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Nonreversible Markov chain Monte Carlo algorithm for efficient
generation of Self-Avoiding Walks

Hanqing Zhao

(ABSTRACT)

A Self-Avioding Walk (SAW) is defined as a contiguous sequence of moves on a lat-

tice that does not cross itself. Typically one uses Monte Carlo approaches (A. Sokal

1997; Newman and Barkema 1999) to generate SAW numerically. We introduce an

efficient nonreversible Markov chain Monte Carlo algorithm to generate self-avoiding

walks with a variable endpoint. In two dimensions, the new algorithm slightly outper-

forms the two-move nonreversible Berretti-Sokal algorithm (Hu, X. Chen, and Deng

2016), while for three-dimensional walks, it is 3–5 times faster. The new algorithm

introduces nonreversible Markov chains that obey global balance and allow for three

types of elementary moves on the existing self-avoiding walk: shorten, extend or alter

conformation without changing the length of the walk.
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Chapter 1

Introduction

One of the most fundamental problem in polymer physics is the simulation and enu-

meration of polymer conformations, which poses many interesting and challenging

questions in areas including statistics and statistical mechanics. For a linear poly-

mer, the simplest model is Monte Carlo simulation modelled by the self-avoiding walk

which will be discussed in detail.

Self-avoiding walks have been studied since the 1940s and great theoretical break-

throughs have been made by the use of probability theory, rigorous constructive

techniques, scaling arguments and conformal field theory (P. J. Flory 1949). Monte

Carlo simulations can be used to generate self-avoiding walks and are a collection of

versatile and robust algorithm. Many of these algorithms can also be used in more

general models of walks like the interacting walks which are usually used as models

of interacting polymers.

A Self-Avoiding Walk (SAW) is defined as a contiguous sequence of moves on a lattice

that does not cross itself; it does not visit the same point more than once. SAWs are

fractals with fractal dimension 4/3 in two dimensions, close to 5/3 in three dimensions,

and 2 in dimensions above four (Havlin and Ben-Avraham 1982; S. Havlin and D.

Ben-Avraham 1982). In particular two-dimensional SAWs are conjectured to be the

scaling limit of a family of random planar curves given by the Schramm-Loewner

evolution with parameter κ = 8/3 (Lawler, Schramm, and Werner 2002). Since
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their introduction, SAWs have been used to model linear polymers (P. Flory 1953;

Metropolis and Ulam 1949; Rensburg 2009). They are essential for studies of polymer

enumeration where scaling theory, numerical approaches, and field theory are too hard

to analyse (de Carvalho, Caracciolo, and Frohlich 1983; Duplantier 1986). SAWs

are also used in the numerical studies of finite-scaling (Zhou, Grimm, Fang, et al.

2018) and two-point functions (Zhou, Grimm, Deng, et al. 2020) of Ising model and

n−vector spin model (Fang, Deng, and Zhou 2021). Analytical results on SAWs are

scarce, and generating long SAWs is computationally complex.

Typically one uses Monte Carlo approaches (A. Sokal 1997; Newman and Barkema

1999) to generate SAWs numerically. Many previous Markov chain Monte Carlo

(MCMC) algorithms have been designed to efficiently produce different kinds of SAWs

by manipulating potential constructions that can be executed on a walk to increase,

decrease its length, or change its conformation. For example, the pivot algorithm

samples fixed-length SAWs – it alters the walk’s shape without changing its length

(Madras and A. D. Sokal 1988). While the Berretti-Sokal algorithm and BFACF

algorithm contain length-changing moves and can generate walks with varying lengths

(Berretti and A. D. Sokal 1985; Rensburg and Whittington 1991). Here we have

discussed the definition of self-avoiding walks and in the next few sections we will

discuss some interesting applications and also studies of self-avoiding walks in detail.

