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Abstract 

The complex network of interactions in the tumor microenvironment (TME) has yet to be fully elucidated. Spatial 

proteomic techniques like multiplex immunohistochemistry (mIHC) have made it possible for researchers to 

investigate numerous protein biomarkers simultaneously. While mIHC has been used to investigate tumor infiltration 

and some intercellular interactions on a spatial basis, the field has yet to establish a means of harnessing the power of 

observing and comparing the spatial interactions between all available markers for analysis simultaneously. To 

accomplish this, we propose a framework for analysis that incorporates a custom algorithm quantifying cell neighbors 

and machine learning techniques to elucidate the most important intercellular relationships investigated by 

immunologists and clinical researchers. To develop this framework, we used samples of tumor biopsies from a cohort 

of small cell lung cancer (NSCLC) patients. We developed neighborhood profiles surrounding each defined cell as 

features for analysis. Through orthogonalized Partial Least Squared Discriminant Analysis (OPLSDA), we connected 

the neighborhood profile of cells with their phenotype with high accuracy. Features with high Variable Importance in 

Projection (“VIP”) scores highlighted intercellular relationships which have significantly strong associations to a 

given phenotype, implicating a relationship to be explored further by detailed pathway analysis. In a case study 

focusing on helper T cells, we found strong associations between interferon-gamma (IFNγ) expression and 

colocalization with activated T lymphocytes and Natural Killer (NK) cells. Additionally, we have established a similar 

pipeline that uses the cumulative neighbor scores between many cell types within each tissue region to separate 

different tumors based on broad clinical features. In an example distinguishing tumors by pathologic grade, VIP scores 

highlighted interactions between MHC-I expressing tumor cells and T lymphocytes. These methods have 

demonstrated to be useful in preliminary investigations of mechanism of action by immune cells in the TME and 

predictive power of tumor profiling. In the future, this is intended to be used towards implementing precision medicine 

techniques into immunotherapy treatment.  

 

 

Keywords: multiplex immunohistochemistry, immunotherapy, spatial analysis, cancer

Introduction 

Immunotherapy  

The American Association of Cancer Research has 

highlighted the most promising areas of cancer research in 2023 

to be immunotherapy and precision medicine 1,2. The pioneering 

immunotherapy development, immune checkpoint inhibitors 

(ICIs), have been effective across several different cancer types. 

Many patients treated with ICIs have shown remarkable and 

lasting responses post-therapy 3. Immunotherapy not only has 

promise of extended survival, but also frequently circumvents 

many of the side effects caused by current treatment plans. 

Modern pillars of cancer treatment include radiation, 

chemotherapy, and surgical resection, which carry long-term 

adverse effects towards patients, significantly decreasing their 

quality of life. The advancement of immunotherapy techniques 

will not only improve the ability for patients to recover but will 

also persuade more patients and physicians to choose 

immunotherapy, allowing those affected to experience a better 

quality of life during treatment2. Since its first approval in 2011, 

immunotherapy has accumulated numerous FDA approvals, 

including advancements like ICI, CAR-T cell, and adoptive T-cell 

therapy. The most prominent ICI therapies function by blocking 

receptors in immune cells and tumor cells that engage in 

immunosuppression, which reignites the immune response to 

tumors that have accumulated immunosuppressive effects3.  

While immunotherapies have been created to target 

specific ligand-receptor axes, the complete modulation of the 

tumor microenvironment is complex and has yet to be elucidated, 

making it difficult to target specific ways to improve the 

treatments or propose improved combination therapies4. In 

developing our pipeline (Aim 1), we looked to characterize this 

comprehensive modulation using cell-state level investigations. 

Additionally, response to immunotherapy drugs is 

variable among patients, and while there are associations with 

tumor features and therapy response, improved capacity to predict 

responders are still needed to better identify candidates for 

specific treatments5. The most widely used immunotherapy, anti-

PD-1 therapy (pembrolizumab) is used in the treatment of 

numerous types of cancer. It is most successful in malignant 

melanoma with a response rate at 53% 6. For other soft tissue 

carcinomas treated with pembrolizumab, response rates vary 

between 20-40%. Predicting which patients will respond or how 

their tumors will evade particular immunotherapy treatments has 

proven to be difficult.4.  Improvement remains a priority in 

choosing and optimizing treatment plans for patients undergoing 

immunotherapy. Towards this aim, we have developed a 

cumulative tumor-level analytical pipeline that looks to 

characterize tumors based on progression and future response to 

treatment.  

