
 
 
 
 

Voice Restoration Device Using Machine Learning of Acoustic and Visual Output During 
Electrolarynx Use 

 
A Technical Report submitted to the Department of Biomedical Engineering 

 
 

Presented to the Faculty of the School of Engineering and Applied Science 
University of Virginia • Charlottesville, Virginia 

 
In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 
 
 

Katherine M. Taylor 
Spring, 2022 

Technical Project Team Members 
Sameer Agrawal 
Surabhi Ghatti 

Medhini Rachamallu 
 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 
assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

  



 6 

Voice Restoration Device Using Machine Learning of 
Acoustic and Visual Output during Electrolarynx Use

 
Sameer Agrawala, Surabhi Ghattib, Medhini Rachamalluc,, Katherine Taylord

 
a sa9nc@virginia.edu 
b sg2dk@virginia.edu  
c mr3dn@virginia.edu 
d kmt2ns@virginia.edu
 

Abstract 
After patients undergo a total laryngectomy, alternate methods of speech are necessary to facilitate normal communication. One 
non-invasive voice restoration method is the electrolarynx, which has fewer complications than other forms of voice restoration 
therapy but results in a lower quality of speech. The proposed solution to this dilemma is the creation of a dual-pipeline deep neural 
network (DNN) to translate lip movements and audio output from electrolarynx use into intelligible speech. Videos of study 
participants reciting the Rainbow Passage, a phonetically balanced passage, as well as speaking conversationally for sixty seconds 
were recorded with and without an electrolarynx. The audio pipeline iterated through a number of ways to extract the necessary 
audio data from each video, including Mel Frequency Cepstral Coefficients (MFCCs). A binary classification DNN was used to 
determine if the MFCCs were a good fit for distinguishing between electrolarynx and non-electrolarynx data. Despite a testing 
accuracy of 61%, it was determined that the error was not decreasing as iterations decreased, showing a lack of learning on the part 
of the DNN. The video pipeline utilized a software called DeepLabCut to predict points on the lip for both Rainbow Passage and 
conversational speech videos using a convolutional neural network (CNN) trained on frames labeled with four points on the lip. 
DeepLabCut effectively predicted these four points for the conversational speech videos, with a mean pixel error of 5.11 pixels. In 
summary, the audio pipeline successfully determined that MFCCs are not a viable audio analysis technique for this project, while 
the video pipeline was able to successfully predict four points on a lip for speakers with similar distances from the camera. The 
next steps in this project include researching other methods of audio analysis to extract essential features for the DNN, labeling the 
frames with the associated phoneme for the next steps in the video pipeline, and shortening the videos to facilitate this labeling 
process. 
 
Keywords:  electrolarynx, voice restoration therapies, DNN, MFCCs, DeepLabCut, neural network

Introduction 

Clinical Background 
Every year, over 3000 patients in the United States alone 
receive a total laryngectomy, which entails the removal of 
the vocal cords, due to laryngeal cancer1. During this 
procedure, the larynx is removed, and the trachea is 
separated from the throat, severing the connection between 
the lungs and the mouth. As a result, laryngectomees lose 
their ability to speak and are forced to acquire alternative 
means of communication. These possibilities include 
gesturing, writing, and voice restoration therapies. Any 
therapy involving voice restoration is preferred over a non-
verbal communication strategy since the ability to speak is 
associated with a higher quality of life2,3. The gold standard 
for voice restoration is the tracheoesophageal puncture 
(TEP), a surgical procedure that allows patients to redirect 
air out of their mouth. Despite its designation as the gold 
standard, roughly 25% of TEP recipients face 
complications, including recurring infections, pneumonia, 
and sometimes death 4,5. The onset of complications can 

range from soon after surgery to years later, reducing 
predictability6. 

