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ABSTRACT

Galaxy clusters are the largest structures in the universe and are used as an effective cosmologi-

cal probe. A common definition of cluster mass is M200, defined as the mass enclosed with within

R200 – the radius within which the mass density is 200 times greater than the critical density of the

universe. However, since R200 is not directly observable, M200 measurements are challenging to deter-

mine. As such, with the upcoming releases of cluster surveys such as Euclid and LSST, constraining

cosmological parameters using cluster mass is challenging. The splashback radius, Rsp, is a more

physically-motivated definition based on infalling material reaching the apocenter of their first orbit.

More practically, Rsp can also be understood as the radius at which the density profiles of accreting

halos is at its steepest. By analyzing cluster properties across the three resolutions of the largest

IllustrisTNG simulation (TNG300), we investigate the efficacy of mapping various calculations of Rsp

to retrieve underlying cluster data. We map relations between 2D and 3D calculations of Rsp, along

with calculations of Rsp using stellar and dark matter particles. In more accurately defining cluster

radii observationally, we can more easily define a cluster mass function that can help better constrain

cosmological parameters such as σ8 and ΩM .

Keywords: evolution - galaxies: cosmology - cosmological constants

1. INTRODUCTION

Galaxy clusters form at the intersection of dark matter

(DM) filaments across the universe. Clusters develop as

galaxies and dark matter gravitate towards overdense

‘nodes’ within the cosmic web (White & Rees 1978,

Blumenthal et al. 1984). These nodes are understood

to have originated from density fluctuations within the

early universe that grow due to gravitational amplifica-

tion. Over cosmic time, these structures grow to become

the largest gravitationally bound objects in our universe.

The way that these density fluctuations grow through-

out cosmic time is determined by cosmological constants

σ8 and Ωm, which define density fluctuations in the early

universe and mass density in the universe (respectively).

Critically, we can observe the growth of galaxy clusters

throughout cosmic time, providing a deeper understand-

ing of the overall large-structure growth in our universe.

As such, the mass of all clusters provide a statistical

mass function for our universe that is used a cosmologi-
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cal probe to help derive values of σ8 and Ωm (e.g., Bah-

call et al., 2003). The way that we currently understand

structures throughout the universe is highly dependent

on these parameters and our value for them. In cosmo-

logical simulations, cluster masses are easily determined;

however, in observations, this is more challenging. Cur-

rently, the mass contained within galaxy clusters (M200)
is defined by the radius at which the density within the

cluster drops below 200× the critical density of the uni-

verse (R200). In principle, M200 can be determined by

lensing (Paulin-Henriksson et al. 2007, Radovich et al.

2008), but is difficult to properly evaluate due to a short-

age of lensing data. Furthermore, another issue with this

definition is that it may not capture all mass accretion

across multiple epochs, resulting in an inaccurate inter-

pretation of mass growth at separate times (More et al.

2015).

Ideally, we desire a better definition of galaxy cluster

sizes with observational data. Because there are numer-

ous challenges with our current approach for measuring

cluster radii, it is difficult to achieve a mass function

that accurately develops throughout cosmic time. As

such, because determining σ8 and Ωm from halo mass

functions requires a robust definition of cluster mass,
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it is difficult to define these values using observational

data. However, if we are able to find a radial definition

that is easily observable and accurately represents the

total enclosed mass, we will gain a tool that allows us to

create the mass function far more easily, and thereafter

allow us to more easily calculate σ8 and Ωm. Adhikari

et al. (2014) propose a new method of defining galaxy

clusters using the “splashback radius” (Rsp).

Rsp is defined as the radius at which mass falling into

galaxy clusters reaches the apocenter of its first orbit.

Moreover, Rsp is a critical method for calculating clus-

ter size because it can be found through evaluation of

the density profile, a measurement that can be observed

with relative ease. Rsp can be derived by finding the

steepest gradient in the density profile of the cluster.

Because Rsp is a quantity that can be determined with

relative ease through observations, it is a powerful tool

in determining mass functions. Rsp is calculated by

evaluating the density of the cluster as a function of

radius. Then, one finds Rsp at the radius where the

derivative of the logarithmic density with respect to log

radius (d(log(ρ))d(log(r)) ) is at a minimum, often referred to as

the first caustic. This minimum should be able to be

calculated with observational data, making it a strong

candidate for a definition of cluster size.

Because our observations consist solely of stellar light,

one should seek a relation between the stellar light and

the underlying DM halo within the cluster. Montes &

Trujillo (2018) find that intracluster light (ICL) tracks

the host DM halo to a high order. The ICL comes from

stellar light that is not bound to any of the galaxies

within the cluster, and forms from the interactions that

occur between galaxies during the formation of the clus-

ter that strip stars from their host galaxies, as described

in Gregg &West (1998) and Rudick et al. (2006). There-

fore, Rsp is calculable using ICL both as an independent

radial measurement and to track the host DM halo in

which a cluster sits, which provides a second radial mea-

surement.

Our goal with this project is to understand how Rsp

calculated using our observational data of a cluster can

map to the true underlying data of the cluster. Our ob-

servational data consists solely of two-dimensional (2D)

projections of stellar light within clusters. However,

clusters are three-dimensional (3D) objects that are as-

sumed to be roughly spherical, and contain both stellar

mass and dark matter. Therefore, we seek a method

that allows us to translate our 2D stellar observation of

clusters to a more holistic understanding of the 3D data

both with stellar light and dark matter.

