




Abstract

Every day, government executives, police officials, and military leaders must decide
how to most efficiently and effectively employ their limited resources in an effort to
secure the large and diverse populations they are charged to protect. Increasingly,
these leaders rely on the analytic tools provided by the discipline of crime analysis.
One of the most important tools in the discipline of crime analysis is the predictive
hot-spot map, which is used to make tactical level decisions about the employment of
resources. This dissertation develops methodological approaches for exploiting these
predictive crime maps to improve the crime forecasts, geographic districting plans,
intelligence assessments, and targeting plans that support military and police decision
makers.

This research provides four multidisciplinary contributions. First, this dissertation
provides a new method for forecasting noisy geographic time series that provides sta-
tistically significant performance improvements over the most-used forecasting meth-
ods while dramatically reducing modeling workload so long as several modeling as-
sumptions are satisfied. Second, this new forecasting method is supported by the
development of a statistical motivation that explains why weighted aggregate fore-
casts provide better forecasting performance for disaggregated event count time series
than forecasts made using the observations from the many disaggregated event count
time series themselves. Third, this dissertation documents a new method for geo-
graphically mapping the region where spatial choice behavior by one entity or group
will dominate spatial choice behavior by all other considered groups. Finally, this dis-
sertation documents the development of a new approach for Journey to Crime (JTC)
analysis that adds to the existing literature by providing the ability to simultaneously
model the effect of many environmental factors on the spatial choice behavior of the
modeled agents (plants, animals, or criminals) while incorporating the distance-decay
modeling used by existing JTC methods.

This dissertation demonstrates the practical application of these research contri-
butions in four case studies. First, a new geographic forecasting method, Geographic
Probability Forecasting (GPF), is applied to the problem of forecasting weekly bur-
glary counts over a five-year period in Pittsburgh, Pennsylvania. The GPF method
links the tactical and operational levels of planning, reduces modeling workload, and
significantly improves forecasting performance for this problem. Second, the GPF
method is leveraged to produce planning maps for Albemarle County, Virginia, that
facilitate the development and evaluation of the districting plans that are used to
define geographic areas of responsibility for patrolling units. Third, previous work
in Criminal Site Selection (CSS) modeling is extended to develop a Sphere of In-
fluence (SOI) analysis, improving the intelligence assessments for criminal gangs in
Santa Ana, California. Finally, CSS models are leveraged to develop a new JTC
analysis technique that outperforms the current best JTC method for predicting the
geographic anchor points of criminal gangs in Santa Ana.
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Chapter 1

Introduction

Every day, government executives, police officials, and military leaders must decide

how to most efficiently and effectively employ their limited resources in an effort to

secure the large and diverse populations they are charged to protect. Increasingly,

these leaders rely on the discipline of crime analysis. While the field of crime analysis

is very old, it has seen an explosion in methods and application since the advent of Ge-

ographic Information Systems (GIS). GIS technology has enabled police agencies and

military organizations to develop sophisticated mapping and statistical analysis tech-

niques to build models for the spatial prediction of crime incidents. These products

produce a probability or intensity surface that predicts future concentrations of activ-

ity in space and time from spatial point patterns such as enemy Improvised Explosive

Device (IED) attacks, criminal activity, or calls for emergency services. This disserta-

tion develops methodological approaches for exploiting the information provided by

these predictive crime maps to also improve the crime forecasts, geographic districting

plans, intelligence assessments, and targeting plans used to support decision-making

at the tactical and operational levels of war and policing.
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1.1 Research Hypothesis

Figure 1.1 provides an illustration of the organizing principle for this research: geo-

graphic probability models have application to many different types of analyses that

are used to support military and police security operations. Predictive geographic

probability models such as kernel density estimation (Harris, 1999; Eck et al., 2005)

and Criminal Site Selection (CSS) models (Huddleston and Brown, 2009; Huddleston

et al., 2012; Smith and Brown, 2007; Xue and Brown, 2003) are traditionally used

to predict the most likely locations for future criminal activity. This dissertation

explores four additional applications for these geographic probability models that ad-

dress existing gaps in the crime analysis literature. These applications are explored

through the study of four hypotheses:

Hypothesis 1: Geographic probability models can improve the ability of military

and police analysts to accurately forecast the noisy geographic time series produced

by crime.

Hypothesis 2: Geographic probability models provide a simple and effective heuris-

tic approach for patrol district design that is applicable to many police and military

units.

Hypothesis 3: CSS geographic probability models can be used to accurately iden-

tify the regions in a city or area of interest where the probability of criminal behavior

by one group dominates the probability of criminal behavior by any other group, a

region we term the group’s sphere of influence.

Hypothesis 4: CSS geographic probability models can improve upon existing jour-

ney to crime methods in identifying the anchor points for criminal groups, facilitating

improved targeting of these criminal elements.
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Figure 1.1: Illustration of the organizing principle of this dissertation: the information
provided by geographic probability models can be used to improve the crime forecasts,
geographic districting plans, intelligence assessments, and targeting plans used to
support decision-making at the tactical and operational levels of war and policing.

1.2 Geographic Probablity Models

A geographic probability model is a two-dimensional probability or intensity map

that predicts future concentrations of activity in space and time from spatial point

patterns such as enemy Improvised Explosive Device (IED) attacks, criminal activity,

or calls for emergency services. There are many approaches that can be used to de-

velop hot-spot maps including manual methods (Boba, 2005; Eck et al., 2005), density

methods (Harris, 1999; Eck et al., 2005), criminal site selection modeling (Huddle-

ston and Brown, 2009; Huddleston et al., 2012; Smith and Brown, 2007; Xue and

Brown, 2003), and increasingly machine learning or data mining techniques (McCue,

2007). Two methods for developing predictive crime maps have model structures that
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facilitate the research developments explored in this dissertation: kernel density esti-

mation (KDE) and Criminal Site Selection (CSS) models. Both of these techniques

generate mapped representations of future threat activity that have several distinct

characteristics which make them suitable for use as geographic probability models:

(i) When mapped, the output of the model is a two-dimension probability density

function.

(ii) This function can be mapped (indexed) at a very high resolution (i.e. 50 x 50

meters).

(iii) The two-dimensional probability distribution function developed by normalizing

the mapped density function sums (integrates) to 1 over the location index

because the probabilities are (conditionally) independent (on the feature set) at

considered locations.

(iv) The mapped probability distribution function represents the following proba-

bilistic statement: “Given that an event has occurred (or will occur) in the

domain of interest, the probability that it occurred (or will occur) at location i

is...”.

1.3 Organization of the Dissertation

The remaining chapters of this dissertation explore how geographic probability mod-

els (hot-spot maps) can be used to address current gaps in the discipline of crime

analysis. The taxonomy and literature review in Chapter 2 conducts an overview of

the various taxonomies used for security planning, the theories of criminal behavior

used to develop models and simulations of criminal behavior, and the crime analysis

techniques currently used for tactical and operational level security planning. This
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literature review highlights several significant gaps in security planning capabilities

at the tactical and operational level.

First, at the operational level of planning, there is a current need for a forecasting

system to better support operational level planning in security applications such as

policing and military counter-insurgency campaigns. Ideally, this forecasting system

would provide the following:

(i) accurate forecasts for small geographic regions (precincts or car beats) for small

temporal windows (days or weeks),

(ii) a link between tactical level planning (supported by the analytic discipline of

prediction) and operational level planning (supported by the analytic discipline

forecasting),

(iii) support for the operational level problem of geographic mission assignment (i.e.

car beat and precinct boundaries) in applications such as geo-policing.

Chapters 3, 4, and 5 address this current gap. Chapter 3 documents the devel-

opment of a new, simple forecasting technique for noisy geographic time series that

consistently provides statistically significant performance improvement over the most

commonly used methods for forecasting crime series. This forecasting method also

dramatically reduces the modeling workload for developing recurring short-term fore-

casts in a geographic context. Chapter 3 also demonstrates that criminal hot-spot

(geographic probability) maps provide accurate estimates for the geographic distribu-

tion of future crime counts within geographic regions. Chapter 4 applies this insight

by leveraging these mapping products to develop a method for formally evaluating

and comparing the performance of competing plans for geographic mission assignment

for military and police units. Chapter 5 compares the performance of this closed form

method for evaluating geographic districting plans to simulation methods to identify

the appropriate context and limitations on using this approach.
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Chapter 6 addresses an existing gap in operational level intelligence assessments:

the ability to accurately map where different threat groups (criminal gangs or in-

surgent groups) present the greatest threat to the population. Multilevel modeling

extensions of CSS models allows us to better answer this question by linking the

incidence of gang crime to the spatial, demographic, and socio-economic features of

specific locations. The output of these models can be used in a Geographic Infor-

mation Systems (GIS) to develop a Sphere of Influence (SOI) analysis: mapping the

region of dominance for each criminal group. These products have direct application

in the intelligence assessments of criminal groups in both military and police security

applications.

Chapter 7 develops an approach for improving the success rate of military cordon

and search operations by leveraging Criminal Site Selection (CSS) models for Jour-

ney to Crime (JTC) analysis. JTC analysis is an investigative technique employed by

police that uses the known locations of a crime series to determine a serial offender’s

most likely anchor point, usually a residence or workplace. This new modeling ap-

proach for JTC analysis provides statistically significant performance improvements

over the current best method and provides geographic profiles (models of anchor

point locations) that are often accurate enough to facilitate tactical success, with the

modeled criminal group’s anchor point falling within the search profile for military

unit cordon and search operations. This CSS modeling approach also contributes

to the JTC analysis literature by providing a method for modeling the effect of the

journey to crime relationship after considering other environmental effects such as

socio-economic conditions, crime generators, and crime attractors that might affect a

criminal’s decision-making process.

Chapter 8 concludes the dissertation by summarizing the multidisciplinary re-

search contributions, domain-specific research contributions, and the most likely areas

for future work motivated by the research in this dissertation.



Chapter 2

Literature Review

This chapter defines a taxonomy for crime analysis and security planning problems

used throughout this dissertation and conducts a comprehensive literature review of

current methods used to address these problems. The review begins by analyzing

several taxonomies used in security planning and highlights the current need for the

Geographic Probability Forecasting (GPF) method developed in the following chap-

ter. The next two sections conduct an overview of the current theories of criminal

behavior, discuss how those theories provide the basis for predictive models, and re-

view how those theories are leveraged in simulation models used to study and validate

predictive models. The review continues with overviews of the current literature on

predictive models used to develop hot-spot maps (predictive threat surfaces), geo-

graphic profiling models, patrol district design methods, and forecasting models used

for resource allocation and planning. These summaries include discussions of the per-

formance assessments used to assess prediction, geographic profiles, and forecasting

algorithms.

7
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2.1 Crime Analysis and Security Planning

In his seminal text on policing, Orlando W. Wilson, Military Police Governor in

postwar Berlin and Chicago Superintendent of Police, laid out the purpose of crime

analysis in planning for the employment of police resources (Wilson, 1963):

The crime-analysis section studies daily reports of serious crimes in or-

der to determine the location, time, special characteristics, similarities

to other criminal attacks, and various significant facts that may help to

identify either a criminal or the existence of a pattern of criminal activ-

ity. Such information is helpful in planning the operations of a division

or district.

Likewise, military doctrine specifically requires consideration of the effects of the

terrain and civil considerations (environment), the threat (criminal organizations and

their actions), and cultural/social events (temporal factors) in the planning of counter-

insurgency operations, in which it has been engaged in for much of the past decade

(U.S. Army, 2006). Rather than having a dedicated crime analysis section like that

advocated for by O.W. Wilson, in military organizations this analytic function is

performed by the military intelligence sections.

Most security organizations operate under a hierarchical command structure in

which a higher level of the hierarchy allocates resources to designated subordinate

commands/regions which employ them in time and space. However, there are several

different taxonomies used to designate the various levels of planning. US military

planning doctrine is based on a theory proposed by Carl von Clausewitz that asserts

that the conduct and planning of war occurs at three levels: the tactical, the opera-

tional, and the strategic (von Clausewitz, 1984). The strategic level of war, defined as

“the art and science of employing national power,” is a clearly distinct class (Dunn,

1996). In contrast, the operational and tactical levels of war often overlap. In military
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applications, the tactical level of war is “characterized by the application of concen-

trated force and offensive action to gain objectives (Dunn, 1996).” The operational

level of war is “implemented by assigning missions, tasks, and resources to tactical

operations (Dunn, 1996).” Thus, in military doctrine, the planning at the tactical

level of war and security planning is oriented on the spatial-temporal employment of

resources (specific applications of resources in space and time) while operational level

planning and decision-making is oriented on resource and mission allocation (allocat-

ing resources and missions between subordinate commanders who will employ them

in space and time).

The most common taxonomy used to describe the various levels of security plan-

ning in crime analysis literature identifies four categories of crime analysis: tactical,

operational, administrative, and strategic (Boba, 2005; Paulsen et al., 2010). Note

that the strategic level of analysis and planning in policing literature does not cor-

respond to the same level of security planning identified as strategic in military doc-

trine. This is because most policing is conducted at the city (or county) level or lower,

which in military doctrine corresponds to an operational level of planning. In this

taxonomy, strategic analysis is defined as being focused on long-term crime reduction

and is oriented on “non-specific criminal activity problems (Paulsen et al., 2010).”

Administrative analysis is “the study of police efficiency and effectiveness” through

programs such as the CompStat, which “evaluates the performance of police dis-

tricts through the study of performance statistics (Weisburd et al., 2004; Henry and

Bratton, 2002).” The distinguishing feature of operational analysis is that it focuses

on police procedures. It therefore overlaps with both the operational and tactical

levels of military planning, depending upon the level of police procedure analyzed.

Finally, the most specific type of crime analysis in this taxonomy is tactical crime

analysis, which is “the comprehensive identification, evaluation, analysis, and reso-

lution of specific criminal activity problems” such as emerging crime sprees (Paulsen
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et al., 2010). In the crime analysis literature, the difference between operational and

tactical analyses is the subject of study. Tactical crime analysis focuses on studying

crime occurrence (rates, locations, etc.) while operational analysis focuses on police

resourcing and response to crime.

Because it provides the more general framework and categorizes planning processes

in a way that aligns neatly with the analytic disciplines that support those processes,

the military’s taxonomy for security planning is used throughout this dissertation.

Under this taxonomy, planning at the tactical level of war/policing is concerned with

how to employ resources in time and space (locations/organizations/people to inves-

tigate, target, and observe) while planning at the operational level of war/policing is

concerned primarily with assigning missions for and allocating limited resources to

subordinate regions and commanders who will employ them, as well as subsequently

evaluating the performance of those units (as in the CompStat program). Because

the resources available at the operational level are almost always constrained in some

way, the planning processes at the operational and tactical levels are inextricably

linked.

Unfortunately, the analytic methods currently used for planning at the operational

and tactical levels are not linked in the same way. Rather, they primarily leverage two

different analytic disciplines: statistical assertions of multinomial counts, known in

the crime analysis literature as forecasts, and statistical assertions of binomial prob-

abilities, known in the crime analysis literature as predictions. In many disciplines,

the terms forecasting and prediction are synonymous, but in the terminology of crime

analysis “the terms forecasting and prediction have similar meanings, but they do not

convey precisely the same idea (Paulsen et al., 2010).” The discipline of prediction is

concerned with probabilistically foretelling events (with some probability) while the

discipline of forecasting “attempts to estimate how much of something will occur in a

given area over a given time period (Paulsen et al., 2010).” Thus, prediction is con-



11

cerned with identifying the most likely times and places for criminal events to occur

(so that resources can be concentrated in those areas) while forecasting is concerned

with estimating how much criminal activity will occur in a given region over a given

period of time (so that enough resources can be allocated to those commanders that

need them most). As a recently published text in crime analysis notes, ”forecasting is

a strategic and administrative discipline while prediction is tactical and operational

(Paulsen et al., 2010).” Under the more general military taxonomy, we can there-

fore state that forecasting is an operational discipline while prediction is a tactical

discipline. These analytic disciplines are discussed at length in subsequent sections.

2.2 Theories of Criminal Behavior

In order to understand, build models of, and predict criminal behavior, it is necessary

to understand the theories of criminal behavior that have been developed in the field of

criminology. Environmental criminology seeks to to identify criminal patterns in the

motivation, opportunities, and environments in which criminal events occur (Boba,

2005) and provides some key theories that are used to model and simulate criminal

behavior. Three theories form the impetus for environmental criminology: rational

choice theory, crime pattern theory, and routine activities theory. Rational choice

theory is a fundamental micro-economic principle that states that people balance

costs and benefits when making decisions about how to best meet their objectives

(Coleman and Fararo, 1992). Becker (1976) first applied this economic theory to

crime, asserting that criminals make choices about committing crimes based upon

anticipated rewards and punishments. Routine activities theory suggests that the

general patterns of behavior of both criminals and victims impact the incident of

crime (Cohen and Felson, 1979). Crime pattern theory incorporates both rational

choice theory and routine activities theory in asserting that criminal events occur
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most frequently where the activity space of offenders seeking to commit a crime

overlaps with the routine activity of victims, generating crime patterns that cluster in

space and time (Brantingham and Brantingham, 1993). Situational crime prevention

applies these ideas in seeking to prevent crime by using statistical analysis to identify

the features that make up criminals’ preferences in the local environment and take

specific actions to address those crime problems (Boba, 2005).

Another important principle in modeling and simulating crime is the principle of

journey to crime (Rengert, 2004). Journey to crime maps criminal offender travel

distance based on three factors (Paulsen et al., 2010). First, offender travel is heavily

influenced by the presence of crime attractors and crime generators. Crime attrac-

tors are “places, areas, or neighborhoods where criminal opportunities are well known,

and to which motivated offenders are subsequently attracted as a source for criminal

activity (Paulsen et al., 2010; Brantingham and Brantingham, 1993).” Crime gener-

ators are places such as shopping malls, festivals, college campuses, and sports events

that provide criminal opportunities due to the massive number of potential victims

concentrated in one place at specific times (Brantingham and Brantingham, 1993).

The second factor that influences offender travel is spatial attractiveness. Areas that

are close to offenders’ residences or other anchor points in their routine activities are

more attractive because offenders prefer to travel less when possible. This means

that criminals are less likely (distance-decay) to commit crimes far from their homes

or other anchor points. Finally, an offender’s journey to crime is influenced by the

target backcloth created by victim’s decisions (Paulsen et al., 2010). The term target

backcloth encapsulates the idea that criminal opportunities are not uniformly dis-

tributed in geography. Criminals must move to locations where crime opportunities

for the particular type of crime they wish to commit are available. For example,

criminals wishing to commit a bank robbery are limited to selecting from already

existing banking institutions, even if none of those exist near their anchor points or
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within areas conducive to crime opportunities.

Finally, the concepts of mental maps and criminal awareness space influence the

specific locations individual criminals choose for their crimes (Paulsen et al., 2010;

Brantingham and Brantingham, 1993). In brief, criminals have mental maps for areas

with which they are familiar. These maps include a criminal’s awareness space from

which he or she selects their targets. This awareness space is for the most part defined

by the criminal’s anchor points and the paths between those anchor points.

2.3 Simulation Models of Criminal Behavior and

Police Response

These theories from environmental criminology serve as a foundation for developing

models and simulations of criminal behavior and police response. Several of the

predictive models discussed in the next section specifically incorporate these theories

and principles into the modeling process. Additionally, these theories are increasingly

being used to develop agent-based simulation models of criminal behavior in efforts

to better understand criminal behavior, test the veracity of criminological theories,

optimize the efforts of security agencies, and validate predictive modeling approaches.

As Malleson (2011) notes, “Environmental criminology research tells us that the

geographical patterning of crime rates is an emergent phenomenon, resulting from the

interactions between individual people and objects in space.” Emergence is defined as

“displaying organization without a central organizing authority” and is the defining

characteristic of complex systems (Ottino, 2004). Agent-based models are used to

study complex systems because they model the complex interactions between inde-

pendent, autonomous (and often competing) actors pursuing their own objectives.

In the context of studying the emergence of crime patterns, agent-based models

provide the ability to simulate how micro-level decision processes give rise to patterns
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of crime (Liu and Eck, 2008). The agent-based modeling paradigm facilitates model-

ing the specific decision processes and behaviors of criminal offenders, their victims,

and the security forces who try to protect the population. These models have been

used to validate the theories of environmental criminology by showing how simula-

tion models incorporating these theories produce crime patterns that mimic observed

crime patterns. Liu et al. (2005) provided one of the first demonstrations of this

application of agent-based modeling when they developed a cellular automata model

based upon routine activities theory to produce spatial crime patterns that mimicked

observed crime patterns in Cincinnati, Ohio.

Other researchers have developed agent-based models that validate additional

theories from environmental criminology. For example, Wang (2005) extended the

model of Liu et al. (2005) to mimic street-robberies, achieving similar results for a

specific crime. Groff (2008) studied the spatial-temporal patterns of street robbery by

leveraging routine activity theory and Bolstad (2008) develop an agent-based model

that illustrates the development of crime patterns using crime pattern theory. Wang

et al. (2008) demonstrate the use of all three environmental theories (rational choice

theory, routine activities theory, and crime pattern theory) implemented within a GIS

environment, which represents a significant advance in model complexity. However,

Elffers and Baal (2008) argue that the use of real geographical backgrounds, while

feasible, “may in fact be detrimental for the real reason of doing criminal simulation

studies, which is understanding the underlying rules.”

Agent based simulation models have also been recently used to determine more

effective law-enforcement strategies. Examples in policing include optimizing patrol

routing systems (Szakas et al., 2008), analysis of drug law enforcement efforts (Dray

et al., 2008), and investigating the effects of situational crime prevention strategies on

the incidence of burglary (Malleson, 2011). Huddleston et al. (2008) demonstrate the

application of agent-based simulation models in a military application: determining
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the optimal spatial distribution of security outposts when countering an insurgency.

Finally, Fox and Brown (2012) and Fox et al. (2012) demonstrate a new use for

agent-based models: using agent-based simulation models to validate and understand

the properties of a predictive algorithm for spatio-temporal crime patterns. Fox and

Brown (2012) adapts the insurgency model of Huddleston et al. (2008) to illustrate

how a new predictive algorithm for the spatial-temporal prediction of crime in a

small US city accurately captures the behavior of criminal actors. Fox et al. (2012)

uses the same simulation model to demonstrate a method for capturing the effect

of spatial-temporal pulse events on crime incidence. The agent-based simulation

model provides the ability to assess the success of the predictive model performance

because the operating rules of the agents are known. Thus, researchers can assess

the effectiveness of predictive models in capturing the known behavior of the criminal

agents in a controlled operating environment.

2.4 Crime Prediction Methods

Law enforcement analysts have developed and documented sophisticated statistical

mapping techniques to build models for the spatial prediction of crime incidents.

These efforts began with crime mapping: the use of geographic information systems

to conduct spatial analysis of crime problems and other police-related issues. Harris

(1999) documents the development of crime mapping within law enforcement circles

from the time when maps consisting of pins pushed into wall mounted maps were used

by the NYPD in the early 1900s through the 1990s, when the increasing availability

of crime desktop GIS systems resulted in an explosion in the use of computer desktop

crime mapping in law enforcement. GIS allow crime analysts to develop sophisticated

maps that help police concentrate their resources in the locations most likely to need

support through the use of predictive threat surfaces.
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Predictive threat surfaces identify concentrations of criminal activity, or hot-spots.

The National Institute of Justice defines a criminal hot-spot as “an area that has a

greater than average number of criminal or disorder events, or an area where people

have a higher than average risk of victimization (Eck et al., 2005).” Predictive threat

surfaces are binomial classifiers, with the goal being to highlight specific locations

likely to experience future criminal activity. As Fawcett (2004) notes, “A classifier

need not produce accurate, calibrated probability estimates; it need only produce

relative accurate scores that serve to discriminate positive and negative instances.”

There are many techniques for identifying criminal hot-spots but they for the most

part fall into one of two categories: those techniques that treat the problem as a spatial

point pattern vice those that treat the problem as a marked spatial point pattern.

Point patterns are the type of spatial data that arise when the critical variable being

analyzed is the location of events (Cressie, 1993). Most criminal incidents fall into

this category of geographic analysis. A marked spatial point pattern is one in which

the events in a point pattern are associated with measurements or categorical marks.

In crime analysis, examples of “marks” would include identification of the type of

crime, the responsible party (if known), and the environmental features associated

with the location of the criminal event.

2.4.1 Spatial Point Pattern Methods

Spatial point pattern methods use the locations of previous crimes to predict con-

centrations of future criminal activity. Note that these approaches are not based in

the theories from environmental criminology but rather assume that the best predic-

tor of future criminal activity is past criminal activity nearby. The most common

approaches to identifying criminal hot-spots rely on mapping techniques based upon

kernel density estimation because these approaches are easily implemented in the Geo-

graphic Information Systems (GIS) most police agencies now employ (Eck et al., 2005;
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Boba, 2005). These techniques do not leverage the additional “marked” information

associated with a criminal event but leverage only location (Latitude-Longitude or

X-Y) data to estimate the relative risk associated with each X-Y coordinate on the

map.

Kernel density estimation uses a kernel smoothing function (Wand and Jones,

2004) to develop a probability density function of a random variable (crime occur-

rence) which is then represented as a continuous threat surface (hot-spot) map. Use of

a kernel function involves two important decisions: the selection of a kernel function

and the selection of the kernel bandwidth. Commonly used kernel functions include

Gaussian, quartic, and Epanechnikov but the kernel function has relatively little ef-

fect on the density estimate. The bandwidth parameter does significantly effect the

outcome and is an important consideration in the development of the model, with

many studies that propose various methods for selecting this key model parameter

including Sheather and Jones (1991), Jones et al. (1996), and Berman and Diggle

(1989).

This modeling procedure has become nearly ubiquitous in crime analysis, but as

a National Institute of Justice special report on hot-spot mapping notes, it is not

always applied appropriately by police agencies (Eck et al., 2005):

The increased application of this type of continuous surface smoothing

method is due largely to its more common availability and visual appeal.

Continuous surface hot spot maps allow for easier interpretation of crime

clusters and reflect more accurately the location and spatial distribution of

crime hot spots. As their appeal has increased, however, few questions are

being asked of the outputs generated. Many agencies often fail to question

the validity or statistical robustness of the map produced, being caught

instead in the visual lure of their sophisticated looking geo-graphic.

Other point process methods are not often cited in texts on crime analysis and
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crime mapping (Gorr and Kurland, 2012; Boba, 2005; Paulsen et al., 2010; Chainey

and Ratcliffe, 2005; Eck et al., 2005), but there are several relevant examples available.

Liu and Brown (2003) develop a criminal incident prediction model based on a point-

pattern density model discussed in more depth in the next section. Mohler et al.

(2011) build on work developed in seismology for dealing with space-time clustering

by using self-exciting point process models and demonstrate their use in modeling

near-repeat burglaries in Los Angeles. Finally, Kerry et al. (2010) apply the geo-

statistical technique of kriging to the problem of predicting car-related thefts.

2.4.2 Marked Spatial Point Pattern Methods

In recent years, there has been a growing body of literature in which researchers iden-

tify criminal hot-spots by using the marks associated with crimes in police databases

to identify criminal hot-spots. Social researchers tend to use various regression tech-

niques in the application of environmental criminology to link social, economic, or

spatial features to the incidence of crime (Brantingham and Brantingham, 1981).

Examples of sociological analysis include identification of factors important in the

occurrence of residential burglaries (Bernasco and Nieuwbeerta, 2005), robberies in

Chicago (Bernasco and Block, 2009), the link between drug street corners and crime

(Ratcliffe and Taniguchi, 2008), and many studies of criminal gang activity (Tita

et al., 2005; Tita and Ridgeway, 2007; Block, 2000). Cahill and Mulligan (2007) and

Chainey and Ratcliffe (2005) identify that many of these factors have relationships

with crime that vary by location and use geographically weighted regression to im-

prove predictive performance over the more common standard least squares regression

methods.

Other researchers have begun to apply newly developed data mining techniques to

the problem of identifying the areas most likely to see a criminal incident. Data mining

approaches to hot-spot identification include machine learning techniques such as
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neural networks (Olligschlaeger, 1997), fuzzy clustering (Grubesic, 2006), and support

vector machines (Chang et al., 2005; Kianmehr and Alhajj, 2008). However, these

techniques are not often applied by police analysts because they require an in-depth

understanding of statistical methods or custom software to conduct the analysis.

Discrete Choice Modeling (DCM) bridges the gap between the regression tech-

niques often developed by criminologists and predictive data mining algorithms.

Criminal DCM models are based upon Daniel McFadden’s development of discrete

choice theory (McFadden, 1974). Several research groups have applied this approach

in a spatial context for modeling criminal site selection preference. Xue and Brown

(2003) introduce the use of McFadden’s discrete choice theory in the context of mod-

eling criminal choice behavior, leveraging the rational choice theory as applied to

crime by Becker (1976). Liu and Brown (2003) incorporate the idea of using feature-

space rather than geographic coordinates to represent the locations of crimes when

conducting DCM. Feature-space is defined as the Euclidean distance to each of the

features of interest such as various crime attractors and crime generators. Liu and

Brown (2004) combine the feature-space methods with DCM modeling to develop a

framework for the application of spatial choice in space and time. The efficacy of

this Discrete Choice Modeling (DCM) approach has been proven in predicting crimi-

nal events as varied as burglaries (Liu and Brown, 2004; Bernasco and Nieuwbeerta,

2005), gang crimes (Huddleston and Brown, 2009), robberies (Bernasco and Block,

2009), and terrorist events (Brown et al., 2004) such as suicide bombings (Smith and

Brown, 2007). Often DCM models will provide significantly improved performance

over density methods because they identify potential high risk areas which have not

yet been targeted, whereas the previously discussed density approaches only highlight

areas that have previously seen criminal activity.

Recently these DCM models have been extended to more accurately predict crime

by individual criminal groups or for spatio-temporal prediction. Huddleston and
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Brown (2009) demonstrate that extending DCM with the application of multi-level

(hierarchical) modeling can significantly improve predictive performance for individ-

ual criminal gangs. Fox and Brown (2012) demonstrate how this multi-level modeling

approach can be leveraged to improve spatio-temporal prediction of criminal assaults

while Wang and Brown (2012) uses generalized additive models (GAM) to conduct

the same analysis for breaking and entering crimes.

2.4.3 Journey to Crime (Geographic Profiling) Models

Another predictive crime mapping technique often used in tactical level policing is

Journey to Crime (JTC) analysis, more often called geographic profiling. JTC anal-

ysis is defined in crime science as identifying the anchor point for an unknown serial

criminal offender based upon the locations of a linked crime series attributed to that

offender (Mohler and Short, 2012). While geographic profiles (the mapped outputs of

JTC analysis) are sometimes used to support the police investigative process by high-

lighting the most likely locations for the anchor points of an unknown serial criminal

offender, they are more regularly used to narrow investigative efforts geographically

to a subset of known offenders who have previously committed similar crimes and fall

within the high-probability area of the geo-profile or the equivalent geographic subset

of a longer list of possible suspects that the police have already identified (Rossmo

et al., 2005). Effective solutions to this problem are in high demand because the most

important function of the criminal investigative process is locating unknown offenders

(Rossmo and Rombouts, 2008) .

There are several significant criticisms lobbied against geographic profiling and

JTC analysis. The most significant criticism is that, despite several high-profile and

widely publicized successes, geographic profiling models have not proven to be more

accurate than simple centrographic techniques such as calculation of the Center of

Minimum Distance (CMD), also known as the Fermat-Weber point (Levine and Block,
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2011; Paulsen, 2006b). In several studies comparing the predictive performance of all

of the available geographic profiling techniques, to include Canter’s Dragnet (1993),

Rossmo’s Rigel (2000), Levine’s JTC (2009a), and several centrographic methods,

Paulsen (2006a; 2006b) found that the simple CMD method outperformed all others in

identifying serial criminals’ anchor points and the CMD method is widely considered

to be the most accurate geographic profiling method (Levine and Block, 2011). Even

the most recent geographic profiling techniques developed have only demonstrated

the ability to match, not exceed, the performance of the CMD approach.

The second significant criticism of geographic profiling models is that all of the

traditional geographic profiling methods do not account for the target backcloth. The

need to incorporate environmental effects, crime attractors, and crime generators into

geographic profiling models is well-documented (O’Leary, 2009), but the most-used

geographic profiling methods (Rigel, Dragnet, and JTC) do not incorporate these

predictive features. Instead, all of these methods make the assumption that criminal

opportunities are uniformly distributed in geography. Recently, several different re-

search groups have proposed Bayesian methods for incorporating predictive features

into geographic profiling models (O’Leary, 2009; Levine and Block, 2011). However,

these methods incorporate geographic representations of environmental features and

known crime generators to filter (or screen out unlikely locations) through their use

as prior probabilities in the Bayesian paradigm (rather than incorporating them as

predictive features in the likelihood function). Thus, these models do not model how

the journey to crime relationship changes in response to these predictive features or

criminal opportunities. While the Bayesian modeling approach has facilitated con-

sideration environmental effects into geographic profiling models, these models have

not been able to provide better predictive performance than the much simpler CMD

method (Levine and Block, 2011).
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2.4.4 Prediction Model Performance Assessment

Because there are so many different approaches for developing predictive threat sur-

faces of criminal behavior (hot spot maps and geographic profiles), model selection

and performance assessment are key considerations in employing these predictive

models. The threat surface produced by the predictive algorithms can be thought

of as a binary prediction of the probability of criminal incident at each individual

location. Intensity measures produced by density approaches can be interpreted as

a classification score or normalized into a 0 - 1 prediction probability rather than

being regarded as an intensity rate. Thus, all threat surfaces can be evaluated using

methods developed to assess the performance of binary classifiers.

