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Abstract

Active magnetic bearings (AMBs) employ electromagnets to support machine com-

ponents without mechanical contact. The magnetic forces are adjusted by feedback

controllers to suspend the machine components within the magnetic field and to

control the system dynamics during machine operation. Magnetic bearings offer

many advantages for various applications. High-speed machines can operate smoothly

because there is no friction during rotation. The maintenance cost and mechanical

wear are low due to non-contact operation. A real time control in the AMB system

helps to keep the rotor close to the center and to reduce vibrations during operation.

However, controller design for AMB systems is a challenging task because of the

nonlinear nature of the plant dynamics, the very small natural damping in the process,

the strict positioning specifications often required by the application, and the unstable

open loop system dynamics. In most cases, a Proportional-Integral-Derivative (PID)

controller is the chosen controller due to its simplicity and intuitiveness in the tuning

of the controller parameters. However, sometimes a conventional PID controller cannot

fulfill the industry performance standards for AMB systems, such as those specified

by the American Petroleum Institute (API) and the International Organization for

Standardization (ISO). In these cases, more complex controllers, such as LQG, H∞,

and µ-synthesis, are used to meet the desired specifications. The tradeoff between the

simplicity of the controller structure and the achievement of good performance is a

relationship that control engineers seek to balance and optimize.
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Recently, fractional order calculus theory, which is the generalized version of

integer order calculus, has been adopted for many applications due to its accuracy for

modeling the dynamics of systems and its simplicity in model structure to represent

high order processes. Fractional order control is one of the fields that many researchers

and engineers are interested in because the response of a system with a fractional

order controller is not restricted to a sum of exponential functions, and, as a result,

a wide range of responses neglected by integer order calculus could be approached.

One of the most popular fractional order controllers is the generalized PID controller,

which is also called a fractional order PID (FOPID) controller. FOPID has two extra

parameters, the non-integer order of integral and derivative terms, in comparison

with the integer order PID controller. FOPID control can improve performance

and robustness compared to conventional PID control in many applications while

keeping the control structure simple. This suggests that an FOPID controller has

good potential to reduce the gap between the simplicity of the controller structure

and high closed-loop performance aspects as mentioned above.

In this dissertation, a fractional order PID control for AMB systems is proposed.

The feasibility of FOPID for AMB systems is investigated in two aspects. The first

aspect is the control of rotor suspension by magnetic bearings both in radial and axial

directions. The second aspect is the surge control in a centrifugal compressor which

uses the thrust AMB to modulate the impeller tip clearance for surge stabilization.

Tuning methods are developed based on the evolutionary algorithms for searching

the optimal values of the controller parameters. The resulting FOPID controllers

are then tested and compared with an integer order PID controller, as well as with

advanced controllers such as LQG and H∞ controllers. The comparison is based on

various stability performance and robustness specifications, as well as the controller

dimension as implemented. Lastly, to validate the proposed method, experimental
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testing is carried out on a single-stage centrifugal compressor test rig equipped with

magnetic bearings.
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Chapter 1

Introduction

1.1 Scope of the dissertation

This dissertation demonstrates the design, analysis, and implementation of a fractional

order PID controller (FOPID) for suppressing vibration and surge in a centrifugal

compressor by active magnetic bearings (AMBs). This is the first time that an FOPID

controller has been designed for and implemented on an AMB system. Furthermore,

a comparison of the performance and efficiency of the FOPID, integer order PID

(IOPID), and advanced controller based on simulation and experimental results is

discussed.

1.2 Problem statement

PID is the most widely used type of controllers in industrial applications (more than

90 percent [7]). A PID control takes the form of

CPID(s) = KP +
KI

s
+KDs. (1.1)

1
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This high adoption rate of PID controller for industrial application is likely due to

their components having an intuitive physical meaning, i.e., damping and stiffness,

which makes them easy to tune. However, the desired performance of a system is

sometimes not satisfied by using PID controllers, especially in a complex system such

as AMBs. Thus, advanced controllers, which are typically of higher orders, are used

instead. However, the design process for advanced controllers is quite complicated

and it requires substantial experience to achieve good performance.

The challenge, then, is how to maintain the simplicity of the design process and of

the structure of a controller (similar to that of a PID controller), while at the same

time achieving performance at a level similar to advanced controllers.

One approach is to maintain the structure of the PID controller as shown in Eq.

(1.1) and let the order of the integral and derivative terms be any non-integer number

(1/s → 1/sλ and s → sµ, where λ and µ can be any non-integer numbers), so that the

physical meaning of the controller remains the same but the parameter search range

is extended [22]. To visualize the benefits of fractional order calculus, the analogy in

Figure 1.1 illustrates the flexibility of the fractional order over the integer order in

a similar way that the adjustable wrench can fit to more objects than the fixed size

wrenches.

Figure 1.1: Analogy of integer and fractional order calculus
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With the aforementioned benefits of fractional order control, this study applies the

fractional order control concept to an AMB system. There are two previous studies in

[19] and [42] on the related topic, but the experimental results of the proposed designs

are not available, and the designs have not been validated in industrial applications.

To advance beyond these works, this study will include the implementation of the

fractional order control on the centrifugal compressor test rig equipped with AMBs

at the Rotating Machinery and Control Laboratory (ROMAC), the University of

Virginia.

1.3 Research objectives

The objective of this research is to develop a fractional order PID controller that

achieves satisfactory performance of AMB systems. By considering two additional

parameters, the fractional order derivative and integral terms, there is a high pos-

sibility that the desired specifications of the AMB control system can be satisfied.

The proposed controller design method will be applied to a single-stage centrifugal

compressor test rig equipped with AMBs. On this test rig, two advanced control

methods, H∞ and LQG, were previously studied by Sanadgol and Yoon in [61] and

[73], respectively.

Here, the FOPID control method for AMB systems will be investigated in two

aspects. The first aspect is the control of rotor suspension by magnetic bearings both

in the radial and the axial directions. The second aspect is the control of surge, by

using the thrust AMB to modulate the impeller tip clearance.

For both aspects, the FOPID tuning method will be developed based on the

evolutionary algorithms for searching the optimal values of the controller parameters.

Then, to verify the improvement over the conventional PID control, the resulting

FOPID controllers will be tested and compared to integer order PID controllers that
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use the same tuning method as in the FOPID control design. Moreover, the results

will be compared to the advanced controllers reported in [73] in terms of performance

and robustness specifications, and the controller dimensions as implemented.

1.4 Research contributions

The contributions of this study can be summarized as follows:

1. The application of fractional order control for AMB systems is largely unexplored.

This study can be used as a reference and a benchmark for the design and

implementation of fractional order control for AMB systems.

2. This study also includes rotor dynamics in the fractional order control design

which has not been done before. The design takes into account the unbalanced

forces at different rotational speeds that cause vibration in the system.

3. This study is the first to use a fractional order controller for surge control in a

centrifugal compressor.

4. The validation of the proposed fractional order control design method for both

rotor suspension/rotation and surge control is demonstrated by conducting

experiments on the industrial size single-stage centrifugal compressor at the

ROMAC Laboratory, University of Virginia.

5. The efficiency of different tuning methods for FOPID controller design for AMB

systems is studied and compared.

6. This study demonstrates that FOPID control has better performance and

robustness than conventional PID control for AMB systems. FOPID control

achieves performance and robustness similar to advanced control such as LQG

and H∞ control, but its structure and design process are simpler and it results

in a lower controller dimension compared to advanced control.
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1.5 Dissertation outline

The remainder of this dissertation is organized as follows:

• Chapter 2 provides a background on the principle of AMBs and their applications,

with a focus on compressor applications. The control methods that have been

implemented on AMB systems are reviewed.

• Chapter 3 explains the fundamentals and theory of fractional calculus. Defi-

nitions, characteristics, and tuning methods of FOPID control are overviewed.

The approximation and discretization of FOPID controllers for implementation

purposes is also described.

• Chapter 4 illustrates the AMB supported single-stage compressor test rig used

in this study. In addition, the models of rotor dynamics in radial and axial

directions as well as the compression system are derived.

• Chapter 5 explains the design process of the FOPID controller for rotor sus-

pension. This includes selection of control objectives, tuning methods, and

approximation for implementation. The simulation results of the designed

FOPID controller are discussed in comparison with the IOPID and advanced

controllers. Lastly, the predicted effectiveness of the designed controllers from

the simulation is validated by experimental results.

• Chapter 6 describes the design process of the FOPID controller for surge control

in the centrifugal compressor supported by AMBs. Again, the control objectives,

tuning methods, and approximation are presented. The simulation results of

the designed FOPID controller are discussed in comparison with the IOPID and

advanced controllers. The chapter concludes with validation of the design by

experimental results.



Chapter 1 Introduction 6

• Chapter 7 summarizes the work completed during this study and proposes

possible future work.



Chapter 2

Background and Literature Review

2.1 Overview of active magnetic bearing systems

The use of magnetic forces to overcome the forces exerted on a moving mechanical body

is the fundamental idea behind how magnetic bearings work. There are several benefits

of magnetic bearings over conventional bearings, such as low losses due to non-contact

operation and active control capability which can enhance the stability of the system.

Furthermore, as a result of low mechanical wear and losses, system maintenance

costs are significantly lower. Commercial applications that employ magnetic bearings

include compressors, centrifuges, high-speed turbines, energy-storage flywheels, and

high-precision machine tools. Magnetic bearings can be either passive or active.

Passive Magnetic Bearings use repulsive forces from the interaction of two similar

poles of two permanent magnets to keep the rotor away from the surfaces of bearings.

Active Magnetic Bearings (AMB) use actively controlled electromagnetic forces to

control the motion of a rotor or another ferromagnetic body in the air. An AMB

system normally consists of sensors, electromagnets, power amplifiers, power supplies,

and controllers [38]. Figure 2.1 shows the basic principle of an AMB system in one

degree of freedom. The position sensor detects how far away the rotor is from the

7
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Figure 2.1: AMB system in one degree of freedom

magnet. This information is sent to the controller to output the proper voltage

to the power amplifiers, which in turn apply currents to the electromagnets. The

electromagnets then generate magnetic force to pull the rotor to the desired position

(i.e., the center of the clearance space). Magnetic bearings for the radial directions

are called Radial Bearings and those in the axial direction are called Thrust Bearings.

A complete assembly of AMB components is illustrated in Figure 2.2.

Figure 2.2: Assembly of an AMB system
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2.2 Active magnetic bearings in compressors

Active magnetic bearings have increasingly been used in compressor applications

because they provide higher performance and reliability. An example of a compressor

equipped with magnetic bearings is shown in Figure 2.3. So far, AMBs have been

applied to compressor applications mainly to improve performance of the system, using

two approaches. The first approach is to use AMBs to support the rotor instead of the

traditional bearings. This technology has been applied to compressors in industrial

applications for more than a decade [43]. The second approach, which is in the research

stage but shows the effectiveness of AMB usage in compressors, is to control the

instability in the compression system, referred to as surge phenomenon.

Figure 2.3: A compressor equipped with magnetic bearings [1]

2.2.1 Rotor suspension

The rotor of the compressor is levitated by magnetic forces and is allowed to rotate

with no mechanical contact and friction losses. Consequently, the maintenance cost is

low because there are almost no consumable components and no lubrication is required.

Moreover, AMBs have an active control capability which keeps the rotor near the
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clearance center during operation. This capability of AMBs helps compressors to

operate efficiently at high rotational speeds.

2.2.2 Compressor surge control

The performance of a compressor is affected not only by the rotor suspension mecha-

nism, but also the stability of the compression system. The information of compressor

characteristics and efficiency is elucidated in the compressor characteristic curve as

shown in Figure 2.4. This map provides all possible operating points of a compressor

Figure 2.4: Compressor characteristic curve [2]

in terms of mass flow rate, pressure ratio, and rotational speed. Moreover, it also

indicates the border between stable and unstable regions of compressor operation,

referred to as the surge line. When the flow is reduced below the surge limit, the

pressure at the discharge of the compressor exceeds the pressure generation capability

of the compressor, causing a momentary reversal of flow. When this flow reversal

occurs, the pressure of the discharge system is reduced, allowing the compressor to

resume delivering flow until the discharge pressure again increases, and this surge cycle
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repeats. Surging usually creates a clearly audible noise. Prolonged operation in this

unstable mode can cause serious mechanical damage to the compressor as illustrated

in Figures 2.5 and 2.6 . When operating in a surge condition, the compressor discharge

temperature increases significantly and the compressor experiences erratic and severe

vibration levels that can cause mechanical damage to compressor components [2].

Figure 2.5: Compressor damage caused by surge [61]

Figure 2.6: Impeller damage caused by surge in a compressor [25]
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There are two main techniques used to address the surge phenomenon. The first

technique is surge avoidance, which is the prevention of operation at or near the surge

limit. The surge avoidance line is placed in parallel to and on the right hand side of the

surge limit line. The separation between the surge limit line and the surge avoidance

line is called surge margin. This margin varies between 10% and 25%, depending on

how critical operation safety is. Whenever the compressor’s flow reduces and reaches

the surge avoidance line, an anti-surge mechanism will try to increase the flow and

bring the operating point of the compressor back to the right hand side of the surge

avoidance line. The anti-surge mechanisms commonly used are blow-off valves and

bleed valves. When these valves are opened, the pressure buildup in the compressor is

released and the mass flow rate increases. The surge avoidance technique is easy and

practical to implement, but this avoidance prevents the compressor from operating

in the high-pressure region, which limits the performance of the compressor. More

details on the surge avoidance technique can be found in [48].

The second technique is surge suppression and control. The objective of this

technique is to increase the efficiency of compressors by allowing for operation closer

to and beyond the surge limit line and to increase the range of mass flow where a

compressor can operate stably. This technique can be achieved in both passive and

active ways. The most common approach for a passive method is to vary the plenum

volume by a spring-mass-damper system. This mechanism will induce a pressure

variation in the compression system in order to extend the stable flow region. An

example of a passive surge controller can be found in [6]. On the other hand, active

surge controllers use actuators along with feedback flow and pressure measurements

by sensors. One of the challenges of the active surge control method is choosing the

proper actuator. The most widely used actuator for active surge control is a throttle

valve at the system exhaust. In [12], a throttle valve was used as an actuator to

stabilize the flow in the compressor with the measurement of the plenum pressure.
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The results from the study show that a throttle valve stabilizes the system effectively

in the low speed range, but the performance is degraded in the high speed range due

to the bandwidth and mechanical limitations of the actuator.