An alternative to TEP is the electrolarynx, a battery-
operated device placed under the chin that emits vibrations 
that are transmitted through the skin to the throat. These 
vibrations are shaped into words using the lips, tongue, and 
teeth, creating a mechanical voice. The electrolarynx is 
preferred by some to other forms of voice restoration 
because it is non-invasive, has no complications, and is 
most cost-effective7.  Furthermore, it serves as an easy 
backup for those who face complications from other voice 
restoration therapies7. Similar to TEP, the electrolarynx 
comes with significant drawbacks. While it is considered 
the easiest and fastest voice restoration technique to learn, 
speaking with an electrolarynx effectively still takes 
significant time and effort from both the patient and a 
speech therapist, which taxes the healthcare system7. 
Furthermore, the voice produced by the electrolarynx is 
mechanical, monotonic, and difficult to understand. This 
lack of intelligibility is exacerbated by the presence of 
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generic vibrational noise that drowns out the voice of the 
speaker8,9. Additionally, the current electrolarynx requires 
users to operate the device with one hand and place the 
electrolarynx on the correct location on the throat, reducing 
accessibility10. 

Regardless of the voice restoration method used, 
laryngectomees experience a reduced quality of life for 
multiple reasons. Physically, laryngectomees struggle with 
difficulty swallowing and may be subject to postoperative 
chemotherapy if there is a recurrence of cancer. 
Emotionally, laryngectomees are taxed with the burden of 
permanently losing the ability to speak normally as well as 
the possibility of cancer recurrence9,11. Financially, 
laryngectomees must attend multiple sessions with a speech 
therapist in order to learn how to use the chosen voice 
restoration therapy, which can pose a considerable burden 
to those who are underinsured. Environmentally, it is 
difficult to communicate effectively in noisy settings due to 
the presence of generic vibrational noise and limited volume 
capacity; laryngectomees may also experience a reduction 
in quality of healthcare due to the inability to communicate 
clearly7,12,13. The burden placed on laryngectomees has led 
to social isolation and reports of fewer friends, increased 
mental health issues such as anxiety and depression, and 
decreased self-estimated quality of life scores among the 
population7,10,12,13. 

Technical Background 
In order to improve the quality of life of a laryngectomee to 
the highest extent possible, an ideal voice restoration 
therapy that combines low invasiveness, higher speech 
intelligibility, affordability, and accessibility is essential. 
Machine learning algorithms, particularly deep neural 
networks (DNNs), have the potential to achieve these four 
parameters by predicting speech from a variety of different 
markers and converting the predicted phonemes to 
intelligible, computer-generated speech. Neural networks in 
a nutshell are composed of an input layer, output layer, and 
a variable number of hidden layers; DNNs are characterized 
by the presence of at least two hidden layers. The network 
accepts an input from a training set where the correct output 
is already known and predicts the output by using 
calculations in each layer. The predicted output is compared 
to the known output, and the error rate is used to adjust the 
calculations that occur in the hidden layers. This occurs for 
a preset number of iterations determined by the user with 
the goal of getting the predicted output as close as possible 
to the known output. Once the DNN is trained, it can be used 
to predict values for data that does not have a known output. 

This project seeks to create and train a multi-pipeline DNN 
consisting of several convolutional neural networks (CNNs) 
and long short-term memory (LSTM) networks. The DNN 
will take both visual and auditory signals from videos of 
laryngectomees and non-laryngectomees, with and without 
an electrolarynx, to create a computer-generated, 
intelligible, “normal” voice with a wide range of volumes. 
Since this algorithm builds on the existing electrolarynx, it 
retains its non-invasive qualities. However, the wide range 
of volumes will greatly increase speech intelligibility, even 
in noisy settings. The creation of this algorithm comes with 
the intention to eventually implement the algorithm in a 
smartphone application, which will increase both the 
affordability and accessibility of the voice restoration 
therapies. This DNN has the potential to increase the quality 
of life of laryngectomees by increasing the extent of which 
they can communicate. 