Most of the statistics used to assess binary prediction model performance are based

around the confusion matrix, which is a 2 x 2 contingency table which records counts

of the four possible outcomes of a binary classification model: true positives, false

positives, true negatives, and false negatives. Model performance measures derived

from the confusion matrix include model sensitivity (also called hit rate, true positive

rate, or recall), specificity, false positive rate, precision, accuracy, and F-measure

(Fawcett, 2006). Recent years have seen one approach based on the confusion matrix

become particularly popular for evaluating and comparing predictive algorithms in

the machine learning community: the Receiver Operating Characteristic (ROC) curve

(Fawcett, 2006, 2004; Spackman, 1989).

In founding the principles of signal detection theory, Birdsall and Fox (1954) advo-

cated for assessing model performance using ROC curves. ROC curves illustrate the

trade-offs between a model’s specificity and sensitivity for all classification thresholds

between 0 and 1. A model’s specificity at a given threshold is the probability of the

model asserting “false” when the actual state of the system is false. The model’s

false positive rate is calculated as 1-specificity and forms the horizontal axis of the

ROC curve. A model’s sensitivity at a given threshold is the probability of the model
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asserting “true” when the true state of the system is true. A model’s sensitivity is

also known as its true positive rate.

The ROC curve plots the cost-benefit trade-off for a classifier at all possible clas-

sification thresholds (Fawcett, 2004). The cost, plotted on the horizontal axis, is the

model’s false positive rate. The benefit, plotted on the vertical axis, is the model’s

true positive rate. Perfect prediction occurs when a model achieves 100% specificity

and 100% sensitivity, which equates to a false positive rate of 0 and a true positive

rate of 100%, plotted as the point (0,1) on the ROC curve.

ROC curves are a two-dimensional representation of classifier performance and

often researchers would like to reduce performance to a single (scalar) statistic. The

most common approach for summarizing ROC performance is to calculate the area

under the ROC curve (denoted AUC) as a scalar value representing model classifica-

tion performance (Fawcett, 2006; Hanley and McNeil, 1982). This statistic represents

the probability that a randomly chosen positive incidence (in this application a ran-

domly chosen location where a crime has occurred) will score higher than a randomly

selected negative instance (i.e. a randomly selected location where a crime did not

occur) (Fawcett, 2006). The AUC is equivalent to Wilcoxon test of ranks commonly

used in categorical data analysis (Fawcett, 2006; Hanley and McNeil, 1982) and is

also directly related to the Gini coefficient (Breiman et al., 1984). The AUC will

always be a value between 0 and 1, and any AUC less than 0.5 indicates a model

that performs more poorly than random guessing. The AUC is often considered to

be the standard method to assess the accuracy of binomial classifiers, but as Lobo

et al. (2007) records, it is much less reliable as a comparative measure of accuracy

between models than a full ROC curve.

An alternative method for assessing threat surfaces specific to security applica-

tions is the surveillance plot, which defines the cost in the cost-benefit tradeoff in

terms of the resources a security agency would need to expend in order to achieve
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a certain level of sensitivity (Huddleston and Brown, 2009). A surveillance plot

records model sensitivity as a function of the surface area a security agency would

need to monitor (surveil) and is an adaption of a model comparison metric intro-

duced by Smith and Brown (2007). A model’s trade-off in sensitivity and resources

expended as shown in a surveillance plot is a very important characteristic for evalu-

ating geospatial model performance because we desire a model that focuses security

efforts in as small a geographic area as possible. The horizontal axis of the surveil-

lance plot records the percentage of surface area, referenced in descending order of

the threat surface (from highest probability/classification score to lowest probabil-

ity/classification score), needed to observe the corresponding percentage of actual

incidents in the dataset (the vertical axis).

The surveillance plot’s definition of model cost provides a visualization of the effi-

ciency of the model in allocating resources expended by a security agency attempting

to observe or interdict the crimes as they occur. It is also easily extended for spatio-

temporal modeling by rank-ordering the probability/score of spatio-temporal blocks

throughout the spatial and temporal horizon of study (Fox and Brown, 2012). The

best model is the one that achieves the highest percentage of observed incidents (sen-

sitivity) for a given percentage of observed area required. The appropriate point of

evaluation on the surveillance plot graph is contingent upon the resources available to

the evaluating agency (Huddleston and Brown, 2009). For instance, if it is possible to

monitor only 5% of the surface area in the study area with your available resources,

then the model that provides the highest number of observed incidents in the test set

in 5% or less of the high probability surface area observed is the best one for your

organization. The use of surveillance plots in security applications is recommended

because it couches ROC model performance assessment in terms of the resources

security managers would need to expend in order to achieve a defined level of per-

formance (percentage of crimes observed/interdicted), which are terms of reference
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much more familiar to security managers than statistical measures such as sensitivity

and specificity. When applied to geographic profiling assessments, the surveillance

plot is more commonly referred to as a plot of effort rate or search cost.

2.5 Crime Forecasting Methods

Gorr et al. (2003) notes the many applications of forecasting in policing:

Municipal police would benefit greatly from accurate short-term forecasts

of crime within small geographic areas, such as police precincts and patrol

districts. Then it would be possible to target patrols to areas with fore-

casted crime increases, remove and redeploy special details in areas with

forecasted crime decreases, schedule training and vacations in nonpeak

periods, etc.

However, as Gorr and Harries (2003) note, crime forecasting, other than the naive

methods used for CompStat programs, is not widely practiced by police, primarily

because:

...the desired scale for observation is too small for reliable model esti-

mation. For tactical purposes, police must pinpoint crime in areas as

small as possible, at the patrol district level (geographic area of one of-

ficer or team) or smaller. We know that forecast errors increase as data

aggregations become smaller but unfortunately, there has been very little

systematic study of the effects of data scale on forecast accuracy.

Crime forecasting is also applied on a limited basis because, as recorded by Cohen

and Gorr (2005), it is a relatively new discipline, with research in crime forecasting

applications being driven primarily by research grants by the National Institute of

Justice (NIJ) in the early 2000s. In one of those NIJ funded studies, Gorr et al.
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(2003) establish a benchmark for forecasting performance in policing, stating that

forecasting models become useful in police applications when forecasting errors are

consistently less than 20% of the observed crime counts in the fixed observation units.

They conclude in their exhaustive comparison of time series methods for forecasting

at the car beat and precinct level in Pittsburgh that crime counts of 25 to 35 per

fixed areal unit and time period were required to achieve this performance measure.

Thus, they conclude that time series methods are primarily useful at the precinct level

and higher because smaller fixed areal units do not provide enough crime counts for

short-term crime forecasts for most crime types over the weekly or monthly horizons

needed in policing.

In a summary of crime forecasting efforts from the early 2000s, Cohen and Gorr

(2005) note that crime forecasts are in fact a time series: repeated measurements

for a fixed observation unit (police precincts or car beats) and fixed time intervals

(weekly or monthly). They categorize three types of time series methods used in crime

forecasting: naive methods, univariate time series methods, and leading indicator

models.

2.5.1 Naive Forecasting Methods

Naive forecasting methods are the most popular in police application, especially in

the context of weekly or monthly CompStat meetings in which police administrators

evaluate performance. The two most frequently used methods are the random walk

approach and what Cohen and Gorr (2005) refer to as the “CompStat” method. The

random walk forecast simply uses the previous time period’s observed crime count

as the forecast for the next period. Using a random walk forecast is appropriate

in situations (such as the stock market) in which future behavior in the short term

is unpredictable (random) and equally likely to move up and down (Malkiel, 2003).

By definition, this is an inappropriate method for performance assessment of police
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activity in meetings such as CompStat, although it is widely used. The “CompStat”

method is similar to the random walk approach, but uses the observed crime count

from the same period one year earlier (Cohen and Gorr, 2005). Another naive ap-

proach not referenced in crime forecasting literature but sometimes applied in other

forecasting applications is the use of the long-run average (Meade, 2000). None of

these methods provides an informative forecast in policing applications.

2.5.2 Univariate Time Series Forecasting Methods

There are a plethora of time series methods available, although few of them have been

applied to the problem of forecasting time series of crime over small geographic areas

such as police precincts. Commonly employed time series methods include: time series

regression, moving average models, exponential smoothing models (including exten-

sions for seasonality and trend), Auto-Regressive Moving Average (ARMA) models,

Auto-Regressive Integrated Moving Average (ARIMA) models, ARMA models with

exogenous inputs (ARMAX), spectral time series models, state-space time series

models, and Generalized Auto-Regressive Conditionally Heteroscedastic (GARCH)

models (Shumway and Stoffer, 2006). Of these many methods, crime analysis and

forecasting literature contains almost exclusively time series models from the nested

exponential smoothing family as developed by Brown (1959; 1963), Holt (1957; 1960;

2004), and Winters (1960). Exceptions include several applications of ARIMA models

used to forecast city-level crime rates (Chen et al., 2008b,a; Chamlin, 1988) and an

unpublished effort leveraging time series regression (Pepper, 2007).

Gorr et al. (2003) demonstrate that univariate time series forecasting methods can

significantly improve upon the naive forecasting approaches discussed above. This re-

sult is significant in that it establishes that crime counts in small geographic regions

such as police precincts are not outcomes of a random walk, but rather can be pre-

dicted to a certain extent. As Cohen and Gorr (2005) note, police can therefore use
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crime forecasts developed from time series forecasting methods to evaluate police per-

formance by leveraging these forecasts as “counterfactual” estimates of crime counts

which can be compared to observed crime counts to assess police performance as well

as employing them to proactively focus resources to needed areas in the next time

period.

The nested exponential smoothing family of models (which includes the Holt-

Winters method) and ARIMA models are the most popular time series methods in

both business and crime forecasting for two reasons. First, both methods provide very

flexible modeling frameworks that are robust to many types of time series patterns

such as trends, seasonality, or unusual changes in the pattern such as the introduc-

tion of shocks (Hyndman and Khandakar, 2008). Second, even non-statisticians can

easily automate Holt-Winters and ARIMA forecasting models using widely available

software. For example, Microsoft Excel easily optimizes the parameters of a Holt-

Winters smoothing model using Solver and freely available statistical software such

as R provides algorithms for automatically fitting ARIMA models (Hyndman and

Khandakar, 2008) .

Another important factor in the prevalence of exponential smoothing and ARIMA

models is the lack of a successful identification procedure for determining the opti-

mal time series method for a given forecasting problem prior to fitting the models.

Researchers have proposed complicated expert systems for selecting appropriate time

series models (Collopy and Armstrong, 1992; Arinze, 1994; Vovurka et al., 1996;

Meade, 2000; Adya et al., 2001), but as Gardner (2006) records, these approaches

produce mixed results at best. Additionally, fitting many of these models requires

the use of statistical software often not available to crime analysts. Thus, naive, ex-

ponential smoothing, and ARIMA methods provide benchmarks for the performance

of any new method for recurring short-term demand forecasts in many applications.

Several crime forecasting studies (Cohen and Gorr, 2005; Gorr, 2009) have recorded
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that Holt-Winters models with seasonality provide the best approach to routine fore-

casts for fixed geographic regions such as police precincts. However, these same

studies also identify that another forecasting approach, multivariate leading indica-

tor models, provides better performance in predicting exceptional conditions such as

impending spikes in crime rates for specific geographic regions.

2.5.3 Leading Indicator and Time Series Monitoring Meth-

ods

Leading indicator crime models are designed to “make accurate forecasts of the rela-

tively rare, large changes in crime (Cohen et al., 2007).” Note that in the terminology

used in this dissertation, this is a prediction - an assertion of the probability that in

the next time period there will be a significant spike (or drop) in crime. Leading in-

dicator crime models use predictor variables such as selected lesser crimes to predict

lagged changes in dependent variables such as violent crimes. Specifically, when the

leading indicating variables (such as property crime) step up (or spike significantly)

these models predict that violent crimes will increase (or spike) in the very near future

(Gorr, 2009). These models often provide relatively poor performance in forecasting

crime counts under normal conditions, but out-perform traditional forecasting meth-

ods in predicting “exceptional conditions,” or spikes in violent crime (Gorr, 2009;

Cohen et al., 2007).

These leading indicator models are used in crime analysis in proactive Manage-

ment by Exception (MBE) (Gorr, 2009). MBE is a management principle developed

by Taylor (1917, 1912) in which management devotes its time to those situations

departing significantly from planned (or forecasted) results. This is ostensibly the

purpose of weekly or monthly CompStat meetings often used in police management,

although as previously discussed, the common use of naive forecasting methods sig-

nificantly limits the utility of MBE when naive forecasting methods are applied. The
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leading indicator models developed by Cohen et al. (2007) provide a significant ad-

vantage in that they can be used to identify when crime spikes are likely to occur in

specific police precincts or car beats, facilitating a shifting of resources to the affected

region prior to the spike. However, these significant shifts in crime counts are rela-

tively rare. For example, Gorr and McKay (2005) identify in a study of Pittsburgh

crime that signifiant shifts in violent crime occur in high crime areas approximately

twice every three years.

It is much more common for MBE to be applied retroactively (as in weekly or

monthly CompStat meetings) to assess whether or not the observed crime count rep-

resents a significant departure from the forecasted crime count. Gorr (2009) terms

this use reactive MBE. This analysis is easily conducted using methods from manu-

facturing such as Shewhart’s control charts (Shewhart, 1939) or the tracking signals

approach developed by Trigg (1964). Gorr and McKay (2005) provides an overview on

the use of these models in retroactive performance assessment for crime applications

while Huddleston et al. (2010) provide a similar discussion for military applications.

2.5.4 Forecasting Model Performance Assessment

Commonly used measures of forecast accuracy used in forecasting crime include Mean

Absolute Deviation (MAD), Root Mean Squared Error (RMSE), Mean Absolute Per-

centage Error (MAPE), and Median Symetric Absolute Percentage Error (mdsAPE)

(Gorr, 2009). Several of these measures, specifically the MAPE and mdsAPE, are

undefined for time series values of 0 (i.e. no crimes observed) during at least one

of the time periods. This is because these measures use the observed crime count

in the denominator, yielding infinite results when no observation occurs. Thus, in

applications (such as weekly forecasts of crime counts at the precinct or car beat

level) when it is possible that no crime counts occur, these measures of performance

fail. Kolassa and Schutz (2007) introduce the MAD/MEAN (MAD divided by the
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historical mean) statistic as a measure equivalent to the MAPE that addresses this

significant shortcoming.

As Hyndman and Koehler (2006) note, MSE and RMSE have been historically

popular “largely because of their theoretical relevance in statistical modeling.” The

RMSE can also be used to develop uncertainty estimates (prediction intervals) for fu-

ture forecasts when used as a forecasting model standard error. However, Armstrong

and Collopy (1992) demonstrate that the RMSE is not a reliable accuracy measure

for comparing forecasting performance across time series.

Hyndman and Koehler (2006) propose the MASE as a “generally applicable mea-

surement of forecast accuracy without the problems seen in the other measurements.”

MASE provides an ideal statistic for assessing forecasting performance in many crime

applications due to several properties. First, MASE is a scale-free measure of forecast

error, which allows forecast accuracy comparisons between series. Secondly, MASE

can be used on intermittent time series, which contain observed event counts of 0 in

at least one time period. Event counts of 0 occur frequently in many crime forecast-

ing and business demand forecasting applications. Finally, MASE scales the error by

the Naive forecast. A MASE score less than one indicates a model that has smaller

average error than the Naive method, with the reverse true when MASE > 1. Thus,

the MASE statistic reports a scaled effect size performance improvement (or loss)

as compared to the most commonly used forecasting method in security applications

(i.e., the difference between the MASE statistic and 1 is the effect size for performance

improvement or loss).
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2.6 Patrol District Design

2.6.1 Police Patrol District Design and Geo-Policing

Police departments create geographic patrol districts (also called patrol sectors or

car beats) as a standard management method to enhance the capabilities of the

uniformed patrol force (Hale, 1980). In most police departments, one patrol unit is

assigned to each patrol sector during each patrol shift (Gorr and Kurland, 2012).

Although current crime analysis and crime mapping texts discuss the use of patrol

district boundaries in the course of supporting police operations, they do not provide

methodological approaches for designing patrol districts (Paulsen et al., 2010; Gorr

and Kurland, 2012). Traditionally, the geographic patrol boundaries for a police

department are drawn by hand based on a police department’s knowledge, experience,

and the available police resources (Mitchell, 1972; Taylor and Huxley, 1989). However,

Curtin et al. (2010) note that given the complexities of the police districting plans,

it is unlikely that an optimal districting plan will be chosen by relying only on the

judgement and intuition of police planners.

2.6.2 Military Area of Operation (AO) Design

In US military doctrine, all geographic Areas of Responsibility (AOR) are divided into

Areas of Operation (AO) at the tactical and operational levels for subordinate ele-

ments (U.S. Army, 2010). AOs define the areas that specific subordinate commanders

are responsible for, and are therefore doctrinally assigned to commands from com-

pany level (approximately 100-200 soldiers) to division level (approximately 15,000

soldiers). It is a common practice for company level commanders to further divide

the company AO into geographic sectors assigned to subordinate platoons or squads,

but due to the higher intensity of operations in counter-insurgency and area security

operations individual vehicles and soldiers rarely operate independently. Patrol sec-
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tors are instead patrolled by small military units such as squads (for foot patrols)

or platoons (for vehicle patrols). While military doctrine contains a long list of key

considerations in the development of unit AOs, it does not provide a methodologi-

cal approach for applying those considerations in a practical situation (U.S. Army,

2008, 2009). Instead, military planners draw boundaries by hand in much the same

way that police planners do. However, unlike police districting plans, military AOs

change frequently due to changing force structures, requirements, and the evolving

enemy situation.

2.6.3 Existing Methods for Security Force Geographic Mis-

sion Assignment

While there is no published research on developing military AO boundaries, re-

searchers have proposed several different approaches for optimizing police patrol

boundaries in a city. Most of these approaches rely on defining the problem mathe-

matically as a set-covering or optimization problem. Considered approaches include

using p-Median clustering to minimize the total weighted travel distance to service

expected calls (Mitchell, 1972); solving a graph-partition problem with the constraints

of contiguity and compactness, which has been shown to be NP-hard (Altman, 1997;

Johnson, 1985); and heuristic methods for identifying “good” (locally optimal) dis-

tricting plans including simulated annealing (D’Amico et al., 2002), maximal covering

models (Curtin et al., 2010), genetic algorithms, or stochastic gradient ascent (Zhang

and Brown, 2013).

An alternative approach is the use of simulation models to evaluate existing patrol

district designs. Several researchers have developed and analyzed patrol districts

by developing discrete event simulation models based on the Hypercube Queuing

Model (HQM) (Zhang et al., 2013; Boyaci and Geroliminis, 2011). The HQM is

a well-known descriptive model used to analyze emergency response systems as a
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spatially distributed queueing system (Larson, 1974). Others have developed agent-

based simulation models to evaluate automated methods for generating police patrol

district designs (Zhang et al., 2013; Zhang and Brown, 2012). However, all of the

above approaches are unlikely to be implemented in most police departments and

military units because the approaches are too complex for the average analyst to

implement and require statistical or simulation modeling software that police and

military units do not have. Therefore, a heuristic approach for police district design

using methods and software military and police units have available to them is needed.

2.7 Summary of Taxonomy and Literature Review

As this taxonomy and literature review has shown, there are currently several sig-

nificant gaps in security planning capabilities at the tactical and operational level.

This section briefly summarizes the existing capability gaps identified in this litera-

ture review that motivate the methods developed in the subsequent chapters of this

dissertation.

The first existing gap in the crime analysis literature is the current lack of effective

methods for developing short-term crime forecasts within small geographic areas.

While there have been relatively few studies in developing crime forecasts within

small geographic regions, the existing crime forecasting methods require fitting models

for every unique geographic region. In many military and police applications, this

requires a good deal of modeling effort. Simple and accurate methods for developing

regular forecasts at the precinct and car patrol sector level for time periods as short

as weekly forecasts are needed to support police and military resource allocation and

unit assessment efforts.

The second existing need in the crime analysis literature is the development of

effective methods for addressing “the deployment, staffing, and redistricting of police
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beats or precincts (Boba, 2005).” There is currently no established procedure avail-

able for developing geo-policing units based on forecasted demand that is likely to be

feasible for the vast majority of military and police units. The existing approaches

are too complex for the average analyst to implement and require statistical modeling

software that police and military units do not usually have.

Another potential area of contribution to the crime analysis literature includes the

development of products that provide intelligence assessments of criminal groups. As

noted, Huddleston and Brown (2009) develop a new method using multilevel Criminal

Site Selection (CSS) models to improve the predictive performance of hot-spot maps

for individual criminal gangs. They also provide a limited demonstration of the

development of intelligence assessment products that map the spheres of influence for

competing criminal groups. This dissertation extends this previous work to consider

all of the criminal gangs in a geographic region and to develop additional products

used in intelligence assessments of criminal groups.

Finally, as Huddleston et al. (2008) and Huddleston and Brown (2009) identify, the

most important predictive variable in a CSS model for predicting crimes by criminal

gangs is the distance-decay relationship from their gang headquarters location. This

distance-decay relationship is leveraged in the JTC models used in criminal investi-

gations to isolate the most likely anchor points (homes or work locations) for serial

offenders. However, existing JTC models consider only the distance-decay effect, ig-

noring the effect of many other environmental factors. Existing JTC methods have

not provided significant performance improvement over simple centrographic methods

because even simple methods such as CMD can accurately capture this relationship.

CSS models may provide the opportunity to estimate the effect of the distance-decay

relationship after the effect of other environmental facts have been considered. This

dissertation applies CSS models to the geographic profiling problem in an effort to

improve performance over the current-best CMD method.



Chapter 3

Geographic Probability Forecasting

Every day, government executives, police officials, and military leaders must decide

how to most efficiently and effectively employ their limited resources in an effort

to secure the large and diverse populations they are charged to protect. Planning

and decision-making processes for these leaders are often oriented around dividing

limited resources across subordinate commands and geographic regions. Military

and police leaders regularly rely on recurring forecasts of criminal events indexed by

geographic region to support these processes. For example, Gorr et al. (2003) note

the many applications of these forecasts for police use including: efficient resource

allocation, geographic mission assignment planning, and unit performance assessment.

Therefore, both military and police units stand to benefit from accurate models for

producing regular forecasts of geographic time series.

Geographic time series are counts of events indexed over time by geographic region.

Often, geographic time series are very noisy, with the observed counts by region

varying considerably from period to period and region to region. This high variance is

to be expected for time series of criminal events since these time series are the result

of the superposition of many low-intensity point processes. The Palm-Khintchine

theorem asserts that the superposition of many low-intensity independent renewal

36
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processes behaves asymptotically as a Poisson process (Heyman and Sobel, 1982).

Thus, when the actions of many criminals acting independently in geography generate

a time series, the time series should exhibit the noisy behavior of a Poisson process,

in which the variance of event counts in a period is equal to the average count of a

period. These noisy geographic time series are very difficult to forecast accurately.

This chapter documents the development of a new, simple method for crime fore-

casting and performance comparison of the new method to the three traditional meth-

ods most commonly used for crime forecasts: naive methods, Holt-Winters smoothing,

and the ARIMA (Box-Jenkins) class of models. The new method, Geographic Proba-

bility Forecasting (GPF), simplifies the modeling process for Holt-Winters smoothing

and ARIMA models by combining these univariate time series methods with predic-

tive hot-spot maps, tools commonly used in law enforcement applications for identi-

fying areas with a high probability of criminal activity. This new modeling approach

significantly improves forecasting performance in both a motivating example and an

in depth simulation study. The GPF method also significantly reduces the model-

ing workload by dramatically reducing the number of models and model parameters

needed for producing recurring short-term demand forecasts. These results suggest

that the GPF modeling approach provides a simple, robust, general purpose method

for improving forecasts for noisy geographic time series.

3.1 Background

As Hyndman and Khandakar (2008) note, “Automatic forecasts of large numbers

of univariate time series are often needed in business.” Commonly employed uni-

variate time series methods include: time series regression, moving average models,

exponential smoothing models (including extensions for seasonality and trend), Auto-

Regressive Moving Average (ARMA) models, Auto-Regressive Integrated Moving Av-
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erage (ARIMA) models, ARMA models with exogenous inputs (ARMAX), spectral

time series models, state-space time series models, and Generalized Auto-Regressive

Conditionally Heteroscedastic (GARCH) models (Shumway and Stoffer, 2006). Of

the many available time series methods used, the most commonly used (Hyndman

and Khandakar, 2008) are the ARIMA family of time series models developed by

Box and Jenkins (1990) and the various exponential smoothing methods developed

by Brown (1959; 1963), Holt (1957; 1960; 2004), and Winters (1960).

The most used forecasting methods in police applications are the naive approaches

of referencing the crime count from the previous time period (i.e. previous week or

month) or the crime count from the same period twelve months earlier (Gorr et al.,

2003). Gorr et al. (2003) demonstrate that the Holt-Winters exponential smoothing

approach can significantly improve upon the naive forecasting in crime forecasts,

and the crime analysis and forecasting literature contains almost exclusively time

series models from the nested exponential smoothing (Holt-Winters) family. The

several exceptions to this rule include several applications of ARIMA models used

to forecast city-level crime rates (Chen et al., 2008b,a; Chamlin, 1988) and several

studies incorporating leading indicator models. Leading indicator crime models are

designed to “make accurate forecasts of the relatively rare, large changes in crime

(Cohen et al., 2007).” Although leading indicator models out-perform traditional

forecasting methods in predicting exceptional conditions, such as spikes in violent

crime, they often provide very poor performance in forecasting event counts under

normal conditions, making them unsuitable for recurring short-term demand forecasts

(Gorr, 2009; Cohen et al., 2007).

Exponential smoothing and ARIMA models are the most popular time series

methods in both business and crime forecasting for two reasons (Hyndman and Khan-

dakar, 2008). First, both methods provide very flexible modeling frameworks that are

robust to many types of time series patterns such as trends, seasonality, or unusual
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changes in the pattern such as the introduction of shocks (Hyndman and Khandakar,

2008). Second, even non-statisticians can easily automate Holt-Winters and ARIMA

forecasting models using widely available software. For example, Microsoft Excel eas-

ily optimizes the parameters of a Holt-Winters smoothing model using Solver and

freely available statistical software such as R provides algorithms for automatically

fitting ARIMA models (Hyndman and Khandakar, 2008). Thus, naive, exponential

smoothing, and ARIMA methods provide benchmarks for the performance of any

new method for recurring short-term demand forecasts in many applications.

3.2 Problem Definition

To formally define the forecasting problem considered in this chapter, let Yt denote

the number of events that occur within the domain of interest D during the time pe-

riod t. The region of interest D contains sub-regions indexed by j: {D1, D2, ..., DJ}.

The quantity of interest is Yjt: the event count for each of the J sub-regions during

each time period t. The problem considered is the regular production of one-step

ahead forecasts for the noisy geographic time series indexed by Yjt. This study uses

a real-world crime data set to motivate this discussion and subsequently uses a sim-

ulation study to more formally compare the performance of the considered modeling

approaches under many different time series patterns, including the introduction of

trends, seasonality, and shocks.

3.3 Pittsburgh Burglary Data

Figures 3.1 and 3.2 provide illustrations of the data sets used as motivating examples

in this chapter. These data sets contain records of burglary incidents in the city of

Pittsburgh over two different time periods. Gorr and Kurland (2012) provide the first

data set in a recently published GIS tutorial designed to “teach crime mapping and
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analysis skills using ArcGIS Desktop software.” As the authors note, “...this book

uses real crime data obtained from the Pittsburgh Police Bureau and the Allegheny

County 911 Center in Pennsylvania.” This publicly available data set contains the

burglary records for the City of Pittsburgh during the year 2008. It also provides

geographic data for Pittsburgh’s 46 patrol car sectors that are made up of an average

of three census tracts each. These patrol units are overseen by the six police precincts,

with each precinct containing seven to nine car patrol sectors.

The second data set contains records of burglary incidents for the City of Pitts-

burgh from 1 January 2006 through 31 October 2010. This data is not publicly

available but was obtained through a research agreement with Carnegie Mellon Uni-

versity, which works closely with the City of Pittsburgh Police. This multi-year data

set allows performance comparison of the various forecasting methods over periods

in which seasonality effects can be modeled. The motivating problem for both analy-

ses is the weekly requirement to generate one-week-ahead burglary forecasts (a very

resource-intensive crime type) for the 46 police sectors and six precincts in Pittsburgh.

This requires a total of 52 one-step-ahead forecasts on a weekly basis.

3.4 Motivating Principle for Geographic Probabil-

ity Forecasting

The motivating principle for the Geographic Probability Forecasting (GPF) method-

ology lies in exploiting the reduction in error variance gained by forecasting at an

aggregated (i.e. city-wide) level and dividing this forecast according to a geographic

probability. Examining the simple problem of estimating the mean of a process based

upon a sample of observed counts in a geographic time series provides insight into

how the GPF methodology improves forecasts. Consider a sequence of observations

Xt that come from a Gaussian distribution N(µ, σ2). The error for the sample mean
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estimated during time t is bounded for an arbitrary value ε as follows (Shumway and

Stoffer, 2006):

P{|x− µ| > ε} ≤ E
[
(xt − µ)2

]
=
σ2

tε2
(3.1)

Now consider that the sequence of events that make up X can be split between

several geographic sub-regions. The count of observations Xt is made up of the sum

of the counts in the several sub-regions. For sub-regions indexed by j:

Xt =
J∑
j=1

Xjt (3.2)

If the mean of the distribution for sub-region j is some known fixed percentage wj

of the mean of the distribution for the region of interest, then one can use the sample

mean of the higher distribution to develop an estimate of the mean for the sub-region.

For sub-region j, assert that Xjt is Gaussian distributed N(µj, σj). Define that:

µj = wjµ (3.3)

where:

µ = E[X] (3.4)

Two approaches for estimating the mean for region j now exist. One can use the

estimate xjt for µj during time t or one can weight the region estimate such that:

x̂jt = wjxt (3.5)

Using Equations 3.3 and 3.5, the error bound of the weighted estimate is:
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P{|wjxt − µj| > ε} ≤ E
[
(wjxt − µj)2

]
= w2

j

σ2

tε2

The error bound for the region sample mean based upon the observations (counts)

in that regions is:

P{|xjt − µj| > ε} ≤ E
[
(xjt − µj)2

]
=
σ2
j

tε2
(3.6)

Therefore:

P{|wjxt − µj| > ε} ≤ P{|xjt − µj| > ε} ⇔ w2
j ≤

σ2
j

σ2
(3.7)

For noisy geographic time series, this inequality holds true. A numerical example

illustrates the dramatic reduction in estimation error that this weighting estimate

can provide. If the counts for the region (i.e. city) come from a stationary (temporal

component) homogenous (geographic component) Poisson process with mean and

variance λ, then for a Poisson process with a rate greater than 10, the counts observed

during each period are approximately Gaussian distributed as N(µ = λ, σ2 = λ). If

the region is divided into four equal geographic sub-regions, then for each sub-region,

λj = 1
4
λ. In this example, by substitution:

P{|wjx− µj| > ε} = w2
j

λ

tε2
=

1

16

λ

tε2
<

1

4

λ

tε2
= wj

λ

tε2
= P{|xj − µj| > ε} (3.8)

In the example above, both sample estimates of the mean (x and xj) are converging

to their respective means (µ and µj). However the probability-weighted estimate

x̂j = wjx converges to µj much faster than than xj does. This result holds for any

stationary Poisson process, regardless of the observed rates, because the relationship
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described in Equation 3.7 holds true for any Poisson process in which the region

counts are made up of the sum of sub-region counts. The GPF methodology exploits

this principle to improve the forecasts for noisy geographic time series by using kernel

density estimation to estimate wj.

3.5 Methodology

The GPF method consists of four modeling steps:

1. Develop a Spatial Geographic Probability Model (Hot-Spot Map)

2. Convert the Geographic Probability Model into a Region Event Probability

3. Develop a Domain Level Forecast

4. Spatially Weight the Domain Forecast Using the Geographic Probability Model

The following sections explain each of the modeling steps in detail.

3.5.1 Develop a Spatial Geographic Probability Model

The first GPF modeling step is to develop a spatial geographic probability model

for event occurrence. These models are ubiquitous in crime analysis, where they are

colloquially known as “hot-spot maps.” The National Institute of Justice defines a

criminal hot-spot as “an area that has a greater than average number of criminal

or disorder events, or an area where people have a higher than average risk of vic-

timization (Eck et al., 2005).” Police use two broad classes of methods to develop

hot-spot maps. Methods in the first class statistically model the relationships between

crime occurrence and environmental factors, geographic features, and other predic-

tors (Huddleston et al., 2012; Huddleston and Brown, 2009; Smith and Brown, 2007).

This approach requires sophisticated modeling software that is limited to only the
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largest police agencies. The second approach uses bivariate kernel density estimation

to produce hot-spot maps and is widely used because the Geographic Information Sys-

tems (GIS) most police agencies now employ produce kernel density maps with ease.

Figure 3.3 provides an example kernel density hot-spot map used for this problem.

Figure 3.3: Illustration of the spatial probability model (hot-spot map) generated to
predict Pittsburgh week 51 burglary activity using burglaries observed during weeks
1 through 50.

The use of the kernel density estimation requires some additional notation. Let

bi index two dimensional blocks within a spatial study region D ⊂ <2. These two-

dimensional spatial blocks denote unique locations created by laying a grid at a fine

resolution across the study region: {b1, b2, ..., bI}.