Therefore, we analyze the efficacy of Rsp in mapping

clusters across various different calculation methods us-

ing the IllustrisTNG simulation. We provide a set of

relationships between different calculations of Rsp in or-

der to understand how the different variables in calcu-

lation relate to each other. First, we compare calcula-

tions made with stellar particles and dark matter par-

ticles. We then compare Rsp calculations done in 2D

and 3D. Finally, we investigate how our calculations of

Rsp change as a function of simulation resolution. These

three variables - particle type, dimensionality, and reso-

lution - are critical to understand, as observational data

only provides 2D stellar data. Once we understand the

relationship between the calculation of Rsp with each

of these variables, we can provide a mapping for ob-

servational data that will give a holistic understanding

of cluster mass. In Section 2, we introduce the Illus-

trisTNG simulation along with describing our different

approaches in calculating Rsp. In Section 3, we describe

how limiting error on our calculated values of Rsp affect

the correlation between different types of calculations.

In Section 4, we proceed to derive a more explicit re-

lationship between each method of computing Rsp, and

analyze how the constraint of our error changes the de-

rived relationship. We also discuss future steps for the

project. We finally summarize our results in Section 5.

2. METHODS

2.1. The IllustrisTNG Simulations

For our work, we use the IllustrisTNG (TNG) sim-

ulation dataset (Marinacci et al. 2018; Naiman et al.

2018; Nelson et al. 2017; Pillepich et al. 2017; Springel

et al. 2017). The TNG project simulates cosmologi-

cal structures in the universe at numerous resolutions

and box sizes, and is ‘the next generation’ of the origi-

nal Illustris simulation (Vogelsberger et al. 2014; Genel

et al. 2014; Sijacki et al. 2015). TNG consists of

three different datasets at three different box sizes of ap-

proximately ∼50Mpc, ∼100Mpc, and ∼300Mpc in side

length, respectively known as TNG50, TNG100, and

TNG300. TNG evolves cosmological structures from the

early universe at z = 127 using baryonic and dark mat-

ter particles. The TNG simulation models many of the

processes we see observationally in the universe, taking

into account physical processes such as the seeding and

growth of supermassive black holes along with their feed-

back. TNG accurately models the cooling of gas and its

magneto-hydrodynamical interactions. These processes

give us an accurate understanding of galaxy formation

throughout cosmic time. More of the processes that are

modeled can be found in Weinberger et al. (2016) and

Pillepich et al. (2017). Our dataset uses the TNG300

catalog of the IllustrisTNG simulation with a volume

of (302.6 Mpc)3. It is important to note that while the
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other simulations in IllustrisTNG - TNG50 and TNG100

- are higher resolution simulations, the smaller volumes

would prohibitively limit our calculations as we are seek-

ing a statistical sample of galaxies that is best provided

by the TNG300 simulation. We test the impact of reso-

lution on our results by comparing across the three reso-

lutions TNG300-1, TNG300-2, and TNG300-3. The res-

olution describes the particle mass and number of parti-

cles that are used to simulate the physics within the sim-

ulation. The lowest resolution, TNG300-3, uses (625)3

DM and stellar particles. TNG300-2, then, uses (1250)3

particles, and TNG300-1 uses (2500)3. Each simulation

increases resolution by a factor of 8, so there is a factor

of 64× difference in resolution between TNG300-3 and

TNG300-1. As such, we are able to investigate the im-

pact of simulation resolution on our results. A higher

number of particles models the hydrodynamical physics

at a slightly more accurate level, and so we expect to

see slightly different results for each resolution.

The IllustrisTNG simulations use a cosmology defined

by the Planck Collaboration XIII (Ade et al. (2016)).

These parameters are defined to be Ωm = 0.3089, Ωb =

0.0486, ΩΛ = 0.6911, and h = 0.6774.

2.2. Splashback Radius Calculation

A primary goal of this work is to create a mapping

between two-dimensional and three-dimensional calcula-

tions of Rsp, allowing us to map our observational data

to the true underlying data. This informs the way that

we choose to calculate the splashback radius. To calcu-

late the splashback radius we first compute the density

profile of the halos.

Let us consider a simplistic method of density calcu-

lation. One can use a set of spherical shells with volume
4
3πdr

3 and choose a thickness dr = (Router−Rinner) for

each. Within each of these shells, one can easily calcu-

late density by mass/volume, but this is subject to our

choice of dr. By increasing dr, one gets a more accurate

measure of density, but the density profile becomes less

smooth. If dr is decreased, we return a smoother density

function, but one that is more subject to random fluctu-

ations in which particles are or are not within each shell.

As such, we want a different method that minimizes the

impact of our choice of dr and gives us a smoother den-

sity profile.

We choose to use the smoothed-particle hydrodynam-

ics method (SPH) from Monaghan & Lattanzio (1985).