1.1 Application of Self-Avoiding Walks

Traditionally, self-avoiding walks have been used to model structural and dynami-

cal properties of macromolecules (de Gennes and Witten 1980). For example, self-

avoiding walks confined to clusters of the percolation problem on 2D and 3D lattices
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is a direct analog of the problem of a linear-chain polymer trapped in a porous medium

where excluded regions can occur with the length scales of the order of the persistence

length of the chain. Some researches also use self-avoiding walks to study the critical

phenomena in lattice models (Lee, Nakanishi, and Kim 1989). By using a Monte

Carlo study of self-avoiding walks on a diamond lattice, the researches conducted an

extensive study of the behaviour of linear polymer chains on diamond lattices in the

region around the θ-point. In this study, the model of a polymer consists of N bonds

of fixed lengths on a diamond lattice which has the coordination number z = 4. And

either simple sampling or importance sampling can be used.

Additionally, self-avoiding walks serve as suitable tools to probe the large-scale topo-

logical structure of complex networks. The self-avoiding walks are expected to be

more suitable than unrestricted random walks to explore various kinds of real-life

networks since they cannot return to sites already visited. This property has been

used to define local search strategies in scale-free networks (Adamic et al. 2001). And

self-avoiding walks on networks may be used to describe agents or robots propagat-

ing and damaging a network of computers, such that damaged nodes are effectively

wiped out from the network. Meanwhile, finding communities in networks have great

and practical importance in metabolic process, marketing strategies and improving

the routing in World Wide Web. The community detection in complex networks

has high computational complexity of the optimization process in a network, which

could be advantageous to use the high effectiveness of self-avoiding walks. Researches

have used a SAW-based method to extract the community distribution of a network

and found that it achieved high modularity scores, especially for real-world networks

(de Guzzi Bagnato, Ronqui, and Travieso 2018). It is noted that the self-avoiding

property causes attrition of the paths where a large fraction of paths generated in
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a stochastic manner have to be abandoned because they are overlapping. However,

more efficient algorithms can be used to overcome this serious limitation to explore

networks with self-avoiding walks.

Recently, studies also use the MCMC algorithms to generate self-avoiding walks in

order to study the two-point function of Ising model (Zhou, Grimm, Fang, et al. 2018;

Zhou, Grimm, Deng, et al. 2020; Fang, Deng, and Zhou 2021), which will be discussed

in detail later.

1.2 Studies of Self-Avoiding Walks

For studies of SAWs, one of the most fundamental quantities is cn, which is the

number of walks of length n starting from the origin. It is easy to determine the

value of cn when the length is small. For example, we have c0 = 1 and c1 = 2d where

d is the dimension. However, when the length grows, it quickly becomes very difficult

to determine cn. Another interesting value is the growing constant µ which is defined

as µ = limn→+∞
cn+1

cn
. In the past, exact enumeration and series analysis of walks

as well as Monte Carlo simulations have been used to estimate the two variables in

different systems. In general, a numerical approach to the self-avoiding walk can be

implemented to verify results obtained by other means, or to determine some variables

associated with the model. When a Monte Carlo algorithm is use, one of the greatest

questions is how to sample walks efficiently according to the need. Therefore, in the

next chapter, we are going to present some famous Monte Carlo algorithms which are

used to generate SAWs under different circumstances.
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Chapter 2

Previous Research and Work

Monte Carlo method is a well-known method for sampling a statistical distribution.

Its implementation via the Metropolis algorithm was first invented in 1953. The

implementation of Monte Carlo algorithm to generate walks is the sampling of walks

from a distribution over a state space. And the estimation of expected values off

observables can be carried out after it.

One of the research interests in this area is the invention of new Monte Carlo al-

gorithms for sampling self-avoiding walks (Rensburg 2009). Since the Rosenbluth

method’s invention in 1955, a great number of new methods have been invented in-

cluding new algorithms and several dynamic algorithms which can be used to simulate

the dynamics of lattice polymer chains (M. N. Rosenbluth and A. W. Rosenbluth

1955). Several new approaches have been designed since the 1980s including the

BFACF algorithm, the Berretti-Sokal algorithm and the pivot algorithm (Rensburg

and Whittington 1991; Berretti and A. D. Sokal 1985; Madras and A. D. Sokal 1988).