Note that:

∪bi = D (3.9)

and

bi ∩ bj = 0 ∀ i, j (3.10)
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Let sy denote the location in <2 of event y and Y the total number of events

occurring within D during the time period used to fit the model. The event intensity,

f(bi), for each location is calculated using the kernel density function.

f̂h(bi) =
1

hY

Y∑
y=1

K

(
‖bi − sy‖

h

)
(3.11)

In Equation 3.11, the notation ‖bi − sy‖ denotes the Euclidean norm (distance)

between location bi and event sy. Model fitting requires the selection of the kernel

function K and the bandwidth parameter h. The choice of the kernel function K has

relatively little effect on the kernel density model performance. The bandwidth pa-

rameter h does significantly affect model performance. Various statistical procedures

automate the selection of the modeling parameter using plug-in estimates (Sheather

and Jones, 1991; Jones et al., 1996; Berman and Diggle, 1989). The approach demon-

strated here selects the plug-in estimate for bandwidth that minimizes the Mean

Squared Error (MSE) of the hot-spot map over the previously observed time horizon

using the procedure outlined by Berman and Diggle (1989).

3.5.2 Convert the Geographic Probability Model (Hot-Spot

Map) into a Region Event Probability

The weighting parameter ŵj represents the spatial probability-weight for geographic

sub-region j derived from the kernel density hot-spot map.

ŵj =

∑
bi∈Dj

f̂h(bi)∑
bi∈D f̂h(bi)

(3.12)

The weighting factor ŵj captures the proportion of overall event probability across

the region that falls within the geographic sub-region Dj. Note that this risk weight-

ing both converts the kernel density estimate into a probability estimate over the

region of interest and removes any of the risk probability that falls outside of the
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considered region (because the kernel density estimate will map onto a square grid

whose boundaries extend beyond the considered region). GIS systems easily auto-

mate the calculation of the weighting factor ŵj for any subset of the region (precincts,

patrol sectors, etc). Table 3.1 provides the precinct risk weights for the Pittsburgh

burglaries in week 51 of the year 2008 as calculated from the hot-spot map shown

in Figure 3.3. Note that Table 3.1 neatly summarizes the difference in risk in these

six precincts, with Precinct 6 the safest and Precinct 5 exhibiting the highest risk for

burglary.

Precinct 1 2 3 4 5 6
ŵj 15% 11% 24% 19% 25% 6%

Table 3.1: Precinct estimated probability-weights for Week 51 forecast.

3.5.3 Develop a Domain Level Forecast

The third step in the GPF methodology is to develop a region (city-wide) forecast for

event counts. As previously noted, Holt-Winters exponential smoothing and ARIMA

models both provide easily automated, highly flexible modeling frameworks for gen-

erating recurring forecasts. Both methods are demonstrated in this example to mimic

possible use in actual practice.

Fitting a Holt-Winters (HW) model requires optimizing the needed model param-

eters for mean, trend, and seasonality. For the Holt exponential smoothing model

(employed on the 1-year Pittsburgh burglary data), this requires estimates for the

two needed model parameters (smoothing and trend). Fitting Holt-Winters expo-

nential smoothing models also requires estimates for each of the seasonal effects (i.e.

52 weekly effects over the course for the the Pittsburgh multi-year burglary study).

We accomplished the needed model parameter estimation by using Nelder-Mead opti-

mization to minimize the mean squared forecasting error over the previously observed
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time periods. Nelder-Mead optimization uses a simplex to estimate the direction of

steepest descent, iteratively converging on the optimal point (Nelder and Mead, 1965).

We implemented this model fitting procedure using the stats package in R software.

Microsoft Excel spreadsheets using Solver also provide the ability to complete this

model fitting procedure using brute-force optimization methods, a forecasting ap-

proach therefore available to virtually any analyst.

The automatic forecasting procedure for fitting ARIMA models is much more

complex. In this modeling procedure, all appropriate ARIMA models are considered,

with the best-fitting model selected according to Akaike Information Criteria (AIC)

score. This procedure requires applying all appropriate ARIMA models to the training

data (the time series from previous weeks), optimizing the parameters for those models

(in the same manner as for the HW models above), and selecting the best model

according to the AIC score calculated over the previous time periods (Hyndman and

Khandakar, 2008; Akaike, 1974). We used the forecast package in R software to

execute this procedure model-fitting procedure (Hyndman and Khandakar, 2008).

This approach mimics a modeling approach available to analysts with more formal

statistical training and the ability to use statistical modeling software.

3.5.4 Spatially Weight the Domain Forecast Using the Geo-

graphic Probability Model

The final step of the GPF methodology is to break the region-level (aggregated)

forecast across the geographic sub-regions using the probability weights ŵj. The

forecast for region j in the next time period is a function of the region (aggregated)

level forecast for that time period Ft and the estimated probability weight wj:

Fjt = ŵjFt (3.13)
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For example, if the region (aggregated) level burglary forecast for Week 51 is 51.4

crimes, then when that aggregated forecast is multiplied by the spatial risk-weights

in Table 3.1, the precinct forecast for Precinct 1 is 7.71 crimes while the forecast for

Precinct 2 is 5.65 crimes.

3.5.5 GPF Modeling Assumptions

The GPF modeling approach incorporates several modeling assumptions that should

be addressed. First, the GPF model assumes that the spatial distribution of the

events (as described by the kernel density hot-spot map) remains stationary over

the period used to fit the model and forecast. The size of this modeling horizon is

flexible (i.e., you can define how much previous history to use in estimating the spatial

model: six months, one year, etc.). In the one-year Pittsburgh burglary study, the

entire data horizon from Week 1 up to Week t − 1 is used to forecast Week t. In

the multi-year Pittsburgh burglary study and simulation study that follow in later

sections, we examine the use of rolling time horizons to develop the kernel density

estimates for the spatial distribution of crime events.

The second assumption is that any underlying trend or seasonality that affects

event counts in one sub-region affects all sub-regions. Thus, any existing trend (or

seasonal effect) applies to all precincts (and patrol sectors) simultaneously. The GPF

model therefore models the crime counts as a separable space-time process in which

the spatial probability density of events is fixed (or changes slowly) while the distribu-

tion of counts (rate) can change rapidly. This dissertation investigates the robustness

of the GPF modeling approach to violations of these assumptions in later sections.
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3.6 Comparison of Modeling Effort

The various forecasting methods considered require different levels of resourcing and

modeling effort to fit. For each of the different methods outlined below, we assign

a modeling effort score based on the number of forecasting models that must be fit,

whether or not a geographic weighting model is needed, and the relative complexity

of the forecasting and weighting models used. These scores are subjective and based

upon the our familiarity with the capabilities of analysts who work in the considered

problem domain. In other domains, the assigned modeling scores may differ based on

the resources available to and experience of the forecasting analysts in that problem

domain. Table 3.2 provides a summary of the calculation of the modeling effort scores,

which are discussed in depth for each of the modeling methods below.

The naive forecast represents the simplest possible forecasting method and is the

most-used method in law enforcement. The forecast for the next time period is simply

the observed count from the previous time period:

Yjt = Yj(t−1) (3.14)

Because this method requires no modeling, the naive method has a modeling effort

score of 0.

The first univariate time series method studied is the use of Holt (for the one-year

Pittsburgh burglary study) and Holt-Winters (in the multi-year Pittsburgh burglary

study) forecasting models to develop disaggregated forecasts for each geographic re-

gion. Simple exponential smoothing models estimate only a smoothing parameter.

Holt exponential smoothing models add a parameter for estimating trends. Holt-

Winters exponential smoothing models estimate both trend and seasonality effects.

We assign a model complexity score to the Holt/Holt-Winter (HW) procedure of 1.

Using the HW method requires fitting a model for each of the six precincts and 46
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Method
Forecasting Forecast Model Weighting Weighting Model Effort

Models Complexity Models Complexity Score

Naive 0 0 0 0 0
Holt-Winters 52 1 0 0 52

GPF-HW 1 1 1 2.5 3.5
ARIMA 52 2 0 0 104

GPF-ARIMA 1 2 1 2.5 4.5

Table 3.2: Summary of forecasting model effort scores based on the number of fore-
casting models needed, whether or not a geographic weighting model is needed, and
the relative complexity of the forecasting and weighting model used.

patrol sectors, for a total of 52 forecasting models on a weekly basis.

We assign a modeling effort score of 2 to the ARIMA model class. This assignment

is based on the fact that, unlike the Holt-Winters method in which optimization of

the needed parameters can be accomplished using spreadsheet software, this approach

requires sophisticated statistical software and an analyst that knows how to use the

software. As discussed in Section 3.5.3, this method is fairly complex, and requires

significantly more statistical acumen. Using the ARIMA method also requires fitting

52 models for the motivating problem, one for each precinct and patrol sector.

Fitting the GPF models requires the use of the Geographic Information Systems

(GIS) that most police agencies employ to automate the calculation of the kernel

density map and weighting factor ŵj for any subset of the domain (precincts, patrol

sectors, etc). Virtually any crime analyst can complete this modeling procedure.

The complexity of fitting the kernel density estimate corresponds closely to that

of the automated ARIMA models discussed above. The procedure requires specific

statistical software and analysts familiar with the modeling procedure. Therefore, we

assign a model complexity score of 2 to the procedure in Equation 3.11 to reflect the

similarity in modeling requirements to the ARIMA procedure. The requirement to

subsequently calculate the weighting parameter in Equation 4.2 adds an additional

0.5 to the weighting model complexity score (for a total weighting model score of

2.5). This estimate yields overall model complexity scores of 3.5 (GPF-HW) and
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4.5 (GPF-ARIMA). As with the simple exponential smoothing approach, different

time horizons can be used to estimate the weighting parameters. For the one-year

Pittsburgh burglary study using publicly available data, GPF modeling horizons are

fit using the entire previously observed time horizon (i.e. for week 50, weeks 1 to 49

are used to estimate the spatial risk-weights). For the multi-year Pittsburgh Burglary

study, GPF models are fit using the previously observed six month (GPF-HW-6 and

GPF-ARIMA-6), 12 month (GPF-HW-12 and GPF-ARIMA-12), and total (GPF-

HW and GPF-ARIMA) modeling horizons.

3.7 One-Year Pittsburgh Burglary Study Perfor-

mance Comparison

In order to conduct a performance comparison of the GPF method against common

benchmarks, we apply the three traditional approaches and the new GPF method

(using both Holt exponential smoothing and ARIMA models) to the Pittsburgh data

set. Holt exponential smoothing models are used for this data set as having only one

year of data does not allow the estimation of the seasonality effects. For notational

convenience, the notation HW describes both the Holt exponential smoothing models

used for the analysis in this section and the Holt-Winters exponential smoothing

models used in the next section as both methods employ the same modeling procedure.

The performance assessment horizon for the one-year Pittsburgh burglary study

is for the 48 weeks from weeks 4 (to allow for model initialization) through week 51

(because week 52 is a partial week) during the year 2008. The naive forecast for each

of the 52 sub-regions (six precincts and 46 patrol sectors) is the event count observed

in the previous week for that sub-region. We fit the Holt (HW) and ARIMA methods

as benchmarks for GPF performance by using the stats and forecast packages in R

software to fit a model for each precinct and patrol sector each week using all previous
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weekly event counts. This requires fitting 52 forecasting models each week with each

method. We then used those models to provide weekly one-step-ahead forecasts for

each of the 52 sub-regions. We also applied the GPF method to the same dataset

on a weekly basis, which requires fitting one HW or ARIMA model and one kernel

density estimate each week. The models are referenced as GPF-HW (when the HW

method is used for the aggregated region forecast) and GPF-ARIMA.

Results are presented here using the Mean Absolute Scaled Error (MASE) as the

performance assessment statistic here. Appendix A provides results in terms of Root

Mean Squared Error (RMSE) at both the precinct and patrol sector level (which

provides results in the scale of the data). With N denoting the number of forecasts

made over the out-of-sample performance evaluation horizon, the MASE statistic over

the time horizon t = 1 to N is calculated based on the observed counts Yt and the

forecasts Ft.

MASE =
1

N

N∑
t=1

(
|Yjt − Fjt|∣∣Yjt − Yj(t−1)∣∣

)
(3.15)

Table 3.3 provides a performance summary using the MASE statistic for the Pitts-

burgh burglary example. Figure 3.4 plots the combined MASE performance from Ta-

ble 3.3 against the modeling effort recorded in Table 3.2. As can be seen in Figure 3.4,

the GPF method offers significant improvement in both modeling performance and

modeling effort. Both GPF methods are Pareto-efficient, offering improved perfor-

mance over the Holt exponential smoothing and ARIMA models for this case. In this

example, the GPF method reduced the number of forecasting models from 52 weekly

forecasting models (HW or ARIMA) to one forecasting model (HW or ARIMA at

the city level) and one density estimate each week while improving forecasting per-

formance in both the HW and ARIMA cases.
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Figure 3.4: Plot of MASE forecasting performance vs. modeling effort for the Pitts-
burgh one year burglary analysis.

Region Average Naive HW GPF-HW ARIMA GPF-ARIMA

Precinct 1.00 1.12 0.96 0.92 0.88
Patrol Sector 1.00 1.01 0.81 0.84 0.80

Overall 1.00 1.03 0.83 0.85 0.81

Table 3.3: MASE statistic summary for the weekly one-step ahead burglary forecasts
for Pittsburgh in 2008.
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3.8 Multi-Year Pittsburgh Burglary Study Perfor-

mance Comparison

We also extended the study comparing forecasting methods for weekly estimates of

Pittsburgh burglaries to consider performance over a five-year period using the data

obtained from Carnegie Mellon University. This allows us to consider forecasting

models with seasonality effects. Modeling seasonal effects requires a minimum of three

full seasonal cycles. Therefore, using the five-year Pittsburgh data set we implemented

a rolling horizon forecast designs over two periods. For the first three years of the

data, the forecasting model for each week is developed from all previously observed

weeks. Thus, observations for weeks 1 to 3 are used to develop models to forecast

week 4 burglary counts. Then, weeks 1 through 4 are used to forecast week 5, etc..

The first three years provide 153 periods over which to evaluate the model (three

full years minus the three week initialization period). The second rolling design

period considers the 96 weeks observed between 1 January 2008 and 31 October 2010.

During this period, Holt-Winters exponential smoothing models and ARIMA models

with estimated seasonality effects are fit using the first three years of observations

to initialize the estimates for the seasonality effects. Table 3.4 provides a MASE

performance summary for all of the considered forecasting models over the five-year

period.

The GPF method continues to provide significant performance improvement while

reducing modeling effort over the five-year study horizon. Figure 3.5 provides plots

of MASE forecasting performance as recorded in Table 3.4 as a function of modeling

effort. As Figure 3.5 illustrates, all the top-down forecasting methods significantly

improve forecasting performance over the five year study when the appropriate time

horizon is used to estimate the spatial distribution. These results correlate closely

with the results seen in the one-year Pittsburgh burglary study and illustrated in
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Figure 3.4. However, the GPF-HW and GPF-ARIMA full-horizon models do not

perform well, apparently because the bandwidth for the kernel density estimate does

not converge correctly when the number of events grows large (greater than 5000).

Time series plots of the wj estimates show sharp breaks and discontinuities in the wj

estimates as the number of criminal events grows larger than 5000, indicating that

the automated bandwidth selection procedure as implemented in software is no longer

converging smoothly. Thus, while the GPF method provides significant performance

improvement when the plug-in kernel bandwidth estimator performs correctly, these

results suggest that it is important to monitor the estimates for wj for sharp breaks

and discontinuities that may indicate a failure of the bandwidth selection procedure.

When these discontinuities in the estimates for the wj occur, it is necessary to shorten

the time horizon used to estimate the kernel density surface.
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Figure 3.5: Plot of MASE forecasting performance vs. modeling effort for the Pitts-
burgh multi-year burglary analysis.
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3.9 Model Performance Comparison Using Simu-

lation

While a strong demonstration of the improvement that the GPF method can provide

in practice, the Pittsburgh burglary study does not establish the general utility of

the GPF approach because this study (conducted over several different time hori-

zons) provides only one example of performance improvement. However, simulation

models provide the opportunity to study the performance of the various forecasting

approaches under many different conditions. Using a simulation model to study the

properties of these forecasting methods offers three significant benefits. First, with

a simulation model, one can easily vary the conditions of the simulation and ob-

serve the resulting effects on the performance of the methods. Within the simulation

model, not only can one generate noisy geographic time series that include trends,

seasonality, and shocks but one can vary the intensity of these effects at will. Second,

in a simulation model, a known process generates the various time series. So, one

can evaluate forecasting methods on how well they model a known process instead

of conducting performance comparisons against observed counts in an observational

setting in which the true spatial-temporal process is unknown. Removing the random

noise from the evaluation measures is especially helpful when evaluating performance

against exceptionally noisy processes such as Poisson event counts. Finally, simu-

lations models replicate, repeatedly generating simulated outcomes from the same

processes. This replication facilitates the study of the convergence properties of the

forecasting methods.

Figure 3.6 provides a visualization of one of the simulation models developed for

this analysis. This graphic illustrates the state of the simulation model in period 1 and

after 50 periods of observation. The simulation environment contains a geographic

extent (from -100 to 100 in x and y coordinates), a region of interest (from -60 to
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60) and four smaller equal sized geographic sub-regions. The modeling problem is

to accurately forecast the observed counts in each of the four spatial sub-regions

during each time step. The simulation model provides the opportunity to vary many

modeling parameters, including the number of spatial/temporal processes and the

location, spatial distribution, and rate for each spatial process. The model in Figure

3.6 contains five spatial processes, each of which has a unique spatial distribution.

Figure 3.7 shows the known process rate and resulting event counts due to the noisy

process in Region 3 over the first 50 time steps of the simulation.
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Figure 3.6: Graphical illustration of a non-homogenous point process model during
time step 1 (left panel) and time step 50 (right panel)

Once the number of processes are defined for a given experiment, the simulation

models randomizes the location and dispersion of those spatial processes by uniformly

selecting parameters for the Gaussian spatial processes from the following intervals:

µx,y = U(−60, 60), σx,y = U(5, 30), ρ = U(−.5, .5). In the notation above, µ denotes

the location of the center of the spatial process, σ the spatial variance, ρ the covari-

ance parameter, and U(−,−) selection from the uniform distribution. The notation

for the Gaussian spatial process is summarized as N(µp,Σp), where Σp denotes the
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Figure 3.7: Observed event counts (barplot), known process mean (dashed line),
and Holt-Winters forecast (solid line) for Region 3 for 1 replicate of the simulation
illustrated in Figure 3.6.

covariance matrix for spatial process p containing ρp, σx, and σy. Note that given

these distributions, some portion of the spatial process may overlap with the region

boundary, so that some of the simulated incidents fall outside of the region of interest

for the forecasting problem. The incidents that fall outside of the region of inter-

est are treated in the same way that law-enforcement treats such criminal events:

they are used in kernel density estimates (hot-spot maps) when known but since

they do not occur in the regions or sub-regions of interest, they do not form part of

the event counts for the forecasting models. The spatial distributions of the event

processes remain fixed over the conduct of an experiment (although the simulation

model generates many randomized replicates of the geographic time series within each

experiment), so the spatial processes do not migrate or shift.

The rate of the spatial processes can be controlled dynamically, introducing trends,

seasonality, or shocks into the process by adjusting the intensity (rate) parameter

λp over time. Note Figure 3.7 shows a positive trend, although the actual observed
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counts fluctuate wildly, reflecting the noise of the Poisson process. During each model

step t, the simulation model randomly draws an event count for each process from

the Poisson distribution defined for that process by the rate parameter λp(t) and

randomly places each of those events within the model geography in accordance with

the spatial distribution defined by the individual processes’ spatial distribution model.

These spatial distribution models are Gaussian: N(µp,Σp). As observed in Figures

3.6 and 3.7, these processes are noisy.

The use of square sub-regions and known process parameters facilitates direct

calculation of the expected counts for each region Dj for each time step. For example,

with P spatial processes taking place in the region of interest during time t, and each

of these spatial processes Gaussian distributed in space with a Poisson arrival rate

λp, the expected count for a given geographic sub-region during each temporal time

period t is:

E [Yjt] =
∑
P

λp(t)

∫
Dj

N(µp,Σp) (3.16)

Note that due to trends and seasonality effects, E [Yjt] can change dynamically for

each temporal block t.

Now each forecasting method can be evaluated on how well the method performs at

modeling the known process taking place in each sub-region over many replicates for

a given simulation experiment. Figure 3.7 provides an illustration of the difference

between the process error (the difference between the known process rate and the

forecast) and the observed error (the difference between the observed count and the

forecast). The MASE statistic in Equation 3.15 is easily modified to reflect the process

error and multiple replicates (indexed by r), yielding the following statistic calculated
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for each of the j sub-regions:

MASEPROCESS =
1

RN

R∑
r=1

N∑
t=1

(
|E [Yjt]− Fjrt|∣∣E [Yjt]− Yjr(t−1)

∣∣
)

(3.17)

This chapter provides results from testing forecasting performance over a wide

variety of conditions, including the introduction of trends, seasonality, and shocks.

Appendix B provides the full description of the design of experiments for those cases

where the GPF assumptions discussed in Section 3.5.4 apply, specifically any situation

in which trend or seasonality effects are global processes that affect all sub-regions

equally. The first set of simulation experiments tested performance for a stationary

homogenous point process, in which the observed counts in a sub-region are a direct

function of the area of the sub-region. This type of spatial point process is the start-

ing point for most spatial analysis because the stationary homogenous point process

describes so many known spatial processes such as those “responsible for the location

of things such as human settlements, store-types, plants and animals, and groups of

plants and animals (Getis and Roots, 1978).” Stationary non-homogenous point pro-

cesses have no trend or seasonality, but have non-homogenous spatial distributions

such as those depicted in Figure 3.6, which exhibits spatial clustering (hot-spots) of

events. Additional modeling scenarios simulated include the introduction of positive

trends, negative trends, and seasonality effects.

Appendix C provides a full description of the design of experiments for those

cases where the GPF assumptions in Section 3.5.4 do not apply. The first scenario

includes the introduction of a shock process into one of the sub-regions in the region

of interest (i.e., one precinct, patrol sector etc.). From that point on, that one region

has a significantly different process than before, while the process in the remaining

sub-regions remains the same. The second scenario includes the situation in which

one sub-region (precinct, car patrol beat etc.) experiences a positive trend while

the rest of the region of interest experiences a negative trend. The last considered
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scenario includes the situation in which every unique process in the region of interest

has a unique trend (i.e. all trends are local not global).

These experimental designs replicate all scenarios under a variety of conditions

such as varying the strength of the trends and the number of unique spatial processes

in the region of interest. In all of the scenarios where the GPF assumptions do not

apply, at least one of the sub-region level process changes uniquely over time, repre-

senting greater and greater departure from the GPF modeling assumptions. Thus,

for each of the scenarios that consider violations of the GPF assumptions, we also fit

the GPF method using rolling horizons of 20 time periods to develop the kernel den-

sity estimate (i.e., the kernel density estimate is fit using observations from periods

t− 20 to t− 1 and then used to forecast period t). These rolling horizon models are

designated GPF-HW-R and GPF-ARIMA-R.

3.10 Simulation Study Results

When any trends or seasonality effects are global, affecting all geographic sub-regions,

the GPF method significantly improves predictive performance when applied using

both HW and ARIMA methods. Tables 3.5 and 3.6 record the MASE statistic cal-

culated using the observed and process error. Appendix E provides results for when

over-dispersed Poisson distributions are used in the simulation (with similar results).

As can be seen in the tables, the traditional forecasting methods provide performance

improvement in keeping with increasing model complexity. The HW method reduces

the observed scaled error by between 7 and 14% as compared to the Naive method.

However, note that the HW method actually describes the known process much bet-

ter than these results would suggest. In Table 3.6 the HW method provides up to

a 33% improvement over the Naive method in process error. The performance im-

provement the ARIMA method provides over the HW method in these tables does
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not reflect that the ARIMA class is a better method than the HW method in gen-

eral. As Hyndman and Khandakar (2008) note, they are overlapping model classes.

Rather, the observed performance improvement is due to the more complex model

fitting procedure employed to fit the ARIMA models in this study.

The most important finding is the improvement the GPF method provides. While

the MASE performance improvements seen in Tables 3.5 are on the scale observed in

the Pittsburgh example (see Table 3.3), the GPF method provides forecasts that much

more accurately describe the process, as seen in Table 3.6. When the process noise is

removed from the performance statistic, the GPF-HW method provides up to a 38%

reduction in process error when compared to the HW method. The improvement the

GPF-ARIMA method offers over the ARIMA method is more muted (5 - 18%), but

still provides significant performance improvement for less effort.

Figures 3.8 - 3.10 provide graphical time series plots that visually illustrate the

performance improvement provided by the GPF method for several of the consid-

Scenario Naive HW GPF-HW ARIMA GPF-ARIMA
Stationary Homogenous 1.00 0.91 0.77 0.74 0.72

Stationary Non-Homogenous 1.00 0.93 0.79 0.74 0.73
Trend 1.00 0.93 0.79 0.78 0.74

Seasonality 1.00 0.86 0.75 0.78 0.73
Season & Positive Trend 1.00 0.84 0.74 0.76 0.73
Season & Negative Trend 1.00 0.90 0.77 0.81 0.76

Table 3.5: MASE performance summary for the observed error for the five considered
forecasting methods over the six scenarios in which GPF modeling assumptions apply.

Scenario Naive HW GPF-HW ARIMA GPF-ARIMA
Stationary Homogenous 1.00 0.80 0.42 0.25 0.18

Stationary Non-Homogenous 1.00 0.79 0.44 0.25 0.20
Trend 1.00 0.80 0.43 0.42 0.29

Seasonality 1.00 0.67 0.35 0.44 0.26
Season & Positive Trend 1.00 0.63 0.32 0.40 0.28
Season & Negative Trend 1.00 0.77 0.40 0.52 0.35

Table 3.6: MASE performance summary for the process error for the five considered
forecasting methods over the six scenarios in which GPF modeling assumptions apply.
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ered cases including homogenous stationary processes (Figure 3.8), non-homgenous

processes with trends or seasonality effects (Figure 3.9), and the interaction between

trend and seasonal effects (Figure 3.10). Figure 3.8 provides time series plots for

the forecasts generated using ARIMA (at the region and sub-region level) and GPF-

ARIMA for a stationary homogenous point process. As can be seen in the figure,

the GPF-ARIMA forecast at the sub-region level is a scaled version of the forecast at

the aggregate level (in this case wj = 1
4
). The variance of the GPF-ARIMA forecast

at the sub-region level is less than that for the ARIMA forecast. Note that both

forecasts are converging (slowly) to the true process rate, but that the GPF-ARIMA

method is converging faster as expected given the results of Equation 3.8. Figures 3.9

and 3.10 provide similar observations under the conditions of trends, seasonality, and

the interaction of these effects.

The right panel of Figure 3.8 plots ratios of the ARIMA and GPF-ARIMA Mean

Squared Error (MSE) to the aggregate level ARIMA model MSE for the scenario

modeled in the left panel. This is the relationship explored in Equations 3.7 and

3.8 and the experimental results depicted in Figure 3.8 are for the example given in

Equation 3.8. With a smoothly converging estimator (such as the sample mean) and a

perfect estimate for wk, we would expect these ratios to conform closely to the dashed

lines on the graph. As can be seen, the MSE ratio for the ARIMA method noisily

oscillates around the expected value, while the GPF-ARIMA MSE ratio does not

fully achieve the performance gains expected given Equation 3.8 due to the modeling

error of the kernel density estimate. In spite of this, the improvement provided by

the GPF-ARIMA method is significant: in this case the GPF-ARIMA sub-region

MSE averages 1
10

of the aggregate ARIMA MSE while the ARIMA sub-region MSE

averages 1
4

of the aggregate ARIMA MSE. This pattern is repeated for all of the

experiments recorded in Table B.1: the GPF method MSE ratio is a value slightly

higher than (sometimes within one percent of) w2
k while the ARIMA or HW MSE
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ratio noisily oscillates around and averages wk.

Tables 3.7 and 3.8 provide performance summaries for scenarios that violate the

GPF modeling assumptions. Appendix E contains the same results for the studied

simulation scenarios when over-dispersed Poisson distributions are used. In the sce-

narios recorded in Tables 3.7 - 3.8 and E.3 - E.4, the performance of the traditional

methods continues to correlate with modeling effort as before, with more complex

models providing better performance. As before, the GPF method improves forecast-

ing when applied to the HW models. However, when shocks or competing trends ex-

ist, the ARIMA method provides better performance than the GPF-ARIMA method.

The use of rolling time horizons to fit the GPF models (the models GPF-HW-R and

GPF-ARIMA-R) does improve performance in the case of shocks and competing

trends, but negatively affects performance under random trends. The use of rolling

time horizons to fit GPF models therefore represents a trade-off. Using a shorter time

horizon to fit a GPF model provides some insurance to the effects of gross violations

of the modeling assumptions such as strong shocks or competing trends. However,

the shorter the time horizon used, the greater the variance of the forecast. So, in the

case of random trends, in which the effects of many competing trends average out for

the most part across the sub-regions, the use of a rolling horizon negatively affects

performance.

Based on these results of the Pittsburgh burglary study and the simulation study,

the recommended procedure for selecting an appropriate time horizon for estimating

the kernel density threat surface is to monitor (with time series plots) the weekly

estimates of wj. The time horizon should be both long and short enough that the es-

timates for wj are stable (changing little from time period to time period). If the time

horizon used is too long, the automated kernel density bandwidth selection procedure

may provide unstable estimates and this will manifest itself as sharp discontinuities

in the estimates for wj. If the time horizon is too short, time series plots of the wj
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Scenario Naive HW GPF-HW GPF-HW-R ARIMA GPF-ARIMA GPF-ARIMA-R
Competing Trends 1.00 0.91 0.79 0.73 0.69 0.73 0.65

Random Trends 1.00 0.92 0.79 0.79 0.76 0.74 0.74
Shocks 1.00 0.93 0.84 0.80 0.76 0.79 0.76

Table 3.7: MASE performance summary for the observed error for the seven consid-
ered forecasting methods for the considered scenarios where the GPF assumptions do
not hold.

Scenario Naive HW GPF-HW GPF-HW-R ARIMA GPF-ARIMA GPF-ARIMA-R
Competing Trends 1.00 0.82 0.58 0.49 0.41 0.46 0.34

Random Trends 1.00 0.78 0.45 0.46 0.35 0.28 0.30
Shocks 1.00 0.81 0.60 0.49 0.31 0.42 0.32

Table 3.8: MASE performance summary for the process error for the seven considered
forecasting methods for the considered scenarios where the GPF assumptions do not
hold.

will show estimates that are still converging (i.e. all estimates wj will be changing

during each time period, rather than arriving at a stable estimate).

Figure 3.11 illustrates how the time horizon used for estimating the spatial distri-

bution affects the sensitivity of the GPF method to significant changes in the spatial

distribution of events . This figure depicts time series plots for the 50 replicates

of ARIMA, GPF-ARIMA, and GPF-ARIMA-R methods applied to the situation in

which a new (shock) process is added to Region 3. This shock process increases the

known process mean from 10 events to 22 events in each time period (although the

actual observed counts fluctuate wildly). This situation represents a serious viola-

tion of the model assumptions because a significant change in the spatial distribution

takes place in time period 50. As can be seen in the figure, the ARIMA method (and

the HW and Naive methods as well) can quickly adjust to this change by adjusting

the model parameters. However, the GPF method estimate for the wj parameter in

the left panel is significantly affected by the previous 50 observations. The rolling

horizon GPF method (GPF-ARIMA-R in the right panel) is less affected by the pre-

vious history and adjusts the weighting parameter faster over time, resulting in faster

recovery to accurate prediction following the shock. However, note that the variance

of the forecasts for the rolling horizon method are larger.



72

Ti
m

e 
Se

rie
s 

Pl
ot

s 
of

 A
R

IM
A

 a
nd

 G
PF

-A
R

IM
A

 F
or

ec
as

ts

Ti
m
e

Forecast

0
20

40
60

80
10
0

05101520253035

S
ta

tio
na

ry
 H

om
og

en
ou

s 
P

ro
ce

ss
 w

ith
 S

tro
ng

 S
ho

ck
 a

t T
im

e 
50

C
om

pl
et

e 
H

or
iz

on
 G

P
F-

A
R

IM
A

 M
od

el

A
R
IM
A

G
P
F-
A
R
IM
A

P
ro
ce
ss

Ti
m

e 
Se

rie
s 

Pl
ot

s 
of

 A
R

IM
A

 a
nd

 G
PF

-A
R

IM
A

 F
or

ec
as

ts

Ti
m
e

Forecast
0

20
40

60
80

10
0

05101520253035

S
ta

tio
na

ry
 H

om
og

en
ou

s 
P

ro
ce

ss
 w

ith
 S

tro
ng

 S
ho

ck
 a

t T
im

e 
50

A
R
IM
A

G
P
F-
A
R
IM
A

P
ro
ce
ss

A
R
IM
A

G
P
F-
A
R
IM
A

P
ro
ce
ss

R
ol

lin
g 

H
or

iz
on

 G
P

F-
A

R
IM

A
 M

od
el

F
ig

u
re

3.
11

:
T

im
e

se
ri

es
p
lo

t
co

m
p
ar

is
on

s
fo

r
50

re
p
li
ca

te
s

of
A

R
IM

A
an

d
G

P
F

-A
R

IM
A

fo
re

ca
st

s
fo

r
a

su
b
-r

eg
io

n
in

w
h
ic

h
a

sh
o
ck

p
ro

ce
ss

(i
n
n
ov

at
io

n
)

is
in

se
rt

ed
d
u
ri

n
g

ti
m

e
p

er
io

d
50

.
T

h
e

le
ft

p
an

el
d
ep

ic
ts

p
er

fo
rm

an
ce

w
h
en

th
e

G
P

F
-A

R
IM

A
m

et
h
o
d

u
se

s
th

e
co

m
p
le

te
ti

m
e

h
or

iz
on

of
in

ci
d
en

ts
an

d
th

e
ri

gh
t

p
an

el
d
ep

ic
ts

p
er

fo
rm

an
ce

w
h
en

a
ro

ll
in

g
h
or

iz
on

of
20

p
er

io
d
s

is
u
se

d
.



