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Abstract 

 Many biological measurements assume all the cells in a population are identical.  
However, no two cells are identical.  How cell variation, or heterogeneity, influences biological 
outcomes is unclear.  Cellular heterogeneity has been correlated with poorer prognoses in cancer, 
suggesting that heterogeneity plays a role in the progression of the disease.  Understanding the 
role of heterogeneity is limited by the ability to identify which genes and proteins are different in 
the tumor population.   
 In this Dissertation, we build and extend computational tools to identify and quantify 
heterogeneously regulated genes.  We apply these approaches to understand the role of  
heterogeneity in basal-like breast cancer, the most lethal form of breast cancer.  We begin by 
designing a computational algorithm to quantify geometric properties of three-dimensional breast 
cancer spheroid in vitro assays.  We use the quantitative characteristics to identify inter-cell line 
and intra-cell line differences in spheroid morphology.  Furthermore, we use the approach to 
quantify the extent of heterogeneity present in basal-like breast cancer cell lines.  Next, we build 
molecular and agent-based models to explain the heterogeneity we observe in a biomarker 
protein, JUND.  These models helped us to understand what the triggers and consequences of 
JUND heterogeneity were in breast epithelial spheroids. Last, we build a statistical model of 
sampling to obtain single-cell level gene expression information from population measurements.  
We use this approach to globally quantify the frequency of cells expressing different 
transcriptional programs at an elevated level.  We identified one gene (PIK3CD) that was rarely 
expressed, but critical to normal spheroid development.   
 In Part II of this thesis, we identified a heterogeneously expressed ligand, growth-
differentiation factor 11 (GDF11).  GDF11 has not been implicated in normal or pathologic 
breast biology.  In this Dissertation, we discover that GDF11 improves the morphology of 
normal breast and breast cancer spheroids.  We identify SMAD4 and ID2 as molecular mediators 
of GDF11 treatment.  GDF11 blocks the ability of basal-like breast cancer cells to establish 
tumors in a xenograft model, suggesting the loss of GDF11 function could play a role in the 
progression of human basal-like breast cancer.  Strikingly, we observe that human basal-like 
breast cancers have a defect in secretion of GDF11.  This intracellular sequestration of a tumor 
suppressive ligand presents a new way in which cancer cells inactivate tumor suppressors.   
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1 Chapter 1 – Introduction and Background 

1.1 Heterogeneity is intrinsic to biology 

 No two cells are identical (1). Despite having identical genetic composition and 

environmental cues, cells can be very different in their behaviors.  Some of these cell differences 

are due to stochastic fluctuations in gene expression (2-4); however, these differences also occur 

due to heterogeneity in gene regulation (5, 6), resulting in distinct populations of cells with 

different behaviors (7).  These differences in cell behaviors, or phenotypes, drive a number of 

biological processes.  In this Chapter, we discuss the role of heterogeneity in normal and disease 

states, and the challenges in studying heterogeneity.  

1.1.1 Heterogeneity in normal biology 

 Cellular heterogeneity occurs naturally in many normal contexts, but features 

prominently in development (8-11).  In the simplest case, all multicellular organisms begin as 

single-cells that proliferate, diverge, and differentiate in phenotype.  As all the cells share the 

same genetic background, the causes or cues for differences in phenotype, particularly early in 

development, are not readily apparent (12).   The development and differentiation process has 

been extensively studied in stem cells.  In a variety of studies, stem cells have been found to be 

highly heterogeneous at the mRNA (10, 13-15) and protein level (16, 17).  These cell-to-cell 

differences are important for the organism to develop correctly (11).  The particular emphasis 

placed on transcription factor abundance and activity suggests that heterogeneity in gene 

regulation is critical (10, 11, 16). 
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 Heterogeneity is also present in adult tissue, exemplified by the immune system (18).   

Across mRNA (19) and protein (20) levels, immune cells are highly heterogeneous even within 

the same immune cell type.  These cell-to-cell differences have a profound impact on how 

immune cells respond to stimulation (21) and drugs (20).  Cell-to-cell differences, specifically in 

gene expression, have also been mapped to differences in cellular behavior in other lineages, 

further implicating the importance of heterogeneity in gene regulation to functional biological 

consequences (22, 23).  The principles of cellular heterogeneity also occur in the context of 

disease, most notably in cancer.  

