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Chapter 1

Introduction and Summary of Dissertation

This chapter is mainly focused on providing an introduction and executive summary of the
dissertation. This includes discussing the importance of personalization in shared-autonomy,
multimodal sensing, and integrating conventional wearable devices into the current natural-
istic driving study frameworks. We then provide a summary of all the following chapters by
discussing the specific research questions and gaps addressed in each chapter, as well as the
main findings. Sections 1.1 and 1.2 are ©2021 IEEE, reprinted, with permission, from (37).

1.1 Shared-autonomy and Personalization of Autonomous Vehicles
Although Autonomous Vehicles (AV) are improving at a very fast rate, it is predicted that
through shared autonomy, humans will be involved in driving decision making for the fore-
seeable future (17; 38). Shared autonomy is a promising approach where the human driver
is kept in the loop to enhance situational awareness, response time in unsafe conditions, and
trust in AV (17). In principle, AV can act as an expert driver, deferring execution to the
human user only in challenging scenarios. However, deferring execution while the human
driver is in a sub-optimal state (e.g., stressed, sleepy, intoxicated) can be hazardous. Thus,
it is essential for AV to accurately assess and respond to the driver’s state and behavioral
changes in real-time and according to each individual driver profile (15; 29).

Furthermore, research has shown that drivers exhibit considerable variability in their be-
havioral profiles in different contextual settings (e.g., their comfort level with autonomy or
desire to take over in certain situations) (31). However, currently, AV uniformly responds to
different contextual settings solely based on outdoor environmental conditions and indepen-
dent of the driver’s behavior and comfort profile (31). In order to increase the AV’s safety,
comfort, and reliability in different situations, the system should be individually tailored to
each driver (8). This is a key consideration to achieve an acceptable level of shared autonomy,
where personalized profiles can be generated to inform AV’s decision making according to the
driver’s preferences and comfort levels. This concept is referred to as ”deep personalization”
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(17).
Personalization, in turn, requires contextual awareness. Recent studies across engineering

and social sciences emphasize that autonomous systems (e.g., AV, and smart devices) need
to become contextually aware of the environmental changes to better predict and respond
to each user’s state and behaviors (16). Context can be defined as any information that is
relevant in defining a driving situation (16), including traffic patterns, scenery, passengers
and in-cabin activities, driver behaviors, emotional states, and any other information that
can be used to describe a driving event. The contextual setting is comprised of internal
and external factors (4). Internal factors include factors related to human’s emotional,
cognitive and attention states. External factors include in-cabin ambient conditions (i.e.,
noise, temperature, glare, lighting, music being played) and outside conditions such as traffic
density, road and weather conditions, and other environmental conditions. The temporal
fusion of the internal and external factors represents a driving context (16). A growing
body of evidence suggests that different contextual settings have varying impacts on the
driver states (e.g., emotions, attention, and cognition) and behaviors (e.g., speed patterns
and hard brakes) (16). For instance, road environment, weather condition, traffic density,
driver’s activities, and even the background music have shown to affect driver’s state, and
driving behaviors (22; 7; 3; 6; 16; 26). As a result, to develop personalized profiles for each
specific driver, we need to accurately monitor the internal and external events and identify
how changes within the environment may impact driver states and behaviors.

1.2 Importance of multimodal sensing
Over the past 15 years, the research community has identified that there is a need for
collecting multimodal driving data through naturalistic studies. Examples include the “The
100-Car Naturalistic Study,” conducted by Virginia Tech Transportation Institute (VTTI)
(30), the “European naturalistic Driving and Riding for Infrastructure & Vehicle safety and
Environment (UDRIVE)” (14), and the MIT Advanced Vehicle Technology Study (18). Such
studies have provided significant insights into how different in-cabin and outdoor conditions
may impact driving behaviors and states. For instance, (13) emphasized that internal factors
such as driver’s distraction, aggression, emotions, and secondary tasks play an important role
in accident prevalence. Similarly, previous studies have pointed out that external factors
such as weather conditions (12), and road geometry and design (19) impact driver’s state
and behavior. However, most of these Naturalistic Driving Studies (NDS) rely on features
collected from video cameras capturing in-cabin and outdoor conditions. Although video
streams are extremely informative, they mostly provide insights about external factors. In
fact, research suggests many internal factors and states (e.g., driver’s cognition) cannot be
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accurately detected through using only cameras (32). For instance, a driver might smile when
being frustrated, leading to a misleading inference about the driver’s state (1). To the best
of our knowledge, none of the existing longitudinal NDS have fused the features extracted
from the driver’s physiological measures with those extracted from the video streams.

Among the internal factors, previous studies have noted that collecting physiological data
in longitudinal naturalistic driving studies was not feasible due to the lack of technological
advancement that exists today (e.g., wearable devices that can provide physiological and
behavioral states of a person) (9). As a result, the majority of the past driving studies that
included physiological sensing were conducted in short-term controlled experimental studies
(e.g., (39)). Not having access to datasets that provide internal factors together with en-
vironmental attributes has caused many driver state detection models to rely on data that
were either not from real-world studies or were not tested in real-time. For instance, (2) de-
veloped a dynamic Bayesian model to contextualize the driving behavior based on different
environmental, vehicular, and driver-specific conditions. In their model, they used different
attributes of the environment such as noise and temperature, with driver’s psychophysiolog-
ical measures such as eyelid movements, and behavioral attributes such as lane maintenance
to detect different states of fatigue, drunk, reckless, and normal conditions. The term psy-
chophysiological here refers to psychological states such as emotional responses (e.g., anger,
frustration, and happiness), cognitive load, and distraction that can be measured through
changes in human physiology responses (e.g., heart rate, skin temperature, and skin con-
ductance) (5). However, they highlighted the data required for validating their model does
not currently exist, and they had to rely on previous literature for retrieving probability
conditions of different driver states under various environmental conditions without using
real data (2).

Over the past few years, the advancements in the field of ubiquitous computing have
accelerated very quickly. Currently, over 900 million wearable devices are being used world-
wide on a daily basis (34). The application of these devices spans over a variety of fields such
as mental health monitoring and interventions (11), physical health and activity monitor-
ing and training (23; 20), sleep monitoring and intervention (21), and insurance and policy
purposes (33). Additionally, recently wearable devices are also being utilized in driver state
recognition research area. Although these studies were mostly conducted in controlled set-
tings, they provided insight into the application of wearable devices in driving research. For
instance, (25) have used Microsoft armbands to detect driver’s drowsiness in a virtual driv-
ing environment. (10) have used wearable devices for detecting driver’s fatigue, stress, and
abnormal conditions in a driving simulator environment. (24) have found that conventional
wearable devices in a driving simulator environment can be used for driver’s drowsiness de-
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tection. Another study has used wearable devices for detecting heart rate (HR) changes
in different road and weather conditions in naturalistic settings and found out significant
changes in HR among different conditions of the city versus highway and rainy versus clear
weather (35). These findings, although being in controlled environments, provides evidence
on the effectiveness of using such devices in driving environments for detecting driver’s state.

These advancements have not only been in the areas of physiological sensing and wear-
able devices. Over the past decade, there have been significant improvements in computer
vision and machine learning approaches, where we can now accurately detect specific fea-
tures and behaviors of drivers from the in-cabin videos while detecting objects (27) and
outside conditions through the outdoor videos (28). However, since the majority of existing
NDS were introduced over a decade ago, many of the existing datasets do not include these
modalities of data such as driver’s pose features, gaze patterns, and objects in the environ-
ment. As a result of these improvements, we can now utilize (1) wearable devices to monitor
driver’s states and internal changes and (2) advanced computer vision and machine learning
algorithms to analyze the external factors.

1.3 Dissertation Objectives
This dissertation is focused on designing and implementing a novel multimodal longitudi-
nal naturalistic driving study, HARMONY by taking advantage of new technologies such as
wearable devices and computer vision techniques. Based on the HARMONY dataset col-
lected from 22 participants, this dissertation proposes different modeling schemes to detect
(1) drivers’ state, (2) behavior, and (3) changes in driver’s state under the dynamic change in
the external conditions. More specifically, this dissertation (1) leverages supervised learning
to detect driver’s state and behavior as well as driving environment attributes by using wear-
able data; (2) implements unsupervised learning to find the psychophysiological response of
drivers’ within different driving behaviors, which can be further used for guiding autonomous
vehicles to take human-centered actions; (3) implements Bayesian Change Point detection
method and linear mixed effect modeling together with computer vision algorithms to un-
derstand the level of association of certain infrastructural elements (e.g., intersections), and
environmental attributes (e.g., presence of vulnerable road users) with the changes in drivers’
heart rate; and (4) leverages state-space latent variable modeling framework to understand
the changes in driver’s state (i.e., stress level and workload) under the dynamic perturbations
of external environment (i.e., changes in number of vehicles as a proxy for traffic density and
hand movement as a proxy for task demands). A summary of each chapter is provided below.
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1.3.1 Chapter 2: Literature Review on Naturalistic Driving Studies

The first part of this dissertation is mainly concerned with developing and implementing a
novel naturalistic driving study (NDS) framework, thus it is required to first review the past
work in this arena of research. This chapter provides a summary of previous NDS, as well as
highlights how we can overcome the existing gaps through integrating off-the-shelf wearable
and human sensing techniques. This chapter specifically addresses the following research
question:

Research Question: What are the gaps in the current naturalistic driving study frame-
works?

1.3.2 Chapter 3: HARMONY, A Human-Centered Multimodal Driving Study
in the Wild

The main objective of this chapter is to introduce HARMONY, a human-centered multimodal
naturalistic driving study, where driver’s behaviors and states are monitored through (1) in-
cabin and outside video streams (2) physiological signals, including driver’s heart rate and
hand acceleration (IMU data), (3) ambient noise, light, and the vehicle’s GPS location, and
(4) music logs, including song features such as tempo. HARMONY is the first study that
collects long-term naturalistic facial, physiological, and environmental data simultaneously.
Chapter 3 summarizes HARMONY’s goals, framework design, data collection and analysis,
validation, and ongoing and future research efforts. The result of this chapteris published in
(37). This chapter specifically addresses the following research question:

Research Question 1: What are the main considerations in designing a multimodal
human-centered driving study framework in the wild?

1.3.3 Chapter 4: Multimodal Driver State and Behavior Detection

In previous chapters, we have pointed out the (1) potential shortcomings and concerns when
solely relying on video streams for driver state and behavior detection; and (2) the utility of
novel off-the-shelf wearable devices for driver state and behavior detection. To address these
gaps, this chapter first focuses on using supervised learning for classifying drivers’ state,
behaviors, and environmental attributes using passive sensing. The outcome of this project
is to detect certain driver activities such as using phone through supervised methods. While
supervised learning provides valuable tools for classification and detection of drivers’ state,
it suffers from the manual annotation burden for building ground truth. Therefore, this
chapter will also consider unsupervised methods to cluster drivers’ state and behaviors and
analyze drivers’ state within each specific behavior. The outcome of this project is to detect
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certain driver state such as having abnormal heart rate through unsupervised methods.

1.3.3.1 Project 1: Driver state, behavior, and environmental attributes classi-
fication using supervised techniques

In this project we are focused on developing models that can detect drivers’ state by soley re-
lying on wearable device. Integrating driver, in-cabin, and outside environment’s contextual
cues into the vehicle’s decision making is the centerpiece of semi-automated vehicle safety.
Multiple systems have been developed for providing context to the vehicle, which often rely
on video streams capturing drivers’ physical and environmental states. While video streams
are a rich source of information, their ability in providing context can be challenging in
certain situations, such as low illuminance environments (e.g., night driving), and they are
highly privacy-intrusive. Data collected through passive sensing smart smartwatches are
leveraged for classifying elements of driving context. Specifically, through using the data
collected from 15 participants of HARMONY, and by using multiple machine learning algo-
rithms such as random forest, driver’s activities (e.g., using phone and eating), outside events
(e.g., passing intersection and changing lane), and outside road attributes (e.g., driving in
a city versus a highway) are classified with an average F1 score of 94.55, 98.27, and 97.86
percent respectively, through 10-fold cross-validation. The results show the applicability of
multimodal data retrieved through smart wearable devices in providing context in real-world
driving scenarios and pave the way for a better shared autonomy and privacy-aware driving
data-collection, analysis, and feedback for future autonomous vehicles that does not rely on
camera streams. The results of this project is published in the 2021 IEEE Intelligent Vehicle
Symposium (36). This project specifically addresses the following questions:

Research Question 1: Do features retrieved through passive sensing techniques can
provide contextual awareness to the vehicles by revealing different internal and external
contextual cues through classification algorithms?

Research Question 2: What is the utility of multimodality in passive sensing for
classification purposes? More specifically, to what extend the multimodal data help with
enhancing the accuracy of classification?

1.3.3.2 Project 2: Driver state, behavior, and environmental attributes classi-
fication using unsupervised techniques

Naturalistic driving data (NDD) can help understand drivers’ reactions to each driving sce-
nario and then be used as a metric for taking further autonomous actions that are aligned
with the drivers’ comfort, feeling, and safety levels. While in the previous chapter, we have
seen the application of supervised learning in driver state and behavior classification, the
massive amount of data collected through NDS can become problematic for annotation and
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data preparation. Needless to say that because of the existing noise in naturalistic condi-
tions, a higher amount of data should be annotated when compared to similar situations
in on-road controlled studies or driving simulators. In other words, NDD requires a high
amount of manual labor to label certain drivers’ states and behavioral patterns. Unsuper-
vised analysis of NDD can be used to automatically detect different patterns from the driver
and vehicle data. A framework is proposed to understand a driver’s reactions towards differ-
ent driving patterns unsupervised. This framework decomposes a driving scenario by using
Bayesian Change Point detection methods. Similar to previous research, the Latent Dirich-
let Allocation method is applied on both driver state and behavior data. Two case studies
based on the HARMONY framework are presented in which vehicles were equipped to col-
lect exterior, interior, and driver behavioral data. Four patterns of driving behaviors (i.e.,
harsh brake, normal brake, curved driving, and highway driving), as well as two patterns
of driver’s heart rate (HR) (i.e., baseline vs. abnormal high HR), and gaze entropy (i.e.,
low versus high), were detected in the case study data. Drivers’ HR had a higher fraction
of abnormal patterns during harsh brakes, accelerating, and curved driving, pointing to the
need for a more conservative driving style to better fit the driver. Additionally, free-flow
driving with close to zero accelerations on the highway was accompanied by more fraction
of normal HR as well as a lower gaze entropy pattern pointing to route selection decisions
that include more highway segments to keep the driver calmer with a lower workload. The
results of this chapter are under review in Accident Analysis and Prevention. This project
specifically addresses the following research questions:

Research Question 1: Are driver’s behavior and state patterns detectable through
unsupervised methods?

Research Question 2; What are the differences across participants in their heart rate
and gaze patterns within different contextual settings?

1.3.4 Chapter 5: How Does the Driving Context Affect Driver’s State?

While previous projects are guided towards detecting drivers’ state using multimodal data,
it is insightful to consider how the state itself changes while interacting with the dynamic
changes of contextual setting. This chapter focuses on identifying the interaction between
changes in the context and drivers’ state. To this end, this chapter proposes three projects
as follows.

1.3.4.1 Project 1: Driver’s HR as a feedback to the environmental events

This project is mainly focused on understanding the interaction between environmental
attributes and changes in drivers’ heart rate (HR). Drivers’ HR has been previously shown
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to be correlated with stress level, anxiety, and negative emotions. The collected data in
HARMONY is employed to show the utility of driver’s HR as feedback to environmental
changes. This is first done through a visual inspection of videos that are accompanied by
abrupt increases in drivers’ HR. The abrupt increases are detected through Bayesian Change
Point Detection (BCP). Fusing the information from the in-cabin and outside videos with the
HR changepoint locations from 15 participants results in understanding the reasons behind
abrupt increases in HR. The preliminary analysis shows that events such as passing through
intersections, closely following a lead vehicle, passing by certain road users, and objects are
shown to be associated with abrupt increases in driver’s HR, possibly causing stress in the
driver. This project specifically answers the following research questions:

Research Question 1: Is a driver’s heart rate as retrieved through conventional wear-
able devices indicative of external contextual changes?

1.3.4.2 Project 2: Understanding the Differences Across Environmental At-
tributes on How They Affect the Driver’s State

In this study, by using a naturalistic driving study database, we analyze the changes in the
driving scene, including road objects and the dynamical relationship between the ego vehicle
and the lead vehicle with respect to changes in drivers’ psychophysiological metrics (i.e., HR
and facial expressions). We find that different road objects might be associated with varying
levels of increase in drivers’ HR as well as different proportions of negative facial emotions
detected through computer vision. Our results indicate that larger vehicles on the road, such
as trucks and buses, are associated with the highest amount of increase in drivers’ HR as
well as negative emotions. Additionally, we provide evidence that shorter distances to the
lead vehicle in naturalistic driving, as well as the higher standard deviation in the distance,
might be associated with a higher number of abrupt increases in drivers’ HR, showing a
possible increase in stress level. Lastly, our results indicate more positive emotions, more
facial engagement, and a lower number of abrupt changes in HR at a higher speed of driving.
This research lays the ground for designing human-centered vehicles, urban environments,
and services that can understand the level to which each road object and environment might
affect drivers’ and passengers’ well-being. This project specifically answers the following
research questions.

Research Question 1: Do different perturbations differ in their effect on drivers’ state
changes? Research Question 2: Do surrounding vehicles and especially the lead vehicle
plays a role in drivers’ state changes?
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1.3.4.3 Project 3: Modeling changes in drivers’ state under the external contex-
tual perturbations using latent variable state-space modeling framework

Driving is a multidimensional task happening in a driving context that includes the driver’s
internal states as well as external environmental conditions. Driver’s internal states, in-
cluding stress levels, and workload, interact with each other and with the external context
temporally. Although multiple studies analyzed the relationship between the driving en-
vironment, workload, and driver’s stress in a paired fashion, no study has analyzed all of
these factors together while considering their possible interaction. Additionally, because
matters such as stress level, and workloads are not measurable variables, they need to be
modeled through a latent variable modeling scheme. This chapter proposes using latent-
variable state-space modeling framework for driver state analysis that takes into account the
interaction between the two constructs (i.e., emotion and cognition), and the holistic effect
of the context on the two variables. By using latent-variable state-space models, drivers’
workload and stress levels are modeled as latent variables estimated through multimodal
human sensing data, under the perturbations of the environment. Through a case study
of multimodal driving data collected from 11 participants of HARMONY, we show that a
better maximum log-likelihood fit is retrieved in a model that considers two latent variables
for driver’s psychophysiological state with a covariance between latent variable as compared
with a model with one latent variable. we then show that external contextual elements such
as scene complexity and secondary task demands can affect driver’s stress levels and work-
load. Additionally, the utility of state-space models in analyzing the possible lag between
the two constructs of stress level and workload is discussed. This chapter, in summary,
uses latent variable state space methods to demonstrate how we can identify driver states
and responses to the environmental conditions by fusing psychophysiological information
with features extracted from outside video streams. This project specifically addresses the
following research questions:

Research Question 1: Do two separate latent variables for driver’s workload and stress
levels provide a better description for driver’s psychophysiological state in the wild?

Research Question 2: How does the historical latent state of the driver affect his/her
current state (i.e., stress and workload)?

Research Question 3: How does the association between latent constructs change
throughout the driving scenario?

Research Question 4: How does the external context (i.e., task demands and traffic
density) affect the driver’s internal contextual state (i.e., stress level and workload)?
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Chapter 2

Literature Review on Naturalistic Driving Stud-
ies

2.1 Summary
In order to understand the limitations of current NDS, we first review the different cate-
gories of previous driver-in-the-loop studies; specifically, section 2.2 provides an overview
of conducted studies through driving simulators, section 2.3 focuses on on-road controlled
studies and Field Operational Tests (FOT), and section 2.4 evaluates the existing NDS. This
chapter is ©2021 IEEE, reprinted, with permission, from (55).

2.2 Driving Simulator
Studies performed in driving simulators are beneficial in understanding causal analysis as
different factors can be controlled (29). Previous studies have coupled driving simulators with
physiological sensors to detect driver states in different contextual settings such as detecting
states of being awake versus sleeping in four-hour driving epochs (65), cognitive distraction
when the lead vehicle abruptly breaks (49), response to automation takeover when the take
over request is offered through different sources (51), and driver’s performance and possible
cognitive distraction when being exposed to different traffic signs (44). Driving simulators
are safe tools for conducting driving experiments in different environmental conditions, such
as crash events, or evaluating drivers’ emotional states (42). Additionally, by using driving
simulators, it is viable to collect modalities of data that are not feasible in a real-world
setting such as brain activity signals (e.g., EEG) (51). However, due to its controlled nature,
driving simulators cannot be used to evaluate longitudinal behavioral changes. Thus, driving
simulator studies cannot be used to capture real-world changes in driver behaviors and states
given various contextual settings. Furthermore, a recent review has depicted that one-third
of the review corpus that used driving simulators as a means of capturing driving behaviors
in different conditions have achieved no validity in reproducing in real-world conditions (66).
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2.3 On-Road Controlled Studies and Field Operational Tests (FOT)
In contrast to simulator studies, on-road controlled studies, FOTs, and NDSs utilize par-
ticipants driving real vehicles in naturalistic settings. The major difference is that in an
on-road controlled study, the experimenter has a higher level of control on specific variables
of interest (74). For example, in an on-road controlled study, participants are asked to drive
on the same route as other drivers while driving in the same experimentally equipped vehicle
(in contrast to driving their own personal vehicle). The on-road studies are typically con-
ducted for a short period of time (up to a few hours) (10). Furthermore, these studies are
typically accompanied by an observer/experimenter, which may impact the driver’s behavior
as he/she feels they are being observed and monitored (50).

A number of studies have evaluated the impact of different road-way conditions on driver
state and behaviors through on-road controlled studies. For instance, (63), (41) used physi-
ological responses to assess moderate levels of mental load. In this study, the authors have
used the same vehicle, and participants drove through the same route. The authors suggest
physiological variability can be used for distinguishing different levels of cognitive load, such
as differences in driving in a city as compared to a highway environment. In another study,
(2) collected EEG data from six participants while driving in a sensor-equipped Ford Escape
2015. Through their proposed framework, the authors were able to detect secondary task en-
gagement while driving with 99 % accuracy. The tasks included phone conversation, texting,
answering questions, spelling, and listening to music. The participants were driving around
the same time frame (2-5 pm), and an observer was present in the backseat for labeling the
data as the participant was driving the vehicle. (41) used cameras and chestbands for moni-
toring physiological measures such as ECG and respiration waves to detect important driving
events automatically. In this study, participants drove a regular sedan (Acura TLX) through
a pre-defined route. In their study, authors have used an unsupervised learning method to
cluster different physiological signals into categories of normal, event, and noise with a high
recall rate of 75 %. The detected events in the physiological signals were associated with cer-
tain driver state and behavior events of interest, such as frequent lane switching, last-minute
maneuvers, being angry, frustrated, and excited. In a similar study, to monitor how driver’s
emotions might vary in a driving condition, (69) monitored 34 participants for 50 minutes
through capturing physiological factors through the Empatica E4 wearable device, cameras
to capture both in-cabin and outside conditions. Through this study, the authors discovered
human-vehicle interaction (i.e., navigation, changing radio settings, cruise control) could
cause the highest number of negative emotions, among other reasons.

Overall, since on-road controlled studies are conducted with real vehicles and roadways,
they provide a more realistic condition compared to driving simulators. However, these stud-
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ies are still conducted in controlled environments (e.g., specific road type), usually include an
experimenter/observer, which may impact participant’s behaviors, and lack the longitudinal
aspect of naturalistic studies, where driver’s behaviors can be monitored across similar and
different contextual settings.

A more generalized type of on-road controlled study is FOT. These studies are conducted
to assess one specific factor or function, such as a new driving assisting system or a specific
intervention in real-world driving scenarios longitudinally (10; 4). These studies are generally
closer to the real-world unconstrained driving situation and have higher external validity
compared to on-road controlled study (10). However, as they are focused on a specific factor
of interest, they still include some level of constraints. For instance, they might use some
pre-equipped vehicles, which can lead to different behaviors by the participant. Examples of
FOT can be found in (19; 36; 53).

2.4 Naturalistic Driving Studies
NDS are conducted in real-world conditions, and they intend to capture how contextual
factors may impact driver’s behaviors and states (10; 59; 18; 48). NDS has high external
validity as it is performed in real-life scenarios (10). In these studies, the participants’
vehicles are instrumented with different sensing and monitoring technologies to collect both
internal and external factors while driving in naturalistic conditions. These devices may
include cameras, Onboard Diagnostic (OBD) readers, GPS units, and other data acquisition
systems that can collect information from both the in-cabin and outside environment (18).
In contract to on-road controlled studies, there are no observers/experimenters in NDS, and
participants are asked to perform their daily routine activities (20; 59; 18). Additionally, NDS
is always accompanied by uncontrollable real-life noise (10). As a result, to capture accurate
information about participants’ driving behaviors and account for real-world noise, NDS must
be conducted longitudinally. Compared to driving simulator and on-road controlled studies,
NDS is time consuming, resource extensive, and costly. However, these studies provide a
holistic understanding of how internal and external factors influence driver’s behaviors and
responses in different contextual settings.

Although there is a limited number of NDS to date, they have been conducted across
different countries (e.g., United States, Europe, Canada, China, Japan, and Australia). The
first large scale NDS is the “The 100-Car Naturalistic Study,” conducted by the Virginia Tech
Transportation Institute (VTTI) in 2005. In this study 241 primary and secondary drivers
were monitored for 12-13 months. 100-car includes 2,000,000 vehicle miles and approximately
43,000 hours of data. The primary goal was to provide information with regards to crash and
pre-crash data from both the environment and vehicle sensors. The data acquisition system
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in this study included five channels of digital video, longitudinal and lateral kinematic infor-
mation, lane-keeping measure, a GPS unit, and a headway detection system for providing
information on leading or following vehicles (48). The majority of the participants for this
study were recruited from the northern Virginia and Washington DC area. This dataset has
provided significant insights into changes in driving behaviors and states such as variations
in driver’s attention, and drowsiness (31), overtaking maneuvers (12), and even differences
in driving behaviors among different age and sex groups (47).

The next large-scale naturalistic study that was conducted in the United States is the
Second Strategic Highway Research Program (SHRP 2), conducted across Indiana, Pennsyl-
vania, Florida, New York, North Carolina, and Washington, starting from 2006 and ending
in 2015. The goal of this study was to understand the driver’s performance and behavior
in traffic safety (e.g., road departure, offset left-turn lanes, driver inattention, and rear-end
collisions on congested freeways). The data included in-cabin and outside video streams, eye
forward tracking, passive alcohol sensor, lane detection, vehicle accelerometer and gyroscope
measures, GPS, forward radar, light level sensor, and infrared illumination. This dataset
includes information from more than 3,400 drivers, with 5,400,000 trips spanning over 80
million km (an average of around 1,600 trips per participant) (9; 15). The SHRP 2 study
has provided a set of rich dataset to the research community, including multiple crash events
that were not available to this extent before, insights on driver’s behavior, and performance
analysis in different contextual settings and across different age groups. For instance, (23)
provided an overview of the impact of different weather conditions on driver’s lane-keeping
ability. Through analyzing the SHRP 2 dataset, they concluded heavy rain could signif-
icantly increase the standard deviation of lane position. Another study has analyzed the
relationship between the crash and near-crash events with the driver’s glance patterns based
on the SHRP 2 data (60). By performing a prevalence analysis on the glance regions, the
authors identified factors such as driver’s eyes positioning (e.g., on or off the road) prior to
the crash event as well as the driver’s uncertainty of a driving situation (e.g., arriving to an
intersection) to be significant predictors of the crash and near-crash events (60).

A similar study was conducted in 2012 in Europe, titled the European naturalistic Driv-
ing and Riding for Infrastructure & Vehicle safety and Environment (UDRIVE). The goal of
this study was to analyze driver’s behavior with a focus on both improving safety and identi-
fying new approaches to make a more sustainable road transportation system. The research
questions span across different roadway studies, including driver risky behaviors and causes
of accidents, day-to-day driving behaviors, causes of roadway distraction and inattention,
interactions with vulnerable road users, and eco-driving (5). This study collected 87,871
hours of data from 48 trucks (41,389 hours), 186 vehicles (45,591 hours), and 47 powered

17



two-wheelers (891 hours). The data collection has been conducted in six different countries
across the United Kingdom, Netherlands, Spain, Poland, France, and Germany. It includes
features extracted from video streams, CAN interface data collector, GPS, accelerometer,
and acceleration/speed sensors (18). UDRIVE helped researchers define a driving style indi-
cator based on secondary task engagement (e.g., phone usage), as well as analyzing regional
differences among different drivers. (3; 24).

Following a similar framework and setup as the SHRP 2 study, other NDS studies have
been conducted across China, Canada, and Japan. The “Chinese Naturalistic Driving Study”
(72) was conducted in Shanghai in 2012-2015. This study collected data from 60 drivers
over three years. The study collected 161,055 km of driving data. This study was conducted
by the Tongji University, General Motors, and the Virginia Tech Transportation Institute
(VTTI). This study has provided insights into the naturalistic driving behavior of Chinese
drivers. For instance, through this dataset, (39) discovered intersection types can change
the driver’s scanning behavior. In another study, five existing car-following models were
calibrated and validated using this dataset (72). Other studies have also evaluated more
specific behaviors, such as cut-in behavior (61). Two similar studies were conducted in
Canada and Japan. The NDS in Canada took place in Saskatoon and Saskatchewan in 2013
and concluded in 2015 (26). In this study, researchers collected over 2,000,000 trips from
149 drivers driving different categories of vehicles. Specifically, this study includes a “Truck
Study” that monitors 30 trucks in the western Canada region (i.e., Saskatchewan, Alberta,
British Columbia). Similar to SHRP 2 study, the primary research question in this study was
to to identify how different user-related and/or environmental factors may impact the rate
of crash and near-crash events in Saskatchewan. The major difference between this study
and the SHRP 2 is the change in the camera views and positioning (26). Additionally, this
study mainly focused on trucks and heavy vehicles compared to SHRP 2 were larger pool
of vehicles and drivers were recruited. A study conducted by Japan’s Automobile Research
Institute in 2006 (56) focused on evaluating driving behaviors by observing 60 participants
driving 35, cc-class wagons and 25 small sedans. The study collected five modalities of data,
including camera, GPS, audio, kinematic sensors, and OBD vehicle parameters. Similar to
previous studies, one of the main goals of this project was to detect factors contributing to
crashes.

Another NDS conducted in Canada is titled as “Candrive” and only focused on elderly
drivers (46; 45; 34). This study collected GPS and vehicle data from 928 participants of
70 years or older for up to four years. This study analyzed multiple research questions
specifically for elderly drivers, such as the impact of medical conditions on driving behaviors
and to further define a clinical criteria for unsafe drivers based on their health issues. For
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instance, based on this study, (32) provided a framework on assessing driving ability among
elderly using factors such as driving characteristics (e.g., type of road), driver’s actions (e.g.,
lane changes), and driving conditions (e.g., time of day). This study was further extended
to New Zealand and Australia, in which the researchers collected data from 300 elder drivers
in Melbourne, Australia and Wellington, New Zealand (34). The Australian Naturalistic
Driving Study’s (ANDS) goal was to monitor 360 drivers (180 from New South Wales and
180 from Victoria) to similarly identify reasons behind crashes and near-crash events (64).
It includes cameras, GPS, vehicle dynamics (e.g., speed, brake, and turn signal sensors),
and machine vision sensors’ data. This study was different from the previous ones in a
few ways: (1) the participants in this study were experienced drivers, excluding the novice
drivers; (2) the study duration was four months for each participant; and (3) the study
utilized newer driving assisting systems technologies such as such as Mobileye and Seeing
Machines to detect distraction and drowsiness events (64). Using ANDS, (68) assessed the
patterns of secondary task engagement during everyday driving scenarios, and (35) developed
a visualization platform to presents how different modalities simultaneously vary over time.

The most recent NDS is the MIT Advanced Vehicle Technology Study conducted in
2018 (20). This study was conducted with the aim of (1) collecting large-scale real-world
driving data with high definition videos to build and train deep learning based in-cabin
and outside perception systems and (2) enhancing the understanding of human-automation
interaction. In contrast to other NDS, this study only includes semi-autonomous vehicles
(mostly TESLA), and is conducted in the Boston metropolitan area in the United States.
This includes data collected from the Inertial Measurement Unit (IMU) sensors, GPS, CAN,
and cameras. To date, this study has collected more than 15,610 days of data, with over
511,638 miles of driving semi-autonomous vehicles from 122 participants (according to the
most recent publication on this work (20)). This study introduces a framework aimed at en-
hancing semi-autonomous vehicle safety and reliability by building better shared-automated
systems (21). A summary of the previous studies can be viewed in Table 2.1.

