we take an in-the-middle approach in the paper to solve this problem by
proposing a phenomenon-centric framework to describe the hard facts of the component fault
process. By “phenomenon-centric” we mean it focuses on the real process of how a fault appears,
develops, and affects the component. For safety engineers, the framework can be used to guide the
formulation of the specific component fault process for their project; for the language developer,
the framework can be used as the basis to make explicit decisions about what phenomenon is and
is not supported by the language. In section 5.2, inspired by the Ericson’s hazard theory [123], we
will propose a high-level a priori structure for the framework of the component fault process. Then,
in section 5.3, we use the notable patterns of the component fault process identified in the MBSA
literature to enrich and, more importantly, to specify the framework.
5.2 The Structure of the Phenomenon-centric Framework

According to Ericson [123], a hazard is comprised of three components: hazardous element
(HE), initiating mechanism (IM) and target/threat (T/T). HE is the basic hazardous resource
creating the impetus for the hazard; IM is the trigger or initiator event(s) causing the hazard to
occur. The IM causes actualization or transformation of the hazard from a dormant state to an
active mishap state. T/T is the mishap outcome and the expected consequential damage and loss.
There is a hazard actuation process to transition the system from a benign state to a mishap (figure
9).

Figure 9. The hazard actuation (adopted from figure 2.5 of [123]).

20

Inspired by the hazard actuation process, we propose a structure (figure 10) to depict the actual

process of how a fault develops in a component and affects the component (i.e., the component
fault process). The fundamental belief of this structure is that a component fault is present when
certain conditions are satisfied, and the fault takes effects on the component function when certain
conditions are satisfied. This observation is consistent with the error propagation process proposed
by reference [136] (note the “error” in reference [136] means fault in our context).

Figure 10. The structure to depict the component fault process appears at the top. It can
be mapped to the hazard actuation process at the bottom. The solid arrow represents the
causal sequence and the dotted arrow represents the mapping relationship between the
proposed structure and the hazard actuation process.

Specifically, the HE in the hazard actuation process is defined as a casual factor in our

structure. Each fault is correlated with a set of casual factors, all of which have to be present for
the fault to happen. Furthermore, the IM is decomposed into the activation mechanism and the
impact mechanism. This is driven by the fact that “a fault does not necessarily lead to a failure”
[137], implying two processes in play: one leading to the fault (i.e., the activation mechanism) and
the other leading to the effect of the fault (i.e., the impact mechanism). Finally, the T/T is defined
as the effects on the respective components. As a result, the causal factors and the activation
mechanism comprise the original causal scenario subprocess in the formulate process; the impact
mechanism and the effect comprise the original local effect subprocess.

In summary, figure 10 is a structure that we believe is generally true for any component fault
process. Again, unlike other scientific communities, there is no experiment to prove its validity
definitively. However, it is developed based on well-received works in the System Safety
Engineering community. In fact, in 2007, Ortmeier proposed that failure modeling “split the
(failure) process into two parts: one part is modelling how and when the failure occurs and the
other is to model the direct, local effects of the failure” [52]. In the next section, we will enrich
and specify this structure based on the notable patterns of MBSA literature. Although many works
do not have the explicit structure as in figure 10, the fact that most MBSA works can fit into this
structure indirectly provides evidence of validity for this structure.
5.3 The Notable Patterns to Specify the Phenomenon-centric Framework
5.3.1 Causal Factors

While the specific contents of casual factors vary from application to application, two
questions are usually answered in the MBSA literature about the causal factors: (1) what causes
the fault and (2) what is the likelihood of those causes occurring? Therefore, two notable patterns
are identified for the causal factors: the source and the occurrence (figure 11).

21

Figure 11. Notable patterns for the casual factors associated with a component fault.

The source of the causal factor is determined with respect to the boundary of the component.

As pointed out by reference [53], the component fault can be caused by internal causes or external
causes. Most works stop at this level with the exception of reference [54] which goes on classifying
the external causes into “connected” and “unconnected.” Similar to reference [54], we classify the
external causes into “defined interaction” and “unintended interaction.” The former means the off-
nominal input causes the fault of the component. For example, a voltage (i.e., the input) too high
can break a capacitor in the circuit. A processor depends upon the functioning of a fan, and if the
fan fails, the processor overheats and fails as well. Similar concepts can be found in references
[55] and [138]. Furthermore, new unintended interactions can also be created by the fault of other
components, such as fire and fluid leak. This type of interaction is the secondary effect of a fault
stemming from an external component that is not supposed to interact with the current component
whatsoever. Many MBSA works consider both external and internal fault sources, such as
references [41], [56], and [57], but rarely make the explicit distinction between the faults caused
by the defined interaction and the unintended interaction. We argue that an explicit distinction
should be made between the two different sources of the external causes because (1) the
methodology developer must make sure their modeling language can model both phenomena as
they are inherently different in nature, and (2) identifying the unintended interactions is
challenging, and without explicitly emphasizing it in the formulate process, they are more likely
to be missed by the safety engineer.

For the same reason, another important distinction has to be made between the external cause
and the propagated input fault as in AADL-EMV2. The former leads to component malfunctions,
but the latter does not necessarily so. For example, a current flows into a resistor but is too high
(i.e., the fault) for the operation (say to heat a camera in the space shuttle [139]) yet not high
enough to change the property of the resistor. In this case, the resistor is not faulty although its
input is faulty. The resistor only correctly passes the fault to the camera. Therefore, the faulty
current is not an external cause of the resistor because nothing fails in the resistor although its input
is faulty. If the current is so high that it changes the performance property of the resistor, then the
current becomes an external cause because it leads to improper functioning of the resistor.

The second notable pattern is the occurrence of the causal factor. This aspect determines what
types of safety analysis can be conducted later, i.e., a qualitative one or a quantitative one [58].
For the external causal factors, the occurrence depends on the source component(s), and therefore
is referred. For the internal causal factors, if they are characterized with probability distributions,
then both qualitative analysis and quantitative analysis can be conducted; however, if the
probabilistic distribution is unspecified, then only qualitative analysis can be conducted. The
implication is quite straightforward: if quantitative analysis is required, then the occurrence of the
internal causal factor has to be characterized with probability distribution; otherwise “unspecified”
occurrence will suffice.

22

5.3.2 Activation Mechanism

The causal factors being present is the necessary but not sufficient condition for the fault to be
present. Activation mechanism is the name given to the set of additional conditions (if applicable)
that the causal factors must satisfy to activate the fault, given all the causal factors are present.
This is reflected by some MBSA works defining additional conditions for the fault to occur.
Although we do not believe there is an a priori definition of those conditions, we are able to find
the following list of attributes for the activation mechanism in the literature:
• Sequence: Sometimes the causal factors have to happen in a certain sequence so that the

fault can be activated. This is one of the main advancements of Dynamic Fault Tree over
the traditional FTA.

• Delay: Sometimes it takes time for the fault to happen even after the causal factors are all
present. For example, a pump overheats after no water flows in for a certain period of time.
This time period can be a deterministic one or a probabilistic one [7]. A special case is the
zero-delay, where the fault is activated right after the causal factors are present. The
presence of the causal factors in the zero-delay case is usually modelled as a trigger event
of the fault [46].

• Duration: Sometimes a duration is defined to model the phenomenon that a fault can be
deactivated. A fault can disappear a certain period of time after the activation because of its
transient nature [59] or after being repaired [60]. The characterization of the time can be
deterministic, probabilistic [61], or non-deterministic as suggested by reference [62].

•
5.3.3 Impact Mechanism

The fault being present is the necessary but not sufficient condition for the fault to show effects
on the component. Impact mechanism is the name given to the set of additional conditions (if
applicable) that needs to be satisfied for a given fault to cause the defined effects. This is reflected
by some MBSA works defining additional conditions for the effects to take place. Like the
activation mechanism, we do not believe there is an a priori definition of those conditions, but we
are able to find the following list of patterns for the impact mechanism in the literature:
• Guard: Sometimes the fault can only lead to the defined effects when the system is in a

certain state. In fact, as long as the fault is modeled as an event to trigger a transition, the
source state is the guard. In this case, the transition is the effect of the fault; if the system is
not in the source state, the transition will not be triggered even if the fault is present. For
example, loss of hydraulic supply will only affect the ground deceleration function when
the aircraft is in the state of landing. This guard condition is widely modeled in the
literature such as in state/event fault tree [46] and AltaRica Data-flow [63].

• Delay: As pointed out by reference [33], “the effect of a failure may not immediately cause
an output failure mode and may remain dormant.” The time between the fault being present
and the appearance of the fault effect is usually defined as a “Fault Tolerant Time Interval”
in the literature [64]. For example, this delay is considered a “safety-relevant property” in
SafeDeML [65].

• Determinism: Sometimes it can be uncertain to determine the exact effects of a fault due to
either epistemic uncertainty or aleatoric uncertainty. This uncertainty is traditionally
addressed by modeling the worst-case scenario instead of the uncertain process. Not many
MBSA works have non-deterministic impact process. Reference [66] coins it as
“probabilistic transition conditions.” Reference [67] provides a feature called “branching

23

transition” where multiple target states can be transitioned to following certain probability
distribution from one source state. This feature was originally designed for branching
transient and persistent failure, but it also seems to have the potential to capture the
uncertainty of the impact process.

5.3.4 Effects on the Component

The effects of a fault on the respective component is modelled widely differently in the
literature, but we are able to find the patterns in figure 12.

Figure 12. Notable patterns to model the fault effects on a component. A detailed
classification of a sample pool of MBSA works is given in the Appendix.

As shown in figure 12, two dimensions are identified from the literature: the abstraction and

the semantics. A detailed classification of a sample set of MBSA works is given in the Appendix.
The abstraction dimension determines how many details can be included in the effect model. For
the component level, the fault affects the internal behaviors of a component. This is also called
white box error model in references [45] and [68]. For the architecture level, the fault effects are
represented at the output port of a component and propagated to the input port of other components.
This is also called black box error model in references [45] and [68]. For the function level, the
component is abstracted as a Boolean logic node; the fault sets the node to be false, affecting all
the functional flows that pass through the node. In fact, AADL-EMV2 supports modeling at
exactly all the three levels of abstraction with a slightly different naming system [69][70].
Obviously, modeling at the function level is more abstract than modeling at the architecture level
which is more abstract than modeling at the component level.

The semantics dimension is created based on different interpretations of the local effect. First,
the local effect is interpreted as a deviation to the intended performance of the defined behavior.
In this way, the semantics for the nominal behavior is reused. Second, the local effect is interpreted
as a new behavior (such as omission, commission, early, late, or value deviations) beyond the
original nominal behavior. In this way, only off-nominal states are modeled in the safety model,
hence “off-nominal.” Third, the local effect is interpreted as a new off-nominal state interacting
with the nominal states of the system. In this way, both the nominal states and the off-nominal
states are present in the safety model, hence “hybrid.”

In fact, this semantics dimension is consistent with the classification result of reference [48],
which is based on the semantics of the component interface. When the local effect is represented
by the nominal semantics, the interaction between the components is the “nominal flow,” which
corresponds to the FEM class of reference [48]. When the local effect is only represented by off-
nominal semantics, the interaction between the components is the “fault logic,” which corresponds
to the FLM class. Finally, when the local effect is new off-nominal states interacting with nominal
states, both the nominal state and off-nominal state have to be communicated between the
components, which corresponds to the “hybrid” class in reference [48].

24

5.4 The Phenomenon-centric Framework for the Component Fault Process
The full framework of the component fault free is derived (figure 13). The structure is proposed

in an a priori way based on several well-received works, and the specifics of the framework are
achieved by the notable patterns from the MBSA literature. This phenomenon-centric framework
not only provides a way to organize the notable patterns of the component fault process in MBSA,
but more importantly it is a solution to the problem posed in section 5.1 of lacking the hard facts.
We argue that this framework quasi-functions as the hard facts as in other scientific model
communities.

Figure 13. The resulting phenomenon-centric framework to describe the hard facts of the
component fault process by combing the structure in section 5.2 and notable patterns in
section 5.3.

For the safety engineer, the framework is language neutral. It provides structure to

systematically formulate the real component fault process. The specific patterns presented in the
framework can be used as guidewords to capture different types of phenomena in the component
fault process. Furthermore, the safety engineer can also use the framework as a neutral standard to
compare different alternative modeling languages, and hence become explicitly aware about not
only what fault phenomenon can be modeled by the languages but more importantly what is
abstracted away by the language.

For the language developer, this framework helps them make explicit decisions about what
fault phenomenon will be supported by the modeling construct and what will not. Furthermore,
this framework can also be used as a meta-model of the modeling language (specifically the
modeling construct). By mapping the specific language semantics and syntax to this framework,
it gives the reader more transparency about how the language is designed to represent the real
process and potentially makes the language easier to learn, to use, and to improve.

Finally, although we cannot guarantee the aspects represented in the framework are exhaustive,
thanks to the flexibility of the basic structure, more aspects can be added to the basic structure as
more aspects are found in the MBSA community. This flexibility allows the authors to keep this
framework a living artifact and evolve it as we go.

6 MBSA: The Desired Analysis
Next, the “model of computation” of the MBA in figure 4 corresponds to the safety model.

However, because most of the modeling decisions are made in the previous steps and this step is
only to express the results by using the right syntax in the modeling environment, we skip the step
and proceed to “the desired analysis” of figure 4. In the context of MBSA, the desired analysis is
the safety analysis.

In this paper, we are not interested in the details of how the algorithms are designed and how
the tools are developed, which are closer to the Software Engineering community than System

25

Safety Engineering community. Rather, we focus on the mathematical construct and its implication
to model transformation (section 6.1) and the safety analysis (section 6.2) in the MBSA literature.
6.1 Mathematical Construct

Figure 14. The notable patterns of the mathematical construct.

To reiterate, the mathematical construct is the mathematical formalism (implicit or explicit) of

a modeling language for the automatic analysis by the computer programs. For example, the
mathematical construct of NuSMV is Finite State Machine (FSM) and AltaRica 3.0 is a General
Transition System [71]. The goal is to use the mathematical construct for the desired safety
analysis, either by designing new analysis algorithms or reusing existing tools. If such a goal
cannot be obtained by the current mathematical construct, transformation will be performed until
the desired analysis can be conducted on the resulting mathematical construct.

Based on how the mathematical construct is associated with the modeling construct, we found
the following three notable patterns of the MBSA languages from the literature (figure 14):
• Implicit: This class of languages is developed mostly for representing the system (off-

nominal) behavior in a specific way, and no dedicated mathematical construct is designed
specifically for the language (the dotted box of mathematical construct). The modeling
language has to be transformed (solid line to the model transformation) into a certain,
usually existing and well-supported formalism so that tools can be found for the desired
safety analysis, such as UML in reference [72], Sysml in references [73] and [74], HipHops
in reference [75] and AADL in reference [76].

• Comprehensive: This class of languages are developed with both a modeling construct to
represent the system (off-nominal) behavior and an equivalent mathematical construct for
the analysis (hence the solid boxes), such as the SMV [39] and Statemate [77] [78] with
finite state machine, SLIM with Event Data Automation (EDA) [57], AltaRica with
General Transition System [7], and Arcade with Input/output interactive Markov chains
(I/O-IMC) [55]. However, because it is not guaranteed that the embedded mathematical
construct fits for the desired safety analysis, it is possible further transformation is still
needed (the dotted arrow to model transformation), such as the I/O-IMC to CTMC in [55]
and EDA to MRMC in [57].

• Explicit: This class of languages is, in essence, the mathematical construct, and no
modeling construct is built for the languages (dotted box for the modeling construct). The

26

safety engineer has to build the off-nominal model directly using the mathematical
construct such as the Interface Automaton in reference [79] and Hybrid Automaton [80].
Usually, the formalism is well-supported by existing tools for the desired safety analysis.
Therefore, the model transformation is not necessarily required (a dotted arrow downward).

Figure 15. Comparing the three types of MBSA languages.

In fact, the notable patterns identified above are consistent with references [107] and [81]. Five
criteria are developed [81] to qualitatively compare the effectiveness of a modeling language that
are basically evaluations on the effectiveness of the modeling construct and mathematical
construct described in this paper. Centered on the modeling construct and the mathematical
construct, we further summarize the five criteria into two dimensions: easy to model and ready to
analyze. The three types of languages have opposite performance along the two dimensions.

As shown in figure 15, languages that are intuitive and flexible for modeling (such as UML on
the left of the spectrum) tend to be limited for analyzing, and languages that are ready to be
analyzed tend to make modelling the realistic behavior difficult especially as the system becomes
intrinsically more complex (such as hybrid automaton on the right of the spectrum). The
comprehensive language (such as AltaRica 3.0) meets both metrics in the middle. Unlike the
implicit language that is heavy on the modeling construct and the explicit language that is heavy
on the mathematical formalism, the comprehensive language is more balanced and hence is easier
to use for the safety engineer, but poses a greater challenge to the language developer to have a
language with both the intuition and flexibility for modeling and rigor and readiness for analysis.

At a deeper level, the classification is driven by the amount of information assumed in both
the system to be modelled and the analysis to be conducted. The implicit class mentioned above
does not assume what kind of analysis needs to be conducted later but does assume to a varying
extent what kind of engineering system needs to be modeled. The explicit class does not assume
what kind of engineering system needs to be modeled but does assume to a varying extent what
kind of analysis needs to be conducted. The comprehensive class assumes information to a varying
extent about both the engineering system to be modeled and analysis to be conducted as shown in
figure 15 above.

27

Figure 16. Comparison of modeling language with regard to how much information is
assumed about the system to be modelled (the y-axis) and the desired analysis (the x-
axis). The origin is the general language, like Python (not to imply it is MBSA language),
that does not assume any information at either dimension. The red star at the top-right
corner represents a specific MBSA task that has specific information about the target
engineering system and the desired safety analysis. Given a language (at any point of the
plane) for a specific MBSA task, efforts are made either by the methodology developer (the
black dotted line) or by the safety engineer (the red dotted line) to drive the point moving
towards the red star at top-right corner.

For this reason, a more general comparison between the modeling languages is conducted in

figure 16. The x-axis corresponds to the explicit class of language, which assumes no information
about the engineering system to be modeled. Along the x-axis, languages are positioned with
regard to the relative level of specificity in what kind of the analysis is to be conducted. For
example, Python at the origin is such a general language that can be used for a wide range of
analysis; FSM is a specific mathematical formalism with a more limited range of potentially
available analysis; and Markov Reward Model Checker (MRMC) [141], based on the Markov
process (a mathematical formalism), has a specific range of feasible analysis. Along the x-axis, no
information is assumed about the engineering system to be modelled, but the information about
the analysis to be conducted becomes more specific. Note that, we take a broad definition toward
“modeling language” in this paper. Strictly FSM is a formal mathematical construct and MRMC
is a tool, but a pure mathematical construct can also be used to model engineering systems directly,
and the tool has an input modeling language with specific analysis capability. Hence both of them
are considered languages in this paper, and this definition also applies to Simulink and NuSMV
below.

The y-axis of figure 16 corresponds to the implicit class of language, which assumes no
information about the analysis to be conducted. Along the y-axis, languages are positioned with
regard to the relative level of specificity of what kind of engineering system is to be modelled. For
example, Python is such a general language that can be used to model a wide range of systems,
while SYSML is more specialized in engineering system modeling, and AADL is further restricted
to avionics systems.

The comprehensive class of language is positioned within the plane. Depending on the level
of specificity at each dimension, different languages can be positioned accordingly. For example,

28

Simulink has a specific and unambiguous (although wide) boundary about what systems can be
modelled and what analysis can be conducted, and is thus placed towards the top-right of the plane.

Moreover, figure 16 reveals how a language moving from one point to another fits into the
MBSA (or the more general MBA process). For example, the horizontal movement from AADL
to GSPN is achieved through the “model transformation” mentioned earlier in this section. It does
not make the modeling construct of AADL more specific but gives a mathematical formalism that
adds specificity to analysis of conduct. Another example is the FSM on the x-axis at the bottom.
FSM first moves vertically to SMV [140]. Compared with FSM, SMV has the built-in semantics
to model complex hierarchical systems, which is the added specificity on the engineering system
to be modelled. Furthermore, the NuSMV is a model checker built based on the SMV, through
which specific model checking analysis can be conducted automatically. Compared with SMV,
NuSMV adds specificity to what analysis can be conducted through the dedicated analysis
techniques, thus a horizontal movement. Finally, based on NuSMV, FSAP/NuSMV-SA is
developed for MBSA, which is equipped with additional modeling constructs to describe different
types of components’ faults and dedicated analysis techniques for specific safety analysis. It adds
specificity to both dimensions, thus a movement towards the top-right direction.

For a safety engineer, the MBSA task is usually conducted in a project-by-project manner,
meaning specific information about the system to model and the analysis to conduct is available
for both dimensions. Hence, a MBSA task can be represented by an imaginary red star at the top-
right corner of the plane, and given modeling languages always move towards the top-right
direction to accomplish a specific MBSA task, the movement can be achieved by the language
developer as explained in the last paragraph (the black dotted line in figure 16) or the safety
engineer (the red dotted line in figure 16). For example, to use Python for a MBSA analysis, the
safety engineer has to build the safety model and design the analysis algorithms (hence the top-
right directed arrow) from scratch, which can be extremely challenging. The FTA is very general
in the modeling dimension but very specific in the analysis. For this reason, the safety engineer
has to expend a significant amount of effort in modeling (hence an upward arrow) to perform an
FTA, which is one of the main reasons that MBSA is proposed in the first place. In fact, the more
general a language is, the more effort the safety engineer needs to make for a specific MBSA task
and hence more room for errors.

 Therefore, from the perspective of the methodology developer, there is an incentive to make
the language as specific as possible, i.e., placing it as close to the top-right corner as possible so
that the safety engineer needs to expend the least amount of effort in terms of modeling and
analysis. However, the specificity comes with a price, which is the flexibility of the language. A
Simulink package for control system design is too specific for a financial system, but Python is
general enough to model all kinds of systems. Clearly, the challenge is how to strike a balance
between the specificity (of both dimensions) and flexibility of the modeling language so that the
safety engineer has to expend the least effort for the specific MBSA task, and the language is still
general enough for a wide range of systems and analysis. This is an open challenge for future work.
6.2 Safety Analysis

Safety analysis in a more general sense usually implies a safety modeling process and an
analysis process based on the safety model. In this section we use the term in latter sense.
Furthermore, in MBSA, the safety analysis is supposed to be automatically conducted by the tools
after the safety model is constructed. This is a defining feature, because if the safety analysis cannot
be conducted automatically, it is not even MBA let alone a MBSA. Therefore, automatic safety
model analysis is a defining feature of MBSA.

29

In the rest of this section, we focus on the notable patterns of safety analysis. We first discuss
one of the most prominent analyses, automatic FTA, then a complete list is given for all the
different types of safety analysis we found in the MBSA literature.

6.2.1 Automatic FTA

One of the most popular MBSA safety analyses is automatic FTA [82]–[84]. It is true that with
proper automation support, the automatic generation of a fault tree can lead to the Architecture
Consistency between the design model and safety model, a defining feature of MBSA. But it does
not necessarily guarantee the quality of the fault tree. In fact, the involvement of automation can
give the safety engineer a false sense of complacency, an illusion that because it is done
automatically, it must be correct [100]. Failure modes being organized in the form of a fault tree
do not necessarily mean a fault tree analysis is appropriately conducted.

At its core, FTA is a deductive analysis, identifying the possible casual scenarios for a high-
level event. On the surface, the automation eliminates the deductive process. However, it does not
eliminate the necessity of the deductive analysis. It only pushes it to the phase where the
component fault is identified and defined. To make the situation worse, the original
methodological support provided by the traditional FTA now is automated away by the idea of
automatic generation of a fault tree. In fact, most MBSA works take the lower level causal factors
as given. No rationale is given about how these failure modes are generated in the first place, and
thus there is no way to review whether all the possible causal factors are identified to a reasonable
extent. Reference [30] tries to tackle this problem with a bottom-up formal analysis, but it only
applies to low-level devices. This significantly compromises its effectiveness in the development
of system architectures, which is actually the whole point of FTA in reference [113].

In fact, most fault trees in MBSA are automatically reconstructed from a bottom-up inductive
analysis, which is actually a logic equivalence of failure modes and effects analysis (FMEA).
Therefore, MBSA can be an appropriate approach to automate FMEA, but not necessarily FTA. It
can even be counterproductive as the false sense of complacency in automated FTA can lead to a
less rigorous review process.

6.2.2 Notable Patterns of Safety Analysis

The following types of safety analysis are found in the MBSA literature. Note that only the
commonly conducted safety analysis is recorded here. The less commonly supported analysis is
not included, such as the safety optimization in reference [75] and the error propagation analysis
in reference [85].

(1) Fault tree analysis: This includes the automatic generation of a fault tree, the derivation of
the minimal cut sets, and the calculation of the failure rate. Note that not all works conducts
all three tasks. For example, reference [43] only mentions the generation of the fault tree;
reference [86] only derives the minimal cut set; and reference [87] only addresses the
failure rate calculation for the hazard. However, because all three activities are part of a
conventional FTA, they are all classified as fault tree analysis.

(2) Failure modes and effects analysis (FMEA): This is the automatic generation of FMEA
[88][89]. Because FMEA is a bottom-up process, which is consistent with the inductive
nature of the MBSA practice, it can be truly automated by MBSA.

(3) Reliability Block Diagram (RBD): This is similar to FMEA and can be automatically
accomplished by such as references [41] and [90].

(4) Probabilistic indicators: This is a broad class of analysis for dependability, such as
reliability and availability. We direct readers to reference [136] for a detailed explanation.

30

Example works that cover analysis of probabilistic indicators include references [57] and
[91].

(5) Property verification for nominal behavior: This is the formal verification of nominal
behavior (e.g., refs. [56] and [92]) against function properties. It checks the “goodness” of
a design, which is a precondition for any safety analysis.

(6) Property verification for off-nominal behavior: This is the formal verification of off-
nominal behavior (e.g., refs. [101] and [80]) against function properties. It rigorously
checks whether certain safety constraints can be broken under certain off-nominal
conditions.

(7) Critical sequence: A critical sequence is a sequence of events leading from the initial state
to a critical state. In the case of dynamic models, the order of occurrences of events is
important, and thus the approximation consisting in extracting minimal cut sets is not
suitable: minimal or most probable sequences or sequences of a given length (also called
order) can be extracted by simulation of the model [1]. Example works include references
[1], [72], [93], and [94] .

(8) Trace simulation: This is to display the traces of the individual failure scenarios for the
safety engineering to debug the model and understand the propagation of the fault effect.
It can be a step-wise interactive simulation [63], or the trace of a given number of steps is
output at the end of the simulation [39].

(9) Common cause analysis: This is required in reference [113] and aims at investigating
possible dependencies between the faults and evaluates the consequences in terms of
system safety/reliability [95]. Example works include references [96] and [78].

7 Conclusion

7.1 Defining Features and Notable Patterns
Figure 17 is a summary of the defining features and notable patterns, which are the main goals

of this paper.

Figure 17. A summary of the defining features and notable patterns. Arrow means
“implements” here.

The defining features (left of figure 17) of MBSA include the following three criteria:

31

7.1.1.1 Whether the method can be used to verify the fail-safe property of a system.
7.1.1.2 Whether the design model and safety model are consistent in terms of the architectures;

that is the consistency between the interaction paths defined in the design model and the
propagation paths captured in the safety model.

7.1.1.3 Whether automatic analysis on the safety model is supported.

If a work checks all the criteria above, then it is MBSA; if any of them is not satisfied, then

that work cannot qualify as MBSA.
Moreover, the notable patterns (right side of figure 17) are different schools of thoughts about

different aspects of a MBSA analysis that we found in the literature:
(1) The safety analysis conducted in MBSA is overwhelmingly inductive (bottom-up), but this

does not mean that a deductive (top-down) analysis cannot nor should not be embedded in
MBSA.

(2) The framework of the component fault process provides a template (i.e., a collection of
different patterns) to determine how a fault develops in a component.

(3) Architecture Consistency between the design model and safety model can be achieved in
three ways: injected, referred, and coupled.

(4) There are three types of MBSA languages depending on how mathematical construct is
addressed: explicit, implicit, and comprehensive.

(5) Nine types of safety analysis have been found in the MBSA literature.

In fact, the notable patterns (the arrows in figure 17) implement the defining features. First, to

argue whether a system is fail-safe, given the safety requirements (which come from hazard
identification), a model of off-nominal behavior has to be made, and the model has to be verified
against the given safety requirements. This is implemented by the first two notable patterns. The
deductive analysis is to identify the contributing scenarios including component faults that can
lead to the hazard of interest; the framework helps to make abstraction decisions about how to
model the component fault; the inductive analysis verifies whether the given safety requirements
are satisfied. Second, the three different ways of achieving Architecture Consistency has been
explained in great detail in section 4.3, with pros and cons in section 4.4. Finally, different ways
to embed a mathematical construct in the modeling languages determines what kind of automatic
safety analysis is available and whether model transformation is required before the automatic
safety analysis can be conducted.
7.2 Suggestions Moving Forward.