Recently, AMBs have been demonstrated as a servo actuator for surge control.

The motivation to use AMBs came from a study by Senoo and Ishida in [64], which

shows that the clearance between an impeller tip and a shroud has a strong impact

on the flow characteristics of a compressor. The use of AMBs to control the impeller

tip clearance in a high speed centrifugal compressor was proposed by Sanadgol in

[61]. The variation of the impeller tip clearance induces a pressure variation that is

used to control the surge. The work by Sanadgol was limited to simulation study.

Later, Yoon et al. [73] further developed and successfully implemented the method

proposed by Sanadgol and the results showed that the surge controller can stabilize

the compression system with the compressor running at up to 16,000 rpm.

2.3 Control of an AMB system

An AMB system is inherently open loop unstable. Therefore it is required to have a

controller in the feedback loop to stabilize the system during the operation. Normally,

the controller design for an AMB system starts with the PID controller because of its

simplicity in structure. Recall here for an easy reference that the transfer function of

a PID controller is given as

CPID(s) = KP +
KI

s
+KDs. (2.1)

The controller parameters can be tuned intuitively, where the proportional gain KP

has a similar effect as adding stiffness, and the derivative gain KD acts as the added

damping to the system. In addition, the integral gain KI helps in reducing the rotor

position offset due to a static disturbance. Note that the form of a PID controller in
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Eq. 2.1 is not a proper form for implementation. It is required additional term such

as a lowpass filter. There are two popular methods in applying PID controller to an

AMB system. The first method is called decentralized PID where an actuator pair

of each control axis works independently from other pairs. The advantage of using

the decentralized method is the simplicity in tuning the controller parameters for one

control axis at a time. However, the lateral dynamics of the rotor at different bearing

locations are coupled together. Thus, there may be some limitation in achieving the

desired performance by using a decentralized method. The second method is called

centralized or tilt-and-translate method. This method decouples the two rigid body

modes, the tilt mode and the translate mode, and uses two separate PID controllers

to stabilize each mode independently. More detail on the tilt-and-translate method

can be found in [63]. Nevertheless, these two types of PID controllers have limitations

when dealing with non-collocation of sensors and the flexible modes of the rotor. As

such, additional filters are required in order to stabilize the closed-loop system.

Given the shortcomings of the PID controller mentioned above, some advanced

controllers have been developed to stabilize an AMB system for better performance.

These controllers are multiple-input multiple-output (MIMO) and centralized. Exam-

ples of advanced controllers used in AMB systems are Linear Quadratic Regulator

(LQR), H∞, and µ-synthesis controllers. The objective of the LQR controller design

is to find the optimal state feedback gain K that minimizes the quadratic objective

function J which represents a tradeoff between the energy of the states x and that of

the control input u,

J =

∫ ∞
0

(xTQx+ uTRu)dt, u = Kx. (2.2)

For implementation, the LQR controller is extended to a Linear Quadratic Gaussian

(LQG), where the Kalman filter is adopted as a state observer. An example of LQG
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control design for AMB systems can be found in [34]. The complication of this type of

controllers is that it requires skill and experience to select the appropriate weighting

matrices Q and R to obtain a controller that provides good performance. Therefore,

because of practical applicability as mentioned in [63], LQR and LQG controllers are

not widely used for AMB systems.

One of the most popular modern control methods for AMB systems is H∞ control.

It provides a powerful frequency domain framework for capturing design requirements

such as control energy, reference tracking, bandwidth, disturbance rejection, and robust

stability. Weighting functions are specified as an upper or lower bound (unstructured)

of the uncertainties for each requirement, and the objective of H∞ control is to find

the controller that minimizes the infinity norm of the closed-loop system that takes

into account all the weighting functions. An example of H∞ control design for AMB

systems can be found in [41].

Another popular modern control method for AMB systems is µ-synthesis. The

µ-synthesis design takes an approach that is very similar to H∞ control design

but includes structured (parametric) model uncertainties instead of unstructured

uncertainties. Parametric uncertainties in AMB systems include rotor speed, rotor

mode damping, sensor and amplifier model, and AMB gains [41]. This allows the

controller design to deal with uncertainties at the component level. The objective

of µ-synthesis is to find the controller that maximizes the smallest uncertainty that

causes instability. This implies that a µ controller will improve the performance of the

closed-loop system even more than an H∞ controller, but at the cost of a more complex

uncertainty characterization. An example of µ controller design and derivation of each

component uncertainty for AMB systems can be found in [30].

These advanced controllers result in better performance and stronger robustness to

AMB systems compared to a PID controller, but the design process is more complicated

and typically results in a higher order controller. For these reasons, they are still rarely
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used in industrial applications. Clearly, there is a tradeoff between simplicity when

using a PID controller and high performance when using more advanced controllers,

which require more complicated controller structure and design processes. Thus, there

is motivation to investigate another control method that achieves this tradeoff.

Recently, fractional order calculus theory, which is the generalized version of integer

order calculus, has been adopted for many applications due to its accuracy in modeling

the dynamics of systems and its simplicity in model structure to represent high order

processes. This approach shows a strong potential to satisfy the need of a more

powerful controller with a simple structure.



Chapter 3

Fractional Order Calculus and

Control

In this chapter, the background relevant to the fractional order PID control design and

implementation is discussed. First, a brief history and definition of fractional order

calculus is introduced. After that the fractional order system, model representation,

and stability analysis is described. Then the definition, characteristics, and advantages

of FOPID control are explained. Moreover, the existing tuning methods for FOPID

controllers are reviewed. Lastly, the approximation method for the FOPID controller

is described.

3.1 Fractional order calculus

Even though fractional calculus does not sound familiar to many people, this concept

was developed about 300 years ago, around the same time when integer order calculus

was invented. It began with a letter of Leibniz, a German mathematician, to L’Hôpital,

a French mathematician, in 1965 with his curiosity posing the question “Can the

meaning of derivatives with integer order be generalized to derivatives with non-integer

orders?” L’Hôpital replied with another question “What if the order will be 1/2?”

17
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Leibniz simply answered that “It will lead to a paradox, from which one day useful

consequences will be drawn” [51]. From those conversations, several mathematicians

have attempted to find an answer and make use of the concept in many different fields.

Before introducing the definition of fractional calculus, it is important to note

that the term “fractional order” is not properly used. The suitable word should be

“non-integer order” because the order can be irrational number as well. However, the

“fractional order” term has been widely used in the literature until nowadays.

3.1.1 Definition

Fractional calculus is a generalization of integer order differentiation and integration

to non-integer orders. To visualize the meaning of fractional calculus, let us consider

the infinite sequence of n-fold integration and n-fold differentiation,

∫ t

a

, ..

∫ τn

a

f(τ1)dτ1..dτn, ...,

∫ t

a

∫ τ2

a

f(τ1)dτ1dτ2,

∫ t

a

f(τ)dτ, f(t),
df(t)

dt
,
d2f(t)

dt2
, ...,

dnf(t)

dtn

Then, fractional calculus can be considered as the interpolation of the above sequence.

The fundamental operator representing non-integer order differentiation and integration

is denoted by

aDαt f(t),

where α is the order of the differentiation or integration, and typically α ∈ < but could

also be complex [53], while a and t are the bounds of the operation. This operator is

defined as

aDαt =


dα

dtα
, α > 0,

1, α = 0,∫ t
a
(dτ)α, α < 0.

(3.1)
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There are two main definitions of fractional calculus that have been widely used,

namely Riemann-Liouville (RL), and Caputo definitions [23]. These two definitions

are derived from the concept of the Cauchy nth integration of function f(t) [32]. When

n is the positive integer number, nth integration of function f(t) is given by

f (−n)(t) =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ)dτ, (3.2)

and if n is any positive real number, the formula is generalized to

f (−n)(t) =
1

Γ(n)

∫ t

0

(t− τ)n−1f(τ)dτ, (3.3)

where the gamma function Γ(n) =
∫∞

0
e−ttn−1dt is the generalization of the factorial

function [51]. By combining the concept of integer order derivative and the Cauchy

nth integration, the αth order derivative of a function f(t) with respect to t defined by

Riemann-Liouville (RL), also called the Left Hand Definition (LHD), is given as

aDαt f(t) =
dm

dtm

[
1

Γ(m− α)

∫ t

a

f(τ)

(t− τ)α+1−mdτ

]
, (m− 1) ≤ α ≤ m, (3.4)

where m is an integer. The reason that this definition is also called LHD can be seen

from the example of differentiation of order 2.3 in Figure 3.1. On the other hand, the

αth order derivative of a function f(t) defined by Caputo, also called the Right Hand

Definition (RHD), is given as follows where m is an integer [23]:

aDαt f(t) =
1

Γ(m− α)

∫ t

a

f (m)(τ)

(t− τ)α+1−mdτ, (m− 1) ≤ α ≤ m, (3.5)

Again, the reason that Caputo definition is also called RHD can be visualized from

Figure 3.1. Here, we will focus on Caputo’s definition, which many engineering
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applications refer to, since it allows the formulation of initial conditions in a form

involving only the values of integer order derivatives such as f
′
(0) and f

′′
(0).

Figure 3.1: Fractional order calculus definitions

From the definition of fractional calculus, most natural phenomena can be modeled

and explained more accurately by a fractional order differential equation. Consequently,

many researchers, scientists, and engineers have been attempting to incorporate

fractional calculus into their applications. For more fractional calculus definitions such

as those by Abel, Fourier, and Cauchy, see references [51,57,60].

3.1.2 Fractional order systems

After establishing the definitions of fractional order calculus in the previous subsection,

this subsection deals with the system that contains the fractional derivatives. First,

consider the fractional order differential equation as follows

anD
γny(t) + ...+ a0D

γ0y(t) = bmD
βmu(t) + ...+ b0D

β0u(t), (3.6)
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where γk (k = 0, ..., n) and βj (j = 0, ..., m) are the differential orders. For the

purpose of frequency domain design and analysis, Caputo’s definition is usually used

to derive the fractional order transfer function from the fractional order differential

equation with zero initial conditions. The Laplace transform of this definition can be

represented as

L[0Dαt ] = sαF (s)−
m−1∑
k=0

sα−k−1fk(0), (m− 1) ≤ α ≤ m, (3.7)

where F (s) =
∫∞

0
e−stf(t)dt is the Laplace transform of f(t). Once again, the Laplace

transform of Caputo’s definition involves lower bound at t = 0, for which a certain

physical interpretation exists (for example, f(0) is the initial position and f
′
(0) is

the initial velocity). It shows that this particular transformation could be useful for

solving applied problems with initial conditions in the traditional form. Then, by

applying the Laplace transform to the fractional order differential equation in Eq.

(3.6), we arrive at the following input-output representation

G(s) =
Y (s)

U(s)
=
bms

βm + ...+ b0s
β0

ansγn + ...+ a0sγ0
. (3.8)

A fractional order transfer function is said to be a commensurate fractional order

transfer function if it is given by a differential equation where all the orders are

multiple integer of a base order, α, and the transfer function can be written as

G(s) =

∑m
j=0 bj(s

α)j∑n
k=0 ak(s

α)k
, (3.9)

which can be considered as a pseudo-rational function, G(σ), of the variable σ = sα,

G(σ) =

∑m
j=0 bjσ

j∑n
k=0 akσ

k
. (3.10)
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An example of a commensurate fractional order transfer function is as follows

G(s) =
s1.8 + 3s1.2 + 5s0.6 + 1

s1.8 + 2s1.2 + 7s0.6 + 2
; α = 0.6. (3.11)

3.1.3 Stability of fractional order systems

For simplicity, a commensurate fractional order transfer function is used to define

the stability condition of fractional order systems. The stability condition of a

commensurate fractional order system is stated as follows [47]:

Theorem 1. The commensurate fractional order system is stable if and only if

| arg(σk)| > α
π

2
, (3.12)

where σk, k = 1, 2, ..., n, are the roots of the polynomial of the denominator of a

fractional order system as given in Eq. (3.10).For a particular case of α = 1, it is the

well known stability condition for an integer order linear time invariant system, where

the system is stable if and only of the all poles lie in the left half plane as shown

in Figure 3.2. Figure 3.3 shows the stability domain for the fractional order system

where 0 < α < 2.

Figure 3.2: Stability condition map for an integer order system (α = 1)
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Figure 3.3: Stability condition map for a fractional order system (0 < α < 2)

The following four examples show how to determine the stability of a commensurate

fractional order system.

Example 1 : G(s) = 1

s
2
3−5s

1
3 +8

;α = 1
3
.

σk = 2.5± 1.3229j,

| arg(σk)| = 0.155π < α
π

2
.

Thus, the system is unstable.

Figure 3.4: Stability domain of Example 1
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Example 2 : G(s) = 1

s
2
3−2s

1
3 +8

;α = 1
3
.

σk = 1.0± 2.6458j,

| arg(σk)| = 0.385π > α
π

2
.

Thus, the system is stable.

Figure 3.5: Stability domain of Example 2

Example 3 : G(s) = 1

s−4s
1
2 +8

;α = 1
2
.

σk = 2± 2j,

| arg(σk)| = 0.25π = α
π

2
.

Hence, the system is unstable.

Figure 3.6: Stability domain of Example 3
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Example 4 : G(s) = s
4
3−2

s
8
3 +4s

4
3 +8

;α = 4
3
.

σk = −2± 2j,

| arg(σk)| = 0.75π > α
π

2
.

Thus, the system is stable.