2.5 Current Gaps and Challenges in NDS
Reviewing the existing NDS suggests, these studies have provided a holistic overview of how
different internal and external factors vary over time. As a result, the research community
has significantly benefited from these studies, and different researchers across the world have
been able to further evaluate specific drivers’ behaviors, responses, and states in specific
contextual settings. Due to their significant impact and importance, which is because of
their high internal validity, the number of NDS has increased over the past two decades.
The majority of NDS focus on evaluating the effect of outdoor environments and external
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Table 2.1: This table provides an over the location, number of participants, modalities
and quantities of collected data in the on-going and previous naturalistic driving studies
conducted across the world ©2021 IEEE
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100-car study
Northern VA,

Washington DC,
United States

241

2,000,000
vehicle miles,
43,000 hours

of data,
12 - 13
months
data

collection
period per

vehicle

2005-2006 ✓ ✓ - ✓ ✓ - - ✓ ✓ - - - - - - - - - - - - - - -

SHRP-2
Eastern
region of
the US

3400
5,400,000,

49.5
million miles

2006-2015 ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ - - ✓ - - - - - - - - - ✓ ✓ -

Japanese
Driving Study Japan 60 - 2006-2008 ✓ - - ✓ ✓ - - - ✓ - - - - - - - - - - - - - - -

UDRIVE

United kingdom,
Spain,

Netherlands,
Poland,
France,

and
Germany

48 trucks,
186 vehicles,

and 47
powered

two wheelers

87871 total
hours of

collected data,
including

41389 hours
of truck,

45591 hours
of vehicle,
and 891
hours of
powered

two
wheelers

2012-2017 ✓ ✓ - ✓ ✓ - - - ✓ - - - ✓ - - - - - - - - - - -

Chinese NDS China 60

total
mileage

of
161,055

km

2012-2015 ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ - - - - - - - - - - -

Canadian NDS Canada 140
Over

2,000,000
trips

2013-2015 ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ - - ✓ - - - - - - - - - ✓ ✓ -

Candrive

Canada,
New Zealand,

and
Australia

928 from
Canada,
and 300

from
Australia

and
New Zealand

Up to
seven
years

of data
collection

2009-2015 ✓ ✓ - ✓ - - - - - - - - - - - - - - - - - - - -

ANDS Australia 360 1,512,630
km 2015 - Present ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ ✓ ✓ - ✓ - - - - - - - - ✓ ✓

MIT-AVT

Greater
Boston
area -

United States

122 511,638
miles 2015 - Present ✓ ✓ - ✓ ✓ ✓ - - ✓ - - - - - - - - - - - - - - -

HARMONY Virginia 21

At least
1 month
of driving
data per

participant

2019 - Present ✓ ✓ - - - - - - ✓ - ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - -
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factors on driving behaviors, and there is a limited number of studies that have collected
and analyzed physiological features and driver’s internal factors. Additionally, in the existing
NDS, driver sensing is solely conducted through features and behaviors extracted through
in-cabin videos. To better grasp the need for using multimodal driver sensing, in this section
we discuss the limitations of existing studies in solely relying on in-cabin video streams for
monitoring driver’s states and behaviors and highlight how new advancements in wearable
technologies and ubiquitous computing can address these limitations.

The most important drawback of video streams are their inability to provide the underly-
ing complicated state of the driver. Driving is a dynamic task that can be highly affected by
the driver’s psychophysiological state, such as the driver’s underlying emotional and cogni-
tive situation. Previous studies suggest a driver’s performance can be significantly impacted
by his/her emotional states; for instance, strong emotions such as positive valence leads to
better takeover readiness for drivers (17). Recent studies in the applications of affective
computing in driving, and psychology and emotion sciences provide evidence that we cannot
only rely on facial features to detect a person’s emotional states (1; 6). For instance, in
driving research, (1) demonstrates the limitation of video features in inferring driver’s state.
This study attempted to classify driver frustration using videos, audio, and a combination of
both. As our frustration might not necessarily appear in our facial expressions, a combina-
tion of audio and video resulted in a higher accuracy in detecting frustration. An example of
such situation is when our frustration shows up as a smile, which can be mistakenly thought
of as a joyful event if we only relied on video data. In addition to driving research, recent
studies in psychology suggest that analyzing emotions should not be taken out of context
(6). In other words, the context defines the emotional state that we are in and might be the
reason why we feel sad, happy, or angry given certain environmental conditions (6; 30). As
a result, to achieve a trustworthy and acceptable level of shared-autonomy, future AV needs
to be able to detect and validate driver’s states through features extracted from different
sensing modalities.

Features extracted from video streams have also been utilized to detect and classify
driver’s cognitive load (22), possible distraction (67), and drowsiness (70). For instance,
(22) have used features extracted from the driver’s eyes to monitor driver’s cognitive load
in a typical n-back task while driving. In their study, the authors have achieved 88.1 %
accuracy in detecting low, medium, and high cognitive load from 92 participants driving
semi-autonomous vehicles in the wild. Additionally, by using videos, multiple studies have
attempted to detect driver’s secondary tasks such as interacting with the center-dash system
(e.g., to change radio station), or speaking on the phone, which might also be indicative of
certain levels of possible distraction (67; 40). Although we can extract and classify driver
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behaviors and states through video features, we still struggle in classifying the situation
when visual cues are not indicative of driver’s states. Examples include situations that these
visual cues vary among participants for the same state (e.g., people vary in expressing their
frustration (1)) or the driver might have hidden psychological states (e.g., under cognitive
load from a prior task such as a phone call before entering the vehicle). Such cases require
other modalities of data to capture the driver’s cognitive load. For instance, a recent re-
view on cognitive load estimation in driving provided eight different measures as candidates
for assessing a driver’s cognitive load. These measures include electroencephalography and
event-related potentials, optical imaging, HR and HR variability, blood pressure, skin con-
ductance, electromyography, thermal imaging, and pupillometry (52). Although a recent
study has attempted to estimate some of these features from video streams (e.g., estimating
HR from video (75)), most of them are currently measured through physiological sensors
that are not accessible while solely relying on videos. Thus, to estimate the cognitive load of
the driver we need to explore beyond features extracted from video streams and identify how
other devices can be complementary in measuring the driver and passenger(s) psychophys-
iological states during different driving events. These examples collectively suggested that
videos can be insufficient, and even to some extent misleading if they are the only source
that we are relying upon for driver’s state recognition

Studies also quantified driving behaviors such as lane-keeping ability or breaking patterns
as a means to detect the driver’s physiological state. Behavioral techniques to detect the
hidden states of the driver, may not always provide a full understanding of the driver’s state.
For instance, (38) indicated drivers’ cardiac measures can be affected by secondary tasks
(e.g., n-back tasks) while leaving driving behavioral metrics such as lane-keeping unchanged.

Moreover, it should be noted that videos are both computationally expensive and privacy-
intrusive. Relying upon videos for driver’s state recognition often requires high amount of
video data in which many attributes of driver’s personal behaviors are exposed to the research
team or the automaker manufacturers. People often do not feel comfortable being monitored
for an extensive amount of time via video cameras. Furthermore, to perform real-time
processing of video streams is computationally expensive and requires in-vehicle GPU units.
However, physiological measures retrieved through wearable devices have proven to be very
helpful in detecting human’s state and behaviors (54), provide feedback and interventions
(14) while being less privacy intrusive and having a much lower computational cost. For
instance, recent human factor research studies have shown that hand acceleration data can
be used to detect multiple human activities such as walking, jogging, and biking with a
high level of accuracy (11). Another study has found that physiological measures recorded
in a driving simulator were indicative of a driver’s psychophysiological state in automated
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and semi-automated driving mode (16). Such applications can be extended to in-cabin
real-world activities, which can then be helpful in detecting task engagements (e.g., phone
usage, eating), safety-related issues (e.g., distraction, drowsiness) (37; 43), and emotions and
cognitive load (17; 16; 17).

Lastly, most of the previous major NDS did not collect detailed ambient in-cabin external
factors data such as (1) noise level, (2) light level, and (3) the music that is played in-cabin.
Previous studies through controlled experimental setups have shown the effect of these in-
cabin external factors on driver’s state and behaviors (28; 71; 27; 25). For instance, a recent
review suggests traffic noise can be a cause for a psychological disorder, and mental stress
(25). Another study has analyzed the effect of three different conditions of ambient light
(i.e., no light, blue, and orange light) on the driver’s behavior. This study found out that
the presence of ambient light can enhance driving performance (i.e., lane-keeping) (27).

Additionally, research suggests music can have a significant impact on a person’s behav-
iors, emotions, and physiological states (28). Previous research suggests listening to music
can cause distraction, which increases the risks of accidents, especially in high demanding
scenarios, such as unexpected red rear brake lights and complex peripheral signals (8; 7).
On the other hand, music can also be used to mitigate the impact of emotional states on the
driver’s risk acceptance and safety considerations while driving (28). Additionally, more re-
cent studies have shown various music features have a different impact on people’s behaviors,
although no consensus has been reached so far. Furthermore, the findings from no-driving
relate studies can contradict with driving studies. For example, in a no-driving study, the
high tempo is found to significantly increase HR while listening to the music as compared
with silence(58). However, in a car-following study, the physiological measurement did not
differ in conditions with and without music, even with different volume levels(57). Other
music features, like the music genre, were also found to affect driving performance (62).
Similarly,(73; 13; 33) mentioned that the mitigation effect of certain music types differs in
human factors (age, gender, emotional states, preferences, and familiarity) and environmen-
tal factors (the time of the day, location, the current tasks, presence of other passengers).
While existing studies provide significant insight into the effect of such in-cabin external
factors on driver’s state and behaviors, almost all of them rely on experimental controlled
setups (e.g., playing a pre-defined music list by the researcher) and have not been performed
in fully naturalistic driving environments.
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Chapter 3

HARMONY: a Human-centered Multimodal Driv-
ing Study in the Wild

1

3.1 HARMONY Goals
As outlined in Table 1, the HARMONY framework addresses the identified gaps by integrat-
ing physiological sensing and machine vision to contextualize driving experiences. To create
the HARMONY framework, wearable devices, cameras, and ambient sensors are utilized to
track and monitor different external and internal factors. The data extracted from these
devices are used to contextualize different driving events and their corresponding user or
group-specific behaviors and responses. The specific goals of HARMONY are to (1) intro-
duce an NDS framework to collect and monitor driver’s psychophysiological states in addition
to the changes in in-cabin and outdoor environments and (2) analyze the changes in driver
states and behaviors and train machine learning models to automatically detect and classify
different driving behaviors, states, and events.

3.1.1 Goal 1: An NDS framework for collecting and analyzing driver’s psy-
chophysiological state together with the environment

The first goal of HARMONY is to provide insights into driver’s states and behaviors by in-
troducing a framework that is naturalistic, longitudinal, and scalable. To achieve this, HAR-
MONY uses off-the-shelf sensing devices for data collection and integrates state-of-the-art
computer vision and machine learning algorithms to extract detailed contextual information
from cameras, wearable devices, and ambient sensors. Specifically, HARMONY is designed
to longitudinally monitor and collect the driver’s physiology, movements, location, along
with the ambient conditions in the vehicle (i.e., light and noise levels, and in-cabin music

1This chapter is ©2021 IEEE. Reprinted, with permission, from (16)
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features). The proposed NDS framework then utilizes “virtual sensors" to extract different
contextual features from the cameras and wearable devices. Additionally, HARMONY mon-
itors the ambient noise levels as well as the music being played while driving as the main
characteristic of the in-cabin environment.

3.1.2 Goal 2: analyze the changes in driver states and behaviors and build
predictive driver state models

Previous research defines context as any relevant information that can be used to character-
ize a situation of an entity (7; 15). This can include a place, one or a series of events, as
well as the user of the application (7). Thus, the second goal of HARMONY is to provide
detailed information for defining driving situations by moving beyond only collecting the
visually available information (e.g., outside or in-cabin conditions). Through fusing physio-
logical, environmental, and behavioral factors, HARMONY aims to create predictive models
to identify driver’s states such as cognitive load, attentiveness, and task-engagement with
higher reliability and to a greater detail compared to existing methods. Wearable devices
and ubiquitous computing have been used in multiple disciplines due to their strong potential
in providing rich information about the user while being less intrusive and computationally
expensive. By integrating multiple sensors in one device, wearables can decode human phys-
iological states as well as provide information on human activities and environmental events.
In driving applications, in addition to revealing human’s underlying state, such devices can
be coupled with other modalities of data to better enhance predictive models generated by
HARMONY for driver activity and engagement recognition. This is an important advance-
ment to be included in current and future AV for retrieving the driver’s state in real-time so
that vehicles can rely on the driver’s attention in the events of failure. In this way, HAR-
MONY paves the way for future safe autonomous vehicles that are reliable and do not invade
users’ privacy.

3.2 The Proposed Framework
To achieve the identified goals, as shown in Fig. 3.1 the HARMONY framework provides
a holistic view of driving events by integrating driver’s psychophysiogical factors (internal
factors) with the changes in outside and in-cabin conditions (external factors). In the fol-
lowing subsections, we first provide an overview of the sensors and algorithms utilized in
HARMONY (section 3.3). Then we provide an overview of our data processing and fusion
techniques, which are implemented for retrieving events of interest with respect to the envi-
ronment and the driver from the collected sensor readings (section 3.4). Lastly, we discuss
the details on participant recruitment and our on-going data collection efforts (section 3.5).
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Figure 3.1: Data Collection Framework. Using this framework we can better contextualize
driving scenarios and provide multimodal data while being low-cost ©2021 IEEE
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3.3 Data Collection
In HARMONY, data is collected through three sources: (1) driver, (2) vehicle, and (3)
ambient sensors through a network of physical and virtual sensors. Physical sensors refer
to commercially available devices that collect raw information such as video streams and
participants’ biometrics. Virtual sensors refer to feature extraction and event detection
algorithms as well as APIs that provide a deeper layer of information about the contextual
settings. Subsection 3.3.1 and 3.3.2 provide more details about the utilized physical and
virtual sensors, respectively.

3.3.1 Physical Sensors

HARMONY only collects data from two physical sensors: a dash camera and a wearable
device (smartwatch). By extracting information from different sensors that are integrated
into each of these devices, we collect raw video streams of in-cabin and outside environments
as well as biometric information from the drivers.

3.3.1.1 Camera:

A dual-dash camera is used to collect both inside and outside environment information
simultaneously, with relatively high storage that can be used for longitudinal data collection.
After testing a number of commercially available dash cameras, for the first round of data
collection, we utilized the BlackVue DR750S-2CH dash camera. This camera specifically
includes: (1) up to 256 GB with an SD card memory (approximately 25 hours of driving), (2)
GPS device to track vehicle’s location, and (3) synced with the global time retrieved through
GPS, allowing the camera always provide the correct current timing (this feature is critical
to synchronize the timestamps of events between the physical devices). The camera does not
have an LCD, which decreases the chances of distraction by the LCD for participants. This
also may reduce participants’ sense of being monitored by observers/researchers. Moreover,
this camera has the option of disabling the audio recording, which is required as per the
Institutional Review Board (IRB) approval for this study. In addition, the utilized dual-
dash camera provides the speed of the vehicle. The recorded videos are stored at 30 frames
per second (fps), Full HD resolution in 3-minutes segments. Each 3-minutes segment of
driving is saved as a joint video of the inside and outside environments. A view of the
camera can be seen in Fig. 3.2.

3.3.1.2 Smartwatch:

To collect data with frequency and properties of interest, HARMONY uses an android smart-
watch that is equipped with the “SWear” app (Fig. 3.3 - A), an in-house app designed for
collecting long-term sensor data from smartwatches (5). SWear is available on Android store
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Figure 3.2: sample view of the in-cabin camera (A), BlackVue dash camera (B), sample view
of the outside cabin dash camera (C) ©2021 IEEE

(4) and is designed to smooth the process of data collection on smartwatches by adding
the ability to control each sensor’s data collection frequency to the desired sensing regime.
For HARMONY 1.0, SWear records HR [1 HZ], hand acceleration [10 HZ], audio ampli-
tude (noise level) [1/60 HZ], light intensity [1/60 HZ], location [1/600 HZ], gravity [10 HZ],
Compass [1 HZ], Altitude [1 HZ], Magnetometer [10 HZ] and gyroscope [10 Hz] data. The
user interface of the app on the device can be seen in Fig. 3.3. Participants are required to
start/stop the data collection for every session of driving (3.3 - B). The smartwatch saves
every segment of driving data locally and records the participant’s ID, and the number of
saved files on the app’s status tab (Fig. 3.3 - C). Every participant is required to sync the
watch with their own personal phones. Every two weeks, the participant were requested to
transfer their data to our system by one-click on the upload icon on the settings tab (3.3 -
D) to transfer data through wifi to a secure Amazon Web Service server for further storage
and analysis. The watch syncs it’s time periodically from the companion mobile phone,
it always provides the current synced global time. Many new features have been recently
added to SWear to further facilitate data collection such as automatic data sync to the cloud
and adaptive sensing by automatically enabling data collection when a driving activity is
detected.

3.3.2 Virtual sensors

In addition to the two devices, multiple virtual sensors are utilized to retrieve information
about the driving situation by either using the outputs of physical sensors or cloud informa-
tion. Virtual sensors in our system are APIs, computer vision algorithms, as well as in-house
developed event-detection algorithms. APIs include music platform API, Google Maps API,
and Weather API. HARMONY collects the log of the music that the participant is listen-
ing through either the music application API used by the participant while driving (e.g.,
Spotify, Pandora, YouTube) or through connecting all the music applications to a unifying
platform such as Last.FM account, where the log of participant’s music can be retrieved.
This log includes the music title, duration, lyrics, and the time that was played. After one
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Figure 3.3: sample view of the android smartwatch (A), homepage of the app (B), status
page of the app (C), setting page of the app (D) ©2021 IEEE

time setup at the beginning of the project, the music data collection does not require further
intervention in subsequent experiments. Additionally, the timestamp of all of the music is
based on the same global time as the other devices.

Additionally, HARMONY collects the weather and road data by using two APIs of Google
Map (10), and OpenWeatherMap (22). These two APIs provide speed limits, user’s route,
as well as weather conditions for a set of GPS data retrieved through the smart wearable.
Moreover, using multiple computer vision algorithms, detailed representations of both in-
cabin and outside environment are retrieved. These algorithms help retrieve the driver’s
gaze, pose, facial emotions, as well as objects in the field of view (i.e., both in-cabin and
outside videos). The computer vision algorithms performed on the dataset are detailed out
later in section 3.4.

3.4 Data Processing
We first retrieve the information of every file that is recorded in our system. This information
includes the file properties of the videos (e.g., duration, start time, end time), information
retrieved from in-cabin and outdoor video streams (e.g., number of passengers), and the
associated (time-stamped) physiological data files (if available). The data processing takes
place through multiple scripts coded in Python, which will be detailed out in the subsections
below.

3.4.1 Video information

Video information is retrieved automatically through FFMPEG video packages in Python
(8). By using the file information on each video, we retrieve the name of the video, participant
ID, duration of each video, start time, and end time. Also, using the sunset and sunrise
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time, we assess if a video is recorded in day or night. This is important as many of the
computer vision applications are not feasible to retrieve data on dark/night-time videos.
This information is then used to produce the time frames epochs that need to be created
from modalities of HARMONY (i.e., smart wearable and APIs).

3.4.2 Gaze, Pose, and Facial Features

Each in-cabin video is analyzed using three software: OpenFace (3), OpenPose (6), and Af-
fectiva (13). OpenFace analyzes faces in the in-cabin videos and outputs facial landmarks,
head pose, gaze direction in 3D, and gaze angles in horizontal and vertical directions. Open-
Pose detects skeleton joints in each video. Finally, using the Affectiva module on iMotion
software, multiple emotional metrics are retrieved, including 2D and 1D emotional measures.
The 2D emotional measure includes valence and engagement. Valence is the extent that a
person’s facial emotion is negative or positive, ranging from -100 to +100. Engagement is
the extent that a person reveals their specific emotion using their facial muscles ranging from
0 to 100 with not showing emotion as 0. Additionally, six basic categorical emotions (1D
space) are also retrieved using Affectiva. These include sadness, anger, happiness, contempt,
surprise, and fear. These results are saved into a CSV file associated with each video epoch.

3.4.3 Smartwatch Epochs

As recording the smartwatch data requires the participant to start and stop the watch for
every scenario, sometimes the participant either forgets to record or does not have the watch
in the car. Thus for every driving video, there is a need for an assessment to determine
whether a physiological file exists or not. By using the retrieved time frames from the
videos, the same epochs of smartwatch data (e.g., HR, and hand acceleration) are extracted
and saved to a CSV file for each specific participant.

3.4.4 Music Features

The next step is to use the collected music log as described in section 3.2, to retrieve different
music/song features being played while driving for each participant. By feeding the music
log of the participant to the Spotify API, the audio features, including energy, danceability,
instrumentalness, acousticness, liveness, loudness, valence, tempo, and lyrics are extracted
if the music is vocal (podcast and talk shows are not included). When the lyrics are not
available in Spotify’s database, the system searches for the lyrics in alternative databases,
such as PyLyrics (14) and Genius (9).

3.4.5 Trip Information

Having access to longitudinal data requires us to recognize the purpose, duration, and dif-
ferences or similarities of trips driven by participants. We use the similarity between the
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locations of the GPS data points to retrieve the trips that are similar to each other. In
this way, repeated trips for each participant can be identified and used for future analysis.
Additionally, we feed the GPS locations of each trip to Google API and identify (1) the
route that the person takes every day, (2) the speed limit in that route for each data point,
(3) the number of intersections within that route, and (4) the snap to the road on that
specific route. This information is included in HARMONY as we expect this information
can further improve how we contextualize the outside environment using different modalities
of data (e.g., Google API and features extracted from video streams).

Figure 3.4: OpenPose sample output providing driver’s skeleton key point (A), OpenFace
sample output providing driver’s facial and gaze measures in the wild (B) ©2021 IEEE

3.4.6 Driver’s speed

The vehicle’s speed is collected through the camera. The speed of the car is collected with
a 1 Hz frequency and is saved to a CSV file associated with the participant and the trip.
GPS on the camera lets us decrease the number of devices that are already in the vehicle
to enhance the participant’s comfort while using such devices. Speed of the vehicle can also
be collected through CAN devices or the GPS on the smartwatch with higher frequency if
needed.

3.4.7 Event Detection

After retrieving all the contextual elements, we use these measurements to retrieve different
events happening in driving. These events provide a multimodal labeled dataset that can be
used to train different models (e.g., deep learning models) for classification and prediction
(e.g., driver’s state recognition) of different activities and behaviors. The event detection
is performed both manually and automatically. The manual event detection is performed
on a random subset of the data from each participant to create ground truth and training
datasets. The automatic event detection is performed on all the collected data.

3.4.7.1 Manual Event Detection:

the manual process recognizes events and actions in three categories: the environment,
driver’s state, and driver’s actions. To perform the detailed annotation, we ask the an-
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Figure 3.5: Annotation table, sample view of the trigger codes (A), sample annotation for a
video (B) ©2021 IEEE

notator(s) to view both frontal and in-cabin videos simultaneously. The annotator(s) is
provided with a table that includes already known actions, environmental situation, and
driver’s state. A sample view of the annotation table can be viewed in Fig. 3.5. The detail
of each group of annotations is provided below:

• Environment: in this category, all the environmental-related instances will be anno-
tated. For instance, each outside video is annotated based on road type (i.e., driving
in a city street, one-lane to six-lane highway, and parking lot), weather condition, pres-
ence of other specific road users (i.e., bike, bus, trucks, and pedestrians), passing by
an intersection, and traffic patterns and density. Each inside video is also annotated
based on the presence of passenger(s) and light intensity (binary of being dark or not
dark).

• Task: driver’s tasks, including both primary (i.e., directly related to driving) and
secondary tasks (i.e., not related to driving), are manually identified and annotated.
The primary tasks include performing change lane and u-turn, checking mirror (one
task for each mirror), fastening and unfastening seat belt, and the secondary tasks
include eating, drinking, working with phone, talking on the phone, holding the phone,
checking the speed stack, working with the center stack, talking with the passenger(s),
dancing to the music, the placement of hands on the steering wheel (i.e., both hands,
one hand, and none), opening, and closing window.

• State: driver’s state indicators such as specific facial expressions are recorded in this
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Figure 3.6: Number of the annotated instances for part of the data that only video is available
to date ©2021 IEEE

category. This will help with understanding sudden changes in driver’s states that are
visible in the videos and comparing them with driver’s physiological measures, outputs
of facial analysis software, and environmental conditions. This annotation includes
sudden happiness, sadness, anger, being bothered by glare or sudden change in light
intensity, and excessive sweating.

Each task is annotated from the second that it is visibly started in the video until the moment
that there is no sign of that task in the video. Fig. 3.6 and 3.7 depict the number of instances
per participant that has been annotated up until now. The annotation is an on-going task
and the most recent result for this section of the dataset can be viewed on (17).

3.4.7.2 Automatic Classification and Event Detection:

after performing manual event detection, we also analyze the videos using already developed
deep learning based algorithms such as object (1) and sign detection (2), and in-house lane
and lane-change detection. These algorithms help us retrieve events that include certain
objects in the field of views such as passing by a bike, a truck, a bus, an intersection, or a
pedestrian, or detecting certain food object in the cabin, number of people in the vehicle,
and holding a phone or other objects. These events then help us analyze driver’s behaviors
and states in specific situations such as changing lanes, passing a cyclist, or arriving a yellow
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Figure 3.7: Number of the annotated instances for part of the data that all modalities are
available, to date. Note that these include less data as not every video has an available
physiological data attached to it. ©2021 IEEE

light at an intersection.

3.5 Participant Recruitment
To collect participant’s data, we received an approval from the University of Virginia’s (UVA)
Institutional Review Board for Social & Behavioral Sciences. For the first phase of the study,
21 individuals who were either a student and faculty from UVA or were working professionals
within the state of Virginia. Participants were required to have a valid driving license and
owned a personal vehicle. Participants were instructed on how to use the equipment, their
right, and obligation, as well as details on how to charge their smartwatch and upload the
collected data periodically. Each participant owns all of their data, meaning that they were
first requested to review all of their videos, delete any or all segments of the videos prior
to providing them to the research team. The videos that include people who we do not
have consent form were deleted and not used in this dataset. Each participant is assigned
a participant ID for identification. Each participant received $50 for every 30 hours of
complete data (i.e., data from both smartwatch and camera). 21 participants (11 females
and 10 males), between the ages 21 to 33 have joined the study as of November 2020.

Fig. 3.8 demonstrates the locations of all the collected data to date. The most recent map
of the collected data can be viewed in (18). The data has been mostly collected from eastern
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Figure 3.8: GPS location of the collected data to date. Although participants are mostly
from the state of Virginia, the data includes the roads from northeastern regions of the
country. ©2021 IEEE

and northeastern regions of the United States, including states of Virginia, Pennsylvania,
Delaware, West Virginia, Indiana, Illinois, Ohio, Vermont, New Hampshire, Maine, and New
York. This data collection started in June 2019 and is currently on-going. It should be
noted that the participants in phase I are from the state of Virginia, thus most of the trips
are generated in the state of Virginia. Additionally, details of the collected data such as
frequency of current data collection for each sensor and duration, can be viewed on Table
3.1.

3.6 A method for analyzing the amount of data required by the

system
Previous studies have indicated different driving conditions may influence driver’s physiolog-
ical factors; however, many of these studies were utilizing short-term physiological sensing
and conducted in controlled experimental studies (20; 12; 21). With short-term behavioral
and physiological data, we may not be able to properly capture the underlying variability
in a driver’s state changes. This is mainly because a human’s physiological measures are
dynamic and can be impacted by many different factors. People’s HR, for instance, has dif-
ferent baselines and distributions on different days or after certain activities (e.g., going on
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Table 3.1: Details of collected data to date through HARMONY framework ©2021 IEEE

Device/software Sensor Type Frequency Model
Collected
Data to

Date (Hours)

Additional
Info

Smart Watch

Hand
Acceleration Physical 10 Hz Fossil 150 -

Hand
Gyroscope Physical 10 Hz Fossil 150 -

Heart
Rate Physical 1 Hz Fossil 150 -

Light Physical 1/60 Hz Fossil 150 -
Noise Physical 1/60 Hz Fossil 150 -

Location Physical 1/600 Hz Fossil 150 -

Dash Camera

Inside
Camera Physical 30 fps Blackvue

DR750S-2CH 380
Full HD
1080P

resolution

Outside
Camera Physical 30 fps Blackvue

DR750S-2CH 380
Full HD
1080P

resolution

Speed Physical 1 Hz Blackvue
DR750S-2CH 380 -

OpenFace Gaze Virtual 30 fps - 380 -
OpenPose Pose Virtual 30 fps - 380 -

Imotion Facial
Emotion Virtual 30 fps - 380 -

a run). To ensure that enough data is collected in a noisy natural environment, the experi-
menter first needs to confirm that the captured data demonstrates the underlying variability
in variables of interest. In other words, every trip of driving data can have a different under-
lying distribution, which requires the experimenter to collect enough trips that can capture
the summation of as many distributions throughout different days of driving. Fig. 3.9 shows
the distribution of HR data collected from one of our participants driving from home to
the workplace throughout different days, for a period of mid-December 2019 to early March
2020. We have specifically chosen this example to demonstrate that distributions can be
very different, even if the outside context is somewhat the same. To find out the minimum
number of days required for collecting participant physiological and behavioral data, we used
the Kernel Density Estimation (KDE) to assess the variation in distributions (19).

Previous research has used KDE to assess the amount of data needed for an NDS pro-
vided in (19). We can apply the same method on the HARMONY dataset to calculate the
estimation of the kernel density of the data and assess its variability with respect to adding
more data. If adding more data on a daily basis causes the distribution to change signifi-
cantly, it means that more data is needed. We are interested in finding the saturation point
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Figure 3.9: A participant’s HR distribution while driving through the same route for multiple
days. Note that the distribution changes on a daily basis, pointing to a need in collecting
long-term longitudinal data ©2021 IEEE

at which adding more data does not cause the overall distribution to change significantly. If
a few consecutive days of driving in a naturalistic setting can provide enough physiological
data, then the kernel density estimation should not change significantly as more data points
are being added.

In order to estimate the underlying distribution function of a given sample of data, KDE
can be used for its robustness in estimating the kernel in a non parametric fashion (19).
Through this method, the estimation for the probability distribution can be calculated as
shown in equation 1 (19; 11). Considering we have a sample sequence of data {Xi}n1 :

f̂(x) = n−1

n∑
1

h−1K(x−Xi) (3.1)

Where h is the bandwidth and K is the kernel function. The estimate of the probability
distribution is a function of bandwidth (h). The bandwidth value can result in variations
in different levels of smoothness of the estimation, with higher values providing a smoother
estimate. When estimating a probability distribution through this method, we can compare
the similarities of two distributions using the Kullback-Liebler (KL) divergence index to
identify how much information is lost when we approximate one distribution with another.
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KL is calculated as:

KL(f̂(x;n)||ĝ(x;m)) =

∫
[f̂(x;n) ∗ log( f̂(x;n)

ĝ(x;m)
)] (3.2)

Where f̂ and ĝ are two different kernel density estimates. Now, when having two esti-
mates of kernel density based on n and n+m datapoints, equation (2) becomes:

KL(f̂(x;n+m)||f̂(x;n)) =∫
[f̂(x;n+m) ∗ log( f̂(x;n+m)

f̂(x;n)
)]

(3.3)

If the KL-divergence value is below a specified ϵ, then the two density functions are
considered to be similar, meaning that adding more data will not add more information to
the statistical variability of the factor of interest. In order to show why we cannot always rely
on short-term driving behavior studies and why NDS are needed to also include physiological
data longitudinally, we have applied the above method to the HR data collected from one of
our participants over the course of three months from mid-December to mid-March. We have
specifically chosen this participant as the data provides consecutive days of driving through
the same local areas within the city. This helps us decrease the variability among external
factors. Note that the driving duration varies day by day, and weeks of data collection
is required to provide hours of driving data. For our problem, we have used a Gaussian
Kernel, with a bandwidth of 0.2. We have gradually added m amount of data (every 250
seconds of data, which is roughly equal to one day of driving data) to the KDE function and
estimated the KL-divergence between the consecutive estimates until the difference is below
an ϵ = 1e− 5. Fig. 3.10 demonstrates the difference between the kernel density estimations
as more data is being added. As shown on the graph, this happens at around 6 hours of
data which is approximately equal to 2 months of physiological data while daily driving for
this participant.

In this example, we demonstrated that a short period of driver’s state measures is not
enough for capturing real variability in the data. Additionally, the results show even driving
through the same route can be accompanied by very different distributions of the driver’s
HR levels. These differences indicate the baselines of HR in different days can vary and cause
difficulties in making inferences if it is not collected for a long enough duration. Additionally,
it should be considered that in a naturalistic setting, other factors can also affect the variables
of interest, which can increase the required data collection period. For instance, in our case
of analyzing HR data, activities prior to driving, emotional responses, number of passengers
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Figure 3.10: Kernel density estimation analysis for 3 months of HR data. The KL divergence
algorithm demonstrates that after approximately 3 months of data collection (6 hours), the
difference between estimated kernels reaches below 1e-5 ©2021 IEEE

in the vehicle, and the traffic density can all affect the driver’s HR distributions. Thus it is
important to confirm the collected data captures the statistical variability.
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Chapter 4

Multimodal Driver State and Behavior Detection

This chapter focuses on detecting driver’s state based on multimodal data in the wild. In this
chapter, two separate methods are showcased for this purpose. The first method, uses con-
ventional machine learning frameworks to perform supervised learning in detecting driver’s
state, behaviors, and driving environment based on the smartwatch data1. The second
method, then dives into unsupervised learning scheme using text analytic approaches to find
driving behavior and state topics for each segment of driving.

