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Abstract—This paper delves into the challenges 
and methodologies of speech diarization, focusing on the 
"who spoke when" problem in complex audio 
environments. This study presents a comprehensive 
analysis of audio features, explores geometric and pitch-
based patterns for speaker identification, and 
recommends strategies for enhancing audio separation 
technology. We discuss our progression from manually 
labeling techniques of audio data using tools like 
Audacity to developing our own labeling program to 
transform conversational audio into Rich Transcription 
Time Marked (RTTM) files. We discuss our use of these 
datasets to evaluate a fine-tuned Pyannote learning 
component's accuracy. Additionally, we outline our 
assumptions about microphone positioning, the fidelity of 
our manual labeling, and the efficacy of Pyannote's 
machine learning tools for speaker differentiation. Our 
findings contribute to the development of more effective 
speech diarization systems, which are essential for 
advancing audio processing in a diverse set of 
applications. Our collection process translated audio files 
into datasets and recording a spectrum of audio features. 
These datasets underwent analysis to determine 
distinguishing patterns between speakers, looking for 
differences in amplitude and pitch levels in our client’s 
device. The Pyannote audio toolkit was employed to 
further refine speaker differentiation. Future work will 
focus on creating a robust speaker diarization system 
using a combination of geometric analysis and machine 
learning optimization techniques. 
 

I. INTRODUCTION 

Speech separation is characterized by the "cocktail 
party problem", colloquially understood to capture the 
difficulty faced in segregating individual speech signals 
among a mixture of background noises and competing 
voices, mirroring the challenge of focusing on a single 
conversation in a bustling party. Speech separation is crucial 
for enhancing the clarity and comprehension of speech in 
environments with multiple speakers. It involves the process 

of partitioning an audio stream into homogeneous segments 
according to the identity of the speaker. The ultimate goal is 
to determine not only when speech occurs but also to 
attribute speech segments to specific speakers within the 
audio. The concept of speech diarization originated with the 
rise of digital audio and telecommunication technologies. 
Initially, the focus was on improving teleconferencing 
systems and aiding in transcription services. Over time, the 
applications of diarization expanded, fueled by 
advancements in machine learning and signal processing. 
Early approaches to diarization relied heavily on speaker-
specific features such as pitch, tone, and speech tempo. With 
the advent of machine learning, particularly unsupervised 
learning techniques, the focus shifted towards more 
sophisticated models capable of handling varied and 
complex audio data. These models include Gaussian Mixture 
Models (GMMs), Hidden Markov Models (HMMs), and 
more recently, Deep Neural Networks (DNNs).  

Despite significant advancements, speech 
diarization remains a challenging task due to various factors. 
These include the variability in speaker voice, overlapping 
speech, background noise, and the spontaneous nature of 
speech. Moreover, the lack of large and diverse annotated 
datasets has been a limiting factor in the development of 
robust diarization systems. Today, speech diarization has a 
wide range of applications, from enhancing voice assistants 
and automatic transcription services to aiding in forensic 
analysis and surveillance. We hope that our research can 
contribute to making better designed systems for source 
separation in messy sound settings with reverberation and 
background noise.  

In this paper, the reader will learn the process for 
how we tried to determine “who spoke when” in six 
conversation recorded by a quad-microphone device in a 
multitude of settings. With this data, we worked to make 
recommendations to our client for creating a more effective 
source-separating machine. We also explain the manual and 
semi-manual data labeling processes and how we fine-tuned 
an out-of-the-box Pyannote learning component.  
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II. LITERATURE REVIEW 