Figure 3.7: Stability domain of Example 4

3.1.4 Applications of fractional order calculus

There had not been many applications that involve fractional calculus in the past

because of the lack of a simple geometrical interpretation, and the absence of solution

methods for fractional order differential equations. However, the number of applications

using fractional calculus has increased significantly in the past decades as more tools

become available to help in solving complex fractional order differential equations.

Examples of the toolbox available in MATLAB are N-integer [67], FOMCON [66]

and CRONE [55]. Fractional calculus has been widely applied in many fields, such

as viscoelasticity [3, 9, 24], electrochemistry [50], electromagnetism [27, 28], finance

[36,62], and control theory [22,69].

The first sign of the potential of fractional calculus in control design was the

work of Bode called ideal cutoff characteristics [13], where he proposed a feedback

amplifier, in which the performance of the closed-loop is invariant to changes in the
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amplifier gain. The open loop transfer function that represents this characteristic can

be expressed as

Gideal(s) =

(
A

s

)α
, (3.13)

where A is an amplifier gain and the value of α is the number of stages in a feedback

amplifier. The value of α found in Bode’s work was 1.667. However, afterwards, he

described how to choose a suitable integer number of stages, which is not necessarily

closest to the optimal non-integer number value of α. The extension of Bode’s ideal

loop arises from the fact that the phase of the open loop is constant. It can be

expected that, if the gain increases or decreases by a certain percentage, the phase

margin will remain unchanged. Therefore, in this case, the step responses with gains

varying around the nominal gain will exhibit an iso-damping property [22], i.e., the

overshoots of step responses will be almost the same as shown in Figure 3.8.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

 

 

gain = 0.5*nominal

gain = nominal

gain = 2*nominal

Figure 3.8: Iso-damping property

In theory, it will be most suitable if the fractional order plant is controlled by a

fractional order controller. However, in practice, the integer plant model may have

been already obtained from the physical characteristics. Therefore, the focus in most

cases will be the development of fractional order controllers. After it is combined with



3.1 Fractional order calculus 27

the integer order plant, similar characteristics as suggested in Bode’s work can still be

achieved.

The first fractional order controller to appear in the literature is called Tilt-Integral-

Derivative (TID) controller [45]. The TID controller is the modified version of the

conventional PID controller where the proportional term is replaced by the transfer

function s−1/n and n is a nonzero real number, preferably between 2 to 3. The aim

of the TID controller is to provide more degrees of freedom to tilt or shape the open

loop frequency response closer to the theoretically optimal response as mentioned in

Bode’s work. The benefits of the TID controller over the conventional PID controller

is illustrated in [45].

Another well-known fractional order controller is called CRONE (Commande

Robuste d’Ordre Non Entier, meaning Non-integer-order Robust Control) [53], which

has the open loop transfer function template of a fractional derivative/integral order.

The CRONE control is a frequency domain design to provide the robust control of

perturbed plants using the common unity feedback configuration. For the nominal

state of the plant, this approach involves determining the open-loop transfer function

which guarantees the desired specifications such as rise time, overshoot and settling

time. The controller can be obtained from the ratio of the open loop transfer function

to the nominal plant transfer function. So far, three CRONE control generations

have been developed. An example of the application in which CRONE control is

successfully implemented can be found in [54].

In 1999, Podlubny [57] introduced a fractional order PID (FOPID) controller where

the order of the derivative and integral terms are any real number. Podlubny’s work

shows that this type of controller outperforms the conventional PID controller. More

details of the structure and characteristics of the FOPID controller will be explained

in Section 3.2.
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Applications of fractional calculus in control are numerous. In [8], the control

of viscoelastic damped structure is presented. Control applications to a flexible

transmission [54], an active suspension [4], a buck converter [14], a robotic manipulator

[29], and a thermal system [33] are also found in the literature. For AMB system

applications, there have also been a few works that make use of the fractional calculus

concept. In [44, 76], the simplified model of eddy current losses in non laminated

magnetic bearing is derived. The transfer function that represents the effective force

Feff(s) after taking eddy current losses into account can be expressed as

Feff(s) =
R0

(cs0.5 +R0)
· F (s), (3.14)

where F (s) is the force input from the actuator, c is the coefficient of the total

reluctance, and R0 is the static value of the effective reluctance. This analytical model

takes less time to obtain compared to the finite element method that is typically used

for analysis. Moreover, this transfer function can be used directly for controller design.

For the AMB control design in [42] the fractional order PID controller was designed to

stabilize the AMB system by using the Particle Swarm Optimization (PSO) method

to minimize the integral of time absolute error (ITAE) criterion. Other AMB control

research can be found in [19], where the fractional order PID controller was designed by

using the Genetic Algorithm (GA) to minimize overshoot, rise time, cumulative error,

and control energy. The results reported in [42] and [19] show that FOPID control

outperforms the conventional PID control in terms of error tracking and disturbance

rejection. However, the designs of fractional order controller for AMB systems in

both cases are only for the zero speed case. Furthermore, having only time domain

specifications are not enough to guarantee the robustness requirement specified in the

API and ISO standards for AMB supported machines. Lastly, experimental results of
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the proposed designs are not available, and the designs have not been validated in an

actual application.

3.2 Fractional order PID control

Over the years, engineers and industrial practitioners aspired to substitute the tradi-

tional PID controller with a more powerful one. However, the PID controller remains

the most popular due to its simplicity and clear physical interpretation of controller

parameters. Recently, there has been an extension of the conventional PID controller

by substituting the orders of the derivative and integral components to any arbitrary

real numbers instead of fixing those orders to one. The fractional order PID (FOPID)

controller was first introduced by Podlubny in 1999 [57]. The block diagram that

represents the FOPID control structure is illustrated in Figure 3.9. The transfer

function of an FOPID controller has the form of

CFOPID(s) = KP +
KI

sλ
+KDs

µ, (3.15)

where λ is the order of the integral part, µ is the order of the derivative part, while

KP, KI, and KD are the controller gains similar to the conventional PID controller.

Figure 3.9: FOPID block diagram
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3.2.1 Frequency domain characteristics

Similar to the classical PID controller, the FOPID controller behaves as a bandstop

filter that passes most frequencies unaltered, but attenuates those in a specific range

to very low levels. Generally, the integral part in conventional PID control helps

the elimination of steady state error due to its infinite gain at zero frequency but it

has 90 degree phase lag. On the other hand, the derivative part provides 90 degree

phase lead, but has a large gain at high frequencies, which is susceptible to noise. By

changing the derivative and the integral order in an FOPID controller, one can adjust

the sharpness of the filter independently as illustrated in Figure 3.10. In the frequency

domain, the magnitude curve of the fractional derivative and integral terms in the

logarithmic scale can be calculated as

20 · log |sµ|s=jω = 20µ · logω, (3.16a)

20 · log |s−λ|s=jω = −20λ · logω, (3.16b)

and the phase plot is given by

arg[sµ]s=jω = µ
π

2
, (3.17a)

arg[s−λ]s=jω = −λπ
2
, (3.17b)

For a special case, when µ and λ are equal to one, which represents integer order

PID, the slope of the gain becomes −20 dB and the phase of the response is −π
2

radian

in low frequencies. Similarly, the slope of the gain becomes +20 dB and the phase of

the response is +π
2

radian in high frequencies.

Figure 3.10 confirms that, in the low frequency range, the slope of the gain becomes

−20λ dB and the phase of the response is −λπ
2

radian. In the high frequency range,

the slope of the gain becomes +20µ dB and the phase of the response is +µπ
2

radian.
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Figure 3.10: Frequency domain effects of fractional orders λ and µ

This shows that the FOPID controller preserves the characteristics of the traditional

PID controller with additional flexibility in adjusting the phase and gain at the desired

frequencies. This also implies that the FOPID controller, if properly tuned, may

have a higher potential to meet the desired frequency domain specifications of the

closed-loop system.

3.2.2 Time domain characteristics

In the control design process, another important specification is the transient response

performance. Typically, the unit step response is used for the reference input signal

in order to show the performances of the closed-loop system. To investigate the

effects of fractional derivative and integral order in the FOPID controller, we consider

the magnetic levitation system with one degree of freedom from [37], which has the
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following transfer function

P (s) =
18400

s2 − 2.418s− 3998
.

This system has two poles at 64.45 and −62.03, which implies that the system is

open loop unstable. Therefore, a PD controller is needed to stabilize the system. For

the stability purpose, the values of KP and KD are chosen to be 8.476 and 0.022,

respectively. To see the effect of the derivative gain, we observe the unit step response

as the value of the KD is varied as shown in Figure 3.11. It is clear that varying the

derivative gain KD will affect the size of the overshoot of the unit step response. In

order to investigate the effect of fractional order derivative, the values of KP and KD

are fixed to the nominal values and the fractional order µ of the derivative is varied.

The unit step response with varying values of µ is shown in Figure 3.12. It can be

seen that varying the value of µ can further reduce the overshoot.
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Figure 3.11: Time domain effects of derivative gain

As can be seen in both Figures 3.11 and 3.12, the steady state error is not exactly

zero. Therefore, an integrator is added. Figure 3.13 shows the unit step responses

with different values of KI for integer order PID control with a nominal value of KD

as mentioned above. It can be seen that the steady state errors are eliminated. Also,
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Figure 3.12: Time domain effects of fractional derivative order

the response that converges faster will have higher overshoot. Moreover, Figure 3.14

shows the unit step responses for different values of λ in the fractional order PID

controller with nominal values of KD and KI. When λ is changed to 1.4, the overshoot

is smaller than the integer order case and the settling time is approximately the same.

This shows that varying fractional order derivative can further improve the transient

response performances.
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Figure 3.13: Time domain effects of integral gain
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For the optimal performance comparison between the integer and fractional PID

control in the time domain, the values of the controller gains are fixed to be the same

in both integer and fractional order controllers while the fractional derivative and

integral orders are changed to 1.18 and 1.13, respectively. The unit step responses

of both cases are shown in Figure 3.15. It is clearly seen that the transient response

performance can be improved significantly by varying the values of the derivative and

integral orders.
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Figure 3.15: Step responses of FOPID and IOPID controllers
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Essentially, both frequency and time domain specifications can be improved because

FOPID control expands the four discrete control configurations (P, PI, PD, and PID)

of the classical PID control to the range of control configurations in the quarter-plane

defined by selecting the values of λ and µ as illustrated in Figure 3.16. Furthermore,

the improvement of transient responses by using FOPID illustrated above is only

obtained by observation of order variation. The better result can be achieved by fine

tuning all five parameters of the FOPID control.

Figure 3.16: Parameters in the FOPID control

3.3 Fractional order PID tuning methods

With the additional flexibility of fractional derivative and integral orders of FOPID

introduced in the previous section, controller parameter tuning is another important

factor to pay attention to. There have been tremendous contributions on tuning

methods for FOPID controller in the past years. FOPID tuning methods can be

categorized by three major approaches including, analytical, rule-based, and numerical
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tuning methods [68]. The analytical and rule-based methods are widely used in many

studies. These methods mainly concern the phase margin, gain margin, gain crossover

frequency, and dominant poles. The studies of analytical tuning for FOPID can be

found in [17, 46, 75]. The available rule-based methods can also be extended to the

auto-tuning method by incorporating an additional test such as relay feedback test

into the loop [49,70].

One of the drawbacks of these two methods is the assumption that a plant is of

minimum phase and open loop stable. Because of this limitation, this study will focus

only on the numerical tuning method due to the fact that AMB systems are open loop

unstable. The aim of numerical tuning methods is to optimize the specified objective

functions with respect to the five adjustable parameters (KP, KI, KD, λ, and µ).

3.3.1 Formulation of the objective function

Objective functions used for optimization can be categorized into two types, the time

domain and frequency domain objectives.

Time domain objectives

Transient response performances subject to unit step reference are often used as the

time domain objectives in the optimization process. These performances include

overshoot, rise time, settling time, and steady state error. Sometimes, the system

requirement only emphasizes on a single performance. In this case, the optimization

process usually is simple. On the other hand, if two or more performances are

set as the objective functions, a conflict may occur during optimization which can

cause degradation in some objectives. To deal with these conflicts, performance

indices are introduced, in terms of the accumulation error over time, to quantify these
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performances. Some of the frequently used performance indices are

IE =

∫ ∞
0

e(t)dt,

IAE =

∫ ∞
0

|e(t)|dt,

ISE =

∫ ∞
0

e2(t)dt,

ITAE =

∫ ∞
0

|e(t)|tdt,

ITSE =

∫ ∞
0

[e(t) · t]2tdt,

ISESC =

∫ ∞
0

[e(t)2 + β(u(t)− u∞)2]dt.

Integral Error (IE) is suitable for highly damped or monotonic responses. Integral

Absolute Error (IAE) is suitable for non-monotonic responses. For a system that con-

cerns more on the overshoot performance, Integral Square Error (ISE) is recommended

because it highly penalizes large control errors, even though the settling time will be

longer. Integral Time Absolute Error (ITAE) and Integral Time Square Error (ITSE)

have an effect similar to IAE and ISE, respectively, but they add a heavy penalty for

errors that do not die out rapidly. Integral Square Error and Square Control Effort

(ISESC) take into account the control energy. Typically, the overshoot will be larger,

but with a shorter settling time and the choice of the weight β is subjective.

Frequency domain objectives

Most studies of numerical tuning methods for FOPID controllers used only time domain

objectives. Therefore, the results cannot indicate some important specifications such as

robust stability and disturbance rejection capability. These specifications are defined

in the frequency domain. Some of the frequently used specifications are

• Sensitivity function:

S(s) =
1

1 + L(s)
.
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• Complementary sensitivity function:

T (s) =
L(s)

1 + L(s)
.

• Disturbance sensitivity:

Sd(s) =
G(s)

1 + L(s)
.

• Control sensitivity:

Su(s) =
C(s)

1 + L(s)
,

where G(s) represents the plant, C(s) represents the controller, and L(s) is the loop

transfer function (L(s) = G(s)C(s)). With the specifications mentioned above, the

optimization goal is mostly to minimize the H∞ or H2 norm of the specified objective.

Some examples of objective functions using the above transfer functions are

• Disturbance rejection objective function:

Jd =

∥∥∥∥1

s
Sd(s)

∥∥∥∥
∞
.