4.1 Project 1: Multimodal Driver State and Behavior Detection

Through Supervised Learning

4.1.1 Introduction

Autonomous technologies are evolving exponentially, changing the interaction between semi-
automated vehicles and the human driver drastically (6; 40). Previously, advanced driving
assisting systems (ADAS) (e.g., cruise control, or lane-keeping assisting system) were only
used to assist the driver who acted as a supervisor; however, with the fast-paced improve-
ments in auto-pilot systems (e.g., autopilot in TESLA vehicles), the line between the su-
pervisor and a sole driver is starting to blur. This approach to autonomy is referred to as
shared-autonomy, in which the task of driving is achieved through a collaboration between
the driver and the vehicle (35). Despite their successes, these approaches still rely on the
driver to take over in critical situations without the vehicle having any understanding of the
current state of the driver (e.g., distracted, fatigued, stressed, or under the influence of sub-
stances). In order to address these issues, the shared autonomy approach generally includes
a driver sensing module in which the driver’s states and behaviors are monitored in real-time.
An example of a commercial semi-automated system that has extensive driver monitoring is
the Comma.ai’s openpilot (24), which monitors the driver in real-time for driver distraction

1This project is ©2021 IEEE. Reprinted, with permission, from (101)
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detection. Through the driver sensing module, the vehicle is provided with a contextual
awareness with respect to the driver’s status in real-time.

Driver sensing systems often rely on camera streams as they are very powerful in revealing
driver’s activities, states, and behaviors in real-time through different activity recognition
(76; 60), distraction detection (48), cognitive load estimation (37), and emotion detection
methods (1). However, camera streams suffer from a few hardware, driving, and privacy-
related issues. First, changes in illumination (e.g., night condition), having shadows, angle
of the camera, quality of videos, and even type of the camera can significantly influence their
accuracy and reliability in detecting driver’s state and behaviors (45; 76). Second, to cover
the entire in-cabin space, multiple cameras have to be used because one camera cannot cover
all in-cabin and outside conditions (83; 73). Third, cameras are highly intrusive in nature,
which may make people feel uncomfortable when being constantly monitored (93). Due to
privacy concerns, many times, people prefer not sharing their video/audio data, making it
impossible to track their states (4). Lastly, although we have seen significant improvements in
computational techniques, processing video streams and applying computer vision techniques
to detect human activity and state are still relatively costly and resource extensive (43).

Although recent improvements such as enhancements in night vision capability of cam-
eras or fusing radar systems with camera streams have overcome some of the aforementioned
problems, the issue with privacy intrusion, cost, and high computational requirement still
remain as main issues with cameras. An alternative solution is to use passive sensing tech-
niques through smart wearable devices to detect driver behavior and states. These passive
sensing methods can be used to (1) optimize video recording duration to the least amount
possible (e.g., only collecting videos when passive sensing requires additional contextual in-
formation on the driver and environment); (2) cover situations that vision systems cannot
capture (e.g., in low-light conditions); and (3) use less computation energy and cost as com-
pared to video recording. While passive sensing has been studied in driving research, their
applicability in real-world driving scenarios remains an open question, partly because these
technologies are just starting to become popular and emerge as a long-term deployment
solution (102).

In this study, we leverage ubiquitous sensing for classifying various elements of driving
context, including driver’s activity, outside events, and driving environment attributes in
a fully naturalistic driving study. We first provide a summary of previous works in the
driver’s state and behavior recognition using wearable devices. Then we delve into our
methodology for collecting and processing passive driver sensing data. We compare and
contrast multiple machine learning methods on classifying driver’s activities, outside events,
and road attributes from non-intrusive data in real-world driving situations. Our work
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facilitates the transition to using off-the-shelf wearable devices for detecting driver’s state
and behaviors.

4.1.2 Background Study

Recent studies have provided insights into the application of wearable devices and ubiquitous
computing in driving studies. These studies primarily focused on various states of the driver
such as stress (22; 99; 100), drowsiness (56; 22), distraction (14), fatigue (22), as well as
different driving behaviors such as take-over readiness (74; 75; 5), driving maneuvers (e.g.,
turning) (62), turning and lane changes (42).

(62) used a combination of phone and wearable device to detect driving maneuvers such as
steering wheel turning angle. In their study, authors first detect driver’s sensor reading from
the pool of driver, passenger, and vehicle sensor data with an accuracy of 98.9 %. Then,
based on the driver’s hand inertial measurement unit (IMU) measurements, the steering
wheel angle is estimated in a stationary vehicle. (84) analyzed driver’s arousal level in a
driving simulator using a wearable device, worn on the participants’ writs. In their study,
authors used deep neural networks to detect three levels of arousal, under, normal, and
over-aroused based on the driver’s heart rate, skin conductance, and skin temperature. The
authors were able to achieve an F-score of 0.82 for arousal detection through recruiting 11
participants. Similarly, (22) used a wrist-worn wearable device for detecting driver’s stress,
fatigue, and drowsiness. By using a driving simulator with 28 participants, they were able
to achieve an accuracy level of 98.43 % for detecting each state. (39) used a wearable
smartwatch to detect instances of driver’s distraction in a driving simulator. In their study,
by collecting physiological data from 16 participants and utilizing multiple machine learning
algorithms such as decision trees and support vector machines to classify different driving
states, they achieved an average accuracy of 89 % in distraction detection.

(14) used a wearable device and a phone for detecting driver’s distraction based on driver’s
hand movement. In their study, authors developed an app that detects various motions of
the driver’s hands, such as different types of holding the steering wheel, by fusing the sensor
readings from both driver’s hand and the phone’s IMU measurements. By using the IMU
sensors on the wearable device (59) was able to detect different classes of phone, text, drink,
using a marker, using a touch screen, and normal driving with an F-1 score of 0.87. (42)
used a smartwatch and wearable magnetic ring along with eye-tracking glasses to detect
driver’s distraction and activities such as turning and lane changes. Their systems achieved
87 % precision and 90 % recall on data collected from 10 participants in an on-road controlled
study. In a recent study, (56) used off-the-shelf wearable devices to detect driver’s drowsiness
in a driving simulator. In their study, authors have used heart rate signals for drowsiness
detection and achieved an accuracy of 99.9 %. This study also pointed out the differences
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between age groups for drowsiness detection. (99) used wearable data from 12 participants
and compared drivers’ heart rate variability in different road types (i.e., city versus highway),
weather conditions (i.e., rainy versus clear), and presence of a passenger. They found that
drivers are on average calmer on highways, in clear weather, and when being accompanied
by a passenger.

Although these studies provided rich insights into the application of wearable devices in
driving, they are mostly performed in controlled environments (i.e., driving simulators and
on-road controlled studies). This can become problematic because most of these studies lack
the proper ecological and external validity to allow their findings to generalize in real-life
contextual settings where different real-world challenges and noise exist. Additionally, most
of these studies have only leveraged the IMU sensor (i.e., accelerometer and gyroscope) on
the smart wearable for driver behavior detection leaving other sensors such as heart rate
(HR) and Photoplethysmography (PPG) unexplored. Furthermore, as opposed to most
of the studies that used wearable devices that were designed specifically for the study of
interest, we are interested in exploring ubiquitous sensors such as off-the-shelf devices (e.g.,
smartwatches) for driver state and behavior analysis in the wild. This is due to the fact that
these devices are (1) already used by drivers and participants in their daily lives, and (2)
they have multiple sensors built into them.

4.1.3 Methodology

We now present our approach. We first describe the data collection and annotation protocol.
Then, we provide details on the feature exploration to test the feasibility of the classification
problem. Finally, we describe our feature extraction and machine learning classification
pipeline.

4.1.3.1 Data Collection

The data in this study has been collected through HARMONY, a human-centered natural-
istic driving study platform (103). Here we provide an overview of the data collection and
cleaning process. However, the reader is invited to refer to (103) for more detailed infor-
mation on the data collection, storage, and processing within the HARMONY system. A
sample data of HARMONY is made publicly available to researchers and can be retrieved
from (106).

HARMONY is a framework that is leveraged to collect driver’s behavioral and state
measures together with environmental sensing, through physical devices such as cameras
(both inside and outside), and wearable devices, as well as virtual sensors such as computer
vision algorithms or APIs to extract features from the data collected by the physical sen-
sors. Within the current HARMONY dataset and framework, 21 participants’ vehicles are
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equipped with a BlackVue DR-750S-2CH dash camera, which records both inside and outside
of the vehicle as the car turns on and the driving scenario starts. Each driver is provided
with an android smartwatch, equipped with an in-house app, namely SWear (17). SWear is
available on Google Play store (16) and is designed to facilitate the process of data collection
on smartwatches by adding the ability to control each sensor’s data collection frequency to
the desired sensing specifics and sync sensors data to the cloud. Through this, we collected
drivers’ hand acceleration [10Hz], gyroscope measures [10Hz], Photoplethysmography (PPG)
[10Hz], ambient audio amplitude (noise level) [1/60 HZ], HR [1Hz], ambient light intensity
[1/60 HZ], and GPS location [1/600 HZ]. The data collection set-up in participants vehicle
can be viewed on Fig. 4.1 - A.

4.1.3.2 Data Annotation and inspection

We have chosen a random subset of the collected data for the purpose of this study from 15
participants within HARMONY. We use the in-cabin and outside facing videos for manual
annotation of driver’s activities, outside events, and environmental attributes for training
purpose (Fig. 4.1 - A). For this study, we have divided up driver activities into working with
the mobile phone, checking sides, which often includes checking mirrors, checking speed stack,
checking center stack, eating/drinking food, searching for an item on the passenger’s seat,
touching face, and singing and dancing. Outside events consist of passing an intersection,
staying behind a traffic light, being stuck in dense traffic, and changing lanes. The road
conditions are divided into the city streets, 2-lane highway, 3-lane (or more) highway, parking
lot, and merging ramps. Since all devices’ timestamps are synced, we use the start time of
these events to pull the wearable data, such as IMU, PPG, light, and noise levels. A sample
of annotated data can be view on Fig. 4.1 - A. Table 4.1 shows the final count of data
samples per activity as used for this study.

Additionally, we inspected the aforementioned categories prior to classification for visual
observation of differences in sensor reading distribution. This helps investigate how sensing
data fluctuates across these settings and lay the ground for the feasibility of classifying
them through machine learning algorithms. For instance, drivers’ heart rate follows different
distributions when performing different activities. This can be seen on Fig. 4.2 - A where
the distribution of heart rate in singing has a peak at a higher heart rate level as compared
to the food-related (i.e., eating and drinking) category. Additionally, we observe differences
in the distribution of IMU and light sensors as depicted on Fig. 4.2.

4.1.3.3 Feature Extraction

Working with the data extracted from commercially available wearable devices has two main
challenges; First, The average data collection frequency of each modality can be different.
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Figure 4.1: Summary of our methodology for integrating smartwatches into driver behavior
analysis in the wild. We use videos to label smartwatch data ©2021 IEEE
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Table 4.1: Summary of data samples used for classification ©2021 IEEE

Category Event No. of
Samples

Average
Duration

(sec)
Inside Activity Checking Sides 128000 1
Inside Activity Eating/Drinking 27584 4
Inside Activity Working with Center Stack 6540 3.5
Inside Activity Checking Speed Stack 24000 1
Inside Activity Touching Face 14500 5.3
Inside Activity Working with Phone 47000 22
Inside Activity Singing and Dancing 5870 22
Inside Activity Searching for an Item 2680 10
Outside Event Change Lane 22437 3
Outside Event Passing an Intersection 36722 3
Outside Event Traffic Light 42670 20
Outside Event Stuck in Traffic 4542 60

Road Type City Street 182614 158
Road Type Parking Lot 12553 38
Road Type Merging Ramp 4984 26
Road Type 2L - Highway 180295 168
Road Type 3L - Highway 104102 132

Figure 4.2: Distribution of HR (A), accelerometer (B), gyroscope (C), and light (D) data
among different activities. This example shows how the distribution of each modality varies
across activities and motivates its use as a predictor of drivers states. Note the distribution
differences among different activities, such as shifted HR peaks for singing as compared to
food-related and phone-related activities. ©2021 IEEE
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Table 4.2: Summary of selected features ©2021 IEEE

Domain Features

Time

Kurtosis, mean, standard deviation, maximum, minimum,
variance, skewness, median, variation coefficient, absolute sum of changes,

Benford correlation, count above mean, count below mean,
first location of maximum, first location of minimum,
has duplicate, has duplicate max, has duplicate min,
last location of maximum, last location of minimum,
longest strike above mean, longest strike below mean,

mean abs change, mean change, mean second derivative central,
sum of reoccurring data points, sum of reoccurring values, sum values

Frequency Energy, power, entropy

Additionally, each sensor’s data collection frequency is not constant, and it may vary through-
out the time due to hardware requirements (e.g., the frequency of HR data varies between
0.8Hz to 1.1 Hz at different battery levels). Although we can change the average frequency
value through SWear, the exact frequency cannot be defined prior to data collection. To
solve these challenges, we resampled the data at 10 Hz, which is equal to the IMU, Light,
and PPG sensor average frequency, which have the lowest sampling rate.

In order to perform feature extraction, we analyzed the duration of different activities to
find the correct sliding window. Additionally, previous literature ((105)) on accelerometer-
based activity recognition had stated a window overlap of 50 percent to avoid correlations
between samples. We chose a sliding window of 1 second to cover all the activities duration
(see Table 4.1) in our feature extraction, with 50 % overlap. In order to perform feature
extraction, we leveraged the tsfresh package (23) on Python to retrieve multiple time and
frequency domain features from each individual wearable sensor (i.e., Light, PPG, HR, and
IMU). Additionally, we have leveraged previous literature in human and driver activity
and state recognition using biosignals to select relevant features from the tsfresh library
(7; 105; 75; 41; 92). Table 4.2 shows the selected features for this study.

Because the frequency of different activities varies across different driving scenarios, the
dataset has an unbalanced nature with respect to different classes. For instance, in our
annotated dataset, the number of the mirror checking events is noticeably higher than the
phone usage activities (see Table 4.1). To solve this issue, we have used two separate methods
of:

(A) balancing the classes by weighing each class to be inversely proportional to its frequency
in the dataset.

(B) Oversampling based on Synthetic Minority Oversampling Technique (SMOTE) (20) to

57



generate new samples for the minority classes. SMOTE generates new data points from
convex combinations of nearest neighbours. We apply SMOTE only on the training
set. This is important for keeping the classifier unbiased towards new samples.

Using the extracted features, We built different models to classify three major groups of
driver’s activities, environmental events, and environmental attributes as described earlier.
In each category, three different machine learning methods were used to build classifiers using
a 10-fold cross-validation method. The classifiers included random forest, decision trees, and
extra decision trees. We observed that the Random Forest model outperforms the other two
classifiers, thus we only focus on providing the results for the Random Forest classifier. For
this, the Scikit-learn package (78) was utilized.

4.1.4 Results

Fig. 4.3 demonstrates the confusion matrix for each of the three classification tasks (A: driver
activity, B: outside events, and C: road types) using the highest accuracy model trained on
the original data, as well as the models trained on oversampled data (e.g., A1 is the original
data and A-2 shows the oversampled data).

For classifying activities, the Random Forest model outperforms the other two methods
(i.e., decision trees and extra decision tress), with an average F1 Score of 90.99 % on the
imbalanced data (4.3). This model does relatively poorly on the two categories of “searching
for an item," and “working with the center stack display of the vehicle" (Fig. 4.3 - A-1 and
A-2). The searching for an item category is mostly due to lower amount available data. The
center stack category may be mistaken with the checking sides category 20 percent of the
time. We suspect this is mostly due to the fact that the participants body movements are
very similar when working with the center stack and checking different sides of the vehicle
(e.g., checking side mirrors). To further confirm this, we perform the SMOTE oversampling
on the training set and train the classifier on the oversampling data. It is recognizable that
the accuracy of detecting the searching for an item category increases significantly (i.e., from
75.9 % to 88.6.3 %), while the center stack detection accuracy does not increase as much (i.e.,
from 73.9 % to 81.7 %) (Fig. 4.3 - A-1 and A-2). Finally, the model trained on oversampled
data, on average achieves an F1 score of 94.55 %.

For classifying outside events, the Random Forest classifier outperforms the other meth-
ods (Table 4.3) with an average F1 score of 97.68 %. Using SMOTE, we can further enhance
the classification F1 score to 98.26 %. Oversampling, mostly enhances change lane and pass-
ing intersection categories but does not change the overall accuracy significantly. Similarly,
Random Forest outperforms other models in detecting the road type with an average F1
score of 93.62 % and 97.68 % for the original data and oversampled data respectively. Due
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to lower amount of data, the model performs relatively poorly on the Driving in a Parking Lot
and Driving on Ramp categories, which is then further enhanced by using the oversampling
methods.

Table 4.3: Summary of model performance on different target categories when applied with
a 10-fold cross validation. Note the enhancements in performance when generating new
samples using the SMOTE method. ©2021 IEEE

Imbalanced SMOTE
Target Category F1 score SD F1 score SD
Driver Activity 90.99 0.92 94.55 0.77
Outside Events 97.68 0.69 98.27 0.28

Road Type 93.62 0.69 97.86 0.25

Additionally, we assessed the contribution of multimodality to the classification accuracy
of the driver’s activity model. We emphasize on this attribute of current off-the-shelf smart
wearable devices as previous works were mostly focused on laboratory-built devices, lacking
multimodal sensor data built into one device. Fig. 4.4 demonstrates the accuracy of the
activity recognition model trained on the original data using Random Forest classifier with
varying sensor combinations. As shown, overall by adding different modalities, the activity
recognition model’s F1 Score increases.

To further analyze the effect of each modality on the classification task, we performed
a permutation feature importance analysis (78) on the three aforementioned classifiers. For
simplicity, this analysis is performed only on a hold-out sample in our dataset. Similar to the
previous section, the training set is oversampled through SMOTE. Fig. 4.5 shows the top ten
features in each target category of driver activity, outside events, and road type. As shown
on Fig. 4.5 - A for classifying the driver’s activities, five out of the top ten features are from
the accelerometer modality, which draws attention to the importance of the IMU sensor for
activity recognition similar to the previous research as mentioned in the background section.
However, as shown on Fig 4.5 - B, heart rate, PPG, and light are also contributing to the
classification task, pointing out the importance of multimodal sensing. Additionally, for
classifying the outside events, we observe the inclusion of gyroscope in the top ten features,
which points out the differences among driver’s hand rotations for certain outside events
(e.g., change lane action). Moreover, note that three out of the top ten features are related
to the PPG sensor, which is shown to be correlated with driver’s state, such as stress levels
(49). Lastly, the PPG sensor is contributing the most to the road type detection task. This
is in line with previous research demonstrating the variation in driver’s HR when driving in
different road and weather conditions (103).

59



Figure 4.3: The confusion matrix for classifying driver’s activity (A), outside events (B), and
road type (C), in two categories of unbalanced data (1) and oversmapled data (2) ©2021
IEEE
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Figure 4.4: The comparison of adding each sensor to the classification scheme in a 10 fold
cross validation scheme for driver activity classification model. Note the increase in F1-Score
as new modalities provide additional information to the classifier. ©2021 IEEE

Figure 4.5: Feature importance analysis on the three targeted categories of (A) driver’s
activities, (B) outside events , and (C) road types. Note that the contribution of different
modalities varies across the different targeted predictions. ©2021 IEEE
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4.1.5 Discussion

In this study, we have classified real-world driving instances such as driver’s activities, out-
side events, and outside road attributes using data extracted from commercially available
smartwatches. Smartwatch multimodal data has the potential to reveal different aspects of
driving behavior and activities such as movements (e.g., through IMU sensors), underlying
state of the driver such as stress (e.g., through HR sensor), and environmental attributes
(e.g., through noise and light sensors). Note that with the current developments in ubiqui-
tous computing devices, multiple other sensors such as skin temperature, breathing patterns,
skin conductance, and even electrocardiogram (ECG) are starting to be built into these de-
vices, which can further push the boundaries of driver state recognition. While one sensing
modality (e.g., Light) might not be able to provide all the information to detect certain ac-
tivities, other sensing modalities such as IMU may still provide crucial missing information
to aid the classifier (see Fig. 4.4). As a result, by having access to different modalities, we
can identify different activities and events with higher accuracy. This has also been shown in
our previous work (103) that certain environmental events might leave a driver’s visual and
behavioral patterns unchanged, while affecting his/her underlying state, which can be mea-
sured through HR. This highlights the importance of multimodal sensing when performing
classification in real-world scenarios.

Our system can be integrated with cameras and other vision systems (e.g., eye trackers)
to provide more accurate detection of driver’s activities and behaviors. Previous studies
have developed deep-learning based methods for classifying driver’s activities, and behaviors,
as well as outdoor events using video cameras when the lighting conditions are suitable
(76; 60; 37; 48). The integration of ubiquitous computing in such systems through sensor
fusion techniques can help in edge cases of vision system applications (e.g., low illumination
condition) and in cases that the video streams are not available due to different reasons (e.g.,
driver not allowing for video recording, lack of visibility due to lighting). For example, by
integrating smartwatches into vehicles, a user can request between two levels of privacy. In a
high privacy case, driver’s activities, and behaviors are monitored through the smartwatch.
In the other case, the user can choose to provide more data streams, in which the driver’s
video can be fused with the smart wearable to detect different activities, behaviors, and
environmental attributes. In the case of low privacy mode, depending on the light level
measured through an illuminance sensor (e.g., smartwatches often provide this sensor), the
system can perform using both camera and smartwatch or by only relying on the smartwatch.
All of these decisions and analysis can also be performed using edge computing devices that
are already being used for autonomous vehicle development and data collection purposes
such as NVidia Jetson family, which have onboard GPU and other computing units for real-
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time analysis. Additionally, it should be considered that wearable data is much smaller than
videos and requires lesser computational resources as compared to bigger video-based deep
learning based models.

Our work can be improved from multiple aspects. First, by labeling more driving data,
we can enhance the accuracy of our method for driver activity classification. Although we are
using manual annotation for providing ground truths, we can optimize our labeling speed
by using more automated approaches such as leveraging change point detection methods
(103). By having more labeled data, we can then use other classification methods that
require a higher amount of data (e.g., deep neural networks). Additionally, we will build
and implement a system that can perform the modeling scheme provided here either on the
watch, using an embedded system (e.g., Nvidia Jetson) in the vehicle, or on the cloud, to
optimize our system for real-time applications (e.g., battery considerations). This can also
help us make our system more human-centered by incorporating user feedback. Lastly, we
will continue to test newer wearable devices to increase our number of sensor modalities (e.g.,
adding skin temperature), which can further increase the accuracy of our system.

4.2 Project 2: Driver State, Behavior, and Environmental Attributes

Classification Using Unsupervised Techniques

4.2.1 Introduction

People have different preferences in their choice for driving styles (77). For instance, a
recent study mentioned individual variability across participants when choosing between
conservative and risky driving styles (77). Additionally, different studies have shown that
personalization of autonomy has a positive effect on the user’s perceived trust in autonomous
vehicles (AV) (69; 95; 111; 108). This implies that AV’s acceptance relies on correctly
understanding people’s preferences in driving styles and act accordingly. One method to
identify individual responses to different driving behaviors is using historical driving data
(25). For instance, driver-related physiological data (e.g., facial expressions, heart rate (HR),
and skin temperature) can show how a driver reacts within different driving styles (109; 47;
70).

Analysis of historical driving data, which is often retrieved through naturalistic driving
studies (NDS), also comes with problems such as the difficulty (time and cost) in analyzing
the massive amount of collected information (58). NDS is often conducted in a longitudinal
fashion to help detect behaviors while different environmental noise and challenges exist in
the data (103), which drastically increases the amount of data that needs to be analyzed for
detecting specific driver behaviors, actions, and responses. One method to address this issue
is to apply unsupervised learning on both driving behaviors as well as the driver’s state.
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Through unsupervised learning, different patterns in driver’s state and behaviors can be
detected (58). These patterns, when analyzed together, may reveal important information
regarding the driver’s responses in each driving behavior.

Previous NDS data often lack information related to driver’s physiological responses and
cognitive metrics (19; 103). With the current advancements in wearable technology, it is
now viable to detect driver’s psychophysiological states through monitoring their heart rate
(HR), skin temperature, skin conductance, arm movement, and other physiological metrics.
In line with these improvements, recent studies have used driver’s physiological responses
such as changes in HR to detect driver’s stress levels correlated with the increase in HR
values (103; 110). Additionally, with the improvements in computer vision applications, it is
now viable to use raw videos for estimating driver’s breathing patterns, HR, gaze directions,
and emotional features through facial landmarks (79). As a result of these improvements in
technology, recent NDS are starting to implement novel sensors and technologies to collect
such data (33; 110; 81; 103; 36). Utilizing these data streams and by applying unsupervised
machine learning techniques, we can understand a driver’s response within each driving
behavior.

In this paper, we propose a methodology to classify driver’s reactions to different vehicular
maneuvers using unsupervised learning in a fully naturalistic environment. We use two
case studies to analyze different driving patterns (e.g., harsh braking) coupled with driver
state patterns (e.g., high stress level) extracted from a naturalistic driving dataset in an
unsupervised fashion. Using the detected unsupervised patterns and by having access to
multimodal human sensing data, we then analyze the driver’s reactions under each driving
pattern. Analyzing the fraction of each state pattern (i.e., HR and gaze pattern) within
each driving behavior depicts that most of the drivers of our study are calmer in a more
conservative driving style with route selection that can include more segments of highway
driving.

4.2.2 Background Study

Previous studies have pointed out the utility of unsupervised learning methods in finding
behavioral patterns in naturalistic driving data (58). However, past studies have not focused
on applying the same methods on driver physiological data (e.g., HR). Below we first elab-
orate on the relationship between driver sensing measures (i.e., HR and gaze patterns) and
driver’s state (i.e., stress level, and workload). We then outline past progress in unsupervised
modeling techniques for driver state and behavior detection.
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4.2.2.1 Driver State Detection

Human bio-signals have been used extensively in multiple fields such as psychology, health
sciences, and engineering for retrieving a deep understanding of a human’s psychophysiologi-
cal states (21; 94; 44; 75; 51; 71; 85). Psychophysiology refers to psychological states such as
emotional responses (e.g., anger, frustration, and happiness), cognitive load, and distraction,
which can be measured through changes in human physiological responses (e.g., HR, skin
temperature, and skin conductance) (63; 57). In human-centered research, psychophysiolog-
ical measures such as driver’s HR (94; 98; 100), gaze patterns (8; 103), skin conductance
(75), and brain signals (74; 31) were all used for retrieving driver’s stress level, and cognitive
load.

One popular definition of stress is the state of a human when the demand of a situation is
perceived to be more than the available internal resources (34). Different bio-signals can then
be used to detect stressful instances. Human cardiovascular measures have been extensively
used in literature for detecting stress levels. In naturalistic environments and mainly driving
research, cardiovascular activity can be retrieved through using either of Electrocardiography
(ECG) or photoplethysmogram (PPG) technologies. ECG measures heart electrical activity
through the usage of contact electrodes. PPG, on the other hand, records the same activity
through measuring blood volume in the vein using infrared technology (63; 103). The car-
diovascular measures can then be used to estimate features of the beat-to-beat signal of the
heart such as HR itself, and root mean squared of successive intervals (RMSSD). Studies
have demonstrated that higher stress levels are correlated with an increase in HR and a
decrease in RMSSD (103; 49; 72).

Driver’s cognitive workload is defined as cognitive resources that are taken from the
driver by any activity other than the driving itself (29). In this definition, the cognitive load
consist of mind wandering and the load imposed on the driver by secondary tasks. Secondary
tasks are the ones that require attention but are not required for the task of driving, such as
working with a phone (29). Human bio-signals such as driver’s gaze measures, cardiovascular
measures, and brain signals have been used for cognitive load estimation in both controlled
environments and in naturalistic settings (63). Stationary and transition gaze entropy are
two of the main eye gaze metrics that are commonly used for cognitive load estimation
(54; 32; 90; 91). In information theory, the uncertainty associated with a choice is referred
to as the information entropy (91) in which the more the uncertainty, the more the entropy
and the more randomness in the system. There are two ways to calculate the entropy in gaze
analysis. The first is generally calculated through Shannon’s equation (86). In gaze analysis,
Shannon’s entropy shows the overall predictability of fixation locations in a sequence of gaze
patterns, which is a measure of gaze dispersion (86) and is referred to as the Stationary Gaze
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Entropy (SGE). Specifically, for a set of fixation locations in a sequence of eye movements,
fixation locations can be assigned to spatial bins of pi and calculate the SGE as:

SGE = −
n∑

i=1

pi log2 pi (4.1)

Different studies used SGE to infer a human’s state in different conditions. For instance,
SGE has been shown to be correlated with task difficulty, complexity, and experience with
the task (91). Additionally, studies have used SGE in driving research to infer driver’s state
such as workload (91), drowsiness (90), and being under the influence of alcohol (89). For
instance, (90) used driver’s eye SGE to predict lane change events in sleep-deprived drivers,
where an increase in SGE was associated with a higher probability of lane change events.
While SGE was shown to be correlated with different human states, a recent review suggests
that inferences based on changes in SGE can be very task-specific. For instance, if we know
a specific task requiers a higher SGE and we observe that the participant is having a lower
SGE, this may imply the participant could be disengaged from the task (91). This highlights
the importance of the second measure of gaze entropy, referred to as conditional entropy,
which is task-independent.

Conditional entropy considers the dependency between back-to-back fixation points in a
temporal fashion. This results in the Gaze Transition Entropy (GTE). GTE is a measure
of predictability of the next fixation location given the current location. For a sequence of
transitions between different spatial bins of i and j, with a probability of pij, the GTE is
calculated as:

GTE = −
n∑

i=1

pi

n∑
j=1

pij log2 pij (4.2)

GTE was shown to be correlated with multiple aspects of the human’s state in both
driving and non-driving research. In general, higher task demand, higher scene complexity,
and higher levels of cognitive load were shown to increase the GTE (91; 32). Additionally,
higher levels of GTE when performing the same task with the same scene complexity can be
associated with higher stress levels (91).

4.2.2.2 Unsupervised Modeling of Driver’s state and Behavior

Previous studies provided significant insight into analyzing driver’s behaviors in naturalistic
conditions through unsupervised methods. Bando et al. (11) have used multimodal LDA
to infer driving topics using a combination of image sequences, annotated tags and driving
behavioral data. In their study, authors first used a double articulation analyzer (DAA)
for driving data segmentation. Then by applying LDA on the multimodal data, they were
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able to achieve a dimensionality reduction of 5% on the raw data. This then led to an
increase in classification accuracy achieved by a baseline that was trained using a support
vector machine. In another study, the authors proposed a modification to DAA to not only
perform segmentation but also to predict the duration of each segment (96). Based on the
assumption that driving data has a two-layer hierarchical structure, the authors proposed a
double-layer articulation structure model which uses a hierarchical Dirichlet process hidden
semi-Markov model to predict the duration of each segment. Li et al. (61) used the density-
based spatial clustering method to cluster physiological data of drivers into one of the normal,
event, and noise clusters. Based on the data collected from three drivers and through an
on-road controlled study, authors were able to achieve a recall rate of 75 percent in clustering
the three categories.

Bender et al. (13) proposed an unsupervised method to provide high-level clusters for
time series data streams from naturalistic driving behavior. In their study, the authors used
a Bayesian multivariate linear model to segment the driving data. Then by using simplicial
mixture models, they find unsupervised patterns associated with different driving behaviors
such as acceleration and braking. This method was applied in an online fashion through an
on-road controlled study. The data for the study was collected from a vehicle equipped with
multiple telemetry sensors driving a 13 min route. Wang et al. (107) proposed a method to
build a library of human’s basic driving motion primitives that can be used for human-like
actions. In their paper, the authors have used a probabilistic inference based on iterative
expectation-maximization (EM) algorithm on driving data collected from one driver. Their
probabilistic method achieves a more meaningful segmentation when compared with the
classical EM-GMM approach by merging back-to-back clusters together, which is closer to the
real-world driving situation. Lastly, (58) proposed a framework to automatically provide a
description for driver’s behavioral data retrieved through telemetry sensors inside the vehicle.
In their method, they applied Bayesian multivariate linear regression to segment the driving
data. Through using three different clustering methods of Gaussian mixture model LDA
(GMM-LDA), Gaussian Wishart LDA (GW-LDA), and Multimodal LDA (mLDA), they
found out that GMM-LDA provides the most useful description generation for naturalistic
driving behavior data.

Although previous studies have provided significant insights into the application of un-
supervised learning in driver states and behavior detection, most of them did not couple the
two together to understand the driver’s state in each behavioral pattern. This is extremely
important as combining driver’s states with behavioral patterns can provide a deeper descrip-
tion for each driving segment. For instance, while the unsupervised category for a driving
segment might be “high acceleration”, it is important to know whether the driver was car-
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rying a high work load or not in that segment. For the future AV, such information might
help with better prediction of driver’s state in each driving scenario. Additionally, most of
the past studies in driver state detection are performed in experimental conditions either in
a driving simulator or in an on-road controlled study where the conditions are different from
a fully natural environment. Such shortcomings mostly existed due to not having access
to naturalistic human sensing data. This is now partly achieved through novel wearable
technology devices that are implemented day after day in driving studies (see (103; 110).
In this paper, by performing an unsupervised analysis on both driver state data collected
through conventional wearable devices and driver’s behavioral data collected through vehi-
cle’s kinematic data, we find driver’s state (i.e., stress levels and workload) in each driving
pattern.

4.2.3 Methodology

In this section the framework for retrieving state and behavior patterns is described. We
then apply our framework to a fully naturalistic driving data collected through one of our
previous studies (103). We first perform a data exploration using our framework on a driver’s
behaviors and states extracted through a 2 hour and 10 minutes long trip of a vehicle
equipped with multiple sensors collecting contextual information including both driver and
environmental sensing modules (i.e., case study I). We then apply our method to a larger
pool of data collected from 12 participants (i.e., case study II). Below we first outline the
methodology followed by the dataset details, the selected parameters.