 

The Tumor Microenvironment  

Exploring the intricacies of the tumor microenvironment 

(TME) and its interface with the immune system is of particular 

interest when assessing and enhancing immunotherapy 

effectiveness. The TME represents the dynamic cellular 

environment surrounding a tumor, comprising a diverse array of 
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malignant and immune cells that engage in complex interactions 

shaping tumor progression and patient outcomes 7. Recent 

advancements in imaging and sequencing technologies have 

unveiled the heterogeneous nature of TME, revealing substantial 

variability in cellular composition and spatial organization among 

patients. These findings underscore the importance of 

understanding the TME's role in cancer progression and treatment 

response, offering valuable insights for optimizing 

immunotherapeutic strategies. 

 

Spatial Analysis within the TME 

Complex interactions occur between malignant and 

immune cells within the TME. These interactions affect tumor 

progression and warrant further investigation. For example, 

uninhibited immune cells interact with tumor cells by attacking 

malignant cells through cytokine secretion or cascades resulting 

in killing by engulfment by nearby macrophages. Often, 

malignant cells also secrete cytokines and signaling molecules 

which reprogram and polarize immune cells to have an overall 

immunosuppressive effect. Immune cells in the stroma and 

infiltrating the tumor also interact with one another by activating 

cytotoxic effector cells, polarizing other immune cells, and 

promoting overall local inflammation 7.  

Observing intercellular relationships within a relatively 

short radius (between 20-50 µm) reveals the potential for 

significant intercellular interactions through interactions of cell 

surface molecules8. While interactions occurring by way of 

paracrine signaling may occur over longer distances, they are still 

limited by the ability of small molecules to travel and maintain 

their effect against diffusion. It is postulated that paracrine 

signaling is largely limited between 200-250 µm9. When 

considering the colocalization required for many relevant 

intercellular interactions, spatial analysis becomes relevant to 

observe and reveals a milieu of potential and cumulative 

simultaneous interactions occurring.  

 

Multiplex Imaging of the TME 

Recent developments in high-dimensional, multiplex 

imaging have allowed for simultaneous phenotyping of cells 

within a large region of the tumor which preserve the spatial 

architecture with high resolution. Spatial proteomic and 

transcriptomic methods have been developed in allowing for high 

dimensional characterization across different levels. Spatial 

proteomic imaging methods such as multiplexed ion beam 

imaging (MIBI), imaging mass cytometry (IMC), multiplex 

immunohistochemistry (mIHC) have been developed in the last 

few decades and have revolutionized the capacity to visualize and 

analyze the tumor microenvironment on a protein level10. mIHC 

and other methods have become prevalent for their ability to 

visualize proteins on tumors, which for the analysis of multiple 

protein biomarkers simultaneously with single-cell resolution. It 

also allows for the visualization of spatial relationships between 

identifiable markers and has made it possible to quantify the 

frequency of spatial relationships between specified cell types8,11.  

Spatial analysis has gained popularity as a research 

method and is able to provide evidence for the mechanisms behind 

immune modulation and additionally associate potential 

intercellular interactions in the TME with prognosis and response 

to treatment. Methods of multiplex proteomic imaging and spatial 

analytical methods and theories have been employed to 

investigate mechanism of anti-tumor immunity in the tumor 

microenvironment and to find association and to predict prognosis 

and response to therapeutics. For example, previous studies have 

looked to synthesize spatial localization data about cytotoxic T 

cells with phenotypic and transcriptomic data in glioblastoma to 

successfully investigate signaling pathways within cytotoxic T 

cells12. Additionally, often in settings where other quantifications 

of tumor and immune cells within the tumor microenvironment 

are unable to show significant differences among responders and 

other tumor features, even simple spatial analysis does hold 

associative capacity. For example, the spatial relationship 

between PD-1/PD-L1 markers has been investigated using mIHC 

methods and spatial analytics and the strength of this relationships 

was found to be related to improved response to immunotherapy 

treatments in metastatic melanoma patients13. Most interestingly, 

a recent study published evaluating the ability of popular methods 

for analyzing the tumor microenvironment concluded that mIHC 

data was most capable of predicting response to immunotherapy 

treatment, especially when involving spatially informed analysis, 

supporting its use in investigations of this type14. Beyond a single 

spatial relationship, evaluating a milieu of spatial relationships 

has offered even more prognostic information and insight into 

treatment response. Recent groups have measured the strength 

and frequency of spatial relationship between various immune 

cell markers and used multiple relevant measurements to 

construct risk scores for patients with pancreatic ductal 

adenocarcinoma (PDAC). These risk scores had a higher capacity 

to distinguish groups based on their prognosis using spatial 

information from the TME15. The prior literature leads us to 

believe that our pipeline is the next logical step in the spatial 

analysis of the TME. 