We explain the findings listed in section 1.
Deductive analysis. As argued in section 3.2.2, the deductive analysis is indispensable in

assuring the safety of a system. Without a deductive (top-down) analysis, the quality of the current
inductive MBSA analyses is dubious at best. Substantially more evidence must be provided to
demonstrate that the identified casual factors coming from inductive methods are complete to an
acceptable extent. Moreover, automatic FTA (section 6.2.1) automates away the deductive process
of the traditional FTA without proposing any effective replacement. MBSA is driven by fields like
Systems Engineering, System Safety Engineering, Software Engineering, and Formal Methods.
The general lack of deductive analysis in the MBSA literature is perhaps caused by the faster
advancement in the last two communities (especially Formal Methods which primarily focus on
inductive analysis) than the first two communities (especially the System Safety Engineering

32

community to which the deductive safety analysis is almost exclusively belong). Moving forward,
it is crucial especially for the System Safety Engineering community to develop new or modify
existing deductive analysis techniques to integrate with the current inductive MBSA methods and
tools, so that together system safety can be assured in a cheaper, faster, and more trustworthy
manner.

Explicit abstraction. Another bottleneck of MBSA is the quality of safety model, which is
also a core topic of the System Safety Engineering community. As argued in section 5, because
there is no set of hard facts for safety engineering, the abstraction of safety models is only guided
by a loose “fit for purpose” principle, which eventually leaves the construction and the review of
the safety model to the discretion of individual safety engineers. To be explicit about what has
been abstracted away, we need the hard facts of the component fault process so that the abstraction
can be made explicitly. The framework proposed in section 5 aims to serve as the hard facts. While
the structure is based on a priori concepts from well-received works, the specifics are from the
phenomenon described in the MBSA literature. We plan to add more phenomenon to the
framework as more works are reviewed from not only the MBSA community but the general
System Safety Engineering community.

Automation. It is a repeated theme in this paper that although automation is conceptually
closely associated with MBSA, it is too broad to be a defining feature of MBSA. It is important
moving forward to not over-claim the contribution due to automation because it can cause a false
sense of complacency, which can be dangerous for safety assurance. Particularly, automation can
play three roles in MBSA: to achieve Architecture Consistency in the specific injected way
(section 4.3), to aggregate the well-defined component faults (section 4.4.3) and to transform and
analyze the safety model (section 6). Finally, because the inductive nature of the current MBSA
practice, it is perfect to automate FMEA but dangerous to automate FTA if no deductive analysis
technique is proposed as a complement. After all, the authors fail to see the difference between
automatic FTA and automatic FMEA in current MBSA practice.

Specificity in the modeling language. This is mainly concerned with the discussion in section

6.1. There is a tradeoff to make between the specificity (in terms of the system to model and
analysis to conduct) and flexibility of the modeling language so that the safety engineer only has
to make minimal effort for the specific MBSA task and the language is still general enough for a
wide range of systems and analysis. The more specific a language is, on one hand, the less room
for errors there is for the safety engineer, but the less flexible the language is. Currently, most
MBSA languages are general enough for flexible applications in different domains, and the desired
safety analysis is pretty specific (see section 6.2.2). It is the specificity along the modeling
dimension (y-axis of figure 16) that needs more investigation. For example, intuitively, AADL-
EMV2 is more specific than FTA as it can model more behaviors (also known as expressiveness
[97] in the literature). But is there any language more specific than AADL-EMV2? How could one
know whether the added specificity is valid? Moreover, what does specificity even mean in safety
engineering? Adding specificity to the modeling dimension will definitely sacrifice the flexibility,
but to what extent; furthermore, is there an optimal solution to the tradeoff between flexibility and
specificity? These are tough questions that need to be answered by the System Safety Engineering
community moving forward. The authors believe the difficulty in answering the questions is
partially caused by the lack of hard facts (see section 5.1) in the System Safety Engineering
community as the baseline for comparison. The framework proposed in section 5.4 and the AADL
error taxonomy in reference [3] are both efforts to build the hard facts for the System Safety
Engineering community. In addition, references [98] and [99] propose System Structure Modeling

33

Language (S2ML), a generic modeling structure to connect the modeling construct and
mathematical construct of a wide range of MBSA languages, which the authors believe is another
promising direction to address the tradeoff between specificity and flexibility.

In summary, current MBSA practice tends to focus on the verification phase of the traditional
safety assessment process [113], where the safety model is taken as a given input. Although the
notion of Architecture Consistency between the safety model and design model improves the
quality of safety model, it is not convincing to the authors that Architecture Consistency is
adequate to ensure the quality of the resulting safety model. Moving forward, we advocate,
especially for the System Safety Engineering community, to put more emphasis on the activities
conducted before the verification phase, which emphasizes how to generate safety models that are
of high quality and also compatible with the current MBSA practices to achieve industry level
maturity for MBSA in the future.

34

8 References
[1] Prosvirnova, Tatiana. AltaRica 3.0: a model-based approach for safety analyses. Diss. 2014.
[2] Larson, Brian, et al. "Illustrating the AADL error modeling annex (v. 2) using a simple safety-

critical medical device." ACM SIGAda Ada Letters 33.3 (2013): 65-84.
[3] Procter, Sam, and Peter Feiler. "The AADL error library: An operationalized taxonomy of

system errors." ACM SIGAda Ada Letters 39.1 (2020): 63-70.
[4] Feiler, Peter, and Julien Delange. "Automated fault tree analysis from aadl models." ACM

SIGAda Ada Letters 36.2 (2017): 39-46.
[5] Machin, Mathilde, et al. "Modeling Functional Allocation in AltaRica to Support

MBSE/MBSA Consistency." International Symposium on Model-Based Safety and
Assessment. Springer, Cham, 2019.

[6] Bieber, Pierre, et al. "Safety assessment with AltaRica." Building the Information Society.
Springer, Boston, MA, 2004. 505-510.

[7] Prosvirnova, Tatiana, et al. "The altarica 3.0 project for model-based safety
assessment." IFAC Proceedings Volumes 46.22 (2013): 127-132.

[8] Mortada, Hala, Tatiana Prosvirnova, and Antoine Rauzy. "Safety assessment of an electrical
system with AltaRica 3.0." International Symposium on Model-Based Safety and Assessment.
Springer, Cham, 2014.

[9] Tlig, Mohamed, et al. "Autonomous Driving System: Model Based Safety Analysis." 2018
48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W). IEEE, 2018.

[10] Kabir, Sohag, et al. "A Conceptual Framework to Incorporate Complex Basic Events in
HiP-HOPS." International Symposium on Model-Based Safety and Assessment. Springer,
Cham, 2019.

[11] Chen, DeJiu, et al. "Systems modeling with EAST-ADL for fault tree analysis through
HiP-HOPS." IFAC Proceedings Volumes 46.22 (2013): 91-96.

[12] Bozzano, Marco, et al. "Safety assessment of AltaRica models via symbolic model
checking." Science of Computer Programming 98 (2015): 464-483.

[13] Braun, Peter, et al. "Model-based safety-cases for software-intensive systems." Electronic
Notes in Theoretical Computer Science 238.4 (2009): 71-77.

[14] Joshi, Anjali, et al. "Model-based safety analysis." (2006).
[15] Batteux, Michel, Tatiana Prosvirnova, and Antoine Rauzy. "Model synchronization: a

formal framework for the management of heterogeneous models." International Symposium
on Model-Based Safety and Assessment. Springer, Cham, 2019.

[16] Bäckström, Ola, et al. "Effective static and dynamic fault tree analysis." International
Conference on Computer Safety, Reliability, and Security. Springer, Cham, 2016.

[17] Junges, Sebastian, et al. "Uncovering dynamic fault trees." 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 2016.

[18] Beckers, Kristian, et al. "A structured and model-based hazard analysis and risk assessment
method for automotive systems." 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2013.

[19] Cancila, Daniela, et al. "Sophia: a modeling language for model-based safety
engineering." 2nd international workshop on model based architecting and construction of
embedded systems, CEUR. Denver, Colorado. 2009.

34

[20] Guiochet, Jérémie. "Hazard analysis of human–robot interactions with HAZOP–
UML." Safety science 84 (2016): 225-237.

[21] Johannessen, Per, et al. "Hazard analysis in object oriented design of dependable
systems." 2001 International Conference on Dependable Systems and Networks. IEEE, 2001.

[22] Kaleeswaran, Arut Prakash, et al. "A domain specific language to support HAZOP studies
of SysML models." International Symposium on Model-Based Safety and Assessment.
Springer, Cham, 2019.

[23] Cuenot, Philippe, et al. "Towards improving dependability of automotive systems by using
the EAST-ADL architecture description language." Architecting dependable systems IV.
Springer, Berlin, Heidelberg, 2007. 39-65.

[24] Cuenot, Philippe, Loic Quéran, and Andreas Baumgart. "Safe Automotive soFtware
architEcture (SAFE)." (2013).

[25] Chen, D., et al. "Integrated safety and architecture modeling for automotive embedded
systems." e & i Elektrotechnik und Informationstechnik 128.6 (2011): 196-202.

[26] Grigoleit, Florian, et al. "The qSafe Project–Developing a Model-based Tool for Current
Practice in Functional Safety Analysis." (2016).

[27] Chaari, Moomen, et al. "Transformation of failure propagation models into fault trees for
safety evaluation purposes." 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshop (DSN-W). IEEE, 2016.

[28] Fenelon, Peter, et al. "Towards integrated safety analysis and design." ACM SIGAPP
Applied Computing Review 2.1 (1994): 21-32.

[29] Lisagor, O., J. A. McDermid, and D. J. Pumfrey. "Towards a practicable process for
automated safety analysis." 24th International system safety conference. Vol. 596. 2006.

[30] Ortmeier, Frank, and Wolfgang Reif. "Failure-sensitive specification: A formal method for
finding failure modes." (2006).

[31] Güdemann, Matthias, and Frank Ortmeier. "Quantitative model-based safety analysis: A
case study." Sicherheit 2010. Sicherheit, Schutz und Zuverlässigkeit (2010).

[32] Wille, Alexander. Contributions to Model-Based Safety Assessment. Diss. Technische
Universität München, 2019.

[33] Lisagor, Oleg. Failure logic modelling: a pragmatic approach. Diss. University of York,
2010.

[34] Joshi, Anjali, et al. "A proposal for model-based safety analysis." 24th Digital Avionics
Systems Conference. Vol. 2. IEEE, 2005.

[35] Bozzano, Marco, and Adolfo Villafiorita. "Improving system reliability via model
checking: The FSAP/NuSMV-SA safety analysis platform." International Conference on
Computer Safety, Reliability, and Security. Springer, Berlin, Heidelberg, 2003.

[36] Akerlund, O., et al. "ISAAC, a framework for integrated safety analysis of functional,
geometrical and human aspects." 2006.

[37] Bozzano, Marco, et al. "Improving safety assessment of complex systems: An industrial
case study." International Symposium of Formal Methods Europe. Springer, Berlin,
Heidelberg, 2003.

[38] Bozzano, Marco, et al. "ESACS: an integrated methodology for design and safety analysis
of complex systems." Proc. ESREL. Vol. 2003. Balkema Publisher, 2003.

[39] Bozzano, Marco, and Adolfo Villafiorita. "The FSAP/NuSMV-SA safety analysis
platform." International Journal on Software Tools for Technology Transfer 9.1 (2007): 5.

3�

[40] Grunske, Lars, and Jun Han. "A comparative study into architecture-based safety
evaluation methodologies using AADL's error annex and failure propagation models." 2008
11th IEEE High Assurance Systems Engineering Symposium. IEEE, 2008.

[41] Delange, Julien, et al. AADL fault modeling and analysis within an ARP4761 safety
assessment. No. CMU/SEI-2014-TR-020. CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST, 2014.

[42] Parker, David, Martin Walker, and Yiannis Papadopoulos. "Model-based functional safety
analysis and architecture optimisation." Embedded Computing Systems: Applications,
Optimization, and Advanced Design. IGI Global, 2013. 79-92.

[43] Kaiser, Bernhard, Peter Liggesmeyer, and Oliver Mäckel. "A new component concept for
fault trees." Proceedings of the 8th Australian workshop on Safety critical systems and
software-Volume 33. 2003.

[44] McDermid, John A., et al. "Experience with the application of HAZOP to computer-based
systems." COMPASS'95 Proceedings of the Tenth Annual Conference on Computer
Assurance Systems Integrity, Software Safety and Process Security'. IEEE, 1995.

[45] Fenelon, Peter, and John A. McDermid. "New directions in software safety: Causal
modelling as an aid to integration." Workshop on Safety Case Construction, York (March
1994). 1992.

[46] Kaiser, Bernhard, Catharina Gramlich, and Marc Förster. "State/event fault trees—A safety
analysis model for software-controlled systems." Reliability Engineering & System
Safety 92.11 (2007): 1521-1537.

[47] Piriou, Pierre-Yves, Jean-Marc Faure, and Jean-Jacques Lesage. "Control-in-the-loop
model based safety analysis." 2014.

[48] Lisagor, Oleg, Tim Kelly, and Ru Niu. "Model-based safety assessment: Review of the
discipline and its challenges." The Proceedings of 2011 9th International Conference on
Reliability, Maintainability and Safety. IEEE, 2011.

[49] Chaudemar, Jean-Charles, et al. "Altarica and event-b models for operational safety
analysis: Unmanned aerial vehicle case study." Workshop on Integration of Model-based
Formal Methods and Tools. 2009.

[50] Chaudemar, Jean-Charles, Eric Bensana, and Christel Seguin. "Model based safety analysis
for an unmanned aerial system." (2010).

[51] Mohrle, Felix, et al. "Automated compositional safety analysis using component fault
trees." 2015 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2015.

[52] Ortmeier, Frank, Matthias Güdemann, and Wolfgang Reif. "Formal failure models." IFAC
Proceedings Volumes 40.6 (2007): 145-150.

[53] Papadopoulos, Yiannis, and John A. McDermid. "Hierarchically performed hazard origin
and propagation studies." International Conference on Computer Safety, Reliability, and
Security. Springer, Berlin, Heidelberg, 1999.

[54] Joshi, Anjali, and Mats PE Heimdahl. "Behavioral fault modeling for model-based safety
analysis." 10th IEEE High Assurance Systems Engineering Symposium (HASE'07). IEEE,
2007.

[55] Boudali, Hichem, et al. "Architectural dependability evaluation with Arcade." 2008 IEEE
International Conference on Dependable Systems and Networks With FTCS and DCC (DSN).
IEEE, 2008.

3�

[56] Stewart, Danielle, et al. "Architectural modeling and analysis for safety
engineering." International Symposium on Model-Based Safety and Assessment. Springer,
Cham, 2017.

[57] Bozzano, Marco, et al. "Safety, dependability and performance analysis of extended AADL
models." The Computer Journal 54.5 (2011): 754-775.

[58] Gudemann, Matthias, and Frank Ortmeier. "A framework for qualitative and quantitative
formal model-based safety analysis." 2010 IEEE 12th International Symposium on High
Assurance Systems Engineering. IEEE, 2010.

[59] Ortmeier, Frank, Wolfgang Reif, and Gerhard Schellhorn. "Deductive cause-consequence
analysis (DCCA)." IFAC Proceedings Volumes 38.1 (2005): 62-67.

[60] Chaux, P., et al. "Qualitative analysis of a bdmp by finite automaton." Advances in Safety,
Reliability and Risk Management (2011): 329-329.

[61] Ortmeier, Frank, Wolfgang Reif, and Gerhard Schellhorn. "Formal safety analysis of a
radio-based railroad crossing using deductive cause-consequence analysis
(DCCA)." European Dependable Computing Conference. Springer, Berlin, Heidelberg,
2005.

[62] Güdemann, Matthias, and Frank Ortmeier. "Probabilistic model-based safety
analysis." arXiv preprint arXiv:1006.5101 (2010).

[63] Seguin, Christel, et al. "Formal assessment techniques for embedded safety critical
system." 2nd National Workshop on Control Architectures of Robots (CAR’2007). 2007.

[64] Gonschorek, Tim, et al. "Integrating Safety Design Artifacts into System Development
Models Using SafeDeML." International Symposium on Model-Based Safety and
Assessment. Springer, Cham, 2019.

[65] Gonschorek, Tim, et al. "SafeDeML: On integrating the safety design into the system
model." International Conference on Computer Safety, Reliability, and Security. Springer,
Cham, 2019.

[66] Braman, Julia MB, and Richard M. Murray. "Probabilistic safety analysis of sensor-driven
hybrid automata." Hybrid Systems: Computation and Control (2009).

[67] Delange, Julien, and Peter Feiler. "Architecture fault modeling with the AADL error-model
annex." 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 2014.

[68] Cuenot, P., et al. "Applying model based techniques for early safety evaluation of an
automotive architecture in compliance with the ISO 26262 standard." 2014.

[69] Kushal, K. S., Manju Nanda, and J. Jayanthi. "Architecture level safety analyses for safety-
critical systems." International Journal of Aerospace Engineering 2017 (2017).

[70] Delange, Julien, and Peter Feiler. "Architecture fault modeling with the AADL error-model
annex." 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 2014.

[71] Batteux, Michel, Tatiana Prosvirnova, and Antoine Rauzy. "Modeling patterns for the
assessment of maintenance policies with AltaRica 3.0." International Symposium on Model-
Based Safety and Assessment. Springer, Cham, 2019.

[72] Leitner-Fischer, Florian, and Stefan Leue. "Quantitative analysis of UML
models." Proceedings of Modellbasierte Entwicklung eingebetteter Systeme (MBEES 2011).
Dagstuhl, Germany 27 (2011).

3�

[73] Yakymets, Nataliya, Matthieu Perin, and Agnes Lanusse. "Model-driven multi-level safety
analysis of critical systems." 2015 Annual IEEE Systems Conference (SysCon) Proceedings.
IEEE, 2015.

[74] David, Pierre, Vincent Idasiak, and Frederic Kratz. "Reliability study of complex physical
systems using SysML." Reliability Engineering & System Safety 95.4 (2010): 431-450.

[75] HiP-HOPS. “Automated Fault Tree, FMEA and Optimisation Tool." (2013).
[76] Mokos, Konstantinos, et al. "Ontology-based model driven engineering for safety

verification." 2010 36th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 2010.

[77] Bretschneider, Matthias, et al. "Model‐based Safety Analysis of a Flap Control
System." INCOSE International Symposium. Vol. 14. No. 1. 2004.

[78] Peikenkamp, Thomas, et al. "Towards a unified model-based safety
assessment." International Conference on Computer Safety, Reliability, and Security.
Springer, Berlin, Heidelberg, 2006.

[79] Zhao, Lin, et al. "Failure Propagation Modeling and Analysis via System
Interfaces." Mathematical Problems in Engineering 2016 (2016).

[80] Liu, Jintao, et al. "Functional safety analysis method for CTCS level 3 based on hybrid
automata." 2012 IEEE 15th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops. IEEE, 2012.

[81] Boudali, Hichem, et al. "Arcade-A formal, extensible, model-based dependability
evaluation framework." 13th IEEE International Conference on Engineering of Complex
Computer Systems (iceccs 2008). IEEE, 2008.

[82] Dickerson, Charles E., Rosmira Roslan, and Siyuan Ji. "A formal transformation method
for automated fault tree generation from a UML activity model." IEEE Transactions on
Reliability 67.3 (2018): 1219-1236.

[83] Clegg, Kester, et al. "Integrating Existing Safety Analyses into SysML." International
Symposium on Model-Based Safety and Assessment. Springer, Cham, 2019.

[84] Bozzano, Marco, Alessandro Cimatti, and Francesco Tapparo. "Symbolic fault tree
analysis for reactive systems." International Symposium on Automated Technology for
Verification and Analysis. Springer, Berlin, Heidelberg, 2007.

[85] Wallace, Malcolm. "Modular architectural representation and analysis of fault propagation
and transformation." Electronic Notes in Theoretical Computer Science 141.3 (2005): 53-71.

[86] Yang, Liu, and Antoine Rauzy. "FDS-ML: A New Modeling Formalism for Probabilistic
Risk and Safety Analyses." International Symposium on Model-Based Safety and
Assessment. Springer, Cham, 2019.

[87] Gomes, Adriano, et al. "Constructive model-based analysis for safety
assessment." International Journal on Software Tools for Technology Transfer 14.6 (2012):
673-702.

[88] Adedjouma, Morayo, and Nataliya Yakymets. "A framework for model-based
dependability analysis of cyber-physical systems." 2019 IEEE 19th International Symposium
on High Assurance Systems Engineering (HASE). IEEE, 2019.

[89] Bonfiglio, Valentina, et al. "Software faults emulation at model-level: Towards automated
software fmea." 2015 IEEE International Conference on Dependable Systems and Networks
Workshops. IEEE, 2015.

3�

[90] Helle, Philipp. "Automatic SysML-based safety analysis." Proceedings of the 5th
International Workshop on Model Based Architecting and Construction of Embedded
Systems. 2012.

[91] Dong, Li, et al. "Model-based System Reliability Analysis by using Monte Carlo
Methods." 2019 Prognostics and System Health Management Conference (PHM-Qingdao).
IEEE, 2019.

[92] Joshi, Anjali, and Mats PE Heimdahl. "Model-based safety analysis of simulink models
using SCADE design verifier." International Conference on Computer Safety, Reliability,
and Security. Springer, Berlin, Heidelberg, 2005.

[93] Leitner-Fischer, Florian, and Stefan Leue. "QuantUM: Quantitative safety analysis of
UML models." arXiv preprint arXiv:1107.1198 (2011).

[94] Beer, Adrian, et al. "Analysis of an Airport Surveillance Radar using the QuantUM
approach." (2012).

[95] Fondazione Bruno Kessler. “xSAP User Manual” (2019).
[96] Bittner, Benjamin, et al. "The xSAP safety analysis platform." International Conference

on Tools and Algorithms for the Construction and Analysis of Systems. Springer, Berlin,
Heidelberg, 2016.

[97] Yang, Liu, Antoine Rauzy, and Cecilia Haskins. "Finite degradation structures: a formal
framework to support the interface between MBSE and MBSA." 2018 IEEE International
Systems Engineering Symposium (ISSE). IEEE, 2018.

[98] Rauzy, Antoine, and Chaire Blériot-Fabre. "Model-based safety assessment: Rational and
trends." 2014 10th France-Japan/8th Europe-Asia Congress on Mecatronics
(MECATRONICS2014-Tokyo). IEEE, 2014.

[99] Batteux, Michel, Tatiana Prosvirnova, and Antoine Rauzy. "From models of structures to
structures of models." 2018 IEEE International Systems Engineering Symposium (ISSE).
IEEE, 2018.

[100] Lisagor, Oleg, Linling Sun, and Tim Kelly. "The illusion of method: Challenges of model-
based safety assessment." 28th international system safety conference (ISSC). System Safety
Society, 2010.

[101] Bozzano, Marco, et al. "Formal design and safety analysis of AIR6110 wheel brake
system." International Conference on Computer Aided Verification. Springer, Cham, 2015.

[102] Pajic, Miroslav, et al. "Model-driven safety analysis of closed-loop medical
systems." IEEE Transactions on Industrial Informatics 10.1 (2012): 3-16.

[103] Althoff, Matthias. Reachability analysis and its application to the safety assessment of
autonomous cars. Diss. Technische Universität München, 2010.

[104] Whittle, Jon, John Hutchinson, and Mark Rouncefield. "The state of practice in model-
driven engineering." IEEE software 31.3 (2013): 79-85.

[105] Scippacercola, Fabio. “A Model-Driven Methodology for Critical Systems Engineering.”
(2016).

[106] Jensen, Jeff C., Danica H. Chang, and Edward A. Lee. "A model-based design
methodology for cyber-physical systems." 2011 7th International Wireless Communications
and Mobile Computing Conference. IEEE, 2011.

[107] France, Robert, and Bernhard Rumpe. "Model-driven development of complex software:
A research roadmap." Future of Software Engineering (FOSE'07). IEEE, 2007.

3�

[108] Larsen, Peter Gorm, et al. "Integrated tool chain for model-based design of Cyber-Physical
Systems: The INTO-CPS project." 2016 2nd International Workshop on Modelling, Analysis,
and Control of Complex CPS (CPS Data). IEEE, 2016.

[109] Akdur, Deniz, Vahid Garousi, and Onur Demirörs. "A survey on modeling and model-
driven engineering practices in the embedded software industry." Journal of Systems
Architecture 91 (2018): 62-82.

[110] Manjunath, T. V., and P. M. Suresh. "Structural and thermal analysis of rotor disc of disc
brake." International journal of innovative research in science, Engineering and
Technology 2.12 (2013): 2319-8753.

[111] Bhatt, Devesh, et al. "Model-based development and the implications to design assurance
and certification." 24th Digital Avionics Systems Conference. Vol. 2. IEEE, 2005.

[112] Leveson, Nancy G. Engineering a safer world: Systems thinking applied to safety. The
MIT Press, 2016.

[113] ARP4761, S. A. E. "Guidelines and Methods for Conducting the Safety Assessment
Process on Airborne Systems and Equipment." USA: The Engineering Society for Advancing
Mobility Land Sea Air and Space (1996).

[114] Liebel, Grischa, et al. "Assessing the state-of-practice of model-based engineering in the
embedded systems domain." International Conference on Model Driven Engineering
Languages and Systems. Springer, Cham, 2014.

[115] Rugina, Ana-Elena, Karama Kanoun, and Mohamed Kaâniche. "A system dependability
modeling framework using AADL and GSPNs." Architecting Dependable Systems IV.
Springer, Berlin, Heidelberg, 2007. 14-38.

[116] ISO, ISO26262. "26262: Road vehicle - Functional safety." International Standard
ISO/FDIS 26262 (2011).

[117] Ladkin, Peter B. "An overview of IEC 61508 on E/E/PE functional safety." Bielefeld,
Germany (2008).

[118] Hai, Bhuiyan Shameem Mahmood Ebna, and Markus Bause. "Finite element model-based
structural health monitoring (SHM) systems for composite material under fluid-structure
interaction (FSI) effect." 2014.

[119] Gardner, Paul. On novel approaches to model-based structural health monitoring. Diss.
University of Sheffield, 2018.

[120] Heitner, Barbara, et al. "Probabilistic modelling of bridge safety based on damage
indicators." Procedia engineering 156 (2016): 140-147.

[121] Liao, Chung-Min, Yu-Hui Chiang, and Chia-Pin Chio. "Model-based assessment for
human inhalation exposure risk to airborne nano/fine titanium dioxide particles." Science of
the total environment 407.1 (2008): 165-177.

[122] Melzner, Jürgen, et al. "Model-based construction work analysis considering process-
related hazards." 2013 Winter Simulations Conference (WSC). IEEE, 2013.

[123] Ericson, Clifton A. Hazard analysis techniques for system safety. John Wiley & Sons,
2015.

[124] DoD, U. S. "Mil-std-882e, department of defense standard practice system safety." US
Department of Defense (2012).

[125] Fleming, Cody Harrison, et al. "Safety assurance in NextGen and complex transportation
systems." Safety science 55 (2013): 173-187.

4�

[126] Sinha, Purnendu. "Architectural design and reliability analysis of a fail-operational brake-
by-wire system from ISO 26262 perspectives." Reliability Engineering & System
Safety 96.10 (2011): 1349-1359.

[127] Krach, Sebastian Dieter. "Model-based architecture robustness analysis for software-
intensive autonomous systems." 2017 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, 2017.

[128] Leveson, Nancy, and John Thomas. "An STPA primer." Cambridge, MA (2013).
[129] Hollnagel, Erik. FRAM, the functional resonance analysis method: modelling complex

socio-technical systems. Ashgate Publishing, Ltd., 2012.
[130] Panesar-Walawege, Rajwinder Kaur, Mehrdad Sabetzadeh, and Lionel Briand.

"Supporting the verification of compliance to safety standards via model-driven engineering:
Approach, tool-support and empirical validation." Information and Software
Technology 55.5 (2013): 836-864.

[131] Broy, Manfred, et al. "What is the benefit of a model-based design of embedded software
systems in the car industry?" Emerging Technologies for the Evolution and Maintenance of
Software Models. IGI Global, 2012. 343-369.

[132] Barbieri, Giacomo, Cesare Fantuzzi, and Roberto Borsari. "A model-based design
methodology for the development of mechatronic systems." Mechatronics 24.7 (2014): 833-
843.

[133] Jayakumar, Athira Varma. "Systematic Model-based Design Assurance and Property-
based Fault Injection for Safety Critical Digital Systems." (2020).

[134] Hutchinson, John, et al. "Empirical assessment of MDE in industry." Proceedings of the
33rd international conference on software engineering. 2011.