We calculate the density profile of our halos using spher-

ical shells along a Fibonacci sphere. We measure the

density at numerous points equally distributed over 100

shells between [0.1 - 4]R200 using the SPH method. The

SPH method is a method of calculating density that

uses a kernel function to give a higher weight to parti-

cles nearest the chosen point. The radius of this kernel

function is chosen to be the radius that encapsulates the

32 nearest particles. We then calculate the density ρi at

each of the points i on the Fibonacci sphere using

ρi =

32∑
j

mjWij (1)

from Monaghan & Lattanzio (1985). Within this

equation, Wij is a kernel chosen to be a cubic B-spline

given by

Wij = W (|ri − rj |) (2)

as a function of the particles’ distances ri,j from each

other. Mass mj is given by

mj = ρjVj (3)

for particle density ρj and particle volume Vj . The

methods of the cubic B-spline can be found in more

detail in Monaghan & Lattanzio (1985). This method

allows us to get a more accurate understanding of the

density at each point and produces a smooth density

function. For the 2D cylindrical calculation, we choose

an arbitrary angle of perspective and perform the same

calculation at points along a Fibonacci cylinder. It is

important to note that this Fibonacci cylinder is very

thin, representing a small slice through the center of the

cluster. The cylinder has a radius of 4 × R200 and a

length of 8kpc, measuring ±4kpc from the center of the

cluster. We again calculate density at numerous points

along radial shells within the cylinder using the SPH

method.

Once our density profile is constructed, we create a

plot of the particle density ρ as a function of log(r/r200),

and evaluate where d log(ρ)
d log(r) is at a minimum. These eval-

uations are shown in Figure 1, best seen in the blue dot-

ted line in Fig 1a. Often this is a well defined minimum,

or caustic, with minimal error bounds.

We seek to provide error on our calculations of Rsp

at multiple different levels in order to better understand

how relationships between methods of Rsp calculation

change as a function of error. Our method of error cal-

culation is shown in Figure 1. On the left is the density

profile of three clusters in the TNG simulation. The

right panels show the derivative of the logarithmic den-

sity with respect to log radius, in dashed blue. The

minimum, where Rsp is determined, is shown as a red

dot. The red, yellow, and green plots are copies of the

original data (blue) that help us calculate the error in

our calculation of Rsp. We calculate error by first rais-

ing the blue plot so that the y-value of Rsp is at zero.
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Then, we lower the plot by one integer value of d log(ρ)
d log(r) ,

shown by the red dashed line. We do this two more

times, shown in yellow and green. For each subsequent

time that we lower the plot, we calculate the intercept of

the corresponding graph with dlog(ρ)
dlog(r) = 0, shown as ver-

tical lines that represent the corresponding error. These

provide a reasonable estimate of error at three integer

steps of d log(ρ)
d log(r) .

We do this to understand how quickly the error grows

as a function of stepping away from Rsp. When the er-

ror grows quickly between each step size, we understand

that Rsp is not as well defined. In Figure 1a, we see that

all three error steps are constrained to one caustic and

do not grow rapidly, representing a well defined splash-

back radius. In Figure 1b, we see that the red plot (the

first step of error) is well constrained to the caustic in

which Rsp is defined. However, the second integer step

(yellow) is far from the first and introduces a secondary

caustic into our calculation, while the third step (green)

extends even further. This provides a reasonable under-

standing of how well Rsp is being calculated for each halo

- it is unreasonable to believe that the single minima is

always the correct one, especially if we have secondary

caustics. Finally, if none of the steps of error are close to

Rsp, it is likely that we have a wide minimum as shown

in Figure 1c, and should not take Rsp to be well de-

fined. Therefore, we should be more hesitant to analyze

clusters with high error on their calculations of Rsp.

The set of three error values allows us to understand

which halos have the best defined values of Rsp. If all

three error steps are within a small radius of Rsp, we

understand that we have a halo like in Figure 1a, with

a well defined minimum that can be trusted to be an

accurate representation of the cluster size. If only the

first step of error is within a small radius of Rsp, like in

Figures 1b, then we may have multiple caustics. If none

of the error steps are within a reasonable radius of Rsp,

then it is likely we have a poorly defined minimum as in

Figure 1c.

2.3. Assembly of Catalogs

We produce a set of catalogs with the values of Rsp and

associated error, allowing us to later categorize our halos

by their error and derive a subsection of our sample that

represents the ideal selection if the splashback radius is

calculated perfectly.

The first parameter that we investigate is the im-

pact of resolution. The highest resolution of TNG300,

TNG300-1, uses 64x more elements to create its data

than the lowest resolution. Therefore, it is important to

understand how changing resolution affects our calcula-
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(a) Rsp calculated with a well defined minimum.
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(b) Rsp calculated with multiple caustics.
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(c) Rsp with a poorly defined minimum.

Figure 1: The density profile calculated for three different
clusters in the TNG simulation. On the left of each figure is
density as a function of r/r200. On the right is the derivative
of the density profile as a function of r/r200, shown in blue.
The minimum is shown with a red point on the blue plot,
defining Rsp. The red, yellow, and green plots first raise the
blue plot so that the y-value of Rsp is at d(log(ρ))

d(log(r))
= 0, then are

lowered down in three integer steps to provide error at three
values of d(log(ρ))

d(log(r))
. The vertical lines show the corresponding

error bars at each step. Panels (a), (b), and (c) depict a well
defined value of Rsp, a cluster with multiple caustics, and a
cluster with a poorly defined minimum, respectively.
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tion of Rsp, and thus we perform our analyses at each

level of resolution in TNG300 and compare across them.

Beyond resolution, we also compare our calculations

of Rsp using dark matter and stellar particles. It is

understood that the ICL, found from stellar light from

stars not bound to individual galaxies, effectively traces

the underlying DM halos of clusters (Montes & Trujillo

2018). We can first verify the efficacy of this by map-

ping the measurement of Rsp,DM to Rsp,stars. In theory,

this should be a near 1:1 relationship because of the re-

lationship between the ICL from stars and the DM halo.