• Control output objective function:

Jd = ‖Su(s)‖∞ .

• Robust stability objective function:

JS = ‖WS(S)S(s)‖∞ .

• Noise rejection objective function:

JT = ‖WT(s)T (s)‖∞ .
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Here, WS(s) and WT(s) are weighing functions that shape the robust stability noise

rejection performances at the desired frequency.

• Set-point tracking objective function:

Jt =

∥∥∥∥1

s
S(s)

∥∥∥∥
2

.

Moreover, to guarantee the stability of the closed-loop system, the following condition

must be satisfied.

<(eig(T (s))) < 0. (3.18)

Note that the described time and frequency domain objectives can be combined as

a single objective function with different weights on each objective. This allows the

optimization problem to be computed in less time. Alternatively, each objective can be

optimized individually by using the approach of multi-objective optimization, resulting

in an optimal solution for each objective. In this case, additional computing time is

required to determine the final optimal solution.

3.3.2 Optimization algorithms

Many optimization algorithms for control design have been studied to examine their

effectiveness for different purposes. Evolutionary Algorithms (EAs) are one of the

most efficient and robust optimization methods. EAs are influenced by the principles

of natural selection proposed by Charles Darwin. The idea of “the survival of the

fittest” is the key concept behind all evolutionary algorithms [31]. These algorithms

are also able to cope with systems that are highly nonlinear, discontinuous, and

time-varying. The reason that EAs have become a popular alternative optimization

algorithm is that the evolution process enhances the global minimum search whereas

conventional optimization algorithms are based on a local gradient search. One of the
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most popular EAs used with FOPID control design is the Genetic Algorithm (GA)

(see [16, 18, 19]). Other popular evolutionary algorithms used with FOPID control

design include particle swarm optimization (PSO) [10, 15], differential evolution (DE)

[11, 20], and various modifications of the mentioned methods. It is also convenient

that all of the mentioned evolutionary algorithms are easily implemented in software.

Genetic Algorithm (GA)

GA is the heuristic optimization algorithm influenced by the concept of the population

genetics. The following are the steps involved in the algorithm:

1. Initialize population: The population of the search is set by converting the

controller parameters to binary strings known as chromosomes, where each

chromosome represents a possible solution of the problem. Note that the size of

the population for each generation is set by the user at the beginning.

2. Objective evaluation: Each generated chromosome is evaluated based on the

specified objective function.

3. Selection: Chromosomes will be selected based on the level of their fitness. The

higher fitness level of an individual chromosome, the better chance it will be

selected.

4. Crossover: The selected chromosomes will randomly exchange some bit(s) to

generate the offspring for an evaluation in the next iteration. This process helps

expand the possibility of the search space.

5. Mutation: The mutation operator will make some small, random, change to the

surviving chromosomes. This process prevents the solutions from being trapped

in local minima. Typically, a low mutation rate is chosen, otherwise the search

will become totally random.
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6. Elitism: The best found solution in each generation may be lost in the subsequent

generation due to the crossover and mutation processes. Therefore, elitism is

introduced to simply copy the best found chromosomes to the next generation.

Normally, the number of elite is chosen to be a small fraction of the overall

population so that the optimization process is not biased on these solutions.

Differential Evolution (DE)

DE is introduced by Storn and Prince in 1995 [65] and is essentially the refined version

of the GA with some changes that overcome the disadvantage of the GA. The DE

algorithm has an optimization process similar to GA, except that DE uses floating

point number instead of bit representation for solution vectors [59]. Therefore, instead

of logical operators used in GA, DE uses arithmetic operators for mutation and

crossover processes, which lower the computational complexity and facilitate greater

flexibility in the design of the mutation distribution [56]. The optimization step of the

DE algorithm is slightly different from GA and can be summarized as follows:

1. Initialize population: The population is initialized randomly and uniformly

distributed in the range of the specified lower and upper bound of the variables.

The size of the population generated is prescribed by the user.

2. Mutation: First, three solution vectors from the initial population are chosen

randomly. Then the donor vector di is generated by adding the weighted

difference of the first two vectors, xr1 and xr2 to the base solution vector xr0, as

shown in Eq. (3.19),

di = xr0 + F (xr1 − xr2). (3.19)

There are some modifications to let xr0 be the best solution from the initial

population. Generally, the factor F can vary between 0 and 2, which makes the
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DE algorithm sensitive to the choice of F . As suggested in [59], a good initial

value of F is between 0.5 and 1.

3. Crossover: To increase the diversity of the population, the donor vector di

exchanges its components with the base vector xr0 to form the trial vector ui

with the crossover probability Cr. The range of Cr is between 0 and 1, where

the value of Cr equals to 1 means that all components of the donor vector di

are replaced by the base vector xr0. The initial good guess of Cr value is 0.5 in

order to maintain the diversity of the population.

4. Selection: At this stage, the trial vector ui is evaluated. If the trial vector yields

the lower value of the objective function, then it replaces the corresponding base

vector xr0 in the next generation. Otherwise, base vector xr0 is retained in the

population. Hence, the population either gets better or remains the same (with

respect to the minimization of the objective function), but never deteriorates.

The process is iterated and terminated when a specified number of iterations are

exceeded or the value of the objective function falls below a prescribed value. For

more variations of the mutation and crossover scheme, see [59].

Particle Swarm Optimization (PSO)

PSO is a population-based stochastic optimization technique developed by Eberhart

and Kennedy in 1995 [26]. The method is inspired by the social behavior of bird

flocking, fish schooling, etc. Unlike the GA and DE algorithms that use the concept

of the fittest to survive, PSO algorithm uses the particles that constitute a swarm to

move around the prescribed space in order to find the best solution. Each particle

adjusts its position xj based on its experience from previous iterations as well as the

experience of other particles. The two important values used for adjusting the moving

direction in the concept of PSO are the best solution of each particle (pbest) and the
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best solution of the entire swarm (gbest). The searching algorithm to calculate the

new position of each particle based on pbest and gbest is described in the following

equations:

v
(t+1)
j,N = w · v(t)

j,N + c1r1(pbestj,N − x(t)
j,N) + c2r2(gbest− x(t)

j,N), (3.20a)

x
(t+1)
j,N = x

(t)
j,N + v

(t+1)
j,N , (3.20b)

where v
(t+1)
j,N is the velocity of particle j at iteration t, with j = 1,2,...,n, N = 1,2,...,m,

and

• n is the number of particles (population size);

• m is the dimension of the problem (number of variables);

• c1, c2 are the acceleration factors;

• r1, r2 are the uniformly distributed numbers between 0 and 1.

The weight w provides a balance between local and global exploration. The value of

w often decreases linearly from wmax ≈ 0.9 to wmin ≈ 0.4. The value of w is given by

w = wmax −
wmax − wmin

itermax

× iter (3.21)

where itermax is the maximum number of the iteration and iter is the current number

of iterations.

3.4 Fractional order PID controller implementa-

tion

A feasible way to implement a fractional order operator is to use a finite dimensional

integer order transfer function, which requires approximation. The fractional order
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operator can be approximated in both continuous time and discrete time. This work

will focus on continuous time approximation because the result of approximation in

continuous time is more suitable for further analysis.

One of the well-known approximation methods is proposed by Oustaloup [52].

Oustaloup’s approximation of fractional order α in the specified frequency range

[ωl, ωh] is given as

sα = K

N∏
k=1

s+ ω′k
s+ ωk

, 0 < α < 1, (3.22)

where N is the number of poles and zeros which is chosen beforehand and a good

approximation strongly depends on this number. Then, the zeros, poles, and gain are

evaluated as

ω′k = ωlω
(2k−1−α)/N
u , ωk = ωlω

(2k−1+α)/N
u , ωu =

√
ωh/ωl, K = ωαh .

For the case α < 0, the right hand side of equation (3.22) will be inverted. But if

|α| > 1, the approximation becomes unsatisfactory. Accordingly, it is usual to split

the fractional power of s into the following form

sα = snsγ,

where n is an integer number, α = n+ γ, and γ ∈ [0,1]. In this manner, only the sγ

term needs to be approximated.

It has been proven that this approximation method is accurate enough for the

implementation purpose [53]. Modified versions of Oustaloup’s approximation can be

found in [71,72].

Additionally, attempts have also been made for analog realization of a fractional

order controller by using a combination of resistors, inductors, and capacitors [21, 58].
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However, modifications are difficult to be made on analog devices.



Chapter 4

Description of the Test Rig

In this chapter, the single-stage compressor test rig equipped with AMBs and its

components used in this study are described. Then models of lateral and axial rotor

dynamics are derived for the FOPID control design for rotor suspension. Lastly, the

compression system model is derived for the FOPID control design for surge control.

4.1 Overview of the test rig

For the purpose of investigating the capability of AMBs in high-speed compressor

applications, the single-stage centrifugal compressor equipped with AMBs was built

and commissioned in the Rotating Machinery and Control Laboratory (ROMAC) at

the University of Virginia, as shown in Figures 4.1 and 4.2. Specifically, this test rig

is used as a platform to demonstrate flow instabilities caused by surge in a centrifugal

compressor. The rotor is levitated by two radial AMBs for smooth rotation without

mechanical contact. The rotor is supported axially by the thrust AMB, which is also

used to modulate the impeller tip clearance for the purpose of surge control. The

designed maximum operational speed is 23,000 RPM, which requires a power supply

of 52 kW.

46
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Figure 4.1: Compressor and piping system

Figure 4.2: Centrifugal compressor components

For the control design purpose, the test rig can be divided into two main subsystems,

the suspension system and the compression system.
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4.2 Suspension system

For this test rig, instead of mechanical bearings, AMBs are used to support the rotor

for smoother operation and an ability to control the rotor position actively.

4.2.1 Components

Components in the suspension system include the following.

Rotor

Within the operating speed range (maximum at 23,000 rpm), the rotor is considered

to be a rigid rotor since the first bending mode is at 40,792 rpm. The rotor has a

length of 0.517 m and is 27 kg in mass. This rotor is made of AISI 4340 steel. As can

be seen in Figure 4.3, the thrust disk is integrated at the midspan of the rotor as a

target for the thrust AMB. In order to reduce the eddy current effect, the laminations

for two radial AMBs are also attached at both ends of the rotor.

Figure 4.3: Rotor

Active magnetic bearings

• Radial AMBs

AMBs used for radial suspension are 12 poles E-core design, which are separated
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into four quadrants. The width of the primary and secondary poles are 27.94

mm and 13.97 mm respectively. Each pole has 51 turns of 17 AWG wire. Similar

to the rotor, the stators of the radial AMBs are laminated in order to reduce

the eddy current effect. The designed maximum load capacity per quadrant is

1,414 N and the nominal air gap is 0.5 mm.

From the design analysis, the compressor-side AMB is subject to a higher

disturbance due to the aerodynamic forces on the impeller. The worst case

disturbance of the compressor-side AMB is approximated to be 455 N and 231

N for the motor-side AMB. Therefore, the selected bias current, Ib, for the

motor-side AMB was 3 A and slightly raised to 4 A for the compressor-side

AMB. The corresponding values of negative stiffness Kx and current gain Ki

were obtained experimentally and summarized in Table 4.2.1.

Radial AMB Ib (A) Kx (N/m) Ki (N/A)
Motor side 3 1.27 × 106 199.34
Compressor side 4 2.26 × 106 265.86

Table 4.1: Radial AMB properties

• Thrust AMB

Thrust AMB is used to regulate the axial position of the rotor by the double

acting force from two coils to the thrust disk. The clearance in the axial direction

is 0.5 mm. The predicted axial load on the impeller was 3,300 N. Therefore,

the target load capacity is selected to be 6,600 N for the capability to supply

additional force during a surge control event. The bias current for the thrust

AMB is chosen to be 5 A. The corresponding values of negative stiffness Kx

and current gain Ki are summarized in Table 4.2.1. Unlike the radial AMBs,

the lamination for the reduction of eddy current effects cannot be implemented

due to the limitations in the manufacturing process. Therefore, the effect of the
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eddy current needs to be included in the model for the control design. The eddy

current model will be discussed in Section 4.2.3.

AMB Ib (A) Kx (N/m) Ki (N/A)
Thrust AMB 3 4.23 × 106 664.12

Table 4.2: Thrust AMB properties

Instrumentation

To measure the displacement of the compressor rotor in the radial direction,

variable reluctance sensors are placed near the location of radial AMBs. For the

axial position measurement, the eddy proximity type sensors are used. These

displacement values are necessary for the feedback control of AMBs. Power

amplifiers are also required to supply electrical current to the coils which generate

the electromagnetic forces. Power amplifiers will convert the control output

voltage to electrical current. The instrumentation properties are summarized in

Table 4.2.1.

AMB Motor side Compressor side Thrust
Amplifier gain (A/V) 1.5 1.5 1.5
Amplifier bandwidth (rad/s) 5026.5 5026.5 5026.5
Sensor gain (V/m) 3.937 × 104 3.937 × 104 3.937 × 104

Sensor bandwidth (rad/s) 1.26 × 104 1.26 × 104 1.26 × 104

Maximum slew rate (N/s) 2.2 × 106 2.2 × 106 1.9 × 106

Table 4.3: Instrumentation properties

4.2.2 Rotor lateral dynamics

The rotor lateral dynamics can be represented as the block diagram shown in Figure

4.4, where the rotor model is derived by the finite element analysis approach. The

values of negative stiffness Kx and current gain Ki are summarized as mentioned in
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Section 4.2.1. The complete radial AMB system combines the rotor-AMB model with

Figure 4.4: Rotor-AMB system block diagram

the power amplifiers, sensors, and time delay models as shown in Figure 4.5. The

control output voltage vc is the input to the system and the sensor measurement

voltage vs is the output of the system. A time delay is also added to complete the

model in order to represent the sampling and computational delays that occur in the

digital controller.