[135] Bozzano, Marco, et al. "Formal safety assessment via contract-based design." International
Symposium on Automated Technology for Verification and Analysis. Springer, Cham, 2014.

[136] Avizienis, Algirdas, et al. "Basic concepts and taxonomy of dependable and secure
computing." IEEE transactions on dependable and secure computing 1.1 (2004): 11-33.

[137] ARP4754A, S. A. E. "Guidelines for Development of Civil Aircraft and Systems. 2010."
(2019).

[138] Walter, Max, Markus Siegle, and Arndt Bode. "OpenSESAME—the simple but extensive,
structured availability modeling environment." Reliability Engineering & System Safety 93.6
(2008): 857-873.

[139] Jones, G., et al. "Human-Rated Automation and Robotics." Jet Propulsion Laboratory, JPL
D-66871, Pasadena, CA (2010).

[140] Cimatti, Alessandro, et al. "NuSmv: a reimplementation of smv." Proceeding of the
International Workshop on Software Tools for Technology Transfer (STTT-98). 1998.

[141] Katoen, Joost-Pieter, et al. "The ins and outs of the probabilistic model checker
MRMC." Performance evaluation 68.2 (2011): 90-104.

4�

Appendix
The following sample of MBSA works is classified based on the patterns of fault effect model

discussed in section 5.3.4. Note that, some works appear in more than one cells because the fault
effects are defined at multiple level of abstraction.

Off-nominal Hybrid Nominal
Function [43], [90] [41], [46], [55] NA

Architecture
[27], [43], [45], [64],
[75], [85], [86], [87],
[135]

[1], [41], [46], [55], [57],
[63], [72], [79], [80] [89], [92], [91]

Component [64] [1], [41], [46], [57], [63],
[72], [79]

[39], [54], [56], [77],
[78]

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

3. DATES COVERED (From - To)
2016-2020

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

8. PERFORMING ORGANIZATION
REPORT NUMBER

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19b. TELEPHONE NUMBER (Include area code)

1. REPORT DATE (DD-MM-YYYY)

01-0�-2021
2. REPORT TYPE

Contractor Report

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration Washington, DC
20546-0001

10. SPONSOR/MONITOR'S ACRONYM(S)
NASA

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA-CR-2020�00����
12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified
Subject Category: 62
Availability: NASA STI Program (757) 864-9658

 U U U UU

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk(email help@sti.nasa.gov�

(757) 864-9658

13. SUPPLEMENTARY NOTES

/DQJOH\�7HFKQLFDO�0RQLWRU��&��0LFKDHO�+ROORZD\

4. TITLE AND SUBTITLE

'HILQLQJ�DQG�5HDVRQLQJ�DERXW�0RGHO�EDVHG�6DIHW\�$QDO\VLV��$�5HYLHZ

6. AUTHOR(S)

0LQJKXL�6XQ��&RG\�+��)OHPLQJ��0LOHQD�0LOLFK

5a. CONTRACT NUMBER

5f. WORK UNIT NUMBER

14. ABSTRACT

0RGHO�EDVHG VDIHW\ DQDO\VLV �0%6$� KDV EHHQ DURXQG IRU RYHU WZR GHFDGHV� 7KH EHQHILWV RI 0%6$ KDYH EHHQ ZHOO�GRFXPHQWHG LQ WKH
OLWHUDWXUH� VXFK DV WDFNOLQJ FRPSOH[LW\� LQWURGXFLQJ)RUPDO 0HWKRGV WR HOLPLQDWH WKH DPELJXLW\ LQ WKH WUDGLWLRQDO VDIHW\ DQDO\VLV� XVLQJ
DXWRPDWLRQ WR UHSODFH WKH HUURU�SURQH PDQXDO VDIHW\ PRGHOLQJ SURFHVV� DQG HQVXULQJ FRQVLVWHQF\ EHWZHHQ WKH GHVLJQ PRGHO DQG WKH
VDIHW\ PRGHO� +RZHYHU� WKHUH LV VWLOO D ODFN RI FRQVHQVXV RQ ZKDW 0%6$ HYHQ LV� 7KLV SDSHU SURYLGHV DQ DSSURDFK WRZDUGV GHYHORSLQJ
VXFK D FRQVHQVXV�

15. SUBJECT TERMS

PRGHO� PRGHO�EDVHG� VDIHW\ HQJLQHHULQJ� VDIHW\� VDIHW\ DQDO\VLV

��

11;1�$.��$

Appendix C: The design of the reference architecture

���

The three tasks of the controller follow the timeline of Fig.�. All tasks end at the
same time, which is the SEB comes to the planned end, but they start at different
time. Task � starts at the earliest time when the functional goal is received from
the upper level of control; Task � starts when the SEB is de�ned by Task �; Task
� starts when the control reference is de�ned by Task �; the controlled process
starts the execution when the control action is de�ned by Task �.

Figure �: The general timeline of the three tasks of a controller.

� The building block

The building block of the reference architecture is an action, which is in the for-
malism below and follow the graphical format in Fig.�.

{Input-output-transformation-Trigger-Guard}.

Figure �: The graphical representation of an action written in the proposed for-
malism. All the actions will follow such format in the rest of this paper.

• Transformation, input and output: It is the mapping (of data, energy, mate-
rial, etc) from the input to the output. An actionmust have a transformation
and an output. The input either comes from other actions or elements out
of the design scope.

Appendix C: Page �

• Trigger: The occurrence of a trigger event initiates the activation of the
action. If the trigger is not depicted in the action graph, then as long as the
guard condition is true, the action can take place immediately, given the
inputs are available.

• Guard: The guard condition has two functions: (�) if the guard condition is
not satis�ed, then the action cannot start, and (�) for the action that is still
in execution, it has to stop if the guard condition becomes unsatisfactory.
If the guard is not depicted in the action graph, then once the trigger event
occurs, the action can take place freely, given the inputs are available.

Furthermore, we make the following prescription for an action:

• The connection between actions does not add any time delay or value de-
viation to whatever being communicated.

• Even if the trigger event occurred and the guard condition is satis�ed, the
action still needs all the inputs to be effective to execute. If any of the
input becomes null, the action sets the output to null immediately. Note
that setting the output to null does not terminate an action. Furthermore, if
the input changeswhile the action is being executed, the current execution
stops immediately (without changing the current output value), and a new
execution starts with the new input value.

• Once an action starts, it can only be terminated by the guard condition
becoming false.

• For an action with multiple outputs, the outputs are always synchronized.

• An action always takes time. However, we assume in this work that all
enabling actions can be accomplished instantaneously, and the expected
time for main action MA

i

is denoted as e
i

.

• Currently, only the conditions to issue “Request for Resolution (RfR)” are all
de�ned, but how the RfRs should be resolved is not considered, which is a
limitation of the current version of reference architecture. We will address
this limitation in the future versions.

In summary, the reference architecture is comprised of a set of connected ac-
tions. Each action has a transformation that determines the mapping between
the input and the output whose occurrence are de�ned by the “trigger event” and
“guard condition”. Note that the difference between an “action” and a “transfor-
mation” is non-trivial. It is part of the reason that why an old system is not nec-
essarily safe to use in a new environment even for the same operation, because
the new environment might require a different set of trigger events and guard
conditions to start and stop the operation.

Appendix C: Page �

� Task �: Perceive prescriptive constraints

�.� Fundamentals

Wepresent thework�owof Task � in this subsection. Thework�owconsists of a
set of transformations that together describes howTask �works in a conceptual
sequence, speci�cally from Stage � to Stage � and following the sequence that
each transformation is described within the respective “themes”.

As explained in the previous section, Task � is to generate the SEB (and up-
date it if necessary) that will achieve the functional goal and to avoid the hazard
at the same time. Three stages are selected from the general timeline in Fig.�
based on the applicable safety requirements.

Figure �: Three stages of Task �. Stage � is different from Stage � in that
(msp0, nsp0, csp0) is not included in the safety requirements for Stage � because
the functional goal has already been achieved at that time.

• Stage �: This stage begins when the functional goal is received and has to
�nd the satisfactory SEB before themust-start time window (if applicable)
expires.

• Stage �: This stage begins when the planned SEB starts and has to make
sure the output behavior stops before the must-stop time window (if ap-
plicable) expires.

• Stage �: This stage begins when the functional goal is achieved and has
to make sure the output behavior stops before the must-stop time window
(if applicable) expires. It is different from Stage � in that (msp0, nsp0, csp0)
can be taken out of the safety requirements because the functional goal
has already been achieved.

Each stage has two main themes of actions, which are (�) generating the
SEB and (�) monitoring the SEB. In the rest of this subsection, we are going to
explain the work�ow of Task � organized by these two themes. Note that the
work�ow of each theme at each stage is comprised of a set of transformations.

�.�.� Stage �

In this stage, the generation of the SEB (Fig.�) is triggered by the receive of the
functional goal or the update signal from the monitoring theme (Fig.�).

Appendix C: Page �

Figure �: Generating the SEB. In-B: in-behavior; E: environment; st: start time; sp:
stop time.

Five transformations are de�ned as following to generate the SEB (Fig.�).

8
>>>>>>><

>>>>>>>:

(E,FG,CP)
f1�! (pci, pc, pco)

(E, In-B, pci, pc, CP)
f2�! (mst_T, nst_T, cst_T)

(mst_T, nst_T, cst_T) f3�! st

(In� B, st, E, pc)
f4�! y(t)

(y(t), E, pco)
f5�! sp

• f1: This transformation is to determine the performance constraints based
on the observation of the external environment, the controlled process, and
the functional goal received from higher level. The performance constraint
may vary over some attributes from the external environment. For exam-
ple, the distance to the terrain depends on the type of the terrain, such as
residence, power line, etc. The functional goal (FG) is used to determine
the associated performance constraint pc0, which is part of pc.

• f2: This transformation is to decide the safety requirements for the start
time of the SEB based on the external environment, the controlled process,
the projection of the in-behavior and the performance constraints of the in-
behavior and the intended behavior. Furthermore, it is possible that there
is internal con�icts (i.e. deadlock) between mst_T and nst_T , in which
case no start time exists to satisfy both mst_T and nst_T . See the “safety
requirements” for a detailed example. Various resolution can be taken to
address this situation, for example requesting change of the in-behavior,
or request change of the external environment (if it can be changed), or
simply waiting if the external environment is highly dynamic. Regardless
of the resolution, this con�ict must be resolved beforemst_T expires, oth-
erwise the system will enter the contingency mode.

• f3: This transformation is simply the selection of the start time based on
the determined safety requirements from f2.

Appendix C: Page �

• f4: This transformation is to determine the desired evolutionary trajectory
of the SEB, which has to start with the value of the In�B at st and satisfy
its performance constraint pc with respect to the external environment E.

• f5: This transformation is to make sure the SEB stops in a way that will
not lead to the violation of the performance constraints (pco) of the out-
behavior.

f3, f4 and f5 are highly coupled, because y(t) starts with the st and the stop
time sp is decided based on a tentative y(t). If f4 or f5 cannot �nd the y(t) or
sp, it has to be fed back to f3 for a new st. Therefore, the three transformations
can be composed as the transformation f3|4|5 below. Furthermore, it might take
an extended period of time to �nd st, y(t) and sp (i.e. the SEB). The bottom line
is that a satisfactory SEB has to be found before mst_T expires, otherwise the
system will enter the contingency mode.

(In� B,E, pc, pco,mst_T, nst_T, cst_T)
f3|4|5���! (st, y(t), sp)

As a whole, the generation of the SEB (Fig.�) takes the in-behavior and infor-
mation from the environment, and outputs the start time (st), the stop time (sp)
and the dynamic trajectory (y(t)). It has to be accomplished within mst_T .

(E,FG, In-B,CP)! (st, y(t), sp) (�)

Figure �: Monitoring the SEB in Stage �. In-B: in-behavior; E: environment; st:
start time; sp: stop time.

Five transformations are identi�ed for monitoring the SEB (Fig.�), triggered
by the change of the projection of the in-behavior, the environment or the func-
tional goal. We assume if any of st, y(t) or sp is unsatisfactory, the de�ned SEB
is discarded and a new one must be generated, because the controller should
not knowingly start an unsatisfactory output behavior. In this way, the �ve trans-
formations make sure the planned SEB is always satisfactory and the controller
will not execute an unsatisfactory SEB.

Appendix C: Page �

8
>>>>>>><

>>>>>>>:

(E,FG,CP)
f1�! (pci, pc, pco)

(E, In-B,CP, pci, pc)
f2�! (mst_T, nst_T, cst_T)

(st,mst_T, nst_T, cst_T) f6�! sebStatus1

(In� B, y(t), pc, E)
f7�! sebStatus2

(sp, pco, E)
f8�! sebStatus3

• f1 and f2 are already de�ned for generating the SEB, and hence can be
reused.

• f6: This transformation is to check whether the de�ned start time (st)
still satis�es the safety requirements (mst_T, nst_T, cst_T). If not, then
sebStatus1 is set false.

• f7: This transformation is to check whether the de�ned y(t) still satis�es
pc. If not, then sebStatus2 is set false.

• f8: This transformation is to make sure that the de�ned stop time (sp) still
will not lead to the violation of the performance constraints of the out-
behavior (pco). If not, then sebStatus3 is set false.

As a whole, the monitoring of the SEB can be written as below:

(In-B,E,CP, FG, st, y(t), sp)! sebStatus1/sebStatus2/sebStatus3 (�)

where sebStatus1/sebStatus2/sebStatus3 are the outputs of f6, f7 or f8 respec-
tively. If any of sebStatus1/sebStatus2/sebStatus3 is false, a new SEB must be
generated, and hence the actions in Fig.� will be triggered.

�.�.� Stage � and �

Both Stage � and Stage � are to make sure the output behavior stops before the
mst_T expires. The only difference is that (mst0_T, nst0_T, cst0_T) is not consid-
ered when Stage � is accomplished. But the transformations in the two stages
are quite similar. For this reason, we only explain the shared transformations
once to avoid repetition. For the different transformations, we specify the appli-
cable stages. Furthermore, entering Stage �, there is always a generated SEB
to start with. Therefore, we �rst introduce the monitoring theme (Fig.6); if the
current SEB becomes invalid, then the generating themewill be triggered (Fig.�).

Three transformations are identi�ed for monitoring the SEB (Fig.6), triggered
by the change of the environment and/or the functional goal. In this way, the
transformations make sure the SEB being executed is valid in the changing en-
vironment.

Appendix C: Page 6

Figure 6: Monitoring the SEB in Stage � and Stage �.

8
>>>>>>><

>>>>>>>:

Stage � : (CP,E, FG)
f9�! (pc, pco)

Stage � : (E,CP)
f10�! (pc, pco)

(E, y(t), pco, pc, CP)
f11�! (msp_T, nsp_T, csp_T)

Stage � : (sp,msp_T, nsp_T, csp_T) f12�! sebStatus4

Stage � : (sp,msp_T, nsp_T, csp_T) f12�! sebStatus5

• f9: Similar to f1, this transformation is to calculate the performance con-
straints based on the observation of the external environment, the con-
trolled process and the functional goal received from higher level. But be-
cause the SEB already started in Stage �, the information associated with
the in-behavior is discarded.

• f10: Similar to f9, this transformation is to calculate the performance con-
straints based on the observation of the external environment and the con-
trolled process. But because the functional goal is achieved in Stage �, the
information associated with the functional goal is discarded.

• f11: This transformation is to decide the safety requirements on the stop
time. Similar to f2, there can be a deadlock between the safety require-
ments, and this deadlock has to be resolved beforemsp_T expires regard-
less of the speci�c solutions, otherwise the system must enter the con-
tingency mode. Furthermore, this transformation is conditioned on the
conformance of the de�ned SEB. In other words, if the de�ned SEB is de-
viated by the output behavior, the resulting (msp_T, nsp_T, csp_T) cannot
be trusted. Therefore, no deviation of the SEB is the guard condition of this
transformation.

• f12: This transformation is to check whether the de�ned stop time (sp) still
satis�es the safety requirements (msp_T, nsp_T, csp_T). If not, sebStatus
is set false and a new SBE must be generated. In this case, the “generate”
theme in Fig.� is triggered.

As a whole, the monitoring of the SEB can be written as below, conditioned on

Appendix C: Page �

no deviation of y(t):
(
Stage � : (E,FG, y(t), sp)! sebStatus4
Stage � : (E, y(t), sp)! sebStatus5

(�)

If f12 returns false, the task as a whole will return false. In this case, a new
SEB must be generated, and hence the actions in Fig.� will be triggered.

Figure �: Generating the SEB in Stage � and Stage �.

Four actions are identi�ed for generating the SEB (Fig.�), triggered by the
request from the monitoring theme.

8
>>>>>>><

>>>>>>>:

Stage � : (CP,E, FG)
f9�! (pc, pco)

Stage � : (CP,E)
f10�! (pc, pco)

(E,CP, y0(t), pc)
f13�! msp_T

(E, y0(t), pc,msp_T, sp0) f14�! (st, y(t))

(y(t), E, pco, sp0)
f15�! sp

• f9 and f10 have been de�ned previously, and hence is reused here.

• f13: This transformation is to calculate the must-stop time window based
on the current SEB y0(t) that is to be replaced.

• f14: This transformation is to calculate the start time st and the dynamic
trajectory of the SEB y(t), where st has to be picked before msp_T expires
and before the current stop time sp0 (that is to be replaced) passes; the
initial condition y(st) must be consistent with y0(t) at st.

• f15: This transformation is to calculate the stop time (sp) so that it will not
lead to the violation of the out-behavior.

f14 and f15 are coupled because the point to stop can only be chosen based
on the y(t). If the sp cannot be found, a new y(t) needs to found. Therefore, the
two functions can be composed as one function f14|15 below. Furthermore, it can
take an extended period of time to �nd y(t) and sp. But they must be found and

Appendix C: Page 8

executed before msp_T (from f13) expires, otherwise the system has to enter
the contingency mode.

(E, pc, pco, y0(t),msp_T, sp0)
f14|15���! (st, y(t), sp)

As a whole, the generating of the SEB can be written as below, conditioned
on no deviation of the current y(t):

(
Stage � : (E,FG,CP, y0(t), sp0)! (st, y(t), sp)

Stage � : (E,CP, y0(t), sp0)! (st, y(t), sp)
(�)

If a new SEB cannot be found beforemsp_T , the system must enter the con-
tingency mode.

As a summary, the work�ow of Task � is comprised of the following trans-
formations. Note that some of transformations will appear in multiple places
of the reference architecture in different actions, which is why this reference
architecture is a “logical architectrue”.

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

(E,FG,CP)
f1�! (pci, pc, pco)

(E, In-B, pci, pc, CP)
f2�! (mst_T, nst_T, cst_T)

(In� B,E, pc, pco,mst_T, nst_T, cst_T)
f3|4|5���! (st, y(t), sp)

(st,mst_T, nst_T, cst_T) f6�! sebStatus1

(In� B, y(t), pc, E)
f7�! sebStatus2

(sp, pco, E)
f8�! sebStatus3

(E,FG,CP)
f9�! (pc, pco)

(CP,E)
f10�! (pc, pco)

(E, y(t), pco, pc, CP)
f11�! (msp_T, nsp_T, csp_T)

(sp,msp_T, nsp_T, csp_T) f12�! sebStatus4/sebStatus5

(E,CP, y0(t), pc)
f13�! msp_T

(E, y0(t), pc, pco,msp_T, sp0)
f14|15���! (st, y(t), sp)

�.� The enabling actions (EAs) of Task �

The actions for Task � is comprised of two groups: the main actions and the
enabling actions. The main actions are a set of actions that re�nes Task � by
specifying the transformations identi�ed in the work�ow with the trigger events
and the guard conditions. The enabling actions are a set of actions that supports
the main actions. When connected together, the actions (both the main actions
and the enabling actions) comprise the reference architecture of Task �. We
introduce the enabling action �rst to set the stage for the main actions.

Appendix C: Page �

Deciding the stages (EA1). The �rst enabling action is to decidewhich stage
that Task � is currently in. Intuitively, the meaning of the three stages of Task �
can be found in Fig.�. Formally, the three stages can be coined by two vari-
ables: the output behavior (OB = {on, off}) and the status of the functional
goal (fgStatus = {false, Requested, Achieved}), where OB means whether the
intended output behavior has started (on) or not (off), and fgStatus means
whether a valid functional goal is requested from the higher level and whether
the requested functional goal is achieved (Achieved) or not (Requested). false
means the functional goal has not been requested or the requested functional
goal is cancelled.

Figure 8: The de�nition the three stages of Task �.

The three stages of Task � can be de�ned by these two variables (Fig.8). At
preStage, the functional goal is not requested (fgStatus = false) and there is no
output behavior (OB = off). Once the functional goal is requested (fgStatus =
Requested) and before the intended output behavior starts (OB = off), the stage
transitions to Stage1. Then the intended output behavior starts (OB = on) and
when the functional goal is not yet achieved (fgStatus = Requested), it isStage2.
Once the functional goal is achieved (fgStatus = Achieved), and if the intended
output behavior is still on (OB = on), it is Stage3. As soon as the intended
output behavior stops, it enters the postStage, which is an transient state that
transitions to preStage by setting the fgStatus to be false immediately.

However, a static Fig.8 is not enough to de�ne the stages. stage can only
de�ned through transitions. For example, Stage1 is fgStatus transitions from
false to Requested while OB = off , rather than OB transitions from on to off
while the fgStatus = Requested. Therefore, we exhausted all the �� possible
transitions and identi�ed 8 meaningful transitions that drive the transitions be-
tween the states of stage. As a result, 8 sub-actions are de�ned accordingly as
below:

�. Transitioning from preStage to Stage1.

• Trigger event: fgStatus : false! Requested �.
• Guard condition: OB = off .
• Input: None.
• Output: The stage.
• Transformation: stage Stage1�.

�The notation x : a! b means the value of variable x transitions from a to b.
�The notation x a means assign value a to variable x.

Appendix C: Page ��

�. Transitioning from Stage1 to Stage2.

• Trigger event: OB : off ! on.
• Guard condition: fgStatus = Requested.
• Input: None.
• Output: The stage.
• Transformation: stage Stage2.

�. Transitioning from Stage2 to Stage3.

• Trigger event: fgStatus : Requested! Achieved.
• Guard condition: OB = on.
• Input: None.
• Output: The stage.
• Transformation: stage Stage3.

�. Transitioning from Stage3 to postStage.

• Trigger event: OB : on! off .
• Guard condition: fgStatus = Achieved.
• Input: None.
• Output: The stage and fgStatus.
• Transformation: stage postStage and fgStatus false.

�. Transitioning from postStage to preStage.

• Trigger event: fgStatus : Achieved! false.
• Guard condition: OB = off .
• Input: None.
• Output: The stage.
• Transformation: stage preStage.

6. Transitioning from Stage1 to preStage. This corresponds to the scenario
where the functional goal is cancelled before the output behavior even
starts.

• Trigger event: fgStatus : Requested! false.
• Guard condition: OB = off .
• Input: None.
• Output: The stage.
• Transformation: stage preStage.

�. Transitioning from Stage1 to Stage3. This corresponds to the scenario
where the output behavior is discrete.

Appendix C: Page ��

• Trigger event: {fgStatus : Requested ! Achieved} ^ {OB : off !
on}.

• Guard condition: NA.
• Input: None.
• Output: The stage.
• Transformation: stage Stage3.

8. Transitioning from Stage2 to postStage. This corresponds to the scenario
where the output behavior stops immediately after the functional goal is
achieved.

• Trigger event: {fgStatus : Requested ! Achieved} ^ {OB : on !
off}.

• Guard condition: NA.
• Input: None.
• Output: The stage and fgStatus.
• Transformation: stage postStage and fgStatus false.

In addition, � extra sub-actions are de�ned when the functional goal is can-
celled while the output behavior is still on. The response can only be de�ned on
a case-by-case basis. Therefore, we de�ne the controller enters the contingency
mode as a general response.

�. Transitioning from Stage2 to contingency mode.

• Trigger event: fgStatus : Requested! false.
• Guard condition: OB = on.
• Input: None.
• Output: CM15.
• Transformation: CM15 true.

��. Transitioning from Stage3 to contingency mode.

• Trigger event: fgStatus : Achieved! false.
• Guard condition: OB = on.
• Input: None.
• Output: CM16.
• Transformation: CM16 true.

The rationale for the �� excluded transitions are summarized in Table.�

As a result, EA1 can be de�ned programmatically by the �� transitions. The
corresponding transformation is denoted as f16 (continuing the transformation

Appendix C: Page ��

Table �: The excluded �� transitions. But the exclusion does not mean they will
never happen. They can happen in the case of failure or design errors. But since
we focus on getting the correct design without failure, the �� transitions are
excluded as they are against the correct design intent.

From To Rationale
preStage Stage � The functional goal must be requested �rst and

cannot jump directly from false to achieved.
preStage postStage Same as above.
preStage Stage� Same as above.
Stage� postStage The functional goal cannot be achievedwithout the

output behavior is on.
Stage� Stage� The output behavior is not supposed to stop before

the functional goal is achieved.
Stage� preStage The output behavior always stops after the func-

tional goal is cancelled, not at the same time.
Stage� preStage Same as above.
Stage� Stage� An achieved functional goal cannot be “un-

achieved”.
Stage� Stage� Same as above.
postStage Stage� postStage always automatically transitions to

preStage immediately by setting the functional
goal to false.

postStage Stage� Same as above.
postStage Stage� Same as above.

Figure �: Graphical representation of EA1

numbering from the work�ow section). Graphically, Action EA1 can be repre-
sented in Fig.�.

Start/stopwatcher (EA2). This action is to address the possibility thatmst_T
or msp_T is violated. Speci�cally, if the intended output behavior does not start
before mst_T expires, or the intended output behavior does not stop before
msp_T expires, the systementers contingencymodeby sending outCM4. There-
fore, the following two sub-actions are de�ned.

Sub-action �:

• Trigger event: mst_T expires.

Appendix C: Page ��

• Guard condition: stage = Stage1.

• Input: OB.

• Output: CM4.

• Transformation (f17): If OB = false, then CM4 true.

Sub-action �:

• Trigger event: msp_T expires.

• Guard condition: stage = Stage2 _ Stage3.

• Input: OB.

• Output: CM4.

• Transformation (f17): If OB = true, then CM4 true.

Graphically, Action EA2 can be represented in Fig.��.

Figure ��: Graphical representation of EA2.

Deviation watcher (EA3). At any time the real output behavior must satisfy
the planned SEB. Consequently, deviation can be denoted as ey(t) 62 y(t). Al-
though deviation of the real output from the planned SEB does not necessarily
lead to hazard, it means the safety is not enforced and the controller has no con-
trol over whether the systemwill enter a hazardous state. In fact, thewhole point
of Task � and Task � is to make sure the real output behavior is well bounded
by the planned SEB, or react before the planned SEB is deviated. However, be-
cause of the unavoidable aleatoric uncertainty, it is always possible that the real
output behavior deviates from the planned SEB before any actions can be ap-
plied as a response. This is why EA3 is de�ned, to capture such deviation in a
timelymanner. However, once the deviation is detected, the activities to address
it vary from case to case. Therefore, we simply de�ne that the controller enters
contingency mode upon the deviation, and leave the resolution to the speci�c
applications.

Therefore, EA3 can be de�ned as below programmatically:

• Trigger event: {ey(t) 62 y(t)} transitions from false to true.

Appendix C: Page ��

• Guard condition: stage = Stage2 _ Stage3.

• Input: NA.

• Output: CM17.

• Transformation (f18): CM17 true.

Graphically, Action EA3 can be represented in Fig.��.

Figure ��: Graphical representation of EA3. Because it is a placeholder, input
and output are not speci�ed.

Contingency mode (EA4). We identi�ed �� situations throughout the ref-
erence architecture that will fail to achieve the functional goal and avoid the
hazard at the same time. Appropriate actions are needed to address each situ-
ation to avoid the hazard. However, because the actions have to be decided on
a case-by-case basis, we leave the speci�c actions for each contingency mode
to the speci�c design applications by de�ning a placeholder transformation f19
to represent all the potential activities.

Therefore, EA4 can be de�ned as below programmatically.

• Trigger event: CM1 _ ... _ CM17 : false! true.

• Guard condition: stage! = (preStage _ postStage).

• Input: NA.

• Output: NA.

• Transformation: Execute f19.

Graphically, Action EA4 can be represented in Fig.��.

SEB status monitor (EA5). A generated SEB might become unsatisfactory
due to the change in the environment, the functional goal and the controlled pro-
cess. This action is to constantly monitor the satis�ability of the generated SEB,
denoted by the output variable sebStatus. If a new SEB is generated, sebStatus
is set to true automatically; if the monitor theme detects the current SEB is not
satisfactory any more, sebStatus will be set false. In addition, if the unsatis�a-
bility is not found at Stage1, then the SEB is set to false to prevent the execution

Appendix C: Page ��

Figure ��: Graphical representation of EA4. Because it is a placeholder, input
and output are not speci�ed.

of an unsatisfactory SEB. As a result, we de�ne the following three sub-actions
for EA5:
Sub-action �:

• Trigger event: sebStatus1_sebStatus2_sebStatus3_sebStatus4_sebStatus5 :
true! false.