In our framework, kinematic Sensors are the ones that record movements and acceleration
in different directions such as an inertial measurement unit (IMU), which records acceleration
and angular velocity in 3 different directions of X, Y, and Z. These information are used as
driving behavior data such as vehicle’s lateral and forward acceleration. On the other hand,
human sensing modules are sensors specifically used for human related data such as smart
watches and in-cabin and outdoor facing cameras. These data are used to detect drivers
state such as stress level and workload.

The goal of this framework is to apply unsupervised learning methods on the data from
kinematic sensor readings and human sensing modules, to detect driving-related and
driver state-related patterns automatically. These patterns are then compared with known
driving behaviors (e.g., harsh acceleration) and driver states (e.g., high stress level)
to provide descriptions for each detected pattern. We then statistically compare different
driving behaviors based on the proportion of each driver state within them.

Our framework consist of six main sections. As a summary, through a formerly proposed
NDS framework, multiple kinematic and human sensing data-streams are collected (Fig. 4.6
- A). Driver’s stress level and work load information are retrieved from human sensing data
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(Fig. 4.6 - B). Similarly, driving behavior data is used to retrieve driving segments (Fig.
4.6 - B). Then through an unsupervised learning method, a driving behavior and a driver
state pattern is generated for each driving segment (Fig. 4.6 - C and D). Lastly, within each
detected behavioral pattern we assess the likelihood occurrence of each state patterns (Fig.
4.6 - E).

4.2.3.1 Details of Case Study Datasets

In our study we used two different datasets with different sensors and different resolutions
to test the method. For case study I, we use the data collected from a 190 kilometer (km)
driving scenario between cities of Charlottesville and Washington DC. This data is available
through an online repository (106). Additionally, all of the code for our analysis is available
in a GitHub repository (97). Fig. 4.7 shows the map of the trip. Based on the framework
suggested in our previous work (103), the vehicle has a dash camera which collects both
in-cabin and outside environment as well as vehicle’s speed.

The videos collected from the in-cabin camera is fed into the OpenFace software (10) to
retrieve driver gaze patterns at 30 frame per second resolution. OpenFace can perform facial
landmark detection and gaze direction analysis on one or multiple people within a frame.
OpenFace uses Conditional Neural Fields (CLNF) (9) for facial landmark detection. As an
open source off-the-shelf software, it has achieved the least error in landmark detection, gaze
estimation and head pose estimation benchmarks. Specifically, it has achieved an error of
9.96 % on the MPIIGAZE dataset (112).

Additionally, the driver is provided with a smartwatch that collects HR data, hand move-
ment (through IMU sensor), and GPS locations. Also, we used an IMU sensor in the vehicle
that collects vehicle’s kinematic data including acceleration, linear acceleration as well as ro-
tational velocity in 3 different directions. The detail of data collection and setup is provided
in (103).

In case study II, we use driving data collected from 12 participants through our previous
study, HARMONY (103). From each participant, we randomly chose a continuous highway
trip that lasted approximately 90 minutes. In HARMONY, we did not have access to IMU
sensors inside the vehicle. Instead, we calculated vehicle’s forward acceleration through
applying a gradient on the speed data retrieved from GPS on the camera. Although this
GPS information was sampled at a much lower frequency (i.e., 1 HZ), it provides significant
insights into differences across participants.

4.2.3.2 Driver State Feature Extraction

We use driver’s raw HR directly for driver stress inference as previous studies showed the
positive correlation between driver’s HR and stress levels (see section 4.2.2.1, and Fig. 4.6
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Figure 4.6: An overview of the framework of analysis consisting of six main sections. At
first we retrieve features from driver’s state data that align with stress level and work load
(A and B). Additionally, we perform segmentation on behavioral data that provides specific
segments in driving (B). We then perform unsupervised analysis through GMM-LDA method
to find different patterns in driver’s behavior and state. We first apply GMM to find word-
like objects in the continuous inputs (C). We then apply the LDA on the sequence of word
like objects in each segment to find different patterns in state and behavior (D). Lastly, we
assess the presence of each state pattern within in driving behavioral pattern to find the
more suitable driving behavior pattern to the driver.
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Figure 4.7: An overview of the case study dataset. The vehicle is equipped with a camera,
smart watch, and an IMU sensor (A, and C). The data is collected from a 120 mile driving
scenario between cities of Charlottesville and Washington DC, with a duration of 2 hour and
10 minutes (B).

- B). Moreover, our previous study in driving environments showed that stressful events on
the road might change the distribution of driver’s HR momentarily, and increase the HR for
a short period of time (103).

As described in section 4.2.2.1, driver’s gaze patterns can be used for workload estimation
(Fig. 4.6 - B). For this purpose, from the driver’s gaze data, we retrieve the GTE. For this
task, we first construct a 2D space of the range of the gaze angles (53; 104). The 2D space
is divided into equally distanced areas of interest (AOI) which can be a 4 ∗ 4 grid. The GTE
is then calculated based on a rolling window of size 240s on the driving data (53). As a
summary, for a sequence of AOIs, we find the transition matrix between AOIs by assuming
a first-order Markov process for the gaze sequences (53). To this end, a transition matrix
is retrieved with pij being the probability of switching between AOIs i and j (in S), with a
stationary probability of πi. Then the GTE is calculated based on Shannon’s entropy as:

Ĥt = −
∑
i∈S

πi

∑
j∈S

pij log2 pij (4.3)

4.2.3.3 Segmentation

Each driving scenario can be imagined as a combination of multiple segments. These seg-
ments are either separated using road objects (e.g., intersections and stop signs) or road
users (e.g., a slow lead vehicle). In order to analyze the driving behavior data, it is first
required to find different segments of interest (58). This is mostly because behaviors vary
across segments, in which a person might be comfortable with different levels of accelera-
tion/deceleration in a city segment, while the same acceleration/deceleration level may not
feel suitable for a highway segment. We propose using Bayesian Change Point detection
for driving behavior data segmentation in which different driving segments can be separated
using change points in the distribution of vehicle’s kinematic data (e.g., sudden acceleration)

71



(Fig. 4.6 - B). In this regard we first provide a brief overview on Bayesian Change Point
detection method. A vector of multiple kinematic signals is then used as the input to the
Bayesian Change Point detector.

4.2.3.3.1 Bayesian Change Point Detection (BCP)

Previous studies have pointed out the utility of BCP in detecting changes in the underlying
distribution of data in different fields such as health (64), epidemiology (46), ecology (18), and
transportation engineering (103). More specifically in transportation engineering, (103) used
BCP to detect changes in driver’s HR in naturalistic scenarios, which might be indicative of
presence of stressors on the road. In another study Maye et al. (66) also used BCP to find
different segments in vehicle’s telemetry data. To perform BCP, we use the Bayesian change
point model provided in Barry and Hartigan’s book (12). In summary this model assumes
that the mean of the input (e.g., acceleration of the vehicle) within different segments remains
constant. Below we formally define BCP for a univariate case. The reader is also referred to
(12; 66; 30) for more information and details on this method.

Assuming we have n input data point (e.g., vehicle’s acceleration data points) {a1, ..., an},
we will use aij to refer to the accelerometer data between indices i and j. Let ρ = (U1, ..., Un)

indicate a segment of the time series inside the non overlapping acceleration segments. A
boolean array of change points is then used to to denote the segments. At each time step, if
Ui takes a value 1, we have a new acceleration segment; else we remain in the same segment.

We are interested in the posterior density f(ρ|X). By Baye’s theorem, this can be written
as

f(ρ|X) ∝ f(X|ρ)f(ρ) (4.4)

The Prior cohesion density can be retrieved as follows: Let p denote the probability of
finding a new change point at each data point. We assume this probability to be the same
at each data point. If we assume that there are b segments, the prior cohesion density can
be written as

f(ρ|p) = pb−1(1− p)n−b (4.5)

The joint density of observations and parameters given ρ is a product of densities of
different segments in ρ. Let us consider a single segment. If we assume that the data in this
block is generated by a Gaussian process with mean θ and variance σ2, let the prior density
of θ be a Gaussian with mean µ0 and variance σ2

0
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f(Xij, θ) = Πf(Xk|θ)f(θ)

f(Xij) =

∫
Πf(Xk|θ)f(θ)dθ

(4.6)

We can then simplify the above integral to:

f(Xij) = (
1

2πσ2
)(j−i)/2(

σ2

σ2
0 + σ2

)1/2exp(Vij) (4.7)

Where

Vij = −
∑l=j

l=i+1(Xl − X̂ij)
2

2σ2
− (j − i)(X̂ij − µ0)

2

2(σ2 + σ2
0)

(4.8)

and X̂ij is the mean of the observations in the partition. However f(Xij) still depends on
the parameters µ0, σ

2, σ2
0. Defining w = σ2

σ2
0+σ2 and choosing the following priors for the

parameters:

f(µ0) = 1,−∞ ≤ µ0 ≤ ∞

f(p) = 1/p0, 0 ≤ p ≤ p0

f(σ2) = 1/σ2, 0 ≤ σ2 ≤ ∞

f(w) = 1/w0, 0 ≤ w ≤ w0

(4.9)

f(X|ρ, µ0, w) =

∫ ∞

0

1/σ2
∏
ijϵP

f(Xij)dσ
2

(4.10)

After integrating out µ0 and w, This can be simplified to the indefinite integral below.
The full derivation is provided in (12).

f(X|ρ) ∝
∫ w0

0

w(b−1)/2

(W +Bw)(n−1)/2
dw, (4.11)

where

X̂ =
n∑

i=1

Xi/n, B =
∑
ijϵP

(j − i)(X̂ij − X̂)2,

W =
∑
ijϵP

l=j∑
l=i+1

(Xl − X̂ij)
2

(4.12)
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Similarly, after integrating out the change probability p, the prior cohesion density thus
can be written as

f(ρ) ∝
∫ p0

0

pb−1(1− p)n−bdp (4.13)

To calculate the posterior distribution over segments, Markov Chain Monte Carlo (MCMC)
is used (38). A Markov chain is then defined with the following transition rule: with proba-
bility pi, a new change point at the location i is introduced. Here B1,W1 and B0,W0 refer
to the situations of with and without the change point in location i.

pi
1− pi

=
p(Ui = 1|X,Uj, j ̸= i)

p(Ui = 0|X,Uj, j ̸= i)

=

∫ p0
0

pb(1− p)n−b−1dp∫ p0
0

pb−1(1− p)n−bdp
x

∫ w0

0
wb/2

(W1+B1w)(n−1)/2dw∫ w0

0
w(b−1)/2

(W0+B0w)(n−1)/2dw

(4.14)

Finally, this is simplified to a probabilistic model with the following two parameters p0

and w0.
We use the package bcp (30) in R programming language to implement our change point

analysis. For the case study I, we use vehicle’s kinematics as the main segmentation input.
To this end, we use the input vector X for segmentation algorithm as combination of forward
acceleration (a), lateral acceleration (l), and lateral rotational speed (ωZ):

X = {a, l, ωZ}

The vector X is then fed into BCP. The important point with respect to BCP is that it
does not require to know the number of segments. This helps with longitudinal data where
the actual number of driving segments is unknown.

In order to illustrate the results of segmentation we use the vehicle’s speed data. Note
that the speed data was not used as the input into the segmentation as it is collected at 1 Hz,
which is much lower than the IMU sensor (i.e., 100 Hz) and have not been used as the input
to the segmentation. We use the speed data mostly due to the fact that speed can naturally
show different segments of driving such as slowing down due to a lead vehicle, stopping for
an intersection, and turning (Fig. 4.8). This helps with a better visual inspection of our
results.

For case study II, as we did not have access to an IMU sensor, we use vehicle’s speed
data, as well the acceleration, which is retrieved through applying a derivative on the speed
data. The segmentation is performed separately for each participant.
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Figure 4.8: Different segments of driving detected by the BCP applied on the kinematics
data shown with dashed vertical lines.

4.2.3.4 Pattern Inference

In order to perform pattern inference we use a combination of Gaussian Mixture Modeling
(GMM) and Latent Dirichlet Allocation (LDA), referred to as GMM-LDA (3; 2; 80; 58).
GMM-LDA for topic inference application of driving behavior data has shown significant
advantage as compared to other unsupervised clustering methods such as GW-LDA and M-
LDA in the past (3; 58). LDA is a text analytics probabilistic hierarchical Bayesian model,
which is used to infer topics from a set of words (15). When applying it to driving data,
the goal is to provide a main driving pattern and state pattern for each segment of driving.
To do so, we first need to generate 50 word-like objects (i.e., discretize the data) from the
continuous raw vehicle telemetry, gaze, and HR data using GMM (Fig. 4.6 - C). GMM-LDA
method then uses LDA on top of GMM objects to produce topics for each segment of driving,
which can be considered a driving pattern (Fig. 4.6 - D). Below we formally outline this
method.

4.2.3.4.1 GMM-LDA

In LDA, each word is modeled as a finite random mixtures over an underlying set of k topics
and each topic is represented as a distribution over a set of words (15). A word (w) is
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defined as a basic unit of discrete data which is drawn from a set of vocabulary. In this way,
a document is then a sequence of N words N = {w1, w2, ..., wn} and a corpus is a set a of M
documents (15). The details of LDA method is provided in appendix (section 4.2.8.1).

Historically LDA is designed for inferring topics from a set of documents and is based
on text type data, which is by nature a discrete type data. When considering continuous
data sources (e.g., vehicle’s acceleration), multiple methods were proposed to overcome this
issue. A more common approach is to apply GMM clustering method on the continuous
data to generate word-like objects (3; 2; 80; 58). GMM is a clustering method that identifies
a mixture of multidimensional Gaussian probability distributions that can best describe the
input vector (82). For a formal description of GMM please review appendix (section 4.2.8.2).

We first apply GMM algorithm to obtain word-like objects (i.e., descretizing data) from
the multimodal vehicle kinematic data, which includes forward acceleration (a), lateral accel-
eration (l), and lateral rotational speed (ωZ) (Fig. 4.6 - C). These inputs are the same inputs
that were used in segmentation section (4.2.3.3). Based on the previous literature we chose
50 as the number of words (58). Also, note that using Bayesian Information Criterion (BIC)
for defining the number of components, we observed very small enhancements (< 0.0001) in
the BIC value after increasing the number of words above 50.

Figure 4.9: Distribution of different kinematic sensor readings within different driving pat-
terns. Note that differences across patterns in the kinematic sensor distributions, for instance,
pattern 3 has a more positive lateral acceleration than the other 3 patterns. Also note that
for some patterns the difference is only visible through one sensor such as the comparison
between patterns 0 and 3 lateral acceleration.

Based on the generated GMM distribution, we then apply LDA to find the driving pattern
that best describes each segment in the driving scenario (Fig. 4.6 - E). For LDA, we have used
the default values of Scikit Learn for the α and β which are equal to the reverse of number of
topics. When using LDA, we need to define the number of topics prior to analysis. Driving
scenarios often consist of different patterns (58). For instance, braking behavior includes a
limited number of patterns which can be high negative acceleration (i.e., harsh brake), or
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a low negative acceleration (i.e., normal brake). Thus it is likely that there are more than
one driving pattern present in an individual’s driving data (58). While previous studies
suggested the number of patterns to be 4 we also tested different numbers ranging from 2-6
both quantitatively and qualitatively (13; 58). First, through using the perplexity metric
of an LDA model (113; 52), we find the location that there is a change point in the rate of
change in perplexity for different numbers of clusters. This is similar to finding an elbow
in the perplexity for different number of clusters. This results in 4 clusters. In addition
to quantitative analysis, we observed that with increasing the number of topics in LDA
(patterns in driving) more than 4, some of the topics become very similar from the visual
inspection of the distributions so it becomes impractical to have them as separate patterns.
For instance, moving from 4 to 5 topics, two of the generated topics will be similar in their
mean and standard deviation of acceleration, and speed. Additionally, reducing the topics
from 4 to 3 misses the difference in the braking patterns. These observations, confirms the
quantitative analysis.

For the case study II, we also performed segmentation using vehicle’s speed and accel-
eration. Then for each segment we followed the GMM-LDA method and applied it to the
driving behavior as well as driver state data to find patterns of behaviors and state in each
segment. Below we first present the results for case study I, which helps better illustrate
how the method is applied. We then discuss the results of applying the same method to a
larger pool of participants.

4.2.4 Results

In this section we present the results of applying the GMM-LDA method with Bayesian
Change Point segmenting on two separate case studies. As described in section 4.2.3.1, the
first case study is from one participant with high resolution kinematic data, while the second
case study is from 12 participants vehicles that had low resolution kinematic data.

4.2.4.1 Results - Case Study I

In this section, we showcase how GMM-LDA method can be applied on driver behavior
and state data to find patterns in driver’s behavior (e.g., harsh braking) and states (e.g.,
high stress level). We first discuss the patterns detected in vehicle kinematic data. We
then move to driver’s state data (e.g., HR). Fig. 4.9 shows the distribution of kinematic
data across the four different detected driving patterns (refer to section 4.2.3.4 for details
on pattern recognition). As shown on this figure, each behavior pattern has its own distinct
distribution. For instance, when comparing patterns 3 and 2, we observe the difference in
the location of peak in the forward acceleration as well as lateral acceleration. However,
comparing across patterns 0 and 3, we only observe a major difference when comparing the
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distribution of their lateral acceleration.
Additionally, Table 4.5 provides the detailed statistics of each driving pattern. The first

step is to confirm that the driving patterns detected by GMM-LDA are as a result of dif-
ferent underlying distributions and are statistically different. The Kolmogorov-Smirnov test
between different distributions is performed (65). The pairwise comparison of all distribu-
tions were significant at p < 0.05 level and is shown on Table 4.4. Below we elaborate in
detail on each driving pattern detected in the kinematic data and how they relate to certain
predefined driving behaviors.

Table 4.4: Details of statistical tests on different patterns detected through unsupervised
modeling

Source Comparison KS Test Statistic p-value Significant at 0.05?

Forward
Acceleration

0&1 0.3369 <0.0001 Y
0&2 0.2467 <0.0001 Y
0&3 0.0622 0.0003 Y
1&2 0.3447 <0.0001 Y
1&3 0.3021 <0.0001 Y
2&3 0.2133 <0.0001 Y

Lateral
Acceleration

0&1 0.1670 <0.0001 Y
0&2 0.2761 <0.0001 Y
0&3 0.7096 <0.0001 Y
1&2 0.2883 <0.0001 Y
1&3 0.5568 <0.0001 Y
2&3 0.6054 <0.0001 Y

Angular
Velocity

0&1 0.1201 0.0003 Y
0&2 0.4365 <0.0001 Y
0&3 0.2642 <0.0001 Y
1&2 0.4520 <0.0001 Y
1&3 0.1488 <0.0001 Y
2&3 0.5152 <0.0001 Y

Considering the differences in sensor readings across the driving patterns, we find dom-
inant differences that can be associated to certain well-known driving behaviors. Driving
patterns 0 and 1 both exhibit high negative forward acceleration (deceleration) values (-
0.1667 and -0.4180) respectively. These two driving patterns are mostly related to braking
behavior. The more negative value of mean forward acceleration in driving pattern 1 suggest
a harsher braking pattern. Note in Table 4.5 the mean speed of the two driving patterns are
similar at 76.27 and 76.61 km/h respectively. This provides evidence for the two patterns to
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be similar in nature, as both are related to braking. We refer to pattern 0 as normal brak-
ing behavior, and pattern 1 as harsh braking behavior. Driving pattern 2 has a relatively
flat forward acceleration distribution including a broad range of forward accelerations with
a mean value 0.032 which is close to zero. Due to exhibiting an average higher rotational
velocity (0.027), and a broader lateral acceleration distribution, this driving pattern might
be associated to normal road curvatures. We refer to this driving pattern as road curvature
driving behavior. Driving pattern 3 has the highest mean speed value (89 km/h), with a
positive forward acceleration (0.095). This driving pattern also exhibits one large peak at a
positive lateral angular speed at 0.0087 which is very close to zero indicating straight driving.
This pattern can be associated to normal free flow driving in the highway, and we refer to
it as the highway free flow driving behavior. A sample of such behaviors are also shown on
Fig. 4.10, where snapshots of different behaviors (e.g., free flow highway driving) are shown
from the dataset.

Table 4.5: Detailed statistics of forward acceleration, lateral acceleration, angular velocity,
and speed of each recognized behavior. Note that different patterns resemble well-known
driving behaviors.

Driving Behavior Data Statistical Index Driving Pattern 0
(Normal Braking)

Driving Pattern 1
(Harsh Braking)

Driving Pattern 2
(Road Curvature

Driving)

Driving Pattern 3
(Free Flow Driving)

Forward Acceleration

Mean -0.16677 -0.41807 0.032059 -0.17298
Standard Deviation 0.343867 0.617844 0.677998 0.397301
25th percentile -0.34826 -0.61339 -0.41371 -0.3527
Median -0.20286 -0.40094 -0.08027 -0.18616
75th percentile -0.02847 -0.13217 0.303769 0.0067

Lateral Acceleration

Mean -0.26936 -0.20002 -0.35933 0.095032
Standard Deviation 0.205908 0.263469 0.774748 0.347671
25th percentile -0.38046 -0.36103 -0.66054 -0.0605
Median -0.27365 -0.21968 -0.345 0.077288
75th percentile -0.15625 -0.04575 -0.08588 0.221336

Rotational velocity

Mean 0.016956 0.01432 0.027152 0.008777
Standard Deviation 0.012567 0.012698 0.073349 0.018666
25th percentile 0.011648 0.00877 0.012364 0.004099
Median 0.015752 0.014653 0.02795 0.012516
75th percentile 0.021457 0.020216 0.047836 0.01734

Speed

Mean 76.27409 76.61246 79.16773 89.84004
Standard Deviation 36.47230 29.24584 27.87107 27.15401
25th percentile 65 53 67 90
Median 97 88 89 98
75th percentile 98 97 99 106

Additionally, the sequence of different detected patterns in kinematic sensors can provide
insights into driver’s behavior. We discuss the findings when analyzing the sequence of
behaviors through a case study and a transition matrix of behavior sequences. First through
a case study, Fig. 4.11 depicts the sequence of driving behaviors through parts of the driving
scenario. As visually observed, in locations that speed varies sporadically, the diver behavior
also switches more often (e.g., 15:43 until 15:46 shown with a blue dashed box on Fig. 4.11).
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Figure 4.10: Samples of the detected driving patterns. Patterns 0 and 1 are associated with
normal and harsh braking behavior, while pattern 2 is associated to curve driving behavior,
and pattern 3 is related to highway free flow driving behavior.

To quantify these sequences, as shown in Table 4.6, the probability of transition between
the different driving behaviors as recognized by our method. Each element of the table at
location i, and j shows the pi,j transition probability between the elements i and j. As shown
on the table, when in normal braking behavior, the chances of switching to behaviors of
road curvature driving behavior and free flow driving is higher than harsh braking behavior.
However, when being at harsh braking behavior, the driver is most likely to switch to normal
braking than other two behaviors. Looking at the free flow driving behavior, the driver is
most likely to continue with the high speed highway driving (p3,3 = 0.55), and the probability
of switching to a harsh braking behavior (p3,1 = 0.13) is equal to the normal braking behavior,
while being less than switching to the curve driving behavior. A sample of a probable
sequence can be to start from free flow highway driving, switch to road curvature driving
and attempt a harsh brake. For a better illustration, such a sample sequence is shown with
black dashed box on Fig. 4.11.

The GMM-LDA method was then applied to the driver’s gaze and HR data. We consid-
ered two patterns for these two modalities relating to normal and abnormal (high) for HR,
and low and high for gaze entropy, respectively. Fig. 4.12 shows the different driver state
patterns detected through driver’s gaze entropy and HR data. We first confirmed that the
distribution of normal/abnormal HR and low/high gaze are statistically significant. Similar
to previous sections this is performed through Kolmogorov-Smirnov test (65) and the results
of comparison between different distribution where significant at p < 0.0001 level. Table 4.7
shows the significance of the tests across the different distributions.
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Figure 4.11: The change in driving patterns throughout the different segments of driving.
Each segment is associated with one of the four driving patterns as described previously.
Note that when speed changes more sporadically, the behavior also changes more often (e.g.,
blue dashed box). Also, the black dashed box shows a sequence of sample behavior starting
from free flow highway driving, switching to road curvature driving, and finishing with a
harsh brake.

Table 4.6: Transition matrix between different driving behaviors for case study I dataset.

Driving Behavior Normal
Braking

Harsh
Braking

Road Curvature
Driving

Free Flow
Driving

Normal
Braking 0.28 0.21 0.26 0.26

Harsh
Braking 0.27 0.27 0.21 0.25

Road Curvature
Driving 0.25 0.27 0.26 0.21

Free Flow
Driving 0.13 0.13 0.19 0.55
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Figure 4.12: Distribution of different driver state patterns detected through HR and gaze
entropy. Note the differences across the distributions pointing to different states for the
driver

Table 4.7: Details of statistical tests across different distributions of HR and gaze data

Driver State Data Comparison KS Test Statistic p-value Significant at 0.05?
HR Abnormal & Normal HR 0.5999 <0.0001 Y

Gaze Low & High Gaze Entropy 0.6688 <0.0001 Y

Driver state pattern 0 in HR is related to normal HR values, which has a mean value
of 71.23 bpm with an standard deviation of 4.47 bpm. We refer to this driver state pattern
as the normal HR or calm state. On the other hand, driver state pattern 1 is related to
high HR with a mean of 78 bpm and a standard deviation of 5.13 bpm, which we refer to
as abnormal HR depicting a situation of having high stress driver state. As shown on Fig.
4.12, density of the abnormal HR is lower, indicating the less amount of time spent in this
state pattern throughout all observations. This is also in line with our previous study (103)
showing that driver’s HR through stressors on the road increases from it’s baseline values
for a short period of time and moves back to it’s baseline.

Fig. 4.13 shows the fraction of normal and abnormal HR in the recognized driving
patterns such as normal brake, and harsh brake. As shown, the driver state pattern with ab-
normal HR happens more often than the normal HR in the road curvature driving behavior.
A Chi-Square test (67) also shows that the ratio between the counts of each state is signifi-
cantly different than being equal (i.e., ratio of 1) with a χ2 = 43.87 and a p−value < 0.0001.
This figure also shows that the driver has more abnormal HR states during harsh brake
compared to normal brakes, in which a Kruskal-Wallis test (55) confirms the figure with a
statistic = 404.57 and a p−value < 0.0001. Considering that normal HR indicates a calmer
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Table 4.8: Detailed statistics of HR, and gaze for each recognized state pattern

Driver State Data Statistical Index
State Pattern 0
(Normal HR/
Low Gaze Entropy)

State Pattern 1
(Abnormal HR/
High Gaze Entropy)

HR

Mean 71.23 78.13
Standard Deviation 4.47 5.13
25th percentile 68.4 75
Median 71 78
75th percentile 73.7 81.4

Gaze

Mean 5.01 5.27
Standard Deviation 0.30 0.31
25th percentile 4.99 5.12
Median 5.08 5.36
75th percentile 5.17 5.47

driving state, this implies the driver is calmer during normal braking behavior compared
to harsh braking behaviors. Additionally, the driver had a higher level of normal HR as
compared to abnormal HR in free flow driving behavior, in which we confirmed this through
a Chi-Square test with a χ2 = 558.6 and a p− value < 0.0001.

Driver state pattern 0 in gaze with a mean of 5.01, is related to samples of gaze with lower
GTE. On the other hand, driver state pattern 1 has a mean value of 5.27. As mentioned in
section 4.2.2, higher GTE in pattern 1 might be associated to higher task demand, higher
scene complexity, and work load (Table 4.8).

Fig. 4.14 shows the fraction of low and high GTE in the recognized driving patterns
such as normal brake, and harsh brake. As shown, in the free flow driving, low GTE pattern
happens more often than high GTE which might indicate lower work load for this driver
during free flow driving. A Chi-Square test (67) shows the counts of each low and high GTE
within free flow driving is significantly different than equal probability (i.e., ratio of 1) with
a χ2 = 587.26 and a p − value < 0.0001. Also, the ratio of high to low GTE in normal
braking is higher than that of harsh braking, which implies that the probability of having
a higher workload in normal braking is more than harsh braking. This is confirmed with A
Kruskal-Wallis test (55) indicating a statistic = 88.31, and a p− value < 0.0001. This can
be due to the fact that in normal braking the period of time that the driver is in the process
of braking is higher, thus driver’s GTE and the associated workload are more likely to be
higher.
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Figure 4.13: The co-occurence of driving clusters with clusters of HR

4.2.4.2 Results - Case Study II

Similar to the case study I, we performed segmentation, clustering and pattern inference on
the case study II dataset. Note that case study II includes kinematic data from vehicle’s
speed and acceleration from 12 participants. Fig. 4.15 depicts the distribution of speed and
accelerometer data across the different detected driving patterns. Similar to case study I,
each of the different detected patterns exhibit distinct characteristics. For instance, com-
paring across patterns 0, and 1, we observe the difference in the location of the peak in
the distribution. In order to confirm that the patterns are statistically different, we have
applied the Kolmogorov-Smirnov test (65). The results of the pairwise tests across patterns
are depicted in Table 4.9 and are all statistically significant.

Considering the differences in vehicle’s speed and acceleration across the driving pat-
terns, we find distinct differences associated to certain well-known driving behaviors, such
as differences in mean and standard deviation as depicted in Table 4.10. Similar to case
study I, driving pattern 0 is related to normal brakes, with a negative acceleration (-0.006).
Additionally, driving pattern 1 is related to harsh brakes with the highest negative acceler-
ation and the lowest mean speed as compared to all the other patterns. The high value of
the standard deviation of speed (42.01) in the driving pattern 1 confirms that this behavior
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Figure 4.14: The co-occurence of driving clusters with clusters of gaze entropy

Figure 4.15: The distribution of forward acceleration and speed across different patterns
retrieved unsupervised from 12 participants. Note that because we retrieved accelerometer
data from the low resolution speed, the distributions are less smooth as compared to case
study I. Thus, we are visualizing the differences across driving patterns with a histogram
instead of a kernel density estimation (KDE).

85



Table 4.9: Details of statistical tests performed on the detected driving patterns. The tests
shows that the distributions of speed and accelerometer data are significantly different across
the detected patterns.

Source Comparison KS Test Statistic p-value Significant at 0.05?

Forward
Acceleration

0&1 0.04 <0.0001 Y
0&2 0.08 <0.0001 Y
0&3 0.08 <0.0001 Y
1&2 0.08 0.0003 Y
1&3 0.09 <0.0001 Y
2&3 0.02 <0.0001 Y

Speed

0&1 0.7 <0.0001 Y
0&2 0.9 <0.0001 Y
0&3 0.9 <0.0001 Y
1&2 0.9 <0.0001 Y
1&3 0.8 <0.0001 Y
2&3 0.5 <0.0001 Y

can happen at different speeds depending on the environment, and it can quickly change
the speed from high to lower values. Driving pattern 2 is related to accelerating behavior,
which has the highest positive acceleration (0.041). Similar to case study 1, driving pattern
3 exhibits a very low negative acceleration (-0.001) with the highest mean speed (110.368)
and lowest standard deviation (18.78). This in fact, depicts the behavior through free flow
driving where the driver keeps a constant speed while not accelerating/decelerating. Also,
note the difference between driving pattern 0 and 3. Driving pattern 0 exhibits a higher
standard deviation in speed relative to pattern 1 (23.4 vs. 18.74) with a lower mean speed
value (107.195 vs. 110.368), respectively. These differences align with the difference between
braking and highway driving behaviors. Please note that in case study II, we did not have
access to lateral kinematic data thus we could not confirm the curve driving behavior across
participants.

Similar to case study I, we analyze the sequence of behaviors through a transition matrix.
Table 4.11 shows the probability of transitioning between different driving behaviors. As
depicted, when drivers are in free flow driving, there is a much higher probability to switch
to a normal brake as compared to a harsh brake (0.16 vs. 0.02). This might imply that
drivers are more likely to continue a more gentle driving style if they are in free flow driving
which has an acceleration very close to zero. However, once being in an accelerating behavior,
the driver is more likely to switch to a harsh brake as compared to a normal brake (0.15 vs.
0.13). Among the 12 participants, this might imply that an accelerating behavior continues
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Table 4.10: Detailed statistics of forward acceleration and speed in each recognized driving
pattern. Note that each pattern exhibits certain characteristics that resembles a well-known
driving behavior.

Behavioral Attribute Statistical Index Driving Pattern 0
(Normal Braking)

Driving Pattern 1
(Harsh Braking)

Driving Pattern 2
(Accelerating)

Driving Pattern 3
(Free Flow Driving)

Forward Acceleration
(km/h^2)

Mean -0.006 -0.045 0.041 -0.001
Standard Deviation 0.805 1.259 1.291 0.523
25th percentile -0.118 -0.297 -0.259 -0.162
Median 0.0001 -0.0006 0.0038 -0.0006
75th percentile 0.108 0.233 0.353 0.126

Speed
(km/h)

Mean 107.195 47.872 103.252 110.368
Standard Deviation 23.404 42.014 25.964 18.784
25th percentile 84 6 99 96
Median 119 38 110 107
75th percentile 124 96 117 128

Table 4.11: Transition Matrix between different driving behaviors detected through the case
study II dataset

Driving Behavior Harsh
Brake

Free Flow
Driving

Normal
Brake Accelerating

Harsh
Brake 0.75 0.1 0.12 0.12

Free Flow
Driving 0.02 0.65 0.16 0.16

Normal
Brake 0.15 0.14 0.60 0.11

Accelerating 0.15 0.13 0.08 0.64

with a harsh decelerating behavior, which can be considered a more risky driving style with
high negative/positive values of acceleration.