73

Based upon these results, the GPF method does not seem well-suited to modeling

situations in which strong shocks occur frequently in different sub-regions of the

region of interest. In the case illustrated in Figure 3.11, only one shock occurs. Both

the GPF-ARIMA and GPF-ARIMA-R methods recover much more slowly than the

ARIMA, HW, and Naive methods in this case. In any situation in which large shock

effects are frequent, the sensitivity of the HW and ARIMA methods will provide

better performance than the GPF approach, although they do require significantly

more modeling effort (as discussed in Section 3.6).

3.11 Conclusions

These results demonstrate that a relatively simple method that dramatically reduces

the complexity and modeling workload for generating recurring forecasts of noisy ge-

ographic time series can also significantly improve forecasting performance so long

as several important assumptions are satisfied. Three methods are commonly used

to forecast noisy geographic time series: naive methods, Holt-Winters smoothing,

and ARIMA models. While naive methods provide a simple, universally applica-

ble approach, as demonstrated in this study, they also provide limited performance.

The more complex univariate time series methods generally improved upon the naive

method but required significantly more effort. In the motivating example of forecast-

ing burglary counts in the City of Pittsburgh, using the two traditional univariate

time series methods requires fitting a total of 52 separate models on a weekly basis.

The GPF method requires fitting only one univariate time series model (at the city

level) and one kernel density estimate for each period’s forecast, a dramatic reduction

in model complexity and modeling effort. This simple approach also significantly im-

proved forecasting performance in the five-year Pittsburgh burglary study, providing

a 19% reduction in forecast error (as measured by MASE) over the naive method, 14%
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improvement over the Holt-Winters method, and 2% improvement over the ARIMA

method (see Table 3.4).

The simulation study further demonstrates the robustness of the GPF method.

When any existing trends or seasonality effects are global, the GPF method always

improves upon the other methods because it provides a better estimate of the un-

derlying process (see Tables 3.5 and 3.6). The use of the simulation model provides

a better understanding of model performance by allowing performance comparison

with the process noise removed from the performance assessment statistic. While the

observed error performance improvements in these simulation study scenarios are of

approximately the same size as the error observed in the burglary study, the GPF

method actually reduces the process error much more significantly. For example,

the GPF-ARIMA method improves upon the naive method MASE process error by

between 71% and 82% and over the ARIMA method by 5% to 18% (see Table 3.6).

The simulation model also helps to study how robust the GPF method is to vi-

olations of the modeling assumptions (see Tables 3.7 and 3.8). As demonstrated,

estimating the sub-region weighting factor wj using rolling time horizons provides

some protection to violations of the GPF model assumptions in the case of competing

trends (cases where one sub-region has a positive trend while other sub-regions have

a negative trend). However, the use of the rolling time horizons represents a trade-off,

because shorter time horizons increase the variance of the GPF forecasts. Under the

three conditions studied here (competing trends, random trends, and shocks), the

GPF method always provides improved performance over Holt-Winters smoothing

and the naive method. However, the ARIMA method did provide better performance

than the GPF-ARIMA method in the case of competing trends and better perfor-

mance than both GPF-ARIMA and GPF-ARIMA-R in the case of shocks.

In this simulation study, the GPF method provides reasonable overall performance

in the case of shocks only because the region of interest experiences only one significant
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shock per experiment. In these cases, the improved forecasting performance over

time periods prior to the shock balance the very poor performance the GPF method

provides after the shock. Given these results, the GPF method does not seem well-

suited to modeling situations in which strong shocks occur frequently in different

sub-regions of the region of interest because it is so slow to adjust to any dramatic

changes in one sub-region that do not affect the other sub-regions. In these cases, the

additional work required for fitting many ARIMA models (one for each sub-region)

seems warranted. In all other studied scenarios, the GPF method provides a robust,

general purpose approach for improving forecasts for noisy geographic time series

while greatly simplifying the modeling process.

These results provide three practical applications to security force planning. First,

as demonstrated, the GPF method improves forecasting performance while also sim-

plifying the modeling process. Second, this modeling approach directly links the

analytic products used for operational level decision-making (region and sub-region

forecasts) with the analytic products used for tactical level targeting and planning

(threat surfaces or hot-spot maps), providing a common frame-work for tactical and

operational level planners. Finally, this modeling approach suggests that threat sur-

face maps can also improve the way that operational planners spatially assign areas

of responsibility to subordinate elements by linking decisions about spatial areas of

responsibility to forecasts of future activity.



Chapter 4

Geographic Probability Forecasting

for Patrol District Design

Most security forces geographically divide their areas of responsibility into geographic

sub-regions and assign subordinate elements responsibility for patrolling, securing,

and responding to incidents within those regions. In policing, this is known the

districting problem and nearly every police department creates geographic patrol dis-

tricts (also called patrol sectors or car beats) as a standard management method to

enhance the capabilities of the uniformed patrol force (Hale, 1980). Better district-

ing plans lead to lower response times, officer’s familiarization with their assigned

area, more efficient use of personnel, more equal division of workload, a visible police

presence, enhanced officer safety, officer accountability, and balanced security force

response to calls (Hale, 1980). These same benefits generally apply to geographic

mission assignment problems in many other security applications, including the as-

signment of military Areas of Operations (AOs) in the conduct of counter-insurgency

campaigns and area security operations.

There are several different approaches currently used to solve the districting

problem. A common approach requires military and police planners to draw dis-

76
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trict boundaries based on their knowledge, experience, and the constraints imposed

upon them by the available patrolling resources (Mitchell, 1972; Taylor and Huxley,

1989). Researchers have proposed a variety of mathematical approaches to solving

this complex problem that rely on optimization, set covering, N-P hard graph par-

titioning methods, genetic algorithms, or other advanced statistical approaches (see

Section 2.6). Other researchers have demonstrated the use of agent-based and dis-

crete event simulation models to evaluate proposed districting plans. However, of the

existing approaches for district plan design, only the approach that relies exclusively

on the judgement and intuition of the planner falls within the capabilities available

to most military and police units, which explains its widespread use.

This chapter demonstrates a new method for developing and analyzing military

and police patrol district designs that requires only tools available to most military

and police planners. This new method leverages one of the key insights identified

in the analysis of Geographic Probability Forecasting (GPF) in Chapter 3: domain-

level forecasts that are weighted using geographic probability maps provide good

estimates for future event counts for noisy geographic time series. The GPF district

design method develops a planning surface for geographic mission assignment that

estimates the cost (in terms of man-hours) for servicing Calls for Service (CFS) for

every unique geographic location in the considered domain. This geographic cost

estimate is calculated using manpower estimates for different CFS incidents and the

GPF forecasting method. The resulting mapped planning surface will assist military

and police planners in balancing the need for preventative patrols with the need to

respond to critical incidents when they happen. The GPF district design method is

demonstrated for re-designing a patrol sector plan for use by a county police agency

in central Virginia.
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4.1 Problem Definition

The problem definition for this analysis is to develop a generally applicable heuristic

district design method that can be used to develop military Areas of Operation (AOs)

or districting plans for police agencies employing a geo-policing strategy. As a moti-

vating example, this chapter demonstrates the development of a districting plan for

a county police department that provides a better officer workload balance between

the patrol sectors used within the county.

4.2 Albemarle County Police Data

In order to demonstrate the proposed methodology, we develop a new patrol dis-

trict plan for a police agency transitioning to a geo-policing approach, in which small

groups of officers are assigned to exclusively patrol specific areas. This approach mim-

ics one often used in military counter-insurgency campaigns in which small military

units are assigned a specific and enduring Area of Operations (AO). The International

Association of Police Chiefs has documented that this community policing method

has produced significant crime reduction in several cities and formally endorses the

approach (Welch and Bussiere, 2005).

The data for this analysis was provided by the Albemarle County Police De-

partment (ACPD). Albemarle County is located in Virginia approximately 110 miles

southwest of Washington, D.C. The county encompasses approximately 726 square

miles and has approximately 100,000 county residents in the county. In the center of

the county is the city of Charlottesville. The City of Charlottesville has a diameter

of about 7 miles and a year-round population of about 40,000, which swells to about

66,00 during the academic year due to the presence of a major university. The City of

Charlottesville is policed separately by the Charlottesville Police Department (CPD).

Most of the county is rural and the county’s population (and crime) is concentrated
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in the areas of the county immediately surrounding the City of Charlottesville. The

county includes one incorporated town (Scottsville, located in the southeast corner of

the county) and several unincorporated communities including: Barboursville (in the

northeast corner of the county), Crozet (on the west side of the county), Earlysville

(in the northwest corner of the county), and Ivy (east of Charlottesville).

The current patrol sector plan used by the ACPD is more than ten years old. In

the intervening years since the plan’s development, the county population has grown,

changing the geographic distribution of crime. Additionally, the department’s re-

sources have expanded in such a way that the current patrolling plan does not align

with the department’s resources (for example, there are a minimum of 10 patrol cars

assigned to each shift but there are eight patrol sectors in the current patrol sector

plan). The ACPD is transitioning to a geo-policing model in which the officers ge-

ographically assigned to patrol districts are primarily responsible for servicing the

calls within their districts (although officer support is provided across patrol sectors

as needed) and exclusively responsible for patrolling within their districts (Richard-

son, 2012). As will be shown in later sections, the current districting plan does not

effectively balance the workload between the different districts, with the result that

there are signifiant differences in the CFS workloads for the different patrol districts

and many rural regions of the county are very rarely patrolled.

The ACPD provided several forms of data used for this analysis. The first dataset

provided was the PISTOL database, which contains records of all Call for Service

(CFS) events for the years 2007 - 2012. This database contains the geographic location

and call type for every CFS the department received over the five-year period. This

data set was used to develop forecasts and geographic probability models for the

various CFS types. The second data set provided was the department’s service call

database containing records of police response to calls for service (via radio reports)

for the period from January 2009 through November 2012. This data set contained
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millions of records for officer status as they respond to incidents (i.e. the CFS time,

the arrival time on scene, the departure time from scene, etc.). These records were

used to establish the cost (in man-hours) for the various CFS. Finally, the ACPD

provided geographic data sets for roads, county boundaries, and the currently used

patrol sector plan used by the police department.

4.3 Methodology

The methodological approach demonstrated here leverages one of the key insights

developed by Huddleston et al. (2013b): domain-level forecasts that are weighted

using geographic probability maps provide good estimates for future event counts

for noisy geographic time series. The methodological extension demonstrated here

produces a planning surface for geographic mission assignment that estimates the

cost (in terms of man-hours) for every geographic location in the domain (i.e., every

unique 50 m x 50 m grid square in the county). The planning surface is estimated

by generating event forecasts at a very fine resolution throughout the domain. These

forecasts are then multiplied by an estimate of the cost (in terms of average man-

hours) needed to support a call for service of every type to develop a planning surface.

The planning surface provides a visualization tool that planners can use to divide the

domain into geographic patrol regions and a method for evaluating how well proposed

districting plans balance the patrolling and CFS workload between geographic patrol

sectors. There are five steps to developing a districting plan using the GPF district

design method:

1. Develop Geographic Probability Maps for Event Types

2. Develop Forecasts for Event Types

3. Estimate Event Costs
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4. Generate a Geographic Planning Surface

5. Develop and Analyze Districting Plans Using the Geographic Planning Surface

Each of the five steps listed above is developed in depth below using the data

provided by the ACPD as a motivating example. The methodological approach is

simplified in this chapter to consider only two very resource intensive event types:

breaking and entering (burglary) events and traffic accidents. The approach demon-

strated here is easily extended to consider all of the different event types police and

military units respond to on a regular basis.

4.3.1 Develop Geographic Probability Maps for Event Types

The first step in developing a geographic mission planning surface is to develop a

geographic probability model for every event type. The geographic probability models

used in this demonstration are kernel density estimates developed using the ACPD

CFS records for breaking and entering (B&E) and traffic incidents. Let bi index two

dimensional blocks within a spatial study region D ⊂ <2. These two-dimensional

spatial blocks denote unique locations created by laying a grid at a fine resolution

across the study domain: {b1, b2, ..., bI}. Let sym denote the location in <2 of event

ym and Ym the total number of events of type m occurring within D. The event

intensity, fm(bi), for each event type m and location i is calculated using the kernel

density function Kh.

f̂m(bi) =
1

hYm

Ym∑
ym=1

K

(
‖bi − sym‖

h

)
(4.1)

The kernel density estimate above then needs to be converted into a probability

estimate. This is easily accomplished by normalizing the density estimate to develop
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a geographic probability weight by event type for every unique location.

ŵmi =
fm(bi)∑
bi∈D f̂m(bi)

(4.2)

Equation 4.2 converts the probability density function developed using the kernel den-

sity method in Equation 4.1 into a probability estimate at each geographic location.

Thus, ŵmi represents the probability of event type m occurring at location i.

As in Chapter 3, the kernel density estimate uses the plug-in estimate for band-

width (h) that minimizes the Mean Squared Error (MSE) of the hot-spot map using

the procedure outlined by Berman and Diggle (1989). Figure 4.1 provides the geo-

graphic probability (hot-spot) maps for Albemarle County B&E and traffic accident

events. Note that although the two event types share many high-probability areas,

the probability maps do contain some differences. Both event types are most probable

in the areas immediately surrounding the city of Charlottesville (in the center of the

map). However, traffic accidents are concentrated on the main transportation routes

in the county while the burglaries are distributed more broadly throughout the major

neighborhoods in the county.

4.3.2 Develop Forecasts for Event Types

The next step is to develop forecasts for the average count (at the domain-level) for

each of the event types in future periods. We used time series decomposition to de-

velop a current estimate for average number of monthly events in Albemarle county.

Time series decomposition is a statistical method for deconstructing a time series

into its trend, seasonal, cyclical, and noise components (Hyndman and Athanasopou-

los, 2013). Classical time series decomposition, developed in the 1920s, decomposes

a time series in three steps (Hyndman and Athanasopoulos, 2013). First, it fits a

moving average model to estimate the trend component, which is then removed from
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the series. Then, seasonal effects are estimated by averaging over all unique time

periods. Finally, the error component is estimated from the residuals that remain

after the seasonal and trend components have been removed. We use the classical

time series decomposition method provided by the stats package in R software for the

example in this chapter. This time series decomposition approach can also be accom-

plished using the ubiquitous Microsoft Excel software using the procedure outlined

by Lawrence et al. (2009). More robust time series decomposition methods available

to security agencies with statistical software include X-11 and X-12 ARIMA decom-

position (Hyndman and Athanasopoulos, 2013) and Seasonal Trend Decomposition

based on Loess (STL) (Cleveland et al., 1990).

Figure 4.2 provides a graphic of the time series decomposition for Albemarle

County monthly B&E and traffic accident events using classical time series decom-

position. Note that the resulting error component is homoscedastic over the time

period, indicating a well-fit time series decomposition. We used the current estimate

for average monthly events as the best estimate for future monthly event counts. The

notation for the domain forecast for the average event count at the domain-level for

event type m is FmD. The estimate provided by the time series decomposition of the

ACPD dataset is 205 monthly traffic accidents and 21 B&E events.

4.3.3 Estimate Event Type Costs

The third step is to develop a cost estimate for each type of event. For this analysis,

the cost estimate is based on the man-hours needed to meet the requirements of

a CFS. The CFS database provided by the ACPD contains millions records for all

service calls performed by responding officers. Many calls (especially traffic accidents)

require more than one responding officer. The records in the database contain a

unique index for each service call so that all radio reports for a given incident can be

linked, unique identifier codes for each type of call (i.e., responding, arrival at CFS,



85

10203040

observed
2022242628

trend
-4-20246

seasonal
-10-50510

20
07

20
08

20
09

20
10

20
11

20
12

random

Ti
m
e

D
ec

om
po

si
tio

n 
of

 a
dd

iti
ve

 ti
m

e 
se

rie
s

150200250

observed
190200210220

trend
-30-101030

seasonal
-40-20010

20
07

20
08

20
09

20
10

20
11

20
12

random

Ti
m
e

D
ec

om
po

si
tio

n 
of

 a
dd

iti
ve

 ti
m

e 
se

rie
s

F
ig

u
re

4.
2:

T
im

e
se

ri
es

d
ec

om
p

os
it

io
n

of
A

lb
em

ar
le

C
ou

n
ty

m
on

th
ly

b
re

ak
in

g
an

d
en

te
ri

n
g

(l
ef

t
p
an

el
)

an
d

tr
affi

c
ac

ci
d
en

t
(r

ig
h
t

p
an

el
)

ev
en

ts
.

T
h
e

cu
rr

en
t

es
ti

m
at

e
fo

r
av

er
ag

e
va

lu
es

ar
e

21
b
u
rg

la
ri

es
an

d
20

5
tr

affi
c

ac
ci

d
en

ts
p

er
m

on
th

.



86

departure from CFS, etc.), and time stamps. These records were parsed to produce

estimates for the total man-hours required to service each type of call.

Traffic Accidents Burglaries

0
10
0

20
0

30
0

40
0

50
0

Boxplots of Manpower Time Distribution
Ti

m
e 

in
 M

in
ut

es

Figure 4.3: Boxplots of manpower time distribution for B&E and traffic accident
events in Albemarle County.

Figure 4.3 provides box plots for the man-hours needed to service B&E and traffic

accident incidents. As can be seen, these incidents are very time intensive and the

probability distribution has high variance. However, under the assumption that the

probability distribution for man-hours is independent of location, then the average

man-hours needed to service each event type in a given patrol sector should converge

to the average of the distribution over the long term. Thus, in this analysis, we used

the average as the estimate for the cost of each event type Cm.

4.3.4 Generate a Geographic Planning Surface

The fourth step of the analysis is to develop a mapped geographic planning surface

that maps the expected manpower required to service every unique location in the
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domain (see Figure 4.4). This estimate is not a forecast of the expected manpower

needed during the next time period (i.e., it is not analogous to a short-term manpower

forecast). Rather, it is an estimate of the long-term average manpower needed for a

given unique location i. The planning factor is calculated for each unique location i

as:

Pi =
M∑
m=1

CmŵmiFmD (4.3)

This planning factor is easily calculated and mapped using raster overlay operations in

a GIS (Bolstad, 2008) or using statistical software that supports geographic analysis

such as R. This calculation in Equation 4.3 is a simple sum-weight calculation,

with the GIS system used to match and overlay the summation for the different

incident types for each location. Figure 4.4 provides an illustration of the mapped

Pi for Albemarle county estimated using B&E and traffic accident events. Note that

there are very small regions of the county that generate many man-hours of activity

while there are vast regions of the county that are expected to generate very little

activity. The map in Figure 4.4 illustrates where CFS man-hours are expected to be

concentrated in the future.

4.3.5 Develop and Analyze Districting Plans Using the Ge-

ographic Planning Surface

The last step of the analysis is to develop and analyze potential districting plans

using the geographic planning surface. The planning surface provides a visualization

of the average manpower demand expected at every unique location. This estimate

is easily aggregated for geographic districts, providing a fast method for analyzing

the long-term manpower requirements for a given patrol sector. With the notation

for the regions (patrol sectors) within the domain indexed by j: {D1, D2, ..., DJ}, the
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Albemarle County Patrol Sector Planning Surface

Legend
Man-Hours

< 15 Minutes
15 Minutes - 1 Hour
1 - 3 Hours
3 - 5 Hours
> 5 Hours
Albemarle County Boundary
Roads

²
0 5 10 15 202.5

Miles

Figure 4.4: Planning surface for Albemarle County developed from B&E and traffic
accident events
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planning estimate for patrol sector j is the sum of the planning factor estimates that

fall within it:

Pj =
∑
i∈Dj

Pi =
M∑
m=1

CmŵmjFmD (4.4)

where:

ŵmj =
∑
i∈Dj

ŵmi (4.5)

Note that Equation 4.4 employs the Geographic Probability Forecasting (GPF) method,

which has been validated in both empirical (Huddleston et al., 2013b) and simulation

(Huddleston and Brown, 2013) studies. The only innovation to the planning surface

used for geographic mission assignment is multiplying the forecast by the estimated

cost Cm and summing over the various event types.

The planning approach employed for Albemarle county was to begin with the

currently employed districting plan and then modify that plan to better balance the

workload across the patrol sectors. Figure 4.5 provides maps for the original patrol

sector plan employed by the county and the patrol sector plan recommended after this

analysis. Table 4.1 documents the planning surface calculations used in the analysis.

Figure 4.6 provides a graphed version of the information presented in Table 4.1, which

is useful for articulating the planning approach.

After analyzing the current districting plan used by the ACPD with the planning

surface, the workload imbalance experienced by patrol officers becomes very clear.

As can be seen in the left panel of Figure 4.6, under the current plan, Patrol Sectors

3, 4, and 5 have both very large geographic areas to patrol and a large workload

generated due to calls for service. As can be seen in Figure 4.5, most of the CFS

for these districts are generated by the area immediately surrounding Charlottesville.

Thus, the officers assigned to patrol these sectors are constantly responding to CFS
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near the center of the county, and are therefore rarely available to patrol the large

districts they are assigned. These officers have a much higher workload than average

for both CFS response and patrolling requirements.

The approach taken to develop a new patrol sector plan was to use the planning

surface to break up the very large districts into smaller districts to better balance

the workload between the competing objectives of preventive patrols and response to

CFS. Because ACPD now provides a minimum of 10 patrol cars for each shift, the

opportunity exists to add additional patrol sectors. The heuristic approach taken to

develop the new patrols sectors relies upon the following design rules:

1. Use current districting boundaries when possible

2. Balance geographic patrol area requirements against CFS workload such that

large patrol districts have low CFS man-hours

3. Design patrol districts such that officers assigned very intense CFS areas have

minimal patrolling requirements

4. Do not divide responsibility for existing townships or neighborhoods between

patrol officers (i.e. follow geo-policing principles)

5. Design patrol districts around high speed routes that allow officers to move

quickly throughout their patrol sectors (i.e. E-W or N-W orientation for patrol

districts around high-speed routes)

The modeling approach relied on manually updating the performance metrics

used in Table 4.1 after each boundary change using summary table queries in ESRI

ArcGIS software. These performance metrics are then mapped as in Figure 4.6, which

provides a visualization of which sectors are most out of balance. Sector boundaries

for patrol sectors that do not provide a good trade-off between balancing patrolling

and CFS response workloads are then further adjusted. The precinct design process
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using this method is therefore very iterative, with each boundary change requiring the

production of a table, investigation of the trade-offs of the in-progress plan using a

graphical interface as demonstrated in Figure 4.6, and then further adjustment of the

districts most out of balance. The planning surface provides a feedback mechanism

that forecasts the average workloads over future time periods under any programmed

boundary shift.

4.4 Results

Figure 4.6 illustrates how the use of the geographic planning surface allows us to

develop an improved patrol sector plan. As Figure 4.6 shows, the new plan better

balances the competing requirements on patrol officers. In the left panel, there is no

correlation between an officer’s patrol area and the man-hours needed to service CFS

in an officer’s district (R2 = 0.005). In the right panel, there is a strong correlation

(R2 = 0.776) in the relationship between an officer’s patrolling requirements and an

officer’s expected CFS workload. Officers with large districts that require more time

to patrol should now spend less time responding to CFS requirements. The new

patrol sector plan provides a much better trade-off in the workload demands upon

officers and should ensure that all regions of the county are more regularly patrolled.

4.5 Conclusions

This chapter demonstrates an additional practical application of Geographic Prob-

ability Forecasting (GPF). GPF forecasting weights univariate time series forecasts

using geographic probability maps. The GPF method for police district design demon-

strated in this chapter first decomposes a domain-level forecast to obtain the current

estimate for the average event count and then divides this forecast estimate prob-

abilistically among the geographic patrol sectors. The geographic planning surface
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Figure 4.6: Workload balance between patrol sector area and CFS man-hours for
the existing (left panel) and recommended (right panel) ACPD patrol sectors. The
recommended plan better balances the competing workload requirements for officers
between preventive patrols and CFS man-hours.

produced by multiplying the estimate for the long-term average event count at each

unique location by a cost estimate for each event type produces an intuitive, interac-

tive planning interface that allows planners to estimate the impacts of moving patrol

sector boundaries. Because the planning surface is mapped, it allows planners to

interact simultaneously with many heuristic planning rules, taking into consideration

topology, geography, the “human terrain,” the size of the patrol sectors, and avail-

able patrol units. This would seem to provide an opportunity for the development

of patrol planning software that could be incorporated as a module into ArcGIS or

crime mapping software, providing an automatically updated, interactive interface

for police and military planners to use as they design patrol districts.



Chapter 5

Comparing Evaluation Methods for

Police Patrol District Design

Nearly every police department creates geographic patrol districts (also called patrol

sectors or car beats) as a standard management method to enhance the capabilities

of the uniformed patrol force (Hale, 1980). As noted in Chapter 4, better police dis-

tricting plans lead to lower response times, officer’s familiarization with their assigned

area, more efficient use of personnel, more equal division off workload, a visible police

presence, enhanced officer safety, officer accountability, and balanced police response

to calls (Hale, 1980). Traditionally, these geographic patrol boundaries are drawn

by hand based on a police department’s knowledge, experience, and the available

police resources (Mitchell, 1972; Taylor and Huxley, 1989). Most police departments

also lack a formal method for formally evaluating and comparing the performance

of competing district plans, instead relying on the judgement and intuition of police

planners. However, given the complexities of the police districting plan, it is unlikely

that an optimal districting plan will be chosen by chance using this method (Curtin

et al., 2010).

As discussed in Section 2.6 and the introduction to Chapter 4, researchers have

95
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proposed a variety of mathematical approaches to solving this complex problem that

rely on optimization, set covering, N-P hard graph partitioning methods, genetic algo-

rithms, or other advanced statistical approaches that are well beyond the capabilities

of the vast majority of police departments. Instead, we propose that a more reason-

able approach would be to provide police departments with the ability to evaluate the

performance of districting plans they produce themselves and/or automated meth-

ods to generate a large number of possible districting plans. This approach would

allow police departments the ability to find the optimal plans within any defined set.

While these plans might not be globally optimal, they are likely to provide good

performance, especially when compared to plans drawn by hand that consider the

resulting performance trade-offs only in the minds of the planners.

For many police departments, police patrol district design presents a multi-objective

optimization problem with two goals: minimizing workload variation between patrol

districts and minimizing the response time for officers responding to calls for service.

Fast response to citizen Calls for Service (CFS) improves the chances of arresting

offenders, increases the chances of identifying and locating witnesses, provides im-

mediate gathering of physical evidence, provides immediate life-saving aid, enhances

the reputation of the police department, and increases citizen satisfaction with po-

lice (D’Amico et al., 2002; Hancock and Simpson, 2009). Therefore, virtually every

police department seeks to minimize their average response time to CFS. Workload

variation between districts arises because crime (and other CFS) tends to cluster in

“hot-spots” rather than being uniformly distributed in the city. Workload variation

between districts is often high, with some officers/districts experiencing much higher

CFS volume than others. When small districts are created around very “hot” zones,

the remaining districts can be quite large, resulting in slow response times for many

citizens. Thus, minimizing workload and reducing response times are often compet-

ing objectives, requiring police to select a comfortable trade-off point between the
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competing objectives.

In this chapter, we compare three different methods for evaluating the performance

of patrol district designs in this trade-off space: a closed form probability based

approach, a discrete-event simulation based on hypercube models for spatial queuing

systems, and an agent-based simulation model. We use the selection of a new patrol

districting plan for the City of Charlottesville, Virginia, as a motivating example

to compare and contrast the different methods for choosing a districting plan. We

find that although all three methods provide similar evaluations of the districting

plans when the emergency response system is not stressed, the agent-based simulation

model more accurately represents the system dynamics when the system is highly

stressed and also yields important insights into the system dynamics that the other

two methods do not provide.

5.1 Charlottesvile Police Department Data

The Charlottesville Police Department provided the data used as the case study for

this analysis. The City of Charlottesville is a mid-size city centrally located in the

state of Virginia, USA. The city has a diameter of about 7 miles and a year-round

population of about 40,000, which swells to about 66,00 during the academic year

due to the presence of a major university. The current districting plan used by

the CPD is about 20 years old. The city uses eight city patrol districts, with one

car routinely assigned to each patrol district during each patrol shift. The police

department operates three shifts a day: morning, evening, and overnight. As is the

policy in many police departments, the CPD always dispatches the nearest available

car to the scene of a CFS in an effort to minimize response time, rather than relying

on each police car to respond to all calls within its district.

Figure 5.1 provides an illustration of how the demand for police assets varies over
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the 24 hour period. This graph references 330,000 CFS incidents observed over a four

year period. During the night shift, the inter-arrival time for Calls-For-Service (CFS)

is high, meaning that the CFS intensity is low. During the day and evening hours,

CFS intensity is high, placing greater demands on the police patrols. As Figure 5.1

illustrates, the response time for police responding to CFS is highly correlated with

traffic volume in the city. At night, police can respond relatively quickly to CFS

because there is little traffic. During the morning and evening rush hour periods, it

takes much longer for police to navigate traffic to the scene of calls for service. The

time on the scene for a CFS remains relatively stable over the 24 hour period. The

dashed lines in Figure 5.1 correspond to the three modeling scenarios used to study

the performance of the police patrol district designs:

1. Low-Intensity Demand: 5 AM (Night Shift)

2. Medium-Intensity Demand: 7 PM (Evening Shift)

3. High-Intensity Demand: 9 AM (Day Shift)

The low-intensity scenario represents when the system is most idle. The medium-

intensity demand scenario represents a time period when all system parameters are

near their average values. The high-intensity demand scenario represents the time

period when the system is most stressed - during the morning rush hour. Exam-

ining these scenarios allows us to evaluate patrol district designs under minimum,

maximum, and average conditions.

Figure 5.2 provides one of the considered patrol district designs plotted over a

map of the city of Charlottesville. As can be seen in Figure 5.2, we organized the city

into 323 atoms (locations) for assignment. Each of these atoms must be assigned to

one of the eight police districts. We generated 150 possible police district designs for

consideration by the CPD using the procedure outline by (Zhang and Brown, 2013).

This procedure develops districting plans that are both contiguous and compact. By
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Figure 5.1: A plot showing how the service call inter-arrival time, response time,
and time on service model parameters vary over time in the Charlottesville Police
Department (CPD) data set. The dashed lines represent time periods selected for
study in the simulation models: a low intensity (idle) period, a high intensity (busy)
period, and a period representing the median situation.

definition, the patrol district must be contiguous so that one patrol car can patrol that

area without departing. Police desire compact districts to provide shorter travel times

within the patrol district. This procedure converts the NP-hard graph partitioning

problem into a much more tractable problem: choosing the best of a defined set

of options. The limitation of this approach is that the generated choice set is not

guaranteed to contain the optimal solution. Rather, the approach we have taken

provides a set of reasonable solutions from which we would like to choose the best

available.
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Figure 5.2: Visualization of District Plan 21 under evaluation in the agent-based
simulation. The eight districts are color-coded. In-use patrol cars are labeled as stars
while patrolling cars are labeled with circles. Note that the green and red patrol cars
are responding to incidents out of sector because they were the closest available car
to the incident at the time of the CFS.

5.2 Comparison of Police Patrol District Design

Evaluation Methods

Given a patrol district design, there are several different approaches available for

assessing the utility of that design. One approach would be to try the different

districting plans by asking police patrols to change their patrol sectors every few

weeks and assess how well the various districting plans worked. However, the number

of possible districting plans that a police agency could try would be very limited and it

would take a long time to test even a limited few competing plans. Efficient methods

for evaluating patrol district designs without actually testing them in practice are
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therefore in high demand.

In this chapter, we compare three different methods for scoring district designs:

a closed form probability based approach, a discrete-event simulation based on hy-

percube models for spatial queuing systems, and an agent-based simulation model.

The closed form probability-based approach greatly simplifies the modeling problem

and requires only geographic data in order to make an estimate. It is very simple,

fast, and can be applied by virtually any police analyst with access to a GIS sys-

tem. The discrete-event model takes longer to develop and makes some simplifying

assumptions about the problem. However, once developed, it can evaluate districting

plans quickly and it is relatively simple to adapt the model to different cities and

scenarios. The agent-based approach takes the most development time, is harder to

adapt to different cities and environments, and takes longer to evaluate competing

plans. However, the agent-based modeling approach provides the most high-fidelity

representation of the system and the most flexible modeling framework. We expound

on each the three evaluation methods in greater detail below.

5.2.1 Closed Form Evaluation Method

The closed-form evaluation method relies on the relationship between location event

CFS probability and the observed CFS counts over a geographic area. (Huddleston

et al., 2013a) demonstrate that criminal hot-spot (probability) maps can be used to

accurately forecast future crime counts within police patrol districts. These criminal

hot-spot maps are two dimensional probability density functions that can be estimated

using kernel density estimation (Harris, 1999), predictive crime models (Smith and

Brown, 2007; Huddleston and Brown, 2009), or by binning historical crime counts by

atom (Zhang and Brown, 2013). We use the binning approach in this chapter. These

criminal hot-spot maps provide estimates for the probability of crime occurrence

within each atom, with the notation πi. For district j, the workload score wj is
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estimated as the sum of atom event probabilities πi within the district.

wj =
∑
i∈j

πi (5.1)

The district workload score wj represents the proportion of work each district

patrol is expected to perform. Since the objective is to provide equal workloads

across the districts, district plans are scored using the sample standard deviation of

the district workload scores σwj
. Lower workload standard deviation scores equate to

better performance.