The development of speaker diarization technology 
aimed to improve automatic speech recognition in areas like 
air traffic control and news broadcasts. [1] The 1990’s 
introduced key techniques such as the generalized likelihood 
ratio (GLR) and Bayesian information criterion (BIC)[2], 
which became industry standards. The 2000s saw pivotal 
advancements with the formation of groups like the AMI 
Consortium[3] and projects like the RT Evaluation by 
NIST[4], enhancing diarization in broadcast news and 
telephony. Innovations included beamforming and 
variational Bayesian methods.In the 2010s, deep learning 
revolutionized diarization, with neural networks creating 
significant improvements in speaker recognition. [5] This 
shift to neural embeddings from i-vector models enhanced 
performance and training efficiency. Recently, the focus has 
been on end-to-end neural diarization (EEND), promising to 
address challenges like overlapping speech and integrated 
optimization in speech-processing tasks. [6] 

Many source separation techniques identify patterns 
between the speakers pitch, amplitude, and spacing of words 
to distinguish between similar speakers in a conversation. 
Recently, using Mel Spectrograms has become the most 
popular way to label audio for deep learning. A Mel 
Spectrogram differs from a regular Spectrogram which plots 
Frequency vs Time due to the fact that it graphs Frequency 
on the y-axis and uses the Decibel Scale instead of 
Amplitude to indicate colors.[7] By looking at pitch, and 
decibel ratings, we worked to add to deep learning methods 
with probabilities associated with the differences in decibels 
between our clients device which contained 4 microphones. 
[8] 

III. METHOD 

 A.  Assumptions  

 In our study, several key assumptions underlie the 
methodology and interpretation of results. Firstly, we 
assume that the ground truth data for speech diarization was 
manually labeled using the Audacity platform, which may 
introduce subjective variability. Secondly, there is an 
assumption of consistent microphone positioning across 
different testing scenarios, implying a controlled acoustic 
environment that may not fully mimic real-world variability. 
Lastly, we utilized an out-of-the-box Pyannote learning 
component for labeling and differentiating speakers in audio 
files, an assumption that places significant reliance on the 
generalizability and effectiveness of Pyannote's pre-trained 
models in our specific application context. 
 

I. Ground Truth Data Labeling 
 The assumption that the ground truth data 
was labeled by ear using the Audacity platform 
introduces a significant variable in the accuracy and 
reliability of the data. Human labeling, even by 
experts, can be prone to inconsistencies and 
subjective interpretations, especially in complex 
auditory environments. The variability in human 

perception and potential fatigue factors may affect 
the precision of the labeled data. This assumption is 
critical as it underpins the validity of the ground 
truth, which is used for evaluating and training 
speech diarization models. 

 
II. Microphone Position Consistency 

 Assuming that the microphone positions 
(1,2,3,4) remained constant across different 
scenarios is an important consideration in the 
experimental setup. This assumption implies a 
controlled and uniform acoustic environment for 
each test scenario, which may not accurately reflect 
real-world conditions where microphone 
placements can vary significantly. The consistency 
in microphone placement is crucial for the 
reproducibility of the results and for ensuring that 
any observed variations in the data are attributable 
to the speech diarization technology itself, and not 
to changes in the audio capturing setup. 

 
III. Use of Pyannote for Learning and Labeling 

 The assumption regarding the use of an 
out-of-the-box Pyannote learning component for 
labeling .wav files and distinguishing between 
different speakers (person A from person B) is 
pivotal. This presupposes that the pre-trained 
models and algorithms provided by Pyannote are 
sufficiently generalizable to the specific audio data 
in our study. The effectiveness of Pyannote in 
accurately labeling and differentiating speakers 
depends on factors such as the quality of the 
training data it was exposed to and its adaptability 
to different acoustic environments and speaker 
characteristics. This assumption underlines the 
reliance on the robustness and versatility of the 
Pyannote framework in varied scenarios. 
 

 B. Data Collection  

The data collection process for our study involved 
meticulous manual efforts and the use of sophisticated audio 
processing tools. Initially, we manually labeled the .wav 
files using Audacity to identify and mark segments where 
the customer and the clerk spoke. These segments were then 
converted into RTTM (Rich Transcription Time Marked) 
files, serving as our ground truth for assessing the Pyannote 
learning component's accuracy. 