Prior Research and Innovation 
While this project seeks to combine both visual and audio 
data to perform speech analysis, current research focuses 
primarily on either one or the other modality. Current 
research in artificial lip reading using visual data focuses on 
the implementation of artificial neural nets (ANNs) to 
achieve higher accuracy than human lip reading. LipNet 
used a combination of a convolutional neural network 
(CNN) and a recurrent neural network (RNN) to learn 
phonemes based on both spatial and temporal features. It 
improved on previous designs by combining feature 
extraction and prediction into a single pipeline rather than 
two wholly separate networks. It also predicted full 
sentences at a time rather than words. LipNet had a higher 
accuracy score than human lip-readers, which points to the 
implementation of deep learning models as the future of lip 
reading14. Another study used a Microsoft Kinect camera to 
track seventeen different points on the lip. This input was 
fed into an ANN and used to predict short phrases. The 
accuracy of this method was 77.2%, which is lower than 
other models. However, this study emphasized using low 
cost, portable materials, which is a step in the right direction 
for improving voice restoration methods1.  

Efforts to improve the electrolarynx have come from 
multiple different directions, mostly including the 
attenuation of generic vibrational noise from the 
electrolarynx, which detracts from the intelligibility of the 
actual speech, and creating a pitch range that more 
adequately represents the pitch of the voice of patients. 
Padmini proposed the use of Mel frequency cepstral 
coefficients (MFCC) to extract essential features from 
electrolarynx output. The frequency of the electrolarynx 
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would not be extracted with these essential features, thus 
attenuating generic vibrational noise8. Syrinx is a wearable 
artificial larynx that expands the frequency range of a 
traditional electrolarynx. Besides having an increased 
frequency range for the electrolarynx, Syrinx uses 
recordings of the user’s voice to determine a personalized 
vibrational frequency. Finally, the wearability of this 
artificial larynx solves the problem of needing an extra hand 
to operate the electrolarynx9. A different approach to the 
electrolarynx is the use of electromyography, where 
magnets are embedded in the mouth to capture 
electromagnetic data that predicts speech. This is obviously 
both invasive relative to the electrolarynx and 
uncomfortable.  

This project expands on the research above by creating an 
DNN that utilizes both video processing and audio 
processing rather than a single modality to predict speech as 
accurately as possible. Since lip movements and audio 
output from the electrolarynx are both very different data 
modalities, the project will be split into two separate 
pipelines. Each pipeline will predict a phoneme for that 
respective modality separately; the two pipelines will then 
be combined using ensemble learning for the final speech 
prediction. 

Materials and Methods 

Data Collection  
The given videos were supplied by Rachel Jonas, M.D. of 
the ENT department. They were pre-recorded by advisors 
to avoid extra IRB approval. Five participants of both sexes 
were included and per the IRB, all other information barring 
sex were excluded. To further preserve the anonymity of the 
participants, the upper half of the face was cropped out of 
the frame for all videos. The number of participants was 
chosen to be five due to the use of five participants in the 
Xbox Kinetic Speech program as described in the 
Introduction1. The participants chosen are all English-
speaking adults with functional larynges without diagnosed 
voice or speech pathology recruited personally by the 
designers of the study. Each speaker repeated the first three 
sentences of the Rainbow Passage while audiovisual output 
was recorded. After training by Holly Hess, a certified 
speech-pathologist, the participants re-read the passage 
using an electrolarynx while articulatory speech movement 
and acoustic output were again captured. The Rainbow 
Passage was chosen because it is short and phonetically 
balanced. In total, there are 52 electrolarynx based files and 
51 normal speaking files. The same participants were then 
used to record videos of conversational speech using the 

same methodology. Each participant had freedom to choose 
what they wanted to say for sixty seconds. All of these 
videos are located on a shared UVA dropbox folder. During 
this process, a Rivanna allocation, uvavoice, was purchased 
due to the high volume of computation necessary to train a 
DNN on high-dimensionality data such as images and audio 
clips.   

Audio Pipeline 
All the audio processing was done using Python 3.9. The 
audio was extracted from the videos using the scipy package 
on Python, which contains a module for signal processing. 
This wavfile module converted the videos into audio files 
with the .wav extension. The electrolarynx audio files were 
processed using a Butterworth filter, defined using modules 
in the scipy module, in order to remove background noise. 
The argument for the butter bandpass filter requires 
arguments for a low frequency, high frequency, and a cutoff 
frequency. The lower and higher limits were determined 
using trial and error using one recorded video per 
participant. These limits appeared to occur at 500 and 2000 
Hz, respectively.  