Figure 4.5: Radial AMB system block diagram

4.2.3 Rotor axial dynamics

The rotor axial dynamics can be simply represented as a single mass, and the equation

of motion is

mrz̈ = uz, (4.1)

where mr is the rotor mass, z̈ is the axial acceleration, and uz is the axial external

force acting on the rotor. As mentioned in Section 4.2.1, laminations are not practical

to manufacture for the thrust AMB. This means that the eddy current losses need to
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be included. The eddy current loss model was proposed by Zhu in [76]. The transfer

function that represents the effective force Feff(s) after taking eddy current losses into

account can be expressed as

Feff(s) =
R0

(cs0.5 +R0)
· F (s), (4.2)

where F (s) is the force input from the actuator, c is the coefficient of the total

reluctance, and R0 is the static value of the effective reluctance. For simplicity in the

design process, the effective force Feff(s) is approximated to integer order form. The

rotor-AMB model in the axial direction can be represented as the block diagram in

Figure 4.6. The more complete thrust AMB model is constructed the same way as

illustrated in Figure 4.5.

Figure 4.6: Thrust AMB system block diagram

4.2.4 Integer order model versus fractional order model

Normally, integer order models are used for the control design and are derived from the

physical properties of the system and some parameters are tuned based on experimental

data. However, since the fractional order controller will be designed, it is worthwhile

to investigate how well the fractional order system model can capture the dynamics of

the system. In order to justify the accuracy of the models, the experimental frequency

responses of lateral and axial rotor dynamics are compared to the integer order and

fractional order models. The integer order models are already derived in Sections
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4.2.2 and 4.2.3 by using the physical properties of the system as well as the additional

tuning based on experimental data. On the other hand, the fractional order model is

obtained from the system identification with the model structure

G̃(s) =

∑m
j=0 bj(s

q)j∑n
k=0 ak(s

q)k
, (4.3)

where m is the order of the numerator, n is the order of the denominator, and q is

the fractional order. For the identification process, these three parameters need to be

specified beforehand. The identification method used for this case is the least square

method. The method searches for coefficients of the numerator and the denominator

by minimizing the following cost function J within a specified frequency range,

J =

∫ +∞

−∞

∣∣∣∣G(jω)
1

jω
− G̃(jω)

1

jω

∣∣∣∣2 dω. (4.4)

The objective of this cost function is the minimization of the square error between the

identified model G̃(jω) and the response data G(jω). The resulting parameters from

the identification of the fractional order system model are given in Table 4.4.

Figures 4.7 show the comparison of the frequency responses of the lateral dynamics.

The measurement is from the control output voltage vc to the sensor measurement

voltage vs as shown in Figure 4.5. Figure 4.8 show the comparison of the frequency

responses of the axial dynamics, and the response data is measured in a similar way

to the lateral dynamics. Table 4.5 summarizes the percentage fit to the measurement

of both the integer order and the fractional order models.

Plant q n m
Motor side (MS) 0.36 9 9
Compressor side (CS) 0.51 9 9
Thrust (TH) 1.15 4 4

Table 4.4: The parameters of the identified fractional order model
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% fit to measurement of MS CS TH
IO model 96.07% 95.08% 98.99%
FO model 99.86% 99.77% 99.91%

Table 4.5: The percentage fit of the models to the measurement
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Figure 4.7: Frequency responses of the models and the measurement of the lateral
rotor dynamics
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dynamics
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It can be observed that both models fit the measurement very well. Therefore, for

this study, the integer order models will be used for the control design in order to

avoid the computational error resulting from the more complicated fractional order

models.

4.3 Compression system

4.3.1 Components

The compression system consists of three main components, the centrifugal compressor,

the modular ducting system, and the throttle valve. The location of each component

installed in the system is illustrated in Figure 4.9.

1. Centrifugal compressor: The compressor is a single stage with an unshrouded

impeller as shown in Figure 4.2. It was manufactured and donated by Kobe

Steel, Ltd, Japan. The compressor design parameters are summarized in Table

4.6. For this compressor, the impeller tip clearance, which is the axial clearance

between the static shroud and the impeller tip, is regulated by the thrust AMB.

Parameter Unit Value
Maximum speed rpm 23,000
Design mass flow rate kg/s 0.833
Design pressure ratio - 1.68
Impeller tip diameter mm 250
Impeller tip blade height mm 8.21
Inducer hub diameter mm 56.3
Inducer diameter mm 116.72

Table 4.6: Compressor parameters

2. Modular ducting system: Figures 4.1 and 4.9 illustrate the modular ducting

system. This system allows the change of the plenum volume, which in turn
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allows flexibility in controlling the compression system behavior. The ducting

system design parameters are summarized in Table 4.7.

Figure 4.9: Test rig layout

Parameter Unit Value
Piping diameter m 0.203
Inlet piping length m 5.2
Exhaust piping length m 21.3
Plenum volume #1 m3 0.07
Plenum volume #2 m3 0.23
Plenum volume #3 m3 0.49

Table 4.7: Ducting system parameters

3. Throttle valve: Along the pipeline, the throttle valve is installed (with three

possible locations as shown in Figure 4.9) to control the steady state flow rate.

Changes in the flow rate will change the volume in the plenum. These throttle

valves are common commercially available butterfly type valves.

Pressure transducers, thermocouples, and orifice flow meters are installed in the

compression system in order to measure the pressure, temperature, and mass flow
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rate respectively. The location of these sensors can be found in Figure 4.9. These

measurements will be used to generate the compressor characteristic curve as well as to

provide information for the surge controller. Additionally, the compressor is driven by

an induction motor with the output power of 125 kW at the maximum speed of 29,680

rpm. Due to the high power density of the motor, a cooling system is required when

operating continuously at high speeds. Therefore, a chiller is installed to circulate the

refrigerant fluid in the cooling system of the motor. In addition, rotor suspension and

surge control algorithms are implemented by the computer operating on a real-time

RTLinux operating system, with a sampling rate of 5kHz. Input signals to the control

computer include rotor position measurements from sensors and the plenum pressure

rise measurement, which are sampled at the same time interval. The temperature

and flow measurements are collected by the Labview data acquisition system, which

is used to operate the motor drive and throttle valve as well. For the user’s safety,

these two computers can be controlled remotely from a control room separated from

the compressor test rig. The layout drawing of the control/data-acquisition system is

illustrated in Figure 4.10.

4.3.2 Compression system modeling

To design the surge controller, a model that describes the flow instabilities in the

compression system is required. The well-known one-dimensional compression model

was derived by Greitzer in [35]. Greitzer’s model describes the flow of fluid through

the compressor, the plenum volume, and the throttle valve as shown in Figure 4.11.

The non-dimensional states of the compression system are the compressor mass flow

rate Φc, the compressor pressure rise Ψc, the plenum pressure rise Ψp, and the throttle

mass flow rate Φth.

In [61], the effect of the impeller tip clearance was studied and the non-dimensional

compressor pressure rise was derived as a function of the non-dimensional steady-
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Figure 4.10: Layout of the control/data-acquisitions system of the test rig [73]

state compressor pressure and the variation of the impeller tip clearance. However,

Greitzer’s compression model does not capture the effect of the pipeline, which might

cause additional resonances in the system characteristics. Therefore, an enhanced

model of the compression system which includes the pipeline dynamics of this test rig

was derived in [73]. The block diagram of the compression system model with the

pipeline dynamics at the plenum output is illustrated in Figure 4.12.

Figure 4.11: Compression system described by Greitzer’s compression system model
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Figure 4.12: Block diagram of the compression system model with the pipeline
dynamics at the plenum output

The overall compression system equations are assembled as

Φ̇c = BωH

(
A1Φ3

c +B1Φ2
c +D1 +

po1

1
2
ρo1U2

kclδcl −Ψp

)
, (4.5a)

Ψ̇p =
ωH

B
(Φc − Φp) , (4.5b)

Ψ̇th =
2A12Ac

ρuU
Φp +

2B12Ac

ρuU
uthcth

√
Ψth, (4.5c)

Φ̇p =
A21ρuU

2Ac

Ψth + A22Φp +
B21ρuU

2Ac

Ψth +B22uthcth

√
Ψth +

ρupo1

ρo1UAc

(A21 +B21),

(4.5d)

where Eqs. (4.5a) and (4.5b) describe the compressor dynamics with the linearized

impeller tip clearance effect, and Eqs. (4.5c) and (4.5d) represent the pipeline dynamics.

For the complete derivation of each component’s dynamics in the compression system,

see reference [73]. All relevant parameters that appear in the overall compression

system equations can be found in Table 4.8. In addition, the characteristic curve

coefficients, A1, B1, and D1, of the unstable region were obtained by the third-order

polynomial fitting of the measured steady-state compressor flow when the rotor was

spinning at 16,290 rpm as shown in Figure 4.13.

To design a linear controller to stabilize the compression system in a surge condition,

the compression system dynamics in Eqs. (4.5a) - (4.5d) are linearized at an equilibrium

operating point (Φeq, Ψeq). The new states ξ1, ξ2, ξ3, and ξ4 of the compression system

that represent the variation of the original state variables from the corresponding

equilibrium point are defined as
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Parameter Symbol Unit Value
Comp. duct length Lc m 1.86
Comp. duct cross. area Ac m2 0.0082
Corrected A1 coeff A1 - -172.6
Corrected B1 coeff B1 - 36.88
Corrected D1 coeff D1 - 1.029
Design tip clearance cln mm 0.6
Greitzer stab. parameter B - 0.44
Helmholtz freq. ωH rad/s 80.1
Impeller tip speed U m/s 213.24
Impeller blade height b2 mm 8.21
Inlet pressure po1 Pa 101,325
Inlet gas density ρo1 kg/m3 1.165
Line dissipation number d - 2.83 ×10−5

Line impedance constant Z Pa s/m 4.39 ×104

Plenum volume Vp m3 0.049
Pipeline length L m 6.5
Throttle constant cth - 1.7197

Table 4.8: Compression system model parameters
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ξ1 = Φc − Φeq, (4.6a)

ξ2 = Ψp −Ψeq, (4.6b)

ξ3 = Ψth −Ψeq, (4.6c)

ξ4 = Φp − Φeq. (4.6d)

By taking the derivatives of the new states in Eqs. (4.6a) - (4.6d), and applying a

Taylor series expansion and ignoring the second order and higher order terms, the

linear approximation of the compression system dynamics around the equilibrium

operating point (Φeq, Ψeq) can be obtained. The linearized system equations are

written in the state space form as

ξ̇ = Aξ + Bδcl, (4.7a)

y = Cξ, (4.7b)

where

ξ =



ξ1

ξ2

ξ3

ξ4


,A =



BωH

(
3A1Φ2

eq + 2B1Φeq

)
−BωH 0 0

ωH

B
0 0 −ωH

B

0 0
B12Acuth,eqcth

ρuU
√

Ψeq

2A12Ac

ρuU

0 B21ρuU
2Ac

Ψth
A21ρuU

2Ac
Ψth + B22uthcth

2
√

Ψeq
A22


,

B =



2
BωHpo1kcl
ρo1U2

0

0

0


, C = [1 1 0 0].

According to the linearized compression system in Eqs. (4.7a) and (4.7b), the

system input is the impeller tip clearance δcl and the two outputs are the compressor
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mass flow rate ξ1 and the plenum pressure rise ξ2. For the throttle valve opening value

uth,eq greater than 0.185, the compression system remains stable in the neighborhood

of the equilibrium operating point. In order to capture the instability dynamics

during a surge condition, the equilibrium value of the throttle valve opening uth,eq

was chosen to be 0.17 for linearization. For the compression system model linearized

at uth,eq = 0.17, the frequency responses from the impeller tip clearance δcl to two

outputs, ξ1 and ξ2, are shown in Figure 4.14. From the Bode plots, it can be noticed

that there are two resonances that occur at around 7 Hz and 21 Hz, which correspond

to the frequencies of the surge limit cycle and the acoustic resonance of piping.
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Figure 4.14: Bode plots of the linearized compression system

For the surge controller implementation, the information of the mass flow rate and

the plenum pressure rise are required. However, the orifice flow meter installed in the

system as described earlier in this section provides only the steady-state flow. For the

feedback control operation, transient flow rate measurement is required. Therefore,

a mass flow rate observer needs to be designed to provide the transient flow rate
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information. In [73], the observer was derived based on the system state equations

given in Eq. (4.5a) - (4.5d). The mass flow rate observer state equations are given as

follows,

ż = BωH

(
Ψ̂c,ss +

po1

1
2
ρo1U2

kclδcl −Ψp − cΦ̂c + cΦp

)
, (4.8a)

Ψ̇th =
2A12Ac

ρuU
Φp +

2B12Ac

ρuU
uthcth

√
Ψth, (4.8b)

Φ̂c = z +B2cΨp, (4.8c)

Φ̇p =
A21ρuU

2Ac

Ψth + A22Φp +
B21ρuU

2Ac

Ψth +B22uthcth

√
Ψth +

ρupo1

ρo1UAc

(A21 +B21),

(4.8d)

where Φ̂c is the estimated mass flow rate and Ψ̂c,ss is the observed non-dimensional

steady-state compressor pressure rise, which can be obtained from the characteristic

curve illustrated in Figure 4.13, and c = 5.
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Fractional Order Control of Rotor

Suspension

In this chapter, the design of the fractional order PID controller for the lateral and

axial rotor dynamics explained in Chapter 4 is presented. First, the control design

specifications for the rotor suspension are formulated based on the industrial standards.

Then, the design process of the FOPID controller for rotor suspension is explained,

including the considerations between decentralized and centralized control methods,

the FOPID controller tuning methods, and approximation of the fractional order terms.

Lastly, the simulation and experimental results of the designed FOPID controller are

presented. These results are compared with the LQG controller from the previous

work [73] as well as the PID controller that is designed based on the same specifications

and tuning methods as the FOPID controller.

5.1 Control design specifications

A commonly used rotor-dynamic specifications of AMB systems are developed by

American Petroleum Institute (API) and International Organization for Standardiza-

tion (ISO). The specifications are developed based on the API 617 [5], which is for

64



5.1 Control design specifications 65

centrifugal compressors equipped with traditional rolling element or fluid-film bearings.