For state data, we first normalized each participant’s HR and gaze entropy values to have
a 0 mean and standard deviation of 1. This is performed due to the fact that the abnormal
and normal HR as well as GTE values across people can be quite different. For instance,
a person’s normal HR might be 65 bpm while for another person, it can be 75 bpm. For
a better illustration, distribution of HR data is also shown on Fig. 4.16 where different
participants’ HR distribution can be very different on the mean and standard deviation,
implying different normal HR values across different people.

We then applied the GMM-LDA method to both HR and gaze data separately, for case
study II. Fig. 4.17 depicts different driver state patterns retrieved through both HR and gaze
data. Similar to case study I, HR has two patterns of normal versus abnormal. Additionally,
gaze entropy has two patterns of low versus high. The patterns recognized are significantly
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Figure 4.16: The distribution of HR for 12 participants. Note the differences across the
distributions pointing to different baselines for different participants.
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Figure 4.17: The distribution of gaze entropy and HR for 12 participants. Note the differences
across the distributions pointing to different states for the drivers.

Table 4.12: Detailed of statistical tests across different patterns of HR and gaze

Driver State Data Comparison KS Test Statistic p-value Significant at 0.05?
HR 0&1 0.8 <0.0001 Y

Gaze 0&1 0.9 <0.0001 Y

different as tested through the Kolmogorov-Smirnov test (65). The results of the tests are
depicted on Table 4.12.

The two detected patterns in drivers’ HR can be translated into a calm and stressful state
for the drivers. When considering their interaction with the driving behaviors, we observe
that, harsh brakes include a higher amount of abnormal patterns in HR in our dataset as
compared to normal brakes (Fig. 4.18). This is then supported through a Kruskal-Wallis
test (55) with a statistic = 219.68, and a p − value < 0.00001. Additionally, the free
flow driving with close to zero acceleration has the higher amount of normal HR, when
compared to accelerating behavior. This is confirmed through a Kruskal-Wallis test (55)
with a statistic = 71.79, and a p− value < 0.00001.

With respect to drivers’ gaze patterns, we observe that free flow driving has the lowest
amount of high GTE values when compared to the accelerating behavior (statistic = 363.390,
and a p− value < 0.00001). This may point to the lowest cognitive load in free flow driving
with close to zero acceleration as compared to the accelerating behavior with positive high
acceleration (Fig. 4.19). Additionally, we observe that similar to case study I, normal
braking behavior has a higher GTE fractions as compared to the harsh braking behavior
(statistic = 158.969, and a p− value < 0.0001).

Lastly, we aggregate the driving patterns with significantly higher than zero acceleration
(both positive and negative) into one group titled as aggressive driving style. Additionally,
we consider the free flow driving pattern as a conservative driving style where accelerations
are close to zero. We then compare the fraction of abnormal HR and high GTE in each of
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Table 4.13: Detailed statistics of HR and gaze for each recognized driver state pattern. Note
that the values are normalized

Driver State Data Statistical Index
State Pattern 0
(Normal HR/
Low Gaze Entropy)

State Pattern 1
(Abnormal HR/
High Gaze Entropy)

HR

Mean 76.78 89.15
Standard Deviation 9.26 12.02
25th percentile 69.45 79.76
Median 76.32 88.92
75th percentile 84 98

Gaze

Mean 5.17 5.28
Standard Deviation 0.35 0.28
25th percentile 5.01 5.14
Median 5.21 5.29
75th percentile 5.39 5.44

Figure 4.18: The fraction of each HR pattern within in each driving pattern from case study
II. Note that free flow driving has the highest fraction of normal HR as compared to other
driving behaviors, implying a calmer state for drivers.
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Figure 4.19: The fraction of each gaze pattern within each driving pattern from case study
II. Note that free flow driving has the highest fraction of low gaze entropy depicting lower
work load.

these two categories of driving styles. Fig. 4.20 shows the fraction of driving segments with
abnormal HR as well as high GTE together with the driving styles. As shown on the graph,
almost all of the drivers are less likely to have high HR as well as high GTE in conservative
monotone driving as compared to aggressive high acceleration driving. We also observe that
the difference between fraction of High HR and GTE between aggressive and conservative
driving varies across participants leading to different slopes for the lines connecting them.
Additionally, among our participants, we observe that two of them has a higher fraction of
abnormal HR and GTE in conservative driving (shown with red and blue color on Fig. 4.20).
The implications of these differences will be discussed later.

4.2.5 Discussion

The fast-paced improvement in the development and testing of AVs has been one of the
important advancements of the automobile industry over the recent years. To enhance the
human-AV collaboration, realistic human behavior models are needed where a driver’s com-
fort and behaviors can be modeled with a multidimensional approach. This is because human
behavior is dynamic and can be affected by different internal dynamics (e.g., emotion and
cognition), as well as external situational factors (e.g., traffic density or roadway conditions).
The proposed framework in this paper couples both internal and external factors, namely
context, to understand the pattern in driver’s state in each driving behavior through unsu-
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Figure 4.20: The fraction of each driver states patterns of high GTE and abnormal HR
in each of conservative and aggressive driving styles. A conservative driving style tend to
keep participants HR at a calmer state while using less cognitive resources. Two of the
participants do not follow the general trend shown with red and blue.
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pervised modeling techniques. While supervised learning has been an impactful approach
over the past decade of driving research, the massive amount of data collected through past
NDS points towards more efficient, fast-paced methods that can understand behaviors with
no or minimum manual annotation. While in the presented case study I, we have used very
high-resolution data from one participant for method illustration, case study II confirms
that low-resolution data when coupled with unsupervised modeling techniques, can help de-
tect certain states and behaviors across participants. As current vehicles are equipped with
multiple sensors such as GPS, our case study II suggests that coupling a conventional wear-
able device with sensors that are already in vehicles can provide significant insight into the
driver’s state in each driving behavior.

Driver’s state patterns indicated the level to which a driver might be affected by different
driving behaviors. More specifically, in our first case study, using high precision data, we
observed that the driver had a higher fraction of normal HR in free-flow driving on the
highway, implying a calmer state for the driver. This has then been confirmed in our case
study II where we analyzed the data from 12 participants. Free flow driving not only had the
lowest fraction of high gaze entropy, implying a lower workload but also was accompanied
by the least fraction of abnormal HR among our participants in case study II. These findings
are in line with previous studies indicating less reported subjective emotional states (26),
as well as calmer states (99) in highway driving. Additionally, our results suggest that even
the same action can have different effects on the driver when performed with different styles.
For instance, we observe that harsh brakes are more likely to be accompanied by abnormal
HR values implying higher stress levels as compared to normal brakes.

Our method can be leveraged to understand the effects of different driving styles on
drivers’ states. Multiple studies have pointed out the importance of driving style selection
for drivers’ trust in AVs (28). For instance, a recent study points out that a ”defensive”
driving style as compared to an aggressive driving style is perceived to be more trustworthy
(28). In case study II, our results suggest that a more conservative driving style that is
accompanied by close to zero acceleration values is less probable to be accompanied by
lower workload and stress levels. Although our sample size might not generalize to the
larger pool of drivers, it shows the importance of choosing driving styles according to the
drivers’ psychophysiological states given specific road environments (e.g., highway versus city
driving). For instance, our results show that free flow driving is a better fit for the drivers
of our study in keeping their HR at a normal pattern. Choosing highways over crowded city
streets can help driving with the free flow speed, which then helps to keep drivers calmer with
a lower workload. These differences in stress levels and workload have strong implications
for humanizing automated services, including both the AV and routing services. Taking our

93



results into account, different driving behaviors can be chosen based on how to they might
affect a driver based on the unsupervised modeling of their historical driving data within
the safety boundary of each behavior. Additionally, services such as route selection can take
these factors into consideration for providing a human-centered service that considers how
a driver might feel through driving on each route based on potential driving behaviors that
can occur on the route (e.g., amount of highway driving, curve driving, etc.).

When comparing conservative versus aggressive driving style, we observe different levels
to which participants are affected by each style, which might be indicative of individual dif-
ferences when being in the two different driving styles. Additionally, among our participants,
we have seen two participants that had higher abnormal HR and GTE during conservative
driving style. This was in contrast with all the other 10 participants. After careful examina-
tion of the videos and interviewing the participants, we realized that one of the two drivers
uses loud music in highways which might be indicative of the high HR values in conservative
highway driving scenarios (shown with red on Fig. 4.20), while, the second driver often uses
cruise control in highway driving (shown with blue). Although more data is required to ad-
dress the effect of loud music in naturalistic driving, part of our future work will be focused
on using the data provided in HARMONY (103), to assess the effect of music in naturalistic
scenarios. This preliminary finding paves the way for understanding the naturalistic effect
of music on driving behaviors and driver’s states.

Additionally, while we did not have access to the cruise control usage data by the vehicle,
we hypothesize that the abnormal HR and GTE state for the participant shown with blue
on Fig. 4.20 could be due to interaction with the semi-automated cruise control system.
Current cruise control systems are generally used to keep a constant speed during highway
free flow driving. This might imply that although automated driving assisting systems
(ADAS) can help the drivers for delivering a safe driving task, they might be the cause of
more stress and might result in changes in drivers’ state that can only be detected through
using psychophysiological metrics. Changes in drivers’ behaviors and states, while engaged
in ADAS systems were mentioned previously in other naturalistic driving study researches
((27; 50)). It is possible that when the cruise control system was active, which is often
on highways and at higher speeds, the driver had more stress as they had to supervise
the automation. Alternatively it could also be the case that participant engaged in other
activities or started mind-wandering, which increased the fraction of high HR and GTE.
A very recent study focusing on semi-automated vehicles drivers is also pointing towards
more eyes-off-the-road during using automated systems (68). More research with taking
psychophysiology into account is required to understand the real effect of shared-autonomy
on the driver. This also has strong implications for human sensing modules inside vehicles
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that rely on computer vision. Such modules often only consider the driver’s facial expressions
and gaze patterns while leaving behind the driver’s physiological responses such as HR, skin
temperature, etc. While computer vision has shown to be a very strong method for detecting
a driver’s state, coupling it with physiological metrics can provide a deeper understanding
of the driver’s state.

Although we have not focused specifically on the sequence of behaviors, using Tables 4.6
and 4.11 we observe important insights regarding the transition probabilities across different
behaviors. This helps with analyzing driving styles in a deeper fashion. From Table 4.6, we
first observe that a harsh braking behavior is often followed by a normal braking behavior,
while a normal braking behavior is more likely to continue in normal braking. This might
imply that while performing normal braking, the driver is more confident regarding the
context such as the surrounding road environment, traffic density, or other vehicles, thus the
chances of switching to a harsh brake is lower than other two behavior. We also observe
that the braking behavior that succeeds free flow driving is divided between the two types of
braking behaviors. This might imply that depending on the context driver chooses between
two different behavioral patterns. More information from the context can provide insight
into the reasoning behind the choice between the two. Information such as the presence
of other vehicles, the speed of other vehicles, and their distance can be predictive of such
choice. This will be analyzed in our future work. Additionally, from Table 4.11 we observe
that when being in accelerating driving behavior, the probability of switching to a hard
brake is the highest among other behaviors. This indicates that aggressive, less monotone
driving through accelerating behavior is more likely to result in a harsh braking/deceleration
behavior, which can be inferred as continuing the less monotone aggressive driving. On the
other hand, being in a free flow driving behavior is much less likely to switch to a harsh brake
(p = 0.02). Such results could indicate the persistence of both aggressive or conservative
behavior throughout the time, which can be used for driving style prediction. One part
of the future work will be focused on this area to understand and predict the sequence of
behaviors in different contexts.

Lastly, the findings of our approach to driver state modeling when applied in real-time,
has the potential to guide an autonomous vehicle to better predict human behavior and
take actions that are fit to driver’s physiology. Note that a vehicle does not need to know
the meaning of each unsupervised pattern. For our study, we translated driving patterns
into driving behaviors, which helps with illustrating each pattern and justifying the method.
However, a vehicle only requires to know the characteristics of each planned driving pattern,
compare it with the detected patterns in the historical data, and the probability of abnormal
HR within different planned behaviors. This can then help the vehicle choose among different
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actions. For instance, when choosing between a harsh and normal brake, the vehicle can
estimate the acceleration in each action, find the most similar driving pattern to each action
based on acceleration characteristics and model fit, and choose the one that is more suitable
to drivers’ HR and gaze patterns. Additionally, using our approach in driver state modeling,
we can better predict future driving decisions by building behavioral models of past driver
states and incorporating theoretical findings in psychology such as memory based judgment
and decision making (87; 88).

4.2.6 Limitations

Our work has a number of limitations, which will be addressed in the future work of this
research. We will increase the number of participants as well as the duration of collected data
to understand individual differences in how various driving styles may affect each driver. This
can help us cluster different drivers based on how they are affected by the driving behaviors.
We will perform deeper feature extraction on both driver’s HR as well as gaze variation
to retrieve a deeper understanding of the driver’s state in each driving pattern. A deeper
feature extraction together with a higher amount of data might reveal differences in drivers’
states within different behavior in varying roadway designs. Our current dataset is focused
on highways. Part of the future work should be focused on performing the same on other
urban environments such as city streets and comparing the results with highway driving.

We will perform the same analysis with a higher number of sensors and modalities in
both the human sensing and vehicle sensing part of our study. This can include modalities
such as driver’s other bio-signals (e.g., skin temperature) and modalities retrieved from the
computer vision techniques (e.g., distance to other vehicles). The added modalities may
reveal extended details regarding human psychophysiology within different driving pattern.
These information can enhance our knowledge in understanding other important factors
associated to changes in drivers’ states with at a deeper level.

It should be noted that we only focused on using change point detection for segmenting
applied on the kinematic driving data. It is indeed the case that other contextual information
should be coupled with vehicle kinematic to provide a more fine-grained segmentation. For
instance, computer vision can help with detecting intersections, lead vehicles, and other
road objects which can be helpful in defining segments. Information such as time headway,
distance to the lead vehicle and other behavioral metrics can help with both segmentation
and pattern inference to become more fine-grained.

We will focus deeper on the sequence of driving behaviors to be able to predict behaviors
using time series prediction methods. Currently, the sequence presented in this paper may
suffer from road objects rather than drivers’ choice in certain situations. For instance, when
moving from free flow driving to curved driving, it is indeed the case that the curve on

96



the road dictates the driving behavior. In our future work, we will expand on fine grained
behaviors within each of the curve driving and free flow driving to understand different levels
of behaviors that are not dictated by the environment. Nevertheless, it might be the case
that some behavioral sequences are drivers’ choice which are related to the driving context.
Future work should expand this section to a greater detail.

Lastly, we will consider other unsupervised methods that can help understand behaviors
in a more fine-grained manner, such as the application of deep temporal clustering methods.
It is important to note that most of the behavioral patterns in our study are generalized
in which future work should couple a higher number of modalities together with a bigger
dataset to find fine grained patterns. Such patterns can then be used for immediate path
planning of future autonomous vehicles.

4.2.7 Conclusion

In this paper, we propose a method to understand driver’s reactions to different driving ma-
neuvers in real-world driving scenarios by using unsupervised methods. Using our approach,
different driving behaviors can be ranked based on how they affect a user’s well-being, thus
producing actions that are more aligned with human’s state, such as stress levels and cog-
nitive loads. Our method uses a combination of Bayesian Change Point detection together
with GMM-LDA methods applied on both driving and human sensing data to mine such
associations between driver’s state and behavior.

4.2.8 Appendix

4.2.8.1 LDA Details

LDA is based on the following generative assumptions (15; 58):

N ∼ Poisson(ξ) (4.15)

θm ∼ Dirichlet(α) (4.16)

φk ∼ Dirichlet(β) (4.17)

which θm is the topic distribution of document m in M and φk is the distribution of each
word w in topic k in K. Note that α and β are the prior distributions of θ and φ respectively.
In this way, the topic of the nth word in document m is Zm,n, which has a Multinomial
distribution on θm. Additionally, the nth word in document m has a Multinomial distribution
over φzm,n .

4.2.8.2 GMM Details

Formally, a GMM model is a weighted summation of M different components as:
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p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (4.18)

In the equation above, x is the multidimensional vector and wi is the identified different
Gaussian distributions that sum up to 1, and are described as:

g(x|µi,Σi) =
1

(2π)
D
2 |Σi|

1
2

exp (−1

2
(x− µi)

′Σ−1
i (x− µi)) (4.19)

in which µi is the mean vector and Σi is the covariance matrix. The parameters of
different Gaussian distributions can be retrieved through the Expectation Maximization
algorithm which is described in detail in (82).
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Chapter 5

How Does the Driving Context Affect Driver’s
State?

This chapter discusses methods in understanding changes in drivers’ states when interacting
with the complicated dynamic driving environment. In this regard, three projects are dis-
cussed where the first project focuses on momentarily changes in driver’s HR as a proxy for
stress level and its correlation with environmental changes. First, through a manual annota-
tion scheme, we show that abrupt changes in HR are correlated with specific environmental
attributes (e.g., presence of intersection). These environmental attributes were previously
shown to be correlated with higher stress levels in literature. In the second project, we
find the differences across environmental attributes as to how much they affect drivers’ HR
and how this varies across individuals. In this project, automatic environmental attribute
detection will be performed through Computer Vision, and linear mixed effect models will
be leveraged to find individual differences. In the third project latent variable state space
approach is leveraged to detect drivers state variation (i.e., stress and workload) under the
perturbations of traffic density and task demands with a structural approach.

5.1 Project 1: Driver’s Heart Rate as a Feedback to the Environ-

mental Events - A Case Study

5.1.1 Introduction
1 One of the key elements of human-vehicle interaction is the prediction and analysis of
drivers’ states and behaviors, such as stress, anxiety, and negative emotions. Detecting and
mitigating drivers’ stress level and negative emotions on the road are of high importance
for decreasing accident rates as well as providing a human-centered experience in driving
(18; 6). Additionally, research shows that driver-state changes are associated with certain

1©2021 IEEE. Reprinted, with permission, from (111)
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environmental events. For instance, recent research suggests that driver stress level and
anxiety are correlated with specific events, such as the presence of passengers, big vehicles,
pedestrians, and intersections (120; 22; 15; 110).

Integrating the above information into the human-vehicle interaction development can
help mitigate the adverse effects of driving on the users and provide a human-centeric driv-
ing experience. However, methods of data collection other than subjective self-reports are
required to understand the real-time reaction of drivers to these environmental attributes
(6). In this regard, studies have already shown the utility of drivers’ psychophysiology in
capturing drivers’ reactions to environmental attributes.

Literature suggests that stress is the process in which the demand of a certain situation
is perceived to be more than the available resources (33). The perceived demand can be
defined based on the overall situation, including the previous experiences, internal body
sensations, and the external stimuli (33). The experienced stress may be accompanied by
changes in physiology, such as increases in HR. Thus, it is possible that abrupt changes in
drivers’ HR, are preceded by the presence of stress-inducing road objects and events (e.g.,
passing through an intersection or presence of a big vehicle) (22).

This project is mainly focused on understanding the interaction between environmental
attributes and changes in drivers’ heart rate (HR). The collected data in HARMONY is
employed to show the utility of driver’s HR as feedback to environmental events. This is
first done through a visual inspection of videos that are accompanied by abrupt increases in
drivers’ HR. The abrupt increases are detected through Bayesian Change Point Detection
(BCP). Fusing the information from the in-cabin and outside videos with the HR changepoint
locations from 15 participants results in understanding the reasons behind abrupt increases
in HR. After manual inspection, this chapter proposes using object detection techniques
to detect the categories of stressors on the road in a larger dataset. Based on applying
YOLOV5 object detection algorithm and by taking advantage of linear mixed effect models,
this project will focus on understanding the individual differences across participants in their
responses to environmental attributes. The preliminary results of this project are published
in (111; 106). This chapter specifically answers the following research questions:

Research Question 1: Is a driver’s heart rate as retrieved through conventional wear-
able devices indicative of external contextual changes?

Research Question 2: What are the differences across people in the change in their
HR with respect to such environmental stressors?

5.1.2 Background

Human biomarkers were used in the literature for detecting stress levels (17). In this re-
gard, human HR has received special attention as HR can be collected using conventional
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wearable devices and have the potential to be used in the wild. Wearable devices often use
photoplethysmogram (PPG) technology, which is based on using infrared to detect the blood
volume pressure in the veins on the wrist (108). This is then used to estimate the HR and
a set of heart rate variability (HRV) features. Using conventional wearable devices, studies
showed that an increase in HR is correlated with an increase in the levels of certain states
such as anxiety, stress, and anger (55; 111).

Within the driving research area, studies have provided significant insights into the cau-
sation behind drivers’ stress and negative emotions. These studies were mostly conducted
in an on-road controlled fashion or within a driving simulator framework. In this regard,
(120) monitored 33 drivers during a 50 minutes naturalistic on-road controlled study through
a combination of cameras, sensors, and self-reports through voice. Through analyzing 531
self-reports, the authors found that the four main types of emotion triggers include traffic
& driving task, environment, HCI & navigation, and vehicle and equipment. Their study
mentions different detailed categories such as traffic lights, road design, the behavior of oth-
ers, weather, and building and sites as reasons within the aforementioned larger categories
for negative emotions of drivers. Another study performed by (111) identified that different
characteristics of the scene might be associated with abrupt increases in drivers’ HR. In their
study, authors found lead vehicles, intersections, being followed by another vehicle, and per-
forming secondary tasks to be the most significant factors associated with abrupt changes
in drivers’ HR. Later a study by (15) attempted to classify drivers’ self-reported stress lev-
els using the objects in the scene. In their study, by applying computer vision methods
such as convolutional neural networks on the outside videos as input, authors achieved an
accuracy of 72 % in the prediction of drivers’ self-reported stress in an on-road controlled
study. Their study also points out that objects such as traffic signs, cars, pedestrians, big
vehicles, and riders are associated with medium to high subjective stress levels. Another
recent study performed by (22) tracked the emotions of 34 drivers through self-reports on
an on-road controlled study and found out that intersections are the hotspots for emotional
triggers. Additionally, they found out that highways are associated with the least stress level
as compared to other urban environments. This study also points out that the behavior of
other road users, traffic lights, and navigation have a higher fraction of negative emotions as
compared to the category of entertainment, which had a more positive emotion.

Research has shown the association between changes in drivers’ physiological signals, and
environmental attributes. A recent study through a naturalistic driving framework found
out that drivers’ have a lower heart rate when driving in clear versus rainy, highway versus
city, and with a passenger versus alone conditions (107). Another study found out that
drivers’ physiological responses are correlated with vehicle’s kinematic, which is governed by
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driver’s behavior (74). In their study, authors conducted a naturalistic study spanning over
383 days and from 16 drivers. They concluded that drivers’ HR decreases when the number
of people in the car increases. Another study performed by (109) analyzed drivers’ HR and
gaze entropy within different driving patterns. By using unsupervised modeling techniques,
the authors found out that drivers exhibit a higher fraction of the pattern of normal HR
during highway free-flow driving with higher speed. Additionally, they found out that a more
conservative driving style was accompanied by smaller fractions of abnormal HR and gaze
entropy patterns as compared to a risky driving style. Lastly, (62) proposed a framework
to detect drivers’ emotions using a combination of vehicle telemetry as well as the outdoor
visual scene. Based on the facial expressions retrieved from the Affectiva software applied
on 675 hours of driving data, authors were able to detect the emotions in a user-dependent
and user-independent fashion with 70 % and 60 % accuracy, respectively.

5.1.3 Hypothesis

The above literature taken together suggests certain objects on the road are correlated
with higher subjective stress levels and negative emotions. Additionally, higher stress levels,
anxiety, and negative emotions are also correlated with increases in HR relative to the resting
condition. This allows us to hypothesize that:

• Hypothesis: Certain on-road objects (e.g., big vehicles) and infrastructures (e.g.,
intersections) might be correlated with abrupt increases in drivers’ stress levels. In
this regard, abrupt increases in drivers’ HR, which is indicative of drivers’ stress level,
might be accompanied with the presence of these on-road stressors.

5.1.4 Methodology

In order to detect abrupt increases in HR, we propose using Bayesian Change Point (BCP)
method. After finding the moments that have abrupt changes in HR, we can search in
the driving videos at the location of change points in HR to find the specific environmental
attribute that can be related to the increase in HR. In this subsections below, we first provide
an overview of the BCP method, then discuss the reasons behind each change point detected
in the HR.

5.1.4.1 Bayesian Change point Analysis
2 We consider the problem of detecting changes in the HR as a Bayesian change point detec-
tion problem. This approach allows for easy quantification of uncertainty and integration of
priors. We leverage Barry and Hartigan’s (9) Bayesian change point model for this analysis.
This model assumes there is an unknown partition ρ of the data in the contiguous regime,

2©2021 IEEE. Reprinted, with permission, from (111)
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such that within each regime, the HR remains the same. The new external event typically
happens between two blocks when the HR goes up. The model also assumes an independent
normal distribution for each block.

Let us assume we have n HR data points {X1, ..., Xn}. We will use Xij to refer to the
observations between indices i and j. Let ρ = (U1, ..., Un) indicate a partition of the time
series into non overlapping HR regimes. We use a boolean array of change points to denote
the regimes. At each time step, if Ui takes a value 1, we have a new HR regime (possibly
due to an external event); else we remain in the same regime.

We are interested in the posterior density f(ρ|X). By Baye’s theorem, this can be written
as

f(ρ|X) ∝ f(X|ρ)f(ρ) (5.1)

Prior cohesion density: Let p denote the probability of getting a change point at each
location. We assume this probability to be the same at each location. If we assume that
there are b partitions, the prior cohesion density can be written as

f(ρ|p) = pb−1(1− p)n−b (5.2)

The joint density of observations and parameters given ρ is a product of densities of
different blocks over the blocks in ρ. Let us consider a single block. If we assume that the
data in this block is generated by a Gaussian with mean θ and variance σ2. Let the prior
density of θ be a Gaussian with mean µ0 and variance σ2

0

f(Xij, θ) = Πf(Xk|θ)f(θ)

f(Xij) =

∫
Πf(Xk|θ)f(θ)dθ

(5.3)

The above integral can be simplified to the expression below

f(Xij) = (
1

2πσ2
)(j−i)/2(

σ2

σ2
0 + σ2

)1/2exp(Vij) (5.4)

Where

Vij = −
∑l=j

l=i+1(Xl − X̂ij)
2

2σ2
− (j − i)(X̂ij − µ0)

2

2(σ2 + σ2
0)

(5.5)

and X̂ij is the mean of the observations in the partition. However f(Xij) still depends on
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the parameters µ0, σ
2, σ2

0. Defining w = σ2

σ2
0+σ2 and choosing the following priors for the

parameters:

f(µ0) = 1,−∞ ≤ µ0 ≤ ∞

f(p) = 1/p0, 0 ≤ p ≤ p0

f(σ2) = 1/σ2, 0 ≤ σ2 ≤ ∞

f(w) = 1/w0, 0 ≤ w ≤ w0

(5.6)

f(X|ρ, µ0, w) =

∫ ∞

0

1/σ2
∏
ijϵP

f(Xij)dσ
2

(5.7)

After integrating out µ0 and w, This can be simplified to the indefinite integral below.
We refer the readers to (9) for the full derivation.

f(X|ρ) ∝
∫ w0

0

w(b−1)/2

(W +Bw)(n−1)/2
dw, (5.8)

where

X̂ =
n∑

i=1

Xi/n, B =
∑
ijϵP

(j − i)(X̂ij − X̂)2,

W =
∑
ijϵP

l=j∑
l=i+1

(Xl − X̂ij)
2

(5.9)

Similarly, after integrating out the change probability p, the prior cohesion density thus
can be written as

f(ρ) ∝
∫ p0

0

pb−1(1− p)n−bdp (5.10)

To calculate the posterior distribution over partitions, we use Markov Chain Monte Carlo
(MCMC) (37). We define a Markov chain with the following transition rule: with probability
pi, a new change point at the location i is introduced. Here B1,W1 and B0,W0 refer to the
expressions in (12) with and without the change point in location i.
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pi
1− pi

=
p(Ui = 1|X,Uj, j ̸= i)

p(Ui = 0|X,Uj, j ̸= i)

=

∫ p0
0

pb(1− p)n−b−1dp∫ p0
0

pb−1(1− p)n−bdp
x

∫ w0

0
wb/2

(W1+B1w)(n−1)/2dw∫ w0

0
w(b−1)/2

(W0+B0w)(n−1)/2dw

(5.11)

This ultimately leaves us with a probabilistic model with the following two parameters p0
and w0. We use the package bcp (27) in R programming language to implement our change
point analysis.

5.1.5 Case Study

In order to contextualize the change points in HR and variation in driving environment, we
first use a case study from the HARMONY dataset. In this regard, we use approximately 2
hours of driving data randomly drawn from 10 participants that have been collected through
the HARMONY dataset. The BCP is applied to the participants HR, and videos were used
manually as reasoning. After finding the location of change points in drivers’ HR, we use
manual annotations from the videos to find out possible reasons for the abrupt increase in
HR. The annotations are based on the annotation scheme detailed out in section 3.4.7.

5.1.5.1 Preliminary Results
3 We first focus on one participant to illustrate our results. Fig. 5.1 depicts the participant #9
HR during the trip selected for this case study. Using BCP, we detect the specific moments
that the underlying distribution of HR data changes, which in this case, the change point is
associated to time points that the HR increases from its baseline value for a short amount
of time. Fig. 5.1 - A, shows the overall time series of HR for this trip (black), together with
the mean computed value from the BCP method (blue), as well the probability of detecting
the change point events (red).

For each one of these change points, we have manually analyzed the video streams to
find out the reason behind them. Here we hypothesize that each change point is related to
an internal or external event that is accompanied by the driver’s HR changes. An example
of the events associated with these peaks is then demonstrated in the parts B and C of Fig.
5.1. Note that due to the low amount of light in the environment, some of the following
events may not be detectable if we only rely on camera streams.

We then performed the same analysis on the driving data randomly drawn from 9 other
participants that have been collected through the HARMONY dataset. The HR change
points coupled with the respective video epochs reveals these change points are happening

3©2021 IEEE. Reprinted, with permission, from (111)
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Figure 5.1: Participant’s HR values together with the overlay of mean values calculated
by BCP (A) the time series of participant’s HR (black) together with average HR value
between each two consecutive change points (blue) and the probability of detecting a change
points (red) (B) the visualization of the sample change points from the videos in an arbitrary
section of the time series (C) the regimes identified by BCP correspond to meaningful external
events. In C1, the driver is passing through an intersection. In C2 he is blocked while trying
to switch lanes, causing his HR to increase. In C3 and C4 the driver arrives at a high traffic
region and is talking on the phone. ©2021 IEEE
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Table 5.1: Different driving events detected by the HR change point detection. ©2021 IEEE

Time (UTC) Reason Category
23:34:05 blocked - changing lane Lead Vehicle
23:47:00 changing lane - vehicle passing Following Vehicle
23:49:50 car on the side Side Vehicle
23:55:24 yellow light expecting Intersection
0:01:45 car on the side Side Vehicle
0:03:17 blocked - changing lane Lead Vehicle
0:06:38 unknown - possibly a vehicle on the back Following Vehicle
0:07:40 unknown - possibly a vehicle on the back Following Vehicle
0:20:02 blocked - changing lane Lead Vehicle
0:26:02 decreasing speed - traffic density - high Traffic
0:27:00 Motorcycle passing by right Cyclist
0:29:57 car following distance decreased Lead Vehicle
0:31:38 changing lane - vehicle passing Side Vehicle
0:34:36 car on shoulder Side Vehicle
0:37:00 blocked Lead Vehicle
0:39:40 merging in highway Primary Task
0:42:10 distracted by phone Secondary Task
0:45:30 yellow light expecting Intersection
0:47:57 decreasing speed - traffic density - high Traffic
0:50:07 yellow light expecting Intersection
0:52:00 merging in highway Primary Task
0:57:35 merging in highway Primary Task
1:44:00 lead vehicle changing lane - decrease speed Lead Vehicle
1:47:53 unknown - possibly phone Secondary Task
1:51:19 decreasing speed - traffic density - high Traffic
2:01:46 secondary task - drinking Secondary Task
2:05:42 trying to do routing - confused Primary Task
2:09:57 traffic density - high - city Traffic

simultaneously with certain categories of in-cabin or outside events. Specifically, the following
categories of events are identified that correlate with the detect HR change point events
within the 9 participants:

• Lead vehicle: HR variation that is accompanied by the presence of the lead vehicle
such as decreasing the speed, being blocked, abrupt change lanes, and abrupt breaking
patterns.

• Arriving at an intersection: events where the driver is arriving or passing through an
intersection. For instance, when the vehicle is stopped at the red light versus when the
driver passes through the intersection.

• Following and side vehicles: a vehicle that follows the participant too closely or is
passing the vehicle.

• Driver’s tasks: this category is divided into primary and secondary tasks that drivers
are engaged with while driving. Primary tasks include those directly related to driving,
such as changing lane and checking mirrors. Secondary tasks include activities such
as holding/talking on the phone, working with the center stack, or other non-driving
related tasks.

• Traffic pattern: incidents that the driver has to decrease the vehicle’s speed, or have
abrupt breaking patterns due to inconsistency in traffic patterns and conditions such
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Figure 5.2: Count in each category of events happening in all 10 participants’ data. Note
that the two top occurring categories are intersection and lead vehicle. It’s important to note
that current autonomous systems have a one size fits all approach for situations when these
parameters are present (e.g., a common car-following distance) which can result in different
states for their users. ©2021 IEEE

as arriving at a high traffic density segment on a highway.