After noise removal, Mel Frequency Cepstral Coefficients 
(MFCCs) were initially created for all the videos also using 
the surfboard package, an open-source library for audio 
processing15. MFCCs were chosen to act as features for the 
audio data because they are a popular spectral-based 
parameter used in audio processing. They represent the 

Fig. 1. DNN for Binary Classification (left) and Multi-label Classification 
(right). The images above describe the layers in each DNN including the number 
of nodes and the layer’s respective activation functions. For the binary 
classification DNN (left), there are 4 total layers, with the hidden layers each 
having 64 nodes and a ReLU activation function. The output layer, since its 
binary classification, only has 1 node and a sigmoid activation function. 
Similarly, the multi-label classification DNN (right) has a total of 4 layers with 2 
hidden layers each with ReLU as the activation function; however, the number of 
nodes doubles as you go from layer 2 to layer 3, 48 and 96 nodes, respectively. 
In its output layer, there are 7 nodes since there are 7 possible labels, and since it 
is multi-label classification, a softmax activation function is used. 
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frequencies surrounding the human vocal range, where the 
values of the MFCCs amplify this range to improve 
clarity16. The matrices of coefficients, known as cepstral 
coefficients, contain information about the rate changes in 
the different spectrum bands. Positive coefficients indicate 
that the spectral energy of the audio is concentrated in low-
frequency regions. If the cepstral coefficients have a 
negative value, the spectral energy is concentrated in high-
frequency regions17. 
 
Binary Classification Using MFCCs 
In order to determine whether the MFCCs created useful 
features to distinguish between electrolarynx and non-
electrolarynx audio clips, binary classification was 
performed using a deep neural network (DNN). MFCCs for 
this task were generated using librosa, a python package 
designed for music and audio analysis. The neural network 
was created using the keras library and a Sequential model. 
The DNN consisted of an input layer, two hidden layers, and 
an output layer (Figure 1). The input consisted of 168 audio 
files, which were first passed into a flatten layer. The flatten 
layer prepares data to enter the neural network. The two 
hidden layers in this network consisted of dense layers with 
64 nodes each. This number of nodes was chosen because 
2n nodes show the best results in neural networks. These 
dense layers contain full connectivity between the previous 
layer and the current one. ReLU was chosen as the 
activation function in these layers because it is known to 
overcome the vanishing gradient problem and allow the 
model to learn faster and perform more efficiently. Finally, 
the neural network contained an output dense layer 
containing one node with a sigmoid activation function. 
One node was used because the goal of the network is binary 
classification. Since the sigmoid function exists only 
between 0 and 1, it performs well during binary 
classification (Figure 1). 
 
Multi-Label Classification Using Singular Words 
Since previous literature tends to classify animal sounds, 
single words, or emotions, the audio files were split into 
singular words from the beginning of the first sentence of 
The Rainbow Passage. The words include when, the, 
sunlight, strikes, raindrops, in, air. Audacity was used to 
manually split the audio files into separate words. These 
words were then passed into another DNN consisting of an 
input layer, two dense layers, and an output layer. The input 
flatten layer processed 18 audio clips into the network The 
two hidden layers consisted of dense layers with 48 and 96 
nodes, respectively, and ReLU as their activation function. 
The output dense layer consisted of 7 nodes with softmax as 
the activation function because there were 7 possible words. 

Softmax was chosen as the activation function because it is 
commonly used in multi-label classification. The network 
predicted which word the audio file contained (Figure 1). 

Video Pipeline 
The entirety of the video pipeline consisted of using a 
software called DeepLabCut to perform initial feature 
extraction from each of the Rainbow Passage videos 
followed by a convolutional neural network (CNN) that 
reduced the dimensionality of the image to four points and 
a long short-term memory network (LSTM) that predicted 
phonemes from lip positions. The output of the LSTM 
would be weighed in the final phoneme prediction after 
combination of the audio and video pipelines. 
 