Since the clearance available in the AMB system is larger than the clearance in

machines equipped with traditional rolling element or fluid-film bearings, the standard

includes a section on machines equipped with magnetic bearings. This additional

section states that the maximum vibration must be lower than 30% of the minimum

clearance Cmin. In AMB systems, Cmin usually refers to the clearance relative to the

center of auxiliary bearing. Moreover, the forced response analysis with different

locations of unbalance mass placement is also used for AMB systems. Unbalance

values and locations for different modes are illustrated in Figure 5.1. This analysis is

used to predict the amount of vibration when each mode is excited according to the

placement of unbalance values. Unbalance values and locations for different modes

are illustrated in Figure 5.1, where U is the unbalance force, N is the maximum

continuous operating speed (rpm), and W is the static journal load (kg).

Figure 5.1: Unbalance values and locations as specified in API 617 [5]
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Another set of widely used specifications for AMB systems is stated in ISO 14839.

This standard is used as a recommended specification instead of as a requirement.

Vibration level and stability margin are the two specifications recommended in ISO

14839. The stability margin is determined by the peak value of sensitivity function.

This margin implies how sensitive the system response is to variations in the system.

As illustrated in Figure 5.2, the sensitivity function is defined as the transfer function

either from disturbance D1 to controller input (D1 → V1) or from disturbance D2 to

plant input (D2 → U2). The specifications categorize the system into Zone A through

D depending on the maximum displacement and peak value of the sensitivity function

as summarized in Table 5.1. At the present, ISO 14839 is merged in as one of the

sections in API 617 [5].

Figure 5.2: Closed-loop system block diagram with disturbances

Zone limit Maximum displacement Peak Sensitivity
A/B < 0.3Cmin < 3 (9.5 dB)
B/C < 0.4Cmin < 4 (12 dB)
C/D < 0.5Cmin < 5 (14 dB)

Table 5.1: Recommended criteria of zone limits in ISO 14839 [39,40]

The definitions of each zone are described as follows.

Zone A: newly commissioned machines normally fall into this zone
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Zone B: acceptable for unrestricted long-term operation

Zone C: unsatisfactory for long-term continuous operation

Zone D: sufficiently severe to cause damage to the machine

Another control design specification that is used widely in most control system

designs is the transient response performance. These performance parameters show how

smooth the operation could be in case there are external disturbances. Typically a unit

step response test is performed to demonstrate this specification. The performances

considered in the step test are rise time, settling time, and overshoot.

5.2 Design and experimental test of FOPID con-

troller for rotor lateral dynamics

5.2.1 Design of FOPID controller

The FOPID controller for the rotor lateral dynamics takes the form of

CFOPID(s) = KP +
KI

sλ
+KDs

µ. (5.1)

This controller is also coupled with a second order low-pass filter in order to limit the

bandwidth as well as to make the controller realizable for implementation. Here it is

assumed that the two control axes (x and y) are symmetric. Therefore, the controllers

used for both control axes will be identical.

As mentioned in Section 2.3, both decentralized and centralized control methods

are used for AMB control systems. Therefore both methods will be used to design

FOPID controllers for rotor lateral dynamics in order to determine the better design for

implementation. The structure of the decentralized and centralized control methods

are illustrated in Figures 5.3 and 5.4, respectively. For the decentralized method, only
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diagonal terms of a plant model are used with the assumption that the off-diagonal

terms have a small coupling effect. On the other hand, the centralized method

decouples the inputs and outputs of the AMB system into rigid tilt and translate

modes of the rotor. The transformation of the sensor measurements to the modal

coordinate is given by the difference of the two sensor signals for the tilting mode,

and the addition of the signals for the translate mode [74]. The transformation of the

original plant G(s) to the centralized coordinate is given by

Gc(s) = H(s)G(s)H−1(s), (5.2)

where

H =

1 −1

1 1

 .
Two independent controllers are designed for the two decoupled systems. After two

centralized controllers, C11 and C22, are derived, they must be transformed back to

the original physical coordinates by

C(s) = H−1

C11 0

0 C22

H. (5.3)

Figure 5.3: Structure of the decentralized control method [63]
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Figure 5.4: Structure of the centralized control method [63]

In addition, these two designs are tuned using the Genetic Algorithm (GA). Two

additional tuning methods, namely Differential Evolution (DE) and Particle Swarm

Optimization (PSO), will be used in the FOPID controller design after determining

preferability between the decentralized and centralized control methods. The first step

in the tuning process is to specify the objective functions. As previously mentioned,

vibration level and stability margin are the two main specifications. Furthermore, the

step response performance objective is also important to include in order to provide

smooth rotation during the transition between rotational speeds and an ability to

reject disturbances. Thus, the objective functions used for the control of the rotor

lateral dynamics are listed below.

1. Stability of closed-loop system (J1): Closed-loop stability will be determined

by the number of poles that have a positive real part. The optimization goal of

this objective is zero.

2. Stability margin (J2): A peak magnitude of the sensitivity function as described

in Chapter 3 will be used to determine a stability margin.
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3. Vibration level (J3): A maximum magnitude of forced responses among three

cases (translate mode, conical mode, and overhung cantilevered) as illustrated

in Figure 5.1. This objective will be used to determine the maximum vibration.

4. Integral square error (ISE) of a unit step response (J4): Instead of specifying

transient response performance separately, the performance index ISE will be

used in order to reduce conflict between different performances.

All objective functions will be combined as a single cost function J during the

optimization process. Therefore, it is proper to add some constant weights, wi, for

each specified objective so that all weighted objectives are normalized,

J = max{w1J1, w2J2, w3J3, w4J4}.

These constant weights are the inverse of the desired values of each specification. For

example, the desired value of peak sensitivity must be less than 3 according to ISO

specification, thus the initial value of w2 is 1/3.

Next, the parameter values of the GA optimization must be initialized. These

values include the size of the population, the initial population values, the crossover

rate, and the mutation rate. The selected size of the population reflects the total tested

solutions for each generation. A larger population can lead to better minimization

results, but the computation will be longer. For this study, the population size is

chosen to be 200. The initial population consists of the gains and orders of the

FOPID controller. These initial values were obtained from the manual tuning of the

conventional PID controller for the system, which means that the initial derivative and

integral orders are set to 1. The closed-loop system is stable with these initial values,

which can reduce the load on the stability objective during the optimization process.

The value of the crossover rate is 0.8 and the uniform mutation rate is 0.01. After 50

generations, the optimization is completed. The whole process will be repeated with
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the new initial populations based on the solution from the previous iteration. There

may be slight changes in lower and upper bounds of the tuning parameters as well.

Normally, after 3 to 5 iterations, the improvement of the solution will be very small.

Note that the main difference of this study from the existing works in the field

is that the approximation of the fractional order operators, sλ and sµ, occur during

the tuning process. Studies in the past generally have addressed the approximation

step after the optimization is completed, which can degrade the performance of the

FOPID controller due to errors from the approximation. Therefore, in this study, the

approximation is included in the optimization process and uses the approximated

FOPID controller to evaluate all objective functions. Oustaloup’s method is used for

the fractional order approximation as explained in Chapter 3 and the chosen number

of poles and zeros used for the approximation is 2.

The performance of the designed decentralized and centralized FOPID controllers is

summarized in Table 5.2 and the Bode plots of the sensitivity functions of both FOPID

controllers are illustrated in Figure 5.5. Clearly, the peak value of the sensitivity

function and the maximum vibration of the centralized FOPID controller are smaller

than that of the decentralized FOPID controller, while the transient responses of

the two controllers are similar. From these results, it is evident that the centralized

FOPID controller outperforms the decentralized FOPID controller. Therefore, the

centralized FOPID controller will be used for the rest of the designs for lateral rotor

dynamics.

For the next design, the centralized FOPID controller will be designed based on

two additional tuning methods. First the DE tuning method is employed in the design

process. As described in Chapter 3, parameters needed for the optimization process

are similar to the GA algorithm except for the weight factor F for the mutation

process, which is set to be 0.85 in this study. Otherwise, the size of population, the

number of maximum iterations, and the crossover rate remain the same as in the GA
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Specifications Decentralized Centralized
Sensitivity function peak 2.8839 2.4414
Peak unbalance vibration (mm) 0.0032 0.0029
Controller output peak (V) 0.3341 0.3909
Overshoot (%) 4.2894 6.1020
Rise time (s) 0.0094 0.0077
Settling time (s) 0.0425 0.0205

Table 5.2: Comparison of performances between decentralized and centralized FOPID
controllers
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Figure 5.5: Bode plots of sensitivity function of the decentralized and the centralized
control methods

optimization case. Second, the FOPID controller parameters are tuned by the PSO

tuning method. The size of the population and the maximum iterations are the same

as in the two previous methods. The acceleration factors c1 and c2 are set to be 0.5

and 1.25, respectively. The value of c2 is set to be greater than c1 so as to assign

heavier weight to the acceleration rate for the global best solution in each generation.

The performance of the FOPID controllers tuned by the GA, DE, and PSO methods

are summarized in Table 5.3 and the Bode plots of the sensitivity functions of both

FOPID controllers are illustrated in Figure 5.6. It can be observed that the FOPID

controller tuned by the DE algorithm gives better results in terms of the peak of the

sensitivity function and maximum vibration levels. In addition, the corresponding
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FOPID controller has a good transient response for a smooth rotation. Therefore,

this FOPID controller will be used for implementation as well as for comparison with

other kinds of controllers.

Specifications GA PSO DE
Sensitivity function peak 2.4414 2.3947 2.2727
Peak unbalance vibration (mm) 0.0029 0.0027 0.0024
Controller output peak (V) 0.3909 0.3639 0.4176
Overshoot (%) 6.1020 5.7632 2.7300
Rise time (s) 0.0077 0.0077 0.0071
Settling time (s) 0.0205 0.0161 0.0151

Table 5.3: Comparison of performances of FOPID controllers tuned by different
Evolutionary algorithms
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Figure 5.6: Magnitude plots of the sensitivity functions of FOPID controllers with
different tuning algorithms

To emphasize the best case of the centralized FOPID controller design, Table

5.4 summarizes the values of the FOPID controller parameters obtained from DE

optimization. The vibration level and stability margin results are illustrated in Figures

5.7 and 5.8, respectively. The vibration level is well below 30% of the minimum
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clearance. The peak of the sensitivity function over the rotational speed range is below

a magnitude of 3. This shows the Zone A specification as recommended by ISO 14839

is satisfied by the FOPID controller.

Bearing KP KI KD λ µ
Motor side 0.1752 0.120 0.0011 0.752 0.942
Compressor side 0.1795 0.112 0.0010 0.834 0.902

Table 5.4: Parameters in the the FOPID controllers tuned by the DE algorithm
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Figure 5.7: Forced response with unbalance mass placing for three excitation cases as

specified in API 617 [5]

For comparison, the conventional PID controller is tuned based on the same

objectives and algorithms as the best case of the FOPID controller. Moreover,

performances based on the LQG controller that were designed for the same system

reported in [73] are compared with both the FOPID and PID controllers in Table 5.5.
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uous speed under the FOPID controllers tuned by the DE algorithm

Specifications PID FOPID LQG
Sensitivity function peak 2.6742 2.2727 2.4794
Peak unbalance vibration (mm) 0.0037 0.0024 0.0026
Controller output peak (V) 0.4228 0.3340 0.1810
Overshoot (%) 0.172 0.033 0.178
Rise time (s) 0.003 0.003 0.005
Settling time (s) 0.023 0.042 0.016
Bandwidth (rad/s) 12757 13759 14377
Controller dimension as implemented 6 7 11

Table 5.5: Comparison of performances in radial AMBs

As shown in Table 5.5 and Figure 5.9, the stability margin of all controllers fall

within Zone A specification (smaller than 3). Moreover, the sensitivity function peak

of the FOPID controller is smaller than the value achieved by the PID and LQG

controllers. Another advantage of the FOPID controller over the LQG controller is the

reduction of the controller size by 50 percent. Transient response of each controller is

approximately the same. Each controller has a bandwidth within the limit for digital

implementation at a 5 kHz sampling frequency.
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Figure 5.9: Bode plots of the lateral AMB sensitivity function at the motor side and
compressor side under three different controllers

5.2.2 Experimental test of lateral rotor suspension

To validate the design of the FOPID controller for lateral rotor dynamics in the

previous section, two types of measurements are made. The first type of measurement

is the rotor vibration magnitude for speeds ranging from 500 rpm to 16,500 rpm, in

500 rpm increments. Three separate cases are tested including the IOPID and FOPID

controllers tuned by the DE algorithm and the LQG controller that was previously

designed in [73].

The results in Figures 5.10 and 5.11 show the rotor vibration within the specified

speed range of the motor side and compressor side, respectively. The FOPID controller

leads to the smallest vibration magnitude throughout the speed range among all three

tested controllers and its peak magnitude is well within the limit of Zone A specified

by ISO [39]. The IOPID controller leads to the largest vibration magnitude which can

be observed from the motor side measurement. The result agrees with the prediction

of the maximum vibration magnitudes tested in the forced response analysis.
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Figure 5.10: Rotor displacements at the motor side under the IOPID, FOPID, and
LQG controllers
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Figure 5.11: Rotor displacements at the compressor side under the IOPID, FOPID,

and LQG controllers

The second test is the sensitivity function frequency response measurement. Again,

the three controllers used in the rotor vibration experiment are tested. For this testing,
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the perturbation signal of 100 mv with frequencies ranging from 0.1 Hz to 1200 Hz

is added at the controller input and the sensitivity function frequency response is

obtained from the relationship between the sum of perturbation and controller input

signals and the perturbation signal itself. The frequency response plots for the cases

of all three controllers for both the motor side and the compressor side are shown

in Figures 5.12 and 5.13, respectively. From these results, the sensitivity function

peak under the FOPID controller is the smallest and falls into Zone A specification

of the ISO standard [40], while the IOPID controller results in the largest sensitivity

function peak and its magnitude falls into Zone B specification. Lastly, the trend of

the sensitivity function frequency responses match the theoretical prediction in Figure

5.9.
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Figure 5.12: Bode plots of the lateral AMB sensitivity function at the motor side
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Figure 5.13: Bode plots of the lateral AMB sensitivity function at the compressor side

5.3 Design and experimental test of FOPID con-

troller for rotor axial dynamics

5.3.1 Design of FOPID controller

The ultimate goal of the control design for the thrust AMB system is to achieve good

rotor tracking performance at a low/mid frequency range. In addition, the closed-loop

system should have a capability to reject external disturbances such as aerodynamic

disturbances acting on the compressor impeller during surge. The designed controller

with these capabilities must have a bandwidth within the range limited by the sampling

frequency. The controller structure will have the same form as in the lateral dynamics
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design, where the FOPID controller is coupled with a second order low pass filter. The

objective functions will be similar to the objectives defined for the H∞ controller design

for axial rotor support in [73]. The objective functions will combine the weighting

functions with the sensitivity function S, the complementary sensitivity function T ,

the plant transfer function G, and the controller transfer function K, in order to

specify the desired performance in the frequency domain. All these objective functions

are listed below.

