
Data Engineering: A Full Stack Approach to Monitoring Data
Freshness

CS 4991 Capstone Report, 2022

Aditya Penmesta
Computer Science

The University of Virginia
School of Engineering and Applied Sciences

Charlottesville, Virginia USA
ap5pp@virginia.edu

Abstract
Flowcode, a data centric offline to online
startup at which I interned last summer, found
itself ingesting a lot of its data without any
centralized, automated place for employees to
check the status of these data sources. To
address this issue, I built a full stack web
application that serves as a data status
dashboard, automatically updating every day
with the last time data was pulled for every
source in the Flowcode ETL pipeline. To
design this solution, I created three different
web scrapers that would hit Looker, dbt and
Snowflake (the three platforms used in
Flowcode’s ingestion pipeline), and pull the
last date in which each source was queried.
Then I exposed this data in a custom API
created using Django and developed a React
front end to render the backend into a clean
website. Finally, I deployed the website
Docker and Kubernetes into a live, online
service which could be accessed via the
company’s VPN configuration. After we
implemented this solution, processes that
previously took hours were shortened to
minutes, making the job of data engineers at
the company much easier. Future work to
improve the product would be adding features
to automatically detect changes in the status of
sources and notifying data engineers,
quickening the fetch speed of the website
through cache optimizations, and stylizing the
website better by using unique front end
design concepts.

1. Introduction
Upon arriving at Flowcode for the summer, I
was presented with a rather large and
meaningful task for an intern. My manager
was leading the current data engineering at the
company, and recently started an internal,
company-wide data migration from Azure to
AWS, a tall task that was becoming rather
problematic for him.

The biggest problem was that changes in
cloud services required a lot of changes to
references of downstream data references,
and this would affect data using internal
stakeholders that could affect vital company
functions. As an example, one small
migration affected a customer-facing
dashboard by the sales team, and it took data
engineers most of the working day to
diagnose and fix the problem. In light of this
mass migration and the problems it was
causing for the company, my manager
assigned me the task of diagnosing data
errors with an easy-to-use full stack solution.
After a couple days of deliberation and
brainstorming, I decided the best solution
was a status dashboard, which would go
through all the data services that load and
transform data and track whether or not each
individual source had been updated recently.
In practice, this solution would simplify data
problem diagnostics from an hours-long
process to a matter of minutes, making it
extremely valuable to the company.

2. Related Works
When coming up with the technical approach
and design of the status dashboard, I drew
inspiration from a couple of other status
dashboard implementations which served as
a model for my project. The first one I
focused on was the Xbox Server Status
Dashboard (2022) [1]. I found the overall
layout of the website to be extremely simple
yet effective, allowing users to find the
information they want as quick as possible
without wasting time. Specifically, I found
the breakdown of the menu very intuitive,
starting with services, then features, and then
revealing the updates for each feature. In my
implementation, I aimed to have a similar
breakdown, first listing project folders, then
specific dashboards and finally listing the

tiles within each dashboard. This would allow
for internal stakeholders to find outages within
a matter of minutes and save the monotony of
having to comb through all the individual data
sources.

Another website I used for inspiration was the
Fivetran status dashboard (2022) [2]. Fivetran
is a data source connector, allowing for
collection of data from specific services, also
used internally for Flowcode’s data ingestion
processes. Since Fivetran’s use case for the
dashboard was similar to mine, I tried to find
features that were useful that I could also
implement to provide the most robust
experience. A feature that I decided to use for
my website was keeping a record of the last 90
days of status updates and displaying it on the
main page, which would allow for data
engineers specifically to address lingering
issues. I also utilized the color scheme of
errors, using red for sources that had not been
updated in more than 100 days, yellow for
sources that were updated in between 1 and
100 days, and green for sources that had been
updated on the current day. This allowed for
the same usability as Fivetran, providing an
easily recognizable color scheme to recognize
faults.

3. Process Design
Building this solution required many moving
parts that eventually led to a seamless and
robust process that addressed the problem
description.

3.1 Review of System Architecture
In order to create this solution, I identified the
three components I would use in my approach.
First, I would develop scrapers that would
track data from individual source tables in
Snowflake to data models created in dbt and
finally to sources as dashboards in Looker.

This step would allow me to gather all the
data necessary for the backend of the
dashboard.

I would then start building out an API which
would allow me to expose the data I
collected in the backend to the frontend I
wish to render. To accomplish this step, I
would use Django, a Python framework used
to quickly develop and iterate APIs, popular
among groups that are trying to prototype a
service rapidly. Finally, the data from the
Django API endpoint would be fetched and
rendered into a clean user interface, which
would serve as the main landing page for
internal users. This overall approach was
refined over several weeks after iterating
through an MVP and deciding which
technologies would allow for the quickest
creation of a complete product.

3.2 Key Components
In order to build a solution, three components
had to be created: scrapers to pull in the
necessary data, an API endpoint to expose
privately, and a front end to render the
information scraped.

3.2.1 Data Scrapers
To scrape the appropriate data needed for this
project, I had to create scrapers that could
gather data from dbt and Looker, two
applications used internally that loaded and
transformed all the company’s data. In order
to develop these tools, I had to utilize the API
libraries offered by both of these services.
For both of them, I first gathered Flowcode’s
organizational credentials for the API
services and used them to explore the
metadata offered to users. I then identified
key values that would be necessary to store
within the organization’s database, mainly
the last time a certain table or model was
updated.