Feature extraction using DeepLabCut 
DeepLabCut is a pose estimation software developed by the 
Mathis Lab that has been traditionally used to model small 
mammal movement but has the potential to be used to 
predict movement of body parts in humans as well. The 
software uses a representative set of labeled frames as 
training data to predict the specified labels in unlabeled 
videos. Thus, a small number of representative frames can 
be used to determine labels in long videos with thousands 
of frames. This results in the reduction of the dimensionality 
of each frame from thousands of pixels to the small number 
of labels, which can greatly reduce the computational 
expense of each frame in future neural networks (Figure 2). 
 
For this project, a total of four points on the lip were labeled: 
the upper, lower, left, and right corners of the lip (Figure 2). 
This number was chosen based on prior research with the 
intention to minimize computational expense while 
maximizing the potential for accurately predicting the test 
set. Using the software, each Rainbow Passage video was 

Fig. 2. DeepLabCut Labeled Frame. To get the labeled frame as seen above, 
DeepLabCut trains a ResNet CNN on manually labeled frames and then uses the 
trained model to make predictions on the upper, lower, left, and right corners of 
the lip.  
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split into several thousand frames, with the exact number of 
frames depending on the video. The frames were left 
uncropped since the speakers assumed a distance from the 
camera that was indicative of our final application. For each 
video, these frames were clustered into 50 clusters using k-
means clustering; the number of clusters was chosen to 
represent the 44 phonemes in the English language as well 
as several extra clusters to represent the possibility of 
slightly different mouth positions for any given phoneme.  
Due to the considerable time needed to manually label 50 
frames per video, five videos with an electrolarynx and five 
videos without an electrolarynx for each participant were 
randomly selected to be labeled using a random number 
generator. These 2500 frames were manually labeled with 
the four points on the lip. The frames served as the input for 
the next step in the pipeline, the CNN. 
 
ResNet CNN 
DeepLabCut has multiple options for which CNN is used to 
predict the lip positions; ResNet-50 was initially chosen due 
to the lower number of layers and faster training time. 
ResNet-50 has three defining features: convolutional layers, 
pooling, and fully connected layers. The 50 convolutional 
layers are used to extract the most important features of the 
image; the dot product of a small matrix called the kernel 
and small pixel sections of each image is found for all parts 
of the image in order to perform this step. Pooling is 
characterized by finding either the average or maximum 
value of a set of pixels in the image; this is done to reduce 
dimensionality of the image. A final fully connected layer 
with 1000 nodes resembles a normal neural network that 
classifies that reduced image. This classification was used 
to determine where each of the four points on the lip were 
for that particular image. 

This ResNet-50 model was trained on the 2500 labeled 
frames. To test for possible overfitting, or low error rates for 
training data but high rates for testing data, the remaining 

unlabeled frames from the Rainbow Passage videos that 

were not selected were used as a validation set. To ensure 
the usefulness of DeepLabCut before moving on to the next 
step in the pipeline, the model was tested on the recorded 
videos of conversational speech. Finally, to determine the 
necessity of a uniform speaker depth from the camera, the 
model was tested on frames from another open-source 
dataset, where the speakers were positioned farther away 
from the camera.  

DeepLabCut utilizes an error measurement called mean 
pixel error to determine the accuracy of the model. It does 
this by finding the mean distance in pixels between the 
predicted lip position labels and the actual lip position 
labels. A mean pixel error of less than 5 pixels is recognized 
to be an appropriate threshold for determining if the model 
can accurately predict the labels; this threshold was chosen 
as it is an approximate for pixel error in low-resolution 
cameras. The mean pixel error was recorded for each round 
of videos; final pictures and videos of predicted lip positions 
were also qualitatively judged for accuracy. 
 