Further, leveraging Pyaudio, we transformed the 
.wav files into a comprehensive dataset capturing various 
audio characteristics such as amplitude and pitch across 
multiple microphones. This detailed data, encompassing 
parameters like minimum, maximum, average, and standard 
deviation of amplitude and pitch for each microphone, was 
instrumental in identifying patterns and trends. These 
insights were crucial in distinguishing between person A and 
person B, in comparison to our ground truth labels. In the 
Pyaudio dataset, we used a sliding window technique to 
break down information into smaller blocks for more 



 
 

 

detailed analysis, significantly enhancing the accuracy of 
pattern and anomaly detection. 

 

 
 

Figure 1. Color Gradient Amplitude. T 
he simple color gradient allows us to see an apparent 
pattern in the time series data corresponding to the 

speaker’s amplitude levels. 
 

 When we looked into the data set, we noticed that 
for many of the conversations, the average amplitude was a 
predictor of speaker location. In the figure above, we color 
coded the data to show a pattern of the loudest 
amplitude(green) to quietest(red) across each 1 second data 
point in the recording. Within each sliding window (.5s), 
amplitude was ranked and pattern appeared between 
microphones when each speakers talked. 
 It was suspected that Microphone 2 was closest to 
person A  and Microphone 3 was closest to person B 
because the consistent highest amplitude of data entry for 
that half each second window in the conversation. We 
explored the minimum, average, maximum, and standard 
deviation, of both the pitch and amplitude readings for 6 
conversations, totaling 18 minutes of conversation data. 
 

  
Figure 2. Manually Labelled Ground Truth  

 
With the data collected, ground truth labels were 

stored for each conversation in RTTM files for future 
training in Pyannote. Figure 2 shows the ground truth 
depiction of each microphone in the listening device. 

 C. Experimental physical set-up 

 We did not have time to set up this experiment to 
produce verified ground truth and eliminate assumption II, 
that the microphone position was consistent.  However, in 
future testing, we plan to create a dataset created in a lab 

setting to identify any patterns in the speaker locations based 
on amplitude, pitch, etc. and help design a device that can 
more efficiently distinguish between speaker A and B based 
on geometric positioning and acoustics of the device. 

Setting up a more controlled environment to collect 
our audio data can help ensure that the placement of our four 
microphones, identified as 1 to 4, is consistent throughout all 
our test scenarios. This consistency is key for eliminating 
variables that could throw off our analysis. 

 
Figure 3. Experimental Set-up 

 
We'll conduct recordings with two speakers, 

positioned at various locations around the microphones, and 
carefully label the sound data. Analyzing the volume, pitch, 
and other audio metrics from these recordings will help 
determine if there's a reliable way to tell the speakers apart 
based on the sound information alone. 
 

The Pyannote-based learning algorithm, which has 
been trained to differentiate speakers could then use this data 
set and be fine-tuned accordingly. By combining the 
geometric approach with the results of the algorithm, we can 
get a more accurate model for identification between 
speakers in a conversation. This could have significant 
applications in devices that rely on precise speaker 
identification, and we believe it's a step towards creating 
smarter and more responsive audio recognition systems. 
 

IV. PRELIMINARY RESULTS 

 

 A. Geometric Exploration 

 Our results currently rely on the assumption of the 
microphones being laid out in the pattern described in Figure 
3. These results turned out to be inconsistent among the six 
conversations. We found that for 3 of the 6 conversations, 
the order of microphone amplitude was qualitatively 
predictive of the speaker. For example, in Figure 4 we 



 
 

 

noticed that the two quietest microphones for Speaker A 
were the two loudest for Speaker B.  

 
 
Figure 4. Mic Levels Appear Predictive of Speaker Location 

  
 However, this was not the case for 3 conversations 
in our dataset. As you can see, in Figure 5, the Mic levels 
were nearly the exact same for the conversation. The 
inconsistent results we found led us to consider another 
metric, pitch levels in each conversation. 
 