1. Stability of the closed-loop system (J1): Closed-loop stability will be determined

by the number of poles that have positive real part. The optimization goal of

this objective is zero.

2. Tracking error performance: J2 = ‖W3SW2‖∞ .

3. Control effort according to the reference input signal: J3 = ‖W4SKW2‖∞ .

4. Transmission of the input disturbance to the control output: J4 = ‖−W3SGW1‖∞ .

5. Closed-loop dynamics from the reference input to the rotor position: J5 =

‖−W4TW1‖∞ ,

where the weighting functions were defined in [73], which are based on the intercon-

nected system shown in Figure 5.14, as follows.

W1(s) = 0.07,

W2(s) = 1,

W3(s) = 100
(0.0015s+ 1)

(0.5s+ 1)
,

W4(s) = 0.01
(10−3s+ 1)2

(10−5s+ 1)2
.
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Figure 5.14: Interconnected system for the design of the thrust AMB rotor support
controller

Similar to the previous design, all objective functions will be combined as a single

cost function during the optimization process as follows,

J = max{J1, J2, J3, J4, J5}.

The optimization goal is to have the infinity norm of all objective functions smaller

than 1. Once again, the three tuning methods used for the optimization are the GA,

DE, and PSO methods. The size of the population for all cases is reduced to 100

since there are fewer tuned parameters than the control of rotor lateral dynamics.

The crossover rate, the weight factor, the acceleration rate, and the mutation rate are

kept the same as in the previous design. Table 5.6 shows the resulting infinity norm

of the objective functions for all tuning methods. All tuning methods have similar

optimization results. Yet, the DE algorithm achieves the lowest infinity norm. Thus,

this design will be used for implementation.

Controller characteristics GA DE PSO
Infinity norm of objective functions 1.061 1.034 1.035

Table 5.6: Comparison of the objective function peaks resulting from different tuning
methods
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Table 5.7 summarizes the values of the FOPID controller parameters obtained

from the DE optimization. The resulting magnitude plots of all objectives, except the

stability objective, are shown in Figure 5.15.

Bearing KP KI KD λ µ
Thrust AMB 0.0743 11.3933 0.00468 0.6249 0.9068

Table 5.7: The tuned FOPID controller parameters for rotor axial dynamics
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Figure 5.15: Magnitude of the objective functions under the FOPID controller

The sensitivity function in Figure 5.16 shows that the stability margin specification

qualifies for Zone A, where a sensitivity peak is less than 3. Besides the peak

of the sensitivity function, tracking error performance can also be observed from

the magnitude of the complementary sensitivity function T , which represents the

relationship between the reference input and the rotor position. Figure 5.16 shows
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that, at low/mid frequencies the magnitude of T is 1 and the phase is 360 deg (in

phase). This implies that the rotor position follows the change of the input reference

signal closely in that frequency range.
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Figure 5.16: Bode plots of the thrust AMB sensitivity and complementary sensitivity
functions under the FOPID controller tuned by the DE algorithm

For comparison, the conventional PID controller is tuned based on the same

objectives and algorithms as the FOPID controller. Moreover, performance based on

the H∞ controller that was designed for the same system reported in [73] are compared

with both the FOPID and the IOPID controllers in Table 5.8.

In Table 5.8, both the FOPID and the H∞ controllers achieve a stability margin

to satisfy the Zone A requirement. On the other hand, the stability margin falls into

Zone B when using a PID controller as shown in Figure 5.17. Moreover, the sensitivity

function peak under the FOPID controller is close to the value achieved by the H∞
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Specifications IOPID FOPID H∞
Sensitivity function peak 3.312 2.482 2.433
Infinity norm of objectives 1.380 1.034 0.907
Controller bandwidth (rad/s) 2045 2841 2754
Controller order as implemented 4 6 8

Table 5.8: Comparison of performances in the thrust AMB system
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Figure 5.17: Bode plots of the thrust AMB sensitivity and complementary sensitivity
functions

controller. The advantage of the FOPID controller over the H∞ controller is that the

dimension of the controller is reduced by 50 percent. Lastly, all controllers have a

bandwidth within the limit for the digital implementation of 5 kHz sampling frequency.

5.3.2 Experimental test of axial rotor suspension

The sensitivity function frequency response measurement is conducted the same way as

in the lateral rotor dynamics case. The frequency response plots of all three controllers
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are shown in Figures 5.18. From these results, the sensitivity function peak under

the FOPID controller is the smallest and falls into Zone A specification of the ISO

standard [40], while the IOPID controller has the largest sensitivity function peak and

its magnitude falls into Zone B specification. The trend of the sensitivity function

frequency responses matches the theoretical prediction in Figure 5.17. Figure 5.19

shows that the closed-loop bandwidth when using the FOPID controller matches the

simulation result.
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Figure 5.18: Bode plots of the thrust AMB sensitivity function
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Figure 5.19: Bode plots of the thrust AMB sensitivity function under the FOPID
controller

5.4 Summary

With the specified control objectives that are based on the accepted industrial standards

for machinery equipped with magnetic bearings, including ISO 14839 and API 617,

the FOPID controllers are designed for rotor suspension in both the radial and the

axial directions.

For the rotor lateral dynamics, the control objectives include the peak of the

sensitivity function, the rotor vibration caused by the unbalanced forces, and the

transient response performance. The design begins with the determination of whether

to use the centralized or the decentralized control structure. The simulation results
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reveal that the centralized control structure provides better performance. Afterward,

three tuning methods namely, the Genetic Algorithm (GA) method, the Differential

Evolution (DE) method, and the Particle Swarm Optimization (PSO) method, are

investigated for their effectiveness for the FOPID controller design. The results

show that the DE method achieves the best performance. For comparison, the

IOPID controller is designed based on the centralized structure and tuned by the

DE optimization method. Moreover, the designed and implemented LQG controller

reported in [73] is also compared with the designed FOPID controller. The experimental

results for rotor vibration with the rotor spinning at speeds ranging from 500 rpm

to 16,500 rpm show that the FOPID results in the smallest rotor vibration and the

IOPID results in the largest vibration peak, while the rotor vibration under the LQG

controller falls in between the results under the FOPID and the IOPID controllers. In

addition, in terms of the peak value of the sensitivity function, the FOPID controller

results in the smallest and it falls into Zone A specified by the ISO standard, while

LQG controller also achieve the Zone A specification with a slightly larger peak value

of the sensitivity function than the FOPID controller. On the other hand, the IOPID

controller can achieve only Zone B specification.

For the rotor axial dynamics, the FOPID controller is designed based on the

objectives specified by weighting functions developed in the previous work [73]. Three

different tuning methods are investigated. The results show that the DE method

can achieve the best performance as in the previous design. For comparison, the

IOPID controller is designed based on the same objectives and the same optimization

algorithm as the FOPID controller. Moreover, the designed H∞ controller for the

rotor axial dynamics in [73] is also analyzed for comparison. Finally, the experimental

results show that the FOPID controller achieves approximately the same value of

the sensitivity function peak as achieved by H∞ controller, and once again their
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performance falls into Zone A specification. In contrast, the value of the sensitivity

function peak under the IOPID controller exceeds the Zone A level.



Chapter 6

Fractional Order Control of

Compressor Surge

6.1 Design of FOPID surge controller

The objective in the surge control design is to stabilize the compression system in

the surge condition, where the equilibrium operating point (Φeq, Ψeq) is beyond the

surge line limit. As shown in Figure 6.1, the two inputs of the surge controller

K from the compression system G are the compressor mass flow rate ξ1 and the

plenum pressure rise ξ2. The controller output is the reference impeller tip clearance

δcl,ref, which is fed into the closed-loop thrust AMB system Tamb. The thrust AMB

controller will track the desired tip clearance specified by the surge controller in order

to induce an appropriate amount of pressure rise for surge stabilization. In the actual

implementation, it is impossible to have perfect tracking by the thrust AMB due to

external disturbances. This means that the performance of the surge controller will be

degraded. Because of this limitation, the surge control design must take into account

disturbances, which can impact the interaction between the surge and thrust AMB

controllers. Moreover, Yoon et al. suggested in [73] that the closed-loop system shown

89
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in Figure 6.1 can be restructured as shown in Figure 6.2. This way the closed-loop

dynamics of the compression system and the rotor/thrust AMB system are separated.

Figure 6.1: Closed-loop compression system with surge controller diagram

Figure 6.2: Modified closed-loop compression system with surge controller diagram

Here, the surge controller for each input-output pair consists of a fractional PD

controller, a lowpass filter, and a notch filter. The center frequency of the notch

filter is placed at a frequency slightly lower than the critical frequency of the system

(approximately 5-10 Hz lower) so that the designed controller can provide more
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damping at the critical frequency. The structure of the notch filter is

Gnotch =
s2 + ω2

n

s2 + 2ζωns+ ω2
n

,

where ωn is the center frequency of the notch and ζ indicates the notch sharpness.

The objectives for the surge controller tuning are adopted from [73] as follows.

1. Stability of closed-loop system: The closed-loop stability condition is derived

from the Small Gain Theorem. The optimization goal is to have J1 < 1.

J1 =
∥∥(I +KG)−1KG(I − Tamb)

∥∥
∞ .

2. Robust stability condition:

J2 = ‖W1SiKGW3‖∞ .

3. Control effort according to the reference equilibrium operating point condition:

J3 = ‖W1SiKW4‖∞ .

4. Transmission of the input disturbance to the plant output signal condition:

J4 = ‖W2SoGW3‖∞ .

5. Closed-loop dynamics from the reference equilibrium operating point to the

plant output signal condition:

J5 = ‖W2SoGKW4‖∞ ,
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where

Si = (I +KG)−1,

So = (I +GK)−1,

and the weighting functions are as defined in [73], which are based on the interconnected

system shown in Figure 6.3, as follows.

W1(s) = I,

W2(s) = 0.001I,

W3(s) = 2
(s+ 0.1)

(s+ 300)
I,

W4(s) = 2000
(s+ 0.1)

(s+ 3000)

1.5 0

0 1

 .

Figure 6.3: Interconnected system for the design of the surge controller

Similar to the rotor suspension control design, all objective functions will be

combined as a single cost function during the optimization process, which is as follows.

J = max{J1, J2, J3, J4, J5}.

The optimization goal is to have the infinity norm of all objective functions to be

smaller than 1. Once again, the investigation of three tuning methods is performed.
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The population size is 200, which is the same value used in the control of rotor lateral

dynamics because the number of parameters to tune are equal. The crossover rate,

the weight factor, the acceleration rate, and the mutation rate are kept the same as in

the previous design.

Controller characteristics GA DE PSO
Infinity norm of objective functions 1.048 0.991 1.019

Table 6.1: Comparison of the performance of different tuning methods

Table 6.1 summarizes the resulting infinity norms of the objective functions of all

tuning methods. In addition, the resulting magnitude plots of all objectives, except

the stability objective, resulting from the three different tuning methods are shown in

Figure 6.4. It can be observed that only the DE algorithm results in the maximum

magnitude of the objective functions smaller than 1. Therefore, this controller design

will be used for implementation and comparison with the other kind of controllers.

Table 6.2 summarizes the values of the FOPD controller and the notch filter

parameters obtained from the DE optimization.

Input - Output KP KD µ ζ ωn
ξ1 - δcl,ref 2.49×10−3 9.11×10−5 1.123 0.709 18.46 Hz
ξ2 - δcl,ref 1.21×10−2 1.01×10−4 0.563 3.489 12.10 Hz

Table 6.2: Parameters of tuned fractional surge controller

For comparison, the conventional PID controller is tuned based on the same

objectives and algorithms as the FOPID controller. Moreover, the surge H∞ controller

that was designed for the same compression system reported in [73] is also considered.

Table 6.3 summarizes the infinity norms of all objectives of the IOPID, the FOPID,

and the H∞ controllers, and their magnitude plots are illustrated in Figure 6.5.
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Figure 6.4: Magnitudes of objective functions from three different tuning methods
(GA, DE, and PSO)

Controller characteristics PID FOPID H∞

Infinity norm of objectives 1.143 0.991 0.969

Controller order as implemented 6 6 7

Table 6.3: Performance of surge controllers

6.2 Simulation results of surge control

With the derived surge controller, the simulation was carried out on the nonlinear

compression system model described by Eqs. (4.5a) - (4.5d). The closed-loop dynamics
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Figure 6.5: Magnitudes of objective functions for all controllers

of the thrust AMB is represented by a third order low-pass Butterworth filter with the

cutoff frequency of 70 Hz. Figure 6.6 shows the simulation results of the compression

system when the surge controller is unactivated. In the simulation, the throttle valve

was gradually closed from 20% opening (stable) to 16% opening (unstable), where the

crossing between the two regions occurs at 18.5% opening. Since there is no surge

controller activated, the variation of the impeller tip clearance remains zero as shown in

Figure 6.6(b). Figure 6.6(c) shows that the states ξ1 and ξ2 of the compression system

demonstrate large oscillation magnitudes after the system enters the surge region.