Long Short-Term Memory Network 
The final step in the video pipeline was a long short-term 
memory network (LSTM) that took a set of lip positions for 
each video and predicted a phoneme for each frame. LSTM 
networks are unique in that they retain useful information 
about past data and use this information to inform the 
prediction of the current data. This quality makes LSTM 
networks particularly useful for speech recognition, where 
there are many strings of consecutive phonemes that occur 
frequently in English speech. The LSTM model would be 
implemented using PyTorch with an input size of 4 
(representing each of the four labeled points on the lip) and 
an output size of 1 (representing the predicted phoneme). 
The size of the hidden layer would be adjusted based on the 
accuracy of the model. 
Similar to the testing of the accuracy of DeepLabCut, the 
LSTM model would then be trained on the lip positions 

from the Rainbow Passage 
videos and tested on the 
conversational speech videos. 
Further testing includes using 
videos of laryngectomees 
speaking the Rainbow 

Fig. 3. Overall pipeline of project. This image shows the overall pipeline including the separation of the audio and video 
portions. The stop signs indicate what was achieved in the scope of this time.  
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Passage as well as speaking conversationally to ensure that 
the model is still effective for laryngectomees. For each 
video, the accuracy score of the model at correctly 
classifying phonemes will be determined for a variety of 
epoch lengths and hidden layer sizes. 

Pipeline Combination  
The audio and video pipeline each output a predicted 
phoneme for each frame of each video, which must then be 
analyzed and combined to predict a final phoneme. Since 
the audio and video pipelines could theoretically output 
different phonemes for a given frame, some form of 
ensemble learning is required to accurately predict the most 
correct phoneme for any given frame. Since the audio and 
video pipelines are separate throughout the entire process of 
predicting a phoneme from a given modality, the two can be 
viewed as separate prediction models, with one having the 
potential to be more accurate than the other. 

The solution to combining the two pipelines was to use a 
boosting algorithm. Boosting involves iteration through 
each classifier, determining the accuracy of each classifier, 
and weighting that prediction based on the accuracy of that 
classifier. AdaBoost will be used to perform this step as it is 
a common and familiar boosting algorithm that can be 
easily implemented in Python using scikit-learn. The 
accuracy of the final predicted phoneme will be measured 
and compared with the accuracy of the individual 
classifiers. If the accuracy is relatively low, the possibility 
of increasing the number of classifiers by iterating through 
the same classifier multiple times will be explored to 
improve the accuracy of our novel ensemble program 
(Figure 3). 

Results 

Audio Pipeline 
Binary Audio Classification 
The primary goal for audio classification was to be able to 
distinguish the Rainbow Passage sentences repeated by the 
participants. After realizing that training with the whole 
video and extracted MFCC’s was not feasible, it was 
determined that it would be important to see whether the 
MFCC’s provided valuable information in distinguishing 
between larynx and electrolarynx speech. Using this 
approach and the idea of binary classification deep learning, 
Rainbow Passage videos were labeled as either normal or 
electrolarynx, and the features for each was the matrix of 
coefficients given by the MFCCs. Using the 4-layer DNN 
described above, this binary classification yielded a training 

accuracy of 69% and a testing accuracy of 61%. Looking at 
the cross-entropy values, the training cross-entropy was 
0.59 and the testing cross-entropy was 0.73. Cross-entropy 
is one example of a loss function that describes how well 
the algorithm, whose output is a probability value between 
0 and 1, is classifying. Also known as log loss, the cross-
entropy loss increases as the difference between the 
predicted and actual label becomes larger. Ideally, a log loss 
of 0 correlates to a perfectly accurate model18. In this case, 
with both values being so small, it indicates that the 
classification being done by the model is essentially as 
random as a coin-toss, meaning that no learning is occurring 
(Figure 4).  

Fig. 4. Accuracy Graph for Binary Classification. This graph shows the test 
and train accuracy for the binary classification DNN over 50 epochs. The jump-
like tendencies of the graph are also another indication of random prediction and 
not model learning.   
 