• Guard condition: stage! = (preStage _ postStage).

• Input: NA.

• Output: sebStatus.

• Transformation: sebStatus false.

Sub-action �:

• Trigger event: sebStatus1 _ sebStatus2 _ sebStatus3 : true! false.

• Guard condition: stage = Stage1.

• Input: NA.

• Output: (st, y(t), sp).

• Transformation: (st, y(t), sp) false.

Sub-action �:

• Trigger event: (st, y(t), sp) changes.

• Guard condition: stage! = (preStage _ postStage) ^ (st, y(t), sp)! = false

• Input: NA.

• Output: sebStatus.

• Transformation: sebStatus true.

Graphically, Action EA5 can be represented in Fig.��.

Appendix C: Page �6

Figure ��: Graphical representation of EA5.

�.� The main actions (MAs) of Task �

The main actions re�ne Task � by specifying the transformations identi�ed in
the work�ow with the trigger events and the guard conditions. As explain in the
work�ow, the controller transitions between the themes based on the speci�c
operational conditions, and each theme is further re�ned by a set of actions.
Therefore, we �rst de�ne the themes at each stage with the construct of an
action, and then zoom in each theme to specify the comprising actions.

�.�.� De�ning the “themes” of each stage.

Although the “theme” is not an internal construct of the reference architecture,
we de�ne them as high level actions as stepping stones to “divide and conquer”
Task �. Later, the themes will be re�ned by more speci�c actions.

First, the transformation of each theme at each stage has already been ex-
plained through (�)⇠(�). We summarize them as below.

Stage �:
(
Generate: (E,FG, In-B)! (st, y(t), sp)

Monitor: (In-B,E, FG, st, y(t), sp)! sebStatus

Stage �:
(
Generate: (E,FG, y(t), ỹ(t

c

))! (y(t), sp)

Monitor: (E,FG, y(t), sp)! sebStatus

Stage �:
(
Generate: (E, y(t), ỹ(t

c

))! (y(t), sp)

Monitor: (E, y(t), sp)! sebStatus

Furthermore, the transitions between the themes through the three stages
are described in Fig.��. We explain the transitions of each theme now.

• Generate theme of Stage �: This theme is triggered once the Stage � starts
(i.e. the right-ward arrow) or the generated SEB becomes unsatisfactory
before it is executed (i.e. the bottom-up arrow). Furthermore, this theme
can only operate when the functional goal is true and when the timeline is
still in Stage �. Therefore, programmatically, we de�ne the following trigger

Appendix C: Page ��

Figure ��: The transitions (denoted by the arrows) between the themes through
the three stages. The “generate” theme at Stage � is the start point of the entire
process.

events and guard conditions.(
Trigger: {stage : preStage! Stage1} _ {sebStatus : true! false}
Guard: {stage = Stage1} ^ {sebStatus = false}

• Monitor theme of Stage �: This theme is triggered once a new SEB is found
by the “generte” themeandwhile the functional goal is true and the timeline
is still in Stage �. Therefore, programmatically, we de�ne the following
trigger events and guard conditions:(
Trigger: {sebStatus : false! true}
Guard: {stage = Stage1} ^ {sebStatus = true}

• Monitor theme of Stage �: First, the transition from Stage � to Stage � can
only be accomplished from the monitor theme of Stage � to the monitor
theme of Stage � (the right-ward arrow), because if the controller is in the
generate theme of Stage �, it means there is no satisfactory SEB found for
the output behavior to execute, and hence by de�nition Stage � is not �n-
ished. Second, when the timeline is at Stage �, the monitor theme can be
triggered once a new SEB is found by the generate theme (the top-down ar-
row). Therefore, programmatically, we de�ne the following trigger events
and guard conditions.(
Trigger: {stage : Stage1! Stage2} _ {sebStatus : false! true}
Guard: {stage = Stage2} ^ {sebStatus = true}

• Generate theme of Stage �: This theme is triggered once the SEB be-
ing executed becomes unsatisfactory (the bottom-up arrow). Therefore,
programmatically, we de�ne the following trigger events and guard condi-
tions.(
Trigger: {sebStatus : true! false}
Guard: {stage = Stage2} ^ {sebStatus = false}

• Generate theme of Stage �: This theme can be triggered by the transition
fromStage � to Stage � (the right-ward arrow) andwhile a satisfactory SEB
is still unavailable, or triggered by the current SEB becomes unsatisfactory
(the bottom-up arrow). Therefore, programmatically, we de�ne the follow-
ing trigger events and guard conditions.

Appendix C: Page �8

(
Trigger: {stage : Stage2! Stage3} _ {sebStatus : true! false}
Guard: {stage = Stage3} ^ {sebStatus = false}

• Monitor theme of Stage �: This theme can be triggered by the transition
from Stage � to Stage � (the right-ward arrow) and while the SEB being
executed is still satisfactory, or triggered by a new SEB is found (the top-
down arrow). Therefore, programmatically, we de�ne the following trigger
events and guard conditions.(
Trigger: {stage : Stage2! Stage3} _ {sebStatus : false! true}
Guard: {stage = Stage3} ^ {sebStatus = true}

�.�.� De�ning the main actions

We zoom into and re�ne each theme at each stage to de�ne the comprising
actions in this section.

The generate theme at Stage �. We de�ne three main actions for the gener-
ate theme (Fig.��) in accordance with the three transformations f1, f2 and f3|4|5
identi�ed in the work�ow of Fig.�. Now we explain the main actions one by one.

Figure ��: The main actions of the generate theme at Stage �.

• MA1

– Transformation: f1 is to generate the performance constraints of the
in-behavior, the intended behavior and the out-behavior (pci, pc, pco)
by logic negation of the given hazard. Because the performance con-
straintsmight vary from the speci�c context, for example theminimal
distance from the terrain depends on the type of terrain such as resi-
dence, power grid and natural area, information from the environment
E needs to be taken to decide the performance constraints if neces-
sary. Finally, the functional goal FG is used to generate pc0.

– Duration: The expected time duration e1 must be short enough so that
there will be enough time for MA2 to generate mst_T before mst_T
expires. There is always a chance that e1 is too long thatMA2 eventu-
ally generates mst_T after mst_T expires. Therefore, a long enough

Appendix C: Page ��

look-ahead time must be selected to decide mst_T early to lower the
likelihood of an expired mst_T to an acceptable level.

– Output: Each of pci, pc and pco is a set because usually there are more
than one hazard that are considered. For example, the performance
constraints of hazard iwill be denoted as pci

i

, pc
i

or pco
i

. pc0, translated
from the functional goal, is a special case because it only constrains
the intended behavior. Therefore, there is only pc0 with respect to the
functional goal and pc0 2 pc.

– Input: First, FG is the functional goal from higher level of control.
Second, E1 is a set of information that comes from the environment
to generate the performance constraints and CP1 is a set of informa-
tion about the controlled process to generate the performance con-
straints. The speci�c information items to observe from the environ-
ment are determined with the de�nition of f1. Note that the “environ-
ment” here means any object that is outside the controller and the
controlled process, not necessarily the natural environment.

– Trigger: Individually, there is no trigger event for MA1. But because
the generate theme starts with MA1, MA1 inherited the trigger event
de�ned for the generate theme to start the generate themeas awhole.
Therefore, the trigger of MA1 is {stage : preStage ! Stage1}_
{sebStatus : true! false}.

– Guard: Individually, there is no guard condition forMA1. But the guard
conditions for the generate theme are also the guard conditions for
each of the comprisingmain actions. Therefore, the guard conditions
for MA1 is {stage = Stage1} ^ {sebStatus = false}.

• MA2

– Transformation: f2 is to generate the safety requirements for the in-
tended output behavior to start. Assuming the guard condition is sat-
is�ed, it �rst calculates (mst_T, nst_T, cst_T)with from the inputs (re-
fer to the “safety requirements” paper for details). If there is internal
con�icts, then send a request to the higher level of control(i.e. RfR1)
for a new FG or wait for the environment to change. Furthermore, if
no viablemst_T, nst_T and cst_T can be found beforemst_T�T1�e3,
then the controller stops the main action and enters the contingency
mode by sending out CM1 to EA4.

– Duration: The expected time duration e2 must be short enough so
that mst_T will not be generated after mst_T expires. However, there
is always a chance that e2 is too long that mst_T is generated after
mst_T expires. Therefore, a long enough look-ahead time must be
selected to decide mst_T early to lower the likelihood of an expired
mst_T to an acceptable level.

– Output: The safety requirements (mst_T, nst_T, cst_T) for the intended
behavior to start. RfR1

� is sent to the higher level of control to adjust
the functional goal. CM1 is sent to EA4 to enter contingency mode.

�
RfR stands for Request for Resolution.

Appendix C: Page ��

– Input: pci and pc are the performance constraints for the in-behavior
and the intended behavior. In � B is the projected trajectory of the
in-behavior; E2 andCP2 are the two sets of information from the envi-
ronment and the controlled process to generate the time window for
the start time.

– Trigger: NA.
– Guard: Similar toMA1, the guard conditions forMA2 includes {stage =

Stage1} ^ {sebStatus = false}. In addition, if In � B is deviated,
(mst_T, nst_T, cst_T) cannot be trusted. Therefore, no deviation be-
tween In�B and ey is also a guard condition, where ey is the observed
output value in real time.

• MA3

– Transformation: f3|4|5 is to calculate the SEB whose start time sat-
is�es (mst_T, nst_T, cst_T), dynamic trajectory respects pc and stop
time will not lead to a violation of pco. In the case that a satisfac-
tory SEB cannot be found, RfR2 should be sent to the higher level of
control to adjust the functional goal. If a satisfactory SEB cannot be
found time T1 beforemst_T , the controller stops the main action and
enters the contingency mode by sending CM2 to EA4.

– Duration: None. The durationmay affect whether therewill be enough
time that the de�ned output behavior can be executed, but the safety
concerns that the desired output behavior will not start beforemst_T
is addressed by EA2. �

– Output: (st, y(t), sp), where t 2 [st, sp] is the SEB that is intended to
be achieved by the output behavior. The RfR2 is the request to the
higher level of control for a new functional goal when no satisfactory
SEB can be found. CM2 is sent toEA4 to enter the contingencymode.

– Input: All the inputs (In�B,mst_T, nst_T, cst_T, pc, pco) are explained
before. Note that E3 and CP3 are the sets of information from the
environment and the controlled process respectively to generate the
SEB; y(st) must be consistent with In� B.

– Trigger: NA.
– Guard: Similar to MA1 and MA2, MA3 also inherited the guard con-

dition of the generate theme as a whole, which is {stage = Stage1}^
{sebStatus = false}. In addition, if In�B is deviated, there is no way
to predict y(st). Therefore, no deviation between In�B and ey is also
a guard condition, where ey is the observed output value in real time.

In summary, the generate theme at Stage � can be represented as an action
in Fig.�6, where E = {E1, E2, E3} and CP = {CP1, CP2, CP3}. The sources of
the all the external interactions with other themes, the enabling actions and the
elements out of the design scope are speci�ed in Fig.��.
�This is another example that this reference architecture is safety-guided.

Appendix C: Page ��

Figure �6: The generate theme at Stage � represented as an action. The internal
interactions are hidden within the grey box.

Figure ��: The external interactions of the generate theme at Stage � as a whole.

The monitor theme at Stage �. We de�ne �ve main actions for the monitor
theme (Fig.�8) in accordance with the �ve transformations f1, f2, f6, f7 and f8
identi�ed in the work�ow of Fig.�. The reason that st is passed from MA5 to
MA6 is to make sure MA6 makes decisions based on the latest time window
for the start time. Now we explain the main actions one by one.

• MA4

– Transformation: Same as MA1.
– Duration: The expected time duration e4 must be short enough so that

there will be enough time for MA5 to generate mst_T and nst_T be-
fore the selected st passes and beforemst_T expires. However, there
is always a chance that e4 is too long that MA5 eventually generates
mst_T and nst_T after st passes or mst_T expires. Therefore, a long
enough look-ahead time must be selected to decide mst_T early to

Appendix C: Page ��

Figure �8: The main actions of the monitor theme at Stage �.

lower the likelihood of an expired mst_T or a passed st to an accept-
able level.

– Output: Same as MA1.
– Input: Same as MA1. Note that as long as MA4 has been triggered

and the guard condition is satis�ed, MA4 will always respond to any
input change.

– Trigger: Individually, there is no trigger event for MA4. But because
the monitor theme starts with MA4, MA4 inherited the trigger event
de�ned for the monitor theme to start the monitor theme as a whole.
Therefore, the trigger of MA4 is {sebStatus : true! false}. Refer to
the last section for the rationale.

– Guard: Individually, there is no the guard condition for MA4. But the
guard condition of MA4 is inherited from the monitor theme as a
whole, which is {stage = Stage1} ^ {sebStatus = true}.

• MA5

– Transformation: Similar to MA2. The different part is that if there
is internal con�ict between mst_T and nst_T , RfR3 is sent to higher
level of control for resolution; if no viable start time can be found from
mst_T, nst_T and cst_T before st, then assign false to mst_T, nst_T
and cst_T at st�e6; if no viable start time canbe found frommst_T, nst_T
and cst_T before mst_T � T1 � e6 � e1 � e2 � e3, then the controller
stops the main action and enters the contingency mode by sending
out CM3 to EA4.

– Duration: The expected time duration e5 to generatemst_T and nst_T
must be short enough so that there will be enough time to generate
mst_T and nst_T before the selected st passes and mst_T expires.

Appendix C: Page ��

However, there is always a chance that e5 is too long that mst_T and
nst_T are generated after st passes or mst_T expires. Therefore, a
long enough look-ahead timemust be selected to decidemst_T early
to lower the likelihood of an expired mst_T or a passed st to an ac-
ceptable level.

– Output: Same as MA2. RfR3 and CM3 in MA5 serve the same pur-
pose of RfR1 and CM1 in MA2.

– Input: Same as MA2 with the only difference st.
– Trigger: NA.
– Guard: {stage = Stage1} ^ {sebStatus = true}, which is inherited

from the monitor theme at Stage � as a whole. In addition, if In � B
can be deviated, (mst_T, nst_T, cst_T) cannot be trusted. Therefore,
no deviation between In�B and ey is also a guard condition, where ey
is the observed output value in real time.

• MA6

– Transformation: f6 is to make sure that the intended start time st sat-
is�es the latest time constraints (mst_T, nst_T, cst_T), i.e. st 2 cst_T
or st 2 mst_T \ ¬nst_T . If the satis�ability of st cannot be deter-
mined before st, then sebStatus1 false, because the output behav-
ior should not start if the controller is not sure whether the start time
will lead to hazard.

– Duration: No requirement on the expected duration.
– Output: sebStatus1 is to denote whether the start time st satis�es the

time constraints.
– Input: st is the intended start timepassed fromMA5; (mst_T, nst_T, cst_T)

is the latest time constraints for the intended start time.
– Trigger: NA.
– Guard: {stage = Stage1} ^ {sebStatus = true}, which is inherited

from the monitor theme at Stage � as a whole.

• MA7

– Transformation: f7 is to make sure that the planned dynamic trajec-
tory y(t) satis�es the performance constraints of the intended behav-
ior pc and y(st) is consistent with the In�B at st. If the satis�ability
of y(t) cannot be determined before st, then sebStatus2 false, be-
cause the output behavior should not start if the controller is not sure
whether the start time will lead to hazard.

– Duration: No requirement on the expected duration.
– Output: sebStatus2 is to denote whether y(t) satis�es pc.
– Input: y(t), where t 2 [st, sp], is the planned dynamic trajectory that

comes from MA3; pc is the latest performance constraints of the in-
tended behavior;E3 andCP3 are sets of information from the environ-
ment and the controlled process respectively that is used to generate
the SEB; In� B is the projected trajectory of the in-behavior.

Appendix C: Page ��

– Trigger: NA.
– Guard: {stage = Stage1} ^ {sebStatus = true}, which is inherited

from the monitor theme at Stage � as a whole. In addition, if In�B is
deviated, there is no way to predict y(st). Therefore, no deviation be-
tween In�B and ey is also a guard condition, where ey is the observed
output value in real time.

• MA8

– Transformation: f8 is to make sure that the intended stop time sp will
not lead to the violation of the performance constraints of the out-
behavior pco. If the satis�ability of sp cannot be determined before
st, then sebStatus3 false, because the output behavior should not
start if the controller is not sure whether the stop time will lead to
hazard.

– Duration: No requirement on the expected time duration.
– Output: sebStatus3 is to denote whether pco will be violated if the in-

tended output beahvior stops at time sp.
– Input: y(sp) is the value of the SEB at time sp from MA3; pco is the

latest performance constraints of the out-behavior fromMA4; E3 is a
set of information from the environment that is used to generate the
SEB.

– Trigger: NA.
– Guard: {stage = Stage1} ^ {sebStatus = true}, which is inherited

from the monitor theme at Stage � as a whole.

In summary, the monitor theme at Stage � can be represented as an action
in Fig.��, where E = {E1, E2, E3} and CP = {CP1, CP2, CP3} . The sources of
the all the external interactions with other themes, the enabling actions and the
elements out of the design scope are speci�ed in Fig.��.

Figure ��: The monitor theme at Stage � represented as an action. The internal
interactions are hidden within the grey box.

The monitor theme at Stage �. We de�ne three main actions for the monitor
theme (Fig.��) at Stage � in accordance with the three transformations f9, f11
and f12 identi�ed in the work�ow of Fig.6. Now we explain the main actions one
by one.

Appendix C: Page ��

Figure ��: The external interactions of the monitor theme at Stage � as a whole.

Figure ��: The main actions of the monitor theme at Stage �.

• MA9

– Transformation: f9 is similar to f1 as both are to generate the per-
formance constraints. The only difference is that the performance
constraints of the in-behavior (pci) is dropped at Stage � because the
in-behavior has already stopped and it is the intended output behavior
in progress.

– Duration: The expected time duration e9 must be short enough so that
there will be enough time forMA10 to generatemsp_T and nsp_T be-
fore sp passes andmsp_T expires. However, there is always a chance
that e9 is too long that MA10 eventually generates msp_T and nsp_T
after sp passes or msp_T expires. Therefore, a long enough look-
ahead time must be selected to decide msp_T early to lower the like-
lihood of an expired msp_T or a passed sp to an acceptable level.

– Output: Similar to f1 but without pci, i.e. (pc, pco).
– Input: The functional goalFG to calculate pc0 which goes into pc; a set

of information about the elements in the environment that determines
pc and pco. Note that as long asMA9 has been triggered and the guard

Appendix C: Page �6

condition is satis�ed,MA9 will always transform the newE1 andFG1,
which is consistent with Fig.6 that the change of E1 or FG1 triggers
a new work�ow.

– Trigger: Individually, there is no trigger event for MA9. But because
the monitor theme starts with MA9, MA9 inherited the trigger event
de�ned for the monitor theme to start the monitor theme as a whole.
Therefore, the trigger ofMA9 is {stage : Stage1! Stage2}_{sebStatus :
false! true}. Refer to the last section for the rationale.

– Guard: Individually, there is no the guard condition for MA9. But the
guard condition of MA9 is inherited from the monitor theme as a
whole, which is {stage = Stage2} ^ {sebStatus = true}.

• MA10

– Transformation: f11 is to calculate the timing constraints (msp_T,
nsp_T, csp_T) for the output behavior to stop. If there is internal con-
�ict between msp_T and nsp_T , then assign false to (msp_T, nsp_T,
csp_T), in order to enter the generate theme so that such a con�ict
can be resolved by a new y(T). The reason that MA10 does not send
RfR to resolve such con�ict is because a new y(T) itself can resolve
the con�ict.

– Duration: The expected time duration e10 must be short enough so
that msp_T and nsp_T are generated before sp passes and msp_T
expires. However, there is always a chance that e10 is too long that
msp_T and nsp_T are eventually generated after sp passes or msp_T
expires. Therefore, a long enough look-ahead time must be selected
to decide msp_T early to lower the likelihood of an expired msp_T or
a passed sp to an acceptable level.

– Output: The timing constraints (msp_T, nsp_T, csp_T) for the output
behavior to stop.

– Input: pco and pc are the performance constraints for the out-behavior
and the intended behavior. y(t) is the planned trajectory of the in-
tended behavior; E4 and CP4 is a set of information that is used to
generate time window for the stop time. Note that y(t) can be de-
�ned with different level of precision. The more precise y(t) is re-
quired to be, the less room for uncertainty, but the more accurate to
predict (msp_T, nsp_T, csp_T)with y(t). For example, the �dwaypoint
instruction is more �exible and robust than the speed-based instruc-
tion but harder to predict the airplane’s position. This is design deci-
sion that can only be made on a case-by-case basis.

– Trigger: NA.
– Guard: The guard condition of the monitor theme as a whole is in-

herited by MA10, i.e. {stage = Stage2} ^ {sebStatus = true}. Fur-
thermore, using y(t) to calculate (msp_T, nsp_T, csp_T) requires that
the real output behavior ỹ(t) adheres to the intended output behavior
y(t), i.e. ỹ(t) 2 y(t). Note that the reason 2 is used here is because
the intended output behavior does not have to be a single value at

Appendix C: Page ��

each time. It is actually most likely to be an acceptable value range at
each time because of both the epistemic uncertainty in top-down sys-
tem design and the aleatoric uncertainty of the actual system. There-
fore, the guard condition ofMA10 is {stage = Stage2}^{sebStatus =
true} ^ {ỹ(t) 2 y(t)}.

• MA11

– Transformation: f12 is to compare the planned stop time with the lat-
est respective timing constraints. Intuitively, it is to make sure that
msp_T does not expired during y(t) and the stop time is not within
nsp_T . Formally, it can be represented as sp 2 csp_T [msp_T and
sp 62 nsp_T . In addition, if the satis�ability of sp cannot be deter-
mined before sp passes, then sebStatus3 false, because the out-
put behavior should not stop if the controller is not sure whether the
stop time will lead to hazard.

– Duration: None.
– Output: sebStatus4 denotes whether the planned stop time sp satis-

�es the respective timing constraints.
– Input: sp is the planned stop time fromMA3 orMA14; (msp_T, nsp_T, csp_T)

is the latest time constraints for the intended stop time.
– Trigger: NA.
– Guard: {stage = Stage2} ^ {sebStatus = true}, which is inherited

from the monitor theme at Stage � as a whole.

In summary, the monitor theme at Stage � can be represented as an action
in Fig.��, where E = {E1, E4} and CP = {CP1, CP4}. The sources of the all the
external interactions with other themes, the enabling actions and the elements
out of the design scope are speci�ed in Fig.��.

Figure ��: The monitor theme at Stage � represented as an action. The internal
interactions are hidden within the grey box.

The generate theme at Stage �. Wede�ne threemain actions for themonitor
theme (Fig.��) at Stage � in accordance with the three transformations f9, f13
and f14|15 identi�ed in the work�ow of Fig.�. Now we explain the main actions
one by one.

Appendix C: Page �8

Figure ��: The external interactions of the monitor theme at Stage � as a whole.
Note that (y(t), sp) is only from the generate theme of Stage � at the beginning
of Stage �.

Figure ��: The main actions of the generate theme at Stage �.

• MA12

– Transformation: Same as MA9.
– Duration: The expected time duration e12 must be short enough so

that there will be enough time for MA14 to generate the new SEB be-
fore sp passes, and for MA13 to generate msp_T before msp_T ex-
pires. However, there is always a chance that e12 is too long that pc
and pco are generated after sp passes, orMA13 generatesmsp_T after
msp_T expires or . Therefore, a long enough look-ahead timemust be
selected to decide msp_T early to lower the likelihood of an expired
msp_T or a passed sp to an acceptable level.

– Output: Same as MA9.
– Input: Same as MA9.

Appendix C: Page ��

– Trigger: Inherited from the generate theme at Stage � as a whole,
{sebStatus : true! false}.

– Guard: Inherited from the generate themeat Stage� as awhole, {stage =
Stage2} ^ {sebStatus = false}.

• MA13

– Transformation: f13 is to calculate themust-stop timewindow in case
that a new satisfactory SEB cannot be found by MA14 in time.

– Duration: The expected time duration e13 must be short enough so
that msp_T will be generated before msp_T expires and sp passes
(MA14 cannot start �nding the new SEBwithout a validmsp_T). How-
ever, there is always a chance that e13 is too long that eventually is
generatedmsp_T aftermsp_T expires or sp passes. Therefore, a long
enough look-ahead time must be selected to decide msp_T early to
lower the likelihood of an expiredmsp_T or a passed sp to an accept-
able level.

– Output: msp_T is the time window to stop the current SEB.
– Input: Same as MA10.
– Trigger: NA.
– Guard: The guard condition is inherited from the generate theme at

Stage� as awhole. Therefore, the guard condition forMA13 is {stage =
Stage2} ^ {sebStatus = false}.

• MA14

– Transformation: f14|15 is to calculate a new SEB (st, y(t), sp) that will
satisfy pc and pco. In the case that a satisfactory SEB cannot be found,
RfR5 should be sent to the higher level of control to adjust the func-
tional goal. If a satisfactory SEB cannot be found time T1 before
msp_T expires or T1 before sp passes, the controller stops the main
action and enters the contingency mode by setting CM5 to true.

– Duration: None.
– Output: The intended output behavior (st, y(t), sp). The RfR5 is the

request to the higher level of control for a new functional goal (FG)
when no satisfactory SEB can be found. CM5 is the signal for EA4 to
take over when msp_T is about to expire.

– Input: (pc, pco) are the performance constraints used to calculate the
intended SEB; sp is the previously de�ned stop time; y(t) is the SEB,
based onwhich the initial condition of the newSEB is selected;E3 and
CP3 are the sets of information from the environment and the con-
trolled process respectively that is used to generate the SEB; msp_T
is used to decide when to enter the contingency mode.

– Trigger: NA.

Appendix C: Page ��

– Guard: Part of the guard condition is inherited from the generate theme
at Stage � as a whole, {stage = Stage2} ^ {sebStatus = false}. Fur-
thermore, the new SEB must be found before msp_T expires, hence
t
c

2 msp_T is also part of the guard condition. Therefore, the guard
condition of MA14 is {stage = Stage2} ^ {sebStatus = false} ^ {t

c

2
msp_T}.

In summary, the generate theme at Stage � can be represented as an action
in Fig.��, where E = {E1, E3, E4} and CP = {CP1, CP3, CP4}. The sources
of all the external interactions with other themes, the enabling actions and the
elements out of the design scope are speci�ed in Fig.�6.

Figure ��: The generate theme at Stage � represented as an action. The internal
interactions are hidden within the grey box.

Figure �6: The external interactions of the generate theme at Stage � as awhole.

The generate theme at Stage �. The individual actions of Stage � are almost
the same as the actions of Stage � except the functional goal is achieved before
Stage �. This difference has two implications: (�) is that FG is not the input
any more and (�) is that no RfR will be sent if a new SEB cannot be found.
For this reason, we simply list all the main actions for Stage � without detailed
explanation.

Appendix C: Page ��

We de�ne three main actions for the monitor theme (Fig.��) at Stage � in ac-
cordance with the three transformations f10, f13 and f14|15 identi�ed in the work-
�ow of Fig.�.

Figure ��: The main actions of the generate theme at Stage �.

• MA15

– Transformation: f10.
– Duration: Refer MA12.
– Output:Refer MA12.
– Input: E and CP .
– Trigger: {stage : Stage2! Stage3} _ {sebStatus : true! false}.
– Guard: {stage = Stage3} ^ {sebStatus = false}.

• MA16

– Transformation: Refer MA13.
– Duration: Refer MA13.
– Output: Refer MA13.
– Input: Refer MA13.
– Trigger: NA.
– Guard: {stage = Stage3} ^ {sebStatus = false}.

• MA17

– Transformation: Refer MA14.
– Duration: Refer MA14.
– Output: (st, y(t), sp) and CM6.
– Input: Refer MA14.
– Trigger: NA.
– Guard: {stage = Stage3} ^ {sebStatus = false}.

Appendix C: Page ��

In summary, the generate theme at Stage � can be represented as an action in
Fig.�8, where E = {E1, E3, E4} and CP = {CP1, CP3, CP4}. The sources of
the all the external interactions with other themes, the enabling actions and the
elements out of the design scope are speci�ed in Fig.��.

Figure �8: The generate theme at Stage � represented as an action. The internal
interactions are hidden within the grey box.

Figure ��: The external interactions of the generate theme at Stage � as awhole.