 

Precision Medicine 

The efforts made associating biomarker information 

with response look to integrate a precision medicine approach into 

immunotherapy treatment. Precision medicine is a new approach 

to oncology which introduces a biomarker driven approach to 

cancer treatment. It has become well established in chemotherapy 

treatment were genetic tests guide use of therapies for treatment16. 

Response to treatment is often variable due to interpatient 

heterogeneity. In precision medicine, patients are stratified based 

on molecular features like gene expression data, tumor mutational 

burden, and proteomic data. Currently, investigations in 

immunotherapy seek to understand why patients resist response 

to immunotherapy, and what biomarker characteristics separate 

responders to treatment from non-responders17. 
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Specific Aims 

We propose to use similar concepts to investigate using 

multiplex analysis and a multitude of spatial relationships to 

evaluate the tumor-immune interface to gather predictive power 

to distinguish tumors and patients more comprehensively. While 

multivariate and machine learning analyses have been 

incorporated to understand and predict response in other analyses, 

they have not yet been sufficiently integrated alongside spatial 

analysis, a feature with powerful predictive capabilities. We have 

made analyses which are comprehensive, unbiased, and available 

for use by immunologists and clinicians in the form of easy-to-

use tools. 

We have designed a user-friendly pipeline that will use a 

custom cell neighbor finding algorithm to determine the spatial 

distribution of cells. The spatial analysis was then followed by 

machine learning techniques, namely orthogonalized partial least 

squares discriminant analysis (OPLSDA), to identify the 

neighborhood profiles of cells and their modulation based on 

specific conditions such as location, the presence of a specific 

marker, or colocalization with another relevant cell type to 

provide evidence to investigate a particular intercellular 

relationship (Aim 1).  

We have designed a second, analogous pipeline using the 

cumulative neighborhood scores of all cell types in each region of 

a tumor biopsy as an input to OPLSDA analysis. We use 

subsequent cross validation to identify differences in 

neighborhood scores between different tumors, stratifying by 

features like low-grade and high-grade tumors and responders 

versus non-responders (Aim 2). 

Results 

Pipeline 

 The computational framework as outlined in Figure 1a 

uses object data from Vectra HALO analysis as input into a 

Python-based pipeline. It then spatially analyzes each cell and 

appends the neighborhood profiles as features for analysis into 

univariate analysis and machine learning analysis. The machine 

learning analysis used is an OPLSDA model. Interpretable 

outputs include accuracy metrics of the machine learning analysis 

and VIP scores ranking each feature for importance of separation 

from the OPLSDA model. 

Spatial Analysis  

Following quality control checks for cells and marker 

intensity, cells of interest were defined by a biologically informed 

immunohistochemistry marker combination. Subsequently, an in-

house custom algorithm was used to construct neighborhood 

profiles. For each cell designated as the "center cell”, a Euclidean 

distance was calculated between the center cell and all other cells 

within the focal region of interest. A user-specified radius was 

chosen, and each cell falling inside the specified radius was 

defined as a "target cell". A radius was chosen based on biological 

understanding and by evaluating the relationship between a center 

cell and a target cell across a range of radii. Each target cell 

defined by immune markers was used to construct a neighborhood 

profile which is illustrated in Figure 1b. A neighborhood profile 

was then generated for each center cell, and these neighborhood 

profiles were used as sets of features for analysis, which each 

sample being a cell or tumor region. 

Univariate Analysis 

Features such as neighborhood profiles at contact 

signaling distances and paracrine signaling distances, were 

incorporated for each cell, enriching subsequent univariate 

analyses and machine learning assessments. Univariate analysis 

facilitated the comparison of individual neighborhood profiles 

among distinct cell populations. Center cell populations were 

separated based on marker expression, activation status, spatial 

localization within specified microenvironments, or other 

distinctive attributes. Pairwise comparisons between designated 

target cells are depicted in Figure 2b. Statistical evaluations of 

neighborhood profiles employed a non-parametric Mann-

Whitney U test, with Bonferroni false discovery rate correction 

applied to control for p < 0.05. 