By manipulating different types of atmospheres, these algorithms can be used to

sample self-avoiding walks under different conditions. For example, the Beretti-Sokal

algorithm can generate self-avoiding walks with an unfixed endpoint and different

lengths via manipulating the endpoint atmospheres. The BFACF algorithm, on the

other hand, can sample self-avoiding walks with changing lengths but a fixed end-

point. At the same time, the Rosenbluth method has been modified into PERM and
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GARM algorithm, which are static Monte Carlo algorithms based on simple sampling

but with ingenious additions to improve sampling such as pruning and enrichment

(Rechnitzer and Rensburg 2008; Hsu and Grassberger 2004; Owczarek and Prellberg

2001).

In general, the implementation of a particular Monte Carlo algorithm involves with

manipulating different types of atmospheric moves. And the Berretti-Sokal algotithm

is one of the state-of-art algorithm as it could generate SAWs with different endpoints

and lengths which can have applications in many aspects. By using the nonreversible

techniques and including all endpoint atmoshperic moves, we have achieved higher

efficiency in 2D and 3D systems comparing to previous BS type algorithms. There-

fore, in the next chapter, we will discuss atmosphere and atmospheric moves as well

as the orginal Berretti Sokal algorithm.
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Chapter 3

The Berretti-Sokal Algorithm

The Berretti-Sokal algorithm manipulates the endpoint atmospheres so this chapter

begins with the introduction of atmospheres and atmospheric moves. Then before the

introduction of the Berretti-Sokal Algorithm, we will discuss the balance condition

which is the most important factor in designing an MCMC algorithm since it ensures

that the convergence of the Markov chain. Note that the probability distribution of

a SAW of length |s| is

π ∝ x|s| (3.1)

where x is the weight of a unit step. This is what we want the Markov chain target

distribution to be.

3.1 The Atmospheres

The algorithms creating SAWs usually manipulate different kinds of proposed moves,

often referred to as atmospheres (Rensburg and Rechnitzer 2008; Rechnitzer and

Rensburg 2002; Rensburg and Rechnitzer 2009). Atmospheres can be described as

potential constructions that can be executed on a given walk to increase or decrease
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the current length or change the conformation. When generating SAWs, the algo-

rithm usually performs moves on either endpoint atmospheres or plaquette atmo-

spheres where positive and negative atmospheres are generally defined as ways of

adding or removing a fixed number of edges to the current walk. In contrast, neutral

moves are ways of altering the walk’s shape without changing its length. For instance,

the pivot algorithm, which only acts on neutral atmospheres, can be used to sample

fixed-length walks (Madras and A. D. Sokal 1988). In contrast, the Berretti-Sokal al-

gorithm and BFACF algorithm contain length-changing atmospheric moves and can

generate walks of different lengths (Berretti and A. D. Sokal 1985; Rensburg and

Whittington 1991).

In general, algorithms generating SAWs are manipulating either the endpoint atmo-

spheres or the plaquette atmospheres. The definitions and examples are shown as

follow.

For the endpoint atmosphere, suppose s is the current SAW starting from the ori-

gin with length |s| and its last vertex is v. The positive endpoint atmospheres are

the lattice edges incident with the last vertex, which can be occupied to extend the

length by one. The negative endpoint atmosphere is just the last occupied edge since

removing it can extract the length by one. The neutral endpoint atmospheres are

edges that can be occupied by changing the direction of the vertex v. For any SAW

with a non-zero length, the number of negative endpoint atmospheres is one. If the

SAW has zero length, the number of negative endpoint atmospheres is set to zero, as

the length can not be further reduced.

Fig. 3.1 shows a SAW with a length equal to four. In this example, three unoccupied

edges are incident with the last vertex; they are shown in red on the graph, making

three positive ending atmospheres. As we see from the last occupied edge (black ar-

row), there is just one negative endpoint atmosphere. There are two neutral endpoint
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atmospheres, and the corresponding edges are displayed with green arrows.

Figure 3.1: The endpoint atmospheres on a self-avoiding walk of length |s| = 4. For
this self-avoiding walk, there are three positive ending atmospheres (red arrows) and
one endpoint atmosphere, which is the last occupied edge (black arrow), and the
number of neutral endpoint atmospheres is two (green arrows).