The monitor theme at Stage �. We de�ne three main actions for the monitor
theme (Fig.��) at Stage � in accordance with the three transformations f10, f11
and f12 identi�ed in the work�ow of Fig.6. Now we explain the main actions one
by one.

• MA18

– Transformation: Refer to MA9.
– Duration: Refer to MA9.
– Output: pc and pco.
– Input: E and CP .
– Trigger: {stage : Stage2! Stage3} _ {sebStatus : false! true}.

Appendix C: Page ��

Figure ��: The main actions of the monitor theme at Stage �.

– Guard: {stage = Stage3} ^ {sebStatus = true}.

• MA19

– Transformation: Refer to MA10.
– Duration: Refer to MA10.
– Output: (msp_T, nsp_T, csp_T).
– Input: pco, pc, E, CP and y(t).
– Trigger: NA.
– Guard: {stage = Stage3} ^ {sebStatus = true} ^ {ỹ(t) 2 y(t)}.

• MA20

– Transformation: Refer to MA11.
– Duration: Refer to MA11.
– Output: sebStatus5.
– Input: (msp_T, nsp_T, csp_T) and sp.
– Trigger: NA.
– Guard: {stage = Stage3} ^ {sebStatus = true}.

In summary, the monitor theme at Stage � can be represented as an action
in Fig.��, where E = {E1, E4} and CP = {CP1, CP4}. The sources of the all the
external interactions with other themes, the enabling actions and the elements
out of the design scope are speci�ed in Fig.��.

� Task �: Plan the control reference

This section is highly coupled with Method �. We will provide a paper reference
here once we have a complete paper about Method �.

Appendix C: Page ��

Figure ��: The monitor theme at Stage � represented as an action. The internal
interactions are hidden within the grey box.

Figure ��: The external interactions of the monitor theme at Stage � as a whole.

�.� Fundamentals

�.�.� Mathematical preparation.

In general, the process model f and the control algorithm g can be represented
as below, where r denotes the control reference. As de�ned previously, SEB is
just an alias of y(T) = {y(t)|t 2 T = [st, sp]}. In this section, we use y(T) to
simplify the mathematical expression of SEB. The uppercase T suggests that
y(T) is a set of y(t) within the time interval T .

(
Process model: (u(t), x(t), p) f�! (ẋ, y(t))T

Control algorithm: (r, x(t), p) g�! u(t)
(�)

Plug g into f , we get:

(r, x(t), p)
f ·g�! (ẋ, y(t))T

Appendix C: Page ��

For an extended period of time, we can get the expression below. It implies given
the process model and control algorithm, the dynamic trajectory of the output
variable can be predicted by the initial condition, the parameter and the control
reference.

(r(t
e

), x(t
s

), p)
f ·g�! (x(T), y(T))T where T = [t

s

, t
e

] (6)

Focusing on the output, we can get (�) below by inverting (f · g). Because it is
possible that T is chopped up into several segments and a control reference is
generated for each segment, t

s

and t
e

are used to denote in general the start/end
time of a segment, rather than st and spwhich is the start/stop time of the entire
SEB.

(y(T), x(t
s

), p)
(f ·g)�1

����! r(t
e

) (�)

Note that (�) is not necessarily valid mathematically because (f · g)�1 might
not exist. But it reveals the fact that the desired output behavior, f , g, the initial
condition and the parameter all together determine the control reference. As a
result, a more general and precise depiction of such relationship is (8), where
the arrow simply means a mapping (not necessarily a function) exists between
the two sides.

(y(T), x(t
s

), p, f, g)! r(t
e

) (8)

Finally, the parameter p can be de�ned as a single value or a value set (con-
sidering uncertainty). For the former case, change of the parameter is obvious.
For the latter case, change of the parameter means the new value set includes
elements that are not in the current value set, or the single value observed in real
time in not included in the current value set; if the single value in real time varies
but still within the current value set, it is not considered as a change.

�.�.� Problem formulation

The value aspect. The goal of this task is to create control references to obtain
the desired SEB decided in Task �. Speci�cally, the control references can be
created in the following three ways:

• Single control reference: only one control reference is created for the entire
SEB.

• All at once: control All control references are created at once for the entire
SEB.

• In batches: the control references are created in batches, each of which is
for a segment of the SEB. The number of control reference in each batch
can be �, which in plain Ennglish is to say that the control reference is cre-
ated one by one.

The problem formulation must include all the three different ways. For this pur-
pose. An overall formulation of this task is generated in Fig.��. The desired
SEB is “chopped up” into n segments, and the control references are created for

Appendix C: Page �6

each segment one at a time. For the ith segment, a speci�c amount M
i

of con-
trol references are created at the same time to achieve the desired SEB for the
ith segment. In this way, all the three ways of creating the control references are
included, and therefore it is a general one and can be used to derive a general
set of actions for Task �.

• Single: n = 1,M1 = 1.

• All at once: n = 1 and M1 � 2.

• One (batch) by one (batch): n � 2 and M
i

� 1.

Figure ��: A general problem formulation of “planning the control reference”.

Furthermore, on one hand, we prescribe that the control algorithm and the
parameter are the same for all the control references of each segment. Note
that p may change within one segment due to aleatoric uncertainty, and will be
addressed accordingly. But such change is not anticipated when the control
references are generated in the �rst place.

On the other hand, the control algorithm g and the parameter pmay vary from
segment to segment. Especially for the control algorithm, it is possible that mul-
tiple control algorithms are designed for the same processmodel depending on
the performance requirement and the parameter of the controlled process. For
example, when a precise distance between two cars is required, the Adaptive
Cruise Control is usually applied to replace human driver to control the speed
of the trailing car, which is an example that the performance requirement deter-
mines the different choices of the control algorithms over the same controlled
process; a rocket usually switches to different �ight control algorithms as the
fuel’s burning changes the overall weight of the rocket, which is an example that
the different parameter values of the controlled process drives the change of
applicability of the control algorithm. In fact, the phenomena of multiple control
algorithms for the same controlled process are generally known as “mode” in
general engineering design community. Similarly, the applicability of the con-
trol algorithm is also affected by the initial conditions of the controlled process.

Appendix C: Page ��

From the perspective of feasibility, the initial conditions may affect whether the
control algorithm can achieve the desired performance. Furthermore, consid-
ering the control algorithm and the controlled process as a system, the initial
conditions may also affect the stability of the system as a whole. Therefore, in
the most general sense, the control algorithm, as depicted in (�), is determined
by the desired output behavior, the parameter and the initial condition of the
controlled process.

(y(T), p, x0)! g, if p 2 P
g

and x0 2 X
g

(�)

Furthermore, there might be multiple f for the same process under control.
For example, the same amount of gas might generate (dramatically) different
horsepower for the same engine in different operational temperatures. If the
engine is supposed to work in a wide range temperatures, multiple f must be
designed for the engine operations in different situations and applied correctly
according to the speci�c operational temperatures. However, in this early work
we assume the controlled process only has one f�, meaning the process model
is either applicable or not and there is no switching between different process
models. The multiple-process-model scenario will be addressed in the future
work.

Finally, with all the de�nition of the problem formulation, the control refer-
ences of the ith segment are created in the way explained in (Fig.��).

• First, there areM
i

control references to be created at the same time for the
ith segment. These M

i

control references yield M
i

sub-segments for the
ith segment. Each row in (Fig.��) corresponds to a sub-segment of the ith
segment.

• Second, the initial state of the each sub-segment is the �nal state of the
previous sub-segment. The initial state of the �rst sub-segment t0

i

⇠ t1
i

comes from the �nal state of the (i� 1)th segment.

• Third, given the initial state of the �rst sub-segment x(t0
i

), (8) can be used
to compute r(t1

i

), where t
s

and t
e

in (8) are t0
i

and t1
i

respectively in this
case.

• Fourth, with r(t1
i

), (6) can be used to predict x(T 1
i

) (where T 1
i

= [t0
i

, t1
i

]). The
�nal state of the �rst sub-segment x(t1

i

) can be retrieved from x(T 1
i

) as the
initial state for the second sub-segment.

As a result, all the control references can be created by applying the same
process to all the sub-segments recursively. Mathematically, the process of cre-
ating all the control references for the ith segment can be expressed in (��).

(y(T
i

), x(t0
i

), p
i

, f, g
i

)! R
i

(��)
�Note that f is the transformation of the process model. One f does not mean one process
model, because the process model also include Explicit Constraints and they can still change
even f stays the same. Refer to Method � for details.

Appendix C: Page �8

Figure ��: The process to create the control references for the ith segment.

where y(T
i

) is the ith segment of the SEB; p
i

and g
i

are the parameter and the
control algorithm for the ith segment; x(t0

i

) is the initial state of the ith segment
and comes from the �nal state of the (i � 1)th segment; R

i

is the set of all the
control references of the ith segment, R

i

= {r(t1
i

), ..., r(tMi
i

)}.

Similarly, given x(t0
i

) and R
i

, the trajectory of T
i

can also be predicted by (��)
as below.

(R
i

, x(t0
i

), p
i

, f, g
i

)! (bx(T
i

), by(T
i

))T where T
i

= [t0
i

, tMi
i

] (��)

where bx(tMi
i

) is the predicted �nal state of the ith segment and hence is also the
initial state of the (i+ 1)th segment.

The timing aspect. First, as shown in Fig.��, there is a general time delay,
denoted as T2, from the real state of the controlled process ex(t) being observed
(i.e. the start point of the dotted arrow) to the real state is being affected (i.e.
the start point of the dotted arrow), for example the process delay and sensor
delay. Aswill shown in the following sections, T1 (previously de�ned) and T2will
determine the timing when the generate theme is triggered, when the controller
sends out the RfR and when the controller enters the contingency mode.

Second, T2 is the expected time duration to calculate the control actions
and for the control actions to take effect on the controlled process. For the ith
segment in Fig.�6, t0

i

�T1 is the deadline that y(T
i

) has to be decided and t0
i

�T2
is the deadline that R

i

must be decided, and hence T1 � T2 is the expected
time interval to generate the control references R

i

. Similarly, for the (i + 1)th
segment, the generation ofR

i+1 must start no later than t0
i+1�T1. However, the

calculation of R
i+1 requires R

i

. Because R
i

is supposed to be generated before
t0
i

� T2, therefore the following must be true:

Appendix C: Page ��

Figure ��: The time delay T2.

Figure �6: The time interval of each segment must be greater than T1� T2, so
that there will be enough time generate R

i+1 after R
i

. This �gure shows unsat-
isfactory case.

t0
i

� T2 < t0
i+1 � T1

Because t0
i+1 is the same as tMi

i

, therefore we have (��):

tMi
i

� t0
i

> T1� T2 (��)

which means the length of each segment must be greater than the time it takes
to generate the control reference. For this reason, Fig.�6 is an actually unsat-
ifactory case.

�.�.� The work�ow of Task �

Task � has three themes: a generate theme, a predict theme and a monitor
theme. The generate theme is to create the control references that will achieve
the desired SEB (i.e. y(T)); the predict theme is to continuously predict the future
states of bx(t) and by(t) with the generated control references, because aleatoric

Appendix C: Page ��

uncertainty may create deviation from the planned (evolution) trajectory; the
monitor theme is to make sure the process model and the control algorithm are
valid and the predicted future states of bx(t) and by(t) will not lead to a violation
of the SEB.

Figure ��: The conceptual relationship between the three themes of Task �.

The generate theme. The generate theme is to decide the control references
so that the desired SEB can be achieved by the controlled process. This state-
ment entails two properties of the control references: satis�ability and feasibil-
ity. The formermeans that, the output behavior guided by the control references
must satisfy the desired SEB, i.e. by(T) ✓ y(T); the latter means that, the evolu-
tion of the controlled process must not violate the process model (X,U, Ẋ, Y),
i.e. (��), where T is the segmented timeline of the desired SEB. Note that by(T)
only has the prediction till the last segment whose control references are gen-
erated, and it is possible that some of the later segments do not have control
references. Therefore, we trivially assign ; to the segments without control ref-
erences of by(T) so that by(T) ✓ y(T) and by(T) 6✓ y(T) aremathematically sound.

(bx(T) 6✓ X) _ (bu(T) 6✓ U) _ (by(T) 6✓ Y) _ (ḃx(T) 6✓ Ẋ) (��)

Based on a combination of the truth of the two properties, four scenarios can
be derived.

Scenario �: Satisfactory and feasible. We denote the latest planned seg-
ment is the ith segment, this scenario is to generate the control references for
the next (i + 1)th segment. As shown in Fig.�8, the end of the ith segment tMi

i

is the start of the (i+ 1)th segment t0
i+1. Before tMi

i

is arrived at, the control ref-
erences for the (i + 1)th segment R

i+1 must be generated. But the question is,
how early before tMi

i

should this scenario be triggered?

Fig.�8 is the timeline of this scenario. T1 (as de�ned previously) is the ex-
pected time interval for � , � and � ; T2 is the the expected time (interval) of
� and � . This transformations are triggered by t

c

= tMi
i

� T1��
T1 becoming

true. If it is determined before tMi
i

� T1 that no control algorithm or no control
references can be found, a RfR6 (with the intended start time) can be sent to
Task � for a new SEB (that obviously will not lead to by(T) 6✓ y(T)). If it is deter-
mined after tMi

i

� T1 that no control algorithm or no control references can be
found, then the controller enters the contingency mode. If upon the transition
to this scenario, t

c

< tMi
i

� T1, then the controller enters the contingency mode

Appendix C: Page ��

directly6. If no control references can be found before tMi
i

� T2, the controller
enters the contingency mode.

Figure �8: The timeline of Scenario � of the generate theme.

As a result, two transformations are identi�ed for this scenario (Fig.��).

Figure ��: The work�ow of Scenario � of the generate theme.

(
(y(T

i+1), bx(Ti

), tMi
i

, bp
i+1)

f21�! g
i+1

(y(T
i+1), y(T), bx(Ti

), bp
i+1, f, gi+1, t

Mi
i

,dEC)
f22�! R

i+1

.

where 0  i  n� 1 and dEC = { bX, bU, bP , ḃX, bY }.

• f21: This transformation is adopted from (�) that the control algorithm is
determined by the desired performance, the parameter and the initial state.
y(T

i+1) is the desired SEB for the (i+1)th segment and bp
i+1 is the predicted

parameter for the entire (i+ 1)th segment. The initial state is the value of
bx(T

i

) at tMi
i

. Note that for the �rst segment (i.e. i = 0), bxi(t) is from the
controller of the in-behavior.

• f22: This transformation is based on (��) to calculate the control refer-
ences R

i+1 for the (i + 1)th segment. However, dEC and y(T) are not in
(��). They are to make sure R

i+1 will not lead to infeasibility of the SEB
after tM i+1

i+1 . In addition, tM i+1

i+1 must be selected so that (��) is satis�ed.
6This refers to the possibility that this scenario can be transitioned to from other scenarios, but
it is too late to generate new control references.

Appendix C: Page ��

If a RfR is received from Task � that no control actions can be found for a control
reference, then this scenario is triggered and applicable by replacing all the con-
trol references after the infeasible one with new control references. But since
we do not explain how RfR is handled in this version, we will re�ect this scenario
in the future versions.

Scenario �: Unsatisfactory and feasible. This scenario is triggered by the
detection that the control references will lead to the violation of the desired SEB
at some point. Once triggered, this scenario is to resolve the violation before it
happens.

Figure ��: The scenario of by(T) 6✓ y(T). The speci�c violation is caused by the
change of the predicted output behavior and resolved by new control references.
Because t

d

0 is the point where the “new prediction with new CR” deviates from
the “new prediction with old CR”, we call t

d

0 the steering point hereafter.

Such potential violation can be caused by the change of the predicted out-
put behavior due to uncertainty, or the change of the desired SEB coming from
Task �. To resolve such potential violation, the controller can either change the
generated control references to adjust the predict output behavior to �t in the
desired SEB, or to change the desired SEB to accommodate the latest predicted
output behavior. However, the latter has to be accomplished by Task �, while the
former can be accomplished by the current task. Therefore, it is reasonable to
try to adjust the predicted output behavior by changing the control references.
If the violation cannot be resolved, a new SEB can be requested from Task � as
a resolution.

Fig.�� is an example of the violation caused by the change of the predicted
output behavior and resolved by adjusting the predicted output behavior with
new control references. Originally, the red line is the planned output behavior
and satis�es the desired SEB (the grey area). But now the new prediction (the
blue line) shows that the output behavior with the current control references will

Appendix C: Page ��

violate the desired SEB at t = t
d

. After such violation is detected by the monitor
theme, the generate theme has to replace the planned control references with
the new ones to steer the output behavior back into the grey area. But not all
the planned control references need to be replaced. As shown in the �gure, the
controller only has to replace the control references after t

d

to steer the output
behavior back into the grey area. Considering t

d

might be too late to steer the
output behavior, hence t

d

0 is selected before t
d

as the steering point. In fact,
t
d

0 has to satisfy the constraints of (��). The �rst is obviously to say that the
output behavior must be steered before the violation happens, and the second
is to say there must be enough time for the controller to decide the new control
references, issue the control actions and for the control action to take effect on
the output variable. (

t
d

0  t
d

t
c

+ T1 < t
d

0
(��)

Note that as long as t
d

0 satis�es the constraints of (��), it does not have to be in
the same segment of t

d

. Denoting the selected t
d

0 is located in the ith segment,
[t0
i

, t
d

0] is considered the new ith segment, and all the planned control references
after t

d

0 will be replaced with new control references R
i+1. If td0 cannot be found

before t
d

� T1 , or R
i+1 cannot be found before t

d

0 � T2 for a selected t
d

0�, then
RfR7 can be sent to Task � for a new SEB to resolve the predicted violation be-
fore t

d

. If no new SEB can be found before the deviation happens, the controller
enters the contingency mode, which is already de�ned by EA3.

Of note, it is possible that the new SEB, while may not resolve the violation,
can push t

d

to a later time so that new control references can be generated to
adjust the predicted output behavior. We do not consider this scenario in this
work.

As a result, four transformations are de�ned for the work�ow of Scenario �
(Fig.��).

Figure ��: The work�ow of the Scenario � of the generate theme.

�If Ri+1 cannot be found for td0 , it is only possible that a time before td0 can yield a Ri+1. But
because tc is already closing in the current td0 , an earlier td0 is infeasible. This is why we do not
try a different td0 that satis�es (��)

Appendix C: Page ��

8
>><

>>:

(t
d

, t
c

)
f23�! t

d

0

(y(T
i+1), bpi+1, bx(Ti

), t
d

0)
f21�! g

i+1

(y(T
i+1), y(T), bx(Ti

), bp
i+1, f, gi+1, td0 ,dEC)

f22�! R
i+1

where 1  i  n and dEC = { bX, bU, bP , ḃX, bY }.

• f23: This transformation is to select the new start time t
d

0 to satisfy the
constraints in (��). t

d

is received from the monitor theme.

• f21 and f22 have already been explained in the previous scenario.

Scenario �: Satisfactory and infeasible. This scenario is when the dynamic
trajectory of the controlled process is predicted to violate the process model at
some point. If such violation is detected, a new control algorithm or a new set
of control references must be generated before the violation happens.

The activities to address this scenario is similar to Scenario �, where t
d

in
this scenario is the earliest time point when the predicted dynamic trajectory
of the controlled process (bx(T), by(T), bu(T), ḃx(T)) violates the process model
(X, Y, U, Ẋ). Once t

d

is decided for this scenario, all the three transformations
of Scenario � can be applied to address Scenario �. The only difference is that,
if t

d

0 cannot be found before t
d

� T1 , or R
i+1 cannot be found before t

d

0 � T2,
the controller enters the contingency mode, rather than requesting for a new
SEB, because a new SEB cannot directly resolve this feasibility problem. How-
ever, note that it is possible that a new SEB may indirectly resolve this feasibility
problem by leading to new control algorithm or new control references. But we
do not consider such scenario in this version.

Scenario �: Unsatisfactory and infeasible. This scenario is similar to Sce-
nario � and Scenario � as all of them requires a new control algorithm or a new
set of control references to address the problem. Therefore, the three transfor-
mations of Scenario � can also be applied to this scenario.

The only difference is that t
d

of this scenario is the earlier time between t
d1

and t
d2. In addition, because the control references are infeasible, requesting

a new SEB will not resolve this problem. Therefore, same as Scenario �, if t
d

0

cannot be found before t
d

� T1 , or R
i+1 cannot be found before t

d

0 � T2, the
controller enters the contingency mode.

The predict theme. The scenarios of the generate theme are determined by
the satis�ability and the feasibility, which requires a prediction of (bx(T), by(T), bu(T), ḃx(T)).
We explain how to make such prediction in this section.

In principle, (��) can be adopted to predict bx(T
i

) and by(T
i

) for the ith segment.
As shown in (��), when the current time t

c

is before the ith segment, the latest
predicted initial state and the parameters can be used to predict bx(T

i

) and by(T
i

);
when the current time is in the ith segment, the current observed state ex and the

Appendix C: Page ��

parameters ep can be used to calculate the latest prediction of bx(T
i

) and by(T
i

).
(
(R

i

, bx(t0
i

), bp
i

, f, g
i

)! (bx(T
i

), by(T
i

))T where t
c

< t0
i

and T
i

= [t0
i

, tMi
i

]

(R
i

, ex, ep, f, g
i

)! (bx(T
i

), by(T
i

))T where t
c

2 [t0
i

, tMi
i

] and T
i

= [t
c

, tMi
i

]
(��)

In reality, (��) becomes invalid when deviation happens. Taking the example
of the second case of (��), where t

c

2 [t0
i

, tMi
i

]. First, because the time delay T2,
a prediction model which “allows the system to use measured signal values at
time t� � to estimate the signal values at time t” [?] is usually used to compen-
sate the time delay. Although such prediction model is used at the next Task �
to generate the control action, it has impacts on the prediction of bx(T

i

) and by(T
i

)
at the current Task �. As shown in Fig.��, at any given time t

c

2 [t0
i

, tMi
i

], the real
system state (denoted as ex(t

c

)) is used to predict the system state at t
c

+ T2
(i.e. bx(t

c

+ T2)). Then the control action for t
c

+ T2 (i.e. u(t
c

+ T2)) is generated
so that it can take effect on the controlled process at t

c

+ T2. Applying such
action to all time in the ith segment, the time delay can be compensated and
(��) can still be used to predict bx(T

i

) and by(T
i

). In other words, (bx(T
i

), by(T
i

))T

can be predicted at t
c

2 [t0
i

, tMi
i

] in (�6) , which is the bottom blue line in Fig.��
predicted with ex|t

c

and ep|t
c

.

(R
i

, ex, ep, f, g
i

)! (bx(T
i

), by(T
i

))T where t
c

2 [t0
i

, tMi
i

] and T
i

= [t
c

, tMi
i

] (�6)

Figure ��: Predicting bx(T
i

) and by(T
i

) in the case of time delay T2. The blue line
is the prediction by adopting (��). Note that bx(t) is the prediction made at t�T2;
ex|t and ep|t are the observed state and parameter the current time t. The bold
ex and ep above the blue lines are the state and the parameter used to make the
prediction.

Appendix C: Page �6

“Deviation” in this speci�c example means the observed states or parame-
ters are different from the previously predicted states or parameters. As shown
in Fig.��, bx(t

c

+ T2) is predicted at t
c

to generated the control action in order
to compensate the time delay T2. A deviation is, if at time t

c

+ T2, it is found
that real observed state ex|t

c

+ T2 is different from the predicted bx(t
c

+ T2), i.e.
ex|t

c

+T2 62 bx(t
c

+T2). Obviously, (6) is not applicable to [t
c

+T2, tMi
i

] as a result of
such deviation. Therefore, a new prediction needs to be made for [t

c

+ T2, tMi
i

].
Were (��) still applicable, the prediction can be made in (��), which corresponds
to the top blue line in Fig.��.

(R
i

, ex|t
c

+ T2, ep|t
c

+ T2, f, g
i

)! (bx(T
i

), by(T
i

))T where T
i

= [t
c

+ T2, tMi
i

] (��)

However, (��) is actually incorrect due to the coupling between the deviation
and the delay. As shown in Fig.��, all the control actions for [t

c

+T2, t
c

+2T2] are
determined based on the state (and parameter) predictions of [t

c

+T2, t
c

+2T2]
(which is the bottom blue line) made at [t

c

, t
c

+ T2]. As a result, when the de-
viation is detected at t

c

+ T2, the control action for [t
c

+ T2, t
c

+ 2T2] based
on the outdated predictions of the bottom blue line rather the top blue line.
Therefore, (��) i.e. the top blue line, is not applicable to predict (bx(T

i

), by(T
i

))T

for T
i

= [t
c

+ T2, tMi
i

].

As a solution, the prediction of [t
c

+ T2, t
c

+ 2T2] must be made based on
the all the control actions for [t

c

+ T2, t
c

+ 2T2]; then the rest of the timeline
[t
c

+2T2, tMi
i

] can be predicted by applying (��).The prediction of [t
c

+T2, t
c

+2T2]
has to be accomplished by Task � as it requires insights about how the control
actions are generated. Furthermore, because Task � always needs tomake such
prediction to generate the control action, no extra task is added to Task �. We
denote the prediction made by Task � as bx⇤(T ⇤). The correct prediction after
the deviation should be calculated by (�8). As shown in Fig.��, the prediction
made by Task � is the purple line (where T ⇤ = [t

c

+ T2, t
c

+ 2T2]). The rest of
the prediction is made by applying (��) with the currently observed parameter
ep|t

c

+ T2 and the predicted state bx⇤(t
c

+ 2T2).

(R
i

, bx⇤(T ⇤), bx⇤(t
c

+2T2), ep|t
c

+T2, f, g
i

)! (bx(T
i

), by(T
i

))T where T
i

= [t
c

+T2, tMi
i

]
(�8)

In a more general sense, four scenarios (a)⇠(d) are developed to make pre-
diction of bx(T

i

) and by(T
i

). As shown in Fig.��, the blue line is the prediction
made by (15) and the purple line is the prediction from Task �. Note that these
four scenarios are only applicable to the situation where T2 < tMi

i

� t0
i

. The
scenarios for T2 � tMi

i

� t0
i

will be discussed brie�y later.

(a) t
cr

 t
c

< t0
i

� T2: Because the ith segment of the desired SEB has not
started at this point, bx(T

i

) and by(T
i

) are made for the entire T
i

= [t0
i

, tMi
i

].
Furthermore, deviation in this scenario means the change of the predicted
initial state bx(t0

i

) or the parameter bp
i

. When the deviation happens, (��)
can still be used to update bx(T

i

) and by(T
i

) with the updated bx0(t0
i

) and/or
the parameter bp0

i

(the upper blue line), because no control action has been
determined by Task � at this time point. Mathematically, the prediction can

Appendix C: Page ��

(a) tc < t

0
i � T2 (b) t0i � T2  tc < t

0
i

(c) t0i  tc < t

Mi
i � T2 (d) tMi

i � T2  tc < t

Mi
i

Figure ��: The four scenarios to predict bx(T
i

) and by(T
i

) for T2 < tMi
i

� t0
i

. t
cr

is
the time when the control reference is decided. The blue line is the prediction
by (15). The purple line is the prediction from Task �. t

cr

is the time when the
control reference is issued.

be initiallymade and then updated (if necessary) by the transformation f24,
where bx0(t0

i

) and bp0
i

are the latest predicted value of x(t0
i

) and p
i

. Intuitively,
as long as t

cr

 t
c

< t
s

� T2, f24 can always be used to predict the bx(T
i

)
and by(T

i

) with the latest predicted value of x(t0
i

) and p
i

.
(
(R

i

, bx(t0
i

), bp
i

, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

(R
i

, bx0(t0
i

), bp0
i

, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

where T = [t0
i

, tMi
i

].

(b) t0
i

� T2  t
c

< t0
i

: Similar to (a), bx(T
i

) and by(T
i

) are made for the entire
T
i

= [t0
i

, tMi
i

] and deviation also means the change of the predicted bx(t0
i

) or
bp
i

. However, because the states of [t0
i

, t
c

+T2] have already been predicted
at this point during [t0

i

� T2, t
c

] (the purple segment on the time axis), it is
too late to change the control actions (to be) generated based on these
predictions. Therefore, the prediction of [t0

i

, t
c

+T2]must bemade by Task
� (the purple line, denoted as bx⇤(T ⇤)) with the new initial state bx0(t0

i

) and/or
the parameter bp0

i

. Then the rest of the prediction at [t
c

+ T2, tMi
i

] can be
made by (��) with the bx⇤(t

c

+ T2) as the initial state and/or the updated
parameter bp0

i

(the upper blue line). Mathematically, the prediction can be
initially made by f24 and then updated (if necessary) by f25, where bx⇤(T ⇤)
is the prediction made with bx0(t0

i

) and bp0
i

by Task �. Intuitively, f25 obtains
the new prediction by concatenating the prediction of bx⇤(T ⇤) from Task �
with the prediction by f24 starting from the time point t

c

+ T2.