 

Multivariate Discriminate Analysis and Sampling Techniques    

While univariate comparisons were effective at drawing 

statistically significant associations between phenotype and tumor 

environment with elements of the neighborhood profile, we were 

drawn to observe the ability of supervised machine learning 

analysis to separate the two populations. To this end, we 

employed a model of OPLSDA that has been implemented in the 

Dolatshahi Lab using Python based methods.  

We incorporated methods of model evaluation into the 

pipelines to evaluate the reliability of each OPLSDA model and 

quantified the results. A confusion matrix was displayed and 

analyzed for each test set within each fold of the cross validation 

and was summed and displayed along with other OPLSDA 

figures. From these results, accuracy, precision, F1 scores were 

calculated and used to assess model fit which can be seen in 

Figure 3c and Figure 5c.   

Under-sampling 

In instances of considerable data imbalance, we 

undertook supplementary analysis using under-sampling 

methodologies. Specifically, for cell-level examinations, a 

reduction in the sample size of the predominant central cell 

population was applied prior to conducting PLS-DA analysis. 

Across various case studies, although accuracy metrics exhibited 

a decline, permutation testing, precision, and F1 scores 

demonstrated enhancement, suggesting an improved model fit to 

the dataset. The under-sampling process was iteratively executed, 
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and a distribution showcasing accuracy value was provided to 

evaluate the efficacy of under-sampling, as depicted in Figures 3d 

and 5d. 

Case Study 1: Analysis of activated (IFNγ+) and inactivated 

(IFNγ-) cells shows significant differences in neighborhood 

profiles, suggesting variation in spatially dependent interactions 

in cells. 

To achieve Aim 1, we fist conducted analyses to 

investigate the relationship between the activation status of helper 

T cells and their neighborhood profiles. Cells were used from 

mIHC-stained tumor sections from a cohort of NSCLC patients. 

Biopsies collected across tumor grades and histologic types were 

included for analysis. Cells expressing CD3 but not CD8 

(CD3+CD8-) are recognized as helper T cells. Helper T cells 

recognize environmental antigens presented by professional 

antigen-presenting cells (APCs) and subsequently release 

cytokines and chemokines to coordinate the responses of 

cytotoxic T cells (CTLs) and other adaptive immune cells18. 

Given the pivotal role of helper T cells in immune responses, we 

postulated that activated helper T cells (CD3+CD8-IFNγ+) 

exhibit distinct behaviors and interactions with other cells 

compared to inactive helper T cells (CD3+CD8-IFNγ-). This is 

anticipated to result in altered colocalization patterns with other 

tumor and immune cells. To investigate this hypothesis, we 

assessed the neighborhood profiles of all helper T cells quantified 

in tumors within the NSCLC cohort at both contact-signaling 

distance (30 µm) and paracrine signaling distance (200 µm). 

Subsequently, we developed an orthogonal partial least squares 

discriminant analysis (OPLSDA) model using IFNγ expression as 

the classifier and helper T cell neighborhood profiles as features 

(see Figure 3). To mitigate the challenge of low activation fraction 

among helper T cells, we applied under-sampling techniques to 

the model, which enhanced the precision and reliability of our 

analysis. 

We then applied the OPLSDA model and validation 

techniques to separate the two cell populations and evaluated the 

reliability of the model. Confusion matrices and re-under-

sampling distributions were created towards this end.  We found 

that the OPLSDA model was successful in separating the distinct 

phenotypic populations. The cross-validation accuracy taken of 

an under-sampled population of helper T cells was 89% with a 

promising precision metric of 92%. Among 100 iterations of 

under-sampling, accuracy remained impressive with limited 

variation and a standard deviation of 0.15 among accuracy results.   

VIP scores, delineating the primary contributors to group 

differentiation, prominently featured activated T lymphocytes, 

including CTLs and helper T cells, alongside activated natural 

Fig. 1. (A) A flow chart describing the computational framework with spatial analysis followed by simultaneous univariate and machine learning analysis. 
(B) Neighborhood profiles were calculated using object data that was output from Halo analysis. Scores were constructed by counting the cells of each 
immune marker designation within a user-specified radius. (C) Contact-dependent signaling was explored at a radius of 30 µm while paracrine signaling 
was explored at a distance of 200 um. 
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killer (NK) cells (CD56+CD3-) at paracrine signaling distances. 

These findings facilitated the formulation of the following 

mechanistic hypotheses regarding the interactions among these 

central and target cells. 