For the plaquette atmosphere, if s us an SAW of length |s| from the origin, then three

successive edges in a ⊔-conformation is a negative plaquette atmosphere. Conversely,

if an edge in s can be replaced by three edges in a ⊔-conformation to create a new SAW

of length |s|+ 2, then the edges form a positive plaquette atmosphere. Additionally,

two adjacent edges incident at 90◦ with one another and bounding a unit square with

exactly two edges and three vertices in the walk is a neutral plaquette atmosphere.

Fig. 3.2 shows an example of platuette atmospheres in a SAW with a length equal to

nine.
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Figure 3.2: The plaquette atmospheres on a self-avoiding walk of length |s| = 9.
The neutral plaquette atmospheres are shown in (0) while the positive and negative
plaquette atmospheres are shown in (+) and (−). For this self-avoiding walk, there
are six positive plaquette atmospheres and one negative plaquette atmosphere, and
the number of neutral plaquette atmospheres is four.

3.2 Detailed Balance and Global Balance

The balance condition is one of the most important factors in designing an MCMC

algorithm since it ensures that the Markov chain will converge to a target distribution.

The above described MCMC algorithms satisfy the detailed balance condition - which

states that the weighted probabilities of transitions between states are equal. For the

detailed balance condition (DBC) we have

Pijπj = Pjiπi, ∀i, j ∈ Ω, (3.2)

where Pij is the transition probability from state j to state i, Ω is the space of states,

and π is the stationary distribution, see e.g. (Levin, Peres, and Wilmer 2009; Vucelja

2016). Detailed balance is a local condition and thus easy to implement. MCMC
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algorithms using the detailed balance condition use reversible Markov chains. The

reversibility introduces a diffusion-like behavior in the space of states.

However, for a Markov chain to asymptotically converge to a stationary distribution

π, all we need is a weaker condition – the Global Balance Condition (GBC):

∑
j∈Ω

Pijπj =
∑
j∈Ω

Pjiπi, ∀i ∈ Ω, (3.3)

where Ω is a space of states. The GBC physically means that the total probability in-

flux at a state equals the total probability efflux from that state (Turitsyn, Chertkov,

and Vucelja 2011; A. Sokal 1997). In recent years, there has been progress in de-

signing nonreversible Markov chains that converge to the correct target distribution.

Such chains due to ”inertia” reduce the diffusive behavior, sometimes leading to bet-

ter convergence and mixing properties compared to the reversible chains (Diaconis,

Holmes, and Neal 1997; F. Chen, Lovasz, and Pak 1999; Turitsyn, Chertkov, and

Vucelja 2011; Vucelja 2016; Sakai and Hukushima 2013; Joris Bierkens and Roberts

2017; J. Bierkens 2016; Kapfer and Krauth 2017).

3.3 Reversible Berretti-Sokal Algorithm

The Berretti-Sokal algorithm is one of the most famous reversible MCMC algorithms

which manipulate the endpoint atmospheres. The algorithm only considers the pos-

itive and negative endpoint atmospheres and thus has the increasing and decreasing

move. Here we are using a Metropolis-Hastings style (Metropolis, A. Rosenbluth,

et al. 1953; Hastings 1970) implementation of the Berretti-Sokal algorithm. It works

as follows:
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(i) Suppose the current length of a SAW is given by N . With equal probability,

the algorithm chooses the increasing move or the decreasing move.

(ii) If the increasing move is selected, with probability P+ one of the empty edges

incident with vN , the last vertex, will be occupied randomly when this leads

to a valid SAW of N + 1 steps. Similarly, for the decreasing move, the last

occupied edge is deleted with probability P−. The two probabilities are given

by

P+ = min{1, x(z − 1)}, (3.4)

P− = min
{
1,

1

x(z − 1)

}
, (3.5)

where z is the coordination number of the system, i.e. the number of lattice

points neighboring a vertex on the lattice.