1.1.2 Heterogeneity in cancer 

 Heterogeneity in cancer is studied at two different scales (24).  The highest scale 

examines the differences in tumors that occur between patients, or intertumor heterogeneity.  

Patient-to-patient variability within the same cancer site is predominantly due to the differences 

in genetic perturbations in the tumors.  Intertumor heterogeneity has been extensively catalogued 

through large sequencing and profiling efforts, like The Cancer Genome Atlas (25-31).  Through 

these efforts, for example, we now know what the recurrent, both dominant and rare, mutations 

are for many cancer types.  Intertumor heterogeneity is valuable for stratifying patients to 

identify approproate therapeutic options (32); however, we are quickly reaching saturation of 

information given the number of tumors that have already been sequenced.  This suggests that 

additional information could be gleaned looking at a different biological scale.   

 Intratumor heterogeneity, the second scale of heterogeneity, describes the differences 

between the individual cells within the same tumor (33).  Like intertumor heterogeneity, 

intratumor heterogeneity can also be genetically based.  The genomics of intratumor 

heterogeneity can be studied at the macroscopic level through deep sequencing (34), regionally 
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by sampling different parts of the tumor (35, 36), and at the single-cell level (37, 38).  The 

genetic differences can catalogue the number of subpopulations (34, 39-41) in a tumor and help 

piece together a phylogenetic tree of tumor evolution to suggest which clones give rise to 

metastases or drug resistance (37, 42).  Beyond a catalogue or tumor evolution, however, 

associating genomic changes to cancer phenotypes remains a limitation, given that the same 

mutation can manifest differently (43, 44).  Cancer genomics provides a snapshot into what 

mutations are driving the uncontrolled proliferation, but not necessarily a snapshot into the tumor 

behavior.   

 Intratumor heterogeneity also occurs by non-genetic means.  Differences in the tumor 

stroma can dictate tumor behavior.  For example, increased mechanical stiffness drives 

malignant behavior in breast epithelial cells (45).   Stromal cell interactions can also drive tumor 

behavior in different directions (46-48).  Beyond host or microenvironment interactions, tumor 

cells can be transcriptionally distinct from one another (49, 50).  These differences in 

transcriptional regulation can create subpopulations of cancer cells with different phenotypes 

(51-54).  These subpopulations are dynamic and difficult to capture through conventional 

approaches.  Regulatory heterogeneity remains an understudied aspect of cancer biology (see 

Section 1.4).    

 Tumor heterogeneity has been recognized for decades (55), yet heterogeneity continues 

to be a confounding and complicating factor in cancer research.  In this Dissertation we put forth 

evidence that transcriptional regulatory heterogeneities are a major driver of cancer cell and 

overall tumor behavior.  The evidence presented focuses on a cancer that is an exemplar of 

intratumor heterogeneity, basal-like breast cancer.   
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1.2 Basal-like breast cancer is a heterogeneous, aggressive disease 

 Many types of cancers have been catalogued and categorized through molecular profiling 

to identify subtypes of tumors and understand the extent of intertumor heterogeneity.  These 

analyses have been applied to breast cancer, one of the most common and lethal malignancies in 

women.  These analyses uncovered four predominant subtypes: luminal A, luminal B, human 

epidermal growth factor receptor 2 (HER2) amplified, and basal-like (56, 57).  The “basal-like” 

moniker comes from the first set of molecular profiles, which identified a number of basal 

cytokeratins uniquely expressed in this group of tumors (56-60).  Further molecular 

characterization has stratified basal-like into basal-like (Basal A) and Claudin-low (Basal B), 

with claudin-low tumors having mesenchymal-like and stem-cell characteristics (61).  Of the 

four major subtypes, basal-like breast cancer has the poorest prognosis.  Basal-like breast cancers 

are also more susceptible to relapse and metastases (60, 62).  Basal-like breast cancer is a rare 

subtype, occurring in 10% of all breast cancer diagnoses, yet account for a disproportionate 

number of breast cancer deaths (63).  

One contributing factor to the poor prognosis is that basal-like breast cancers are 

typically “triple-negative” for the therapeutically relevant receptors in breast cancer (57).  