Criminal hot-spot maps can also be used to estimate the response time for officers

to service calls within their districts. The response time score R is calculated as the

sum of the probability weighted distances between each district centroid Cj and each

atom location i.

R =
J∑
j=1

[∑
i∈j

(πi||Cj − i||)

]
(5.2)

In the formula above, the notation ||Cj − i|| denotes the norm (distance) between

the district centroid and atom i. Depending on the situation, Euclidean, Manhattan,

or travel (road) distance can be used to estimate the travel cost. In this application, we

used the Euclidean distance. Lower response time scores equate to better district plan

performance. This method assumes that there will be very limited cross-boundary

service by the patrols within the sectors.

5.2.2 Discrete-Event Simulation Model Method

The discrete event simulation model is based on the Hypercube Queuing Model

(HQM), a well-known descriptive model used to analyze emergency response sys-

tems as spatially distributed queueing systems (Larson, 1974). In the HQM model,

each server (patrol car, fire engine, ambulance, etc.) has two states: idle (0) and
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busy (1). The state of the whole system is represented as a binary sequence of server

statuses. When the number of servers exceeds three, all possible system states form

a hypercube.

Historical CFS incidents data and traffic information provide estimates for the

arrival rates of the servers into each geographical atom. As long as the aggregate

service rate of the system exceeds the total arrival rates of CFS incidents (i.e., supply

exceeds the demand), calculating the steady-state probability of the resulting Markov

chain provides the probability of being in each possible system state in the hypercube.

System performance metrics such as average response time and workload variation are

calculated from the hypercube probabilities. While the basic HQM provides a very

flexible framework for modeling emergency response systems, the size of the problem

grows exponentially with the number of servers. Solving each instance requires solving

a linear system with an exponential number of variables (Boyaci and Geroliminis,

2011).

Boyaci and Geroliminis (2011) demonstrate that Monte Carlo discrete-event sim-

ulations based on HQM converge to the steady-state probabilities estimated by HQM

very quickly. Therefore, discrete event simulations provide an alternative method for

solving for the HQM steady-state probabilities. The discrete-event model can more

easily be extended to simulate complex situations, such as multiple cars responding,

different priorities of CFS incidents, different CFS arrival rates at different times of

day, as well as various patrol and dispatch rules. We developed the simulation model

for the CPD districts in Java 1.6 SE using pseudocode provided in Boyaci and Geroli-

minis (2011). Sacks (2003) provides the method we used to calculate the expected

locations of CFS and patrol cars in the city using the Charlottesville data.

The inputs for the discrete event simulation model are:

• CFS Inter-Arrival Time

• Service Time (Time on Scene)
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• CFS Probability for Each Atom

• Geographical Information (District Plan, District Plan Centroids, and Atom

Centroids)

• Responding Speed

The simulation model generates CFS using the exponential distribution model de-

fined by the inter-arrival rate parameter. The CFS incidents are spatially distributed

within the city according to the geographic probability model generated from histor-

ical data as previously discussed (i.e., the CFS probabilities for each atom are the

same as those used for the closed form evaluation method). CFS service times are

randomly selected from the exponential model defined by the service time parameter.

The parameters of the discrete event simulation model are then calibrated such that

the queuing parameters (total arrival rate and total service rate) of the system match

the historical data set. The discrete-event simulation model tracks the occurrence of

four types of events:

• Calls For Service (CFS)

• Patrol Car Arrival at CFS

• Patrol Car Departure from CFS

• Patrol Car Arrival at Base (Idle Position)

When a CFS occurs in the simulation model, the nearest idle patrol car is “dis-

patched” by changing the server availability status from idle (0) to busy (1). The

patrol car (server) status returns to idle once the car returns to its base location

within the patrol sector after each event. To simplify the problem, the discrete-event

model assumes zero line capacity; if all servers are busy when incident happens,

the incident is “dropped” or considered as being responded to by units outside the
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modeled system. The historical Charlottesville Police Department data illustrated in

Figure 5.1 provides estimates for the travel time, service time, and CFS inter-arrival

time for the simulation model for each of the three considered scenarios. The sim-

ulation model dynamically tracks the average response time and workload standard

deviation measures and stops when these measures converge.

5.2.3 Agent-Based Simulation Model Method

Agent-based simulation models are increasingly used to model the complex dynamics

of resource allocation problems in security applications. Examples include optimizing

the location of combat outposts in counter-insurgency (Huddleston et al., 2008), ex-

amining the use of unmanned surface vehicles for securing Navy ships (Cioppa et al.,

2004), and emergency management in disaster response (Wu et al., 2008). Agent-

based modeling provides the ability to accurately represent the behaviors of these

complex systems by modeling the interactions of the agents of the system.

Zhang and Brown (2013) provide an agent-based model that captures the behav-

iors of police patrols in a city through the use of use of model parameters and decision

rules. This model is based on RepastCity from Malleson (2010), which implements

agent movement along roads in an urban GIS environment and provides a flexible

framework for adapting the simulation by changing the associated GIS layers. The

simulation model operates by having the agents and environment interact through

the use of simple rules. The rules for this agent-based simulation model are:

1. The simulation model generates CFS using the exponential distribution model

defined by the inter-arrival rate parameter.

2. CFS incidents are spatially distributed within the city according to the ge-

ographic probability model generated from historical data as previously dis-

cussed.
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3. CFS service times are randomly selected from the exponential model defined by

the service time parameter.

4. Police cars randomly patrol the road network within their defined district when

not in service.

5. The nearest available patrol car (regardless of district) responds to a CFS at

emergency speed.

6. The responding car takes the shortest (road network) path to the location of

the CFS.

7. Upon completion of the CFS, if the patrol car is out of its district, it returns to

its district moving at the speed limit and begins patrolling.

8. Upon completion of the CFS, if the patrol car is within its district, it begins

randomly patrolling from its current location.

The input parameters for the agent-based simulation include the CFS inter-arrival

time, CFS service time, the emergency speed, and geographic information (the road

network, road network speed limits, and the district plan). We calibrate the agent-

based simulation model by tuning the model until simulating the currently employed

districting plan with the simulation model produces the historically observed aver-

age response time in all three modeled scenarios. The simulation model dynamically

tracks the average response time for all cars and the workload (time in service) propor-

tion for all cars. We run the simulation for a district plan until the average response

time and workload proportion for all cars converge to a steady state.

5.3 District Plan Selection

The three district plan evaluation methods above each provide an approach for scor-

ing district plan response time and workload variation performance. The goal is to
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identify the district plans that provide good performance in both objectives. For

multi-objective problems such as this one, there usually does not exist a single solu-

tion that simultaneously optimizes both objectives. Instead, there exists a (possibly

infinite) set of Pareto-efficient solutions. A solution is Pareto-efficient (also called non-

dominated or Pareto-optimal) for two objectives if one cannot improve performance

in one performance measure by selecting a different alternative without sacrificing

performance in another. Graphing the performance of the solutions provides a sim-

ple way to identify the Pareto-efficient frontier (Gass and Saaty, 1955). Figure 5.3

illustrates the trade-off space and resulting Pareto-efficient solutions identified by the

agent-based model in both the low-intensity and high-intensity settings. The agent-

based model identifies five non-dominated solutions for the low-intensity scenario and

two non-dominated solutions for the high-intensity setting. We used the same ap-

proach to identify the non-dominated solution set in each scenario for the closed-form

and discrete-event simulations. Figure 5.3 also identifies these solutions as well as the

current district plan used by the CPD.

5.4 Results

As Figure 5.3 illustrates, there is some disagreement between the three different

methodologies about which plans are best. Note that in the low-intensity scenario,

the agent-based simulation model scores all of the non-dominated solutions by the

other two methods relatively highly (they are all clustered in the lower-left hand

corner). There is also some agreement on plans that are Pareto-optimal, with some

districting plans on the Pareto frontiers of all three methods in the low-intensity sce-

nario. However, in the high-intensity scenario, the Pareto-efficient plans identified by

the closed-form and discrete-event methods tend to be rated as relatively average in

at least one measure by the agent-based simulation.
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Table 5.1 and Figure 5.4 provide an explanation for these differences. Table 5.1

provides the coefficient of determination (R2) statistic comparing Closed Form (CF),

Discrete Event (DE) and Agent-Based (AB) scores for workload variation and re-

sponse time under low, medium, and high event intensity conditions. Figure 5.4

provides a pair-wise scatterplot for the most correlated (workload variation in the

low-intensity scenario) and least correlated (workload variation in the high-intensity

scenario) situations in this table for a visual reference. All methods provide highly

correlated workload variation scores in the low intensity scenario but highly uncor-

related scores for workload variation in the high-intensity scenario. The response

time scores are less correlated than workload variation scores in the low-intensity sce-

nario but more correlated than workload variation in the high-intensity scenario. For

both performance measures, correlation between methods decreases as event intensity

increases.

Table 5.2 further explains the results observed in Table 5.1. Table 5.2 provides the

Event Cross- Workload Variation Response Time
Intensity Sector % CF- AB CF - DE DE - AB CF - AB CF - DE DE - AB

Low 42% 0.65 0.70 0.81 0.45 0.51 0.74
Medium 70% 0.33 0.44 0.47 0.30 0.44 0.72

High 75% 0.13 0.35 0.19 0.21 0.43 0.52

Table 5.1: Table of pairwiseR2 statistics comparing Closed Form (CF), Discrete Event
(DE) and Agent-Based (AB) scores for Workload Variation and Response Time under
low, medium, and high event intensity conditions.

Pairwise Workload Variation Response Time
Comparison CF DE AB CF DE AB

Low-Med 1 0.69 0.45 1 0.92 0.55
Low - High 1 0.60 0.24 1 0.91 0.41
Med - High 1 0.91 0.11 1 0.98 0.46

Table 5.2: Table of within-method pairwise R2 statistics showing how the Workload
Variation and Response Time evaluation scores correlate within methods across the
three scenarios. The Closed Form (CF) method provides the exact same evaluation
scores for every scenario. The Discrete-Event (DE) method provides similar scores
across the three scenarios. The Agent-Based (AB) method provides very different
scores across the three scenarios, especially for Workload Variation.
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within-method coefficient of determination (R2) across the three scenarios. As can be

seen, the closed form method provides the exact same scores for every scenario, the

discrete event scenarios are highly correlated across scenarios, but the agent-based

scores change significantly.

These results prompted further analysis to understand why the agent-based sim-

ulation model scores change so significantly in the high-intensity scenario. We identi-

fied two dynamics within the system that cause the agent-based simulation model to

significantly alter the scores as CFS intensity increases. The first insight the agent-

based model provides concerns the effect of the patrolling behavior of the police cars.

When the police cars randomly patrol within their districts, they are often far from

the patrol district centroid (as can be seen in the snapshot of the agent-based simu-

lation model in Figure 5.2). The CPD always dispatches the nearest available police

car to the scene of a CFS. Thus, cross-boundary support is quite frequent. In the

low-intensity scenario, cross-boundary response averages about 42%. However, this

cross-boundary support rises to 70% in the medium intensity scenario and 75% in

the high-intensity scenario. These rates roughly correspond to the rates observed in

a 1971 New York City study that found that cross-boundary support accounted for

more than half of police dispatches (Larson, 1971).

The second significant system dynamic is the effect CFS intensity and slow re-

sponse times due to traffic have on the workload variation during the busy periods

of the day. The difference in workload variation (standard deviation of the work-

load proportion) among districting plans during the high-intensity period around the

morning rush hour is very low (note the difference in scales on the horizontal axis in

Figure 5.3). During the high-demand period, all police cars experience a high work-

load due to the high CFS intensity and slow response speeds due to traffic. Thus, the

districting plan has little to do with the workload officers experience during this busy

time; for the most part, the police cars are all responding to CFS. This observation
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yields an important insight for the CPD. Counter-intuitively, the districting plan be-

comes most relevant when CFS intensity is low and less important when CFS intensity

is high. This is because when CFS intensity is low, the officers spend most of their

time patrolling, but when CFS intensity is high, all officers are responding to calls

rather than patrolling (on average, 80% of available officer man-hours are employed

responding to calls during this period). During the peak rush-hour periods, it may be

possible to significantly reduce the average CFS response time by positioning police

cars throughout the city near those locations most likely to need CFS during this

busy time instead of having officers attempt to both patrol throughout the districts

and respond to calls, especially since officers spend relatively little time patrolling the

districts they are assigned. In discussions with the CPD, they verified this effect and

commented that the system dynamics observed in the agent-based model seemed to

correspond closely to that experienced by their officers. In this case, the agent-based

simulation model reveals complexities in behavior and applicable insights that the

other two evaluation methods do not provide.

5.5 Conclusions

Our results indicate that all three evaluation methods produce very similar scores for

workload variation when CFS intensity is low enough that the car patrols can meet the

demand in their own sectors. However, when the in-district demand exceeds in-district

supply, police patrols begin crossing boundaries to meet demand in other police sectors

at a very high frequency. This scenario produces a level of complexity that the

closed form and discrete event approaches are not well-equipped to handle. Only

the agent-based simulation model accurately represents the resulting complexities

and significantly changes the workload variation scores to reflect the behavior of the

system. The significant insight the agent-based model provides is that, because call
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volume is so high, officers rarely patrol their sectors in this period, instead spending

most (on average about 80%) of their time responding to calls both in and out of

sector. The visualization of the system’s complexities the agent-based model provides

was also helpful in validating the performance of the simulation with the CPD client.

The scores the three methods provide for response time were less correlated with

each other in the low intensity setting than they were for workload variation (ranging

between 0.45 and 0.74). However, the correlations between response time scores for

the three methods were less sensitive to changes in intensity than the workload varia-

tion scores, and the discrete event and agent-based simulations maintained relatively

high correlation with each other throughout all three scenarios. The closed form ap-

proach did not seem to provide good estimates as it did not have high correlation

with either of the other two methods in any of the scenarios. This is probably due to

the fact that this method does not account for cross boundary support, and therefore

underestimates the effect out of sector CFS have on the average response time.

Future work for this study includes extending the discrete event and agent-based

simulation models to dynamically change the modeling parameters for response speed,

service time, and inter-arrival time over the 24 hour cycle to correspond with the rates

seen in Figure 5.1. Using this approach will provide an estimate for how well the

various districting plans perform over a 24 hour period in actual practice. Planned

extensions to the current simulation models include more complex response rules such

as call prioritization and multiple car response for certain types of calls. Planned ex-

tensions to the closed form approach include performance comparisons using other

distance measures (i.e., road-network distance, Manhattan distance, etc.) and devel-

opment of methods for estimating the effect of cross-boundary support on the average

response time performance measure.



Chapter 6

Mapping Gang Spheres of

Influence

Many urban environments have criminal gangs competing for control of available

resources and territory. Intelligence analysis of these groups requires not only the

prediction of future attack locations but also answers to questions such as: Who is

the most likely perpetrator of a criminal incident at a given location? What is the

most likely course of action for a given criminal group? What makes one location more

likely to experience a gang incident over another? With limited resources, how can

I best employ those resources most efficiently to engage specific criminal elements?

Multilevel modeling of criminal site selection preference allows us to better answer

these questions by linking the incidence of gang crime to the spatial, demographic,

and socio-economic features of specific locations.

There is a rich body of literature that links gang activity spaces, socioeconomic

conditions, and other factors to the incidence of crime committed by criminal gangs

(Taniguchi et al., 2011; Tita and Ridgeway, 2007; Tita and Cohen, 2004; Block, 2000).

Many previous studies of gangs note that criminal gangs seize, control, and defend

home territories from rival gangs (Thrasher, 1927; Whyte, 1937; Ley and Cybriwsky,

114
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1974; Bernasco and Block, 2009). Other studies explore the effects that gang forma-

tion have on crime patterns and rates in the local communities where they form (Tita

and Ridgeway, 2007). For instance, Tita and Cohen (2004) demonstrate that areas

where gangs congregate are highly correlated with high levels of gun violence and Rat-

cliffe and Taniguchi (2008) show that drug-gang street corners are highly correlated

to the general incidence of crime. Several other studies also find that there exists

a strong relationship between the number of gangs that are active in an area and

the general level of criminal activity (Block, 2000) and that gang set spaces serve as

crime attractors and crime generators (Tita and Ridgeway, 2007). However, analysis

of at least one well-known gang data set demonstrates that many gangs commit as

many as half of their crimes outside of their own controlled gang territories (Meeker

et al., 2002). An analysis of the six most active gangs in Santa Ana, California for

the two year period from 1999-2000 reveals that these gangs committed 30% of their

crimes outside any known gang territory and an additional 19% of their crimes in

areas claimed by more than one gang, which we term gang conflict territories. This

indicates that an analysis of gang activity beyond their home territories is warranted.

Multilevel modeling of criminal site selection provides a means for structuring this

analysis and Geographic Information Systems (GIS) provide a means for communi-

cating the results of this analysis in a format employable by police agencies.

6.1 Background

This research chapter merges research on criminal activity spaces with a multilevel

modeling extension to previous criminal site selection methods and describes why

the approach better predicts the actions of specific criminal groups and facilitates

identification of gang criminal spheres of influence - the geographic regions in which

each criminal group presents the greatest threat. This methodological approach rests
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on several foundations of research: data mining, criminal hot-spot prediction, criminal

site selection modeling, and multilevel (hierarchical) modeling.

6.1.1 Criminal Hot-Spot Prediction

As noted above, many researchers have linked gang activity spaces, drug corners, set

spaces, or turfs to concentrations of criminal activity, or hot-spots. The National

Institute of Justice defines a criminal hot-spot as “an area that has a greater than

average number of criminal or disorder events, or an area where people have a higher

than average risk of victimization (Eck et al., 2005).” There are many techniques for

identifying criminal hot-spots but they for the most part fall into one of two classes:

those techniques that leverage only historical location data in the analysis (treating

the problem as a spatial point pattern) versus those that treat the problem as a

marked spatial point pattern. Point patterns are the type of spatial data that arise

when the critical variable being analyzed is the location of events (Cressie, 1993).

Most criminal incidents fall into this category of geographic analysis. A marked

spatial point pattern is one in which the events in a point pattern are associated with

features, measurements, or categorical marks. In crime analysis, examples include

identification of the type of crime, the responsible party (if known), and the geographic

features associated with the location of the criminal event.

There are several techniques that have been developed to identify criminal hot-

spots using only the spatial point patterns generated by past observations. The most

common approaches to identifying criminal hot-spots rely on kernel density estimation

because these approaches are easily implemented in the Geographic Information Sys-

tems (GIS) most police agencies now employ (Eck et al., 2005; Boba, 2005). These

techniques do not leverage the additional “marked” information associated with a

criminal event but leverage only location (Latitude-Longitude or X-Y) data to esti-

mate the relative risk associated with each X-Y coordinate on the map. Recently, an
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approach using self-exciting point process models has been shown to improve upon

kernel density methods for predicting burglaries in Los Angeles in both space and time

(Mohler et al., 2011) and the same approach has been applied to modeling civilian

deaths in Iraq (Lewis et al., 2012).

In recent years, there has been a growing body of literature in which researchers

identify criminal hot-spots by using the marks associated with crimes in police databases

to identify criminal hot-spots. Social researchers tend to use various regression tech-

niques in the application of environmental criminology to link social, economic, or

spatial features to the incidence of crime (Brantingham and Brantingham, 1981).

Examples of sociological analysis include identification of factors important in the

occurrence of residential burglaries (Bernasco and Nieuwbeerta, 2005), robberies in

Chicago (Bernasco and Block, 2009), the link between drug street corners and crime

(Ratcliffe and Taniguchi, 2008), and several of the previously mentioned studies in

gang activity (Tita et al., 2005; Tita and Ridgeway, 2007; Block, 2000). Other re-

searchers have begun to apply newly developed data mining techniques to the problem

of identifying the areas most likely to see a criminal incident. Data mining approaches

to hot-spot identification include machine learning techniques such as neural networks

(Olligschlaeger, 1997), fuzzy clustering (Grubesic, 2006), and support vector machines

(Chang et al., 2005; Kianmehr and Alhajj, 2008).

6.1.2 Criminal Site Selection Models

There is one modeling approach that provides both insight into the environmental

processes that generate crime (the focus of sociological inquiries) and improved pre-

dictive performance: spatial choice modeling. Spatial choice models are based upon

the work of Daniel McFadden’s development of discrete choice theory (McFadden,

1974). In McFadden’s formulation, actors, indexed by j, evaluate the utility, U , that

they would derive from choosing an alternative based upon the features or attributes
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of that alternative:

Uij = βXij + εij (6.1)

In the above formulation, X denotes the vector of features or attributes for al-

ternative i. The ε term captures the error associated with each pair of actors and

alternatives while β records the regression coefficients of the model. McFadden es-

tablished the theoretical foundation for the use of conditional logistic regression to

model choice from a discrete set of alternatives. When actors are choosing from a

discrete set of alternatives, then their probability of selecting alternative i, P (y = i),

can be modeled using the well-known logistic regression equation:

P (y = i) =
eβXij

N∑
i=1

eβXij

(6.2)

Several groups of researchers have applied this approach in a spatial context for

modeling criminal site selection preference. Several examples of the direct application

of McFadden’s discrete choice theory to crime include an analysis of the target selec-

tion by burglars in The Hague, Netherlands (Bernasco and Nieuwbeerta, 2005) and

several studies of robberies in Chicago (Bernasco and Block, 2009; Bernasco et al.,

2012). Xue and Brown (2006) develop criminal site selection models that adapt

the spatial choice modeling approach for conditions in which the individual discrete

choices (crimes) cannot be attributed to individual criminals, which is the case for

most of the crime data available to police for use in predictive policing. Their work

provides an extensive discussion of the assumptions involved in this model adaption

but, in brief, their approach relies upon assuming that both the choice set and the

decision-making preferences of all of the modeled actors (criminals) in the study do-

main are similar, and the model therefore describes what is generally true about the
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criminal preferences in a geographic region.

Xue and Brown (2006) also incorporate the idea of using feature-space rather than

geographic coordinates to represent the locations of crimes. Feature-space is defined

as the Euclidean distance to each of the features of interest such as various crime

attractors and crime generators (Liu and Brown, 2004). Their research group has

shown that various forms of these criminal site selection models significantly improve

predictive performance over the traditional kernel density method in predicting bur-

glaries (Liu and Brown, 2004; Xue and Brown, 2006) and terrorist events (Brown

et al., 2004) such as suicide bombings (Smith and Brown, 2007). On noted reason

for this performance improvement is that these criminal site selection models can

highlight high risk areas (those very likely to observe a future criminal incident based

upon the features of that location) that kernel density approaches do not highlight

because they are far from previously observed crimes (Liu and Brown, 2004). Huddle-

ston and Brown (2009) extend these criminal site selection models using multilevel

modeling to further improve performance for predicting the locations of crimes by

specific criminal street gangs.

6.1.3 Multilevel Modeling

Multilevel models, sometimes called heirarchical models, extend traditional regression

models by allowing regression coefficients to vary from group to group (Gelman and

Hill, 2007). The two common alternatives to multilevel models are pooled models,

in which all groups are pooled together and treated as one, and no-pooling models,

which build a separate model for each group. No-pooling models often suffer by not

considering generalities of behavior that are captured only when all incidents are

included in the model development. On the other hand, modeling spatial behavior

with a pooled model can apply generalities to groups to whom they may not apply

(Fotheringham et al., 2000). Multilevel modeling addresses both of these shortcomings
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simultaneously by partially pooling the results of both analyses (Gelman and Hill,

2007).

6.2 Santa Ana Gang Data

Data for this analysis came from three sources, which are illustrated in Figure 6.1.

First, the authors used the Gang Incident Tracking System (GITS) database to eval-

uate the performance of this new methodological approach. The GITS project was

introduced in 1993 to help law enforcement officials in Orange County, California

“make more informed decisions to counter gang activity, which had been on the rise

in recent years (Meeker et al., 2002).” The authors used a subset of the data par-

ticular to the city of Santa Ana, California, for the period from 1994 through 2000.

Incidents from the period 1994-1998 were placed into a training set and data for the

period 1999-2000 was held out to serve as a model performance test data set. This

approach was taken to mimic the approach that would be taken by law enforcement

agencies in using statistical software to predict gang activity in their jurisdictions. In

order for an incident to be classified as gang activity and entered into the database,

it went through a rigorous verification process described by (Meeker et al., 2002).

Information about each gang incident included information on the responsible gang

(if known), the specific crime (one of 21 different crimes such as felonious assault,

homicide, burglary, etc.), criminal event type (violent, weapons, property, drug, or

vandalism), and geographic information about the location of the crime. Table 6.1

provides a summary of the various crime counts by gang and crime type for the

training and test data sets.

(Meeker et al., 2002) extensively document the three step verification process

used to add gang-related incidents into the data base. An incident was added to the

database if it met one of four criteria for establishing a gang-related incident:
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1. A suspect or suspects are identified as gang members or admit membership in

a gang

2. A person becomes a victim due to his or her gang association

3. A reliable informant identifies an incident as gang activity

4. An informant of previously untested reliability identifies an incident as gang ac-

tivity, and this identification is corroborated by other independent information

More than 75% of the incidents in the data set have no identified gang affiliation

for the perpetrator. While there are more than 132 unique gangs identified in the

database, the vast majority of them are attributed very few crimes. For instance,

there are 59 gangs in the dataset who are attributed only one crime over the eight

year period and 97 of the gangs commit an average of less than one crime a year.

Results are presented in the next section for the analysis of three different data

sets. First, the Sphere of Influence (SOI) analysis is demonstrated on an analysis of

the six largest and most active gangs in the city. These six gangs account for 33%

of the crimes in the data set for which the perpetrator’s gang was identified. All

six of these gangs have large gang territories mapped on the police intelligence map

discussed below. The second data set extends the first SOI analysis to mapping the

spheres of influence for the 15 most active gangs in the city. Incidents by these 15

gangs comprise 58% of the crimes in the data base for which the perpetrator’s gang

is known and all of these gangs have either a gang territory or gang point location

(address) identified for them on the police gang intelligence map discussed below.

The last SOI analysis discussed uses all of the incidents in the dataset.

The US 2000 Census provided the second data source, used for demographic in-

formation. Demographic information from the 2000 census was represented as an

irregular surface with discrete demographic values recorded at the census block group
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level. Each criminal incident that fell into a given census block was given the socio-

demographic information of the census block group it fell within. Socio-economic and

demographic features found to be relevant included: median income, property, and

rental values; racial demographics; the percentage of males in the population; the

percentage of the population on public assistance; and the percentage of residents

who own their homes.

The authors also obtained a gang intelligence map from the Santa Ana Police

Department, which was dated in the year 1998. The gang intelligence map detailed

the claimed gang territories of the city’s largest gangs and point locations (addresses)

for many of the smaller gangs in the city. They also showed regions of the city claimed

as gang territory by more than one gang - areas we termed “conflict territories.”

The data available presents some constraints and limitations on the analysis. First,

as seen in Table 6.1, the crime counts for the property, drug, weapon, and vandalism

crime counts are very limited, with null observations for many crime type and gang

combinations. In a study of gang street crime in Chicago, (Block and Block, 1993)

found that the spatial distribution of drug crimes and gang turf-motivated violent

crimes differed. It may be true that the spatial pattern of the various crime types

differ in Santa Ana, but the limited number of crimes by type, especially in the test

data set, prevent this consideration. Due to the limited number of observations, crime

types were pooled together by gang.

The second significant limitation was that the only gang intelligence product still

available for this time period was a gang intelligence map for the city of Santa Ana

from the year 1998. Thus, we made the assumption that the gang territories remained

static throughout the study period (1994-2000). Some authors have noted that gang

boundaries in other cities tend to shift relatively frequently (Block, 2000), so this

assumption may not be valid but was necessary for the purposes of this study. More

accurate intelligence products that incorporate shifting gang boundaries (if neces-
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Figure 6.2: Workflow for producing a gang criminal SOI analysis.

sary) should improve the accuracy of this approach in police applications because the

statistical models used map the relationship between the probability of crime by a

particular gang and distance to their gang territory or known address. Therefore, the

models demonstrated here can adapt the model prediction (and the predicted sphere

of influence for a criminal gang) if gang territory boundaries change over time.

6.3 Methodology

Developing the Sphere of Influence (SOI) analysis for criminal gangs consists of three

steps: data-set preparation, statistical modeling of gang criminal preference, and

communication of results in a GIS system. Figure 6.2 provides a work-flow diagram

for completing this analysis.
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Developing the dataset for the statistical model is not possible without the use

of a GIS system to conduct data preparation. During this step, inputs from many

different data sources are fused together into a single data table that is exported into

a statistical software package. The final product of the data preparation stage is a

GIS point layer containing descriptive information about both the locations where

the crime occurred and a “null grid.”

In order to provide representation for all of the locations not chosen by the criminal

gangs, we incorporated a null grid by laying a point grid spaced at 200 feet over the

study area. This use of a null grid converts the irregular census block data surface into

a regular lattice of point sites with discrete variables (Besag, 1974). This approach

allows us to fit the regression model by providing null occurrence observations in

geographic space in very rough approximation to the proportion of the surface area

of the city that did not observe criminal incidents. It also allows us to develop

the predicted continuous threat surfaces illustrated in Figure 6.5 by mapping the

predictions over the null grid surface.

Additional GIS data preparation processes include: geocoding the data set of crim-

inal incidences, developing a point grid layer to represent locations where a crime did

not occur as previously described, merging these two point layers together, conducting

a spatial join to give the point layer socio-demographic features from census blocks,

and calculating the Euclidean distance from each individual point to important spatial

features (sometimes referred to as feature space modeling) in the environment such

as gang territories or addresses identified in police intelligence products. The final

product of this step is a data table produced from a GIS point layer that contains the

following information for each point: binary incident marker (0=null, 1=incident);

Census 2000 socio-economic and demographic data; and the Euclidean distance to the

nearest: gang territory, gang territory boundary, known gang address, and gang ter-

ritory conflict. In the case that a crime occurred in one of the geographic regions such
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as a gang territory, then the feature-space distance to that predictor was recorded as

0.

Once the analysis data table is built in a GIS, the results are exported into the

statistical software package R for statistical modeling. Using a multilevel generalized

linear model, we examine not only the relationships between the features of interest

and the incidence of crime, but we also identify how those relationships vary across

the modeled groups. Thus, the multilevel modeling approach allows one to identify

the generalities of gang criminal behavior while still modeling the uniqueness of how

each gang interacts with the environment. Capturing this trade-off between what is

generally true of all gangs and what is unique to each gang significantly improves our

ability to predict the criminal behavior of each individual gang in the future. This

stage of the analysis includes developing models of the criminal site selection behavior

of the various criminal gangs including: feature selection, performance assessment of

the various models (on both training and test data sets), and using the multilevel

modeling to develop predictions for future behavior by the criminal gangs. These

statistical models answer one of the research questions posed in the introduction:

What makes one location more likely to experience a gang incident than another

location? The final output of the statistical modeling stage is a “threat data table”

which records the risk of criminal behavior by each criminal gang at every point in the

original data table. This threat data table is then exported back into a GIS system

and appended to the original data point layer.

The last stage consists of using a GIS system to develop products for use by

law-enforcement agencies. First, the threat data table can be used to plot “threat

surfaces” for each of the criminal gang in the GIS system (see Figure 6.5). These

threat surfaces show areas where each criminal gang presents the greatest threat

and are analogous to the “hot-spot maps” commonly developed using kernel density

estimation. The point layer can also be used to map the regions where each of
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the criminal gangs presents the greatest threat (see Figure 6.5), a product we term

the “sphere of influence” map. This product illustrates where each criminal gang

is the most likely to commit a crime. Finally, the threat surfaces can be used to

develop products useful for allocating police resources to specific high threat areas

(see Figure 6.6). This product shows the highest probability areas in the city to

observe a crime (for example the highest 5 percent risk areas) and the criminal gang

most likely to commit a crime there.

6.3.1 Multilevel Modeling of Gang Criminal Site Selection

The following notation captures the results of the data preparation stage:

N = the number of observations in the data set

J = the number of groups represented in the data set

K = the number of predictors

X = the predictor matrix

Y = the response vector

yi =

{
1 if an incident occurred at the location

0 if an incident did not occur at the location

}

for i = 1,...,N

X =


x11 · · · x1K
...

. . .
...

xN1 · · · xNK


This takes into account that criminal actors can select more than one location for

their crimes. Thus, each actor can make several selections out of the set of available
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locations, each of which will be coded with the dummy variable 1, while all locations

not selected by that actor would be coded with a 0. Note that in this application, we

are modeling each criminal gang as an “actor.” Thus, all individuals within the gang

are assumed to have the same criminal preference set and the same choice set. These

criminal preferences and choice sets are assumed to vary between gangs.

As documented by Brown et al. (2004), generalized linear models using a logit link

function can account for the feature space distances to key features as well as categor-

ical variables. Applying a logistic regression to model the criminal preferences of the

studied group allows us to incorporate all different types of available data discussed

above: feature-space data, categorical data (such as presence in a gang territory),

and socio-demographic information from the census. This methodological approach

is also beneficial in that it allows us to incorporate the idea of a criminal’s journey

to crime, a theory that assumes that the likelihood of an offender’s target selection

decreases with the distance to the target from his home (Bernasco and Nieuwbeerta,

2005; Rengert, 2004). In this case, the perpetrator’s “home” is represented by the

gang’s home territory or known point site (address).