 
Figure 5. Mic Levels Are Not Predictive of Speaker Location 

  
 Additionally, we searched for patterns in pitch data 
to try and identify any like between the pitch of the person A 
when they spoke compared to person B. This looked 
promising at the beginning, as we saw clusters of the pitch 
which looked different in half of the conversations. 
However, we determined that this was not a significant 
predictor of the speaker because frequently conversations 
included pitch levels that were nearly the same. In the audio 
file, this would sound like two women speaking together, 
giving a similarly high-pitched voice or two older men 
speaking together who had a similarly low-pitched voice. 
After looking at the data we gathered from these 
conversations, we decided to move on from the metric of the 
quietest microphone and consider another approach, 
exploring the Pyannote ML pipeline and finetuning it based 
on our ground truth dataset. 
 

 
 
Figure 6. Dot Plot of Average Pitch by Speaker Type.  Pitch 

appeared predictive of the speaker type for half of our 
conversations. 

 

 
Figure 7. Dot Plot of Average Pitch by Speaker Type. Pitch 

was not predictive of the speaker for half of our 
conversations. 

 
 The variety of diverse environments our client 
provided from conversations recorded in actual field settings 
led to significant complications. We realized the importance 
of finding a generalizable solution. The Pyannote pretrained 
learning component accounts for a variety of factors to make 
the problem more generalizable across a plethora of scenarios. 

 Both pitch and amplitude separately would not give 
conclusive evidence to the “who spoke when” problem. 
However, we suspected if we combined the predictive power 
of these features, and others like them, we could model 
speaker type more effectively. 

B. Pyannote Learning Component  

 Pyannote is an open-source toolkit primarily 
designed for the process of partitioning an audio stream into 
homogeneous segments according to the speaker identity. It's 
widely used in the field of audio analysis and speech 
processing. Pyannote offers a range of functionalities 
including speaker segmentation, identification, and tracking, 



 
 

 

making it a versatile tool for handling various audio 
processing tasks. Built in Python, it integrates well with other 
machine learning and audio processing libraries, making it a 
popular choice for researchers and developers in speech 
recognition and related areas. 

We employed the Pyannote audio toolkit for fine-
tuning a pre-trained speaker diarization model to adapt it to 
our specific audio dataset. Initially, we selected a suitable pre-
trained model from Pyannote's extensive library, chosen for 
its baseline performance on general datasets. We then 
extracted relevant audio features using Pyannote's built-in 
feature extraction tools, crucial for the model's learning 
process. The fine-tuning phase involved adjusting key 
training parameters, such as the learning rate, batch size, and 
epoch count, to optimize the model's performance on our 
dataset. This process was iteratively refined, guided by 
evaluations using the Diarization Error Rate (DER) metric, 
until the model demonstrated a marked improvement from 
54% to 24% DER with our audio data. The fine-tuned model 
thus emerged as a tailored solution for our specific diarization 
tasks, showing enhanced accuracy and adaptability compared 
to its original version. 

C. Semi-Manual GUI 

Additionally, we made a Guided User Interface 
(GUI) tool to speed up the manual processing of audio 
labeling. We have left the link to this as a Github for public 
use in audio labeling. 

 Fatigue and user error are significant barriers to 
creating a valuable dataset for training purposes. We hope that 
this tool will act as a medium to more easily process their 
audio labels for development, training, and testing purposes. 
This functionality takes in a .wav audio file and an optional 
RTTM file to allow the user to drag and drop labels on a visual 
interface, quickly and accurately assigning proper segments 
to speakers. Once the labeling is done, the user simply presses 
submit to export a RTTM and UEM file from the program. 
The results of creating this functionality greatly decreased the 
time we spent manually labeling data and allowed us to create 
the dataset which was used in fine-tuning the Pyannote 
pipeline. By doing this, we were able to speed up the process 
of manually labeling the audio files which took on average an 
hour to do for each 3-minute conversation, to less than 15 
minutes in the GUI, decreasing the time for labeling by a 
factor of 4. 