Therefore, is important to understand the relationship

between DM and stellar particles, and thus we create

these separate catalogs so that we can find the correla-

tion between the two.

Finally, we compare catalogs between calculations in

2D and 3D, as discussed above. Comparing the two is

critical for understanding how Rsp maps between obser-

vational data and true 3D data. Our 2D data reflects

physical cluster observations, as we only get a projection

of the total underlying data by observation. Therefore,

we hope to better understand how a calculation of the

cluster in 2D may compare to a calculation in 3D to

validate whether the splashback radius accurately maps

the cluster.

With these three variables in mind - resolution, par-

ticle type, and dimensionality - we produce 12 catalogs

of Rsp calculations with which to perform a statistical

analysis. We have 4 catalogs created at each resolution

TNG300-1, TNG300-2, and TNG300-3. Within each of

these resolutions, there are two 2D and two 3D catalogs.

Each of these then contains two catalogs: one calculated

with stellar particles and one calculated using DM par-

ticles.

3. RESULTS

3.1. Seeking the Golden Sample

We first want to determine what our ideal sample of

Rsp is. As described in Section 2, we have a set of errors

corresponding to three integer steps along d(log(ρ))
d(log(r)) for

Rsp. Many of our halos have a low set of errors that

are narrowly bound around the value of Rsp, such as in

Figure 1a. Ideally, all three error bars are close together

and near the value of Rsp, representing a well defined

cluster.

We find that for many of our plots comparing calcula-

tions of Rsp, there is considerable spread around the line

of best fit. We consider that this spread may come from

outliers that lack a well defined value for Rsp. Weighting

data points with high error error equally to data points

that are well defined could result in points far from our

line of best fit widely skewing our results and giving us

an inaccurate relationship between the various ways of

calculating Rsp. Thus, we seek to establish a set of data

points with well defined values of Rsp such that we can

better understand whether our data is being skewed by

the effects of poorly calculated radii. This method also

provides a way for us to understand how error in our ob-

servations affects the relationship between our 2D stellar

results and the implied 3D and DM data.

We find that error comes from multiple sources. First,

there are often secondary caustics found at different lo-

cations within our density profiles, which can appear

for numerous reasons and are discussed in more detail

in Deason et al. (2020). They note that these secondary

caustics often appear at smaller radii and are more com-

mon amongst halos that have a lower accretion rate.

While understanding these secondary caustics is still a

future project, they nevertheless introduce a source of

error into our calculation of Rsp. Another source of error

in the calculation of Rsp occurs when the minimum in

the graph of d log(ρ)
d log(r) is not as well defined, introducing

greater uncertainty. We find numerous halos with ≥2

caustics and a poorly defined minimum.

Our error is calculated as described above in Section

2.2, resulting in a set of error bars at three steps along
d(log(ρ))
d(log(r)) . We now seek to define a so called “Golden

Sample” of results that represent the idealized values of

Rsp.

3.2. Rsp Mapping - Variable Comparison

We seek an idealized set of halos with low error that

return a high correlation in our results, as this represents

halos with the most well defined values of Rsp. This is

accomplished by steadily varying the threshold of how

large our error can be and seeing how this affects the

derived slope of relation between calculations of Rsp.

Evaluating the relationship is best understood using the

Pearson correlation coefficient, which is plotted across

the range of the value of the error threshold, as shown

in Figure 2. We create these plots for the three different

resolutions of TNG300, and compare between stars and

dark matter calculations, along with across 2D and 3D

calculations.

In Figure 2a, we find an increasing correlation as

a function of resolution, and find reasonable evidence

to constrain our data when comparing stellar and DM

splashback radii in 3D. In Figure 2b, we find a weak cor-

relation between our stellar and DM splashback radii in

2D, and lack any evidence suggesting that constraining

error increases correlation. This is a curious result, and

suggests that we may need a new method of approach

in how we are calculating our 2D splashback radii.



6 Stevens et al.

(a) Rsp calculated in 3D, comparing stellar to DM calcula-
tion.

(b) Rsp calculated in 2D, comparing stellar to DM calcula-
tion.

(c) Comparison of Rsp calculated using DM particles in 3D
and 2D.

(d) Comparison of Rsp calculated using stellar particles in
3D and 2D.

Figure 2: Pearson correlation coefficient r as a function of the error threshold on Rsp. Blue represents the lowest resolution,
TNG300-3, orange shows the middle resolution (TNG300-2), and green shows the highest resolution, TNG300-1. Each plot
show the correlation between two calculations of Rsp (noted in the respective captions) as the threshold for error is changed.

In Figure 2c, we find high correlation between our cal-

culations of Rsp using dark matter in 2D and 3D. The

high correlation is promising, as we should expect a 2D

cross section of a spherical structure to return the same

radius as a 3D analysis of the same structure. We also

find that correlation increases as a function of decreasing

our error threshold. This relationship is also promising,

as we have already suggested that error on our results

may decrease as a function of higher simulation resolu-

tion. Therefore, lower error from higher resolution sim-

ulations should return a better correlation from 2D to

3D data, suggesting that we can model Rsp using DM

fairly well purely with 2D data. In Figure 2d, we find

a slightly lower correlation between our calculations in

2D and 3D for stellar splashback. We find a similar re-

sult to DM in that the correlation increases as our error

threshold decreases. However, the lower correlation in

our stellar data suggests that there is a difference be-

tween DM and stellar calculations of Rsp, which should

be investigated.