Upon evaluating VIP scores greater than 1, we found that 

in NSCLC patients, intercellular colocalization involving IFNγ as 

a signaling mediator occurs between T lymphocytes and NK cells 

at paracrine distances. Other previous immune models provide 

evidence of a positive feedback loop, wherein IFNγ secreted by 

helper T cells stimulates other immune cells, including NK cells 

and CTLs. This occurs within proximal regions of the TME, 

leading to activation via autocrine and paracrine signaling 

pathways. This cascade subsequently induces activation and IFNγ 

expression, a phenomenon supported by murine models exploring 

immune cell activation19,20. Further elucidation of these 

interactions may be achieved through molecular pathway analysis 

and in vitro studies in NSCLC cohorts, offering insights into the 

mechanism behind this co-localization. Spatial analysis has 

identified several notable intercellular interactions warranting 

further investigation, thereby providing valuable evidence for the 

exploration of these relationships. 

 

Case Study 2: OPLSDA provides a reliable model to distinguish 

helper T cells based on their colocalization with CTLs 

Intercellular interactions in the TME are essential for a 

coordinated immune response, enabling communication between 

different immune cells to regulate their activities and mount an 

effective defense against malignant cells. We reasoned that close 

spatial relationships offer insight into possible interactions which 

are related to other consequential colocalizations and behaviors of 

the cells. T cells play a crucial role in the immune response by 

activating cytotoxic T lymphocytes (CTLs). They do this by 

recognizing antigens presented by APCs and releasing cytokines 

that stimulate the proliferation and differentiation of CTLs. This 

collaboration is essential for the effective elimination of 

malignant, highlighting the fundamental relationship between 

helper T cells and CTLs in adaptive immunity18.  

After we noticed the significant colocalization between 

helper T cells and CTLs in the first case study shown in Figure 3 

and in the broader literature, we looked to examine its effect of its 

presence on the behavior of helper T cells. Our goal was to 

investigate the hypothesis by assessing the correlation between 

Fig. 2. Analysis of helper T cells shows activation status shows significant differences in neighborhood profiles, suggesting variation in 
spatially dependent interactions in cells. A. Schematic of spatial analysis neighborhood profile construction B. Proportion of cells within each population 
indicate need for under-sampling. C. Comparison of neighborhood profiles between activated helper T cells and inactivated helper T cells. Statistical 
significance is calculated using Mann-Whitney U test with Bonferroni correction. 
”> 

Fig. 3. OPLSDA provides a reliable model to distinguish helper T cells 
based on their activation status (A) The cohort of T helper cells is 
separated using the latent variables calculated within OPLSDA analysis. 
(B) The magnitude of importance of each feature in the first two latent 
variables is displayed in the Variable Importance in Projection (VIP) scores 
plot. (C) The confusion matrix shows the results applying the model’s 
prediction summed over the 5-fold cross validation. (D) A distribution of 
model accuracy across 100 iterations of under-sampling shows limited 
variation and strong model reliability.  
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helper T cells and CTLs and how it influences the behavior and 

spatial relationships of helper T cells. To accomplish this, we 

isolated activated helper T cells and categorized them based on 

the presence or absence of activated CTLs within a 200 µm radius. 

Subsequently, we analyzed the neighborhood profiles of these two 

populations and compared the spatial distribution patterns of the 

immune cells through univariate analysis (Figure 4). 

We then constructed an OPLSDA model using the 

presence of a CTL neighbor as the model classifier and 

neighborhood profiles of all helper T cells as model features 

(Figure 5). Under-sampling techniques were applied to the model 

to address the low fraction of helper T cells without a CTL 

neighbor within 200 µm. 

The pivotal features discerned in distinguishing this 

relationship, as elucidated by the VIP scores of the OPLSDA, 

were the presence of other activated T lymphocytes, 

encompassing both cytotoxic T cells (CTLs) and helper T cells, at 

paracrine signaling distances. We can again formulate 

mechanistic hypotheses regarding the interactions associated with 

this phenomenon. 

It is plausible that helper T cells are colocalizing with 

one another to better recruit CTLs to their vicinity. Drawing from 

existing evidence in other tumor models, we postulate that helper 

T cells that colocalize with each other may generate additive 

signals, leading to an overall increased production of IFNγ, 

thereby enhancing the activation and recruitment of CTLs near the 

CD4 center cells19. Additionally, previous studies have 

demonstrated that helper T cells coordinate IFNγ production to 

recruit and bolster the activation of CTLs, which may elucidate 

the augmented presence of helper T cells surrounding this 

relationship21. 