 
Figure 8. Before Editing the Preloaded RTTM  

 
 We used the GUI to quickly edit the RTTM files 

which Pyannote had previously labeled. At that point, we 

could easily adjust each RTTM file and export a more 
accurately labelled RTTM for future training purposes. We 
plan to use this dataset to gain better results when fine tuning 
the Pyannote pretrained pipeline. Figure 6 shows the RTTM 
given from Pyannote, while Figure 7 shows the GUI after 
editing the RTTM, ready for export. 

 
Figure 9. After Editing the Preloaded RTTM  

 
The visual representations of audio waves make it much 

easier to identify specific segments like pauses, intonations, 
or speaker changes, thus improving the precision of labeling. 
Previously, we would use a similar functionality in 
Audacity, a mulit-track recording editor available on Mac 
and iOS devices. 

V. DISCUSSION 

The main point of discussion in this project is how 
the scope of our project changed over the course of the 
semester. Initially, we wanted to look at the geometric 
approach to speaker diarization and see if we could improve 
our client’s device setup process and design manufacturing. 
This proved to be challenging after looking at the data on 
amplitude and pitch and realizign how difficult it was to find 
patterns that could give clues to who was speaking when.  

Hand labeling the conversations turned out to be a 
labor-intensive task and we turned our focus towards cutting 
down the process for producing quality labels to compare 
ground truth and predicted audio.  

Once we got more results from the geometric 
approach of amplitude and pitch data, we realized trying to 
triangulate the position of the speaker based on the differences 
in amplitude between the microphones was not giving 
consistent results across the variety of environments our client 
was using the devices in. 

These results encouraged us to look into alternative 
solutions, such as the Pyannote learning component, which 
can take in an audio file and separate the sources of speech in 
more generalized situations. These results proved to be more 
promising and led us to believe that future work should be 
done using a learning component that is trained on a large 
dataset of recorded conversations with background noise, 
reverberation, and in a multitude of different set-ups. By 
setting up this model with a variety of environmental 
scenarios, the learning component should be able to more 
consistently give quality speaker assignments across more 
generalizable data. 



 
 

 

VI. CONCLUSION 

 
Speaker Diarization is a difficult problem that 

requires clear definitions of speech segments and accurate 
speaker identification to be effective. Our exploration into 
the realm of speech diarization, specifically through manual 
labeling and the use of machine learning algorithms like 
Pyannote, has demonstrated promising advancements, yet 
also revealed the complexity of this field. As we refine our 
methods and harness more controlled experimental setups, 
we move closer to solving the nuanced challenges of speaker 
separation.  

In future work, creating an experimental setting to 
test the device will help with the investigating and deciding 
which metrics are most predictive of speaker location and in 
doing so, more accurately separate speaker A from speaker B 
in a variety of conversational settings. Using our semi-manual 
guided user interface will speed up the process of labeling and 
testing our hypothesis for geometric evaluations. With the 
tool, we are able to make a more powerful dataset to train and 
fine tune the Pyannote learning component. We may also 
consider looking at alternative speech diarizing learning 
components that could be a better fit for our datasets. 
 Our study has laid the groundwork for our team to 
engage with enhanced speech diarization systems, with a 
focus on developing a reliable device capable of 
distinguishing between multiple speakers. By establishing a 
controlled environment and standardized microphone 
placements, we have identified a pathway to mitigate 
variables and improve the accuracy of our system. The 
integration of Pyannote's machine learning algorithm 
represents a promising advancement in the field of audio 
processing. Our findings suggest significant potential for 
applications ranging from smart home devices to accessibility 
tools for the hearing impaired. Future research will build upon 
these findings, aiming to create a versatile and precise 
diarization device. 
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