Appendix C: Page �8

(
(R

i

, bx(t0
i

), bp
i

, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

(R
i

, bx⇤(T ⇤), bx⇤(t
c

+ T2), bp0
i

, f, g
i

)
f25�! (bx(T

i

), by(T
i

))T

where T ⇤ = [t0
i

, t
c

+ T2] and T
i

= [t0
i

, tMi
i

].

(c) t0
i

 t
c

< t
e

� T2: Because the desired SEB has started at this point, bx(T
i

)
and by(T

i

) are made only for time duration [t
c

, tMi
i

]. Furthermore, deviation
in this scenario means the observed system state or the parameter is dif-
ferent than the predicted one, i.e. ex 62 bx(t

c

) or ep 62 bp
i

. When the deviation
happens, because it is too late to change the control action for [t

c

, t
c

+T2],
the prediction of [t

c

, t
c

+ T2]must be made by Task � (the purple line) with
the new initial state ex and/or the parameter ep. Then the rest of the predic-
tion at [t

c

+ T2, tMi
i

] can be made by (��) with the bx⇤(t
c

+ T2) as the initial
state and/or the latest parameter ep (the upper blue line). Mathematically,
the prediction can be made by f24 with the newly observed ex and ep, if they
do not deviated from the predicted value. Otherwise, f25 can be used to
make the prediction, where bx⇤(T ⇤) is the prediction made with ex and ep by
Task �.

(
(R

i

, ex, ep, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

(R
i

, bx⇤(T ⇤), bx⇤(t
c

+ T2), ep, f, g
i

)
f25�! (bx(T

i

), by(T
i

))T

where T ⇤ = [t
c

, t
c

+ T2] and T
i

= [t
c

, tMi
i

].

(d) tMi
i

� T2  t
c

< tMi
i

: Similar to (c), bx(T) and by(T) are made for [t
c

, tMi
i

]
and the deviation also means the observed system state or the parameter
is different than the predicted one, i.e. ex 62 bx(t

c

) or ep 62 bp
i

. Furthermore,
because there is less than T2 time left for the desired SEB, all the control
actions for the rest of the time have been determined at [2t

c

� tMi
i

, t
c

] (the
purple segment on the time axis). Therefore, when the deviation happens,
the prediction of [t

c

, tMi
i

]must be made by Task � (the purple line) with the
new initial state ex and/or the parameter ep. Mathematically, the prediction
can bemade by f24 with the newly observed ex and ep, if they do not deviated
from the predicted value. Otherwise, f26 can be used to make the predic-
tion, where bx⇤(T ⇤) is the predictionmade with ex and ep by Task �. Intuitively,
bx(T) is the same as bx⇤(T ⇤); f in the input is to calculate by(T) from bx⇤(T ⇤).

(
(R

i

, ex, ep, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

(bx⇤(T ⇤), f)
f26�! (bx(T

i

), by(T
i

))T

where T ⇤ = [t
c

, tMi
i

] and T = [t
c

, tMi
i

].

In summary, when T2 < TMi
i

� T 0
i

, the work�ow to predict bx(T
i

) and by(T
i

) is
shown in Fig.��.

When T2 � TMi
i

� T 0
i

, a new set of scenarios (a)⇠(d) has to be created in
a similar way as T2 < TMi

i

� T 0
i

. We only present the transformations for each

Appendix C: Page ��

Figure ��: The work�ow to predict bx(T
i

) and by(T
i

) when T2 < TMi
i

� T 0
i

.

scenario without detailed explanation (Fig.��). For each scenario, the �rst trans-
formation is when no deviation happens, and the second is when a deviation is
detected.

(a) t
c

< t0
i

� T2:
(
(R

i

, bx(t0
i

), bp
i

, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

(R
i

, bx0(t0
i

), bp0
i

, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

where T = [t0
i

, tMi
i

].

(b) t0
i

� T2  t
c

< tMi
i

� T2:
(
(R

i

, bx(t0
i

), bp
i

, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

(R
i

, bx⇤(T ⇤), bx⇤(t
c

+ T2), bp0
i

, f, g
i

)
f25�! (bx(T

i

), by(T
i

))T

where T ⇤ = [t0
i

, t
c

+ T2] and T
i

= [t0
i

, tMi
i

].

(c) tMi
i

� T2  t
c

< t0
i

:
(
R

i

, bx(t0
i

), bp
i

, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

(bx⇤(T ⇤), f)
f26�! (bx(T

i

), by(T
i

))T

where T ⇤ = [t0
i

, tMi
i

] and T
i

= [t0
i

, tMi
i

].

(d) t0
i

< t
c

 tMi
i

:
(
(R

i

, ex, ep, f, g
i

)
f24�! (bx(T

i

), by(T
i

))T

(bx⇤(T ⇤), f)
f26�! (bx(T

i

), by(T
i

))T

Appendix C: Page ��

(a) tc < t

0
i � T2 (b) t0i � T2  tc < t

Mi
i � T2

(c) tMi
i � T2  tc < t

0
i (d) t0i  tc < t

Mi
i

Figure ��: The four scenarios to predict bx(T
i

) and by(T
i

) for T2 � tMi
i

� t0
i

.

Figure �6: The work�ow to predict bx(T
i

) and by(T
i

) when T2 � TMi
i

� T 0
i

.

where T ⇤ = [t
c

, tMi
i

] and T
i

= [t
c

, tMi
i

].

In summary, when T2 � TMi
i

� T 0
i

, the work�ow to predict bx(T
i

) and by(T
i

) is
shown in Fig.�6.

Finally, the prediction of bu(T
i

) and ḃx(T
i

) can be calculated based on bx(T
i

) and
by(T

i

). According to (�), bu(T
i

) can be �rst calculated from bx(T
i

) and by(T
i

) through
g, and then ḃx(T

i

) can be calculated from bx(T
i

) and bu(T
i

) through f . This process
is represented in f27 below.

(bx(T
i

), by(T
i

), R
i

, bp
i

)T
f27�! (bu(T

i

), ḃx(T
i

))T

The monitor theme. This theme is to monitor the satis�ability and the feasi-
bility of the control references. However, both properties rely on the validity of

Appendix C: Page ��

the process model. Therefore, we �rst explain how to monitor the validity of the
process model, and then the monitoring of satis�ability and the feasibility are
addressed.

First, based on Method �, the process model is comprised of implicit con-
straints (IC) and explicit constraints {V

f

, U,X, P, Ẋ, Y }, and the latter is affected
by the former, which can be mathematically represented in (��) below.

IC ! {V
f

, U,X, P, Ẋ, Y } (��)

The validity of the process model means V
f

must be true and the explicit con-
straints must be respected. As a result, the following two transformations are
de�ned to validate the validity of the process model (Fig.��).

(
IC

f28�! {V
f

, U,X, P, Ẋ, Y }
({X,P, Ẋ, Y }, {ex, ep, ėx, ey}) f29�! V al

• f28: This transformation is to generate the process model based on the
implicit constraints (IC). V

f

denotes the validity of the f . {U,X, P, Ẋ, Y }
is the explicit constraints of the processmodel that the real controlled pro-
cess must respect. If {V

f

, U,X, P, Ẋ, Y } is false, then the process model
is invalid and the the controller enters contingency mode immediately.

• f29: This transformation is to make sure the process model is applicable
to the real controlled process. Speci�cally, f29 is to make sure {x, p, ẋ, y} 2
{X,P, Ẋ, Y } is true, because if the real controlled process is beyond the
state space that the process model depicts, the process model cannot be
used to represent and predict the behavior of the real process. If the result
turns out to be false, the controller enters contingency mode. Note that u
is not included in f29 because u 2 U will be guaranteed by Task �.

Figure ��: The work�ow to monitor the validity of the process model.

Second, the feasibility of the control referencesmeans the predicted {bu(T
i

), ḃx(T
i

), bx(T
i

), by(T
i

)}
will not lead to a violation of the process model. Since we have already estab-
lished that the process model might also change subject to cIC , a prediction of
the process model also has to be made so that it can be compared with the
predicted trajectory of the controlled process.

As a result, the following two transformations are de�ned to examine the
feasibility of the control references (Fig.�8).

(
cIC f30�! {cV

f

, bX, bU, bP , ḃX, bY }
({ bX(T

i

), bY (T
i

), bU(T
i

), ḃX(T
i

), bP
i

}, {bx(T
i

), by(T
i

), bu(T
i

), ḃx(T
i

), bp
i

}) f31�! {Fea, t
d1}

Appendix C: Page ��

• f30: This transformation is to generate the predicted explicit constraints
for the process model, which will be used in f31 to examine the feasibil-
ity of the control references. If {cV

f

, bX, bU, bP , ḃX, bY } is false, meaning the
process model will become invalid at some point during the time period
of interest, then the controller has to enter the contingency mode before
{cV

f

, bX, bU, bP , ḃX, bY } becomes false.

• f31 is de�ned to examine the feasibility of the control references. If no
violation is detected (and hence feasible), Fea is assigned true; otherwise
Fea is assigned false and the deviation point t

d

(i.e. the earliest time that
the violation happens) is returned. Note that if bp

i

6✓ bP
i

is detected, the
controller has to enter the contingency mode before ep 62 P happens.

Figure �8: The work�ow to validate the feasibility of the control references.

Third, after the validity of the process model and the applicability of the con-
trol algorithm is validated, we can simply check the satis�ability (i.e. by(T

i

) ✓
y(T

i

)) of the control references by applying the transformation f32. If by(T
i

) ✓
y(T

i

) is true, then assigned true to Sat; otherwise assign false to Sat and the
deviation point t

d

(i.e. the time that by(T
i

) deviates from y(T
i

)) is returned.

(y(T
i

), by(T
i

))
f32�! {Sat, t

d2}

Figure ��: The work�ow to validate the satis�ability of the control references.

�.� The enabling action of Task �.

Predicting the parameter (EA6). Both the generate themeand the predict theme
requires prediction of the parameters for each segment. We de�ne EA6 as a
general placeholder for the speci�c prediction activities for speci�c design ap-
plications.

Therefore, EA6 can be de�ned as below programmatically:

• Trigger event: NA.

• Guard condition: stage! = (preStage _ postStage).

Appendix C: Page ��

• Input: E
p

and CP
p

represents the set of information necessary to make
such prediction from the environment and the controlled process respec-
tively; y(T) contains the information about the time period of the desired
SEB.

• Output: bp(T) is the predicted parameter value for the time period of the
desired SEB.

• Transformation: Execute f33.

Graphically, Action EA6 can be represented in Fig.��.

Figure ��: Graphical representation of EA6.

Segmenting the SEB (EA7). As explained before, the control references are
generated segment by segment. The segment can start/end with time intervals.
The time span of each segment is subject to (��). The parameter in each seg-
ment must be constant value or set. We de�ne EA7 as a general placeholder
and assume that it can always determine the segments in a timely manner.

Therefore, EA7 can be de�ned as below programmatically:

• Trigger event: NA.

• Guard condition: stage! = (preStage _ postStage).

• Input: y(T) contains the information about the time period of the desired
SEB; bp(T) is used to make sure the parameter value of each segment is
the same, which is required by the problem formulation.

• Output: y(T) is the segmented SEB and bp(T) is the set of the predicted
values for the segmented SEB.

• Transformation: Execute f34.

Graphically, Action EA7 can be represented in Fig.��.

Figure ��: Graphical representation of EA7.

Determining the scenario(EA8). EA8 is an instantaneous re�ection of the
scenario (for the generate theme) and t

d

based on the outputs of the monitor
theme. Therefore, EA8 can be de�ned as below programmatically:

Appendix C: Page ��

• Trigger event: NA.

• Guard condition: NA.

• Input: Sat and t
d1 are the value and the associated deviation point of sat-

is�ability; Fea and t
d2 are the value and the associated deviation point of

the feasibility. They are all outputs of the monitor theme.

• Output: Scea is the speci�c scenario of the generate themebasedon {Sat, Fea};
t
d

is the associated deviation point that will go into the generate theme,
speci�cally f23.

• Transformation: f35 is de�ned as below.
8
>>><

>>>:

Scea = 1 and t
d

= false, if Sat = true ^ Fea = true

Scea = 2 and t
d

= t
d2, if Sat = false ^ Fea = true

Scea = 3 and t
d

= t
d1, if Sat = true ^ Fea = false

Scea = 4 and t
d

= min(t
d1, td2), if Sat = false ^ Fea = false

Graphically, Action EA8 can be represented in Fig.��.

Figure ��: Graphical representation of EA8.

Setting the priority(EA9). This action implements the priority of the three
themes (Fig.��). Because the predict theme has the highest priority, if its inputs
change, EA9 pauses the monitor theme and the generate theme by settingmon
and gen to false; after the predicted theme is updated, EA9 frees the monitor
theme by settingmon to true; after the monitor theme is updated, EA9 frees the
generate theme by setting gen to be true. Similarly, if the inputs of the monitor
theme change, EA9 pauses the generate theme by setting gen to false; after
the monitor theme is updated, EA9 frees the generate theme by setting gen to
true. If when themonitor theme is updating itself the inputs of the predict theme
change, themonitor theme is paused and the loop starts from the predict theme,
as the predict theme has the higher priority.

Therefore, EA9 can be de�ned as below programmatically:

• Trigger event: NA.

• Guard condition: NA.

• Input: {bx⇤(T ⇤), bp(T), ex, ep} and {y(T , IC)}.

• Output: gen,mon.

Appendix C: Page ��

• Transformation f36: If {bx⇤(T ⇤), bp(T), ex, ep} changes,mon false and gen
false; if the predict theme is updated,mon true; if the monitor theme is
updated, gen true. If {y(T , IC)} changes, gen false; if the monitor
theme is updated, gen true.

Graphically, Action EA9 can be represented in Fig.��.

Figure ��: Graphical representation of EA9.

Finally,weassume an underlying function that automatically updates the cur-
rent time stamps of bp(T), bx(T), by(T), bu(T), ḃx(T) and y(T), andmake sure the cur-
rent time in all of them is consistent with the real current time stamp.

�.� The main actions of Task �.

�.�.� The overall description

The overall information �ow of the three themes of Task � can be summarized in
the left of Fig.��. Task � starts with the generate theme receiving y(T) with Sat
and Fea as true by default. The generate theme creates the control references
R(T1) for the �rst segment, which will then be used to predict the dynamic tra-
jectory of the controlled process {bx(T1), by(T1), bu(T1), ḃx(T1)}. Such a prediction is
then used tomonitor the feasibility and the satis�ability ofR(T1), which will then
be used to update the scenario for the generate theme for the second segment.
This process is then used repeatedly for all the remaining segments.

Figure ��: The counter-clockwise overall information �ow of Task �, where
dEC = { bX, bU, bP , ḃX, bY } and bxi(t) is the predicted dynamic trajectory of the in-
behavior. Left is the original information �ow; right is the adjusted information
�ow to address the synchronization problem.

Appendix C: Page �6

However, such information �ow (left of Fig.��) potentially has a problem of
synchronization. When bx(T) changes, the generate theme can receive the latest
value immediately. However, such a change in bx(T) may also affect the value
of Fea, which is likely to take a longer time to reach the generate theme. The
problem is that the generate theme has no idea whether Fea will be affected by
the change and hence may have already taken actions to address the change
of bx(T) before a new Fea is reached. This inconsistency may be propagated
through the information loop and eventually lead to erratic behaviors. As a so-
lution, bx(T) is passed from the predict theme to the monitor theme, and then is
passed to the generate theme together with the updated results of the monitor
theme (right of Fig.��). In this way, the generate theme is always updated with
the same bx(T) used to update the monitor theme.

Furthermore, the loop in Fig.�� only works when each theme updates one at
a time. When two themes update at the same time due to a new input value, it
may cause problems. For example, when the monitor theme and the generate
theme update at the same time due to a new y(T), the new control references
may be generated based on the current Scea or t

d

while the new Scea or t
d

is still
being calculated by the monitor theme. The (incorrect) result of the generate
themewill then trigger the predict theme and further propagate through the loop,
causing erratic behaviors. It is the same case when the generate theme and the
predict theme update at the same time, and the predict theme and the monitor
theme update at the same time. Therefore, there must be a way to decide which
theme to update the �rst when two or more themes update at the same time.

As a solution, we assign priorities to the three themes. First, the generate
theme always need the results of the predict theme and the monitor theme to
generate/update the control references. For example, if the inputs of the predict
theme change while the generate theme is updating the control references, the
generate theme must stop until the new scea and t

d

are decided based on the
newprediction. Therefore, the generate theme has the lowest priority among the
three themes. Similarly, the predict theme has a higher priority over the monitor
theme. Therefore, the priority among the three themes are “the predict theme>
the monitor theme > the generate theme”. Each theme may start a new loop by
the change of the its input. When the inputs of more than one theme change,
the loop starts from the theme with the higher priority, and pauses the themes
with the lower priority until the the loop progress to the paused theme. In this
way, we ensure a single start point of the loop while more than one theme needs
to be updated. Refer to EA9 for the speci�c implementation.

Therefore, the overall work�ow of Task � is presented in Fig.��. On “y(T)
transitioning from false to true”, the generate theme assign true to g(T) and
R(T) to initiate the whole Task �. The predict theme passes the observed in-
formation to the monitor theme. The monitor theme examine the feasibility
based bx(T) and bX . Once the generate theme receives the output of the mon-
itor theme, it starts to generate g(T) and R(T). Furthermore, gen = true and
mon = true are the guard conditions for the generate theme and the moni-
tor theme respectively. Finally, all the three themes also have a guard condi-
tion “stage! = (preStage _ postStage)”, meaning that when the desired SEB is

Appendix C: Page ��

Figure ��: The overall work�ow of Task �. dEC = { bX, bU, bP , ḃX, bY }

achieved, Task � needs to be terminated.

�.�.� The generate theme

Threemain actions are de�ned for the generate theme (Fig.�6): MA21 andMA22,
where the �rst is to select t

d

0 for Scenario 2 ⇠ 4, the second is to generate the
control references, and the third is to retain the current value of g(T) and R(T)
while the input values change. We now explain each main action in detail.

Figure �6: The main actions of the generate theme of Task �. dEC =

{ bX, bU, bP , ḃX, bY }

• MA21:

– Transformation: f23 is to �nd the time point t
d

0 to start change the
dynamic trajectory of the controlled process. The mathematical ex-
pression and the associated constraints (��) have been explained pre-
viously. However, f23 only describes how the t

d

0 is to be found, but not
what to do if t

d

0 cannot be found. Hence, according to the speci�c
scenarios, different responses will be issued if t

d

0 cannot be found:
* Scenario �: If t

d

0 cannot be found before t
d

� T1, then RfR7 is
sent for a new SEB to make the control references satisfactory
before t

d

. The reason that no contingency mode after t
d

� T1 is
because a new SEB may de-con�ict the whole situation, as long
as the new SEB comes before t

d

.

Appendix C: Page �8

* Scenario �: If t
d

0 cannot be found before t
d

� T1, CM9 is issued
at t

d

� T1 to enter the contingency mode, because a new SEB
cannot solve the feasibility problem directly.

* Scenario �: If t
d

0 cannot be found before t
d

� T1, CM10 is issued
at t

d

� T1 to enter the contingency mode for the same reason of
Scenario �.

– Duration: None.
– Output: t

d

0 , t
d

, Scea, RfR7, CM9 and CM10.
– Input: Scea and t

d

are the scenario and the deviation point decided by
EA8.

– Trigger: None.
– Guard: stage ^ Scea ^ gen, where stage! = (preStage _ postStage),

Scea = {2, 3, 4} and gen = true. Intuitively, this main action can-
not happen if the functional goal is issued or the functional goal has
achieved, and t

d

is not de�ned if it is currently in Scenario �.

• MA22

– Transformation: When the SEB y(T) transitions from false to true, the
action �rst choose the start time along the predicted trajectory bxi(t)
of the in-behavior, and the initial condition is bx(0).
When Scea and t

d

is received from EA8, this action addresses the
synchronization problems by comparing Scea and t

d

from MA21 and
EA8 to make sure it is synchronized with MA21.
After the synchronization is con�rmed, the action precedes to exe-
cute f21|22. f21|22 is to calculate the control algorithm and the control
references based on the current scenario. RfR and CM are issued
differently in different scenarios:

* Scenario �: If it is determined before tMi
i

�T1 that the control algo-
rithm or the control references cannot be found, then send RfR6

to Task �; otherwise enter contingency mode by issuing CM8. If
no control reference is found after tMi

i

� T2, then enter contin-
gency mode by issuing CM8.

* Scenario �: If it is determined before t
d

0�T2 that the control algo-
rithm or the control references cannot be found, then send RfR7

to Task � for a new SEB to make the control references satisfac-
tory before t

d

. If the control algorithm or the control references
cannot be found before t

d

0 � T2, then RfR7 is sent to Task � im-
mediately at t

d

0 � T2.
* Scenario �: If it is determined before t

d

0 � T2 that the control
algorithm or the control references cannot be found, then enter
the contingencymode by issuingCM9. If the control algorithm or
the control references cannot be found before t

d

0 � T2, then the
controller enters the contingency mode immediately by issuing
CM9.

Appendix C: Page ��

* Scenario �: If it is determined before t
d

0 � T2 that the control
algorithm or the control references cannot be found, then enter
the contingency mode by issuing CM10. If the control algorithm
or the control references cannot be found before t

d

�T2, then the
controller enters the contingency mode immediately by issuing
CM10.

– Duration: None.
– Output: g(T) and R(T) are the generated control algorithm and the

control references. bx(0) is passed to the predict theme. If g(T) and
R(T) cannot be found in time, RfR6 and CM8 are the response from
Scenario �;RfR7 is from Scenario �; CM9 is from Scenario �; CM10 is
from Scenario �. The reason that no contingency mode for Scenario
� is same as MA21.

– Input: bxi(t) is from the controller of the in-behavior, and is used to
generate the controller references for the �rst segment. bx(T) is the
prediction of the state of the controlled process. bp(T) is the predic-
tion of the parameter; y(T) is the desired SEB; they come from EA7.
{dEC, bx(T)} is from the monitor theme and {Scea, t

d

, t
d

0} is passed
from MA21.

– Trigger: y(T) : false! true, where y(T) comes from EA7.
– Guard: stage ^ gen, where stage! = (preStage _ postStage) and gen =

true.

In summary, the generate theme of Task � can be represented as an action in
Fig.��. The sources of the all the external interactions with other themes, the en-
abling actions and the elements out of the design scope are speci�ed in Fig.�8.

Figure ��: The generate theme of Task � represented as an action. The internal
interactions are hidden within the grey box.

�.�.� The predict theme

Two main actions are de�ned for the predict theme (Fig.��): MA23 and MA24,
where the former is to calculate the prediction of bx(T) and by(T), and the latter
is to calculate bu(T) and ḃx(T). We now explain each main action in detail.

Appendix C: Page 6�

Figure �8: The external interactions of the generate theme of Task �.

Figure ��: The main actions of the predict theme of Task �.

• MA23

– Transformation: f24|25|26 is a composition of f24, f25 and f26, which as
explained before, are to predict the dynamic trajectory of x and y, i.e.
bx(T) and by(T).

– Duration: The duration of this action must be as short as possible.
The �rst e23 time must be removed from the output prediction.

– Output: {bx(T), by(T), bp(T)} is for the calculation of bu(T) and ḃx(T); g(T)
and bR(T) are the same as the input. They go into the monitor theme
and will be eventually used by the generate theme, so that they are
consistent in all three themes.

– Input: g(T), R(T) and bx(0) come from the generate theme; x⇤(T ⇤)

comes from Task �; bp(T) comes from EA7; ex and ep are the observed
current value of the system state and the parameter.

– Trigger: None.
– Guard: stage, where stage! = (preStage _ postStage).

Appendix C: Page 6�

• MA24

– Transformation: f27 is to calculate bu(T) and ḃx(T) based on the pro-
cess model (�).

– Duration: The duration of this action must be as short as possible.
The �rst e24 time must be removed from the output prediction.

– Output: {bu(T), ḃx(T)} is the predicted dynamic trajectory of the con-
trolled process; {bx(T), by(T)} is passed directly from the input.

– Input: {bx(T), by(T), bp(T)} comes from MA23.
– Trigger: None.
– Guard: stage, where stage! = (preStage _ postStage).

In summary, the generate theme of Task � can be represented as an action
in Fig.��. The sources of the all the external interactions with other themes,
the enabling actions and the elements out of the design scope are speci�ed in
Fig.�8.

Figure 6�: The predict theme of Task � represented as an action. The internal
interactions are hidden within the grey box.

Figure 6�: The external interactions of the predict theme of Task �.

Appendix C: Page 6�

�.�.� The monitor theme

Five main actions are de�ned for the monitor theme (Fig.6�), where MA25 and
MA26 are to make sure that the process model is applicable in real time; MA27

and MA28 are to decide the feasibility of the control references; MA29 is the
examine the satis�ability of the control references. We now explain each main
action in detail.

Figure 6�: The main actions of the monitor theme of Task �.

• MA25

– Transformation: f28 is to calculate and update the process model in
the real time8. The output of f28 is {V

f

, X, Ẋ, U, Y, P}. If V
f

if false,
then CM11 is issued; otherwise the explicit constraints {X, Ẋ, Y, P}
are passed to MA26.

– Duration: The duration of this action must be as short as possible.
– Output: CM11 and {X, Ẋ, Y, P}. Note that the reason that U is not

included in the output is because u 2 U will be guaranteed by the
control algorithm in Task �.

– Input: The implicit constraints IC from the environment (denoted as
IC1) or the controlled process (denoted as IC2). What is included in
IC is determined at the design time.

– Trigger: NA.
8Refer Method � to see how the process is derived.

Appendix C: Page 6�

– Guard: stage where stage = (Stage2 _ Stage3). As explained above,
the process model is only to be applied in Stage2 and Stage3.

• MA26

– Transformation: f29 is to compare the {ex, ėx, ey, ep} with the process
model {X, Ẋ, Y, P}. If one element of the former set is beyond the
latter set, the process model is not applicable at the current time,
and hence the controller must enter the contingency mode by issu-
ing CM12.

– Duration: The duration of this action must be as short as possible.
– Output: CM12. If the process model is applicable, then no output

comes out of this action.
– Input: {ex, ep, ėx, ey}observed from the real controlled process, and {X, Ẋ, Y, P}

from MA25.
– Trigger: None.
– Guard: stage = (Stage2 _ Stage3).

• MA27

– Transformation: f30 is to predictcV
f

and the explicit constraints dEC =

{ bX, ḃX, bY , bU, bP}. If either of them is false, then the controller must en-
ter the contingency mode before cV

f

or dEC becomes false by issuing
CM13.

– Duration: The duration of this action must be as short as possible.
The �rst e27 time must be removed from the output prediction.

– Output: { bX, ḃX, bY , bU, bP}.
– Input: The implicit constraints IC from the environment (denoted as

IC3) or the controlled process (denoted as IC4). The implicit con-
straints IC that are determined at the design time.

– Trigger: NA.
– Guard: stage = (Stage2 _ Stage3).

• MA28

– Transformation: f31 is to compare the predicted dynamic trajectory
of the controlled process {bx(T), ḃx(T), by(T), bu(T), bp(T)}with predicted
processmodel { bX, ḃX, bY , bU, bP}. If bp(T) 6✓ bP , the controller must enter
the contingencymode before ep 62 P by issuingCM14, as the controller
has no impact over the parameter. For the rest of the set, if a violation
is detected, then the control references are infeasible (represented by
Fea) and the deviation point (t

d1) is decided.
– Duration: The duration of this action must be as short as possible.
– Output: CM14, F ea and t

d1 are explained above. dEC and bx(T) are
faithfully passed from the input for the reason of synchronization.

Appendix C: Page 6�

– Input: dEC = { bX, ḃX, bY , bU, bP} fromMA27; {bx(T), ḃx(T), by(T), bu(T)} from
the predict theme; bp(T) from EA7.

– Trigger: None.
– Guard: stage^monwhere stage = (Stage2_Stage3) andmon = true.

• MA29

– Transformation: f32 is to examine the satis�ability of the control ref-
erences by comparing by(T) and y(T).

– Duration: The duration of this action must be as short as possible.
– Output: Sat represents the satis�ability, and t

d2 is the deviation point
if Sat = false; y(T) is faithfully passed from the input for the reason
of synchronization. In additional, the output of this action must be
synchronized with the outputs of MA28.

– Input: y(T) from EA7, and by(T) from the predict theme.
– Trigger: None.
– Guard: stage^monwhere stage = (Stage2_Stage3) andmon = true.

In summary, the monitor theme of Task � can be represented as an action in
Fig.6�, where IC = {IC1, IC2, IC3, IC4}. The sources of the all the external
interactions with other themes, the enabling actions and the elements out of
the design scope are speci�ed in Fig.6�.

Figure 6�: The monitor theme of Task � represented as an action. The internal
interactions are hidden within the grey box.