The moves are executed only if they lead to a valid SAW. Special attention is needed

for the ”null” walk, |s| = 0, in such case only an increasing mode is allowed and

the number of empty edges is z, rather than z − 1. For simplicity we permanently

set P+ = min{1, x(z − 1)}. To prove that the DBC holds in the Berretti-Sokal

algorithm, let us for example consider the case where x(z − 1) < 1. From Eqs. (3.4)

and (3.5) we conclude that the choice implies P+ < 1 and P− = 1. Thus we have

x|s|P+(z − 1)−1 = x|s+1| = x|s+1|P−, which satisfies the DBC, given in Eq. (3.2). The

proof is analogous in the case x(z − 1) > 1.

The Berretti-Sokal algorithm is especially useful for long chains. But in MCMC

algorithms, one of the greatest question is how to further improve its efficiency. The

Berretti-Sokal algorithm satisfies the detailed balance condition which is a sufficient

but not necessary condition to ensure the MCMC algorithm will converge to the
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target distribution. So it is a reversible MCMC algorithm. It is noted that fast

mixing is hindered in traditional reversible MCMC methods due to high barriers in

effective energy landscape and high entropy of the states basin. Meanwhile reversible

Markov chain Monte Carlo algorithms are especially slow close to phase transitions.

Therefore, possible improvement could be made by breaking the detailed balance

condition, which may lead to higher efficiency. In the next chapter we are going to

discuss how to break the detailed balance of the Berretti-Sokal Algorithm and also

its results.
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Chapter 4

The Nonreversible Berretti-Sokal

Algorithm

In the previous chapter, we have introduced the detailed balance and global balance

condition. Generally speaking, the global balance condition is more general though it

could be difficult to be implemented due to the great number of possible probability

flows. As detailed balance is a special case of global balance, people turned to use

global balance condition to design MCMC algorithms which are nonreverisble MCMC

algorithms. Most nonreversible MCMC algorithms need to be designed carefully and

one of the most appealing ideas is lifting which can increase the phase space to create

a bias and explore the enlarged phase space more efficiently (Turitsyn, Chertkov,

and Vucelja 2011; Vucelja 2016). It can be carried out by adding a number of sub-

systems (replicas) with internal dynamics, each characterized by its own transition

matrix. Nonreversible MCMC algorithms now are designed carefully and artificially

and there is no general rule for all algorithms, which could put great difficulties when

designing comparing to reversible MCMC algorithms. Additionally though lifting

could alter the convergence time, it is still an open question whether and when it will

decrease the convergence time. For algorithms sampling self-avoiding walks, only the

Berretti-Sokal algorithm has been modified into a nonreversible MCMC algorithm

(Hu, X. Chen, and Deng 2016) which we will call two-move nonreversible Berretti-
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Sokal algorithm. Besides introducing the nonreversible MCMC technique into the

Berretti-Sokal algorithm, we also notice that the previous Berretti-Sokal algorithms

have only included the positive and negative endpoint atmosphere moves. So we could

include all three types of endpoint atmosphere moves. In this chapter, we will first

discuss how our algorithm works and then we will present its performance.

4.1 Nonreversible Berretti-Sokal Algorithm

One possible way to set up a nonreversible algorithm is to increase the phase space

by introducing replicas (Turitsyn, Chertkov, and Vucelja 2011; Hu, X. Chen, and

Deng 2016; Vucelja 2016) and work on the extended space with nonzero probability

fluxes. Here we follow an analogous approach. As mentioned above, there has been a

successful two-move nonreversible Berretti-Sokal algorithm (Hu, X. Chen, and Deng

2016). The authors achieved an important improvement in the speed of the algorithm.

The speedup is about tenfold in two-dimensional systems and is even more pronounced

in higher-dimensional systems. They set up two modes in the algorithm, which we

call the increasing mode and the decreasing mode.