A logistic regression also provides a closed form solution to modeling the criminal

preference by returning a value between 0 and 1 indicating the conditional likeli-

hood of an event occurring at a given location. The conditional likelihood expresses

the following idea: given that a criminal event has occurred, the probability that it

occurred at this location is [a number between 0 and 1]. Although the geographic

spatial choice methodology developed by Xue and Brown (2003) can incorporate tem-

poral considerations, we have ignored temporal variations and constraints as is often

done in criminological research (Bernasco and Block, 2009; Ratcliffe, 2006). Fox and

Brown (2012) provide a methodology for incorporating temporal considerations using

a multilevel modeling approach.
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6.3.1.1 The (No-Pooling) Group Specific Criminal Site Selection Model

First, as an illustration of how spatial choice models have previously been used to

predict attacks by specific criminal groups, we define the group specific spatial choice

model. We therefore define ¶j(yi = 1) as the conditional probability of a criminal

incident by criminal gang j. Thus, we get J models of the form:

Pj(yi = 1|X) = logit−1(αj[i] + βj[i]Xi) (6.3)

The notation j[i] indicates that the observations for each individual group j are

indexed during model fit by the known group for the actual event observation i.

In other words, when the model is fit using actual incidents, model Pj(yi = 1|X)

is developed using only incidents identified in the training data set as having been

committed by group j. In this manner, the no-pooling model fits the group spe-

cific criminal preference. This model represents the method currently used to build

criminal preference models for specific groups in military and police crime analysis

software that employ the spatial choice method. This model approach often fails

to provide good performance when there is a small number of observations for each

criminal group. Accordingly, there is often not enough information to build a good

predictive model for a criminal group based only upon the number of incidents they

are known to have committed. Statistically derived models often benefit greatly from

the addition of observations.

6.3.1.2 The Multilevel Criminal Site Selection Model

The multilevel model is of the same logistic regression form as the above model.

The key difference in the multilevel model is that an additional constraint is placed

on the coefficients for each of the different groups. We require that the coefficients

for each feature of interest across the modeled criminal groups come from a common
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distribution that is estimated at the time of model fit. This defines the two levels of the

multilevel model. We model both the relationship between the features of interest and

the incidence of crime and how those relationships vary across the modeled groups.

This two part structure can be seen in the multilevel model below:

Pj(y[i] = 1|X) = N
(
logit−1

[
αj[i] + βj[i]Xi

]
, σ2

y

)
(6.4a)(

αj
βj

)
∼ N

((
µα
µβ

)
,

(
σ2
α ρσασβ
ρσασβ σ2

β

))
(6.4b)

Thus, the probability of an event by group j at location i, Pj(yi = 1), is Gaus-

sian distributed with a mean determined via the logistic regression and variance σ2
y.

Additionally, we have a model for how the different gangs interact with each feature

of interest, with the assumption that there are differences in how the various gangs

interact with each feature of interest and that those differences can be modeled with

a Gaussian distribution. As an example, every gang will have an intercept term in

the logistic regression equation which we model as the term α. We model that all

αj come from a Gaussian distribution with estimated mean µα, variance σ2
α, and co-

variance parameters to the other features of interest. These coefficients that vary by

group are sometimes referred to as random effects, referring to the randomness in the

probability model for the group level coefficients (Gelman and Hill, 2007).

The requirement for each coefficient for the groups to come from a common dis-

tribution generates a tradeoff between the two extremes of the general model and

group-specific model. It incorporates what is known about the general criminal pref-

erences but is weighted towards the group specific model in rough proportion to each

groups’ contribution to the general model. This approach allows us to identify the

generalities of gang behavior while still modeling the uniqueness of each gang.
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6.3.2 Model Fitting and Feature Selection

To fit the models for this analysis, we used a popular and freely available statistical

package in the statistical software R (Cahill and Mulligan, 2007), which provides a

computing package for fitting multilevel models based on the algorithm developed by

Bates and Pinheiro (1998). Detailed information on algorithms for fitting the multi-

level models using a maximum likelihood approach can be found in Huddleston and

Brown (2009), Jiang (2007), and Bates and Pinheiro (1998). We also unsuccessfully

sought an automated process for feature selection. In fitting traditional regression

models, stepwise regression is a popular choice for automated selection of features

from a set of possible predictors (Hastie et al., 2001). During each “step”, the al-

gorithm adds or drops one predictor and calculates both the statistical significance

of all the predictors and a performance statistic such as model deviance or Akaike

Information Criterion (AIC) (Akaike, 1974). The subset of features that provides the

best performance for a given performance statistic is the subset selected for use. Fea-

ture selection for a multilevel model is more difficult because we are simultaneously

modeling several (or many) groups at a time. A predictive feature which is important

for the performance of one group may be unimportant for others, and insignificant in

the pooled model from which the multilevel models are extended. The solution we

used to address this problem was to first conduct a step-wise regression of all available

features for each of the gangs. Then, we iteratively conducted stepwise regression on

the entire subset of features to identify the model that provided the best performance

on the training data set of all analyzed gangs (holding out the test data set for later

performance evaluation of the selected model). The model fitting package provided

for R did not support step-wise regression of a multi-level model and the inability to

conduct automated feature selection of the multilevel model remains a hindrance in

the automated application of this approach to law-enforcement software

For each of the features selected, we then have a mathematically defined relation-
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ship for how that feature is related to the incidence of crime. For example, Figure 6.3

illustrates the effect that gang territories have on the incidence of gang crime. This

relationship is modeled as an exponential drop in probability as you move away from

gang territories and confirms previous research on the effect of gang territories on the

incidence of crime (Ratcliffe and Taniguchi, 2008; Tita and Ridgeway, 2007; Tita and

Cohen, 2004). The advantage of the multilevel model is that we can also observe the

differences in how various gang respond to individual features. The right panel of Fig-

ure 6.3 illustrates the differing effects of Gang 1’s territory on the incidence of crime

by various criminal groups. As one would expect, Gang 1’s territory is correlated

with incidences of crime by that group, after all other factors have been considered.

The overall effect of Gang 1’s territory on the incidence of crime is minimal (this is

the “fixed effect”). The multilevel model does identify that increasing distance from

Gang 1’s territory increases the log-odds for a crime by Gang 5.

The relationships that the multilevel model identifies in the fixed effect and in

the incidence of crime by Gang 5 with respect to Gang 1’s territory merits additional

discussion. These two territories overlap and therefore there is some co-linearity

between these two predictive features. Likewise, each individual gang’s territory has

some co-linearity with the predictive feature “Distance from Gang Territory.” The

most important predictive feature for each gang in the multilevel model is the distance

to its own gang territory, so each gang’s territory must appear in the model to preserve

model predictive performance for that gang. As a result, we must be very careful

not to draw general conclusions about the effects of the individual gang territories

predictors, especially those with known co-linearity to other territories. Because

we are concerned primarily with predictive performance, and predictive performance

suffers greatly with the removal of these features, we have continued to simultaneously

use the feature-space distances to each of the considered gang territories and the

feature-space distance to the nearest gang territory as a general predictive variable
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in our analysis. This use facilitates predictive performance but limits our ability to

draw strong conclusions about the significance and importance of the various features.

Because of the intended application for building predictive software, this is acceptable.

It would not be acceptable for a sociological examination of features important to the

incidence of crime.

6.3.3 Kernel Density Mapping of Gang Criminal Site Selec-

tion

As previously noted, kernel density estimation is the most frequently used approach

for developing predictive threat surfaces in police applications. The kernel density

approach is briefly presented here to provide a point of reference for performance

assessment of the criminal site selection methods presented in the previous section.

The kernel density method estimates the crime intensity at each location for gang j.

Let sjn denote the location of the nth crime by group j and Nj the total number of

crimes in the training data set attributed to gang j. The crime intensity for gang j

at location i, λij, is calculated using a kernel smoothing function.

λij = f̂jh(yi) =
1

Njh

Nj∑
n=1

K

(
‖yi − sjn‖

h

)
(6.5)

In Equation 6.5, the notation ‖yi − sjn‖ denotes the Euclidean norm (distance)

between locations yi and sjk. Model fitting requires the selection of the kernel function

K and the bandwidth parameter h. In this application, we used the quartic kernel

function and selected the optimal bandwidth for each gang using maximum likelihood

estimation on the training data set as implemented in R software by the splancs

package (Rowlingson et al., 2012; Bivand et al., 2008).
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6.4 Results

Once the models have been fit, we build predictive threat surfaces for each of the

modeled groups by predicting the conditional probability for every point on the null

grid. The null grid, coded with the conditional probabilities at each grid point, is

then exported to a GIS system as a point shapefile. This point layer is converted

into a raster threat surface by interpolating between points. The final product of

the predictive models is a threat surface created in a GIS system such as those in

Figure 6.5. The ability of the multilevel model to provide distinct threat surfaces

for each of the gangs is evident in Figure 6.5. Note that many of the gangs share

high-probability areas. Note also that many of the high-threat areas for these gangs

lie outside of their claimed gang territories. These threat surfaces address the most

likely courses of action for each of the studied criminal groups, facilitating targeting,

interdiction, and observation of their members.

A threat surface produced by a predictive algorithm can be thought of as a binary

prediction of the probability of criminal incident at each individual location. Thus,

threat surfaces can be evaluated using methods developed to assess the performance

of binary classifiers. Recent years have seen the Receiver Operating Characteristic

(ROC) curve become particularly popular for evaluating and comparing predictive al-

gorithms in the machine learning community (Fawcett, 2006, 2004; Spackman, 1989).

The ROC curve plots the cost-benefit trade-off for a classifier at all possible classi-

fication thresholds (Fawcett, 2004). The cost, plotted on the horizontal axis, is the

model’s false positive rate. The benefit, plotted on the vertical axis, is the model’s

true positive rate (also called model sensitivity or hit rate).

ROC curves are a two-dimensional representation of classifier performance and

often researchers would like to reduce performance to a single (scalar) statistic. The

most common approach for summarizing ROC performance is to calculate the area

under the ROC curve (denoted AUC) as a scalar value representing model classifica-
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Figure 6.4: Threat surfaces for each criminal gang illustrated with the corresponding
gang territory.
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tion performance (Fawcett, 2006; Hanley and McNeil, 1982). This statistic represents

the probability that a randomly chosen positive incidence (in this application a ran-

domly chosen location where a crime has occurred) will score higher than a randomly

selected negative instance (i.e. a randomly selected location from the “null grid”

created to represent non-incidents) (Fawcett, 2006). The AUC is equivalent to the

Wilcoxon test of ranks commonly used in categorical data analysis (Fawcett, 2006;

Hanley and McNeil, 1982) and is also directly related to the Gini coefficient (Breiman

et al., 1984). The AUC is often considered to be the standard method to assess the

accuracy of binomial classifiers. Table 6.2 provides a performance comparison of

the predictive performance of the three previously discussed modeling approaches on

the test data set using the Area Under the Curve (AUC) statistic derived from the

Receiver Operating Characteristic (ROC) curve.

As can be seen in Table 6.2, the multilevel modeling approach provides the most

accurate predictive threat surfaces. AUC scores of 0.5 provide no discriminatory

value. An AUC score above 0.75 is considered to provide enough discriminatory

power to be clinically useful in the medical community, and AUC scores above 0.97

are considered to provide excellent discriminatory power (Fan et al., 2006). The

kernel density method provides moderately useful discriminatory power and this per-

formance combined with its ease of use explains its wide-spread use in policing ap-

plications. Note that both criminal site selection models significantly improve on

the often-used kernel density approach, confirming similar results obtained in other

studies (Liu and Brown, 2004; Brown et al., 2004; Xue and Brown, 2006; Smith and

Brown, 2007). The performance improvement between the no-pooling and multilevel

modeling approach is primarily due to the ability of the multilevel model to leverage

the additional information provided by considering the preferences of the other gangs

and ability of the model to find the optimal tradeoff point between individual gang

models and a model that pools all gang information. The performance improvement
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Gang Multi-Level Model No-Pooling Model Kernel Density Model
1 0.97 0.97 0.82
2 0.98 0.98 0.76
3 0.99 0.96 0.88
4 0.99 0.94 0.78
5 0.98 0.97 0.72
6 0.98 0.92 0.85

Table 6.2: Predictive performance summarized using the Area Under the Curve
(AUC) statistic.

between the no-pooling model and the multilevel model is relatively small, but the

multilevel modeling provides an additional benefit: the ability to conduct a Sphere

of Influence (SOI) analysis.

6.5 Sphere of Criminal Influence

The Encarta World English Dictionary (Soukhanov, 1999) defines a sphere of influence

as “a region of dominance; a geographic region or area of activity in which a state,

organization, or person is dominant.” We define the predicted criminal sphere of

influence for a group as the geographical area where a given model predicts that each

group is the most likely to commit a crime (i.e. the geographic regions where one

gang’s threat surface is higher than all other gang’s threat surfaces). This sphere of

influence is created by mapping the calculated Pj(y[i] = 1) for all j groups and all

grid points, yi. By comparing each group level threat surface, we determine where

each of the J groups is dominant. Figure 6.5 illustrates the results when sphere of

influence maps are built with the three modeling approaches discussed in this paper.

As can be seen in Figure 6.5, neither the no-pooling or kernel density models

provide coherent sphere of influence maps. The issue with both of these approaches

is that the probabilities (or intensities in the kernel density approach) have been cal-

culated only considering the effect of one gang at a time (i.e. there are six different

models built in each case). When the threat surfaces for the different gangs are com-
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pared with these models, the resulting sphere of influence maps are non-contiguous

representations due to the fact that the different rates of criminal activity were not

considered in the developed models. In contrast, the multilevel modeling approach

simultaneously models all gangs. The resulting sphere of influence map plots a con-

tiguous sphere of influence for each of the six gangs centered around their claimed

gang territories. In some cases, a dominant gang’s sphere of influence encroaches upon

a neighboring gang’s territory and all gang “territory conflicts” have been divided into

competing spheres of influence.

Table 6.3 displays the results obtained when we investigate the veracity of the gang

SOI analysis by examining the predictive performance of the SOI analysis against a

test set. Table 6.3 records the percentage of incidents during the test period (1999-

2000) which were committed in each predicted criminal sphere of influence by the

various gangs. As can be seen in the table, the multilevel model accurately predicts

the gang most likely to commit a crime for each sphere of influence.

Table 6.4 expands this analysis by comparing the performance of the sphere of

influence analysis conducted with the three models. While the gang spheres of in-

fluence from all three approaches often correctly identify a geographic area in which

the predicted group is the most likely to commit a crime, the performance of the

multilevel model is much better. The spheres of influence predicted by the multilevel

model contain a higher percentage of incidents committed by the predicted group in

every case and provides significantly better overall performance, providing a more

accurate prediction for where each gang is dominant.

The no-pooling model and KDE models perform as well as they do on this analysis

only because most of the crimes by these gangs fall into areas with high predictions

for the respective gangs (i.e. both models’ predictive performance is pretty good).

These areas represent hot-spots for each group and the peak risk areas for each gang
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Sphere of Influence Incidents Committed by Each Gang in Indicated SOI

Gang 1 Gang 2 Gang 3 Gang 4 Gang 5 Gang 6

Gang 1 SOI 61% 19% 3% 3% 10% 3%

Gang 2 SOI 7% 80% 0% 0% 7% 7%

Gang 3 SOI 0% 21% 50% 14% 0% 14%

Gang 4 SOI 0% 0% 0% 78% 11% 11%

Gang 5 SOI 9% 23% 5% 9% 55% 0%

Gang 6 SOI 0% 0% 0% 0% 0% 100%

Table 6.3: Multilevel Model SOI predictive performance.

Sphere of Influence Multi-Level Model No-Pooling Model Kernel Density Model

Gang 1 61% 48% 56%

Gang 2 80% 78% 55%

Gang 3 50% 25% 35%

Gang 4 78% 58% 50%

Gang 5 55% 45% 53%

Gang 6 100% 85% 94%

Overall Performance 69% 51% 57%

Table 6.4: Percentage of test incidents committed by each group in predicted SOI.

are still accurately mapped. The multilevel model better sorts out who presents the

greater threat in the regions that aren’t hot-spots for the different gangs.

The predicted criminal sphere of influence provides important insight for an ana-

lyst that is not available to analysts who currently only have access to incident hot

spots and known gang areas. This is because criminal gangs often commit crimes

outside of their known territories or in geographic areas contested between gangs.

For example, in the two year test data set period (1999-2000) of this study, nineteen

percent of the crimes attributed to the six most active gangs were committed in areas

claimed by more than one gang, which we term “territory conflicts.” Thirty percent of

the crimes committed by these six gangs occur outside any of their known territories.

The sphere of influence prediction maps which of the groups is most likely to commit



143

Figure 6.6: Gang Resource Map showing the highest probability areas for gang ac-
tivity in the city and the gang most likely to commit a crime at that location.

a crime in these geographic areas which lay away from the areas other intelligence

assets indicate is their home territory. Figure 6.6 provides an illustration of how this

information can be leveraged. It provides a “gang resource map” that illustrates the

highest five percent risk area for gang activity in the city and identifies the gang most

likely to commit a crime in those areas. This map can be developed either by directly

identifying the highest probability risk areas and responsible party in the statistical

package and exporting that information in the threat data table or by leveraging

the three-dimensional modeling capabilities of GIS systems that use the “heights” of

the threat surfaces and an intersecting plane to produce this reference product (the

authors developed this illustration using the ArcGIS ArcScene software).

6.6 Extending the Analysis to More Gangs

We then extended the SOI analysis for Santa Ana to consider more than the six

largest and most active gangs. First, we extended the analysis of the gangs in Santa

Ana to include all incidents from the 15 most active gangs in Santa Ana. These 15
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Figure 6.7: Sphere of Influence Map for an SOI analysis of the 15 most criminally
active gangs in Santa Ana.

gangs commit 58% of the crimes in the data base for which the gang affiliation of

the perpetrator was known. The sphere of influence continues to be a very accurate

predictor of where each gang is the most likely offender for a gang related crime

incident, even as more gangs are added to the analysis. Extending this analysis is

important because, while the analysis of the six largest gangs serves to illustrate the

effectiveness of the multilevel model over the other approaches, to accurately assess

the situation in a given geographic region we would have to consider all of the criminal

elements.

The 15 gang sphere of influence map in Figure 6.7 identifies where in the city

each of the 15 most active gangs presents the dominant threat. Although there are
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more gangs active within the city of Santa Ana, the remaining gangs all commit less

than five crimes per year, and thus have comparatively little influence. The map

above serves as a reference document for a law enforcement analyst, identifying the

dominant threats in each area of the city. There are some edge effects visible when

comparing the change from the six gang SOI to the fifteen gang SOI. Work continues

on how to reduce the edge effects near the boundaries of the city that are most easily

visible in the changes to gang boundaries across the southern border of the city. Note

that Gang 10 has no visible sphere of influence in Figure 6.7. This is because it is

dominated by larger gangs nearby.

Table 6.5 records the predictive accuracy of the 15 gang sphere of influence analy-

sis. The multilevel model sphere of influence accurately predicts the gang most likely

to commit a crime in the given sphere of influence for 10 out of 12 spheres of influence

in which a crime occurred during the test period. In Gang 9’s predicted sphere of

influence both Gangs 8 and 9 had an equal number of crimes. In Gang 8’s sphere of

influence, Gang 10 (which has no predicted sphere of influence) committed the ma-

jority (three out of four) of the crimes. Given the limited number of crimes in these

two smaller spheres of influence, it is difficult to determine whether the SOI analysis

did poorly for these two regions due to changing conditions during the test period

(1999 - 2000) or because it simply did not model the SOI for these two gangs well.

Overall, the SOI analysis appears to provide a fairly accurate map of the regions of

dominance for these criminal gangs.

The last analysis conducted used all incidents in the data set, including the inci-

dents in which the offending gang was not identified. These incidents were classified as

belonging to the “unknown” gang. This analysis revealed several important insights

into conducting an SOI analysis. First, the sphere of influence for the “unknown

gang,” which is attributed more than 75% of the crimes in the data set, extends

to cover the entire city. Thus, the sphere of influence analysis developed from this
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scenario is uninformative. Second, the predictive performance for the known gangs

already modeled suffered significantly when the “unknown gang” incidents were in-

cluded in the training data set. This almost certainly happens because the model

structure assumes that all members of a gang operate from a similar preference set

and that the model coefficients for all gangs come from a common distribution (see

Equation 6.4). Because of the large amount of incidents attributed to the “unknown”

gang, this gang’s incidents provide most of the information for the model fitting, re-

sulting in a model skewed towards providing a good fit for a gang that does not exist.

This insight generates the recommendation that when developing predictive models

or a sphere of influence analysis using multilevel models, the appropriate dataset

should contain only incidents in which the discrete choices (for example crimes) can

be attributed to individual groups (or individual actors).

The second insight developed from analyzing the entire data set concerns the need

for location data and sufficient sample sizes for the modeled criminal groups. The

gang addresses or territories for most of the “other gangs” weren’t known and most of

these gangs commit very few crimes. These gangs did not have enough observations

during the testing period to conduct performance assessment of the generated threat

surfaces. They also have no mapped sphere of influence because their threat surfaces

were dominated by at least one of the 15 most active gangs in the city. Note that

multilevel modeling can be conducted even in the case in which there are as few as

one or two observations for individual groups so long as there is a sufficient number

of groups but this exponentially increases the computational burden for fitting the

models (Gelman and Hill, 2007). In this case, including the remaining gangs into the

analysis generated no more insights for a police agency. Thus, we recommend the

SOI analysis be limited to active gangs for which specific location data (addresses or

mapped gang territories) is available.
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6.7 Conclusions

Although this new approach does provide a way of automatically developing a threat

assessment product for use by law enforcement or intelligence agencies, there are

some important caveats to the use of this methodological approach. The first issue

concerns identification of features of interest for use in the multilevel models. The

approach relies on manual step-wise regression because the statistical package used

did not provide a convenient way to automate this. This would be a key feature

needed to provide maximum benefit in the application to crime analysis software.

It took a great deal of time to find appropriate models for increasing numbers of

criminal gangs. This process was very iterative and required some understanding of

statistical significance and the ability to fit and interpret mathematical models. We

were not able to find an approach to easily automate this process, limiting immediate

application in law enforcement software. We also did not have access to all of the

features that we would have liked to include in the analysis. There were many crime

generators and crime attractors (Brantingham and Brantingham, 1981) we did not

include in the analysis that could significantly improve predictive performance.

Another concern with the sphere of influence approach relates to a potential use by

law enforcement personnel. Given a sphere of influence map, many law enforcement

officials are likely to want to use the map to identify the most likely perpetrators

of criminal events after the fact. However, when including all of the incident data

from the GIT database, the “unknown” gang becomes the most dominant sphere

of influence throughout the geographic region. This result is not unexpected since

about 75% of the incidents in the GIT database are attributed to an unknown party.

Since the “unknown” gang commits 75% of the crimes and these crimes are spread

throughout the spatial region of study, the “unknown” gang’s sphere of influence

is modeled as most dangerous throughout the city. This underscores the fact that

in spite of the precise boundaries established between the groups by the sphere of
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influence map, there is still a good deal of uncertainty inherent in the models - the

“unknown” gang’s effect is not mapped.

The sphere of influence map serves as a priori predictors of criminal activity

but should not be used as a posterior identifier of criminal responsibility. Instead,

the sphere of influence map should be a useful tool for resource allocation decisions,

assigning areas of responsibility as part of counter-gang initiatives, or prioritizing

investigative efforts after the occurrence of a crime. One scenario might be that,

given a suspected gang-related event at a specific location, we can identify which of

the gangs are the most likely to have perpetrated the crime and allocate investigative

resources to the most likely culprit(s). The multi-level model can be used to calculate

a confidence interval for the stated conditional probability. Especially in areas near

the sphere of influence boundaries, these confidence intervals often overlap for two

or more groups. The correct approach would be to iteratively assign investigative

resources in a manner consistent with the probabilities proposed by the model. When

no other information about an incident is known, start with the most probable culprits

and work your way through the list of predicted suspects in decreasing order of the

probability of activity at that location.

This methodological approach also has several obvious applications in other do-

mains. The sphere of influence analysis should apply in any domain in which we want

to compare some spatial choice behavior (criminal, consumer, etc.) across individuals

or groups and map the probability that a group’s or individual’s target selection be-

havior will dominate all others at a given geographic point. Future research efforts in

this area include identifying improved approaches for automated feature selection, the

modeling of temporal choice behavior, and the application of multilevel spatial choice

modeling to the spatial choice behavior of insurgent/terror groups, retail customers,

and corporate real estate.



149

S
O

I
P

er
ce

n
ta

ge
of

T
es

t
D

a
ta

S
et

In
ci

d
en

ts
C

om
m

it
te

d
b
y

E
ac

h
G

an
g

W
h

ic
h

O
cc

u
r

in
th

e
S

el
ec

te
d

S
p

h
er

e
of

In
fl

u
en

ce

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

1
3
8
.3

%
2
7
.7

%
0
.0

%
2.

1%
6.

4%
4.

3%
4.

3%
2.

1%
2.

1%
4.

3%
0.

0%
2.

1%
0.

0%
2.

1%
4.

3%

2
0.

0%
7
1
.4

%
0.

0%
0.

0%
14

.3
%

0.
0%

14
.3

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%

3
0.

0%
8
.7

%
3
0
.4

%
8.

7%
0.

0%
8.

7%
0.

0%
8.

7%
0.

0%
13

.0
%

0.
0%

0.
0%

0.
0%

13
.0

%
8.

7%

4
0.

0%
0
.0

%
0.

0%
6
3
.6

%
9.

1%
9.

1%
9.

1%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
9.

1%
0.

0%

5
8.

5%
12

.8
%

2
.1

%
4.

3%
2
5
.5

%
0.

0%
21

.3
%

4.
3%

2.
1%

2.
1%

0.
0%

4.
3%

4.
3%

0.
0%

8.
5%

6
0.

0%
0
.0

%
0.

0%
0.

0%
0.

0%
8
9
.5

%
0.

0%
0.

0%
5.

3%
0.

0%
0.

0%
0.

0%
0.

0%
5.

3%
0.

0%

7
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

8
0.

0%
0
.0

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
2
5
.0

%
0.

0%
75

.0
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

9
0.

0%
0
.0

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
25

.0
%

2
5
.0

%
16

.7
%

16
.7

%
8.

3%
0.

0%
0.

0%
0.

0%

10
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1
1

0.
0%

0
.0

%
0.

0%
0.

0%
0.

0%
28

.6
%

0.
0%

0.
0%

0.
0%

0.
0%

5
7
.1

%
0.

0%
0.

0%
14

.3
%

0.
0%

12
0.

0%
0
.0

%
3
3.

3%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
6
6
.7

%
0.

0%
0.

0%
0.

0%

13
0.

0%
25

.0
%

0
.0

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
7
5
.0

%
0.

0%
0.

0%

14
0.

0%
0
.0

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
1
0
0
.0

%
0.

0%

1
5

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

T
ab

le
6.

5:
S
O

I
p
re

d
ic

ti
ve

p
er

fo
rm

an
ce

fo
r

15
ga

n
g

an
al

y
si

s.



Chapter 7

Journey to Crime Analysis for

Military Cordon and Search

Military forces engaged in counter-insurgency campaigns perform many of the same

security and crime suppression activities as domestic police forces. However, they

are much more focused on capturing or suppressing groups of offenders than cap-

turing and prosecuting individual serial criminals. These criminal groups, organized

into “cells” or small paramilitary elements, cooperate to coordinate attacks on the

local population, the government, and security forces in an effort to destabilize the

government. Cordon and search operations are one of the most frequently employed

techniques military forces use in targeting these criminal groups (U.S. Army, 2009).

Military forces perform cordon and search operations by establishing an impermeable

outer security perimeter (the cordon) and then systematically searching the target

area in an effort to locate enemy combatants or equipment. Effective Journey to

Crime (JTC) techniques provide a method for determining high probability search

zones for military cordon and search.

Journey to Crime analysis, also called geographic profiling, is an investigative

technique employed by police that uses the known locations of a crime series to

150
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determine a serial offender’s anchor point, usually a residence or workplace. Despite

several high-profile successes, JTC methods (Mohler and Short, 2012; Rossmo and

Rombouts, 2008; Paulsen et al., 2010; Levine and Block, 2011) have not yet been

developed that are demonstrably more accurate than simple centro-graphic techniques

such as calculation of the Fermat-Weber point, more commonly known as the Center

of Minimum Distance (CMD) (Levine and Block, 2011; Paulsen et al., 2010; Paulsen,

2006b). Effective solutions to this problem are in high demand because a critical

function in the criminal investigative process is locating unknown serial offenders

(Rossmo and Rombouts, 2008).

This chapter demonstrates the use of two new JTC techniques in support of mili-

tary cordon and search operations against the anchor points (addresses) for the crim-

inal activities of known criminal groups. These methods leverage Criminal Site Selec-

tion (CSS) modeling, a modeling technique previously used to develop hot-spot maps

that predict future criminal activity. CSS models have been shown to significantly

improve predictive performance over traditional kernel density hot-spot methods for

predicting crimes such as burglaries (Liu and Brown, 2004; Xue and Brown, 2006),

terrorist events (Brown et al., 2004), suicide bombings (Smith and Brown, 2007), and

criminal activity by street gangs (Huddleston, 2008; Huddleston and Brown, 2009;

Huddleston et al., 2012). CSS models provide an important extension to existing

JTC methods because the model structure can incorporate the effect of many crime

generators and attractors (Brantingham and Brantingham, 1981) into the geographic

profile (the mapped probability map for the anchor point) while incorporating the

distance-decay modeling used by existing JTC methods.

This research provides several important research contributions. First, one of the

approaches developed in this chapter is more accurate than the current best method

for JTC analysis, calculation of the Fermat-Weber point. Second, the results provided

demonstrate that the geographic profiles developed for these criminal groups are
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often accurate enough to facilitate tactical success, with the modeled criminal group’s

anchor point falling within the search profile for military unit cordon and search

operations. Third, the proposed methodology provides a framework for incorporating

environmental effects, crime attractors, and crime generators as predictive features

in a JTC model. Finally, whereas previous JTC methods have been focused on

individual serial criminals, this chapter documents the first use of JTC methods for

identifying the anchor point for criminal groups.

7.1 Background

JTC analysis (geographic profiling) is defined as estimating the anchor point of a

criminal offender given a set of observed spatial locations for crimes assumed to have

been committed by the individual (Mohler and Short, 2012). It is applied by police to

the investigation of crimes such as serial murder, rape, arson, robbery, and bombing

(Rossmo, 2000). In police practice, JTC is more often used to focus investigative

resources on a subset of an existing list of suspects rather than to identify a point

location for the conduct of a search. For example, in the course of investigating a serial

rape crime series, a mapped geographic profile might be used to focus investigative

resources on the subset of previous sexual offenders granted a high “hit score” based

on a JTC model. This might reduce the list of working suspects from hundreds or

thousands of offenders (in a mid-size city) to less than a dozen. Police might also use

the geographic profile to select an region over which to canvass area residents with a

sketch of the suspected perpetrator etc.

The first JTC models were developed in the late 1990s by Dr. Kim Rossmo of

the Vancouver Police Department. The first generation of JTC models relied on

mathematical scoring methods that use various mathematical functions to estimate

the distance-decay relationship between an offender’s anchor point and the probabil-
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ity that they commit a crime. Subsequently, other researchers applied known cen-

trographic techniques to this problem and demonstrated that simple centrographic

statistics such as CMD often provided better predictive performance than the more

complex scoring approaches. Recently, there has been a surge in research on JTC

methods resulting in several new modeling approaches that employ Bayesian meth-

ods to develop probabilistic estimates for offender anchor points. Several of these new

approaches provide predictive performance equivalent to the simple centrographic

techniques while providing some additional insight.

While JTC models have been shown to provide some value in the police inves-

tigative process, they currently suffer from several shortcomings that make them of

limited use for application in military cordon and search operations. First, no JTC

method has been shown to improve upon simple centrographic methods such as CMD

in terms of predictive accuracy (Levine, 2009a; Snook et al., 2005; Paulsen, 2006b;

Levine and Block, 2011). Second, although the need to incorporate environmental

effects, crime attractors, and crime generators into JTC models is well-documented

(O’Leary, 2009), current JTC methods are very limited in their ability to incorporate

these predictive features. Criminal Site Selection (CSS) models provide a way to ad-

dress these existing shortcomings in JTC models. Details on these modeling methods

are provided in the sections below.

7.1.1 Mathematical Scoring Methods

Scoring methods are based upon the idea that the probability of a crime by a given

criminal decreases with distance from the criminal’s anchor point (i.e., distance-

decay). These approaches use a scoring (decay) function, f , and a distance func-

tion, d, to identify the likely locations for a serial offender’s residence for an index of
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possible locations i based upon a set of observed crimes by an offender {s1, s2, ...sN}:

L(i) =
N∑
n=1

f(d(sn, z)) (7.1)

The distance function, d(sn, z), provides the distance between an observed crime, sn,

and the criminal’s anchor point, z.

Researchers have explored many different methods for both distance and scoring

functions. Reasonable choices for the distance function include “Euclidean distance,

Manhattan distance, the total street distance following the local road network, or the

total time to make the trip while following the local road network (O’Leary, 2009).”