Moreover, other noteworthy features include the 

presence of MHC-I-expressing tumor cells at paracrine signaling 

distances. The association between MHC-I and helper T cells has 
been extensively documented in other malignancies in existing 

literature, demonstrating that helper T cells utilize IFNγ as a 

signaling molecule to induce and amplify MHC-I expression in 

malignant cells, and subsequently facilitating the recognition of 

the malignant cells by CTLs22. We postulate that a similar 

phenomenon may be occurring within the NSCLC cohort in the 

vicinity of CTLs, warranting further investigation via spatial 

transcriptomic analysis and in vitro studies. 

The mechanistic hypotheses generated from the case 

studies involving helper T cells were developed using findings 

Fig. 4. Analysis of helper T cells shows with and without CTL neighbors shows significant differences in neighborhood profiles, suggesting 
variation in spatially dependent interactions in cells. (A) Schematic of the spatial analysis neighborhood profile. (B)  Proportion of cells with and without 
cytotoxic T cell neighbors. (C) Comparison of neighborhood profiles between the two populations of cells based on neighborhood status. Statistical 
significance is calculated using Mann-Whitney U test with significance accounted for using Bonferroni correction. 

Fig. 5. OPLSDA provides a reliable model to distinguish helper T cells 
based on their colocalization with a cytotoxic T cell. (A) The cohort of 
T helper cells is separated using the latent variables calculated within 
OPLSDA analysis. (B) The magnitude of importance of each feature in the 
first two latent variables is displayed as the Variable Importance in 
Projection (VIP) scores plot. (C) The confusion matrix shows the results 
applying the model prediction summed over the 5-fold cross validation. (D) 
A distribution of model accuracy across iterations of under-sampling shows 
limited variation and reassuring model reliability. 
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from machine learning analysis corroborated with information 

from literature exploring these relationships in other 

malignancies. This framework can be applied to broaden the 

understanding of mechanism across a range of other malignancies 

and diseases.   

 

Case Study 3: OPLSDA model predicts tumor grade effectively 

using relationships between activated immune cells and tumor 

cells. 

Given the pivotal role of intercellular interactions in 

shaping the tumor microenvironment (TME) and influencing 

patient outcomes, our study aims to investigate how patterns of 

cellular colocalization within the TME correlate with clinical 

characteristics. We began this attempt by examining whether 

distinct colocalization patterns could differentiate between high-

grade and low-grade tumors within the NSCLC cohort, as tumor 

grade is a critical prognostic factor.  

This analysis employed the framework that was 

developed to achieve Aim 2. For a comprehensive analysis, we 

performed spatial analysis for every cell type within the cohort. 

Then we summarized each region of interest (ROI) by taking 

summary statistics of each colocalization. To do this, we isolated 

each cell type of interest (for example, CD8+CD3+IFNγ+) and 

took an average of their entire neighborhood profile. We repeated 

this for every cell type of interest, and with 8 cell types, we created 

64 features for evaluation per ROI. Then we separated ROIs based 

on whether the tumor they were collected from was designated as 

high-grade or low-grade tumors and used this as the designation 

for analysis.  

Our analysis revealed disparate colocalization patterns in 

high-grade tumors, suggesting that these patterns could serve as 

potential biomarkers for tumor aggressiveness and patient 

outcomes. VIP scores highlighted the paracrine distance 

relationship between CTLs and MHC-I expressing tumors as 

hallmarks of low-grade tumors. Low-grade tumors also showed a 

higher degree of infiltration by inactivated NK cells in the tumor 

regions. This indicates that appropriate recognition of MHC-I 

expressing cells by CTLs is occurring in low grade tumors and 

that appropriate tumor infiltration of NK cells is occurring 

simultaneously. Univariate analysis and Mann-Whitney U tests 

confirmed these trends.  In high grade tumors, the relationship 

between helper T cells and malignant (PanCyto+) cells were 

strong regardless of MHC-I expression. We reasoned that the 

relationship between helper T cells is stronger in high-grade 

tumors and that helper T cells allow the immune assault in 

NSCLC patients to persist even in more aggressive tumors. 

We interpreted these results to determine that lower 

grade tumors elicit an immune response characterized by NK cells 

and CTLs which we hypothesize is related to the normal 

expression of surface markers on malignant cells. On the other 

hand, we hypothesize that higher grade tumors, while also 

becoming more abnormally differentiated, undergo loss of MHC-

I and other helpful surface markers, working towards immune 

evasion, eliciting a more robust response from helper T cells. This 

pipeline not only allowed us to use spatial architecture to predict 

a clinical feature of the tumor but also allowed for us to form 

specific hypotheses about the TME modulation using VIP scores.  