Our new algorithm has a third type of move – besides shortening and extending the

SAW, we also allow the SAW to change its conformation. Namely, in the increasing

mode, the algorithm can perform either an increasing move or a neutral move; in this

mode, the decreasing move is not allowed. Analogously, in the decreasing mode, the

algorithm will only execute either a decreasing move or a neutral move. A diagram

describing the algorithm is shown in Fig. 4.1. It works as follows:

i) In the increasing mode, with equal probability, perform either the positive move

or the neutral move. For the positive move, the algorithm will randomly occupy
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Figure 4.1: (a) Diagram of probability flows in the three-move nonreversible Berretti-
Sokal algorithm. Each rectangle specifies a SAW of length |s|. Each realization of the
algorithm is different because of the neutral moves, allowing to alter the configuration
of the walk. The top row represents the increasing mode in which the algorithm
can produce either a positive or neutral move, while the bottom row represents the
decreasing mode where the algorithm produces either negative or neutral moves. The
circular arrow represents the execution of a neutral move, leading to a SAW with the
same length but a different shape as the last occupied edge’s direction is changed.
The ’null’ walk, |s| = 0, requires special attention; in this case, we do not allow
neutral and decreasing moves. (b) Example of the incoming fluxes for SAW of length
|s| = 2 in 2D on a square lattice.
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one of the empty edges incident to the last vertex with probability P+. While

for the neutral move, the algorithm will change the direction of its last occupied

edge randomly. If the chosen move does not lead to a valid SAW, the algorithm

will change to the decreasing mode.

ii) In the decreasing mode, with equal probability, perform either the negative

move or the neutral move. For the negative move, the algorithm will delete the

last occupied edge with probability P−. For the neutral move, the algorithm

will change the direction of its last occupied edge randomly. If the chosen move

does not lead to a valid SAW, the algorithm will change into the increasing

mode.

iii) When the length is 0, the algorithm will be changed into the increasing mode,

and a positive move will be performed.

Therefore, in each step, the algorithm will either execute one of the elementary moves

successfully or change to the other mode. The global balance condition implies that

the total influx probability flow equals the efflux probability flow; that is, we have

ϕ
(±)
± + ϕ

(±)
0 + ϕ

(±)
∓ = x|s|, (4.1)

where x|s| is the distribution of SAWs of length |s| and ϕ−s describe the incoming

probability fluxes, where the superscript denotes the mode and the subscripts denote

the move. The three terms on LHS are the incoming flow of executing a ± move in

mode (±), ϕ(±)
± , the incoming flow of executing one neutral move in mode (±), ϕ(±)

0 ,

and the incoming flow from switching the mode from (∓) to (±), ϕ
(±)
∓ . To clarify

the third term in the LHS by example: ϕ(+)
− is the incoming flux from switching from

(−) mode to the (+) mode. Let us show that global balance condition holds for the
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increasing mode when x(z − 1) < 1. Proofs for the other cases follow analogously. In

this case the three fluxes are:

• The incoming flux from a positive move is

ϕ
(+)
+ = x|s|−1P+

1

2(z − 1)
=

x|s|

2
, (4.2)

where in the second equality we used Eq. (3.4). The factor 1/2 is the result

of selecting either a positive move or a neutral move and the term (z − 1)−1 is

from occupying one of the z − 1 empty edges incident to the last vertex.

• The incoming flux from a neutral move is

ϕ
(+)
0 =

x|s|z′′

2(z − 1)
, (4.3)

where z′′ is the number of possible edges which will lead to a valid SAW for the

last occupied edge when changing its direction.

• The incoming flux from the decreasing mode, ϕ(+)
− , since P− = 1, as we assume

that x(z − 1) < 1, the only possible reason of changing from another mode is

that when the last occupied changes it direction, it does not lead to a valid

SAW, thus

ϕ
(+)
− =

1

2
x|s|

(
1− z′′

z − 1

)
. (4.4)

Summing over the incoming flows, given in Eqs. (4.2 - 4.4), we verify that the global

balance condition, Eq. (4.1), holds. Note that we do not assume that a particular

SAW configuration of length |s| is achieved with the same frequency in the increasing
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and the decreasing mode – it comes out as a corollary of the global balance condition.