For each pair of Rsp results shown in Figure 2, we pro-

vide a corresponding graph of the two variables plotted

against each other, as in Figures 3 - 6. In each com-

parison, we show the two variables with a range of error

thresholds, increasing in 200 kpc increments. This al-

lows us once again to validate whether our Golden Sam-

ple is of any use in narrowing our calculations down to
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retrieve a higher correlation or more concrete relation-

ship.

In Figures 3 - 6, we depict log(Rsp) vs log(Rsp) for

each calculation method, and plot both a 1:1 line (red)

and a line of best fit (blue), with the correlation coeffi-

cient r shown below the line equation in the caption.

We delve deeper into each of these plots below.

4. DISCUSSION

4.1. Analysis of Error Constraint

In the following section we observe the various com-

parisons of correlation between different calculations of

Rsp in Figure 2, and follow them up in more detail by

plotting these calculations against each other. In plot-

ting the various calculations of Rsp, we are able to bet-

ter visualize the relationship between the variables, and

discover results that impact our correlation between the

calculations. For each set of variables, we discuss the

correlation as a function of the imposed error thresh-

old, and follow it up with a set of plots investigating

relationships with different error constraints.

4.1.1. Stars vs DM in 3D

First, we observe our correlation as a function of

our error threshold in Figure 2a. Here, we compare

Rsp,stars and Rsp,DM in 3D across the three resolutions

of TNG300, and find a significant dependence on reso-

lution.

At the lowest resolution (TNG300-3), the Pearson cor-

relation coefficient does not rise above r = 0.2, indicat-

ing a poor correlation between Rsp,stars and Rsp,DM for

TNG 300-3. There is no value of our error threshold for

which we retrieve a significantly higher correlation be-

tween our data points - in fact, at lower thresholds, we

seem to retrieve a lower correlation. This signifies that
at TNG300-3, we do not have a viable ‘Golden Sam-

ple,’ and further that there is no significant reason to

make cuts based on error when analyzing data at this

resolution.

For TNG300-2, we find that our correlation increases

by a factor of approximately 2, but remains a mostly

flat result. The comparison at this resolution still only

results in a correlation coefficient r ≈ 0.3 at the peak of

this relation. As a result, for TNG300-2, we draw the

same conclusions as for TNG300-3; there is no ‘Golden

Sample.’

For TNG300-1, however, we begin to find a marked

increase in correlation between between Rsp,stars and

Rsp,DM. As we decrease our error threshold, we reach

r ≈ 0.5 at a peak around 500kpc. The peak at an er-

ror constraint of 500kpc implies that this is where we

will see the highest correlation between stellar and DM

Rsp calculations in 3D, and that this is where our best

data could come from. It also indicates a more signif-

icant relation between the two - almost 2× more than

for TNG300-2. We also find a notable decrease in cor-

relation as we increase our threshold - far more than

for TNG300-3 or TNG300-2 - indicating that creating a

‘Golden Sample’ for TNG300-1 will create higher corre-

lations between our variables in comparing Rsp.

It is important to note the range of the x-axis in these

plots as well. We find that as resolution increases, we

are able to decrease our error threshold further before

the correlation drops off. This is significant as it suggests

that at higher resolution we are able to better define Rsp.

This suggests that in a higher resolution simulation, we

could model Rsp to a much higher level, with low error

on more of our calculations. This would also enable us to

find stronger correlations between our data, as suggested

by Figure 2.

We can further investigate the impacts of this result

on our comparison of Rsp calculation by investigating

plots of R3D
sp,stars versus R3D

sp,DM with varying the error

threshold and comparing these plots to the literature.

Deason et al. (2020) find a near 1:1 relationship between

the stellar and DM values of Rsp with low scatter on

the values. Their results are calculated from the data

within the C-EAGLE simulation project (Barnes et al.

2017), which has a resolution of ∼1 kpc in space and

1.8× 106M⊙ and 9.7× 106M⊙ in mass for baryons and

DM, respectively. The highest resolution of TNG 300,

TNG300-1, has a resolution of (302.6)3 kpc in space and

1.1× 107M⊙ and 5.9× 107M⊙ in mass for baryons and

DM, respectively. The larger particles in TNG300 do

not allow us to resolve the physics within the simulation

as well. Therefore, while TNG300 is a powerful tool for

large data analysis, it is unable to create as well resolved

values of Rsp due to its lower resolution. Therefore we

expect more poorly defined values of Rsp, leading to the

larger spread along the 1:1 fit line.

We find that in changing resolution, correlation be-

tween R3D
sp,stars and R3D

sp,DM increases to its greatest value

when we use TNG300-1, as demonstrated in Figure 2a.

With the TNG300-1 data, we also find that at the error

thresholds where the Pearson coefficient r is the high-

est, the relationship between R3D
sp,stars and R3D

sp,DM is very

near a 1:1 relationship, demonstrating a confirmation of

the literature.