Discussion 

Towards Aim 1, this analytical pipeline was successful 

in correlating cellular phenotypes and specific colocalizations 

with a broader neighborhood profile. The highlighted 

relationships in each test case were related to strong existing 

evidence in the literature of these relationships, highlighting their 

accuracy and applicability. A limitation of the case studies 

employed was the size of the marker panel which focused 

primarily on identifying immune cell and malignant cell types, 

along with their activation status. More novel and specific 

hypotheses could be generated from an improved marker panel.  

Towards Aim 2, the cumulative analytical pipeline was 

successful in correlating tumor grade with a broader picture of the 

spatial architecture of the TME. The analysis highlighted spatial 

colocalizations which had known relationships to behaviors 

Fig. 6.  OPLSDA model predicts tumor grade effectively using 
relationships between activated immune cells and tumor cells. All 
possible neighborhood relationships may be measured and summarized 
over an entire region of interest (ROI) in order to distinguish between tumors 
with different features, in this case clinical grade. (A) The distribution of 
tumor grades among all ROIs measured is shown. (B) The average number 
of cell neighbors surrounding each cell type (average neighborhood profile) 
across all ROIs is shown in heatmap form. Neighborhood relationships 
between all cell types in a given ROI were used as input to analysis. (D) The 
PLSDA model was able to distinguish ROI’s based on their tumor grade. (E) 
ROC curve shows the models ability to balance true positive and false 
positive rates at all regions of interest. . (F)  Relationships between T 
lymphocytes and MHC-I expressing tumor cells are most relevant in 
distinguishing low versus high grade tumors. 
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related to tumor grade. These findings give us confidence that the 

panels will soon allow for broad investigations in a variety of 

malignancies which will speed the process from exploring the 

modulation of individual intercellular relationships. While this 

panel was successful, it is subject to the same limitations of a 

small biomarker panel and a limited patient population as in the 

cell-state level case studies. More comprehensive panels and 

larger patient populations could improve our confidence in the 

model. 

Limitations and Future Direction 

The next stage of pipeline development will be to apply 

it to existing tumor biopsies and train the model with the 

distinction being response to treatment. This has been tested and 

has shown positive preliminary results in studies performed on 

other malignancies and will likely allow the model to move 

forward into aims that are closely related to the needs of 

immunotherapy research.  

We propose that work in the future will focus on 

applying the same general techniques and model evaluations to 

other biomarker to elucidate other relationships that are occurring 

with the tumor microenvironment. Suggested biomarkers include 

those which include PD-1 and PD-L1, surface receptors which 

immunotherapies like pembrolizumab act on. Other possible 

biomarkers include markers for immune cell proliferation and 

exhaustion as well as markers for other types of immune cells 

such involved in the adaptive immune system such as memory T 

cells and regulatory T cells. This model should also be tested for 

applicability to evaluate tumors from other tissues, especially 

those with especially strong or weak responses to immunotherapy. 

Additionally, larger populations will be helpful to further validate 

tumor and patient-level analyses and will help researchers to 

better prove its generalizability and use among a wide range of 

cases. 

This computational framework is flexible in that within 

each step of the framework, alternative tools and methods could 

be used to ask different questions and potentially gather increased 

predictive capacity. Other spatial analysis metrics may be 

substituted for the K-function based method to draw similar 

conclusions while evaluating a range of different radii. These 

include methods based in the G-function and L-function which 

are supported by existing tools such as R Spatstat, SPIAT, and 

Monkeybread13,23,24. To improve the predictive power of the 

model, use of other, non-linear machine learning models is 

suggested to potentially improve model performance. Artificial 

neural networks (ANN) is one of several promising techniques to 

accomplish this feat25. It must be advised that the conclusions 

drawn from the model will change based on the tools used and the 

current conclusions have been made based on the use of K-

function based spatial analysis and OPLSDA models. 

 

Future Framework Applications 

One application of the proposed pipeline attempts to 

leverage the comprehensive nature of multivariate analysis to 

investigate intercellular interactions from a spatial perspective. 