The first JTC method, Rossmo’s Rigel method, uses a Manhattan distance func-

tion and a truncated negative exponential distance decay function (Rossmo, 2000;

Paulsen, 2006b). This decay function includes a buffer around the anchor point un-

der the assumption that criminals will not commit crimes in very close proximity to

their anchor points. The approach developed by Canter et al. (2000) similarly uses a

buffer or plateau around the anchor point, employing a truncated negative exponen-

tial distance decay function (Paulsen, 2006b). However, Canter et al. (2000) employ

a Euclidean rather than Manhattan distance function. Levine (2009a) develops a

more general framework for scoring methods known as the Journey-to-Crime (JTC)

algorithm, which is implemented in the software CrimeStat. The CrimeStat soft-

ware program (Levine, 2009c) offers a plethora of scoring (decay) functions including

linear, negative exponential, normal (Gaussian), log-normal, and truncated negative

exponential functions. The parameters of the distance decay functions are either

fixed based upon previous research (for Rossmo’s Rigel method) or derived from a

training data set (in the case of JTC/CrimeStat). As O’Leary (2009) notes, “Though

each of these approaches are distinct, they share the same underlying mathematical

structure; they vary only in the choice of decay function and the choice of distance

metric.”
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7.1.2 Centrographic Methods

Centrography is the study of descriptive statistics that describe geographic measures

of central tendency. Several centrographic statistics have been proposed for predicting

anchor points for serial offenders including: center of minimum distance (CMD), also

known as the Fermat-Weber point; median center; mean center; directional mean;

triangulated mean; geometric mean; and harmonic mean. Levine (2009a), Snook

et al. (2005), and Paulsen (2006b) conducted studies comparing the performance of

simple centrographic statistics to the more complex mathematical scoring function

approaches. Levine (2009a), the developer of the CrimeStat software program, com-

pared the performance of all scoring methods in the CrimStat software to simple

centrographic measures found that, “simple centrographic measures, especially the

centre of minimum distance (CMD), were, on average, the most accurate measures

of where the offender lived.” Snook et al. (2005) found similar results on a different

data set. Paulsen (2006b) compared the performance of four different JTC software

packages, including Rigel and CrimeStat, to simple centrographic measures and also

found that the CMD method consistently outperformed the other methods. The

CMD method is therefore considered the “current best method” in terms of accuracy

(minimizing the error distance). However, centro-graphic methods have one signifi-

cant short-coming as compared to the scoring methods in that they provide only a

point estimate for the location of the criminal’s anchor point. Scoring methods pro-

vide a “jeopardy surface” that can be used to prioritize search zones (see Figure 1).

A full jeopardy surface gives police an ordered list of high-probability areas to search

rather than a single point.

7.1.3 Bayesian Methods

Several research groups have proposed Bayesian methods to extend existing mathe-

matical scoring methods in hopes of improving predictive performance. These models
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improve distance decay scoring methods by “adding information about where offend-

ers who commit crimes in particular locations tend to be based (Canter, 2009)” or

by modeling environmental effects on criminal target selection. Levine (2009b) and

Levine and Block (2011) develop a framework for using the Bayesian paradigm to in-

corporate the geographic distribution of other offenders who committed similar crimes

as a prior probability for the anchor point. Levine and Block (2011) notes that this

approach, “was more accurate than existing journey-to-crime methods and was as

accurate as the center of minimum distance, the current best method.”

O’Leary (2009) proposes employing the Bayesian framework for addressing what

he asserts to be the most significant shortcoming of existing methods: the inability

to “account for geographic features that influence the selection of a crime site and

geographic features that influence the potential anchor points of offenders.” In the

parlance of environmental criminology, these features are known as crime generators

and attractors (Brantingham and Brantingham, 1981). O’Leary (2010) provides a

demonstration of this approach for a single crime series. However, rather than mod-

eling the effect of crime attractors and generators, he incorporates a kernel density

surface of previous criminal offenses as a proxy for these features and provides no

model performance assessments or comparisons.

Mohler and Short (2012) incorporate kinetic models of criminal motion into the

Bayesian framework for JTC analysis of serial burglars in Los Angeles. In this mod-

eling approach, kinetic models of motion replace the distance-decay function used in

the scoring methods. Additionally, they incorporate mapped housing density as a

“target attractiveness” predictive feature within the model. In a predictive perfor-

mance comparison with the Rigel method, they find that performance is similar to the

Rigel method for JTC analysis of marauding offenders but offers some performance

improvement in providing geographic profiles for commuting offenders. They define

marauding offenders as those whose anchor points fall within the smallest circle con-
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taining the two most widely separated crimes in the series. Marauding offenders are

also assumed to commit crimes isotropically around their anchor point (Canter and

Larkin, 1993). Commuting offenders are those that travel (sometimes long distance)

to a target area to commit there crimes rather than fanning out from their criminal

anchor point.

7.1.4 Criminal Site Selection Models

Criminal Site Selection (CSS) models are used to develop predictive threat surfaces

(hot-spot maps) for future criminal activity in a region of interest. They are based

upon the work of Daniel McFadden’s development of discrete choice theory (McFad-

den, 1974). In McFadden’s formulation, actors, indexed by j, evaluate the utility,

U , that they would derive from choosing an alternative based upon the features or

attributes of that alternative:

Uij = BTXij + εij (7.2)

In the above formulation, X denotes the vector of features or attributes for al-

ternative i. The ε term captures the error associated with each pair of actors and

alternatives while B records the regression coefficients of the model. McFadden estab-

lished the theoretical foundation for the use of conditional logistic regression to model

choice from a discrete set of alternatives. When actors, indexed by j, are choosing

from a discrete set of alternatives, then their probability of selecting alternative i,

Pj(y = i), can be modeled using the well-known logistic regression equation:

Pj(y = i) =
eB

TXij

N∑
i=1

eB
TXij

(7.3)

Several research groups have applied this approach in a spatial context for mod-
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eling criminal site selection preference. Several examples of the direct application of

McFadden’s discrete choice theory to crime include an analysis of the target selec-

tion by burglars in The Hague, Netherlands (Bernasco and Nieuwbeerta, 2005) and

several studies of robberies in Chicago (Bernasco and Block, 2009; Bernasco et al.,

2012). Xue and Brown (2006) develop criminal site selection models that adapt

the spatial choice modeling approach for conditions in which the individual discrete

choices (crimes) cannot be attributed to individual criminals, which is the case for

most of the crime data available to police for use in predictive policing. Their work

provides an extensive discussion of the assumptions involved in this model adaption.

In brief, their approach relies upon assuming that both the choice set and the decision-

making preferences of all of the modeled actors (criminals) in the study domain are

similar, and the model therefore describes what is generally true about the criminal

preferences in a geographic region.

Xue and Brown (2006) incorporate the idea of using feature-space rather than ge-

ographic coordinates to represent the locations of crimes. Feature-space is defined as

the Euclidean distance to each of the features of interest such as various crime attrac-

tors and crime generators (Liu and Brown, 2004). Their research group has shown

that various forms of these criminal site selection models significantly improve predic-

tive performance over the traditional kernel density methods for predicting burglaries

(Liu and Brown, 2004; Xue and Brown, 2006) and terrorist events (Brown et al.,

2004) such as suicide bombings (Smith and Brown, 2007). One noted reason for this

performance improvement is that these criminal site selection models can highlight

high risk areas (those very likely to observe a future criminal incident based upon

the features of that location) that kernel density approaches do not highlight because

they are far from previously observed crimes (Liu and Brown, 2004). Huddleston

and Brown (2009) and Huddleston et al. (2012) extend these criminal site selection

models by using multilevel modeling to further improve performance for predicting
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the locations of crimes by specific criminal street gangs and by using gang anchor

points as predictive features. Based on this research, Huddleston (2008) notes that

the strong distance-decay effect observed when gang anchor points are used as pre-

dictive features indicate that it should be possible to adapt CSS models for JTC

analysis. The remainder of this chapter documents the adaption of CSS models for

use in JTC analysis using a well-known gang data set as an example application.

7.2 Santa Ana Gang Data

Many researchers have noted the similarities between criminal street gangs and insur-

gent groups operating in urban environments (Freeman and Rothstein, 2011; Arnold

et al., 2010; Manwaring, 2005). In this chapter, we use crime data for criminal street

gangs in Santa Ana, California, as a substitute for sensitive datasets from ongoing

military operations. The data comes from three sources: the Gang Incident Tracking

System (GITS) crime dataset for the city of Santa Ana (Meeker et al., 2002), the 2000

US Census, and a gang intelligence map provided by the Santa Ana Police Depart-

ment. The gang intelligence map details known gang territories and point locations

(addresses) for many of the criminal gangs active in the city during the study pe-

riod. The data set contains crime series containing more than 3 criminal events from

the GITS database for 17 of the gangs for which there was a defined anchor point

(address) in the gang intelligence map. The US Census provided socio-economic and

demographic information at the census block group level for Santa Ana. This gang

data set has been used in several previous studies employing CSS models (Huddleston,

2008; Huddleston and Brown, 2009; Huddleston et al., 2012, 2013a).
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Figure 7.1: A geographic profile produced using the CSSB approach for Gang 5’s
anchor point in 3-D (top left), at the city scale (top right), and at the scale appropriate
for tactical level planning (bottom right)

7.3 Methodology

The formal definition of this problem is to identify the anchor point zj ∈ <2 for

criminal group j from a crime series of size Nj committed by that group at locations

Sj = {sj1, sj2, ..., sjNj
}. This anchor point will be probabilistically assigned to a grid

cell of possible locations i ∈ <2 where i indexes a series of 50 meter x 50 meter grid cells

in the domain of interest. The variable I represents the total count of approximately

30,000 grid cells mapped within the city limits of Santa Ana, California. Figure 7.1

provides an example of a geographic profile (the mapped model outputs over the

index i) for a criminal anchor point using one of the methods developed below.
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7.3.1 Data Set Preparation

Developing a CSS JTC model requires a training dataset containing (solved) crime

series linked to serial offenders and their known anchor points. There are several data

preparation steps necessary to develop a CSS model of criminal behavior. First, the

geographic locations of crimes in the training dataset are converted into a marked

spatial point pattern by using a Geographic Information System (GIS) to attach socio-

economic features from the US census as well as calculating the Euclidean distance to

feature-space predictors (Liu and Brown, 2004) such as the responsible party’s anchor

point, the nearest gang territory, the nearest gang address and other crime generators

or attractors (Brantingham and Brantingham, 1981). Note that the distance between

the crimes and anchor points, denoted d(sn, z) in Equation 7.1, is only one of many

geographic distances considered in the model structure. The response variable y for

all of the actual crime locations is recorded as yi = 1. A null grid is laid over the study

domain at 50-meter intervals and marked with predictive features in the same way.

The null grid provides observations for locations where criminals chose not to commit

crimes (i.e. the response variable at these locations is recorded as yi = 0). This grid is

also used to map probabilistic estimates for gang anchor points by plotting the model

predictions over the grid as a raster image, as seen in Figure 7.1. The training data set

therefore contains a response vector Y indexed by i and a predictor matrix X, with

each row of X corresponding to a location i and each column of X corresponding to a

predictive feature. For notational convenience, the distance between group j’s known

anchor point zj and location i is held out of the predictor matrix X and referenced

in the notation below as ||i− zj||.
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7.3.2 Criminal Site Selection (CSS) Modeling of Group Be-

havior

Criminal Site Selection (CSS) models calculate the probability that a crime by group

j occurs at location i using a logistic regression equation.

Pj(yi = 1|Xi, zj) =
exp (AXi +B‖i− zj‖)

1 + exp (AXi +B‖i− zj‖)
(7.4)

As noted above, the vector Y records the binary response (yi = 1 for crime incidence

and yi = 0 for no crime) observed for all unique locations in the study domain. A

defines a coefficient vector that specifies the relationship to the environmental factors

associated with a location which are recorded in vector Xi. The notation ||i− zj|| de-

notes the Euclidean norm (distance) between the known gang anchor point zj and lo-

cation yi. The B coefficient captures the distance-decay relationship for the criminal’s

journey to crime. This model structure improves current JTC analysis techniques in

that it models the effect of the journey to crime relationship after considering other

environmental effects such as socio-economic conditions, crime generators, and crime

attractors that might affect a criminal’s decision-making process.

We fit the logistic regression models in this paper using the stats package in R

software, using step-wise regression to automate feature selection. Predictors consis-

tently selected using step-wise regression for the CSS models included distance to the

gang’s anchor point, distance to other gang addresses (known crime generators and

attractors), median home values, the percentage of homes that were owner occupied,

the percentage of the population 18-30 years old, the percentage of the population on

public assistance, and racial demographics.
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7.3.3 Developing a Geographic Profile from a New Crime

Series

The CSS model is a descriptive model of what is generally true about how crimi-

nals in a specific geographic area respond to environmental factors, crime attractors,

crime generators, and their own geographic anchor points. Once this model is built

for a specific geographic region, it can be used to find the geographic anchor points

for a newly observed crime series. Three methods for generating a predictive geo-

graphic profile are outlined below. The first method (CSSM) uses the CSS model as

a mathematical scoring function, similar to the approach taken in Equation 7.1. The

second approach (CSSB) uses the CSS model within the Bayesian framework. The

last approach uses the CMD algorithm as a mathematical scoring function. The CMD

method is included to enable performance comparison of the CSS modeling approach

for JTC analysis to what is widely considered to be the current best method (Levine,

2009a; Snook et al., 2005; Paulsen, 2006b; Levine and Block, 2011).

The input data used to generate the geographic profile for a new group is a

crime series by that group. This crime series defines the set of crime locations

Sj = {sj1, sj2, ...sjNj
}. In order to employ the CSS model, we must develop the

predictive matrix X used in the CSS model for each of the incidents in Sj, as dis-

cussed in Section 7.3.1 above . This forms the predictive matrix Xj, which contains

Nj rows, with each row indexing crime n. Finally, the Euclidean distance ‖sjn − i‖

is calculated for all i and n.
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7.3.3.1 A Mathematical Scoring (CSSM) Method

The CSS mathematical scoring method (CSSM) calculates the score L for location i

as:

L(i) =

Nj∑
n=1

P (sjn|Xjn, zj = i) =

Nj∑
n=1

[
exp (AXjn +B‖sjn − i‖)

1 + exp (AXjn +B‖sjn − i‖)

]
(7.5)

Note that this modeling approach is of the same form as Equation 7.1. The

Euclidean distance function ‖sjn − i‖ fulfills the role of d(sn, zj) in Equation 7.1.

The CSS model serves as the scoring function f . The significant difference between

this approach and previous mathematical modeling approaches is the ability of the

CSS model to incorporate additional information about environmental factors such

as socio-economic conditions, crime generators, and crime attractors.

7.3.3.2 A Bayesian (CSSB) Method

The Bayesian approach incorporates the CSS model into the Bayesian modeling

paradigm. In Bayes Theorem, the probability of interest P (A|B), called the pos-

terior probability, is calculated from the prior probability of A, P (A); the likelihood

function P (B|A); and the data probability P (B). Thus, the probability of A being

true given that we have observed data B is a function of the likelihood of B occurring

given A (calculated from the likelihood function), the unconditional probability of A

occurring (the prior probability), and the unconditional probability of B occurring

(the data probability).

P (A|B) =
P (B|A)P (A)

P (B)
(7.6)

For this problem, the posterior probability of interest is the probability that the

gang’s anchor point zj is located at location i given criminal event sjn and the predic-
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tive features at the location of the criminal event described by the vector Xjn. Using

Bayes Theorem:

P (zj = i|Xjn, sjn) =
P (sjn|Xjn, zj = i)P (zj = i|Xjn)

P (sjn|Xjn)
(7.7)

The CSS model shown in Equation 7.4 provides the likelihood function. As pre-

viously discussed, the CSS model describes the probability that a crime occurs at

location sjn as a function of the gang’s geographic anchor point and the features of

the environment at the location of interest. Using back-substitution, we can calculate

the likelihood function in the numerator of Equation 7.7 as:

P (sjn|Xjn, zj = i) =
exp (AXjn +B‖sjn − i‖)

1 + exp (AXjn +B‖sjn − i‖)
(7.8)

Here, we use a non-informative uniform distribution to define the prior distribu-

tion P (zj = i|Xjn). This is equivalent to assuming that a group’s anchor point is

equally likely to be located in every possible grid cell in the domain (i.e. a group’s

anchor point could be anywhere within the geographic limits of Santa Ana). Thus,

the prior probability for every grid point is a constant, 1/I. One possible improve-

ment to the demonstrated model would be to assert an informative prior probability

for a group’s anchor point based upon housing densities or other other predictive

features within the domain. Alternatively, as discussed in the conclusions section,

additional intelligence information obtained (such as a list of suspected locations and

their relative probabilities) could be used to provide the prior probabilities for lo-

cations. Levine (2009b) use the jeopardy surface provided by JTC crime modeling

approach to develop a prior probability for their Bayesian JTC model.

Estimating the unconditional probability of the data, i.e. the events observed in

the crime series, has presented some significant challenges in other geographic model-

ing approaches employing the Bayesian paradigm. As Levine (2009b) notes, “there is
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no simple way of estimating the probability of obtaining the information [data] under

all possible scenarios.” He proposes using the (geographic) probability distribution of

all offender residences as a rough approximation for the denominator term in the pos-

terior probability equation. CSS modeling provides one way of addressing this gap.

We can simply fit Equation 7.4 without considering the distance to a gang’s anchor

point as a predictive feature. Then, we can use the resulting CSS model, which has

coefficient vector C, to estimate P (sjn|Xjn).

P (sjn|Xjn) =
exp (CXjn)

1 + exp (CXjn)
(7.9)

This requires fitting an additional model. An alternative approach, employed here,

is to not estimate the prior probability of the data as it isn’t necessary to obtain a good

estimate for the posterior probability density. Note that in the way we have developed

the problem, the unconditional prior probability of the events in the crime series

depends only on the feature set of that location. Since this unconditional probability

is by definition independent of the location of the anchor point, we can assert that

for all possible anchor points we evaluate with the posterior probability function, this

probability will be the same (unknown) constant. The posterior probability can now

be defined as the product of some unknown constant D and the likelihood function

defined in Equation 7.8.

P (zj = i|Xjn, sjn) =
P (sjn|Xjn, zj = i)

IP (sjn|Xjn)
=

1

IDjn

P (sjn|Xjn, zj = i) (7.10)

Therefore:

P (zj = yi|Xjn, sjn) ∝ P (sjn|Xjn, zj = i) (7.11)
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Finally, if we assume that the crime series is a set of independent observations:

P
(
zj = i|sj1, sj2, .., sjNj

)
=

Nj∏
n=1

[
1

IDjn

P (sjn|Xjn, zj = i)

]
(7.12)

The product term
∏Nj

n=1 [1/ (IDjn)] represents some unknown constant. We can esti-

mate a probability density for the anchor point for unique location, f(yi) by dropping

this constant term. The resulting density estimate at location yi is the product of the

conditionally independent probabilities for the entire crime series and is proportional

to the joint posterior probability in Equation 7.13:

f(yi) =

Nj∏
n=1

[P (sjn|Xjn, zj = i)] ∝ P
(
zj = i|sj1, sj2, .., sjNj

)
(7.13)

Figure 7.1 illustrates the resulting mapped probability density surface for one of

the criminal gangs. This density surface is sufficient for planning cordon and search

operations in an effort to locate the anchor point for a criminal group. To obtain

an estimate of the posterior probabilities at the various locations, one can normalize

the probability density surface f(Y ) to sum to one, producing a probability surface.

The resulting mapped joint posterior probability surface is indistinguishable from the

mapped density surface shown in Figure 7.1.

7.3.3.3 The Center of Minimum Distance (CMD) Method

The center of minimum distance (CMD) is calculated as:

CMD = argmin
i∈<2

Nj∑
n=1

‖sjn − i‖ (7.14)

Many researchers have noted that this statistic provides the most accurate point

estimate for the location of a serial offender’s anchor point (Levine and Block, 2011;

Paulsen et al., 2010; Paulsen, 2006b). This significant drawback to the use of this

statistic has been that it provides only a point estimate. However, with some ad-
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justment, the algorithm used to calculate CMD can also be leveraged as a simple

heuristic approach for developing a geographic profile:

L(i) =
1

Nj∑
n=1

‖sjn − i‖
(7.15)

The simple heuristic in Equation 7.15 uses the inverse function to reverse the

minimization function and maps this calculation for all i. This produces a geographic

profile (jeopardy surface) similar to that shown in Figure 7.1.

7.4 Results

To conduct a performance comparison of the three modeling approaches, we used

cross-validation to develop these results by iteratively using the crime series and

anchor points for 16 of the gangs to develop a CSS model and then applied that CSS

model to predict the “unknown” anchor point of the gang held out of the data set. We

assess JTC model performance using three metrics commonly used for geographical

profiling models: error distance, search cost, and profile accuracy (Rich and Shively,

2004). Error distance is the Euclidean distance between the point location predicted

for the anchor point (the i with the highest geographic profile score) and the actual

address for the criminal gang. Search cost is the number of 50 x 50 m grid squares

that would have to be searched in order to find the gang anchor point. Table 7.1

provides error distance and search cost performance for each of the gangs.

The CSSM method provides the best overall performance on these metrics. In

pairwise comparison, the performance improvements the CSSM method provides over

the CMD method are not statistically significant for the the error distance metric but

are significant for search cost performance (p = 0.484 and 0.032 by Wilcoxon Signed

Rank Test). The CSSM approach provides statistically significant performance im-
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Gang Crime Count
Error Distance Search Cost

CMD CSSB CSSM CMD CSSB CSSM

1 8 110 710 184 24 444 83
2 9 572 535 742 435 334 607
3 10 100 100 100 14 13 14
4 8 1535 1535 1564 2418 2761 1794
5 4 69 69 69 10 7 9
6 18 118 273 100 14 90 18
7 22 1010 1112 1067 1307 1653 1047
8 10 2189 2334 1462 6479 6920 4404
9 15 50 20 50 2 1 2
10 5 414 534 387 199 339 195
11 14 1944 1957 1955 4099 4421 2640
12 11 1681 1807 1343 5083 5564 2985
13 14 1517 1632 1490 4012 4219 3394
14 7 459 462 588 289 327 376
15 32 31 73 31 1 3 1
16 15 287 519 183 101 330 23
17 18 216 174 216 46 44 37

Average 13 724 814 678 1443 1616 1037

Table 7.1: Crime counts, error distance (in meters), and search cost (in count of 50
meter x 50 meter grid cells) by gang for the three JTC methods

Search Diameter Search Blocks CMD CSSB CSSM

100 M 4 12% 12% 12%
250 M 25 35% 24% 35%
500 M 100 41% 35% 47%
1000 M 400 59% 59% 59%

Table 7.2: Profile accuracy comparison for various search profiles

provement over the CSSB approach for both error distance and search cost (p = 0.032

and 0.005). The CMD method likewise provides statistically significant performance

improvement in both measures over the CSSB method (p = 0.006 and 0.004).

Table 7.2 summarizes the profile accuracy performance for the three JTC methods

for profile areas that can be used to define the cordon limits for increasing echelons

of military units conducting cordon and search operations. Profile accuracy measures
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the percentage of criminal gang anchor points that would be found by conducting

a cordon and search for a specifically defined region. For example, the geographic

search profile for the smallest echelon of military unit that could conduct a cordon

and search operation is a diameter of about 100 meters laid over the target location,

or the cordon of a neighborhood region containing four 50 x 50 meter search blocks.

The CSSM approach again provides the best overall performance, although for three

of the four search profile zones, the CMD method provides equivalent performance.

Figure 7.2 visually summarizes the information in Tables 7.1 and 7.2 . It provides

a plot of search cost efficiency: the percentage of gang anchor points in the dataset

that are identified when a cordon and search operation of a defined search cost is

conducted. As can be seen in the left panel of Figure 7.2, the CSSM provides better

overall performance in search cost efficiency. The right panel illustrates the search

cost efficiency over the region applicable to military cordon and search operations.

As can be seen in this graphic, the performance of the CSSM approach and CMD

approach are very similar in this trade-off space.

7.5 Conclusions

Overall, the CSSM model provided the best performance. However, it requires signif-

icantly more data than the CMD approach. The CMD method requires only a crime

series in excess of three crimes while both of the CSS methods require mapped in-

formation about environmental influences (known in military parlance as the human

geography), a training data set containing crime series linked to their known anchor

points, and the ability to fit the CSS statistical model. Therefore, the CMD method

provides a simple method that provides good performance for the small search profiles

applicable to military cordon and search operations.

A significant shortcoming of all of the modeling approaches demonstrated here
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(and JTC models in general) is that they cannot accurately identify an anchor point

that is not encircled by a crime series (Gangs 8, 10, 12, and 13) and tend to perform

poorly when the anchor point is very close to the edge of the crime series (Gangs 7

and 11). Thus, these models are inappropriate for commuter offenders, who travel to

target areas away from their anchor points to commit their crimes, but are applicable

to marauding offenders who fan out from a central anchor point in search of criminal

opportunities.

While the CSSB method provided the worst performance in this case, a data

source important to the CSSB approach was unavailable. One of the strengths of the

CSSB approach is the ability to leverage additional information such as an informative

distribution for the prior probability for the criminal anchor point for a criminal group.

These informative distributions for the prior probability for anchor points could be

developed by incorporating data received from additional intelligence sources such as

human and signals intelligence (HUMINT/SIGINT). However, the data available for

this study did not contain information that could be leveraged in this way.

Both CSS modeling approaches contribute to the JTC analysis literature by pro-

viding a method for modeling the effect of the journey to crime relationship after

considering other environmental effects such as socio-economic conditions, crime gen-

erators, and crime attractors that might affect a criminal’s decision-making process.

The CSSM approach developed in this chapter is more accurate than the current

best method for JTC analysis, calculation of the Fermat-Weber point. The results

provided also demonstrate that the geographic profiles developed for these criminal

groups are often accurate enough to facilitate tactical success in military applica-

tion, with the modeled criminal group’s anchor point falling within the search profile

for military unit cordon and search operations. The CMD method developed here

provides a simple heuristic for developing geographic profiles that performs well in

comparison to more complex methods in the region of the cost vs. benefit trade-off
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space applicable to military cordon and search operations. Finally, whereas previous

JTC analysis methods have been focused on individual serial criminals, this chapter

documents the first use of JTC methods for identifying the criminal anchor point for

criminal groups.



Chapter 8

Conclusion

This dissertation develops methodological approaches for exploiting the information

provided by predictive crime maps to improve the crime forecasts, geographic district-

ing plans, intelligence assessments, and targeting plans that support decision-making

in military and police units. The following sections document the broader implica-

tions of this research in other domains, the contributions made in specific research

domains, and future work that can be undertaken to extend the results recorded in

this dissertation.

8.1 Multidisciplinary Research Contributions

Although this research focuses on addressing existing gaps in the crime analysis lit-

erature, this dissertation provides several contributions that are broadly applicable

in other research domains. The most broadly applicable contribution provided by

this dissertation is the statistical motivation developed to validate the top-down Ge-

ographic Probability Forecasting (GPF) approach. The applicability of a top-down

forecasting approach, in which weighted aggregate forecasts are used for disaggre-

gated regions or product lines, is highly debated in many disciplines, including sales

forecasting, product demand forecasting, and econometrics (Widiarta et al., 2007).

174
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There have been many arguments made using empirical studies that argue both sides

of the issue, with some studies advocating for the top-down forecasting approach

(Gross and Sohl, 1990; Fogarty et al., 1991; DeLurgio, 1998; Kahn, 1998; Ballou,

1999) and other studies asserting that disaggregated forecasts should provide similar

or better results (Dunn et al., 1971; Shlifer and Wolff, 1979; Dangerfield and Morris,

1992; Gordon et al., 1997; Diebold, 1998). The empirical results in many of these

studies are largely unexplained (Birmingham and D’Agostino, 2011). As a result,

the general rule of thumb in forecasting is to comprehensively fit both top-down and

bottom-up forecasting models and use the results of each method to better inform

the other models (Allen, 2001; Lapide, 2006). This requires fitting and analyzing a

very large number of models in practical application.

The simple proof developed to motivate the GPF method suggests that when

all disaggregated regions, product lines, or sales locations are equally affected by

trend and seasonality effects (i.e. time series correlated), and the same estimator

(forecasting method) is used to forecast at the aggregated and disaggregated levels,

then the weighted aggregate forecast should always outperform the disaggregated

forecasts for the various regions, product lines, or sales location. The results in this

dissertation demonstrate that, especially when the time series are noisy, the top-down

forecasting approach can offer significant performance improvement.

The simulation study conducted in this dissertation validated the results suggested

by the statistical motivation for cases where the modeling assumptions hold and found

that the method is also fairly robust to some violations of the model assumptions.

However, when the modeling assumptions are violated due to the introduction of large

shocks or step-changes in the process in one of the regions, then the disaggregated

forecasts provide better performance. Since in many real-world applications, such as

crime forecasting, the GPF method also dramatically reduces the modeling workload,

the GPF method provides a simple, robust, general purpose method for improving
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forecasts for noisy geographic time series. These results also indicate that top-down

forecasting methods may be far more robust and applicable than the current literature

in sales/demand forecasting and econometrics suggest.

The Sphere of Influence (SOI) analysis developed in this dissertation should apply

in any research domain in which we want to compare some spatial choice behavior

(criminal, consumer, etc.) across individuals or groups and map the probability that

a group’s or individual’s spatial choice behavior will dominate all others at a given

geographic point. This research has additional applications in commercial real estate

development (Waddell and Moore, 2008), transportation and travel demand analysis

(Ben-Akiva and Lerman, 1985; Timmermans and Golledge, 1990), and marketing

(Timmermans and Golledge, 1990). In all of these applications, the SOI analysis

provides the opportunity to answer the question, “Who is my most likely customer

and where do they live/work?”.

Finally, this dissertation documents the development of a new method for geo-

graphic profiling models. This approach models the effect of distance decay rela-

tionships on the spatial choice behavior of agents originating from geographic anchor

points after the considering the effects of many environmental factors such as socio-

economic conditions and geographic attractors and then leverages those relationships

to find the most likely origin for new agents exhibiting similar choice behavior within

the domain of interest. While geographic profiling models were originally developed

to assist police units solve serial criminal cases, they are increasingly being applied in

ecological models that study animal foraging behavior (Comber et al., 2006). These

geographic profiling models have been applied to ecological studies of sharks (Martin

et al., 2009), bumble-bees (Raine et al., 2009), and for identifying the source popu-

lations for invasive species (Stevenson et al., 2012). The geographic profiling models

used in these ecological studies consider only the distance-decay variable in the spatial

choice behavior of the studied animals/plants, ignoring the effect of any environmen-
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tal factors. The CSS models used in this dissertation incorporate both distance decay

relationships and the effect of other environmental factors. The results demonstrated

in this dissertation suggest that incorporating the CSS model structure into these

ecological studies may provide significant benefits.

8.2 Domain Specific Research Contributions

This dissertation also made several research contributions specific to the crime anal-

ysis and simulation communities. These research contributions are summarized for

each of the problem domains below.

8.2.1 Crime Forecasting

The research into crime forecasting in this dissertation has three practical applications

to security force planning. First, as demonstrated, the GPF method improves fore-

casting performance while also simplifying the modeling process. Second, this model-

ing approach directly links the analytic products used for operational level decision-

making (region forecasts) with the analytic products used for tactical level targeting

and planning (threat surfaces or hot-spot maps), providing a common frame-work for

tactical and operational level planners. Finally, this modeling approach suggests that

threat surface maps can also improve the way that operational planners spatially as-

sign areas of responsibility to subordinate elements by linking decisions about spatial

areas of responsibility to forecasts of future activity.

8.2.2 Patrol District Design

The geographic planning surface produced by multiplying the estimate for the long-

term average event count at each unique location by a cost estimate for each event

type produces an intuitive, interactive planning interface that allows planners to es-
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timate the impacts of moving patrol sector boundaries. Because the planning surface

is mapped, it allows planners to interact simultaneously with many heuristic plan-

ning rules, taking into consideration topology, geography, the “human terrain,” the

size of the patrol sectors, and available patrol units. This would seem to provide an

opportunity for the development of patrol planning software that could be incorpo-

rated as a module into ArcGIS or crime mapping software, providing an automatically

updated, interactive interface for police and military planners to use as they design

patrol districts.

This dissertation also explored the limitations of applying this approach. The

GPF district design method applies when police or military units apply geo-policing

principles, with units within sector providing support to calls-for-service and incidents

within their district. However, in many policing applications, when the in-district

demand exceeds in-district supply, police patrols begin crossing boundaries to meet

demand in other police sectors at a very high frequency. This scenario produces a level

of complexity that the GPF district design method is not well-equipped to handle. In

the Charlottesville Police Department study, in which a geo-policing strategy is not

employed and cross-boundary support is frequent, only the agent-based simulation

model accurately represents the resulting complexities and significantly changes the

workload variation scores to reflect the behavior of the system.

8.2.3 Criminal Group Intelligence Assessment

Previous work in Criminal Site Selection (CSS) modeling is extended to develop a

Sphere of Influence (SOI) analysis, which provides new products for the intelligence

assessment of criminal groups. These intelligence products accurately map where

in geography different threat groups present the dominant threat. CSS models can

also be used to generate products such as the “gang resource map” that illustrates

the highest five percent risk area for gang activity in a city and identifies the gang
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most likely to commit a crime in those areas. These results can also be extended to

consider the most likely locations for various crime types (i.e., car bombs vs. roadside

IEDs or gang drug sales vs. criminal assaults) or any other categorical or hierarchical

structure within crime data (Huddleston, 2008; Huddleston and Brown, 2009).

8.2.4 Geographic Profiling

Criminal Site Selection (CSS) models are leveraged to develop a new geographic profil-

ing technique that out-performs the current best method in predicting the geographic

anchor points of criminal gangs committing crimes in a dense urban environment.