We proceed by plotting R3D
sp,stars and R3D

sp,DM in Fig-

ure 3. In the full dataset, shown on the left, we see the

low correlation with a value of r = 0.26, and the results

only return a slope of 0.46. However, when we restrain

our error, we find that our slope converges to be much

closer to 1, as we expect (shown in the second panel of
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Figure 3: Comparison of the 3D derived Rsp with stars vs DM in TNG300-1, with an increasing constraint on the

error allowed. Shown in blue is the line of best fit for the data, with the correlation written below as r. In red is a

slope of 1:1. The lowest error threshold at <500kpc returns a slope of 1.1, and a correlation of r = 0.46. While this

correlation is poor, we find that our Golden Sample returns the expected 1:1 slope. This spread can likely be still be

decreased with higher resolution.

Figure 3). This 1:1 relation begins to diminish as our

error threshold gets larger, as we can see in the far right

panel. We find an interesting result that at a low error

threshold, the line of best fit appears slightly vertically

offset from the 1:1 relation, as the spread appears to

only appear below the expected 1:1 slope in red. This

could again be as a result of not removing galactic light

from our stellar splashback calculation in order to re-

trieve ICL, a piece of the dataset we plan to fix in the

future. However, the 1:1 slope that we find using cal-

culations with low error is promising for confirming the

relationship we expect.

4.1.2. Stars vs DM in 2D

We perform the same analysis for the correlation be-

tween calculations using stars and DM in 2D, shown in

Figure 2b. In analyzing Figure 2b, we find a weak corre-

lation for all three resolutions, with little to no change as

we reduce our error threshold. There is no one resolution

for which correlation is notably greater than the others;

the strength of the correlation between stellar and DM

splashback radii calculated in 2D seems to be indepen-

dent of the resolution. There is also no error threshold

for which we retrieve a greater correlation. Therefore,

reducing our error threshold to attempt to constrain bet-

ter results will not help our data when comparing Rsp

results in 2D. As such, we do not create a Golden Sam-

ple in 2D for comparing stars to DM calculations, and

simply compare the full dataset for each resolution.

The poor correlation in these results is likely a result

of how we are calculating our 2D projection. Our small

slice within the cluster is a small representation of the

full cluster data, and we therefore we get a more ran-

dom sampling of data. Nevertheless, this result gives us

an interesting place to begin our 2D analysis as we can

begin to see how calculations of a projection of a cluster

compare to each other. However, we caution against a

rigorous interpretation of these results, as it is not data

that is representative of the full cluster. In future work,

we hope to be able to better evaluate the relationship

between stellar and DM calculations of Rsp in 2D by ex-

panding our 2D projections to include the total cluster’s

data.

4.1.3. 3D vs 2D Comparison of DM

We proceed with some caution moving forward in com-

paring our 2D results after seeing our comparison of

stars to dark matter in 2D. However, it is still useful

to attempt to interpret the results that map the same

particle type in both 2D and 3D.

Näıvely, we should expect our calculations in 2D with

one particle type to track reasonably well to the cal-

culations done with the same density structure in 3D.

However, outliers in our comparison of the two are rea-

sonable to expect. Deviations are a consequence of occa-

sionally choosing a bad angle of observation for our 2D

calculations that does not accurately sample the clus-

ter. Deviations can also occur if we retrieve a poor

selection of particles due to a potentially biased sam-

pling when drawing our cylindrical slice. Nevertheless,

we should expect a relatively high correlation across di-

mensionality. We expect a high correlation because of

how we expect clusters to function: assuming clusters

are a roughly spherical structure, a 3D evaluation and a

2D slice of the same spherical density structure should

return a similar radius.
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(a) Stars vs DM in 2D in TNG300-3. (b) Stars vs DM in 2D in TNG300-2. (c) Stars vs DM in 2D in TNG300-1.

Figure 4: Plots of R2D
sp,DM vs R2D

sp,stars, without an error constraint. The blue line shows the line of best fit and

intercept, and below is the correlation coefficient r. In red is plotted a 1:1 slope for comparison. We find a weak

correlation between the two variables at each resolution.

In looking at Figure 2c, as expected, we find a high

correlation between the results in 3D and 2D when com-

paring Rsp,DM at a low error threshold. Interestingly, we

find that TNG300-1 gives us the lowest correlation be-

tween the two variables. This may imply that at higher

resolution, halos are not as spherical of structures, which

is an interesting result. Whereas in Figure 4 we do not

need to investigate the error constraint on Rsp, it is wise

to investigate how changing error impacts our plots of

Rsp,DM in comparing 2D to 3D calculations because of

how drastically the correlation changes as we change our

error constraint.

In Figure 5, we find that constraining error in all 3 res-

olutions of TNG300 result in a tight fit around a near 1:1

correlation, as we expect. On the left, we see the entire

dataset with no error threshold, and retrieve low cor-

relations. When we restrict our errorbars to <500kpc,

we find a very strong correlation of 0.91 for TNG300-3

and 300-2, and retrieve a slope of ∼0.9, demonstrating

a near 1:1 relationship between the calculations. We

retrieve somewhat worse results for our highest resolu-

tion, TNG300-1, with a peak correlation of only r=0.67

and a slope of 0.72. This is an interesting result, as we

would hope that with an increasing resolution that our

correlation would become stronger. It is possible that at

the lower resolution, our halos are falsely smoother than

at the highest resolution, resulting in a more spherical

shape. We would hope that our highest resolution halos

would be the most spherically symmetric, as this would

follow the assumptions we have made up until this point,

but this may be evidence for the contrary.