� Task �: Generate control action

�.� Fundamentals

�.�.� Problem formulation

Given the control references r, the next task of a controller is to generate the
control action to achieve the issued control references. At the value aspect, a

Appendix C: Page 6�

Figure 6�: The external interactions of the monitor theme of Task �.

control algorithm is to generate the control action following (��) below.

(r, x(t), p)
g�! u(t)

s.t. {x(t), u(t)}T 2 {X,U}T
(��)

where X and U are the explicit constraints de�ned in Task �.

At the timing aspect, two general time delays must be considered when
de�ning g (Fig.6�). One is T2which represents the duration of the control struc-
ture from the systemstate is observed to the generated control action fully takes
effect on the controlled process. But because of T2, the system state when the
control action takes effect might be different from the state observed to gener-
ate the control action in the �rst place. Therefore, a general approach is to use a
predicted state (T2 after the current time stamp) to calculate the control action
so that the control action takes effect on the right system state. Therefore, if
the control action is supposed to take effect at time t, then the generation of the
control action must be started no later than t� T2.

The other time delay is T3, which represents the duration of the controlled
process from the time when the control action is applied to the time when the
control action fully takes effect. Therefore, if the control action is supposed to
take effect at time t, then the control action must be applied before t� T3.

Furthermore, there is possibly another type of time delay (denoted as �
T2),

which is the ahead-of time to generate the control action. Speci�cally, if the
control action is supposed to take effect at time t, then the generation of the
control action is started no later than t � T2 � �

T2. Practically, �
T2 creates

the time window to send out RfR and awaits resolution. For example, if the
air traf�c controller waits until the last minute to generate the command for the
airplanes that he/she is responsible of, it will have no room to adjust the target

Appendix C: Page 66

Figure 6�: The time delays relevant to Task �.

waypoint should any unexpected event happens to the airplane. More usually,
the command is issued a certain time in advance for the possible “negotiation”
between the air traf�c controller and the pilot for speci�c reasons. If a system
(especially those operating at a faster pace) does not have such ahead-of time,
�

T2 can be simply assigned to �without losing the generality of such construct.

In addition, ideally the control action can be applied to the controlled process
as a continuous �ow. However, this is not realistic. In real practice, the control
action is usually applied to controlled process in a discretemanner. For example
in Fig.66, the continuous evolution of x(t) is decomposed into four segments,
and each segment is applied to a constant control action u1 ⇠ u4 respectively.
The duration of each segment depends on the speci�c controlled process and
the desired performance, and hence can only be determined in a case-by-case
manner. It is worth mentioning that the segment here is different from the seg-
ment used in Task �, where the former is to generate the control references and
the latter is to generate the control actions to achieve the individual control ref-
erences. Because of this difference, the length of the segments in Task � is in
general shorter than the segments in Task �.

Figure 66: In real practice, an ideal �ow of control action is discretized into seg-
ments, each of which is applied to the same magnitude of the control action.

Therefore, Task � can be described in Fig.6�. For the ith segment, when the
time stamp comes to t

c

= t⇤
i

� T2 � �
T2, the controller starts to generate the

Appendix C: Page 6�

control action for t⇤
i

. First, the system state ex is observed at current time t
c

,
based on which the system state at t⇤

i

= t
c

+ T2 + �
T2 (denoted as bx⇤(t⇤

i

)) is
predicted. Then the control action u

i

is generated and applied to the controlled
process before t⇤

i

� T3 so that there will be enough time for the applied control
action to take full effect on the controlled process at t⇤

i

. Moreover, as long as
t⇤
i

has not been reached, no matter whether u
i

is generated, if any of the input
{r, bx⇤(t⇤), bp(t⇤)} change, the changemust be re�ected into u

i

in a timely manner.
However, if the change happens after t⇤

i

� T2, there will not be enough time to
calculate a new u

i

, and appropriate measures must taken accordingly. Further-
more, if u

i

does not need to change, the controller starts to generate the control
action for [t⇤

i+1, t
⇤
i+2] when the timeline comes to t⇤

i+1 � T2 � �
T2. As shown in

the �gure, the latest possible time for u
i

to be generated is t⇤
i

� T3, and there
must at least be T2 time interval till t⇤

i+1 so that there will be enough time for the
controller to generate u

i+1. Therefore, the interval between t⇤
i

and t⇤
i+1 is subject

the constraint in (��) below.

t⇤
i+1 � t⇤

i

� T2� T3 (��)

where T2�T3 in fact represents the expected time for the controller to generate
the control action. Therefore, this constraint intuitivelymeans that the controller
must calculate the control action faster than the control action is required to
be applied to the controlled process. Note that (��) in fact has a more general
implication, which will be explained momentarily.

Figure 6�: The problem formulation of Task �, where t
c

= t⇤
i

� T2 � �
T2. Note

that u
i

is not necessarily generated after t
c

+�
T2, although it is the case in the

�gure.

Finally, (��) is a general formulation to generate the control action for the ith
segment. In (��), ir is the control reference that the u

i

is to achieve; ig is the con-
trol algorithm that is decided for the ir in Task �; bx⇤(t⇤

i

) is the predicted system
state at t⇤

i

. Note that bx⇤(t⇤
i

) does not come from the predict theme of Task �, but
the input to the predict theme of Task �. bp(t⇤

i

) is the predicted value of p at time
t⇤
i

, which comes from EA6 of Task �. u
i

is the control action that is supposed to
take effect (rather than “applied to”) on the controlled process during T ⇤

i

. bx⇤(T ⇤
i

)
is the predicted system state during T ⇤

i

that can be calculated once u
i

is deter-
mined. Both u

i

and bx⇤(T ⇤
i

) have to satisfy the predicted explicit constraints of
the process model { bX(T ⇤

i

), bU(T ⇤
i

)}T that comes from MA27 of Task �. Actually,
the {X,U}T used in (��) is less general than the { bX(T ⇤

i

), bU(T ⇤
i

)}T here, because

Appendix C: Page 68

the former is only correct if the process model does not change over time.

(ir, bx⇤(t⇤
i

), bp(t⇤
i

))
i
g�! {u

i

, bx⇤(T ⇤
i

)}
s.t. {bx⇤(T ⇤

i

), u
i

}T 2 { bX(T ⇤
i

), bU(T ⇤
i

)}T
(��)

where T ⇤
i

= [t⇤
i

, t⇤
i+1].

�.�.� The work�ow of Task �

Three themes are de�ned for Task �. The generate theme is to decide the control
action for each individual time interval; the predict theme is to predict the initial
states for the time interval under study; the monitor theme is to decide the time
interval to update in the case of change.

The generate theme. The generate theme is to generate the control actions.
But before the control actions can be generated, the temporal segments for
each control action must be generated �rst, where the ith segment is the time
between [t⇤

i

, t⇤
i+1]. Note that each segment is the time interval that a constant

control action take effects on the controlled process, rather than the time that
the control action is applied due the time delay T3. Furthermore, the determi-
nation of the segments depends on the speci�c controlled process, the desired
performance and the control references. Hence, it can only be decided on a
case-by-case basis. For this reason, we take the segments (de�ned as below)
as given in this work as long as they satisfy the constraint in (��).

t⇤ = {t⇤1, t⇤2, ..., t⇤
k

} and T ⇤
i

= [t⇤
i

, t⇤
i+1].

For T ⇤
i

, the timeline of the generate theme is shown in Fig.68. When the time-
line comes to t

c

= t⇤
i

�T2��
T2, the controller is triggered to follow (��) to gen-

erate the control action that is supposed to take effect at t⇤
i

. If u(t⇤
i

) cannot be
generated before t⇤

i

� T3, then there will be no time for the control action, even
if successfully generated later, to take effect at t⇤

i

. Therefore, once the timeline
passes t⇤

i

�T3without a control action, the controller applies a default action u
d

� to the controlled process immediately. After that, when the timeline comes to
t⇤
i+1�T2��

T2, the controller follows (��) to generate the control action u(t⇤
i+1)

for t⇤
i+1.

Therefore, one transformation f38 is de�ned for the generate theme, which
is basically a summary of (��).

(ir, ig, bx⇤(t⇤
i

), bp(t⇤
i

), bX(T ⇤
i

), bU(T ⇤
i

), T ⇤
i

)
f38�! u

i

/u
d

where ig is the control algorithm selected by Task � that is used to generate
u
i

, u
d

is the default control action when u
i

cannot be found before t⇤
i

� T2, and
bx⇤(t⇤1) = bx(0) where bx(0) comes from the controller of the in-behavior.
�No control action is also a default action.

Appendix C: Page 6�

Figure 68: The timeline of the generate theme for the ith impact time point,
where t

c

in the �gure is the start time to generate the control action for t⇤
i

, thus
t
c

= t⇤
i

� T2��
T2. Note that t⇤

i

can be a time interval as well.

The predict theme. Among all the inputs of f38, ir, bp(t⇤
i

), bX(T ⇤
i

), bU(T ⇤
i

) and ig
are all passed from Task �; T ⇤

i

is taken as given. Only bx⇤(t⇤
i

) must be predicted
by this task. Although bx⇤(T ⇤

i�1) contains information about bx⇤(t⇤
i

), such informa-
tion is only valid when u

i�1 is being generated. If the value of bx⇤(t⇤
i

) changes
afterward, it needs to be updated accordingly. Therefore, the predict theme of
Task � is to predict bx⇤(t⇤

i

) after u
i�1 is generated.

Intuitively, the future state of the controlled process is determined by the
control actions to be applied, the initial state and the parameter values from the
current time to the speci�c future time under study. Therefore, bx⇤(t⇤

i

) in general
can calculated in (��) below.

(u[t⇤
i

], ex, bp[t⇤
i

])
f�! (bx⇤(t⇤

i

), bx⇤[t⇤
i

])T (��)

where u[t⇤
i

] = {u(t)|t 2 [t
c

, t⇤
i

]}, bp[t⇤
i

] = {bp(t)|t 2 [t
c

, t⇤
i

]} and bx⇤[t⇤
i

] = {bx⇤(t)|t 2
[t
c

, t⇤
i

]}. Note that the de�nition of u[t⇤
i

] assumes that the control actions till the
(i� 1)th segment are all de�ned.

However, depending on the temporal relationship between t
c

and st ��, (��)
takes different forms.

Scenario �: tc < st. As shown in Fig.6�, when the current time is before st,
the time duration under study is [st, t⇤

i

] (rather than [t
c

, t⇤
i

]). All the inputs of (��)
are rede�ned as below.

• u[t⇤
i

] = {u(t)|t 2 [st, t⇤
i

]}.

• bp[t⇤
i

] = {bp(t)|t 2 [st, t⇤
i

]}.

• ex = bx(st). Because SEB has not started at the current time t
c

, the predic-
tion can only starts from the initial state of the desired SEB, which can only
be predicted by the controller of the the in-behavior.

Therefore, the transformation for this scenario can be summarized by f39 below.

(u[t⇤
i

], bx(st), bp[t⇤
i

], f)
f39�! (bx⇤(t⇤

i

), bx⇤[t⇤
i

])T

��
st is the start time of the entire SEB. It is de�ned in Task �.

Appendix C: Page ��

Figure 6�: The predict theme when t
c

< st.

where f is the transformation of the process model and bx⇤[t⇤
i

] = {bx⇤(t)|t 2
[st, t⇤

i

]}.

Scenario �: tc � st. As shown in Fig.��, when the current time is after st, the
time duration under study is [t

c

, t⇤
i

]. The de�nition of (��) can be applied directly.

Figure ��: The predict theme when t
c

� st.

Therefore, the transformation for this scenario can be summarized by f40
below.

(u[t⇤
i

], ex, bp[t⇤
i

], f)
f40�! (bx⇤(t⇤

i

), bx⇤[t⇤
i

])T

where f is the transformation of the process model and bx⇤[t⇤
i

] = {bx⇤(t)|t 2
[t
c

, t⇤
i

]}.

Finally, among the two outputs of the predict theme, the former bx⇤(t⇤
i

) is used
in the generate theme to decide the control action and the monitor theme below
to update the generated control action, and the latter bx⇤[t⇤

i

] is used in the predict
theme of Task �.

The monitor theme. Because the control action is subject to change, the
monitor theme is to update the control actions in time.

First, for a single control action u
i

, if any of the inputs of f38 is changed, u
i

needs to be updated. However, depending on whether u
i

is already generated or
being generated, it is updated differently.

• u
i

is already generated: the inputs of f38 can be divided into two groups:
{ir, bx⇤(t⇤

i

), bp(t⇤
i

), T ⇤
i

, ig} and { bX(T ⇤
i

), bU(T ⇤
i

)}. If any element of the�rst group
changes, then recalculate u

i

by following f38. If any element of the second
group changes, then no action is needed, because the unsatis�ability of
{ bX(T ⇤

i

), bU(T ⇤
i

)} has been addressed by the “feasibility” of Task �.

• u
i

is being generated: if u
i

is being calculated but has not accomplished,
then restart the action by using the most up-to-date input values.

Appendix C: Page ��

Second, the next question is how many u
i

needs to be updated. Only those
control actions that are generated or being generated but have not been ap-
plied to the controlled process can be updated. As shown in Fig.��, because
of the time delay T3 for an applied control action to take full effect at the con-
trolled process, it is impossible for a generated control action not being applied
during [t

c

, t
c

+ T3]. Moreover, the controller only starts generating a new con-
trol action when the current time t

c

is �
T2 + T2 closer to the start of a new

segment. Therefore, the relevant segments to be monitored are those within
[t
c

+ T3, t
c

+ �
T2 + T2], i.e. the segments within the bracket in Fig.��. Further-

more, within all the relevant segments, if one segment that starts before t
c

+T2
(such as T ⇤

j

in Fig.��) needs to be updated, there will not be enough time for the
controller to generate a new control action for T ⇤

j

. As a result, the default control
action u

d

is applied. For the segments that are after t
c

+T2 (such as T ⇤
i

in Fig.��),
new control actions can be calculated by following f38.

Figure ��: The timeline of the monitor theme of Task �. The segments within
the bracket are those beingmonitored, where the �rst segment is denoted as T ⇤

j

and the last is denoted as T ⇤
h

.

Finally, not all the segments within [t
c

+ T3, t
c

+�
T2 + T2] is to be updated.

For example, if the �rst control action that needs to be updated is u
i

, then only
the control actions that are after u

i

have to be updated, because the change of
u
i

will change bx⇤(t⇤
i+1), which will in turn change u

i+1.

Therefore, as shown in Fig.��, the segments to be monitored is de�ned as
T ⇤
mon

= {T ⇤
j

...T ⇤
i

...T ⇤
h

}. The monitor theme is to �nd the �rst segment (denoted
asT ⇤

upt

) that needs to be updated by constantlymonitoring {ir, bx⇤(t⇤
i

), bp(t⇤
i

), bX(T ⇤
i

), bU(T ⇤
i

), T ⇤
i

, ig}
for each segment in T ⇤

mon

. Once T ⇤
upt

is found, all the segments after T ⇤
upt

also
need to be updated accordingly. In summary, the monitor theme can be pre-
sented as the transformation f41 below.

(T ⇤
mon

, {I
i

|i = (j...h)}) f41�! T ⇤
upt

where I
i

= {ir, bx⇤(t⇤
i

), bp(t⇤
i

), bX(T ⇤
i

), bU(T ⇤
i

), T ⇤
i

, ig} and bx⇤(t⇤1) = bx(ts).

Once T ⇤
upt

is found, it is passed to the generate theme to update the control
actions.

�.� The enabling action of Task �

Three enabling actions are identi�ed for Task �.

Appendix C: Page ��

Segmenting the control action (EA10). As explained before, the control ac-
tion is usually applied segment by segment for a speci�c control reference with
a constant magnitude for each segment. Because the segments can only be de-
termined on a case-by-case basis, we only de�neEA10 as a placeholder without
specifying the details to signify a certain action to generate the segments. EA10

can be de�ned as below programmatically:

• Trigger event: NA.

• Guard condition: NA.

• Input: R(T) from Task �. We assume an underlying function that auto-
matically updates the current time stamps of R(T) so that R(T) only con-
tains the control references that have been generated but have not been
achieved.

• Output: T ⇤ is the set of segments for the control action to achieve the
generated the control references.

• Transformation: Execute f42.

Graphically, Action EA10 can be represented in Fig.��.

Figure ��: Graphical representation of EA10.

Determining the control actions tomonitored (EA11). All the control actions
within [t

c

+ T3, t
c

+ �
T2 + T2] that have not been applied must be monitored.

EA11 is to determine the segments of those control actions.

Therefore, EA11 can be de�ned as below programmatically:

• Trigger event: NA.

• Guard condition: NA.

• Input: T ⇤ from EA10.

• Output: T ⇤
mon

is the set of segments of the control actions to bemonitored.

• Transformation: f43 selects the segments within [t
c

+ T3, t
c

+ �
T2 + T2]

where the control action has been generated but has not been applied.

Graphically, Action EA11 can be represented in Fig.��.

Setting the priority(EA12). This action implements the priority of the three
themes (Fig.��). It is similar to EA9, and can be de�ned as below programmat-
ically:

Appendix C: Page ��

Figure ��: Graphical representation of EA11.

• Trigger event: NA.

• Guard condition: NA.

• Input: {bp(T), ex, bx(0)} and {R(T), bX(T), bU(T), g(T)}.

• Output: gen1,mon1.

• Transformation f37: If {bp(T), ex, bx(0)} changes, mon1 false and gen1
false; if the predict theme is updated, mon1 true; if the monitor theme
is updated, gen1 true. If {R(T), bX(T), bU(T), g(T)} changes, gen1
false; if the monitor theme is updated, gen1 true.

Graphically, Action EA12 can be represented in Fig.��.

Figure ��: Graphical representation of EA12.

�.� The main actions of Task �

�.�.� The overall description

The overall information �ow of Task � is shown in Fig.��. The generate theme
creates/ updates the control action u(T ⇤) following f38. Then the generated
u(T ⇤) is input into the predict theme to predict and update the system states
bx⇤(T ⇤) by following f39 or f40 depending on the speci�c scenario. The system
states are then input into the generate theme and the monitor theme because
the generate theme needs bx⇤(t⇤

i

) to generate u(T ⇤
i

); the monitor thememonitors
the change of bx⇤(T ⇤) to decide from which segment the control actions should
be updated (i.e. T ⇤

upt

).

The sources of the inputs from the external of the three themes are as fol-
lowing: {R(T), bp(T), bX, bU, g(T)} is passed from Task �; T ⇤ is from EA10; ex is
observed from the real controlled process; bx(0) is from the controller of the in-
behavior; T ⇤

mon

is from EA11.

The overall work�ow of Task � is shown in Fig.�� (left). The initial condi-
tion of T ⇤

upt

is T ⇤
1 , and the initial condition of bx⇤(t⇤) is bx(0). Once the inputs of

the generate theme are ready, the generate theme starts to generate the control
action u(T ⇤). The predict theme is then to compute bx⇤(T ⇤) using the generated

Appendix C: Page ��

Figure ��: The overall information �ow of Task �.

u(T ⇤). Themonitor themewatches out for the changes thatmay affect the valid-
ity of the generated control actions. Once T ⇤

upt

is computed, the generate theme
is reactivated to create control actions starting the T ⇤

upt

segment. Repeat the
process above iteratively until the inputs from Task � become invalid.

However, similar to Task �, there are two problems for this loop. One is that
the synchronization of the monitor theme and the generate theme. Speci�cally,
when new bx(T ⇤) is generated, the generate theme must wait after the monitor
theme is updated to update itself. For this reason, we replace it with the Fig.��
(right) as a solution, where bx(T ⇤) goes �rst into the monitor theme. After the
monitor theme is updated, bx(T ⇤) �ows into the generate theme together with
T ⇤
upt

.

The other problem is that when more than one of the three themes have to
update at the same time due to the change of the respective inputs. Same as
Task �, the concept of the priority is also introduced to solve this problem. The
priority of the predict theme is higher than the monitor theme, and the monitor
theme is higher than the generate theme. This idea is implemented in EA12.

Therefore, the overall work�ow of Task can summarized in Fig.�6.

Figure �6: The overall work�ow of Task �.

�.�.� The generate theme

Two main actionsMA30 andMA31 are de�ned for the generate theme (Fig.��).

Appendix C: Page ��

Figure ��: The main action of the generate theme of Task �.

• MA30

– Transformation: f38 is to calculate the control actions. If the control
action cannot be found, the controller issues the default action u

d

.
Furthermore, f38 only depicts the value aspect of MA30, but MA30 is
more than f38 especially the timing aspect: when to start/stop/restart
f38. On one hand, when no change is detected by the monitor theme,
the controller starts to generate the control action for T ⇤

i

when the
timeline comes to t⇤

i

� �
T2 � T2. If no control action can be found

before t⇤
i

�T2, then the controller applies u
d

before t⇤
i

�T3. (��) guar-
antees the control action for each segment can be generated in the
same way iteratively from the �rst segment to the last. On the other
hand, when a change is detected and a T ⇤

upt

is received from the mon-
itor theme, the process described above is also applicable. First, the
monitor theme and (��) guarantee the two inequalities below respec-
tively:

t⇤
upt

� t
c

+ T3 and t⇤
upt+1 � t⇤

upt

� T2� T3.

Plug the former into the latter, we get a new inequality as below, which
means there is always enough time to generate the control action for
the segments after t⇤

upt

.

t⇤
upt+1 � t

c

� T2.

Therefore, the problem is boiled down to generating the control action
for T ⇤

upt

. If T2 + t
c

 t⇤
upt

 t
c

+ �
T2 + T2, the controller update the

control actions for the segments after T ⇤
upt

; if t⇤
upt

< t
c

+ T2, then the
controller issues the default control action u

d

for [t
c

+T3, t
c

+T2], and
then follows the process in the same way as no change is detected
to generate the new control actions for the segments after.

– Duration: The duration of this action must be as short as possible.
– Output: u(T ⇤) is the set of generated control actions for T ⇤.

– Input: {R(T), bp(T), bX, bU, g(T)} from Task �, because of which the
start/stop time of Task � is synchronized with Task �; T ⇤

upt

, bx⇤(T ⇤)
from the monitor theme, and its initial condition is bx(0) from Task �.
The initial condition of T ⇤

upt

is T ⇤
upt

= T ⇤
1 .

– Trigger: NA.
– Guard: gen1 = true.

• MA31

Appendix C: Page �6

– Transformation: f42 is to pass the input u(T ⇤) to the output. However,
when gen1 = false, no new control action is generated. This action
is to assign the default control action u

d

to u(T ⇤) when u(t
c

+ T3) =
false.

– Duration: The action is considered instantaneous.
– Output: u(T ⇤).
– Input: u(T ⇤).
– Trigger: NA.
– Guard: NA.

In summary, the external interactions of the generate theme of Task � can
be speci�ed in Fig.�8.

Figure �8: The external interactions of the generate theme of Task �.

�.�.� The predict theme

Only one main action MA32 is de�ned for the predict theme (Fig.��).

Figure ��: The main action of the predict theme of Task �.

• MA32

– Transformation: f39|40 is to predict and update in real time the system
states of the segments where the control actions are de�ned. If t

c

<
st, then f39 is applied; otherwise f40 is applied.

– Duration: The duration of this action must be as short as possible.
The �rst e31 time must be removed from the output prediction.

Appendix C: Page ��

– Output: bx⇤(T ⇤) is the prediction of the system states for all the seg-
ments that have the control actions de�ned.

– Input: bx(0) is the predicted initial state that comes from Task �; bp(T)
is the predicted value of the parameter that comes from Task �; ex is
the real system state that is observed from the real controlled pro-
cess; u(T ⇤) is a set of generated control actions that comes from the
generate theme.

– Trigger: NA.
– Guard: NA.

In summary, the external interactions of the predict theme of Task � can be spec-
i�ed in Fig.8�.

Figure 8�: The external interactions of the predict theme of Task �.

�.�.� The monitor theme

Only one main action MA33 is de�ned for the monitor theme (Fig.8�).

Figure 8�: The main action of the monitor theme of Task �.

• MA33

– Transformation: f41 is to monitor the change of the inputs used to
generate the control actions, and pinpoint the segments that the re-
spective control actions need to be updated.

Appendix C: Page �8

– Duration: The duration of this action must be as short as possible.
– Output: T ⇤

upt

is the segment from which the control actions must be
updated; bx⇤(T ⇤) is passed from the input.

– Input: T ⇤
mon

is the set of segments whose potential change is mon-
itored; bx⇤(T ⇤) is the prediction of the system states for all the seg-
ments that have the control actions de�ned, and is from the predict
theme; {R(T), bp(T), bX, bU, g(T)} is from Task �; bx(0) is from Task �.

– Trigger: NA.
– Guard: mon1 = true.

In summary, the external interactions of the monitor theme of Task � can be
speci�ed in Fig.8�.

Figure 8�: The external interactions of the monitor theme of Task �.