“Triple-negative” status refers to no expression of the estrogen receptor (ER), progesterone 

receptor (PR), and no genomic amplification of HER2 (27, 41).  These receptors and receptor 

pathways have specific inhibitors, used as the standard of care, if these receptors are expressed in 

the tumor (64).  However, none of these options are viable for basal-like breast cancer.  While 

the basal-like subtype has been known and studied for over a decade (57), no specific or targeted 

therapies have been uncovered (65).   
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 The predominant genetic lesions that occur in basal-like breast cancer are loss of TP53 

and BRCA1 (27).  Both of these genes are important in the DNA damage response and critical in 

maintaining genomic stability (66).  Due to the loss of these two genes, basal-like breast cancers 

do exhibit genomic instability (67, 68).  However, the measured changes in genomic copy 

numbers may be a consequence rather than the cause of basal-like breast cancer lethality.  For 

example, drugs targeting the DNA damage pathway (PARP inhibitors) had no significant effect 

on treatment of human basal-like breast cancer (69).  Additionally, recent evidence demonstrates 

that mortality risk actually decreases with increased instability (34).  Taken together, these data 

suggest that genomics alone cannot explain the aggressiveness of basal-like breast cancer.  

 Intratumor heterogeneity compounds the difficulty in understanding and treating basal-

like breast cancer.  Intratumor heterogeneity is widespread in basal-like breast cancer tumors.  

Many tumors show heterogeneous expression of basal cytokeratins (59) (Figure 1.1).  Strikingly, 

studies have shown that tumor cell heterogeneity is highly dynamic, where cells are transitioning 

between different molecular states (52, 53).  The heterogeneity we observe by 

immunohistochemistry or by other techniques simply shows a snapshot of the state the tumor 

cells were in at the time of fixation.  The time-scale that tumor cells can transition between states 

strongly suggests that heterogeneity in gene regulation is critical to the final tumor behavior (70).  

This is supported by the observation that intratumor heterogeneity correlates with a poorer 

prognosis (71), suggesting heterogeneity contributes to the progression of the disease.  
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Figure 1.1  Heterogeneous expression of biomarkers in basal-like breast cancer. 
Serial sections from a clinical specimen of basal like breast cancer show heterogeneous expression of 
two different biomarkers: keratin 5/6 (middle; see Chapter 3) and GDF11 (right; see Chapter 5) 
despite the cells within the tumor having similar morphology (hematoxylin and eosin stain; left).  
Arrows highlight heterogeneous immunoreactivity for the respective biomarkers.  Scale bar is 80 µm.  
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1.3 Challenges in studying heterogeneity  

 One key limitation in understanding the role of regulatory heterogeneities in cancer is in 

globally identifying which genes and proteins in the tumor are heterogeneous (72, 73).  Many 

techniques rely on measuring protein or mRNA content from large numbers of cells.   These 

techniques give one metric (e.g., expression of a gene or protein) that represents the behavior of 

the average cell in the population (Figure 1.2).  However, whether any cells exhibit this average 

behavior is unclear (74).  The most robust way to describe and quantify heterogeneity is to make 

measurements on every single cell in the population; however, single-cell techniques present 

difficult experimental considerations.    

 Profiling the proteome on the single-cell level is possible with labeling approaches. Flow 

cytometry based approaches can use antibody labeling to quantify percentages of cells that 

express a marker (75).  Fluorescence based flow cytometry is limited by the spectral overlap of 

dyes, giving a finite number of markers the assay can probe (76).  Modern mass spectrometry 

based cytometry, “mass cytometry”, alleviates this limitation by replacing the dyes with heavy 

ions that are readily separated by mass spectrometry (20).  However, mass cytometry is limited 

by the number of antigen-specific antibodies currently available with direct heavy ion 

conjugation.  These limitations allow an experimentalist to segregate a population of cells based 

on a set of preselected marker proteins.  Identification of new subpopulations that do not have a 

known combination of biomarkers is impossible with these approaches.  Additionally, these 

methods typically require the tissue to be dissociated into single cells, removing the cells from 

their in situ context (77).  Single-cell Western blotting is possible, but faces the same, if not 

more, limitations as cytometry (78).  Immunofluorescence can provide important insight into the 

localization and abundance of a protein of interest in a single cell, but demonstrates the same  
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Figure 1.2  Population measurements blur cellular heterogeneity. 
Population level measurements like mass spectrometry and RNA sequencing give a measurement of 
the abundance of a given protein or transcript.  The bulk measurement averages out the differences 
between single cells, and the assumption is the population measurement is reflective of the average 
cell.  The three samples displayed above have very different single-cell expression distributions; yet, 
a population level measurement would determine that the abundance of the hypothetical gene or 
protein is the same.   
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limitations as cytometry (79). Therefore, the proteome is unable to be globally profiled in single 

mammalian cells.  