The CSS modeling approaches developed in this dissertation contribute to the geo-

graphic profiling model literature by providing a method for modeling the effect of

the journey to crime relationship after considering other environmental effects such as

socio-economic conditions, crime generators, and crime attractors that might affect a

criminal’s decision-making process. Current geographic profiling methods rely exclu-

sively on exploiting the distance-decay relationship or can incorporate environmental

considerations only as prior probabilities using a Bayesian modeling paradigm.

The extension of the existing Center of Minimum Distance (CMD) method devel-

oped in this dissertation provides a simple approach for developing geographic profiles

that performs well in comparison to more complex methods in the region of the cost

vs. benefit trade-off space applicable to military cordon and search operations. This

method offers a fast, generally applicable method for generating a geographic pro-

file surface that can be applied by virtually any analyst. Finally, whereas previous

geographic profiling methods have been focused on individual serial criminals, this

dissertation documents the first use of geographic profiling methods for identifying

the anchor point for criminal groups.
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8.2.5 Simulation Modeling

This research also demonstrates a significant role for simulation models in the study

of forecasting methods. Using a simulation model to study the properties of these

forecasting methods offers three significant benefits. First, with a simulation model,

one can easily vary the conditions of the simulation and observe the resulting effects

on the performance of the methods. Within the simulation model, not only can one

generate noisy geographic time series that include trends, seasonality, and shocks but

one can vary the intensity of these effects at will. Second, in a simulation model,

a known process generates the various time series. So, one can evaluate forecasting

methods on how well they model a known process instead of conducting performance

comparisons against observed counts in an observational setting for which the true

spatial-temporal process is unknown. Removing the random noise from the evalua-

tion measures is especially helpful when evaluating performance against exceptionally

noisy processes such as Poisson event counts. Finally, simulation models replicate,

repeatedly generating simulated outcomes from the same processes.

This replication provides the opportunity to study the convergence properties of

the estimators. Because of the nature of the problem, closed form proofs can only be

developed for specific and limiting cases, such a previous study comparing top-down

AR(1) forecasts to AR(1) forecasts made for disaggregated regions (Widiarta et al.,

2007). It would be a very large task to develop closed form proofs for every limiting

case. This dissertation demonstrates that we can quickly study the practical benefit

of a method and confirm that results converge to those suggested by the statistical

motivation, without needing to study the convergence properties of every model case

with closed form proofs. The simulation model in this dissertation confirms the

statistical properties suggested by the very simple proof developed to motivate the

top-down GPF method and reveals the significant benefits of the method in practical

application.
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8.3 Future Work

There are improvements and research extensions that could be made to the models

presented here. These improvements and research extensions are outlined for each of

the problem domains below:

8.3.1 Forecasting

There are several improvements and research extensions to the GPF forecasting

method that should be investigated in future work.

(i) Previous research has shown that predictive modeling techniques such as CSS

modeling can provide significantly improved predictive performance over the

more often used kernel density method for predicting future criminal activity.

Since CSS models have a modeling structure that allows spatial integration

through summation (due to the conditional independence of probability at all

of the considered locations), CSS threat surfaces (hot-spot maps) could be used

in the GPF method instead of kernel density hot-spot maps. While these models

require a good deal more modeling effort, they may provide performance im-

provements that would make the extra modeling requirements worth the effort.

(ii) Another research extension would be to investigate other (simpler) approaches

for estimating the sub-region weighting parameters wk. One simple method used

in sales forecasting is to use the percentage of the total counts observed in each

region up to the current time period.

wkt =

∑
i∈Dk

∑N−1
t=1 yit∑

i∈D
∑N−1

t=1 yit
(8.1)

This approach ignores the potential diffusion effects of crime over small geo-

graphic regions and does not provide the visual planning surface of the GPF
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district design method. However, if the simpler approach provides equivalent

or better performance than the kernel density method, the simpler calculations

might help expand the use of the top-down GPF forecasting method to security

agencies that do not have access to Geographic Information Systems (GIS).

(iii) Previous research has established that the spatial distribution of crime does

change over time. Therefore, another research extension for the GPF method

would be to use exponential smoothing (or another forecasting method) to adjust

the estimates for the weighting parameters such that.

wkt = wk(t−1) + α

(
ykt
yt
− wk(t−1)

)
(8.2)

The α parameter in the above equation could be selected using exponential

smoothing methods to minimize the sum of squared error. When the errors in

the weighting parameters are significantly auto-correlated (such as immediately

after the introduction of a shock), then the approach above should significantly

improve the forecasts of the top-down forecasting method.

(iv) One shortcoming of the GPF method is that it provides only a point estimate

for a forecast. Holt-Winters and ARIMA models can be implemented within a

state-space modeling structure to provide prediction intervals for the forecasts.

Research extensions could include developing good estimates for prediction inter-

vals using state-space methods, leveraging error estimates provided by RMSE,

or by employing Bayesian methods to develop posterior distributions for the

forecasts.
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8.3.2 Patrol District Design

There are two research extensions suggested to further develop the applications of

the GPF method to patrol district design.

(i) The GPF district design method developed in Chapter 4 used manpower hours

as the cost function for the patrol district design. Future research could consider

the use of alternative cost functions such as the perceived risk in applications

such as military patrol district design. For example, car bombs might present a

higher risk or cost function for military units than attacks such as small arms

fire. Thus, the patrol district design method outlined in Chapter 4 could be

modified to balance the risk that various military units experienced within their

districts in the same manner that manpower requirements were balanced in the

Chapter 4 example.

(ii) The methodological approach demonstrated in Chapter 4 relies on the use of ker-

nel density estimation for providing the geographic probability (hot-spot) maps.

As previously discussed, CSS models often provide significantly improved perfor-

mance over density methods because they identify potential high-risk areas that

have not yet been targeted, whereas the previously discussed density approaches

only highlight areas that have previously seen criminal activity. Therefore, CSS

or other improved crime mapping methods may provide more accurate repre-

sentation of future workload requirements for geographic patrol areas.

8.3.3 Mapping Spheres of Influence

There are three research extensions suggested to further develop the SOI analysis.

(i) The multilevel regression modeling approach relies on manual step-wise feature

selection across each of the modeled groups because the statistical package used

did not provide a convenient way to automate this procedure. This would be
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a key feature needed to provide maximum benefit in the application to crime

analysis software. The development of methods for automated model selection

procedures to determine the best model for the entire population of consid-

ered groups would greatly expand the opportunities for applying this modeling

approach.

(ii) The CSS models used for this analysis ignored temporal considerations. Fu-

ture research could include temporal features and map how spheres of influence

change over time in response to various environmental changes.

(iii) As noted, additional applications of the SOI analysis include modeling the

spatial choice behavior of insurgent/terror groups, retail customers, corporate

real-estate, and public transportation customers. Future research for the SOI

analysis could investigate how well an SOI analysis performs in these research

domains.

8.3.4 Geographic Profiling Models

Finally, there are two research extensions suggested by the results obtained in exam-

ining the use of CSS models for geographic profiling.

(i) One of the strengths of the Criminal Site Selection - Bayesian (CSSB) approach

to geographic profiling is the ability to leverage informative prior probability

distributions for the criminal anchor point for a criminal group. In this analysis,

only non-informative prior distributions were used. One significant research

extension would be be to leverage other available data from sources such as

human and signals intelligence (HUMINT/SIGINT) to develop informative prior

distributions for the geographic anchor points of criminal groups.

(ii) The CSS geographic profiling models used in this dissertation incorporate both

distance decay relationships and the effect of other environmental factors. As
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discussed, distance-decay based geographic profiling models have recently been

applied to ecological studies of animal foraging behavior and the spread of in-

vasive species. The results demonstrated in this suggest that incorporating the

CSS model structure into these ecological studies may provide significant bene-

fits.

8.4 Finale

The results presented in this dissertation demonstrate how maps of geographic proba-

bility can significantly improve the decision-making tools that government executives,

police officials, and military leaders use every day to employ their limited resources

in an effort to secure the large and diverse populations they are charged to protect.

These results also suggest that these maps of geographic probability, and analytic

methods that leverage the insight they provide, can provide greater insight in many

other disciplines such as business forecasting, marketing, and ecology. While further

work remains in extending the applications of these models and in further refining

modeling procedures, this dissertation provides practical models that can be employed

immediately by many analysts to provide better support to their decision-makers and

clients in a variety of applications.



Appendix A

Pittsburgh Burglary Study Results

Reported in RMSE

Tables A.1, A.2, and A.3 provide a model performance comparison using Root Mean

Squared Error (RMSE) for weekly burglary forecasts in Pittsburgh. The performance

assessment horizon is for the 48 weeks from weeks 4 (to allow for model initialization)

through week 51 (because week 52 is a partial week) during the year 2008. Based on

model performance recorded in these three tables, the order of model preference (in

increasing order) is Naive, Holt-Winters, GPF-HW, ARIMA, and GPF-ARIMA. The

Naive method out-performs the Holt-Winters method in aggregate over the precincts,

while the Holt-Winters method provides better performance on more patrol sectors.

The most significant finding from this example is that the GPF method can improve

forecasts for noisy geographic time series in real-world application. In this example,

it both simplified weekly forecasting (by reducing the number of forecasting models

from 52 weekly forecasting models to one forecasting model and one density estimate

each week) and improved the forecasting performance for both the Holt-Winters and

ARIMA methods.
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Region Naive HW GPF-HW ARIMA GPF-ARIMA

Precinct 1 4.83 4.99 4.03 3.99 3.83
Precinct 2 4.03 3.31 3.15 3.23 2.81
Precinct 3 4.83 5.32 4.20 4.37 3.93
Precinct 4 4.03 5.19 4.14 4.08 3.84
Precinct 5 4.73 5.37 4.72 4.31 3.93
Precinct 6 1.84 2.23 1.98 1.73 1.87

Precinct Aggregate 4.18 4.56 3.81 3.73 3.46
Sector Aggregate 1.62 1.62 1.22 1.30 1.19

Table A.1: RMSE summary for the weekly one-step ahead burglary forecasts for
Pittsburgh in 2008. Table A.3 provides full results for the patrol sector (car beat)
level.

Naive HW ARIMA GPF-HW GPF-ARIMA

Naive - 56 92 98 98
HW - 87 98 98

ARIMA - 88 98
GPF-HW - 73

GPF-ARIMA -

Table A.2: Percentage of precincts and patrol sectors (combined) for which the RMSE
of the method on the column is better than the method in the row (i.e., the HW
forecasting method improves upon Naive method for 56% of the studied time series).
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Sector Naive HW GPF-HW ARIMA GPF-ARIMA

1 1.23 0.99 0.93 1.05 0.92
2 2.45 2.55 1.77 1.82 1.68
3 1.53 1.22 1.14 1.18 1.16
4 1.18 0.88 0.89 0.99 0.88
5 1.27 1.02 0.95 1.02 0.94
6 1.15 1.21 0.97 1.03 0.96
7 1.57 1.18 1.13 1.21 1.10
8 1.02 0.71 0.66 0.68 0.66
9 1.31 1.04 0.92 0.98 0.87
10 1.40 1.52 0.98 1.05 0.98
11 1.32 1.28 0.87 0.98 0.91
12 0.79 0.66 0.57 0.62 0.57
13 0.41 0.57 0.33 0.35 0.33
14 0.89 0.90 0.60 0.64 0.59
15 0.88 0.64 0.61 0.60 0.60
16 2.11 1.84 1.56 1.50 1.47
17 2.66 3.17 2.19 2.27 2.10
18 2.40 2.13 1.79 1.90 1.73
19 1.41 1.20 0.92 1.08 0.94
20 2.24 2.16 1.61 1.62 1.56
21 1.49 1.28 1.05 1.17 1.06
22 1.21 1.21 0.95 0.99 0.94
23 2.20 2.33 1.76 1.84 1.70
24 1.93 2.34 1.54 2.10 1.57
25 1.74 2.47 1.57 1.60 1.53
26 2.40 2.12 1.86 2.12 1.85
27 1.57 1.74 1.31 1.51 1.32
28 1.46 1.46 1.14 1.19 1.08
29 1.72 1.72 1.23 1.38 1.25
30 1.78 1.49 1.32 1.40 1.31
31 0.95 1.35 0.73 0.82 0.71
32 1.94 2.19 1.61 1.52 1.55
33 1.67 1.34 1.31 1.37 1.26
34 2.25 2.04 1.66 1.58 1.54
35 1.63 1.79 1.23 1.34 1.23
36 2.39 2.15 1.56 1.65 1.57
37 1.90 2.22 1.29 1.41 1.26
38 1.81 2.11 1.42 1.51 1.42
39 2.25 2.19 1.56 1.65 1.54
40 0.87 0.76 0.66 0.75 0.67
41 0.76 0.68 0.59 0.67 0.59
42 1.04 1.02 0.85 0.89 0.83
43 0.98 0.90 0.68 0.74 0.68
44 1.01 0.98 0.92 0.94 0.90
45 1.03 1.16 0.78 0.84 0.78
46 0.58 0.53 0.45 0.58 0.45

Aggregate 1.62 1.62 1.22 1.30 1.19

Table A.3: RMSE summary for the weekly one-step ahead burglary forecasts at the
patrol sector level for Pittsburgh in 2008.
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Design of Experiments for when

GPF Modeling Assumptions Apply

Table B.1 contains the DOE for study cases where the GFP modeling assumptions

apply (i.e., where any trends or seasonality effects affect all regions). This section

briefly outlines the various simulation settings used for these experiments. Each ex-

perimental block in Table B.1 contains the number of unique experiments performed,

with the number of replicates within each experiment recorded in parenthesis.

As the DOE table depicts, experimental blocks include three different domain rates

(20, 40, and 80 events per period) and five different numbers of spatial processes (5,

20, 40, 80, and 100). This blocking enables performance comparison under a wide

spectrum of conditions, from those in which region counts are high and processes are

intense (i.e., a domain rate of 80 and number of processes is 5) to those when region

counts are low and each process is very intermittent. For each experiment, the simu-

lation randomly samples for the spatial location (spatial mean), spatial distribution,

and domain rate for the defined number of spatial processes, scaling the rates of the

individual processes so that they add up to the rate defined for the experimental

block. The simulation replicates this process 50 times with the same experimental

189
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Stationary Homogenous Point Process

Domain Rate 20 40 80 100
Experiments (Replicates) 1 (100) 1(100) 1(100) 1(100)

Stationary Non-Homogenous Point Processes

Number of Spatial Processes
Domain Rate 5 20 40 100

20 10 (50) 10 (50) 10 (50) 10 (50)
40 10 (50) 10 (50) 10 (50) 10 (50)
80 10 (50) 10 (50) 10 (50) 10 (50)

Non-Stationary Non-Homogenous Point Processes with Trend

Positive Trend (100%) Negative Trend (50%)
Domain Start Rate Number of Spatial Processes

20 80 40 100
20 10 (50) 10 (50) 10 (50) 10 (50)
40 10 (50) 10 (50) 10 (50) 10 (50)
80 10 (50) 10 (50) 10 (50) 10 (50)

Non-Stat. Non-Homog. Point Processes with Seasonality

Cycle Freq. = 1/50 Cycle Freq. = 1/25
Domain Start Rate Number of Spatial Processes (Amplitude)

20 (L) 80 (H) 40 (H) 100 (L)
20 1 (50) 1 (50) 1 (50) 1 (50)
40 1 (50) 1 (50) 1 (50) 1 (50)
80 1 (50) 1 (50) 1 (50) 1 (50)

Non-Stat. Non-Homog. with Positive Trend and Seasonality

Cycle Freq. = 1/50 Cycle Freq. = 1/25
Domain Start Rate Number of Spatial Processes (Amplitude)

20 (L) 80 (H) 40 (H) 100 (L)
20 1 (50) 1 (50) 1 (50) 1 (50)
40 1 (50) 1 (50) 1 (50) 1 (50)
80 1 (50) 1 (50) 1 (50) 1 (50)

Non-Stat. Non-Homog. with Negative Trend and Seasonality

Cycle Freq. = 1/25 Cycle Freq. = 1/50
Domain Start Rate Number of Spatial Processes (Amplitude)

20 (H) 80 (L) 40 (L) 100 (H)
20 1 (50) 1 (50) 1 (50) 1 (50)
40 1 (50) 1 (50) 1 (50) 1 (50)
80 1 (50) 1 (50) 1 (50) 1 (50)

Table B.1: Design of Experiments (DOE) for simulation study cases showing the
number of experiments and replicates per experiment (in parenthesis) where GPF
modeling assumptions apply (i.e. where any trends and seasonality are global effects).
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settings over 100 time periods, which provides 97 time periods per replicate over

which to evaluate one-step ahead forecasts.

Subsequent experimental blocks include the addition of trends and seasonality.

Positive trends are scaled so that the expected event count of the process increases

by 100% (i.e., the event count in period 100 is double that during period 1). Negative

trends are scaled such that the expected event count of the process decreases by 50%

over the time horizon, so the expected count in period 100 is 1
2

that expected in period

1.

The seasonality effects are sinusoidal functions, with two different amplitudes and

cycle frequencies considered. The high-amplitude setting [identified using the notation

(H) in the DOE table] uses an amplitude equivalent to 1
2

of the process mean while

the low-amplitude setting (L) uses an amplitude of 1
4

of the process mean. The 1
50

cycle frequency corresponds to completing one cycle every 50 periods (which mimics

the annual temperature cycle which has been shown to affect crime rates), with

two full cycles over the evaluation period. The 1
25

cycle completes four cycles over

the evaluation period. Simulation experiments containing seasonality are evaluated

from time steps 151 through 250 (100 periods) to provide enough observations for

estimating seasonality effects using the Holt-Winters method.



Appendix C

Design of Experiments for when

GPF Assumptions Do Not Apply

Table C.1 provides the DOE for simulation study cases that violate the GPF assump-

tions. The first set of experiments depicted in Table C.1 investigates the effect of

shocks on model performance. These experiments contain a stationary homogenous

process throughout the domain (with a Poisson rate of 40 events per time period

throughout the domain). At time period 50, a new non-homogenous spatial process

is introduced in the domain centered in Region 3 and scaled so that the new spatial

process only affects that region. Shock processes rates vary from 5% of the domain

rate (i.e., a rate of 2 events per time period) to 30% of the domain rate (i.e., the rate

within Region 3 more than doubles from 10 to 22). Note that with the introduction

of the shock process, both of the model assumptions of the GPF method are violated:

the spatial distribution of crimes is no longer fixed over the time horizon used to fit

and forecast the model and a phase change has occurred in one geographic region

that does not affect the other regions.

The second set of experiments in Table C.1 test model performance under the

situation in which competing trends exist in the various regions. These experiments
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Shocks

Size of Shock 5% 10% 20% 30%
Experiments (Replicates) 1 (50) 1 (50) 1 (50) 1 (50)

Competing Trends

Unique Process Rate as % of the Global Rate
Strength of 10 25

Negative Trend Strength of Positive Trend
100% 200% 100% 200%

25% 10 (50) 10 (50) 10 (50) 10 (50)
50% 10 (50) 10 (50) 10 (50) 10 (50)

Random Trends

Number of Spatial Processes
Domain Rate 20 40 80 100

20 10 (50) 10 (50) 10 (50) 10 (50)
40 10 (50) 10 (50) 10 (50) 10 (50)
80 10 (50) 10 (50) 10 (50) 10 (50)

Table C.1: Design of Experiments (DOE) for simulation study cases showing the num-
ber of experiments and replicates per experiment (in parenthesis) where GPF mod-
eling assumptions do not apply (i.e., where trends are different across sub-regions).

contain a non-stationary homogenous process in the domain (with a Poisson rate

of 40 events per time period at the model start time). This Poisson process has a

negative trend that reduces the Poisson rate by either 25% or 50% over the study

time horizon. At the same time, a non-homogenous Poisson process with a positive

trend is introduced into Region 3. Thus, Region 3 has a trend that is moving in the

opposite direction of the rest of the domain. Several different rates and strengths of

trend for the process in the unique region are studied, as depicted in the table.

The third set of experiments in Table C.1 randomly assign trends to every unique

process in the domain. The number of spatial processes varies from 20 to 100 and the

overall domain rates (at the start of the simulation) vary from 20 to 80. The simulation

model randomly selects a unique trend for each spatial process from U(−50%, 100%).

Thus, a spatial process is equally likely to double in intensity or halve in intensity

over the simulation time horizon. Each spatial process is therefore a non-stationary,

non-homogenous Poisson process, with the spatial location and spatial distribution
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parameters randomly chosen for each spatial process at the beginning of the experi-

ment. Thus, each region also has a unique trend, and the overall trend in the domain

can be positive or negative but on average should be slightly positive.



Appendix D

Statistical Significance Test

Comparisons for Forecasting

Methods

Table D.1 provides pairwise performance comparisons between each of the five stud-

ied methods for the simulation cases where the GPF method assumptions hold. Each

block of the table reports the percentage of experimental precincts for which the

method in the column outperforms the method in the row in RMSE over the eval-

uation time horizon. For example, in Table B.1 there are 4 experiments conducted

for Stationary Homogenous Point Processes. Each of those experiments has four

precincts. So, in Table D.1, the performance evaluation takes place over 16 experi-

mental precincts in the Stationary Homogenous Point Process case. The HW method

outperforms the Naive method in 94% (15/16) of these experimental precincts.

Table D.1 also records in parenthesis the percentage of precinct time periods for

which the difference in MSE performance is statistically significant. In the experi-

ments conducted for Stationary Homogenous Point Processes, there are 97 evaluation

time periods per experiment, four experiments conducted, and four precincts per
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experiment. Thus, there are 1552 time periods over which to test the statistical

significance of performance differences. Figure 3.8 illustrates why it is necessary to

conduct the statistical tests over the 1552 precinct time periods. Figure 3.8 provides

time series plots for the 100 replicates of experiment conducted using a Stationary

Homogenous Point Process with a domain rate of 40 events per time period. As can

be seen in this plot, the errors for both the ARIMA and GPF-ARIMA methods are

heteroscedastic, with both methods providing increasingly accurate forecasts. Thus,

statistical testing of performance differences cannot be conducted over multiple time

periods.

The Wilcoxon Signed Rank Test (WSRT) is used to test the hypothesis that the

median residual forecast error for the method in the column is less than the me-

dian residual forecast error for the method in the row. The error residuals within

most precinct time periods are non-Gaussian (thus requiring a non-parametric sta-

tistical test) and each replicate provides a paired sample across the methods because

the same observations from each replicate are used to produce forecasts with all five

methods. This pairwise statistical test is conducted for each precinct time period and

the percentage of time that the p-value from the WSRT is smaller than 0.05 (i.e.,

provides statistical significance at the 95% level) is recorded in parenthesis in Table

D.1. Thus, the Holt-Winters (HW) method provides statistically significant perfor-

mance improvement over the Naive method for 61% of the 1552 precinct time periods

in the simulation model experiments conducted using stationary homogenous point

processes. It is possible for a method to provide statistically significant performance

improvement for some percentage of time periods without providing better overall

RMSE performance for any precinct.

Table D.1 organizes the methods in order of increasing performance from left to

right across the top of the table (and from top to bottom in the left column). Thus, for

stationary time series and time series with trends, the (increasing) order of preference
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for the methods is Naive, HW, GPF-HW, ARIMA, and GPF-ARIMA. For time series

containing seasonality, the preference order remains the same with the exception that

the GPF-HW method provides better performance than the ARIMA method in this

case.

Stationary Homogenous Point Process

Naive HW GPF-HW ARIMA GPF-ARIMA
Naive - 94 (61) 100 (97) 100 (100) 100 (100)
HW 6 (9) - 100 (100) 100 (100) 100 (100)

GPF-HW 0 (1) 0 (0) - 100 (100) 100 (100)
ARIMA 0 (0) 0 (0) 0 (0) - 100 (81)

GPF-ARIMA 0 (0) 0 (0) 0 (0) 0 (0) -

Stationary Non-Homogenous Point Process

Naive HW GPF-HW ARIMA GPF-ARIMA
Naive - 98 (0) 98 (93) 98 (97) 98 (97)
HW 0 (8) - 98 (93) 98 (98) 98 (98)

GPF-HW 0 (1) 0 (0) - 95 (84) 98 (95)
ARIMA 0 (0) 0 (0) 0 (1) - 98 (26)

GPF-ARIMA 0 (0) 0 (0) 0 (0) 0 (2) -

Non-Stationary Non-Homogenous Point Process with Trend

Naive HW GPF-HW ARIMA GPF-ARIMA
Naive - 99 (0) 100 (96) 100 (100) 100 (100)
HW 1 (8) - 100 (97) 100 (92) 100 (100)

GPF-HW 0 (1) 0 (0) - 77 (17) 100 (73)
ARIMA 0 (0) 0 (0) 23 (25) - 100 (73)

GPF-ARIMA 0 (0) 0 (0) 0 (0) 0 (1) -

Non-Stationary Non-Homogenous Point Process with Seasonality

Naive HW ARIMA GPF-HW GPF-ARIMA
Naive - 100 (57) 98 (97) 100 (99) 100 (100)
HW 0 (0) - 98 (66) 100 (94) 100 (98)

ARIMA 2 (0) 2 (0) - 94 (39) 100 (77)
GPF-HW 0 (0) 0 (0) 6 (6) - 100 (44)

GPF-ARIMA 0 (0) 0 (0) 0 (0) 0 (1) -

Table D.1: Pairwise performance comparison for simulation cases where the GPF
assumptions hold that shows the percentage of experimental precincts over which
the method in the column outperforms the method in the row and the percentage
of experimental precinct time periods (in parenthesis) in which the method in the
column provides statistically significant performance improvement over the method
in the row at the 95% confidence level by Wilcox Signed Rank Test (WSRT).

Table D.2 provides pairwise performance comparisons for the simulation cases

where the GPF method assumptions do not hold. There are several important insights
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gained in examining these cases. Using rolling horizons to fit the GPF models provides

some insurance against the effect of shocks or changing spatial distributions (as in

the case of competing trends) but it comes with the cost of increased variance (and

error) for those periods in which the spatial process does not change. The GPF

methods do not perform well in periods immediately following shocks. When the

spatial distribution of events changes over time, it is necessary to use a rolling horizon

model to capture these changes. However, when the distributions do not change

significantly, using a rolling horizon negatively affects performance. Thus, Table D.2

records mixed results. The overall preference order for situations in which there are

shocks or competing trends is Naive, HW, GPF-HW, GPF-HW-R, GPF-ARIMA,

ARIMA, and GPF-ARIMA-R. However, if there are many shocks that take place in

a domain (in comparison to just inserting one as in this case), the ARIMA and HW

methods will improve over the GPF methods because there will not be opportunities

for the estimates of wk to recover (it takes time). Thus, while the overall performance

of the rolling horizon methods were better in this case, they were better only because

there was time after the shock for the estimates of wk to be accurately represented. In

the case of random trends, the fact that many independent and uncorrelated trends

are competing produces fairly stable results across the different domains. Thus, the

wk for the precincts are fairly stable and the rolling horizon GPF methods do not

improve upon those using all previous time periods.
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Shocks

Naive HW GPF-HW GPF-HW-R GPF-ARIMA ARIMA GPF-ARIMA-R
Naive - 100 (66) 94 (83) 100 (93) 94 (90) 100 (98) 100 (98)
HW 0 (8) - 88 (70) 100 (89) 88 (79) 100 (98) 100 (97)

GPF-HW 6 (4) 13 (13) - 81 (34) 88 (83) 100 (87) 100 (94)
GPF-HW-R 0 (1) 0 (2) 19 (12) - 81 (70) 100 (82) 94 (93)

GPF-ARIMA 6 (4) 13 (10) 13 (4) 19 (4) - 56 (31) 81 (14)
ARIMA 0 (1) 0 (1) 0 (1) 0 (1) 44 (27) - 63 (30)

GPF-ARIMA-R 0 (1) 0 (2) 0 (1) 6 (1) 38 (34) 19 (32) -

Competing Trends

Naive HW GPF-HW GPF-HW-R GPF-ARIMA ARIMA GPF-ARIMA-R
Naive - 100 (69) 100 (84) 100 (95) 100 (90) 100 (99) 100 (100)
HW 0 (8) - 100 (62) 100 (87) 100 (68) 100 (91) 100 (99)

GPF-HW 0 (2) 0 (10) - 100 (46) 100 (44) 100 (51) 100 (80)
GPF-HW-R 0 (1) 0 (0) 0 (3) - 63 (34) 88 (34) 100 (59)

GPF-ARIMA 0 (1) 0 (9) 0 (8) 38 (8) - 63 (34) 100 (55)
ARIMA 0 (0) 0 (0) 0 (6) 13 (6) 38 (23) - 100 (58)

GPF-ARIMA-R 0 (0) 0 (0) 0 (0) 0 (0) 0 (5) 0 (7) -

Random Trends

Naive HW GPF-HW-R GPF-HW ARIMA GPF-ARIMA-R GPF-ARIMA
Naive - 99 (72) 100 (96) 100 (96) 100 (100) 100 (100) 100 (100)
HW 0 (7) - 100 (94) 100 (93) 100 (98) 100 (100) 100 (98)

GPF-HW-R 0 (1) 0 (0) - 86 (25) 97 (55) 100 (81) 98 (84)
GPF-HW 0 (1) 0 (0) 12 (6) - 95 (48) 99 (66) 99 (81)
ARIMA 0 (0) 0 (0) 2 (5) 4 (5) - 97 (29) 93 (46)

GPF-ARIMA-R 0 (0) 0 (0) 0 (0) 0 (0) 1 (8) - 82 (41)
GPF-ARIMA 0 (0) 0 (0) 1 (1) 0 (1) 5 (5) 16 (9) -

Table D.2: Pairwise performance comparison for simulation cases where the GPF do
not hold that shows the percentage of experimental precincts over which the method
in the column outperforms the method in the row and the percentage of experimental
precinct time periods (in parenthesis) in which the method in the column provides
statistically significant performance improvement over the method in the row at the
0.05 level by Wilcox Signed Rank Test (WSRT).



Appendix E

MASE Performance Summaries for

Over-Dispersed Scenarios

This appendix provides MASE performance summaries for when the DOE Tables

recorded in Appendices B and C are conducted using overdispersed Poisson distribu-

tions to generate the event counts. The Poisson distributions used for the results in

this appendix are specified such that the variance of the process is 125% of the mean

of the process. Thus, the event counts in the various regions are much noisier for

the experiments recorded below than for those discussed in Chapter 3. The results

in these tables are directly comparable to Tables 3.5 - 3.8 in Chapter 3. The results

recorded below in Tables E.1 - E.4 are very close to those recorded in Tables 3.5

- 3.8, indicating that the overdispersed event counts do not significantly affect the

results recorded in Chapter 3. When the modeling assumptions of the GPF method

apply, the GPF method improves performance when applied to both Holt-Winters

and ARIMA models. The ARIMA method still provides better performance than

the GPF-ARIMA method in the case of competing trends and shocks and provides

performance equivalent to the GPF-ARIMA-R method in the case of shocks.
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Scenario Naive HW GPF-HW ARIMA GPF-ARIMA
Stationary Homogenous 1.00 0.92 0.78 0.74 0.72

Stationary Non-Homogenous 1.00 0.92 0.79 0.74 0.73
Trend 1.00 0.93 0.98 1.01 0.97

Seasonality 1.00 0.86 0.75 0.76 0.73
Season & Positive Trend 1.00 0.84 0.75 0.75 0.73
Season & Negative Trend 1.00 0.90 0.77 0.80 0.75

Table E.1: MASE performance summary for the observed error for the five considered
forecasting methods over the six scenarios in which GPF modeling assumptions apply
for scenarios in which over-dispersed Poisson distributions are used to generate event
counts.

Scenario Naive HW GPF-HW ARIMA GPF-ARIMA
Stationary Homogenous 1.00 0.80 0.45 0.25 0.18

Stationary Non-Homogenous 1.00 0.79 0.45 0.25 0.20
Trend 1.00 0.80 0.44 0.42 0.29

Seasonality 1.00 0.67 0.35 0.42 0.26
Season & Positive Trend 1.00 0.62 0.32 0.39 0.27
Season & Negative Trend 1.00 0.77 0.40 0.50 0.33

Table E.2: MASE performance summary for the process error for the five considered
forecasting methods over the six scenarios in which GPF modeling assumptions apply
for scenarios in which over-dispersed Poisson distributions are used to generate event
counts.

Scenario Naive HW GPF-HW GPF-HW-R ARIMA GPF-ARIMA GPF-ARIMA-R
Competing Trends 1.00 0.93 0.83 0.80 0.78 0.79 0.76

Random Trends 1.00 0.92 0.79 0.79 0.75 0.74 0.74
Shocks 1.00 0.92 0.84 0.80 0.76 0.79 0.75

Table E.3: MASE performance summary for the observed error for the seven con-
sidered forecasting methods for the considered scenarios where the GPF assumptions
do not hold for scenarios in which over-dispersed Poisson distributions are used to
generate event counts.

Scenario Naive HW GPF-HW GPF-HW-R ARIMA GPF-ARIMA GPF-ARIMA-R
Competing Trends 1.00 0.80 0.57 0.49 0.39 0.44 0.31

Random Trends 1.00 0.78 0.45 0.46 0.33 0.28 0.30
Shocks 1.00 0.79 0.61 0.50 0.31 0.42 0.31

Table E.4: MASE performance summary for the process error for the seven considered
forecasting methods for the considered scenarios where the GPF assumptions do not
hold for scenarios in which over-dispersed Poisson distributions are used to generate
event counts.
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