• Other roadway users: this category includes pedestrians, motorcycles, trucks, buses,
cyclists, and other roadway users that the participant passes by.

• Driver’s state: this category includes any driver state that cannot be fully seen as
an event in the in-cabin or outside video; however, there are visible changes in the
participant’s facial features such as the participant is smiling or frowning.

Fig. 5.2 provides the count per category for these events. One important note here is
that similar events in the past have been shown to be the cause of emotional and stressful
events. For instance, (120) mentions that the triggers of emotions can be due to traffic and
driving tasks, human-computer interaction and navigation, vehicle and its equipment, and
environmental factors. Furthermore, numerous studies have demonstrated that triggers of
emotions can be accompanied by abrupt increases in HR values (67). Thus it can be possible,
that the trigger categories were responsible for abrupt changes in the psychophysiological
state of the driver, which was then captured in HR (while not being fully visible in the vision
module of the data).

By using the HARMONY framework, we have demonstrated that external events of in-
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terest can be automatically detected by applying BCP methods to the driver’s physiological
measures. The multimodal approach of HARMONY provides a deeper context to each ex-
ternal event happening in the driving scenario. Furthermore, by adding automatic computer
vision techniques, HARMONY can reason more deeply about each external event detected
through vision modules, such as passing an intersection, the presence of a lead vehicle, and
performing a change lane.

5.1.6 Discussion on HR Utility as a Feedback
4 The first implication for AV is to use the change points to better receive feedback for
their decision on the road. Currently, AV can accurately detect and classify different outside
conditions such as traffic light, passing through an intersection, presence of a lead vehicle,
passing a cyclist, and many other objects and road conditions. However, we might behave
differently or psychologically feel differently while passing through similar or even the same
road conditions as before. However, AV is not capable of detecting and classifying these
driver-specific states. For instance, in the presented case study, we observe when the driver
is approaching an intersection with the traffic light turning yellow, his HR data indicates
a sudden change in state as the HR data elevates as soon as the traffic light is within his
field of view. In another scene we observe that the driver has no sudden change in his HR
when he sees an intersection with a red light from the far. This may indicate the color of the
traffic light, and the traffic patterns at one intersection might cause a higher level of stress
for the driver. Such information can assist AV in their motion planning as well as safety
considerations such as deceleration rates and car-following behaviors specific to each driver’s
preference and comfort levels (84). Additionally, the AV’s decision, if not aligned with the
driver’s choice, can negatively affect AV’s acceptance among users as compared to a preferred
decision (84). The presented HARMONY framework aims to highlight the importance of
driver-in-the-loop naturalistic studies, where driving experiences are contextualized based
on in-cabin and outdoor conditions as well as the driver’s behaviors and psychophysiological
states.

Another implication of the presented work is to identify the psychophysiological effect of
each event on the driver. For instance, whether an AV should decide to pass a lead vehicle
or increase its distance with it. Preferring each one of these decisions can be different among
different drivers and contextual settings (e.g., traffic density). This means that passing a
vehicle can be affecting the driver’s state differently than increasing the distance, and this
variation can also be different among different drivers. To better grasp these characteristics,
we provide a closer look at one of the change points events within the presented case study

4©2021 IEEE. Reprinted, with permission, from (111)
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Figure 5.3: Different modalities of data in a lane change action (left). Looking deeper into the
physiological data provides insight on how events like lane change can result in a prolonged
increase in HR, even post removal of the initial stimulus. (right). It’s important to note that
it’s hard to get such psychophysiological insights based purely on modalities like vision. The
video for this event is provided as a demo for the paper. ©2021 IEEE

dataset. Fig. 5.3 depicts a change event that is accompanied by an abrupt peak in the HR
data. In this event, the driver attempts to perform a change lane due to being blocked by
the vehicle ahead. After checking the mirror (green), the driver performs the lane change.
The HR of the driver stays elevated throughout the whole passing action. Afterward, when
the driver completely passes the vehicle, and there is no vehicle in the front, the HR starts to
decrease to the baseline value. The important point here is that events such as being blocked
by a vehicle can keep the driver’s HR elevated for a long period of time after the event ends,
which is not recognizable using video feeds at all. In this example, the gaze signal shows
the mirror checking (green) but does not show further information about the driver’s stress
levels, which is positively correlated with the changes in HR.

5.2 Project 2: Understanding the Differences Across Environmen-

tal Attributes on How They Affect the Driver’s State

5.2.1 Introduction

Designing human-centered vehicles require understanding how different factors in and out of
the vehicle can affect a user’s state, such as stress level, workload, and anxiety (15). This
is mostly due to the fact that drivers’ decision-making and resulting behaviors are affected
by their emotional and cognitive states, which ultimately have severe impacts on driving
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safety. For instance, recent studies through naturalistic environments suggest that negative
emotions, higher stress levels, and cognitive load may increase the probability of driving
accidents (21). While multiple studies are targeting emotion detection in-cabin, not that
many are focused on understanding which part of the environment (in-cabin and on the
road) might be associated with changes in driver’s states such as inducing negative emotions
and higher cognitive load (120). In line with addressing this gap, recent research has started
to analyze the driving environment together with subjective self-reports of driver’s stress
to find possible correlations between environmental attributes and driver’s stress level. For
instance, recent studies found that certain road objects such as bigger vehicles (e.g., trucks),
road users (e.g., cyclists), and infrastructural elements (e.g., intersections), as well as in-cabin
situations (e.g., working with the center stack), are highly associated with higher subjective
stress levels (120; 22; 15). In addition to road objects, some research studies showed that
car-following distance and behavior could also affect drivers’ psychological states (79). For
instance, (121) showed that within a simulated platooning scenario, drivers’ mental stress
measured through biosignals increased as the distance to the lead vehicle decreased. Another
very recent study performed in a driving simulator found out that drivers’ workload was
higher during a shorter time headway (88).

Understanding the aforementioned reasons behind drivers’ state including emotions,
workload, and stress induction, can help mitigate them in driving by choosing less stressful
routes (108), personalizing car-following distance (79), or by providing interventions (e.g., lis-
tening to music) (30). While previous studies provided significant evidence on the correlation
between drivers’ subjective measures of stress and environmental attributes, it is still difficult
to apply these findings in real vehicles as most of these studies are centered on subjective
measurements. Recent developments in ubiquitous computing devices such as smartwatches
are facilitating their applications in detecting unhealthy states of the users such as abrupt
changes in anxiety, stress level, and experiencing negative emotions at both individual and
community level (116; 111). Using ubiquitous computing devices, studies have found strong
correlations between human psychophysiological measures (e.g., HR and skin conductance)
and stress level and work load, and more specifically in driving, studies show that increase
in human HR might be correlated with stressful experiences (80; 18; 64; 54; 111).

In addition to smartwatches, advancements in computer vision techniques have made it
viable to detect certain objects fully automatically without any manual annotation. For
example, recent developments in end-to-end object detection algorithms (e.g., see MASK
RCNN (2)) together with high-quality datasets (e.g., see COCO (61)) have made it possible
to detect many road objects such as signs, road users, and infrastructural elements. Even
in the case of not having access to off-the-shelf models, current computer vision frameworks
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are making it easier compared to the past to build newer models for different road objects.
Coupling smartwatches with features extracted from videos can help with finding possible
associations between the presence of road objects and drivers’ stress changes, objectively.
This information can then be leveraged to enhance the driving experience and mitigate
possible faulty decisions as a result of being under stress, ultimately decreasing driving
accident rates. In the context of automated driving, these methods can help with take-over
control of the vehicle in a much more efficient and faster manner.

In this paper, we take an explorational approach to understanding the relationship be-
tween changes in drivers’ stress levels and emotions in real-world driving context by using
multimodal naturalistic driving data, which includes drivers’ psychophysiological measures,
and behavioral metrics (vehicle speed) as well as driving environment videos. Based on a
naturalistic driving dataset, namely HARMONY (111), we first retrieve drivers’ facial ex-
pressions as well as abrupt increases in their HR, which might be indicative of increases in
stress level (111). We detect abrupt increases by using a change point detector based on
Barry and Hartigan’s method (9). We analyze the driving scene retrieved from the video
recordings by (1) detecting road objects and (2) estimating the relative distance to the lead
vehicle. By analyzing the co-occurrence of the abrupt increases in drivers’ HR and the pres-
ence of lead vehicles, we find that different road objects might be associated with varying
levels of increases in drivers’ HR, indicating different stress levels as well as different frac-
tions of negative facial emotions. Our results indicate that larger vehicles on the road, such
as trucks and buses, might be associated with the highest amount of increase in drivers’
HR as well as negative emotions. Additionally, our findings show that shorter distances to
the lead vehicle in naturalistic driving, as well as the higher standard deviation in the car-
following distance, might be associated with a higher number of abrupt increases in drivers’
HR, showing a possible increase in stress level. Moreover, our findings indicate more positive
emotions, more facial engagement, and a lower number of abrupt changes in HR at a higher
speed of driving. This research lays the ground for designing human-centered vehicles, ur-
ban environments, and services that can understand the level to which each road object and
environment might affect drivers’ and passengers’ well-being.

5.2.2 Background

Studies in the past have provided significant information on the interplay of drivers’ un-
healthy states (e.g., emotions, stress level, anxiety, and cognitive load) and the environmen-
tal attributes. These studies have shown that environmental attributes such as in-cabin
situation, road type, road users, weather, and in-cabin condition can well affect how a driver
feels and can result in affecting their driving performance and behaviors both in automated
and manual driving (120; 22; 15). As this paper is mostly centered on drivers’ negative
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emotions and stress levels among the other drivers’ states, we review these two concepts in
great detail as follows.

Understanding emotion and its applications have been one of the main topics of psychol-
ogy, philosophy, neuroscience, artificial intelligence and computer-human interaction. If we
go back in the history, the study of emotion has a history all the way back to ancient Greece
(93). Merriam-Webster dictionary defines emotion as “A conscious mental reaction (such
as anger or fear) subjectively experienced as strong feeling usually directed toward a spe-
cific object and typically accompanied by physiological and behavioral changes in the body”.
Psychology literature provides different theories of emotion, such as the categorical and di-
mensional emotion theories. The categorical, sometimes referred to as the basic emotion
theory, posits that there is a specific limited number of emotions that are basic psychological
and biological concepts and cannot be divided into more basic ingredients. Although there is
not a consensus on the number of the emotions and as to which emotion is a basic emotion,
but there seems to be an agreement on the definition of the basic emotion. These emotions
are distinct in their recurring fixed patterns of neural and bodily expressed components and
physiological and behavioral signatures such as variation in heart rate, and facial muscle
movements (47; 114; 25) which is in response to a stimulus. Different psychologists proposed
a different number of basic emotions and accounted various emotions as basic. For instance,
Izard proposes six basic emotions of happiness, sadness, fear, anger, disgust, and interest,
while Ekman proposes the basic emotions to be happiness, sadness, fear, anger, disgust,
contempt, and surprise (114).

Dimensional emotion theory proposes that emotions can be represented with numerical
values in multiple dimensions. One of the famous dimensional emotion theories is Russell’s
dimensional emotion model, where emotions are represented by their valence and arousal
in a two-dimension format (92). Valence refers to the level of positivity and negativity of
emotion, whereas arousal refers to the level of activation in each emotion. In this model, an
emotion such as “excited” has relatively high positive valence and high arousal, whereas an
emotion such as bored has a negative valence with very low arousal.

Driver stress is defined as the process of facing a situation where the perceived demand,
mostly defined based on the previous experiences, internal body sensations, and external
stimuli, is higher than the available resources (33). Stress can happen at different time
scales where short-term stress is referred to as acute stress, in contrast to long-term stress,
which is referred to as chronic stress (33). Multiple studies in driving research have attempted
to detect changes in emotion and stress level through measuring human physiological met-
rics such as facial expressions, cardiac measures, and skin temperature and conductance
(17; 36; 55; 107). These studies are mostly based on the assumption that changes in human
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physiology follow similar patterns within each specific emotional state. For example, stud-
ies show that increases in human HR might be correlated with an increase in stress level
and negative emotions (55). Additionally, studies have shown that the movement of facial
muscles within each emotion category might follow specific patterns, where computer vision
applications can be leveraged to detect emotions from the facial expressions (69). Addition-
ally, in a similar approach, certain patterns can be recognized while experiencing stress and
can be recognized through machine learning applications (36).

While multiple studies focused on detecting unhealthy states (e.g., stress level), not that
many studies analyzed the reason behind the elicitation of each state (120). Understand-
ing emotion triggers is of high importance as it helps with planning for interventions in
driving, which can then help mitigate the effect of negative emotions and stress levels on
drivers’ performance, decision making, and take-over control. Mesken et al. analyzed three
of the drivers’ emotions (anxiety, happiness, and anger) by using an instrumented vehicle
monitored by an experimenter in the vehicle (73). In their study, the authors monitored
44 drivers in an on-road controlled study through speed, videos, and their HR. The par-
ticipants were asked to verbally talk about their emotions as they faced any situation in
driving. They found out that the emotion with the highest frequency was anxiety which was
followed by anger and happiness. They also found out that emotions were related to traffic
events. The authors also pointed out that drivers’ anger was associated with driving events
that might affect their progress, while anxiety was related to driving events affecting safety.
Additionally, the authors report an increase in HR associated with anxiety situations (73).
Roild et al. analyzed the responses of drivers’ regarding the emotions that they experienced
through a short survey (91). In their study, the authors asked participants to rate their
daily emotions in driving through an online questionnaire. Authors found out that drivers’
anger, anxiety, and positive emotions were strongly related to situational factors (91). Their
results also point out that higher task demands are correlated with higher negative emotions
(91). Later, a study by (120) monitored 33 drivers for a duration of 50 minutes through an
on-road controlled study without an experimenter being present in the car. The authors also
asked drivers to talk about their emotions as they faced them during the driving scenario.
The authors analyzed 531 self-reports of drivers’ voice recordings and provided four main
categories of emotional triggers. The main categories included traffic & driving task, envi-
ronment, HCI & navigation, and vehicle and equipment, which involved a few subcategories
such as weather, other road users’ behavior, and road designs (120).

Another study by (22) performed a similar analysis by monitoring 34 drivers’ emotions
with a focus on spatiotemporal triggers of emotions within an urban environment and found
out that the main hotspot of emotional triggers in driving based on self-reports are intersec-
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tions. Additionally, they found out that environmental attributes such as other road users’
behaviors and traffic lights had a higher fraction of negative emotions as compared to positive
emotions within the self-reported stress. In their study, the authors point out that within
the urban environment, highways are associated with the least stress level. While most of
these studies were centered on self-reports, another study performed by (111) found out
that different characteristics of the road environment might be associated with increases in
drivers’ HR. In their study, the authors found out that being followed by a vehicle, following
a lead vehicle too closely, arriving at an intersection, and performing secondary tasks might
be associated with abrupt increases in drivers’ HR, possibly showing stress and negative
emotions. Lastly, a study by (15) attempted to predict self-reports of stress by solely relying
on the snapshots of the visual scene. Based on using a convolutional neural network, the au-
thors were able to predict the self-report associated with each visual scene in their database
with an accuracy of 72 %. Authors also point out that certain objects in the visual scene
are correlated with higher subjective stress levels, such as traffic lights, bigger vehicles, and
the presence of riders. Lastly, it should also be noted that previous studies in this area were
mostly conducted through on-road controlled studies as well as using a driving simulator.

Previous studies pointed out two major points regarding drivers’ stress level and emo-
tions. Firstly it is evident that drivers’ stress level and emotions is affected by the driving
environment such as certain objects in the visual scene such as presence of other road users,
especially vulnerable road users, intersections and traffic lights, as well as lead vehicles and
other traffic signs. Secondly, studies show that higher stress level in general is also correlated
with increases in HR. Based on the above literature we hypothesize the following:

The hypotheses for this paper are as follows:

1. From the road object point of view, different environmental attributes might be as-
sociated with different levels of changes in a participant’s HR. For instance, it can
be the case that an intersection might be accompanied by a higher increase in HR as
compared to a pedestrian.

2. Variation in the car-following distance might be correlated with stress level, which in
turn is accompanied by changes in drivers’ physiological responses.

5.2.3 Methodology

This section is divided into multiple subsections describing the dataset (section 5.2.3.1),
environmental perturbation detection (section 5.2.3.2), detection of changes in drivers’ HR
(section 5.2.3.3), detection of drivers’ facial emotions (section5.2.3.4), and detection of dis-
tance to the lead vehicle (section 5.2.3.5).
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Figure 5.4: A general view of the data from both in-cabin (A) and on road (B), as well as
the application of change point detector for finding moments of high stress in drivers’ HR
(C).

5.2.3.1 Dataset

The dataset for this study is provided by HARMONY, a human-centered multimodal study
in the wild (111). This dataset includes driving as well as human sensing data from 22
participants. The dataset is collected in a naturalistic fashion where each participant is
provided with a camera and a smartwatch. The participants were asked to drive as they
normally would in their daily lives. The camera recorded both in-cabin and outdoor envi-
ronmental conditions. Additionally, the smartwatch collected the driver’s heart rate, hand
acceleration, location, and environmental features such as noise and light level in-cabin. To
this end, we used the data from 15 participants. A sample of the data is available online at
(115). Additionally, figure 5.4 - A and B shows a view of the data from both in-cabin and
on-road situation points of view.

5.2.3.2 Perturbation Detection

In order to simplify the process of detection and analysis, this section is mainly focused on
seven major environmental perturbations that were previously mentioned in driving research
as stressors on the road (120; 22; 15). These categories include the presence of speed limit
signs, stop signs, intersections (i.e., traffic lights), big vehicles such as trucks and buses,
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riders such as bicycles and motorcycles, and pedestrians. Note that any other category can
also be added to the analysis hereafter. However, we only focus on a set of perturbations
that were already shown to affect subjective stress levels.

5.2.3.2.1 Detection of Truck, Bus, Motorcycle, Bicycle, Traffic Light, and Pedes-
trian

In order to detect truck, bus, motorcycle, bicycle, traffic light, and pedestrian, we used
an off-the-shelf computer vision algorithm namely MASK RCNN. In this section, we used
a pretrained model of the MASK RCNN algorithm (2) that was trained on the Common
Objects in Context (COCO) dataset (61). A sample of the detection can be seen on figure
5.4 - C.

5.2.3.2.2 Detection of Stop Signs and Speed Limit

In order to detect stop and speed limit signs within the pool of collected videos, we take
advantage of the recent computer vision (CV) applications in sign detection. Current off-
the-shelf CV algorithms (e.g., MASK R-CNN (40)) that are trained on large datasets (e.g.,
COCO (61)) are capable of detecting stop signs. However, contrary to the test set provided
by these algorithms, once applying them to real-world videos collected in HARMONY, they
often detect any sort of traffic sign as a stop sign, which increases the false positive rate.
Additionally, if a stop sign is not facing the driver, it will still be detected, which is not
applicable to our case as we are interested in stop signs that might be associated with a
change in a driver’s state.

To overcome these issues, we first retrained an object detection model on a stop and
speed limit sign dataset, which was created by merging three external sub-datasets. The
model and code for this section are available through our GitHub (103) . We use transfer
learning to retrain a model for detecting stop signs. In this regard, we take advantage of
the YOLOV5 model, which is a recent modification of a well-known deep learning object
detection architecture, namely YOLO. Below, we provide an overview of YOLOV5.

YOLOV5: You Only Look Once (YOLO) is an object detection algorithm that was
introduced by (89). This model reimagines object detection as a regression problem and is
inspired by the human visual system. Previous works in object detection generally apply a
sliding window on the image of the interest to detect different objects (89). More specifically,
methods such as MASK-RCNN (40) first apply a sliding window to detect bounding boxes.
Each bounding box is then fed into a classifier for labeling based on the object of interest
within the bounding box. This is extremely time-consuming as each part of the model has
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to be trained separately. On the other hand, YOLO is based on simultaneously predicting
bounding boxes and the probability of each label associated with them. In this regard, YOLO
can see the whole image at once and predict for the whole image rather than each individual
bounding box, which results in less number of false positives (89). YOLO architecture has 24
convolutional layers followed by two fully connected layers, as shown in detail in (89). YOLO
initially was suffering from different limitations, such as struggling with small objects in the
visual scene. Different modifications were then added to the base YOLO, which resulted in
YOLO versions 2 to 5. For this work, we focus on the most recent version of YOLO, which
is YOLOV5 introduced by (52; 28).

Sign Detection Datasets: For this paper, we first trained YOLOV5 on a dataset of
stop and speed limit signs. As mentioned previously, the dataset was created by merging
three datasets of Laboratory for Intelligent and Safe Automobiles (LISA) (49), Common
Objects in Context (COCO) (61), and the Balali Sign Dataset (5). While both the LISA
and Balali Sign datasets are only focused on signs (e.g., stop signs, warning, and go left), the
COCO dataset includes many road objects such as trucks, sedans, motorcycles, bicycles, and
traffic lights. From combining the three datasets, 8042 images were used as training which
comprised 4154 stop sign and speed limit images. Within the stop sign and speed limit pool
of images, 2420 images were from the LISA dataset (1291 stop signs and 1129 speed limits),
and 1734 stop signs from the COCO dataset. Additionally, the training set included a total
number of 3888 negatives (none of the stop or speed limit signs) images, which comprised
250 negative images from the Balali Sign Dataset, as well as 2638 negative images from the
LISA dataset. Lastly, 721 images were used as a test set, in which 652 images were from the
LISA dataset and 69 images were from the COCO dataset.

Utilizing YOLOV5 model, we trained the base YOLOV5 model for 200 epochs with the
default hyperparameters. Figure 5.5 shows the mean average precision at 0.5 (mAP@0.5)
for the stop sign and speed limit dataset.

Optical Character Recognition (OCR): In order to further enhance the accuracy and
to differentiate between speed limit signs, we integrated an Optical Character Recognition
(OCR) (81) to detect signs that only have a specific text written on them. Using this method,
we separate the signs that are not showing “STOP” or a number such as “25” on them. OCR
is referred to the transforming of images into printed text. In order to apply OCR, we
have tested the PyTesseract (85), and EasyOCR (24) packages written in Python scripting
language. Our initial testing on the two packages showed that EasyOCR is slower but much
more accurate in the images retrieved from real videos collected through HARMONY. Thus
we continue with the EasyOCR package. Every detection of the speed limit or stop sign
is fed into the EasyOCR package. In the case of not detecting any character, it will be
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Figure 5.5: The mean average precision of training yolov5 for stop sign and speed limit
dataset

automatically removed from the detections. In the case of detecting “Speed Limit“, we will
then also find the number showing the limit. The whole process above takes between 3-5
minutes for each video, depending on the chosen frame per second.

5.2.3.3 Detecting Abrupt Increases in Drivers’ HR

In order to detect the abrupt increases in drivers’ HR, which, as mentioned previously,
is correlated with increases in drivers’ stress level, we take advantage of a change point
detector. Due to motion artifacts introduced through different movements of drivers’ hands,
momentarily peaks can exist in the HR data, which is not of interest to our analysis. We are
rather interested in detecting a change in the underlying distribution of the HR data. For this
matter, we take advantage of a Bayesian Change Point (BCP) detector. BCP allows for easy
quantification of uncertainty and integration of priors. Other studies have also mentioned
the utility of BCP in detecting changes in data from different fields such as health (65),
driving (111), and behavioral science (60). We leverage Barry and Hartigan’s (9) Bayesian
change point model for this analysis. This model generally assumes different blocks of HR
data within the time series of HR in a way that within each block, the mean is constant. The
model then calculates the probability of entering a new block as a change point probability.
in order to perform BCP on the HR data, we use the bcp package written in R programming
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language (27). The BCP is applied to each participant’s HR data, and the probability of
change at each point is extracted.

After detecting both change points in HR and the presence of certain road objects, we use
a window of 10 seconds around each change point in HR to search for the presence of each
road object based on the computer vision detection. In the case of the presence of certain
road objects, we will search in the next 10 seconds after the detection of the change point
for the maximum HR value. Using the HR max values, we define the reaction to the road
object as the difference between the HR at the moment of change point and the HR max
value. These values are then used to model the individual differences in these environmental
perturbations. We use linear mixed effect models to understand the variation in drivers’
HR responses around each environmental attribute. Linear mixed effect (LME) models are
similar to a simple linear regression with the difference that it accounts for the variability
across participants in their responses as random factors while accounting for the effect of
fixed factors (each perturbation). In the case of facing a dependent variable that is of a count
nature, we use a generalized linear model with a negative binomial process distribution (13).
The idea behind LME is described in detail in (14; 32). The analysis above is performed
through the lme4 (10) package written in R programming language (86).

5.2.3.4 Detection of Drivers’ Facial Emotions

In order to detect drivers’ facial emotions, we leverage the Affectiva module on the iMotion
software (68; 69). Previous research has shown the utility of this software in detecting facial
expressions and their positivity/negativity level, as well as detecting basic emotions and
specific facial muscles (59; 1; 72; 90; 104). For this paper we focus on the two measures of
“engagement” and “valence”. Engagement refers to the level of showing any signs of emotion
in the face with a value of 0 (no emotion) to 100 (highest showing of emotion), and valence
is a measure of positive or negativity of emotion with a value between -100 (most negative)
to 100 (most positive). After performing the analysis with Affectiva, all the frames that did
not have any detections were removed from the database. This can be due to the angle of
the camera as well as lighting issues, which did not account for a significant portion of the
data.

5.2.3.5 Pixelwise Distance to the Lead Vehicle

In order to calculate the pixel-wise distance to the lead vehicle, we have used a combination
of lane detection and object detection algorithms. For this task, we used a version of the
YOLO algorithm titled, YOLOP: You Only Look Once for Panoptic Driving Perception
(117). We applied YOLOP on the outside videos and retrieved lanes, vehicles, and driveable
areas. We initially used both lanes and cars, but upon finding YOLOP’s car detection to
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Figure 5.6: The methodology to calculate the pixelwise distance from the lead vehicle.
(A) detection the lead vehicle using a combination of lane tracking and object detection.
Enhancing the high number of false positives in detection as the lead vehicle (B) through
post-processing (C)

be inaccurate on cars directly in front in our specific videos, we supplemented the detection
with external bounding boxes from MASK RCNN (40). Using YOLOP we detect what lane
a detected car is in. The modified program assigns lane numbers to every car detection.
Lane 0 represents a car directly in front in the same lane, a negative lane number represents
cars to the left, and positive lane numbers represent cars to the right.

YOLOP’s lane detection creates a pixel mask representing lanes. From the pixel mask, a
center is marked, and the amount and location of lanes on either side of the center are found.
Then on each car detection, the lane number is assigned to the detection according to the
car’s relative position to the lane detections. Additionally, a line is drawn from the bottom
center of the mask to the center of each car, and the number of times this line intersects
a lane is counted. Zero intersections mean the car will be in the center lane, while one
intersection would mean the car is in the line directly adjacent to the current lane (figure
5.6 - A).

After detection is performed, post-processing is applied to remove outliers and fill in de-
tections in gaps, as car and lane detection will not always provide accurate results, especially
when they examine one frame at a time (figure 5.6 - B). Post-processing also ensures only a
single car can have lane number 0 (in front), as only a single car will be visible in front and
in the same lane. In some cases, lane detection will not detect lanes at all, and declare all
cars visible as the car in front. Post-processing will correct this by assigning the car closest
to the center and with the largest bounding box as the car in front while assigning other
cars to the side lanes (figure 5.6 - C).
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5.2.4 Results

5.2.4.1 Relationship Between Road Objects and Drivers’ Psychophysiology

Figure 5.9 shows the distribution of the percentage of increase in drivers’ HR after each
detected change point. Note that this percentage is calculated based on dividing drivers’
maximum HR in the 10-second time window as defined in methodology section by drivers’ HR
at the location of the detected change point. We have also marked the location of the mean, as
well as one standard deviation, two standard deviations, and three standard deviations away
from the mean by red, black, blue, and purple lines, respectively. This will help us better
visualize the result in the next sections. Additionally, note that due to the imbalanced nature
of the dataset (e.g., unequal number of instances with trucks versus pedestrians), we have
performed oversampling based on Synthetic Minority Oversampling Technique (SMOTE)
(16) to generate new samples for the minority classes. SMOTE generates new data points
from convex combinations of nearest neighbors. This will help us better compare the different
categories. Additionally, we have grouped different categories of environmental perturbations
for a better illustration. The rider group contains cyclists and motorcycle riders, and the
bigger vehicle contains trucks and buses.

Figure 5.7 shows the average level of increase in HR for each road object category. As
observed, the category of the bigger vehicle has the highest amount of increase which in-
cludes trucks and buses. This is then followed by pedestrians, traffic lights (an indicator
of intersections), traffic signs, and riders. In order better understand the differences across
these groups, we run a Kruskal Wallis test (70) over the different categories of road stressors
associated with HR increase. A Kruskal Wallis test is a non-parametric test that assesses
the differences across independent samples. This test shows that the categories of stressors
are significantly different from each other, with a degree of freedom of 4, a chi-squared value
of 34.14, and a p-value of 6.97e-7. We then ran a set of pairwise t-tests that were corrected
using the Holm method (43). This is performed due to the fact that multiple comparisons
are being made simultaneously. The results of the t-tests are shown in Table 5.2. As can be
seen, most of the comparisons produce significant results other than the comparison between
bigger vehicles and pedestrians categories.

It is important to note that we focus on the increase in HR rather than the actual value
of HR. Figure 5.8 shows the standardized value of HR for each road object category. Note
that the HR values are standardized per participant due to the inherent differences across
different people’s HR baselines. As can be seen visually, the trend is different than the level
of increase in HR at each change point location. This might imply that although the HR
values themselves might be higher for some perturbations, when a change in HR happens
at their presence, the level of increase follows a different pattern for each perturbation. For
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Figure 5.7: The average increase in HR at each change point location associated with each
road object category.

instance, while the average HR value is lower for the category of traffic light in comparison
to rider, the increase associated to it is more than the rider category.

Using the values in figure 5.9, we define different levels of stress to be low, medium, and
high based on the level of increase in HR. More specifically, between µ and µ+ σ represents
low stress, between µ+ σ and µ+2 ∗ σ represents medium stress, and between µ+2 ∗ σ and
µ + 3 ∗ σ or more represents high stress level. We then perform our analysis based on each
of the categories defined.

Figure 5.10 shows the fraction of the presence of each road object within each stress
category. On average, As shown, within each stressor object category, the fraction of the
presence of each stress level varies, with the category of riders having the lowest fraction of
high stress and bus and truck (bigger vehicles) having the highest. Note that although the
rider category has the least high-stress level, it is, in fact leading the medium stress level
category. In other words, the presence of a rider is most likely to increase the HR only as
much as two standard deviations away from an average increase in HR. Additionally, note
that almost 30% of all the increases in HR associated with trucks move at least two standard
deviations away from the average increase.

We also visualized the individual differences across participants and how different par-
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Table 5.2: The comparison between the HR increase associated with different categories of
perturbations

Bigger Vehicles Pedestrians Rider Traffic Light
Pedestrians 0.12120 - - -
Rider <2e-16 <2e-16 - -
Traffic Light 0.00014 0.02481 1.7e-8 -
Traffic Sign 1.9e-10 1.7e-6 0.00205 0.02532

ticipants might vary in how they perceive different stressors based on their HR increase. As
shown in figure 5.11, participant #12 had the highest level of HR increase, while participant
#15 had the lowest amount.

Additionally, we observe that within different categories of stressors, participants are also
reacting differently. For example, participant #14 has the least increase in HR due to bigger
vehicles, while participant #19 has the highest level.

For valence and engagement, we have followed a similar analysis procedure as HR. In this
section, we have first assigned categories to valence and engagement based on the mean and
standard deviation of valence and engagement. Valence is categorized as negative, neutral,
and positive, where the range between µ ± σ is considered neutral. This is mostly due to
the fact that valence values are often close to zero (showing no emotion). For engagement,
we considered two categories of neutral and non-neutral engagement. In this fashion, all the
values more than µ+ σ are considered as non-neutral facial engagement.

Figure 5.13 shows the presence of each stressor category within each engagement level
category. Note that similar to HR increases, bigger vehicles have the highest amount of high
engagement, and rider is among the lowest categories. It is interesting that the proportion
of having high facial engagement is more than 0.5 for the bigger vehicle category, which
implies that when facing bigger vehicles, drivers are more likely to show some level of facial
expression, while this value is the lowest for the traffic light category. In other words,
detecting responses to traffic lights might be more feasible by using HR rather than facial
expressions.

Figure 5.14 shows the presence of each stressor category within each valence level category.
Similar to both engagement and HR changes, bigger vehicles are among the categories with
the highest level of negative valence retrieved from facial expressions. Similar to facial
engagement, the traffic light is mostly followed by a neutral facial expression which might
indicate that this modality may not be suitable for detecting reactions to the traffic lights.
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Figure 5.8: The average HR in the presence of each road object category.

5.2.4.2 A Detailed Analysis of HR in the Vicinity of Traffic Signs

In addition to the generic traffic sign detection, we have analyzed drivers’ HR in the vicinity
of stop signs and speed limit signs from the pool of detected traffic signs. These two traffic
signs are categorized as regulatory signs, which might have a different effect on the driver
as compared to the other signs. In this section, we are mostly interested in knowing the
physiological pattern of drivers around these two regulatory signs. In order to find clusters
in drivers’ physiological metrics, we perform k-means clustering on the HR and speed signals
around these two regulatory signs.