Fig. 5. Confusion Matrix for Binary Classification. This graph shows the 
confusion matrix represented by the algorithm's predictions. Ideally, since actual 
predictions are plotted on the vertical axis and predicted values are plotted on the 
horizontal axis, the diagonal should be the darkest shaded since those represent 
areas where the actual and predictive values match. However, this confusion 
matrix has the highest values in the true negative and false negative sections 
rather than the true negative and true positive sections. This highlights how the 
network is not able to distinguish between normal and electrolarynx. 
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To further assess the classification of the DNN designed, a 
confusion matrix was generated. The confusion matrix, 
which plots actual labels against predicted labels, classified 
the test dataset into one of the four categories as shown in 
the figure below. For this particular classification, there 
were 23 true negatives and 8 false negatives, reaffirming 
that the algorithm was not actually learning, and that the 
prediction was happening somewhat randomly. Ideally, the 
highest values should be seen in the true negative and the 
true positive labels because these indicate correct 
predictions (Figure 5). 
 
Multi-Label Audio Classification 
As another thought experiment, a new DNN was developed 
with the intent of performing multi-label classification with 
the labels: when, the, sunlight, strikes, raindrops, in, air. 
This is the first part of the first sentence in the rainbow 
passage. The idea stems from literature published on audio 
classification with noisy data. Due to the additional noise, 
the most basic approach to take is to determine whether an 
algorithm can differentiate between singular words. Using 
this literature and the DNN based on the idea of multi-label 
classification, the training accuracy was 17% and the testing 
accuracy was 15%. The training cross-entropy was 2.33 and 
the testing cross-entropy was 2.48. Because the data only 
consisted of 18 videos, no immediate conclusions can be 
drawn from these results (Figure 6).  

Video Pipeline 
Rainbow Passage and Open-Source Data Set 
The first aim of this project was to design an artificial neural 
network by mapping English phonemes to visual and 

acoustic electrolarynx in individuals with functioning 
larynges using a prescribed reading passage. The first step 
in this process was to create a visual speech recognition 
network to track the movements of a subject’s lips as they 
were speaking the rainbow passage. The rainbow passage 

Fig. 6. Accuracy Graph for Multi-label Classification. Similar to the accuracy 
graph of the binary classification model, this graph shows the test and train 
accuracy over 50 epochs for multi-label classification. The repetition of the spike-
like pattern of the graph indicates that the algorithm is not truly learning and that 
its predictions are quite random. Due to the small size of the dataset, not real 
conclusions can be drawn.   

Fig. 7. Rainbow Passage and Open-Source Data Set Test and Training 
Frames. (A) A labeled training frame from the rainbow passage videos. The 
ResNet CNN is labeling the four points on the lip. (B) A labeled test frame 
from the rainbow passage video where the ResNet CNN is predicting and 
labeling the 4 points on the lip. (C) A labeled test frame from the open-source 
data set where the trained model is not accurately predicting and labeling the 
points on the lip but on the subject’s forehead and hair.  
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videos were used to train the ResNet CNN created by 
DeepLabCut because it contains all the English phonemes. 
DeepLabCut automatically splits the 2500 labeled rainbow 
passage video frames into a training and test set. 95% of the 
frames were used for training and the remaining 5% were 
utilized in the test set. After DeepLabCut created the 
training set, DeepLabCut trained on the labeled frames 
using the ResNet CNN with 500,000 iterations. After 
training on the rainbow passage was completed, 
DeepLabCut evaluated the trained ResNet CNN on the test 
set. As shown in Table 1, the mean pixel error for the 
training, 4.19 pixels, and test are close to five pixels 
meaning the trained model is accurately predicting the 4 
points on the lips. Additionally, as seen in Figure 7, the 
model is accurately predicted and labeled the 4 points on the 
lips of the participants. The test mean pixel error was greater 
than training pixel error due to the number of frames 
relegated to training compared to testing.  
 
Table 1. Mean Test Pixel Errors for Test Data. The above table displays results 
of the mean text pixel error for all three test data sets. The open-source data set 
had the highest mean pixel error. Both rainbow passage and conversational speech 
had mean pixel errors close to 5 pixels. The trained ResNet CNN was used to test 
on the data sets.  