Similarly, the value of the plenum pressure rise Ψp demonstrates large oscillation

magnitudes after the system enters the surge region as shown in Figure 6.6(d).
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Figure 6.6: Simulation results of the compression system with the surge controller
unactivated

Figure 6.7 shows the simulation results of the compression system when using the

PID controller that is tuned with the same algorithm and objectives as for the FOPID

controller. This conventional PID controller can stabilize the compression system

even after the system enters the surge region, but the system becomes unstable at

approximately 16.2% of throttle valve opening.

Figure 6.8 shows the simulation results of the compression system when the H∞

surge controller is activated. The compression system is stabilized even when it enters

the unstable region by modulating the impeller tip clearance as shown in Figure 6.8(b).
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Figure 6.7: Simulation results of the compression system under the PID surge controller

Both states ξ1 and ξ2 of the compression system are still stable even after the system

enters the unstable region as shown in Figure 6.8(c). Finally, Figure 6.8(d) shows

the values of the plenum pressure rise Ψp and the equilibrium pressure rise Ψeq that

stabilize the compression system. Similar to the performance provided by the H∞

surge controller, the FOPID surge controller stabilizes the compression system. In

addition, the peak value of the tip clearance modulation is approximately the same as

in the case of the H∞ surge controller as shown in Figure 6.9(b). Also, the maximum

values of the states shown in Figure6.9(c) stay stable after the system enters the surge
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Figure 6.8: Simulation results of the compression system under the H∞ surge controller

region. It can be seen that the closed-loop system with the FOPID surge controller

is more robust than in the case of the PID surge controller. Finally, the simulation

results demonstrate that the FOPID surge controller can stabilize the compression

system to the same level as the H∞ surge controller during the simulation.

6.3 Experimental test of surge control

The surge controller will be activated when needed on top of the rotor suspension

controllers that are always active throughout the operating period. Since the surge
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Figure 6.9: Simulation results of the compression system under the FOPID surge
controller

control implementation will be tested at 16,290 rpm, which will store high potential

energy, the accidental contact by improper surge controller implementation can

cause more damage to the compressor than the surge instability. Therefore, a safety

mechanism for the surge controller activation is required. Within this study, prior to

the surge controller activation, rotor vibration is checked. If rotor vibration is within

the predefined limit, the surge controller is engaged in the control process. Then,

the reference of the rotor axial position computed by the surge controller is limited

to ±70% of the available axial clearance. Otherwise, the reference of the rotor axial
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position is set to zero for a safe operating environment. The flow chart of the surge

controller operation is illustrated in Figure 6.10.

Figure 6.10: Flow chart of the surge control implementation [73]

With the rotor spinning at 16,290 rpm, the system is driven into surge by gradually

closing down the throttle valve starting from a 21.0% opening, in 0.1% decrements,

for smooth operation. Figure 6.11 shows that the compression system enters the

surge at a 17.8% of the throttle valve opening in the absence of the surge controller.
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The frequency response plot shows large peaks at approximately 7 Hz and 21 Hz,

which agrees with the prediction of the compression system characteristics described

in Section 4.3.
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Figure 6.11: Waterfall plot of the frequency response of the measured plenum pressure
signal at 16,290 rpm with the surge controller unactivated

For the next surge test, the IOPID surge controller is activated under the same

testing condition as for the previous test. Figure 6.12 shows the frequency response of

the measured plenum pressure rise when the IOPID surge controller is activated. The

large peaks of the frequency response initiate at a 16.9% throttle valve opening position.
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The result shows that, with the IOPID surge controller activated, the compression

system can operate stably beyond the original surge limit.
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Figure 6.12: Waterfall plot of the frequency response of the measured plenum pressure

signal at 16,290 rpm with the IOPID surge controller activated

Figure 6.13 shows the non-dimensional mass flow rate and the plenum pressure

rise on the characteristic curve during stable operation. The measurements with the

surge controller unactivated are marked by ‘o’. These values are measured from 21%

valve opening until 17.8%, where the surge initiates. The measurements marked by ‘x’
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represent the extended operating points when the IOPID controller is activated. It

can be observed that the surge limit is extended in terms of the mass flow range from

the uncontrolled case by 11.97%.
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Figure 6.13: Compressor steady-state operation on the characteristic curve at 16,290
rpm with the IOPID surge controller activated and unactivated, respectively

In addition, the measured and the reference of the ratio of the impeller tip clearance

and the available axial clearance are shown in Figure 6.14(b). The maximum value of

the impeller tip clearance is about 40% of the available axial clearance. This shows

that the IOPID surge controller can operate stably with some axial position margin

compared with the predefined ±70% of the available clearance. Figure 6.14(c) shows

the values of the surge controller states, ξ1 and ξ2, when the throttle valve is opened at
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17.0%. Then, the non-dimensional measured pressure rise and its equilibrium values

are illustrated in Figure 6.14(d).
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Figure 6.14: Experimental results of the compression system under the PID surge

controller at 17.0% throttle valve opening

For the case of the FOPID surge controller test, Figure 6.15 shows the frequency

response of the measured plenum pressure rise. It can be noticed that the compression
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system enters surge when the throttle valve opens at 16.2%, which further extends

the surge limit where the IOPID surge controller remains stable until 17.0% opening.

16.5

17

17.5

18

18.5

19

19.5

20

20.5

21

0

10

20

30

40

50

0

2

4

6

8

10

Thro
ttl

e o
pen (%

)

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
K

P
a

)

Figure 6.15: Waterfall plot of the frequency response of the measured plenum pressure

signal at 16,290 rpm with the FOPID surge controller activated

Figure 6.16 shows the non-dimensional mass flow rate and the plenum pressure rise

on the characteristic curve during stable operation with the FOPID surge controller

activated after the surge limit. The measurements with the FOPID surge controller

unactivated are marked by ‘o’. These values are measured from 21% valve opening
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until 17.8%, where the surge initiates. The measurements marked by ‘x’ represent the

extended operating points when the FOPID controller is activated. It can be observed

that the surge limit is extended in terms of the mass flow range from the uncontrolled

case by 22.26%.
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Figure 6.16: Compressor steady-state operation on the characteristic curve at 16,290

rpm with the FOPID surge controller activated and unactivated, respectively

In addition, the maximum value of the impeller tip clearance is approximately

35% of the available axial clearance as shown in Figure 6.17(b). This shows that the

FOPID surge controller results in a slightly larger axial clearance margin than the

IOPID surge controller case. Figure 6.17(c) shows the values of the surge controller

states, ξ1 and ξ2, when the throttle valve is opened at 16.3%. The non-dimensional

measured pressure rise and its equilibrium values are illustrated in Figure 6.17(d).
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Figure 6.17: Experimental results of the compression system under the FOPID surge

controller at 16.3% throttle valve opening

Finally, for the case when the H∞ surge controller is activated, Figure 6.18 shows

that the compression system remains stable when the throttle valve opens as small as

16.2%. This extends the throttle valve opening for another 0.1% beyond the FOPID

surge controller case. Figure 6.19 shows the non-dimensional mass flow rate and the

plenum pressure rise on the characteristic curve during stable operation with the H∞
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surge controller activated after the surge limit. The measurements with the surge

controller unactivated are marked by ‘o’. These values are measured from 21% valve

opening until 17.8%, where the surge initiates. The measurements marked by ‘x’

represent the extended operating points when the H∞ controller is activated. It can

be observed that the surge limit is extended in terms of the mass flow range from the

uncontrolled case by 22.92%.
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Figure 6.18: Waterfall plot of the frequency response of the measured plenum pressure
signal at 16,290 rpm with the H∞ surge controller activated
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In addition, the maximum value of the impeller tip clearance is about 35% of the

available axial clearance as shown in Figure 6.20(b). This shows that the H∞ surge

controller can operate stably with approximately the same axial clearance margin as

the FOPID surge controller case. Figure 6.20(c) shows the values of the surge controller

states, ξ1 and ξ2, when the throttle valve is opened at 16.2%. The non-dimensional

measured pressure rise and its equilibrium values are illustrated in Figure 6.20(d).
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Figure 6.19: Compressor steady-state operation on the characteristic curve at 16,290
rpm with the H∞ surge controller activated and unactivated, respectively

6.4 Summary

This chapter presents the design of the FOPID surge controller with three different

tuning methods namely, the Genetic Algorithm (GA) method, the Differential Evolu-
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tion (DE) method, and the Particle Swarm Optimization (PSO) method. Simulation

results show that the FOPID surge controller tuned by the DE method achieves

the best performance. Therefore, this design is used for the implementation on the

compressor test rig. For comparison, the IOPID surge controller was designed based

on the same objectives and optimization algorithm.
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Figure 6.20: Experimental results of the compression system under the H∞ surge

controller at 16.2% throttle valve opening
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Simulation results show that the IOPID controller can stabilize the compression

system beyond the surge limit, but not as much as the FOPID and H∞ surge controllers

can. These simulation results are then validated by experimental testing on the

compressor test rig. The experimental results show that the IOPID surge controller

can extend the surge limit in terms of the mass flow range from the uncontrolled case

by 11.96%. For the case of the FOPID and the H∞ surge controllers, the surge limit

is extended by 22.26% and 22.92%, respectively.



Chapter 7

Conclusions

This dissertation demonstrates the design, analysis, and implementation of the frac-

tional order PID controller (FOPID) for the control of vibration and surge in a

centrifugal compressor by active magnetic bearings (AMB). This is the first time that

the FOPID controller is designed for and implemented on a compressor equipped with

magnetic bearings. The effectiveness of the FOPID controller is investigated in two

aspects.

The first aspect is on the FOPID controller design for the rotor suspension in both

radial and axial directions. For the rotor lateral dynamics, the control objectives include

the peak of the sensitivity function, the rotor vibration caused by the unbalanced forces,

and the transient response performance. The design starts with the determination of

whether to use a centralized or decentralized control structure. The simulation results

reveal that the centralized control structure provides better performance. Afterward,

three tuning methods namely, the Genetic Algorithm (GA) method, the Differential

Evolution (DE) method, and the Particle Swarm Optimization (PSO) method, are

investigated for their effectiveness for the FOPID controller design. The results show

that the DE method achieves the best performance. For comparison, the IOPID

controller is designed based on the centralized structure and tuned also by the DE

112
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optimization method. Moreover, the LQG controller designed and implemented in [73]

is also compared with the designed FOPID controller. The experimental results for

rotor vibration with the rotor spinning at speeds ranging from 500 rpm to 16,500 rpm

show that the FOPID results in the smallest rotor vibration and the IOPID results in

the largest vibration peak, while the rotor vibration under the LQG controller falls

in between the results under the FOPID and the IOPID controllers. In addition, in

terms of the peak value of the sensitivity function, the FOPID controller results in the

smallest and it falls into Zone A specified by the ISO standard, while LQG controller

also achieve the Zone A specification with a slightly larger peak value of the sensitivity

function than the FOPID controller. On the other hand, the IOPID controller can

achieve only Zone B specification. For the rotor axial dynamics, the FOPID controller

is designed based on the objectives specified by the weighting functions given in the

previous work [73]. Three different tuning methods are investigated. The results

show that the DE method achieves the best performance as in the previous design.

For comparison, the IOPID controller is designed based on the same objectives and

optimization algorithm used for the FOPID controller. Moreover, the H∞ controller

for the rotor axial dynamics designed and implemented in [73] is also analyzed for

comparison. Finally, the experimental results show that the FOPID controller archives

approximately the same value for the sensitivity function peak as achieved by the H∞

controller, and their performance falls into Zone A specification. In contrast, the value

of the sensitivity function peak of the IOPID controller exceeds the Zone A level.

The second aspect is on the FOPID controller design for the surge control in

the centrifugal compressor by using magnetic bearings. The FOPID controller is

designed based on the control objectives given by the weighting function adopted

from [73]. Three tuning methods are investigated for their effectiveness. The result

shows that DE optimization algorithm achieves the best performance among the

three. Additionally, the IOPID controller is designed based on the same objectives
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and tuning algorithm. Simulation results show that the IOPID controller can stabilize

the compression system beyond the surge limit, but not as much as in the case of the

FOPID and the H∞ surge controllers. The simulation results are validated by the

experimental testing on the compressor test rig. The experimental results show that

the IOPID surge controller can extend the surge limit in terms of the mass flow range

from the uncontrolled case by 11.96%. For the case of the FOPID and the H∞ surge

controllers, the surge limit is extended by 22.26% and 22.92%, respectively.

Based on the simulation and experimental results presented in Chapters 5 and 6,

if properly tuned, the FOPID controller designed for the rotor suspension outperforms

the IOPID controller with only the variation of the integral and derivative orders.

Furthermore, the FOPID controller can achieve performance similar to or even better

than advanced controllers such as LQG and H∞, while the FOPID has simpler

controller structure as well as design process.

7.1 Future work

Motivated by the effectiveness of the FOPID controller presented in this dissertation,

further development of this work can be summarized as follows:

1. In order to promote the use of the FOPID controllers, an online automatic

tuning method for FOPID could be developed for the ease of operation.

2. To further investigate the fractional order control system, the fractional order

modeling of some subsystems, such as eddy current effect in thrust bearing and

the piping acoustic in the compression system, can be studied.

3. Lastly, the FOPID controller design with the consideration of uncertainties in

a system, as usually considered in the advanced controller method, is also an

interesting topic of future research.
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[67] Valério, D., and da Costa, J. S. Ninteger: a non-integer control toolbox for
matlab. In 1st IFAC Workshop on Fractional Differentiation and its
Applications, Bordeaux, France (2004).

[68] Valerio, D., and da Costa, J. S. A review of tuning methods for fractional
pids. In 4th IFAC Workshop on Fractional Differentiation and Its Applications,
FDA (2010), vol. 10.

[69] Valerio, D., and Da Costa, J. S. An introduction to fractional control,
vol. 91. IET, 2013.

[70] Vinagre, B. M., Monje, C. A., Calderón, A. J., and Suárez, J. I.
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