It is important to note that changes in human HR and, in general physiology can happen
at different time scales with respect to the detection of certain road objects. For example,
we don’t exactly know when (e.g., how many seconds prior or after) a person might perceive
a road object and react. Thus in order to compare the time series and further cluster them,
we need to first bring different instances of the stop sign and speed limit occurrences into
the same time frame using Dynamic Time Warping (DTW).

Dynamic Time Warping (DTW) is a famous technique for finding an optimal warping
function to transform a time series to another one that might have differences in speed
of happening in time (78; 11). In simple terms, DTW attempts to find shape functions
that, when applied to a time series, can produce the other time series that may have been
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Figure 5.9: The distribution of increase in HR at location of change point in percentage for
different participants. Note that the red vertical line show the mean, the black dashed line
shows the mean + standard deviation, the blue dashed line shows the mean + two * standard
deviation, and the purple dashed line shows the mean plus three * standard deviation.
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Figure 5.10: The fraction of presence of each stress category within each road object.

recorded in a longer timeframe. This is similar to finding a function that can translate a
person walking at a specified speed to another situation of having a different speed but with
the same pattern. For example, imagine the HR of participants when reaching a stop sign.
Different participants might reach and pass through a stop sign with different durations,
thus producing time series with different time frames that all reflect the same situation. We
perform DTW using the tslearn package programmed in Python (112).

After performing DTW on the time series of HR in the vicinity of stop signs and speed
limit signs, we performed k-means clustering. K-means clustering is an unsupervised ap-
proach to finding clusters within the data (48). This algorithm which lies under the partition-
based clustering methods, performs based on assigning each point to a randomly initialized
set of partitions based on their similarity. This procedure is performed until convergence.
K-means algorithm is fast and simple to implement, thus attracting many research areas
(48).

In order to define the number of clusters needed, we use the silhouette score (98). This
score shows the quality of clustering by measuring how close points from different clusters
are to each other (98). Silhouette score is a value between -1 and 1, which 1 indicates the
most separation between clusters. We assess the Silhouette score for the different number
of clusters and choose the number of clusters that produce the highest score, which in both
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Figure 5.11: A comparison between the differences across participants for the average HR
increase

cases of being close to a stop sign or speed limit sign, two clusters have been chosen.
Based on the two clusters detected as the optimal number of clusters, we apply the

k-means clustering. Figure 5.16 shows the two clusters detected. Note that x-axis in the
middle is the time of reaching a speed limit sign based on computer vision detection (Time
= 7.5). While the two patterns around the speed limit signs are very different from each
other at the first look, they have certain interesting characteristics. Cluster 1 is related to
the cases that the HR is at its normal value prior to reaching the speed limit sign. Note the
abrupt increase in HR in the vicinity of the sign. This cluster is also more dominant based
on the number of times that it happens visibly from the figure. Cluster 2 is related to the
cases where the HR is already higher than normal prior to arriving at the speed limit sign.
It is interesting that even in this case, a small increase is observed at the location of speed
limit sign detection (time =7.5).

The patterns in the vicinity of stop signs have a similar trend to the speed limit signs
with some interesting differences (figure 5.17). First, in cluster 1, the increase in HR happens
a few seconds after the detection of stop signs, which can mean a time difference between
the effect of these two signs on human physiology. Second, the stop sign trend in cluster 2
has a downward trend after time =12.5 (see figure 5.17 , time > 12.5), whereas this is not
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Figure 5.12: A comparison between the differences across participants for various stressors
on the road.

the case for cluster 1 in speed limit (figure 5.16 - time > 12.5). This might indicate that the
speed limit sign has a more prolonging effect than the stop sign on human physiology.

5.2.4.3 Relationship Between Distance to the Lead Vehicle and HR

Figure 5.18 shows the number of abrupt increases in drivers’ HR versus the average distance
to the lead vehicle. Visual inspection of the figure suggests that a negative relationship
exists between the average distance to the lead vehicle and the count of abrupt increases
in drivers’ HR. We test this relationship by using a generalized linear mixed-effect model
(GLMM) with a negative binomial process, in which the independent variable is the average
distance to the lead vehicle and the dependent variable is the count of the number of abrupt
increases in HR, while considering the random effect of different participants’ baselines with
separate intercepts for each participant. We chose this model specifically by comparing it
with a generalized model with no random effect. We chose the aforementioned model based
on the AIC model comparison. As shown on Table 5.3, the GLMM model has lowest AIC
value.

Table 5.4 shows the result of the chosen GLMM model for the mean distance to lead
vehicle data. The results show that participants’ HR had a higher number of abrupt changes
as the mean distance to the lead vehicle decreased.
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Figure 5.13: The presence of each road object in each category of engagement. Note that
we provide a zoomed in version for the categories with lower values.

Table 5.3: The comparison between the two models chosen for modeling the relationship
between abrupt increases in HR and average distance to lead vehicle. The lowest AIC in
GLMM with random intercept is the basis for model selection.

Model Name AIC BIC Loglikelihood Chi sq Df Pr
Generalized Linear Model 6256.8 6273.3 -3125.4
GLMM with random intercept 6246.4 6268.4 -3119.2 12.397 1 0.00043

Figure 5.19 shows the number of abrupt increases in drivers’ HR versus the standard de-
viation of distance to the lead vehicle. Visual inspection of the figure suggests that a positive
relationship exists between the standard deviation in the distance to the lead vehicle and the
count of abrupt increases in drivers’ HR. We test this relationship by using a generalized lin-
ear mixed-effect model (GLMM) with a negative binomial process, in which the independent
variable is the standard deviation of the distance to the lead vehicle. The dependent variable
is the count of the number of abrupt increases in HR while considering the random effect
of different participants’ baselines with separate intercepts for each participant. We chose
this model specifically by comparing it with a generalized model with no random effect. We
chose the aforementioned model based on the AIC model comparison. As shown in Table
5.5, the GLMM model has the lowest AIC value.
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Figure 5.14: The presence of each road object in each category of valence. Note that we
provide a zoomed in version for the categories with lower values.

Table 5.6 shows the result of the chosen GLMM model for the distance to lead vehicle
data. The results show that participants’ HR had a higher number of abrupt changes as the
distance to the lead vehicle changed more sporadically (standard error = 0.01235, z-value =
11.308, p-value < 0.0001).

5.2.4.4 Relationship between Drivers’ Speed and Psychophysiology

Lastly, we analyze the relationship between the drivers’ speed and the level of increase
in HR as well as facial expressions. Figure 5.20 shows the change in HR in the vicinity
of change points in HR for two different environments of the city versus highway. While
both environments show a declining trend with respect to the relationship between HR and

Table 5.4: The result of applying the GLMM model with random slope on the standard
deviation of distance to lead vehicle versus abrupt increases in drivers’ HR. p-values estimated
via t-tests using the Satterthwaite approximations to degrees of freedom. The significant
predictors at 0.05 level are underlined in the Pr column.

Effect Estimate Std. Error z-value Pr(>[z]) CI 2.5% CI 97.5%
Intercept 0.38707 0.06511 5.945 2.7e-9 0.23752773 0.5160669
Distance 0.07928 0.03572 2.220 0.0264 0.01033641 0.1504898
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Figure 5.15: The Silhouette score for different number clusters for k-means clustering of
drivers’ HR in the vicinity of speed limit signs and stop signs. The optimum cluster number
is 2

Table 5.5: The comparison between the two models chosen for modeling the relationship
between abrupt increases in HR and standard deviation of distance to lead vehicle. The
lowest AIC in GLMM with random intercept is the basis for model selection.

Model Name AIC BIC Loglikelihood Chi sq Df Pr
Generalized Linear Model 7335.1 7346.1 -3665.5
GLMM with random intercept 7272.5 7289.0 -3633.2 64.590 1 9.22e-16

speed, a higher slope is observed for the highway environment. In this section, we treated
the environment type as a random factor and assessed the relationship with a mixed effect
model. Table 5.7 shows the result of the mixed effect model. Also, note that we chose this
model as it had a lower AIC value compared to a simple linear regression (-256158 versus
-256140).

Figure 5.21 shows the probability of change in HR at different speeds of the vehicle. As it
is shown, higher speeds are accompanied by higher probabilities of abrupt changes in drivers’
HR towards higher values. We tested this relationship using a linear regression model, and
the results are shown in Table 5.8.

Figure 5.22 shows the relationship between drivers’ facial expressions and speed. On
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Table 5.6: The result of applying the GLMM model with random slope on the standard
deviation of distance to lead vehicle versus abrupt increases in drivers’ HR. p-values estimated
via t-tests using the Satterthwaite approximations to degrees of freedom. The significant
predictors at 0.05 level are underlined in the Pr column.

Effect Estimate Std. Error z-value Pr(>[z]) CI 2.5% CI 97.5%
Intercept 0.43270 0.01895 22.83 2e16 0.21162163 0.4832381
Distance 0.16748 0.01327 12.62 2e-16 0.08054035 0.3128414

Table 5.7: The result of the linear mixed effect model on the changes in HR at different
speed in city and environment. p-values estimated via t-tests using the Satterthwaite ap-
proximations to degrees of freedom.

Effect Estimate Std. Error df t-value Pr
Intercept 1.042 1.736e-3 1.041e+00 600.086 0.000825
Speed -2.839e-05 4.688e-06 1.030e+04 -6.056 1.44e-09

Table 5.8: The result of the linear regression model on evaluating changes in probability of
abrupt increases in HR based on drivers’ speed

Effect Estimate Std. Error t-value Pr CI 2.5% CI 97.5%
Intercept 1.839e-01 4.963e-03 37.058 2e-16 0.1741 0.1937
Speed 2.651e-04 5.721e-05 4.633 7.91e-06 0.0001 0.0004
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Figure 5.16: The patterns in drivers’ HR in the vicinity of speed limit signs. The two clusters
both have an abrupt increase in HR in the vicinity of speed limit sign

Figure 5.17: The pattern sin drivers’ HR in the vicinity of speed limit signs. The two clusters
both have an abrupt increase in HR in the vicinity of speed limit sign

average, drivers are less likely to show a specific movement in their facial muscles as they
travel at a higher speed. The result of testing this relationship with linear regression is also
shown in Table 5.9

Figure 5.23 shows the relationship between drivers’ valence at varying levels of speed. As
shown, drivers’ valence has a more positive value at higher speeds. In other words, drivers
show more positive facial expressions when they drive at higher speeds on highways. This
result is also tested by using a linear regression model as shown in Table 5.10.

Table 5.9: The result of the linear regression model on evaluating changes in drivers’ facial
engagement based on drivers’ speed

Effect Estimate Std. Error t-value Pr CI 2.5% CI 97.5%
Intercept 10.694699 0.328603 32.55 2e-16 10.0452 11.3441
Speed -0.040836 0.003788 -10.78 2e-16 -0.0483 -0.0333
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Figure 5.18: The change in the average distance to the lead vehicle versus the number of
abrupt increases in drivers’ heart rate. The markers show the datapoints for each participant,
and the line plot is the overall trendline.

5.2.5 Discussion

In this study, we undertook an explorational approach to the relationship between drivers’
HR, facial expressions, and driving context, such as the presence of certain road objects and
distance to lead vehicles. As a summary, our results suggest significant relationships between
changes in drivers’ psychophysiological measures in the vicinity of the aforementioned road
object categories. Our results, while collected materialistically and objectively, are in line
with previous studies that were performed through controlled experiments and by using
subjective measures such as self-reports.

Previous research showed that certain road object categories were accompanied by very
high subjective stress levels. For instance, (15) showed that riders and big vehicles were
accompanied by a high fraction of high stress levels. Additionally, studies such as (22) note
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Figure 5.19: The change in the standard deviation of distance to the lead vehicle versus the
number of abrupt increases in drivers’ heart rate. The markers show the datapoints for each
participant, and the line plots are the best fitted line for each participant’s data.

that intersections are accompanied by very high subjective negative emotions. Our results
show similar patterns while focusing on drivers’ HR instead of subjective measures. Based on
the changes in drivers’ HR in the vicinity of such road objects, bigger vehicles and pedestrians
are among the highest increase in HR, followed by traffic lights, traffic signs, and riders.

Moreover, changes might fall into different categories of increases in HR. For example,
trucks and, in general, bigger vehicles are associated with a higher proportion of the increase
in HR with more than two standard deviations away from the mean (high stress), whereas
riders are often associated with a medium increase in HR (not more than two standard
deviation increase in HR on figure 5.10) These results have strong implication for designing
human-centered autonomous systems that may need to reason and decide for choosing routes
(e.g., a route with a higher number of trucks such as highways versus a route with higher
riders), as well as following or passing a road object (e.g., bicycle versus truck). Moreover,
intuitively we observe that the effect of different stressors varies across participants. For
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Figure 5.20: The change in heart rate at the locations of changepoints with respect to varying
levels of speed for city and highway environments.

Figure 5.21: The probability of increasing change in HR at different speeds
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Figure 5.22: The facial engagement with respect to varying levels of speed

Figure 5.23: The facial valence with respect to varying levels of speed
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Table 5.10: The result of the linear regression model on evaluating the relationship between
in drivers’ valence on drivers’ speed

Effect Estimate Std. Error t-value Pr CI 2.5% CI 97.5%
Intercept 0.016972 0.002657 6.388 2.11e-9 -3.9709 -3.0600
Speed -0.040836 0.003788 -10.78 2e-16 0.0117 0.0222

example, we observe the difference between participants #12 and #17 on how they respond
to bigger vehicles based on their HR (figure 5.12). This has implications for designing
personalized systems that can respond to each individual based on their specific profile in
each specific context.

Additionally, we observe similar patterns within the engagement and valence of the
drivers, where trucks and buses are among the top categories when comparing the nega-
tive emotion proportions, which is followed by traffic signs, pedestrians, riders, and traffic
lights. While for some categories of road objects, the result of cardiac measures and facial ex-
pressions confirm each other (e.g., a high fraction of high-stress HR and negative valence for
bigger vehicles), this is not necessarily the case for some of the other categories. For example,
while traffic lights and, in general, intersections were previously shown to be associated with
higher stress levels, and we observe a higher fraction of HR increases beyond two standard
deviations from the mean; they exhibit the lowest fraction of high facial engagement as well
as the lowest proportion of negative valence as shown on figures 5.13. Results as such might
indicate that not always participants show facial expressions when they experience increases
in HR. This implies the importance of multimodal sensing for human emotion and stress
detection.

Analysis of patterns in drivers’ HR in the vicinity of traffic signs shows that even within
signs, there can be similarities and differences in how drivers perceive each sign. For instance,
we observe that within each of the two traffic signs, two patterns can be detected where in
both of them, drivers’ HR has an abrupt increase in the vicinity of them. Additionally, we
observe that even similar clusters, when comparing stop signs and speed limit signs, might
have a different prolonging effect on drivers’ physiology. Similar analysis should be performed
for other road objects to better understand the pattern in HR in the vicinity of these objects
(e.g., the difference between different types of trucks).

Our results show that a shorter distance to the lead vehicle is associated with a higher
number of abrupt increases in drivers’ HR. Additionally, we showed that a higher standard
deviation of the distance with the following lead vehicle is associated with higher levels of
abrupt increases in HR. Previous research showed a positive correlation between increases
in HR and stress levels. Taken the above together, our result may indicate that being closer
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to the lead vehicle as well as changing the distance to abrupt values away from the mean
may be accompanied by higher stress levels and unhealthy states for the driver as well as
the passenger. These results are in line with very recent research showing that within a
driving simulator, shorter time headways are associated with higher workloads, which might
affect drivers’ safety (87). The fact that not only the average distance but also the standard
deviation of distance has an impact on drivers’ HR highlights the importance of connected
vehicles where the distance can be calibrated and kept constant based on different user
profiles.

We also observed that different participants might be affected differently by each of
the road objects as well as different distances to the lead vehicle. The current scheme
of designing in-cabin systems often ignores the individual differences across people. Our
results warrant more human-centered considerations with an individual profile approach
for designing in-cabin systems that can understand how each user might be affected by
environmental attributes.

Our results show that higher speed, especially in highway environments, is correlated
with lower levels of increase in drivers’ HR. Previous research provided evidence on the fact
that highways might be associated with lower levels of subjective stress levels (22; 107). This
might indicate that reason behind perceiving highways as a less stressful environment might
lie in the fact that drivers are often allowed to drive faster in the highway environment. Note
that the negative correlation between speed and stress level (as measured by an increase in
HR) is not as strong in the city environment. This might indicate that although in the
city environment, higher speed might contribute to lowering the stress level, the presence
of other stressors (e.g., traffic lights, pedestrians, riders, stop signs, etc) might compensate
for the increase in speed. Additionally, similar results were found in the recent work of (74)
where higher speed was more correlated with lower standard deviation in HR. Moreover, we
showed that higher speeds are correlated with a higher probability of change in HR. In other
words, at higher speeds, there is a higher chance that drivers’ HR faces an abrupt increase.
Taken the two together, we can conclude that at a higher speed, the probability of change
is higher, but such a change only has a minor effect on the HR.

Our results indicate the importance of different road objects and driving context as
a whole in keeping a less stressful driving experience. In the context of future vehicles,
our results have implications for designing autonomous vehicles that can take actions and
decisions that are a better fit for a passenger. For instance, in the case of keeping the optimal
distance to the lead vehicle, drivers’ HR can be used as an indicator for stress level detection
at different distances. In the context of smart and connected urban environments, our results
highlight the importance of the design and implementation of alternative scenarios that are
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capable of replacing the current urban design scheme. For instance, different alternative
designs of intersections and different alternatives to stop signs (e.g., roundabouts) can be
analyzed from the perspective of how much they affect the drivers. Lastly, in the context of
routing, our results have implications for designing human-centered routing systems that can
provide options based on users’ predicted feelings within each route with respect to different
objects and road characteristics that might be present within different roads (108).

5.2.6 Limitations

This study has a number of limitations that should be addressed by the future work. First and
foremost, the number of participants can be increased. Increasing the poll of participants not
only helps with finding individual differences to a greater extent, but it also lays the ground
to find differences across age groups, different genders, and also socioeconomic backgrounds
in their reaction to each road environment attribute.

Additionally, we note that this work lies heavily on the off-the-shelf computer vision
algorithms and models that were developed on certain datasets that may not necessarily
represent the proper set of road stressors. For example, it can be the case that participants
had different reactions to different types of trucks (e.g., trailers versus regular trucks). Part
of the future work should focus on developing an object detection model that can extract
such features from the massive amount of collected naturalistic videos.

While previous studies have used automatic facial expression recognition software, it
is not a general consensus that such software applications can truly extract all the facial
expressions. This is especially more experienced with pre-recorded in-the-wild videos where
the angle of the camera, lighting, and other camera-related characteristics can change as the
driving happens. Items as such can degrade the accuracy of the facial expression software
and also affect the result. While we leveraged data cleaning methods to remove the unusable
frames from the facial expression detection point of view, in addition to making sure all
of our videos were in daylight condition, future work should investigate the effect of such
matters in greater detail.

While we used computer vision to detect the distance to the lead vehicle, it is intuitive
that not always the pixel wise distance represents the true distance to the vehicle. For
example, within different road curves, as well as uphill and downhill driving, the distance
can be very different than the visual distance in the camera. Future work should integrate
other sensing modalities and a higher level of computer vision integration to detect the
distance to lead vehicles with higher accuracy.

Within different modalities, there can be a lag in how each modality responds to a
stimulus. For instance, it can be the case that HR increase happens faster than changes in
facial expressions. In one of our previous works, we have seen possible lags between different
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latent constructs (i.e., cognitive load and stress) (105). While in this paper we analyzed the
different modalities, we note that a limitation is to consider the possible between modalities
for a more proper comparison. Additionally, the response to different environmental stressors
might also be different from a time scale point of view. It can be the case that there is a delay
in response to the presence of a truck in comparison to a traffic light. Part of the future work
should be focused on understanding the lag in responding to each environmental perturbation
between different sensing modalities.

5.2.7 Conclusion

This research takes an exploratory approach to understand the effect of road environment
objects on drivers’ psychophysiological metrics. In contrast to previous studies, this research
aims to understand the reason behind changes in drivers’ emotions and feeling, which can
later be used for interventional proposes. By analyzing naturalistic driving data from 15
participants within varying city and highway environments, we find that different road ob-
jects might be associated with different levels of increase in drivers’ HR as well as different
proportions of negative facial emotions. Our results indicate that bigger vehicles are as-
sociated with the highest amount of increase in drivers’ HR as well as negative emotions.
Additionally, we showed that shorter distances to the lead vehicle in naturalistic driving
as well as the higher standard deviation in the distance might be associated with a higher
number of abrupt increases in drivers’ HR, showing a possible increase in stress level. Lastly,
our results indicate more positive emotions, more facial engagement, and a lower number of
abrupt changes in HR at a higher speed of driving.

5.3 Project 3: Driver State Modeling Under External Contextual

Perturbations Using Latent Variable State Space Modeling Frame-

work

5.3.1 Introduction

Understanding driver’s state, including stress level, emotions, and cognitive load, is one of
the important factors to improve driver-vehicle interactions and to enhance driver safety,
comfort, and experience (15; 111; 51; 23). Recent studies are pointing towards the effect of
drivers’ mental state on drivers’ performance both in manual and automated driving (3).
For instance, drivers’ stress levels and negative emotions were shown to be associated with
higher accident rates (21). Similarly, cognitive load due to distraction such as secondary task
engagements has an adverse effect on drivers’ take-over ability in automated driving and is
associated with higher accident rates (82; 21). In the definition of the National Highway
Traffic Safety Administration (NHTSA) of automation (from level 1, driver assistance, to
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5, fully automation), both levels 2 and 3 require driver take-over control in immediate and
with notice conditions, respectively. A safe vehicle at levels 2 and 3 is reliant on drivers’
attention to take over in a timely fashion, which is also reliant on drivers’ state. Thus, a
proper take-over requires appropriate detection, modeling, and analysis of drivers’ states in
different driving scenarios.

Driver’s states, including emotions, cognitive load, and stress level, are psychological
constructs that cannot be measured directly and are often observed through a set of mea-
surement variables such as psychophysiological records of the driver, including driver’s heart
rate, gaze variability, brain signals, and skin conductance. One method to model psycholog-
ical constructs such as stress level, workload, and emotions is to use latent variable modeling
schemes. A latent variable framework models one or multiple unobserved constructs through
a set of sensory measurements (46). Each sensor measurement might reveal a part of the
real construct with a certain level of error. For example, the stress level might be mod-
eled through a set of physiological measures such as heart rate (HR), skin temperature,
and skin conductance through latent variable modeling (55). Similarly, cognitive load can
be measured through driver’s gaze variability, brain activity, and heart rate measurements
(64; 26).

Additionally, considering that psychological constructs in driving often happen simulta-
neously, it is thus required to analyze the driver’s state in a holistic fashion where different
constructs exist simultaneously and can interact with each other. For example, real-world
driving, which can be accompanied by stress-inducing driving events, often happens together
with cognitive tasks such as the task of driving itself as well as the secondary tasks (64; 110).
The real-world analysis of driving situations often has many, if not all of the psychological
constructs interacting with each other in a dynamic fashion. In a hypothetical driving sce-
nario, a driver might become frustrated by a lead vehicle’s sudden stop; this might increase
the driver’s stress level due to fear of hitting the lead vehicle, while the driver might also be
working with a phone or mind wandering. A review on the interaction between affect and
driving behaviors also points out that it is required for driving behavior research to integrate
affect, cognition, and behaviors in one framework for a more holistic understanding of the
interactions among these elements (50). Latent variable modeling can thus become helpful in
modeling not just the psychological constructs of interest but also their possible interaction
over time.

While latent variable modeling of psychological constructs helps with realistic modeling
of human’s state, modeling driver’s state should also address the problem of the time de-
pendency of driver state measurements (94). Traditionally, when modeling time-dependent
sensory measurements such as human HR, modeling techniques such as autoregressive mov-
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ing average are used where the dependency of time points can be modeled explicitly. The
problem of time dependency is also present when analyzing latent constructs where the time
dependency of latent variables needs to be evaluated in the modeling scheme. For instance,
when modeling stress level as a latent variable based on physiological sensors, it is important
to understand the changes in stress level during the driving scenario and to what degree the
stress level at each time point is related to the next. This can be achieved through state-
space modeling (46). In other words, state-space modeling can be imagined as a substitute
for autoregressive models in a latent variable framework.

Lastly, driving happens in a multidimensional contextual setting. In short context can be
defined as any information that helps to define a situation in driving that is either internal or
external to the driver. External context includes sensor measurements from the environment
(e.g., weather condition, temperature, and traffic density), as well as the vehicle (e.g., current
speed). The internal context consists of the measurements related to the driver (e.g., stress,
valence, and arousal levels) (111). Different parts of the context can interact and affect each
other. Recent studies in psychology are emphasizing the importance of context in human
state analysis in which emotional episodes are tied to situation-specific needs of humans
(83; 41; 8). In other words, while analyzing latent human constructs, it is important to
account for the effect of external contextual inputs explicitly to achieve a more realistic
model. To achieve these aforementioned modeling schemes, we propose using state-space
latent variable models for driver state analysis, where the effect of external context can be
measured explicitly on the latent constructs and in a temporal fashion.

The rest of the paper is as follows. We first provide detailed background literature
on driver’s psychophysiological states (i.e., workload and stress levels) and how they affect
driver sensing data (e.g., HR), as well as their interaction with the external context (e.g.,
traffic density). We then propose a framework for analyzing driver’s psychophysiological
measures together with the external context longitudinally through taking advantage of
latent variable state-space models. We showcase a sample exploratory analysis of the state-
space approach on real-world driving data. We build state-space models to analyze the
relationship between contextual elements (i.e., number of road users on the road and driver’s
task demands) and a driver’s stress and workload as latent variables estimated through
driver’s facial expressions, eye gaze patterns, and physiological responses. Through our case
study, we compare two path diagram models in a state-space modeling scheme by considering
(1) one latent variable for drivers’ psychophysiological state, (2) two separate latent variables
for driver’s psychophysiological state with an interaction with each other. We assess the
log-likelihood of the aforementioned models as a measure of model fitness and discuss the
comparison. We then analyze the time dependency of the aforementioned latent variables.
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This research takes a holistic approach to driver state analysis where multiple internal and
external factors are unified through one modeling framework temporally. Through our case
study, we specifically answer the following questions:

1. How do the external context (i.e., traffic density) and task demands (based on hand-
movement) affect the driver’s internal contextual state (i.e., stress level and workload)?

2. How does the latent state at previous timestamps (i.e., 1 through 10 seconds) of the
driver affect his/her current state (i.e., stress and workload)?

3. How does the association between latent constructs (stress level and workload) change
throughout the driving scenario?

5.3.2 Background Study

The background section is divided into three subsection of context (5.3.2.1) , stress level
(5.3.2.2), and workload (5.3.2.3) as follows.

5.3.2.1 Context

Depending on the field of study, the context has been defined with different elements. In
computing systems, (96) defined it as surrounding objects, their locations, and their variation
over time. A similar study, defined aspects of context to be who you are, who you are with,
and what resources are nearby (95). Based on this study, context is not just the location
but also noise level, lighting, social situation, etc. Later (20) defined context as any relevant
information that can help characterize the situation of the interaction between an entity,
an application, and the environment. Two keywords in this definition are any relevant
information and the interaction. This study points out that the relevant information is not
always location or objects, but it is defined based on the situation that an entity is in. More
importantly, it defines certain types of context to be location, identity, activity, and time as
primary. Secondary context can be derived from the primary ones. For instance, a person’s
identity can define their home address. Another study has defined context in three layers of
adaptive layer, being responsible for retrieving the context from sensors, management layer
being responsible for providing this information to other devices, and application layer being
the part that uses underlying information for different applications (42). The current study
considers five types of context: time, location, device, user, and network. It also points out
that contextual information can be physical or logical, in which the physical part refers to
raw sensors readings (e.g., body temperature), and logical context is their abstract meanings
(e.g., a person having a fever).

The field of psychology provides a more human-centered definition for context. For in-
stance, (42) points out the importance of considering emotions and preferences when defining
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context. However, it is recognizable that humans’ emotions and actions by themselves are
meaningful when considered in the external context that they are happening (38). This
points towards separating context into two categories, internal and external, where internal
context is related to the human, while external context is concerned with the environment.
Other studies have also provided definitions for context in driving, mostly centered around
the environment, which is categorized as part of the previously mentioned definitions (exter-
nal context). In other words, environment and context seem to be interchangeably used in
such studies. This includes road conditions, weather conditions, and anything that happens
in the environment. (97) defines context as road scene and segments. (76) defines context
as a combination of environment and time. (113) defines context as the presence of turning
maneuvers, a lead vehicle, and oncoming vehicles.

In this paper, we define context similar to (20; 31) as a collective summary of any relevant
information about a driving situation retrieved from sensor measurements. However, by
using the psychological theories definition for context, we note that context can be internal
or external to the human driver. Internal contextual cues are retrieved from the human
driver and can affect the driving situation (e.g., driver’s heartbeat demonstrating calm or
stressful state in a lane change action), whereas external contextual cues are related to the
environmental elements affecting the driving situation (e.g., rainy road condition on a lane
change situation).

5.3.2.2 Stress

Stress is the process in which the demand of a particular situation is perceived to be more
than the available resources (33). The perceived demand can be defined based on the overall
situation, including the previous experiences, internal body sensations, and the external
stimuli (33). Stress can be in different time scales where short-time is referred to as acute
versus long term, referred to as chronic (33).

Decreasing drivers’ stress is of high importance as it can contribute to human error
making and possible accidents (56). Studies in the past have pointed out the effect of
stress level on drivers’ performance and driving behavior (66; 35). For instance, (35) showed
that perceived stress might affect behaviors such as aggressive driving and drunk driving.
Multiple biomarkers have been used in literature for detecting stress (6; 17). Studies have
pointed out the utility of cardiovascular measures in detecting the human state. Overall,
cardiovascular activity can be measured through two technologies of Electrocardiography
(ECG) and photoplethysmogram (PPG). ECG measures the electrical activity of the heart
through the usage of contact electrodes, whereas PPG records the same activity through
measuring blood volume in the vein using infrared technology (64; 111; 108). Devices such
as conventional wearable technologies often use PPG. The electrical signal of the heart can
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then be used to measure the HR (i.e., beeps per minute) and to calculate the heart rate
variability (HRV) features. HRV is generally referred to as a set of features that are retrieved
from the sequence of beat-to-beat intervals of an individual’s HR signal. These features can
be calculated in time (e.g., root mean squared of successive intervals (RMSSD)), frequency
(e.g., low-frequency power (LF)), and non-linear domains (e.g., sample entropy). There is
a vast literature showing that such features are, in fact, correlated with human stress levels
(55). An increase in stress level is shown to be correlated with a decrease in RMSSD, an
increase in LF, and an increase in HR (55). Additionally, studies pointed out the significance
of individual differences in the relationship between subject stress level and HR (102).

In addition to HR, certain facial action units were used to infer stress levels. For in-
stance, (34) reported that AU1, AU6, AU12, AU15 are the most indicative of stress levels in
their study. However, when comparing dependent and independent subject methods when
performing automatic facial emotion detection, the same study reported that the accuracy
of stress detection using AUs dropped from 91 % to 74 % (34). Such results may show that
individual differences exist in how people react in different situations. In other words, if the
situation defines how a person might react, mere analysis of biological responses may not pro-
vide the true human state at each time point. These findings may suggest that driver’s state
analysis through psychophysiological metrics should take into account the specific situation
and consider individual differences.

5.3.2.3 workload

Driver’s workload is mostly defined as cognitive resources that are taken from the driver
by any activity other than the driving (26), although some studies have also examined the
workload from the driving itself (71). The workload includes both ”mind wandering" and
the load imposed by ”secondary task". Cognitive workload has been shown to affect driving
performance metrics. Engstrom et al. point out that cognitive workload can selectively
impair driving tasks that rely on cognitive control as opposed to automated tasks (26).
Studies have shown that cognitive workload might impair driver’s object detection response
(45), especially for the objects that are novel or difficult to detect (26). Additionally, studies
show that drivers’ decision-making is also negatively affected by cognitive workload (26;
19). This highlights the importance of detecting and possibly mitigating drivers’ cognitive
workload.

Multiple biological signals such as driver’s eye metrics, cardiovascular measures, and brain
signals have been used extensively for workload estimation in both in-lab and real-world
situations (64; 104; 106). Driver’s eye metrics in these studies included patterns of blinking
rates, saccades, fixations, stationary and transition entropy (58; 29; 100; 101). Here we direct
our focus on a more recent feature of the driver’s gaze, which is the driver’s gaze entropy
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metric. There are two measures of entropy for a random variable. Information Entropy
refers to the uncertainty associated with a choice (101). The entropy increases with the
higher levels of uncertainty in randomness in a system. This is generally calculated through
Shannon’s equation (99). In gaze analysis, this entropy refers to the overall predictability of
fixation locations which is a measure of gaze dispersion (99), and is called Stationary Gaze
Entropy (SGE). For a set of fixation locations in a sequence of eye movements, one can assign
fixation locations to spatial bins of pi and calculate the SGE as:

SGE = −
n∑

i=1

pi log2 pi (5.12)

SGE is used extensively in the literature for human state analysis. For instance, studies
have pointed out the utility of SGE for detecting task demand, complexity, experience,
workload, drowsiness, and being under the influence of alcohol (101). Because inferences
based on SGE can be very task-related, studies have moved more towards a new measure of
entropy, namely conditional entropy. In other words, when assessing cognitive load during
a task using SGE, it is important to know whether the task requires high or low SGE for
optimum performance.