This will help scientists to select specific relationships for further 

study, and to correlate spatial relationships with biomarker 

expression, providing evidence for mechanisms. These principles 

have been used by the Dolatshahi group to investigate 

intercellular interactions that occur in the tumor 

microenvironment which have the potential to reveal new 

potential molecular targets for therapies and diagnostics. The 

method also has the capacity to provide evidence for mechanistic 

explanations why therapies might fail in certain candidates. If the 

heterogenous weaknesses of anti-PD-1 therapy and ICI therapy 

can be revealed, candidates for new therapies and complementary 

combination therapies may be chosen in a more informed way, 

speeding up the process for development. 

The pipeline may also be used to use the cumulative 

intercellular relationships to predict patients’ response to 

treatment. This aims to contribute to the integration of precision 

medicine into immunotherapy. Precision medicine is broadly 

defined, but in cancer immunotherapy has historically referred to 

using molecular features of cells in the tumor microenvironment 

to better select therapy for treatment 17. Concepts of precision 

medicine have already been applied to chemotherapy, where 

genetic testing is used to select the chemotherapy that is the most 

likely to work for each patient based on historical data. These 

methods have been very successful in improving overall treatment 

plans and disease-free survival. Precision medicine not only 

improves patients’ chances at responding to treatment, but it also 

allows patients to forego chemotherapy treatments with harsh side 

effects that are unlikely to be of benefit to them, giving them 

potential for greater comfort and quality of life. This method aims 

to be applied to clinical biopsies in the development of precision 

medicine strategies in immunotherapy, to make more informed 

treatment plans than are currently available. More informed 

treatment plans also reduce the trial-and-error method that is 

commonly used in cancer treatment plans, allowing patients to 

receive effective treatments faster, and further improving survival 

and comfort 16.  

The purpose of this project is to utilize spatial 

distribution methods and machine learning techniques to gain 

evidence for interactions between immune cells in the tumor 

microenvironment and to use the immune spatial milieu to predict 

which patients will be responsive to treatment. The synergy of 

bringing personalized medicine into immunotherapy treatment 

would bring together the benefits of both legs of advancement in 

medicine. 

Our work will help to advance immunology and clinical 

research by presenting users with a framework to attempt 

unbiased, comprehensive analysis of the spatial associations in the 

tumor microenvironment. The single cell approach to the pipeline 

will help research scientists to leverage machine learning to find 

important spatial relationships in the tumor microenvironment 

and to plan subsequent experiments. The methods will also offer 

a framework that can be used by institutions with large biopsy 

cohorts to create models to help make treatment decisions in a 

clinical setting. 
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Materials and Methods 

Multiplex immunohistochemistry imaging and geospatial 

analysis. 

NSCLC patient tissues were procured from 49 patients among 

varying tumor grades (G1-G4) and two distinct histologic 

subtypes (adenocarcinoma and squamous cell carcinoma). 395 

ROIs that displayed 3 mm2 sections of tumor were used for 

analysis. Sections of formalin-fixed, tumors were stained with a 

7-color panel and imaged using the Vectra system. Tissues were 

stained with antibodies against PanCK, MHC I, CD3, CD8, 

CD56, IFNg, and DAPI. Regions that were extremely sparse (>50 

cells) were excluded from analysis. HALO analytical software 

was used to segment individual cells and assign stain positivity. 

Combinations of these markers were used to classify cellular 

phenotypes. In cell-state level case studies (Case Study 1 & 2), all 

cells of interest were incorporated for analysis regardless of tumor 

characteristics.  

 

Cellular neighborhood analysis.  

Custom cell-cell neighborhood scoring algorithm. Intercellular 

geospatial colocalizations in NSCLC tumors from the patient 

cohort were determined in Python using single cell 2-dimensional 

coordinates obtained from HALO. The Euclidian distance 

between each cell and every other cell on the slide was computed; 

nearest neighbors were defined as cells with a center-to-center 

Euclidian distance of less than the user-specified radius from the 

center cell (Figure 1). The nearest neighbors of each phenotype 

were enumerated to yield the neighborhood profile for every 

individual cell.  

 

Machine learning analysis  

Orthogonalized Partial Least Squares Discriminant Analyses 

(OPLSDA) two-component (latent variable) models were 

generated in Python using the PLSRegression function in the 

scikit-learn package. The scripts used for this purpose were 

developed in-house. Prior to input into OPLSDA, all data were 

log-transformed, centered, and scaled. In the case of PLSDA 

classification models, significance was calculated by comparing 

the constructed model’s mean squared error against one thousand 

randomly permuted null models.  
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