4.2 Result

To test the efficiency of the new algorithm, we used the integrated autocorrelation

time τ . For a given observable O, it is defined as

τ =
m

2

σ2
O

σ2
O
, (4.5)

where m is the number of steps, O is the estimator of the average O, and σ2 denotes

a variance, c.f. (Goodman and Weare 2010). Here we choose the length of the

walk, |s|, for the observable as it is a common choice for SAWs. We tested the

efficiency as a function of the linear system size by generating SAWs in a square

lattice with n× n points and in a cubic lattice with n× n× n points. The boundary

conditions were fixed. With τ0 we denote the integrated autocorrelation time of the

two-move nonreversible Berretti-Sokal algorithm (algorithm from Hu, X. Chen, and

Deng 2016).The comparison of the two algorithms is on Fig. 4.2.

Note, that there are two different scenarios based on the value of weight of a unit

step x. For example, for a 2D square lattice, when x = 0.4, P+ = 1 and P− < 1,

while for x = 0.2, P− = 1 and P+ < 1. To study both scenarios present the results

under initial setting where x = 0.2 and x = 0.4 in a 2D system and correspondingly

x = 0.12 and x = 0.24 in a 3D system. From Fig. 4.2 we conclude that the ratio of

the autocorrelation times for large systems is weakly dependent on the value of x.

In 2D, the ratio of the autocorrelation time of the new algorithm over the previous

one is always less than one, which means that the new algorithm has a slightly
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Figure 4.2: The ratio of integrated autocorrelation times of the three-move nonre-
versible Berretti-Sokal algorithm, τ , and the two-move nonreversible Berretti-Sokal
algorithm, τ0, for 2D and 3D systems as a function of the linear system size n. The
three-move nonreversible Berretti-Sokal algorithm’s performance is slightly better in
2D systems while it is 3− 5 times faster in most 3D systems.
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better performance. We further tested the new algorithm in a three-dimensional cubic

system. The new algorithm tends to have better performance in large systems, and

the difference is more significant than the 2D situation. When the length of the cube

is less than 20, the previous algorithm is more efficient with less autocorrelation time.

However, as the system’s scale increases, the ratio τ/τ0 becomes less than one, and the

value is between 0.2 and 0.3, indicating that the new algorithm is 3 to 5 times faster

in these larger 3D systems. We have also tested our algorithm in 4D and 5D systems

where no general improvements are found compared to the two-move nonreversible

Berretti-Sokal algorithm. We show the detailed findings in Appendix A. The fact that

the addition of neutral moves does not improve the efficiency in generating SAWs in

4D and 5D, could be explained by the fact that as dimension gets higher, it will be

much more likely for the algorithm to make a successful, positive move, which results

in less benefit from adding the neutral move.

To summarize, we have created a new nonreversible algorithm manipulating the end-

point atmospheres to generate SAWs. By introducing all three kinds of endpoint

atmospheres’ moves, the new algorithm has greater flexibility than the two-move

nonreversible Berretti-Sokal algorithm, from (Hu, X. Chen, and Deng 2016). For in-

stance, when occupied lengths surround the endpoint of a given SAW, the algorithm

will change into the negative mode since neither a neutral move nor a positive move

will lead to a valid SAW. Assume that P+ < 1, for an algorithm with only positive

and negative moves, it will return to the origin and start from the beginning again.

On the other hand, with a neutral move, the SAW does not have to start from the

origin again. When a neutral move in the negative mode is not possible, the algo-

rithm will change into the positive mode. The addition of neutral moves gives the

algorithm greater flexibility in finding valid SAWs.
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Chapter 5

Discussion and Conclusions

5.1 Application of Berretti-Sokal Algorithm

As mentioned in the previous chapter, SAWs can be useful tool in the studies of poly-

mer physics, network systems and Ising model as well. At the very beginning of the

invention of the Berretti-Sokal algorithm, it was used to verify the growing constant

of SAWs, which is one of the traditional applications of SAWs. Nowadays, researchers

have found out some other interesting applications of Berretti-Sokal algorithm.