Data Mean Test Error (pixels) 
Rainbow Passage 5.22 
Open-Source 134.65 
Conversational Speech 5.11 

 
After the trained ResNet CNN was validated using the test 
rainbow passage frames, the trained network was used to 
predict the 4 points on a lip on an open-source data set 
provided by our advisors. The open-source data set was 
used as another validation test set in order to see whether 
the trained network could predict points on videos that were 
not specifically recorded for this project. As seen in Table 
1, the mean test pixel error for the open-source data set is 

much greater than 5 pixels meaning the model is not 
accurately predicting the points on the lips. Furthermore, as 
seen in Figure 7, the model was predicting the 4 points close 
to the forehead of the participant rather than the lips. The 
lack of accuracy is attributed because the lips of the 
participants in the training videos were at a closer distance 
to the camera compared to the open-source data set.  
 
Conversational Speech 
The second aim of this project was to apply a trained ANN 
to conversational speech in laryngectomees. However, to 
achieve this aim, the trained ResNet CNN was first applied 
to videos of conversational speech recorded by participants 
in order to see whether the model can predict points on the 
lips on conversational speech. Conversational speech 
videos were used because conversational speech does not 
utilize all the phonemes and syllables in the English 
language. Again, as shown in Table 1, the mean pixel error 
for the conversational videos is close to five pixels meaning 
the trained model was accurately predicting the four points 
on the lips. Moreover, as depicted in Figure 8, the ResNet 
CNN is accurately labeling the four points on the lips of the 
participant during conversational speech.  

Discussion 

The goal of this project was to create a DNN combining 
audio and visual analysis of individuals with and without 
the electrolarynx. The DNN was meant to predict phonemes 
in the English language. Since MFCCs are a very common 
method to extract audio features, it was the method used for 
the audio pipeline. DeepLabCut was used to identify four 
points on the lip for the video pipeline. Although the results 
from the audio portion were lacking, the video portion 
showed a high level of accuracy.  

In order to improve the audio portion, new methods such as 
a Melspectrogram, Spectral Contrast, and Wavelet 
transforms can be used as features. Recently, more research 
has been performed using these methods for training neural 
networks instead of MFCCs. Artificial Intelligence has also 
shown more promise learning from images than MFCCs in 
this area of research. The methods listed above would 
produce images containing the information from the audio 
files similar to how MFCCs data can be displayed on a 
graph. Additionally, the multi-label classification 
performed with singular words showed a lot of promise. 
Since the clips containing singular words are shorter, it is 
easier for the neural network to learn this data. With 
singular words, the possibility for the words is also finite, 
allowing supervised learning to be more accessible. With a 

Fig. 8. Conversational Speech Frame. The above figure represents a frame from 
the conversational speech test data set. The four points on the lip represent the 
trained ResNet CNN’s labeled prediction. The model is making accurate 
predictions for all 4 points.  
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small bank of representative words in the English language, 
models could be trained with singular words rather than 
phrases, sentences, or paragraphs, which also take more 
processing power. After learning individual words, the 
model could graduate to more complex structures similar to 
how language processing has evolved. 

The next step in the video pipeline would be to associate 
groups of frames with labeled points to different phonemes 
or syllables. This process would also be facilitated with 
videos of singular words rather than several sentences, 
especially if the words are one syllable. Once the neural 
network has trained on simple syllables and achieved high 
accuracy, harder words can be added. More research needs 
to be performed regarding how to differentiate between 
visual sounds in the English language. For example, b and 
p, although audibly different, look very similar on video 
because of the positioning of the lips. 

Since the goal of this project is to create a device or an app 
that electrolarynx users can operate to improve their speech 
intelligibility, the diversity of the training data needs to 
increase. Currently, the training data includes only five 
subjects who speak English, resulting in only about 200 
videos. Machine learning models, in general, require 
thousands of inputs in the training set to reach high levels 
of accuracy and applicability. With only five subjects, the 
variety of ethnicities and accents represented by actual 
electrolarynx users is not present in the data. Since the 
videos only contain English words, this project is also not 
applicable to other languages and cannot be used fully by 
multilingual electrolarynx users or international users. 
Furthermore, all the videos are taken at the same distance 
from the face. Realistically, electrolarynx users might hold 
their phones at varying distances when using the app or 
device. Therefore, more data needs to be collected and 
trained to encompass a larger range of distances from the 
face and overcome other weaknesses in the current dataset. 

End Matter 
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