We find that providing a constraint on our error is

critical both for removing spread around our line of best

fit and retrieving a line of best fit that is closer to the

1:1 relationship that we may expect. It is unlikely that

there will always be a perfect 1:1 relationship between

R2D
sp and R3D

sp due to our angle of observation. While we

assume roughly spherical shapes, many clusters are non-

symmetric, and thus our calculation of R2D
sp depends on

our line of sight. As a result, it is important to under-

stand the impact of our line of sight on the calculation

of R2D
sp , which lies in future work.

4.1.4. 3D vs 2D Comparison of Stars

Finally, we investigate the comparison of the stellar

splashback radius between 2D and 3D calculations. We

find a weak correlation, only increasing slightly as we

decrease our error threshold. It also does not seem to

depend heavily on the simulation resolution. This is yet

another intriguing result - one might expect the map-

ping of Rsp,stars from 2D to 3D to act much like the

mapping from 2D to 3D from the DM calculation. In-

stead, our correlation at its greatest is only about half

what it is for DM. This could be due to a difference in the

distribution of stellar light throughout the cluster. We

consider that DM is likely fairly smoothly distributed

throughout our 2D slice, but because we are still in-

cluding galactic light in our stellar calculations, we have

numerous overly dense points of stellar light randomly

distributed throughout our slice that are likely throw-

ing off our calculation of Rsp. This provides yet more

reason to proceed with ICL in the future, which may be

distributed more smoothly throughout the slice.

Furthermore, the shapes of the plots comparing stars

in Figure 2d are different between than in Figure 2c,

where we compare DM. We find the correlation within



10 Stevens et al.

Figure 5: Comparison of 3D vs 2D Rsp as calculated using DM in each of the TNG300 resolutions, with an increasing

constraint on the error allowed. In blue is the derived line of best fit, and in red is a 1:1 line for comparison. The

correlation is given as r in the legend. We find in constraining error, we get a very near 1:1 relationship with a high

correlation.
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our DM plot drops off at low error thresholds, whereas

for the stellar calculation it continues to rise until we

reach our inner limit. However, even at its maximum,

found in TNG300-2, the correlation is still mediocre,

only reaching a maximum of r ∼ 0.6. While TNG300-2

peaks very slightly higher than TNG300-1, because the

three resolutions act so similarly, we choose to only in-

vestigate TNG300-1. All three resolutions follow a simi-

lar change in correlation as a function of error threshold,

so we choose to only evaluate the results at one reso-

lution. We only evaluate TNG300-1 because it should

model the physics slightly more accurately, and as we

have discussed in Section 4.1.1, we see a marked increase

in using a higher resolution with other comparisons.

We find in Figure 6 that at low error thresholds, our

correlation is strongest, but we do not find a near 1:1

relationship. Interestingly, one can pick out a number of

points following the expected 1:1 relationship plotted in

red, and yet even with a heavily constrained dataset we

still find a wide spread outside the 1:1 line. This same

trend is visible in the unconstrained dataset on the far

left of Figure 6, a result that is also notable in Figure

5. This is likely again a result of our limited data in our

2D catalog along with not yet accounting for only ICL,

which will be expanded upon in further work.

The comparison of the stellar splashback radius from

2D to 3D calculations demonstrates that for the time

being, our 2D stellar data is least trustworthy. We have

confirmed a near 1:1 relationship from Deason et al.

(2020) in comparing our 3D calculations of DM and stel-

lar splashback, demonstrating that our 3D stellar data

is likely trustworthy. While we have reason to doubt

our 2D data, we find a fairly strong correlation between

our 2D and 3D splashback results with dark matter.

The strong correlation makes some sense, as our 2D and

3D calculation from the same density fields should be

similar. However, the evidence for a lack of correlation

between 2D and 3D stellar splashback calculations sug-

gests that this is where much of our error lies. This will

be updated moving forward with this project.

4.2. Future Work

Our next steps for this project include strengthening

our calculation process for our 2D catalogs, along with

reevaluating the scientific method behind our stellar cat-

alog generation.

For our 2D catalog generation, we plan to extend the

length of our Fibonacci cylinder from ±4kpc from the

center to ±4 × R200 in order to extend the projected

line of sight to include the whole cluster. This will allow

for a more holistic understanding of the particles con-

tained within our 2D perspective of the cluster, as we

would see observationally. Currently, our method only

represents a small portion of what would be observed.

A true 2D observation would gather light throughout

the entire cluster, running from the front to the back.

Our current method only accounts for a small slice in

the middle of the cluster, which does not represent the

rest of the matter both in front and behind the slice.

Therefore, while our 3D calculations represent the total

mass within the cluster, our 2D calculations only rep-

resent a small portion of the cluster mass. As such, it

is reasonable to expect issues in comparing the two, as

they do not represent the same total data.

Another way we can strengthen our 2D calculations

is by changing the angle of observation. Currently, our

2D calculations also only choose one angle of observa-

tional when calculating the Fibonacci cylinder. We can

improve this method by choosing numerous more angles

at which to calculate Rsp, and calculating the spread in

the value. Understanding the spread of Rsp in 2D would

be immensely useful data to have, as it would provide a

reasonable estimate of error on observational data. Once

we have this error, we can use it to understand the corre-

lation between our results, as demonstrated in Section

3.1, providing a reasonable understanding of how well

our observations can track the underlying cluster data.