Once I found these timestamps, I consolidated
the data needed into a Pandas (A popular
Python library used to store and manipulate
data) dataframe and utilized an internal
connector to Snowflake. This pre-built tool
allowed me to take any local Pandas dataframe
and dump it into a table within Flowcode’s
internal Snowflake instance. After building the
connection between the results of the API and
Snowflake, I had to automate the process using
Airflow, an orchestrator which makes a job run
at a daily cadence, allowing for data to
constantly be refreshed and updated. This final
step of the data scrapers component allowed
for all the relevant data to be captured and
updated on a schedule that will always leave
users with the data they need.

3.2.2 Django API
The next step was to create an API which
could take the data in Snowflake and expose it
to an endpoint which a front end could use.
Within software engineering, this is common
practice for connecting a database to a front
end. This is for both security reasons and since
it is impractical to have a live connection to
any data source. I decided on Django since it is
a lightweight Python framework which would
be easy to configure and develop rapidly. This
proved to be the case, as all that was needed to
load in the data was the Python-configured
Snowflake connector which allowed for a live
connection to the Snowflake tables where my
data was stored.

Then, I used Django’s built in functionality for
API development to develop a public view
which would allow my front end to interact
with. After developing the front end however, I
changed the Django endpoint from publicly
available to a private connection, only
allowing stakeholders with the correct
credentials to access it.

3.2.3 React Front End
To render all the data in a visually appealing
front end, I settled on React. React is a
Javascript framework which allows for front
end development with less clutter than most
other frameworks come with. First, to gather
the data I used Javascript libraries to hit the
Django API and get all the data available at
the endpoint. I then created a simple HTML
page which displayed all the necessary data
in a simple table. I then created hyperlinks
which would link every data table to a page
which listed all the sources and the last time
they were accessed. This was the primary
functionality and scope necessary for the
website.

Figure 1: XBOX Status Page

For styling, I utilized a similar scheme to the
example in Figure 1, highlighting rows with
recent data green, somewhat recent data
yellow, and outdated sources red. This
allowed for users to quickly discern visually
what sources could be causing data
discrepancies without having to read all the
information, leading to a quicker and more
convenient user experience.

3.3 Challenges
The challenges around this project were
primarily learning all the new languages
necessary to complete it. I had never had
experience with React, the technology used to
create the front end. This meant a huge
learning curve that made me take longer than
expected to finish that portion of the project.

Additionally, I had to learn how to develop
production level code at an actual company.
The process for writing code for a company is
much different than writing code at school.
Learning all the processes took a while and
made development quite slow at times.
However, the mistakes I made at this
internship allowed me to become a much
better developer, definitely a net positive in the
long run.

4. Results
The current project is still undergoing some
final checks before being used in production
organization wide. Currently, it is being used
by data engineers locally to address data
outages that cannot be readily diagnosed.
Before leaving the internship, I conducted
some tests of the efficiency of the solution.

Before the development of my product, tracing
through all the data sources was an hours-long
process, and tracing through one dashboard
took me approximately 4 hours. However,
with my website, the process of finding
outdated sources took about 5 minutes,
drastically reducing the time required to
diagnose problems. This was the largest and
most effective outcome of this project, and it
allows for data engineers within the
organization to drastically reduce their already
large workload.

5. Conclusion

Overall, the data monitoring project I did
over the summer at Flowcode provided
tremendous value to the organization. The
website gave internal stakeholders a
centralized platform to easily check data
freshness. The process of identifying
improper data was reduced by a significant
factor due to the amount of time saved with
the clean front end and robust back end. By
reducing the time necessary for data
engineers to diagnose data outages, my
solution simplified their jobs and allowed
them to work on more innovative, forward-
thinking solutions that would further push the
needle. Thus, at a small company that is
looking to accelerate its processes, this
solution provides tremendous time value,
which can truly create a difference in the
productivity of all relevant stakeholders.

6. Future Work
Future work that could be done to improve
this solution would be related to the speed of
the website. In order to render the front end,
the application has to ping the API endpoint
and process all the data, which takes an
excessive amount of time on a row-by-row
bas i s . One so lu t ion tha t cou ld be
implemented would be to batch the data, or
process multiple rows simultaneously, saving
the time of ingesting a single row at a time.
This would reduce the processing time
significantly.

Additionally, new features could be added to
further serve stakeholders, such as automatic
flagging of status changes in order to alert
data engineers of when data sources may go
stale. This would provide tremendous value
as it would allow them to solve problems as
soon as they occur, possibly preventing
future issues that could have severe
downstream consequences.

References
[1] XBOX. 2022. Xbox Status. Retrieved
November 28, 2022 from https://
support.xbox.com/en-US/xbox-live-status.

[2] Fivetran. 2022. Fivetran Status. Retrieved
November 28, 20222 from https://
status.fivetran.com/

https://support.xbox.com/en-US/xbox-live-status
https://support.xbox.com/en-US/xbox-live-status
https://status.fivetran.com/
https://status.fivetran.com/

	References