Conditional entropy takes into account the dependency between different fixations in a
temporal fashion. This results in Gaze Transition Entropy (GTE). GTE is a measure of
predictability of the next fixation location given the current location. For a sequence of
transitions between different spatial bins of i and j, with a probability of pij the GTE is
calculated as:

GTE = −
n∑

i=1

pi

n∑
j=1

pij log2 pij (5.13)

Driver’s GTE is shown to be correlated with higher task demand, higher scene com-
plexity, and higher levels of workload (101; 29). Additionally, a recent theory suggests that
conceptually for each specific combination of task demand and scene complexity, there exists
an optimal GTE (101). The optimal GTE is the result of an interaction between a human’s
internal state (e.g., memory) and the level of external information provided to the human
through sensory inputs through the prediction process of the outside world. Deviating with
an increased level of GTE (relative to the optimum) can be due to stress, anxiety, and emo-
tional episodes, while a decrease in the level of GTE (relative to optimum) can be due to
usage of depressants such as alcohol.

Workload detection has also been done based on facial action units. For instance, (119)
reported the top four correlated action units with workload detection are AU1, AU2, AU07,
AU25. However, similar to stress level detection, individual differences in workload esti-
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mation were shown to be important. For instance, (119) showed that when performing
subject-independent tests for workload estimation using facial AUs as compared to sub-
ject dependent, the accuracy dropped from 95 % to 68 %, an indication of inter-individual
differences in facial reactions to workload.

While multiple studies have advanced our knowledge on workload or stress separately in
driving, not that many studies considered analyzing both constructs simultaneously. Stud-
ies in the past have provided evidence that certain human physiological measures may be
impacted differently in the case of having both stress and cognitive load present in the sit-
uation. For example, a recent review (100) reports that GTE can increase from its optimal
value for a specified task if states such as anxiety and stress are present while performing a
task. Thus it is important to analyze drivers’ cognitive load and stress level simultaneously
and in a unified framework.

5.3.3 Methodology

In this section we outline details regarding the mathematics behind state space models
(5.3.3.1), data collection (5.3.3.2), feature extraction (5.3.3.3), analysis environment (5.3.3.4),
and model selection (5.3.3.5).

5.3.3.1 A Latent Variable State-Space Model for Driver’s State

One method to analyze driver’s state is to consider the system of driver, vehicle, and the
environment as a dynamical system in a state-space fashion where different perturbations
from the environment change driver’s state momentarily (75). A state-space model (SSM) is
a mathematical representation for a dynamical system consisting of a set of inputs (referred
to as perturbations) and outputs which are properties of the system that evolve over time
and are measurements of certain latent variables that cannot be measured on their own
(63). Using the observed variables, the latent state is estimated with a certain error, and
the task of SSM is to provide the latent estimation as well as the effect of perturbations on
those latent states (63). This is especially important for psychological constructs that are
often measured through a set of observed variables, such as detecting stress (latent variable)
through changes in physiological measures such as heart rate (observed variable).

Another important benefit of using state-space models is their natural solution to the
problem of time-dependent variables. First-order State-space models (SSM) analyze the
system in a recursive manner where each time point is modeled based on the previous time
point in a one-step Markov process fashion (46). For the purpose of this article, we only
consider first order (lag 1) state-space models. In this way, state-space models handle the
time dependency of observations that is often the problem when using high-frequency sensor
measurements (e.g., HR data). SSMs are suitable for analyzing driver’s state since (1) driver’s

160



state is a latent variable (e.g., stress, workload, and emotion) measured through observed
variables (e.g., driver’s gaze, heart rate, and skin temperature); and (2) it is time-dependent
in that events in the past can affect how a driver might feel and act in the future.

We provide a summary of the procedure behind SSM. The reader is referred to (46) and
(63) for greater details. Based on the notation provided in (46), the general equations for
a state-space model consist of two main equations of state equation 5.14, and measurement
equation 5.15, as follows:

xt = Axt−1 +BUt + qt (5.14)

yt = CXt +DUt + rt (5.15)

where x is the vector of latent variables at different time points, U is the vector of
perturbations to the system (i.e., inputs), qt is the vector of dynamic noise with covariance
of Q, rt is the vector of observation noise with zero mean and covariance of R, and yt is the
observations. Additionally, A is the matrix defining the autoregressive components across
time for latent variables, B is the matrix measuring the effect of perturbation on the latent
variables, C is factor loading of each latent variable based on the observed variable, and D
is the matrix measuring the effect of perturbations on the observed variables. A schematic
graph of this SSM representation is presented on Fig. 5.24.

As mentioned before, SSM analyzes the data in a recursive manner. SSM uses Kalman
filter, which alternates prediction and correction steps as follows (46). In summary, SSM
works in two steps: first, it predicts the latent variable using initial values and the state
model. Second, it uses the measurement model and observation variables to update the
prediction. Using a latent variable matrix at each timestep, together with its covariance
matrix (P), SSM predicts the latent variables at the next timestep as:

xt|t−1 = Axt−1|t−1 +But (5.16)

Pt|t−1 = APt−1|t−1A
T +Q (5.17)

The prediction is then updated using the observed variables and the measurement model.
In more detail:

ŷt = Cxt|t−1 +Dut (5.18)

The error is then calculated as:

ỹ = yt − ŷt (5.19)
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Figure 5.24: A conceptual framework of a state space model consisting of perturbations,
latent and observed variables at subsequent timesteps of (t-1) and (t).

Ŝt = CPt|t−1C
T +R (5.20)

K = Pt|t−1C
T Ŝ−1

t (5.21)

xt|t = xt|t−1 + kỹt (5.22)

Pt|t = Pt|t−1 −KCPt|t−1 (5.23)

And lastly, the log likelihood (LL) of an SSM model is calculated as below (46):

− 2LL = nlog(2π) + log|Ŝt|+ (yt − ŷt)
T Ŝ−1

t (yt − ŷt) (5.24)

where n is the number of observation variables.
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5.3.3.2 Data Collection

The data for this study is provided by HARMONY, a human-centered multimodal driving
study in the wild (111). HARMONY is a framework that collects naturalistic longitudinal
driving data through cameras, smart wearables, and multiple APIs. Through HARMONY,
the driver’s HR, hand movements (i.e., IMU sensors), facial expressions, gaze direction, pose
direction, vehicle’s speed, and location, as well as outdoor environmental videos, are collected
automatically. We first focus on a long-term driving of one participant (#9) on a highway
for the purpose of this paper. Also, the data from this participant is available online for
further research (115). A snapshot of the driving scenario is depicted on Fig. 5.25 (109).

We then extend our findings across participants to assess the individual differences. To
do so, we chose a random subset of the Harmony data from 10 other participants that drove
in a long-term driving scenario (more than 1.5 hours) on a highway that was visually similar
to that of the first participant. Note that because of the naturalistic nature of the data
(which is not an on-road controlled study), participants drive on different roads. However,
we only chose driving scenarios in highways of the state of Virginia to increase the similarity
of driving scenarios across participants. More specifically, the data for this paper for each
participant includes:

• Smartwatch: one channel of PPG signal sampled at 100 Hz, HR (HR) sampled at 1
Hz, and driver’s hand acceleration and rotational velocity in three directions (i.e., X,
Y, and Z) sampled at 100 Hz.

• Camera: in-cabin and outside videos sampled at 30 Hz, with 1080p quality.

5.3.3.3 Feature Extraction

5.3.3.3.1 Video

Using in-cabin videos, we retrieve the driver’s gaze direction and facial AUs through applying
OpenFace (7) on the videos. OpenFace provides gaze angles in both X (horizontal), and Y
(vertical) directions. These values are measured in radian, independent of the participant’s
head location.

Gaze Transition Entropy: For this variable, based on method in (57), we first con-
struct a 2D space of the range of the gaze angles in the study duration (i.e., 2-hour driving
period). Then we divide the space into equally distanced areas of interest (AOI) as a 4*4
grid (100). This results in a sequence of AOIs for the driver, which is related to different
areas of the frontal view (e.g., front road, center stack, left side, and etc.). We then use the
method provided in (57) to calculate gaze transition entropy (GTE) for each time window in
the driving scenario. In summary, for a sequence of AOIs, we first find the transition matrix
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between areas of interest by assuming a first-order Markov process for the gaze sequences
(57). To this end, a transition matrix is retrieved with pij being the probability of switching
between AOIs i and j (in S), with a stationary probability of πi. Then the GTE is calculated
based on Shannon’s entropy as:

Ĥt = −
∑
i∈S

πi

∑
j∈S

pij log2 pij (5.25)

Facial Action Units: We limit the facial AUs in our models based on previous literature
to the ones that were shown to be correlated with stress levels and workload. As mentioned in
background literature, (34) reported that AU1, AU6, AU12, AU15 are the most indicative of
stress levels in their study. (119) reported the top four correlated action units with workload
detection to be AU1, AU2, AU07, AU25. Note that any other AU can also be used for the
purpose of stress and workload estimation. We intentionally keep the number of AUs limited
for a better model interpretation.

Road Object Detection: By using the outside videos and by applying Mask-RCNN
(40) algorithm trained on COCO dataset (61) as implemented by (2), we retrieve the number
of cars, buses, pedestrians, bikes, motorcycles, stop signs, traffic lights, and trucks in each
frame of the video. Here we define the scene complexity as the total number of road users
in the field of view, which is the sum of cars, buses, pedestrians, motorcycles, and trucks
(Fig. 5.25). Note that due to the relatively short length of dataset per person, we have not
considered the effect of momentary perturbations such as traffic lights, stop signs, etc. This
will be addressed in future work with a longer dataset.

5.3.3.3.2 Smartwatch

Heart rate: Previous studies have shown the correlation between a human’s heart rate
and stress levels as described in section 5.3.2.2, in which higher heart rate values might
be indicative of higher stress levels. Additionally, our previous studies showed that certain
stressors on the road could increase a driver’s HR from its baseline value, in which change
points in HR time series can be used to detect such stressors (111; 108; 109). While HR
values were sampled at 1 Hz, the exact frequency of sampling often changes within 0.9-1.1
Hz due to hardware issues. To address this, we resampled the HR values at 1 Hz frequency.
We also apply Bayesian Change Point (BCP) detection to the driver’s HR. Without going
into the details of this method, BCP detects the specific moments that a change occurs in
the underlying distribution of the data based on the Bayesian change point model provided
in Barry and Hartigan’s book (9). In summary, this model assumes that the mean of the
input within different segments remains constant. Change points in driver’s HR might be
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Figure 5.25: A snapshot of the data used in this study including the devices (camera and
smart wearable) (A), the road view (B), and the map of the case study trip (C)

correlated with stressful outside events where the posterior mean of the HR increases as a
response to the stimulus(111). This is in line with previous studies that higher HR values
might be associated with higher stress levels. To apply this method, we use the BCP package
in R (27). The details of the BCP procedure are also provided in our former article (111).

IMU: In order to find out the moments that the driver’s hand had abrupt movements,
depicting activities such as working with a phone, we use the hand IMU sensor and find the
magnitude of each of the gyroscope and accelerometer sensors. We then only consider the
values above the average value of each sensor as timepoints when movements are abnormal.

Each row of the final data frame after feature extraction includes driver’s HR and its
features (i.e., probability of a change and the posterior mean detected by BCP), driver’s
gaze entropy, the intensity of specific facial AUs (a number between 1-5), traffic density (i.e.,
number of road users in the field of view) as a measure of scene complexity, and driver’s
hand movement as a proxy for driver’s non-driving related (secondary) tasks. Driver’s HR,
facial AUs, and gaze features are the observation variables for the internal context latent
variables (i.e., stress level and workload), while scene complexity and task demands are the
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external contextual inputs to the system.

5.3.3.4 Analysis Environment

We use the MARSS package (44) developed in R programming language for estimating
different SSM matrices of A, B, C, and D as described in section 5.3.3.1. We propose two
different models, and we compare these models to our data. The comparison is performed
using the log-likelihood of each model, where a higher value shows a better fit to the data (44).
Finally, we discuss the implications of the best fit model. The analysis is performed with
a 10 seconds timestep look back, meaning that each timestep is compared with 10 seconds
in the past. While we could also compare every two consecutive data points, increasing the
timesteps helps with a better interpretation of the model. Also, previous research in driver
behavior analysis, especially in the vicinity of a crash or near-crash event, generally considers
a time point of 6-20 seconds prior to the crash event for prevalence analysis of different
factors (e.g., driver emotion and distractions) (21). Also, smaller numbers increase the high
dependency between timepoints, which makes the model interpretation more difficult. As
the timepoints were too close in time, this step lets us understand the effect of perturbations
in greater detail by removing the high dependency among the data points that are close in
time. Note that this step does not remove any data point and only compares each timepoint
at (t) with the data point at t+10 by restructuring the data.

Figure 5.26: The two latent variable model. Note that in contrast with this model, in the
base model, the two latent variables are identical. In this model a set of perturbations (i.e.,
number of road users, and hand movement shown with black) is connected to a set of latent
variables (i.e., stress level and work load shown with blue) estimated through measurement
variables (e.g., HR, AUs, and gaze entropy shown with orange

166



5.3.3.5 Model Selection

In order to answer the research questions, we define two separate models: base model and
two latent variables models. In each model, a set of perturbations (i.e., number of road
users, and hand movement shown with black on Fig. 5.26) is connected to a set of latent
variables (i.e., stress level and work load shown with blue on Fig. 5.26) estimated through
measurement variables (e.g., HR, AUs, and gaze entropy shown with orange on Fig. 5.26).

Base Model This model considers one latent variable referred to as the driver’s psy-
chophysiological state. In other words, this model assumes that one latent variable is enough
to describe the multimodal data regarding a driver’s internal state under the effect of the
external context. In order to be able to compare this model with a model with two latent
variables, we need to account for the differences in the degrees of freedom. When building
this model, we assume two identical latent variables. This helps with accounting for the
changes in the degrees of the freedom of the model as compared to the two separate latent
variables model, which is described below.

Two Latent Variables Model: The second model includes two separate latent variables
for stress and workload of the driver, namely internal context. These latent variables are
measured through driver’s HR, facial action units, and eye gaze measurement features. This
model assumes a covariance between the two latent variables. Thus a covariance matrix
between the latent variables is also estimated in the model. More specifically, as shown in
Fig. 5.26, the q2 variable between stress and workload is estimated through the state space
approach. The model is depicted in Fig. 5.26 for different timesteps. Note that the state-
space model takes a recursive attempt at estimating the different matrices as described in
section 5.3.3.1.

5.3.4 Case Study and Results

In order to choose between the two models, we compare using their -2 ∗ Log Likelihood (-
2LL). Table 5.11 shows the -2LL of each model fitted for 11 different participants. As shown,
the -2LL of the model with the two latent variable models is considerably lower as compared
to the base models. This suggests that the model with interacting two latent variables can
better describe the variability in the data for each individual participant. This comparison
led us to choose the interacting latent variable model for the rest of our analysis.

Let us focus on participant #9 for a better description of state-space results (Table 5.12)).
We then extend our findings to other participants. The latent stress is captured through
the higher HR, AU1, AU6, AU15, and lower probability in AU12. The workload is captured
through the higher intensity of the AU1, AU2, and lower intensity in AU7, as well as higher
gaze entropy. The association between the two latent variables show that higher workload is

167



Table 5.11: A comparison between the two models based on their -2LL across different
participants. The model with two latent variables has a lower -2LL

Participant ID Interacting Latent
Variable Model Base Model ∆LL

2 170459.8 172879 2419.2
3 299674 305882.4 6208.4
9 272412 276434.4 4022.4
10 101985 102780.7 795.7
12 187456.8 189293.8 1837
14 120738.6 122577.1 1838.5
16 93854.2 94914.72 1060.52
17 153230.4 155310.3 2079.9
18 167789.8 170418.8 2629
19 83357.6 84523.7 1166.1
20 178416.4 179560.6 1144.2
22 208460 210691.6 2231.6

associated with lower stress level in this participant, which the coefficient is (Q.q1 = −0.068

on Table 5.12).
The association between the two latent variables varies across participants (Fig. 5.27).

Note that these numbers are the result of dividing the association coefficient by the product
of the standard deviation of each latent variable. This is required for the correct comparison
of the association coefficient across participants. The association coefficient varies between
both positive and negative numbers across participants. This can imply that there are
two groups of participants. In the first group, an increase in participants’ stress level is
accompanied by a decrease in workload, while in the second group, the two latent variables
change in the same direction. Such high variability across participants shows the importance
of individual profiles when considering matters such as distraction, stress levels, and driver
state monitoring within different contexts.

Research Question 1: How do the external context (i.e., traffic density) and
task demands (based on hand-movement) affect the driver’s internal contextual
state (i.e., stress level and workload)?

Participant #9: Let us first start with one participant to illustrate the results. The
state-space model for participant 9 shows that the number of road users can be associated
with an increase in stress levels and a decrease in workload (compare C.C11 with C.C12 on
Table 5.12). Due to being stuck in higher traffic density with the increase in the number
of road users, the mean value of the driver’s heart rate increases, which in turn increases
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Table 5.12: Estimates of the interacting latent variable model with their confidence intervals
for participant #9. We specifically focus on one participant to illustrate the results of state
space. The parameters shown here are based on the Fig. 5.26

Parameter ML.Est Std Error low CI up CI
Z11 1.76e+00 0.57898 0.62989 2.899433
Z21 2.26e-01 0.08057 0.06782 0.383666
Z41 -2.50e-02 0.03421 -0.09203 0.042064
Z61 8.47e-02 0.04596 -0.00538 0.174772
Z71 2.00e-01 0.07329 0.05608 0.343378
Z22 -1.87e-05 0.01258 -0.02467 0.024630
Z32 2.62e-02 0.01502 -0.00324 0.055640
Z52 -1.37e-01 0.04654 -0.22820 -0.045754
Z82 -1.21e-01 0.04164 -0.20307 -0.039844
Z92 1.03e+00 0.33772 0.36807 1.691904
B.b1 8.81e-01 0.00716 0.86746 0.895518
B.b2 8.91e-03 0.00905 -0.00884 0.026650
B.b3 -1.58e-03 0.00271 -0.00689 0.003724
B.b4 9.76e-01 0.00244 0.97149 0.981065
Q.q2 -6.08e-03 0.00422 -0.01435 0.002193
C.C11 9.94e-03 0.00398 0.00215 0.017732
C.C21 -6.90e-03 0.00326 -0.01328 -0.000517
C.C12 -7.34e-03 0.00330 -0.01381 -0.000870
C.C22 -7.53e-03 0.00339 -0.01418 -0.000877
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Figure 5.27: The association between the two latent variables of stress and workload across
different participants. Note the high individual variability between participants. For some
participants the association is positive leading to a synchronized increase in stress level and
workload, while for others the two constructs change in different directions.

the stress level. Previous research has shown that traffic density negatively affects a driver’s
well-being (77).

Additionally, our model shows that an increase in the number of road users is accompanied
by a lower workload (see Table 5.12). When considering the workload, we have measured
the gaze entropy through different regions in the field of view. This method of analysis
considers the whole secondary task area (i.e., using the vehicle radio, phone, etc.) as one
region. Thus it cannot analyze a person’s finer gaze patterns when working with a phone.
This is important to consider when analyzing the workload under different environmental
perturbations. An explanation for this can be due to the fact that higher traffic density
often is accompanied by a stationary state for the vehicle, which motivates the participant
to perform secondary tasks more often (118). This decreases the gaze dispersion with respect
to the driving scene and diverges it to the secondary task area (e.g., phone and center stack),
which decreases the workload as measured with respect to driving and increases the workload
spent on the secondary task. The videos accompanying our analysis were reviewed to confirm
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this finding qualitatively. Hand movement is associated with a decrease in stress level as
well as workload. Note that higher hand movements result in performing secondary tasks
in which take the attention from normal driving and bring it into one specific region (i.e.,
phone and center stack location in the vehicle) (compare C.C21 with C.C22 on Table 5.12).

Comparison Across Participants: We then consider comparing different participants
with respect to the effect of the external context on their stress level and workload. Fig.
5.28 - A and B depict the effect of number of road users and task demands (i.e., C values on
Fig. 5.26) on driver’s stress and workload respectively. As shown, participants’ stress level
and work load are associated with different impacts by the number of road users and task
demands. While this difference can certainly be due to the different contextual elements that
were present in each participant’s driving scenario (e.g., weather condition and distance to
other vehicles), which we did not account for, it can also be due to individual differences in
how they react the number of road users and task demands. In some of the participants, an
increase in the number of road users is associated with an increase in their stress level (e.g.,
participant number 9, 10). For some of the other participants, the increase in the number of
road users is associated with a decrease in their stress level (e.g., participants number 16 and
18). There are also some participants that their stress level are not affected by the increase
in number of road users (e.g., participant number 3). Simultaneously, the number of road
users is associated with an increase in the workload for some participants (e.g., participant
numbers 17, and 18) while not for the other participants. Similar results can also be observed
in the effect of task demands when comparing different participants (Fig. 5.28 - B).

While confirming the reason behind the possible individual differences is not possible in
a naturalistic study without controlled experiments, one possible explanation can be that
an increase in the number of road users might make it harder for some participants to
drive, which increases his/her stress level. However, the other group of participants might
be using different feedback loops to drain the pressure from the increase in the number of
road users, such as using their phones, listening to music, or talking to a passenger. For
instance, considering Fig. 5.28 - A, for participant 3, the increase in the number of road
users increases their stress while decreasing the workload of driving as measured through
gaze entropy. This participant might be using their phone more often in these situations,
which is the reason behind the decrease in the level of workload imposed by driving and
diverges their attention to the secondary tasks (e.g., phone). The future direction of our
research will analyze different feedback loops in participants through differential equation
modeling.

Research Question 2: How does the latent state at previous timestamps (i.e.,
1 through 10 seconds) of the driver affect his/her current state (i.e., stress and
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Figure 5.28: The effect of number of road users (A) and task demands (B) on stress and
workload across different participants. The number on each marker shows the participant
number.

workload)?
Participant #9: In order to answer this question we focus on the variables connecting

the different time steps which are B.b1 and B.b4 on Table 5.12. It is interesting to observe
very high temporal dependency values for drivers’ stress and workload. Note that we have
already applied a 10-second look ahead for the state-space model. Even with a 10-second look
ahead, the model provides evidence that a driver’s states (both stress level and workload) are
highly dependent on its historical values, meaning that momentary changes can well affect
the future state of the driver.

Comparison Across Participants: The high dependency is also observed through the
data collected from other participants. Fig. 5.29 - A and B depict the stress and workload
transition coefficients across participants. The high values of coefficients imply that drivers’
previous states are well predictive of their future state with a very high dependency when
modeled through a state-space framework.

One alternative explanation to the high temporal dependency is that the presence of rare
events in driving can affect the analysis and may result in inaccurate high dependency values
between the driver’s states. To detect rare events, we use the results of the change point
detection on drivers’ HR and find the locations that HR changes abruptly. This analysis is
performed based on previous research showing the effect of external context on drivers’ HR
using changepoint detection methods (for example, see (111; 39; 53)). To showcase the rare
event analysis, let us focus on one participant, #9. Using the change points in driver’s HR,
we have segmented the driving scenario for participant 9 to avoid the rare events statistics.
Here we define a rare event in driving as an event that is associated with an increase in
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Figure 5.29: The transition coefficient of stress latent variable across participants (A), and
the transition coefficient of workload latent variable across participants (B). Note the high
dependency of stress latent variable on the previous values across participants

driver’s HR beyond twice the standard deviation of HR in the whole driving scenario. The
locations of change points associated with such rare events are shown in Fig. 5.30 with
vertical red dashed lines. For each segment, we then ran the state-space model. The results
of the stress and workload transition coefficients are shown in Fig. 5.30. There are two main
observations drawn from Fig. 5.30. Firstly, within different segments as defined by change
points, the transition coefficients are still very high (above 0.7), depicting a high dependency
on the previous states. Second, the two coefficients do not move in a synchronized fashion.
For instance, moving from segment 2 to 3, the workload transition stays constant while
stress transition decreases. For this segment, this implies that although the dependency of
workload on its historical values does not change, the stress level is becoming more and
more unpredictable based upon its historical values. This confirms our finding in the model
selection section that this model, in fact, captures two separate constructs through human
sensing data, which do not always act in a synchronized fashion. Additionally, this finding
lays the ground for possible information transmission between the two constructs as in some
cases, they perform synchronized and in other cases, they do not. This brings us to our third
research question.

Research Question 3: How does the association between latent constructs
change throughout the driving scenario?

To further analyze the association between the two transition coefficients, we have applied
a rolling window on the data collected from participant #9 and assessed a state-space model
for each rolling window. More specifically, a sliding window with a length of half an hour of
data was considered with an overlap of 1 minute. At each time step, half an hour of data
is considered, a state-space model is assessed for the data, and then the window moves for
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Figure 5.30: Driver’s HR together with the locations of segmentation, shown with red lines.
These locations are chosen based on the occurrence of a change point with an abrupt increase
in HR as much as 1.5 times the standard deviation of HR in the trip.

one minute in the forward direction in time, and the analysis is repeated. We have then
calculated the cross-correlation between the two signals at each rolling window. This is
depicted on Fig. 5.31. The association between the two signals varies across the driving
scenario duration, in which it moves between positive to negative values. This might imply
that sometimes changes in the two constructs are synchronized, and sometimes they are in
opposite direction.

However, the cross-correlation by itself does not show the exact direction of correlation.
In other words, on Fig. 5.31 it is not possible to understand whether stress level is leading
or following the workload. To further find the answer to the sequence of stress level and
workload events, we calculated the windowed cross-correlation and peak picking analysis
as provided by (12). In summary, in order to find out the variation in the association
between two behavioral signals, one can perform a windowed cross-correlation (WCC) and
peak picking analysis on the data. This analysis technique attempts to find the lag that
locally maximizes the correlation between the two signals. This is performed by moving
a certain window of each signal in different directions for different lags and assessing the

174



correlation between the two signals. Note that this is different than merely finding the lag
that maximizes the correlation, as it performs locally. If the two signals are synchronized,
the lag at which the correlation maximizes should always be at zero.

On the other hand, if the dynamics of maximum lag varies during the time, this can
imply that the sequence of the two signals can change throughout time. In other words, in
our case, it can imply that sometimes events in stress level proceed the events in workload
and sometimes follows. Although this does not necessarily suggest evidence on causality, as
both latent variable events can be caused by a third variable, one possible explanation in
such situations can be that stress causes workload at some time points, and in the other
ones, workload causes stress. Another possible explanation is that the response in stress
level and workload to different inputs happen at different time scales in which sometimes
the stress level responds faster and in other times the workload leads the response.

After performing the WCC analysis on the workload and stress transition coefficients,
the results are plotted on Fig. 5.31 as purple dots showing the lag at which the correlation at
each window maximizes. There are two main observations in this plot that helps with under-
standing the relationship between stress level and workload transition coefficients. Firstly,
the lag between the two signals moves from positive to negative values showing changes in
the sequence of the two signals of stress and workload transition. This might imply that
there is a flow of information between the two constructs that move in different directions
at different time points. Second, it is also visible that as the direction starts to change, the
correlation between the two signals calculated through cross-correlation starts to increase.

5.3.5 Discussion

In this study, we have analyzed the interaction between the driver’s state (i.e., internal
context) and the environmental attributes (i.e., external context) through modeling the
system of the driver and the environment using a state-space fashion. Using a state-space
modeling approach, we demonstrated that a two-latent variable model could better describe
the multimodal driver psychophysiological sensing data, pointing out the possibility of having
multiple psychological constructs that interact with one another. Additionally, our model
takes a holistic approach in analyzing the relationship between the external and internal
context by analyzing the state of the driver in the environment through state-space latent
variable modeling.

In our study, we observed a strong dependency of the latent variables on their values
from 10 seconds prior. This has strong implications for designing autonomous vehicles where
drivers’ state is sought to be estimated and predicted for a safer shared autonomy. Current
guidelines of National Highway Traffic Safety Administration (4), define different levels of
automation from 0 to 5, where in level 3 of automation, the driver is not required to monitor
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Figure 5.31: The time series of changes in driver’s stress and workload transition coeffi-
cients. Note that the cross-correlation between the two signals does not always follow the
same trend implying that two latent variables are, in fact, measuring two possibly different
constructs. Additionally, note that the cross-correlation between the two signals of stress
and workload transition coefficient varies during the trip, in which different directions of the
flow of information between the two constructs can be seen through the lags across the two
signals that maximizes the synchronous behavior.

the road but has to take-over the control with prior notice. Our study has implications for
defining a proper notice period for take-over control while considering drivers’ state. While
we have focused on a 10 second look-ahead time window, more studies are required to find the
dependency between drivers’ state, and its historical values for a bigger population and within
different contexts (e.g., city versus highway). When considering the effect of emotions on a
driver’s take-over control, it is important to consider the autoregressive nature of different
driver state constructs the fact that prior states such as stress level are associated with
the current state. Additionally, when analyzing prior naturalistic driving data for gaining
insights regarding the effect of environmental factors on safety and crash-related matters,
the analysis should move beyond a couple of seconds prior to events. For example, when
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considering the effect of driver’s emotions or secondary task engagements on the prevalence
of accidents (e.g., for a sample prevalence analysis, see (21)), it is important to move beyond
a couple of seconds prior to the accident, as drivers’ state is highly associated to its previous
values. Thus a stressful event can well propagate throughout the future timesteps.

Driving is a cognitive task that can often be accompanied by acute stress. Certain
on-road (e.g., getting closer to a lead vehicle), and internal characteristics of the driver
(e.g., remembering a stressful event) can all affect the driver’s state simultaneously. In
our study, we observe a better model fit for two latent variables as compared to one when
considering driver’s state measures such as HR, facial, and gaze. A two latent variable model
provides a better description for the underlying variability in the driver’s state measures.
Considering previous studies pointing to a need for modeling schemes that integrate workload
and affective states together (50), this might provide evidence for the existence of different
constructs when analyzing driver state data. This implies that driver state modeling should
take a holistic approach and consider multiple constructs rather than isolating each construct.
Thus a naturalistic study focused on emotions in driving may need to also consider the
workload and vice versa.

The association between stress level and workload varies throughout the study. While
we did not analyze the reason behind variation, there seems to be a flow of information
between different constructs that, in some cases, one leads the other one. Although this
might not provide full evidence for a causal relationship between stress level and workload,
it might imply that the response to the environment happens with different lags within
the two constructs. The value and also the direction of the lag are not constant and vary
in different driving situations. This implies the importance of considering context when
analyzing psychological constructs in a holistic approach.

The state-space approach estimates the latent variables through different observatory
variables; thus, any new measurement can also be added to the modeling scheme as they
become available. This emphasizes the modular nature of the state-space approach in es-
timating the latent variable and the effect of the perturbations upon them. For instance,
different sensors are being added to the wearable devices continuously, such as skin temper-
ature, skin conductance, etc. Every new sensor can be added as a measurement variable.
Similarly, environmental measurements such as distance to other vehicles, road complexity
measures, etc., can also be added as perturbations to the system in the current modeling
scheme.

Lastly, recent psychological theories and experimental findings are providing more and
more evidence on the importance of individualizing profiles for driver state analysis. In
other words, without considering individual differences, building generalizable frameworks
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for driver state detection might easily fail when applying them in subject-independent sit-
uations. In our study, we observe that even within similar environments, the association
between participants’ psychological constructs can be very different across our participants.
Additionally, we observe that external contextual elements such as traffic density can have
different effects on different participants. In some participants, it can increase the stress
level, while in other participants, it might decrease the stress level. It is important to note
that higher traffic density, while being stressful for many individuals, can actually decrease
the speed of travel, which might be pleasant to some other participants. This might explain
the differences across participants in the coefficients retrieved through state-space models.
More studies are required to analyze the relationship between the driver and the environment
within varying contexts.

5.3.6 Limitations

There are currently a set of limitations that will be addressed in our future work. We will
expand the number of participants to understand the individual differences across different
scenarios. For instance, for our study, we have focused on one highway driving scenario
for each participant, whereas other scenarios might provide additional information on the
individual differences in the interaction between the two constructs. While in this study, we
did not find meaningful differences across age and gender, future work will also consider the
variation in the impact of the environment with respect to different ages and gender.

Additionally, we will increase the number of features to include distance to the other
vehicles, lane position, and speed that are detected from the external environment. Adding
more modalities might provide information on the differences across participants on the
impact of environment on their stress and workload. For example, it could be the case that
two drivers are facing a similar number of road users but with different distances to the
lead vehicles. Additionally, this will help us better understand the interaction between the
contextual elements. Using other behavioral metrics such as driver’s speed, we can better
analyze the driver’s feedback to the elements of external context. The feedback loop will be
analyzed in greater detail using second-order differential equation models where we account
explicitly for a participant’s resilience in different driving events.

5.3.7 Conclusion

In this research, we propose using the latent variable state-space modeling approach for
analyzing the impact of the external context on drivers’ states. Through applying this
modeling scheme on naturalistic driving data retrieved through HARMONY, (1) we estimate
driver’s stress level and workload by using the data from driver’s cardiovascular measures as
well as gaze variability and facial expression data; (2) we estimate the effect of the number
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of cars and drivers task demands as perturbations to this dynamical system on driver’s
stress level and workload; and (3) we analyze the temporal dependency of driver’s state
during a driving scenario. Our work paves the way for designing human-centered driver-
vehicle interaction systems that can understand and respond to changes in the driver’s state
resulting from the driving environment and provide a safer driving experience.
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