We also plan to remove the galactic stellar light from

our calculations of stellar splashback. This process

would involve removing stellar particles within 2× of

each subhalo’s stellar half mass radius and creating a

new density function using the leftover stellar mass.

This will provide a more accurate representation of the

physical data that will be gathered, and can help bet-

ter trace the underlying dark matter halo as shown in

Montes & Trujillo (2018). In doing so, we hope to in-

crease correlation between our dark matter and stellar

calculations, further demonstrating that one can use the

ICL to track the cluster halo.

In Section 4.1.3, we found possible evidence that at

high resolution, our DM halos may begin to stray from

the spherical symmetry that we have assumed up until

this point. This will be an important result to clarify

in the future as we regenerate our catalogs, as this is

a fundamental assumption that we use throughout our

calculations. As we regenerate our catalogs, we will re-

visit the correlation as a function of resolution to see if

this relationship remains true.

These steps will allow us to better investigate how

well our calculations of Rsp track the true data of the

cluster. If we understand how a full 2D projection of

the cluster instead of a small slice maps to the 3D data,

we gain a powerful tool in comparing observations to

the underlying cluster. Similarly, as it is understood
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Figure 6: Comparison of the 3D derived Rsp with stars vs DM in TNG300-1, with an increasing constraint on the

error allowed. In blue is shown the line of best fit for the data, with the correlation written below as r. In red is a

slope of 1:1. The lowest error threshold at <500kpc returns a slope of 1.1, and a correlation of r = 0.46. While this

correlation is poor, we find that our Golden Sample returns the expected 1:1 slope. This spread can likely be still be

decreased with higher resolution.

that ICL tracks the DM halo better than total stellar

light, it is important to calculate Rsp with ICL to better

model this. Finally, understanding typical error on our

calculations through changing the angle of observation

is important to give us perspective on how reasonable

our estimates of Rsp are.

5. CONCLUSION

Our work has investigated the calculation of the

splashback radius within the largest box of IllustrisTNG,

TNG300. We have compared calculations across particle

types, notably between stellar particles and dark matter

particles, in order to trace the underlying dark matter

halos within galaxy clusters. We have also investigated

the calculation of Rsp in 2D and 3D within Illustris in

order to determine how well observational data can track

the true underlying data of the cluster. Finally, we have

compared our calculations across the three resolutions of

TNG300 to investigate the impact of simulation resolu-

tion on our data. We have also created a catalog of our

ideal halos with the most well constrained value of Rsp

in order to compare correlation and an ideal relation-

ship. In our results, we compare these variables using

the Golden Sample in order to define a correlation for

an ideal dataset.

Our results find the following:

(i) Using a sample with low error returns a near 1:1

relationship between stellar and DM splashback

radii in 3D calculation, with an increasing corre-

lation depending on simulation resolution.

(ii) Comparing stellar and DM splashback radii in 2D

is not impacted by imposing an error threshold,

and returns an unsound relationship between the

two.

(iii) Comparing calculations of Rsp between 2D and 3D

for DM show good correlation, suggesting that our

2D data can provide a reasonable understanding

of the underlying cluster.

(iv) Stellar splashback radii compared between 2D and

3D calculations show a weak correlation, and a re-

lationship that does not approach the 1:1 relation,

suggesting a need to improve our stellar calcula-

tion method.

First, using our Golden Sample in our 3D calculations

of stellar versus dark matter splashback radii, we find a

near 1:1 relationship between stellar and DM splashback

radii. This 1:1 relationship confirms findings in the liter-

ature that stellar light traces the underlying dark matter

halo to a very precise level. While the correlation be-

tween the two calculations is weak, even at the highest

resolution of TNG300, we find that the correlation in-

creases as a function of resolution, implying that at an

even higher resolution, we may get an even better confir-

mation of this relationship. Correlation increasing with

resolution indicates that these results could be verified

even more strongly with a higher resolution simulation.

We will continue to evaluate this relationship in further

work by removing light from galaxies, just leaving in-

tracluster light. This will allow for a much more rigid

analysis of the relationship between the two.

Conversely, in our 2D comparison of stellar versus

dark matter splashback radii, we find that constraining

our error threshold does not produce a higher correla-
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tion between our results. We find almost no correlation

between our results and a spread across our data that

leaves our analysis of this relationship nearly obsolete.

We believe that this is because of how we have generated

our 2D and stellar catalogs, so this imperfect set is not

a cause for concern, but an exciting place to investigate

in further work.

Our results comparing Rsp for DM between 2D and

3D show a strong correlation as we expect, suggesting

that while our method for generating 2D catalogs is still

incomplete, it is not entirely flawed, and will likely pro-

vide significant results going forward. The incomplete

method for 2D generation is similarly impacts our cal-

culations for stellar splashback.

Contrarily, comparing Rsp for stellar light between 2D

and 3D does not reveal a dependence on resolution, and

a mediocre correlation between the two methods of cal-

culation. We can track a curious spread of points along

the 1:1 relation, but still find a wide spread even with a

restrictive error threshold on Rsp. This seems to confirm

that we have further steps to incorporate before we can

begin a full analysis of Rsp,stars.

These results are significant in that they will allow

us to observationally define a radius for galaxy clusters

purely using 2D observations of intracluster light that

can then be mapped onto the true underlying structure

of the cluster, which will help constrain our mass func-

tion for clusters throughout cosmological time, better

constraining cosmological constants ΩM and σ8.
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