Recently, studies also use the MCMC algorithms to generate self-avoiding walks in

order to study the two-point function of Ising model. The two-point function of

self-avoiding walk on a finite box T d
L can be written as

gSAW (x) =
∑
s:0→x

z|s|, (5.1)

where z is the fugacity and the sum is over all self-avoiding walks starting at the

origin 0 and ending at x.

For the zero-field ferromagnetic Ising model on T d
L, the Hamiltonian can be written
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as

H = −
∑
ij∈E

sisj (5.2)

where si ∈ {−1,+1} denotes the spin at position T d
L, and E is the edge set of T d

L.

And its two-point function is

gIsing(x) = ⟨s0sx⟩ (5.3)

which is the expectation value with respect to respect to the Gibbs measure.

By using a resummation of the high-temperature expansion of the Ising model, the

Ising two-point function can be written as a weighted sum over edge self-avoiding

paths from 0 to x (Thompson 2015). There are multiple ways to construct such

paths for a given high-temperature configuration (Aizenman 1986). Meanwhile, the

susceptibility for the Ising and SAW models can be written as

χIsing,SAW :=
∑
x

gIsing,SAW (x) (5.4)

Therefore, the Berretti-Sokal algorithm has been used in researches related to the

finite-size scaling of the Ising model in high dimensions by generating self-avoiding

walks on a box (Zhou, Grimm, Fang, et al. 2018; Zhou, Grimm, Deng, et al. 2020;

Fang, Deng, and Zhou 2021). Simulation results obtained by extensive Monte Carlo

simulations of the Ising model and self-avoiding walk have supported researcher’s

conjecture that on tori of dimension at least 5, the two-point functions of the Ising

model and self-avoiding walk display the same scaling as the random-length random
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walk.

5.2 Future Research Aspects

The number of nonreversible versions of algorithms generating self-avoiding walks is

still limited. As the conformation of a given walk could change dramatically after one

Monte Carlo step, it is hard to figure all the possible probability flows in the global

balance condition. There has been no nonreversible versions of the BFACF algo-

rithm and the pivot algorithm yet. Future research could investigate how atmosphere

moves could change the conformation of a SAW thoroughly and then implement the

nonvreversible techniques. It would also be interesting to study the possibility of

implementing the nonreversible technique in the PERM and GARM algorithm. Pre-

vious research has improved the efficiency of PERM algorithm without implementing

the nonreversible MCMC techniques Campbell and Rensburg 2020.

Currently, the nonreversible technique is hard to be implemented as it needs to be

designed carefully and artificially to satisfy the global balance condition, which hin-

ders its wide implementation. Looking into the future, one might delegate this task

to a neural network alike in Song, Zhao, and Ermon 2017. Optimizing the transition

operator with more than three types of endpoint atmospheres might further increase

the efficacy.
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Appendix A

Performance in 4D and 5D

We investigated the performance of the three-move nonreversible Berretti-Sokal al-

gorithm in 4D and 5D. We did not find it to be efficient, when compared to the

two-move nonreversible Berretti-Sokal algorithm. The detailed findings are in the

table.



34

dimension d = 4
system size n x = 6/35 x = 3/35

25 0.714± 0.069 2.970± 0.356
51 1.081± 0.050 2.216± 0.229
75 0.994± 0.033 2.812± 0.658
101 0.945± 0.028 2.349± 0.190

dimension d = 5
system size n x = 1/5 x = 1/10

21 0.920± 0.002 4.214± 1.108
25 0.961± 0.001 4.451± 0.571
31 0.992± 0.002 4.992± 0.696
35 0.995± 0.002 3.261± 0.513

Table A.1: The ratio of integrated autocorrelation times of the three-move nonre-
versible Berretti-Sokal algorithm, τ , and the two-move nonreversible Berretti-Sokal
algorithm, τ0, for 4D and 5D systems as a function of the linear system size n, the
SAW unit length weight x. The ratio about 1 for (x = 6/35, d = 4) and (x = 1/5,
d = 5), however for (x = 3/35, d = 4) and (x = 1/10, d = 5) it is above unity, which
indicates that two-mode nonreversible Berretti-Sokal algorithm is more efficient there.
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