Appendix C: Page ��

Appendix D: The reference architecture in a N2 diagram

���

Controlled
process

Environm
ent

Higher
level of
control

Controller of in-
behavior MA1 MA2

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18
MA19
MA20
MA21
MA22
MA23
MA24
MA25
MA26
MA27
MA28
MA29
MA30
MA31
MA32
MA33

𝐶𝑃1 𝐸1 𝐹𝐺
𝐶𝑃2, ෤𝑦 𝐸2 𝐼𝑛 − 𝐵 𝑝𝑐𝑖, 𝑝𝑐, 𝑝𝑐𝑜

𝑚𝑠𝑡_𝑇,𝑐𝑠𝑡_𝑇,𝑛𝑠𝑡_𝑇𝐸3 𝐼𝑛 − 𝐵𝐶𝑃3, ෤𝑦
𝐶𝑃1 𝐸1 𝐹𝐺
𝐶𝑃2, ෤𝑦 𝐸2 𝐼𝑛 − 𝐵 𝑠𝑡

𝐸3 𝑦𝐼𝑛 − 𝐵
𝐸3 𝑦

𝐹𝐺𝐸1𝐶𝑃1
𝐸4𝐶𝑃4 𝑦

𝑠𝑝
𝐹𝐺𝐶𝑃1 𝐸1

𝐸4𝐶𝑃4 𝑦
𝐸3 𝑦

𝐶𝑃1 𝐸1
𝐸4𝐶𝑃4

𝐶𝑃1 𝐸1
𝐸4𝐶𝑃4

ො𝑥𝑖(𝑡)
෤𝑥, ෤𝑝

𝐼𝐶1𝐼𝐶2

𝐼𝐶3𝐼𝐶4
෤𝑥, ෤𝑝, ෨ሶ𝑥, ෤𝑦

෤𝑥

𝐶𝑃3, ෤𝑦

𝐶𝑃3

𝐶𝑃3

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18
MA19
MA20
MA21
MA22
MA23
MA24
MA25
MA26
MA27
MA28
MA29
MA30
MA31
MA32
MA33

𝐶
𝐶
𝐶
𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

෤𝑥

𝐼

𝐼
෤𝑥

෤𝑥

𝐶

𝐶

𝐶

MA3 MA4 MA5 MA6 MA7 MA8

𝑠𝑡 𝑝𝑐𝑖, 𝑝𝑐
𝑚𝑠𝑡_𝑇,𝑐𝑠𝑡_𝑇,𝑛𝑠𝑡_𝑇, 𝑠𝑡

𝑦 𝑡 , 𝑠𝑡 𝑝𝑐
𝑝𝑐𝑜𝑦 𝑠𝑝 , 𝑠𝑡

𝑦 𝑡 𝑝𝑐
𝑠𝑝

𝑦 𝑡
𝑦 𝑡 , 𝑠𝑝

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18
MA19
MA20
MA21
MA22
MA23
MA24
MA25
MA26
MA27
MA28
MA29
MA30
MA31
MA32
MA33

𝐶
𝐶
𝐶
𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

෤𝑥

𝐼

𝐼
෤𝑥

෤𝑥

𝐶

𝐶

𝐶

MA9 MA10 MA11 MA12 MA13 MA14 MA15

𝑦 𝑡𝑝𝑐, 𝑝𝑐𝑜
𝑠𝑝𝑚𝑠𝑝_𝑇,𝑐𝑠𝑝_𝑇,𝑛𝑠𝑝_𝑇

𝑝𝑐 𝑦 𝑡
𝑦 𝑡 , 𝑠𝑝𝑚𝑠𝑝_𝑇

𝑦 𝑡 𝑝𝑐

𝑝𝑐, 𝑝𝑐𝑜

𝑦 𝑡 , 𝑠𝑝 𝑝𝑐, 𝑝𝑐𝑜

𝑦 𝑡
𝑠𝑝

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18
MA19
MA20
MA21
MA22
MA23
MA24
MA25
MA26
MA27
MA28
MA29
MA30
MA31
MA32
MA33

𝐶
𝐶
𝐶
𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

෤𝑥

𝐼

𝐼
෤𝑥

෤𝑥

𝐶

𝐶

𝐶

MA16 MA17 MA18 MA19 MA20 MA21

𝑦 𝑡
𝑦 𝑡 , 𝑠𝑝𝑚𝑠𝑝_𝑇

𝑦 𝑡 𝑝𝑐, 𝑝𝑐𝑜
𝑚𝑠𝑝_𝑇,𝑐𝑠𝑝_𝑇,𝑛𝑠𝑝_𝑇𝑠𝑝

𝑆𝑐𝑒𝑎, 𝑡𝑑, 𝑡𝑑′

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18
MA19
MA20
MA21
MA22
MA23
MA24
MA25
MA26
MA27
MA28
MA29
MA30
MA31
MA32
MA33

𝐶
𝐶
𝐶
𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

෤𝑥

𝐼

𝐼
෤𝑥

෤𝑥

𝐶

𝐶

𝐶

MA22 MA23 MA24 MA25

g ത𝑇 , R ത𝑇 , ො𝑥(0)
ො𝑥(ത𝑇), ො𝑦(ത𝑇), Ƹ𝑝(ത𝑇)

𝑋, ሶ𝑋, 𝑌, 𝑃

ො𝑥(ത𝑇), ො𝑦(ത𝑇),ො𝑢(ത𝑇), ෠ሶ𝑥(ത𝑇)
ො𝑦(ത𝑇)

g ത𝑇 , R ത𝑇 , ො𝑥(0)

ො𝑥(0)
g ത𝑇 , R ത𝑇 , ො𝑥(0)

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18
MA19
MA20
MA21
MA22
MA23
MA24
MA25
MA26
MA27
MA28
MA29
MA30
MA31
MA32
MA33

𝐶
𝐶
𝐶
𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

෤𝑥

𝐼

𝐼
෤𝑥

෤𝑥

𝐶

𝐶

𝐶

MA26 MA27 MA28 MA29 MA30 MA31 MA32

ො𝑥(ത𝑇),෢𝐸𝐶
𝑥∗(𝑇∗)

෢𝐸𝐶

𝑥෠𝑋, ෡𝑈
𝑢(𝑇∗)

𝑢(𝑇∗)
𝑥∗ 𝑇∗෠𝑋, ෡𝑈

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18
MA19
MA20
MA21
MA22
MA23
MA24
MA25
MA26
MA27
MA28
MA29
MA30
MA31
MA32
MA33

𝐶
𝐶
𝐶
𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

෤𝑥

𝐼

𝐼
෤𝑥

෤𝑥

𝐶

𝐶

𝐶

MA33 EA1 EA2 EA3 EA4 EA5 EA6
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒 𝑝
𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒

𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒

𝑝𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒

𝑥∗ 𝑇∗ , 𝑇𝑢𝑝𝑡∗ 𝑝

𝑝
𝑝

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18
MA19
MA20
MA21
MA22
MA23
MA24
MA25
MA26
MA27
MA28
MA29
MA30
MA31
MA32
MA33

𝐶
𝐶
𝐶
𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

𝐶
𝐶

෤𝑥

𝐼

𝐼
෤𝑥

෤𝑥

𝐶

𝐶

𝐶

EA7 EA8 EA9 EA10 EA11 EA12

𝑆𝑐𝑒𝑎, 𝑡𝑑 𝑔𝑒𝑛
𝑔𝑒𝑛𝑆𝑐𝑒𝑎, 𝑡𝑑𝑦 ത𝑇 , Ƹ𝑝(ത𝑇)

Ƹ𝑝(ത𝑇)

Ƹ𝑝(ത𝑇) 𝑚𝑜𝑛
𝑚𝑜𝑛𝑦 ത𝑇

𝑔𝑒𝑛1Ƹ𝑝(ത𝑇)

Ƹ𝑝(ത𝑇)
𝑇𝑚𝑜𝑛∗Ƹ𝑝(ത𝑇) 𝑚𝑜𝑛1

Appendix E: The UAM controller in a N2 diagram

���

Weather service provider The vehicle
Higher level of
control

Traffic
surveillance

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA9

MA10

MA11

MA12

MA13

MA14

MA21

MA22

MA23

MA24

MA25

MA26

MA27

MA28

MA29

MA30

MA31

MA32

MA33

ෝ𝑤(𝑡) 𝑝𝑙, 𝑏𝑙
𝑐𝑑, 𝑣𝑏,ෝ𝑤 𝑡 , ෞ𝑤𝑎, ෦𝑤𝑎 𝑣𝑚, ǁ𝑠, ෤𝑣 Ƹ𝑠𝑡𝑓, ො𝑣𝑡𝑓, ǁ𝑠𝑡𝑓

𝑔ℎ𝑣𝑡(𝑥𝐵, ℎ𝐵, 𝑟𝑡𝑎)
𝑙𝑡

Ƹ𝑠𝑡𝑓, ො𝑣𝑡𝑓ෞ𝑤𝑎 𝑙𝑡ǁ𝑠, ෤𝑣

ෝ𝑤(𝑡) 𝑝𝑙 (𝑥𝐵, ℎ𝐵, 𝑟𝑡𝑎) 𝑣𝑡𝑝𝑙, 𝑏𝑙 𝑔ℎ
𝑐𝑑, 𝑣𝑏,ෝ𝑤(𝑡),ෞ𝑤𝑎,෦𝑤𝑎 𝑣𝑚, ǁ𝑠 𝑙𝑡

Ƹ𝑠𝑡𝑓, ො𝑣𝑡𝑓ෞ𝑤𝑎 𝑙𝑡ǁ𝑠, ෤𝑣

ෝ𝑤(𝑡) 𝑝𝑙, 𝑏𝑙 (𝑥𝐵, ℎ𝐵, 𝑟𝑡𝑎) 𝑣𝑡 𝑔ℎ
Ƹ𝑠𝑡𝑓, ො𝑣𝑡𝑓ෞ𝑤𝑎

ෝ𝑤(𝑡) 𝑝𝑙, 𝑏𝑙 (𝑥𝐵, ℎ𝐵, 𝑟𝑡𝑎) 𝑣𝑡 𝑔ℎ
Ƹ𝑠𝑡𝑓, ො𝑣𝑡𝑓ෞ𝑤𝑎
Ƹ𝑠𝑡𝑓, ො𝑣𝑡𝑓ෞ𝑤𝑎 𝑙𝑡

ෝ𝑤 𝑡 , ෥𝑤 ǁ𝑠 𝑡 , ෤𝛾, ෤𝑣

𝑤𝑐, 𝑠𝑤𝑝 𝑐𝑤, 𝑏𝑙, 𝑡𝑒𝑚, 𝑝𝑡 𝑔𝑒
෤𝑣, ෤𝛾, ǁ𝑠,෥𝑤

ෞ𝑤𝑐, ෞ𝑐𝑤, ෞ𝑡𝑒𝑚, ෞ𝑠𝑤𝑝 ෡𝑏𝑙

ෝ𝑤(𝑡)

ෝ𝑤(𝑡) ෤𝑣, ෤𝛾, ǁ𝑠
ෝ𝑤(𝑡)

Ƹ𝑠𝑡𝑓, ො𝑣𝑡𝑓, ǁ𝑠𝑡𝑓

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA9

MA10

MA11

MA12

MA13

MA14

MA21

MA22

MA23

MA24

MA25

MA26

MA27

MA28

MA29

MA30

MA31

MA32

MA33

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎
ෞ𝑤𝑎

ෝ𝑤

𝑤𝑐

ෞ𝑤𝑐

ෝ𝑤

ෝ𝑤
ෝ𝑤

Terrain map
provider

Airspace
info
provider

The controller for
cruise

Vertiport MA1

𝑐𝑎𝑡
𝑝𝑐01, 𝑝𝑐02, 𝑝𝑐1𝑖 , 𝑝𝑐1, 𝑝𝑐2𝑖 ,
𝑝𝑐2,𝑝𝑐3𝑖 , 𝑝𝑐3,𝑝𝑐4𝑖 ,𝑝𝑐4

Ƹ𝑠𝑖 𝑡 , ො𝑣𝑖(𝑡)
𝑔ℎ
𝑙𝑡, 𝑒𝑡 ෢𝑎𝑏, ෪𝑎𝑏

𝑝𝑐01, 𝑝𝑐02, 𝑝𝑐1𝑖 , 𝑝𝑐1, 𝑝𝑐2,
𝑝𝑐3,𝑝𝑐4

Ƹ𝑠𝑖 𝑡 , ො𝑣𝑖(𝑡)𝑙𝑡, 𝑒𝑡 ෢𝑎𝑏 𝑑𝑐

𝑔ℎ 𝑐𝑎𝑡 𝑑𝑐
Ƹ𝑠𝑖 𝑡 , ො𝑣𝑖(𝑡)𝑙𝑡, 𝑒𝑡 ෢𝑎𝑏, ෪𝑎𝑏

Ƹ𝑠𝑖 𝑡 , ො𝑣𝑖(𝑡)෢𝑎𝑏𝑙𝑡, 𝑒𝑡

𝑔ℎ 𝑐𝑎𝑡 𝑑𝑐
෢𝑎𝑏

𝑔ℎ 𝑐𝑎𝑡 𝑑𝑐
෢𝑎𝑏

𝑙𝑡, 𝑒𝑡 ෢𝑎𝑏

Ƹ𝑠𝑖 𝑡 , ො𝑣𝑖(𝑡)

𝑡𝑐𝑙, 𝑑𝑝, 𝑡𝑡𝑝, 𝑣𝑙𝑔𝑒, 𝑔ℎ

෢𝑡𝑐𝑙, ෢𝑑𝑝, ෞ𝑡𝑡𝑝, ෡𝑣𝑙

Ƹ𝑠𝑖 𝑡 , ො𝑣𝑖(𝑡)

Ƹ𝑠𝑖 𝑡 , ො𝑣𝑖(𝑡)
Ƹ𝑠𝑖 𝑡 , ො𝑣𝑖(𝑡)

𝑚𝑠𝑡

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA9

MA10

MA11

MA12

MA13

MA14

MA21

MA22

MA23

MA24

MA25

MA26

MA27

MA28

MA29

MA30

MA31

MA32

MA33

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎
ෞ𝑤𝑎

ෝ𝑤

𝑤𝑐

ෞ𝑤𝑐

ෝ𝑤

ෝ𝑤
ෝ𝑤

MA2 MA3 MA4 MA5

𝑠𝑡 𝑚𝑠𝑡_𝑇,𝑛𝑠𝑡_𝑇,𝑐𝑠𝑡_𝑇
𝑠 𝑇 , 𝑠𝑡

𝑠 𝑇

𝑟𝑡𝑎

𝑠 𝑇

𝑚𝑠𝑡_𝑇,𝑛𝑠𝑡_𝑇,𝑐𝑠𝑡_𝑇

𝑝𝑐01,𝑝𝑐02,𝑝𝑐1𝑖 ,𝑝𝑐1,
𝑝𝑐2𝑖 ,𝑝𝑐2,𝑝𝑐3𝑖 , 𝑝𝑐3,
𝑝𝑐4𝑖 ,𝑝𝑐4

𝑝𝑐01, 𝑝𝑐02, 𝑝𝑐1, 𝑝𝑐2,𝑝𝑐3,𝑝𝑐4

𝑝

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA9

MA10

MA11

MA12

MA13

MA14

MA21

MA22

MA23

MA24

MA25

MA26

MA27

MA28

MA29

MA30

MA31

MA32

MA33

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎
ෞ𝑤𝑎

ෝ𝑤

𝑤𝑐

ෞ𝑤𝑐

ෝ𝑤

ෝ𝑤
ෝ𝑤

MA9 MA10 MA12 MA13

𝑠

𝑟𝑡𝑎𝑚𝑠𝑡_𝑇,𝑛𝑠𝑡_𝑇,𝑐𝑠𝑡_𝑇

𝑠
𝑚𝑠𝑝_𝑇 𝑠

𝑝𝑐01, 𝑝𝑐02, 𝑝𝑐1, 𝑝𝑐2,𝑝𝑐4
𝑝𝑐01, 𝑝𝑐02, 𝑝𝑐1, 𝑝𝑐2,𝑝𝑐4

𝑝𝑐01, 𝑝𝑐02, 𝑝𝑐1, 𝑝𝑐2,𝑝𝑐4

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA9

MA10

MA11

MA12

MA13

MA14

MA21

MA22

MA23

MA24

MA25

MA26

MA27

MA28

MA29

MA30

MA31

MA32

MA33

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎
ෞ𝑤𝑎

ෝ𝑤

𝑤𝑐

ෞ𝑤𝑐

ෝ𝑤

ෝ𝑤
ෝ𝑤

MA14 MA21 MA22 MA23

𝑠 𝑇

𝑟𝑡𝑎

𝑠 𝑇
𝑠 𝑇

𝑆𝑐𝑒𝑎, 𝑡𝑑, 𝑡𝑑′

𝑥𝑖, ℎ𝑖, 𝑟𝑡𝑎𝑖 , Ƹ𝑠(0), ො𝑣(0)
𝑥𝑖, ℎ𝑖, 𝑟𝑡𝑎𝑖 , Ƹ𝑠 𝑇𝑖 ,

ො𝑣𝑖, ො𝛾𝑖, ෝ𝑤 𝑡

ො𝑣
𝑠

𝑥𝑖, ℎ𝑖, 𝑟𝑡𝑎𝑖

𝑥𝑖, ℎ𝑖, 𝑟𝑡𝑎𝑖

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA9

MA10

MA11

MA12

MA13

MA14

MA21

MA22

MA23

MA24

MA25

MA26

MA27

MA28

MA29

MA30

MA31

MA32

MA33

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎
ෞ𝑤𝑎

ෝ𝑤

𝑤𝑐

ෞ𝑤𝑐

ෝ𝑤

ෝ𝑤
ෝ𝑤

MA24 MA25 MA26 MA27 MA28 MA29 MA30

𝑠 ത𝑇 , 𝑡𝑑′

𝐸𝐶

𝑥𝑖, ℎ𝑖, 𝑟𝑡𝑎𝑖 , Ƹ𝑠 𝑇𝑖 ,
ො𝑣𝑖, ො𝛾𝑖, ෝ𝑤 𝑡 , ෢𝑉𝑒𝑙𝑖, ෢𝐷𝑒𝑠𝑖

𝐸𝐶

Ƹ𝑠 𝑇𝑖

𝑢(𝑇∗)
𝑢

𝑥𝑖, ℎ𝑖, 𝑟𝑡𝑎𝑖 , ො𝑣𝑖, ො𝛾𝑖,
Ƹ𝑠 𝑇𝑖 , ෝ𝑤 𝑡 , 𝐸𝐶

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA9

MA10

MA11

MA12

MA13

MA14

MA21

MA22

MA23

MA24

MA25

MA26

MA27

MA28

MA29

MA30

MA31

MA32

MA33

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎
ෞ𝑤𝑎

ෝ𝑤

𝑤𝑐

ෞ𝑤𝑐

ෝ𝑤

ෝ𝑤
ෝ𝑤

MA31 MA32 MA33 EA1 EA5 EA7 EA8

𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠

𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠

𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠

𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠

𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠

𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠
𝑠𝑡𝑎𝑔𝑒 𝑠𝑒𝑏𝑆𝑡𝑎𝑡𝑢𝑠

𝑆𝑐𝑒𝑎, 𝑡𝑑𝑠𝑡𝑎𝑔𝑒 𝑔𝑒𝑛
𝑠𝑡𝑎𝑔𝑒 𝑔𝑒𝑛

Ƹ𝑠∗(𝑡), ො𝛾∗, ො𝑣∗ 𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒

𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒
𝑠𝑡𝑎𝑔𝑒 𝑚𝑜𝑛

𝑠 ത𝑇𝑠𝑡𝑎𝑔𝑒 𝑚𝑜𝑛
Ƹ𝑠∗(𝑡), ො𝛾∗, ො𝑣∗, 𝑇𝑢𝑝𝑡∗

𝑢(𝑇∗)
Ƹ𝑠∗(𝑡), ො𝛾∗, ො𝑣∗

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA9

MA10

MA11

MA12

MA13

MA14

MA21

MA22

MA23

MA24

MA25

MA26

MA27

MA28

MA29

MA30

MA31

MA32

MA33

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
𝑐𝑑

ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎

ෝ𝑤
ෞ𝑤𝑎
ෞ𝑤𝑎

ෝ𝑤

𝑤𝑐

ෞ𝑤𝑐

ෝ𝑤

ෝ𝑤
ෝ𝑤

EA9 EA12

𝑔𝑒𝑛
𝑔𝑒𝑛

𝑚𝑜𝑛

𝑚𝑜𝑛
𝑔𝑒𝑛1

𝑚𝑜𝑛1

Prediction of the headwind.
Weight of the payload.
Vehicle type of the traffic.
Battery level of the vehicle
The ground habitat
The category of the adjacent airspace
Cloud.
Visiability.
The projected cruise trajectory
The projected cruise speed
Vehicle operation mode
The projected traffic trajectory
The projected traffic speed
The current vehicle position
The current traffic position
The projected weather impacted area
The current weather impacted area
The location of the terrain
The elevation of the terrain
The projected airspace boundary
The current airspace boundary
Descent clearance
The desired start time of the descent.
The desired descent trajectory
The current traffic congestion level.
The current descent procedure.
The current requirement on the traffic throughput
The current vertiport layout
The current weather condition
The current operational status of the weather service provider
The current crosswind
The current temperature
The payload type
The ground elevation
The predicted weather condition
The predicted crosswind
The predicted temperature
The planned operational status of the weather service provider
The predicted battery level
The predicted traffic congestion level.
The planned descent procedure.
The planned requirement on the traffic throughput
The planned vertiport layout

ෝ𝑤(𝑡)
𝑝𝑙
𝑣𝑡
𝑏𝑙
𝑔ℎ
𝑐𝑎𝑡
𝑐𝑑
𝑣𝑏
Ƹ𝑠𝑖 𝑡
ො𝑣𝑖(𝑡)
𝑣𝑚
Ƹ𝑠𝑡𝑓
ො𝑣𝑡𝑓
ǁ𝑠
ǁ𝑠𝑡𝑓
ෞ𝑤𝑎
෦𝑤𝑎
𝑙𝑡
𝑒𝑡
෢𝑎𝑏
෪𝑎𝑏
𝑑𝑐
𝑠𝑡
𝑠(𝑇)
𝑡𝑐𝑙
𝑑𝑝
𝑡𝑡𝑝
𝑣𝑙
𝑤𝑐
𝑠𝑤𝑝
𝑐𝑤
𝑡𝑒𝑚
𝑝𝑡
𝑔𝑒
ෞ𝑤𝑐
ෞ𝑐𝑤
ෞ𝑡𝑒𝑚
ෞ𝑠𝑤𝑝
෡𝑏𝑙
෢𝑡𝑐𝑙
෢𝑑𝑝
ෞ𝑡𝑡𝑝
෡𝑣𝑙

References

[�] C. Speci�cations, “Acceptable means of compliance for large aeroplanes

cs-��,” European Aviation Safety Agency, Amendment, vol. ��, no. ��, ����.

[�] P. Johnston and R. Harris, “The boeing ��� max saga: lessons for software

organizations,” Software Quality Professional, vol. ��, no. �, pp. �–��, ����.

[�] IEC 6���8: Functional safety of electrical/electronic/programmable elec-

tronic safety related systems. International Electrotechnical Commission,

����.

[�] ISO �6�6�: Road vehicles-Functional safety. International Standard

ISO/FDIS, ����.

[�] DO-��8C: Software considerations in airborne systems and equipment certi-

�cation. RTCA, Incorporated, ����.

[6] DO-���: Design Assurance Guidance for Airborne Elecronic Hardware.

RTCA,Incorporated, ����.

[�] DO-���: Model-based Development and Veri�cation Supplement to DO-��8C

and DO-��8A. RTCA, Incorporated, ����.

[8] DO-���: Formal Methods Supplement to DO-��8C and DO-��8A. RTCA, In-

corporated, ����.

[�] ARP ����A:Guidelines for Development of Civil Aircraft and Systems. SAE,

Incorporated, ����.

���

[��] S. Maitrehenry, S. Metge, P. Bieber, and Y. Ait-Ameur, “Toward model-based

functional hazard assessment at aircraft level,” Advances in Safety, Reliabil-

ity and Risk Management: ESREL ����, p. ���, ����.

[��] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-of-

the-art in modeling, analysis and tools,” Computer science review, vol. ��,

pp. ��–6�, ����.

[��] J. Dunjó, V. Fthenakis, J. A. Vílchez, and J. Arnaldos, “Hazard and oper-

ability (hazop) analysis. a literature review,” Journal of hazardous materials,

vol. ���, no. �-�, pp. ��–��, ����.

[��] N. G. Leveson, Engineering a safer world: Systems thinking applied to safety.

The MIT Press, ���6.

[��] G. Le Lann, “An analysis of the ariane � �ight ��� failure-a system engineer-

ing perspective,” in Proceedings International Conference and Workshop on

Engineering of Computer-Based Systems, pp. ���–��6, IEEE, ����.

[��] ARP ��6�:GUIDELINES AND METHODS FOR CONDUCTING THE SAFETY AS-

SESSMENT PROCESS ON CIVIL AIRBORNE SYSTEMS AND EQUIPMENT.

SAE, Incorporated, ���6.

[�6] N. G. Leveson and J. P. Thomas, “Stpa handbook,” Cambridge, MA, USA,

���8.

[��] T. Prosvirnova, AltaRica �.�: a model-based approach for safety analyses.

PhD thesis, Ecole Polytechnique, ����.

[�8] B. Larson, J. Hatcliff, K. Fowler, and J. Delange, “Illustrating the aadl error

modeling annex (v. �) using a simple safety-critical medical device,” ACM

SIGAda Ada Letters, vol. ��, no. �, pp. 6�–8�, ����.

[��] S. Procter and P. Feiler, “The aadl error library: An operationalized taxonomy

of system errors,” ACM SIGAda Ada Letters, vol. ��, no. �, pp. 6�–��, ����.

���

[��] P. Feiler and J. Delange, “Automated fault tree analysis from aadl models,”

ACM SIGAda Ada Letters, vol. �6, no. �, pp. ��–�6, ����.

[��] M. Machin, E. Saez, P. Virelizier, and X. de Bossoreille, “Modeling functional

allocation in altarica to support mbse/mbsa consistency,” in International

Symposium on Model-Based Safety and Assessment, pp. �–��, Springer,

����.

[��] P. Bieber, C. Bougnol, C. Castel, J.-P. H. C. Kehren, S. Metge, and C. Seguin,

“Safety assessment with altarica,” in Building the Information Society,

pp. ���–���, Springer, ����.

[��] T. Prosvirnova, M. Batteux, P.-A. Brameret, A. Cher�, T. Friedlhuber, J.-M.

Roussel, and A. Rauzy, “The altarica �.� project for model-based safety as-

sessment,” IFAC Proceedings Volumes, vol. �6, no. ��, pp. ���–���, ����.

[��] H. Mortada, T. Prosvirnova, and A. Rauzy, “Safety assessment of an elec-

trical system with altarica �.�,” in International Symposium on Model-Based

Safety and Assessmemt, pp. �8�–���, Springer, ����.

[��] M. Tlig, M. Machin, R. Kerneis, E. Arbaretier, L. Zhao, F. Meurville, and

J. Van Frank, “Autonomous driving system: Model based safety analysis,”

in ���8 �8th Annual IEEE/IFIP International Conference on Dependable Sys-

tems and Networks Workshops (DSN-W), pp. �–�, IEEE, ���8.

[�6] S. Kabir, K. Aslansefat, I. Sorokos, Y. Papadopoulos, and Y. Gheraibia, “A

conceptual framework to incorporate complex basic events in hip-hops,” in

International Symposium onModel-Based Safety and Assessment, pp. ���–

���, Springer, ����.

[��] D. Chen, N. Mahmud, M. Walker, L. Feng, H. Lönn, and Y. Papadopoulos,

“Systems modeling with east-adl for fault tree analysis through hip-hops,”

IFAC Proceedings Volumes, vol. �6, no. ��, pp. ��–�6, ����.

���

[�8] M. Bozzano, A. Cimatti, O. Lisagor, C. Mattarei, S. Mover, M. Roveri, and

S. Tonetta, “Safety assessment of altarica models via symbolic model

checking,” Science of Computer Programming, vol. �8, pp. �6�–�8�, ����.

[��] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and I. Lee,

“Model-driven safety analysis of closed-loop medical systems,” IEEE Trans-

actions on Industrial Informatics, vol. ��, no. �, pp. �–�6, ����.

[��] M. Althoff, Reachability analysis and its application to the safety assess-

ment of autonomous cars. PhD thesis, Technische Universität München,

����.

[��] P. Sinha, “Architectural design and reliability analysis of a fail-operational

brake-by-wire system from iso �6�6� perspectives,” Reliability Engineering

& System Safety, vol. �6, no. ��, pp. ����–����, ����.

[��] S. D. Krach, “Model-based architecture robustness analysis for software-

intensive autonomous systems,” in ���� IEEE International Symposium on

Software Reliability Engineering Workshops (ISSREW), pp. ���–���, IEEE,

����.

[��] O. Lisagor, J. McDermid, and D. Pumfrey, “Towards a practicable process

for automated safety analysis,” in ��th International system safety confer-

ence, vol. ��6, p. 6��, Citeseer, ���6.

[��] F. Ortmeier and W. Reif, “Failure-sensitive speci�cation: A formal method

for �nding failure modes/universität augsburg, institut für informatik. ����

(����-�),” Forschungsbericht. www. uni-augsburg. de.

[��] O. Lisagor, L. Sun, and T. Kelly, “The illusion of method: Challenges of

model-based safety assessment,” in �8th international system safety con-

ference (ISSC), Citeseer, ����.

���

[�6] P. Braun, J. Philipps, B. Schätz, and S. Wagner, “Model-based safety-cases

for software-intensive systems,” Electronic Notes in Theoretical Computer

Science, vol. ��8, no. �, pp. ��–��, ����.

[��] K. L. Hobbs, A. R. Collins, and E. M. Feron, “Risk-based formal requirement

elicitation for automatic spacecraft maneuvering,” in AIAA Scitech ���� Fo-

rum, p. ����, ����.

[�8] M. D. Mesarovic and Y. Takahara, General systems theory: mathematical

foundations. Academic press, ����.

[��] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint programming.

Elsevier, ���6.

[��] M. Sun, K. Rand, and C. Fleming, “� dimensional waypoint generation for

con�ict-free trajectory based operation,” Aerospace Science and Technol-

ogy, vol. 88, pp. ���–�6�, ����.

��6

	List of Tables
	List of Figures
	Introduction
	Background
	Motivations
	Challenges and solutions
	From STPA to STPA+
	Contribution

	Literature review
	Characterizing and critiquing MBSA
	Contribution and finding

	Method 1: Deriving the prescriptive constraints from the hazard and the functional goal
	Preliminary
	From the Unsafe Control Action to the safety constraints
	The implications of the UCA
	The safety constraints

	Deriving the safety constraints from the hazard
	From safety constraints to hazard
	From hazard to safety constraints

	Defining the safety constraints
	The single hazard situation
	The multiple sub-hazards situation

	Contribution

	Method 2: Deriving the descriptive constraints for the controlled process.
	Preliminary
	Constraining the controlled process
	Constraining the process model
	Contribution

	Method 3: Reference architecture for the controller design
	Preliminary
	The problem
	Scope of the safe controller
	Functional architecture

	Three general tasks for a controller
	Four types of safety-critical scenarios
	Safety-critical scenarios of Task 1
	The task
	The safety-critical scenarios

	Safety-critical scenarios of Task 2
	The task
	The safety-critical scenarios

	Safety-critical scenarios of Task 3
	The task
	The safety-critical scenario

	The reference architecture
	Contribution

	A case study on Urban Air Mobility
	The problem setting
	Method 1: deriving the prescriptive constraints
	The functional constraints
	Inadequate altitude with respect to the traffic
	Inadequate altitude with respect to the weather
	Inadequate altitude with respect to the terrain
	Inadequate altitude with respect to the airspace

	Method 2: deriving the descriptive constraints
	The model structure
	Deriving the constraint-assumption pair

	Method 3: Architecting a safe controller
	The overall workflow of the controller
	Task 1: Perceive the prescriptive constraints to generate a safe 4d trajectory.
	The overall description
	The enabling action
	The main action

	Task 2: Derive the 4d waypoints from the desired 4d trajectory
	The overall description
	The enabling action
	The main action

	Task 3: Issue the instruction of speed and descent angle.
	The overall description
	The enabling action
	The main action

	Summary

	Conclusion
	Summary
	Contribution
	Future work

	Appendix A: Terms
	Appendix B: MBSA review
	Appendix C: The design of the reference architecture
	Appendix D: The reference architecture in a N2 diagram
	Appendix E: The UAM controller in a N2 diagram