 Profiling the transcriptome at the single-cell level is also possible with labeling and 

quantitative PCR (qPCR) approaches.  RNA fluorescence in situ hybridization (RNA FISH) is a 

technique that fluorescently labels individual transcripts within a fixed cell (80, 81).  Advances 

in FISH have allowed for the profiling of ~1000 transcripts per single-cell (82-84).  While closer 

to a global measurement, only ~5% of the transcriptome can be covered in one experiment.  

Similarly, only several genes can be probed at a given time with single-cell qPCR (10, 85, 86).  

These transcriptomic approaches can measure gene expression changes for known markers, but 

the discover of new heterogeneities or new subpopulations is not possible.   

 The ideal method that would catalogue and categorize cellular transcriptional 

heterogeneity would be a global profile of the transcriptome in a single cell.  Many approaches 

have been devised and tested (13, 19, 49, 87-93), and indeed, global profiles of single-cell gene  

expression can be constructed (94).  However, there is a significant limitation in single-cell 

techniques to separate true biological variation from technical variation.  Despite several 

iterations of improved sensitivity, the prevailing conclusion is that the starting material provided 

by a single cell is insufficient for quantitative transcriptomics (89).  The difficulty in RNA 

purification and reverse transcription cDNA synthesis of limited biological material precludes 

quantitative assessment of the original single-cell transcriptome (72, 95).  For example, our lab 

has taken RNA from a pool of cells and serially diluted the starting material down to the amount 

expected from a single cell.  Given that the RNA source is from a pool of cells, we would expect 

any technical replicate to yield the same measurement for a given transcript.  Yet, when we 

measure gene expression by qPCR, we observe a loss of quantitative accuracy and unreliable  
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Figure 1.3  Noise in gene expression profiling increases with single-cell level input material. 
(a-c) 100-cell samples were serially diluted and amplified by poly(A) PCR under optimal conditions 
for (a) microdissected primary melanoma cells, (b) microdissected HT-29 colon adenocarcinoma, and 
(c) SKW 6.4 lymphoblastoid suspension cells.  High- and low-abundance genes were monitored by 
qPCR, and data are shown as the median ± range of three replicate small-sample amplifications.  Red 
lines show the log-linear fit of the 3–100-cell dilutions.  Note that the one-cell amplifications (gray) 
often deviate from the log-linear fit or are frequently not detectable (yellow, ND).  Reprinted from 
(72) with permission. 
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detection of genes when using a single-cell amount of material (Figure 1.3).  Single-cell 

transcriptomics can be useful for inferring qualitative differences between cells, but given the 

technical variation, single-cell techniques are not suited to uncover regulatory heterogeneities.  

1.4 Stochastic profiling as an approach to study heterogeneity  

 How can we then globally identify regulatory heterogeneities in an unbiased manner?  To 

strike a compromise between population-level and single-cell level measurements, we developed 

a technique called stochastic profiling (73).  In stochastic profiling, we randomly sample a 

population by collecting a small number (e.g., ten) of cells and measuring the gene expression of 

the pooled small-cell sample (72).  By profiling more than a single cell, we gain additional 

starting material that enables quantitative reproducibility (Figure 1.3) (72, 89).  Additionally, by 

limiting our samples to few cells (typically ten cells), we avoid averaging out any 

heterogeneously regulated transcripts.  We then repeat the process a number of times to collect 

transcriptional profiles from several random collections of cells in the population.  We can then 

look at the fluctuations between the gene expression measurements to predict which genes are 

homogenously or heterogeneously regulated.   

 We first assume that heterogeneously regulated genes are expressed at a basal, low level, 

and at a higher level in a subpopulation of the cells (Figure 1.4A and Chapter 4) (72, 73, 96).  

Genes that are homogenously regulated will exhibit minimal fluctuations between the small-cell 

samples; additionally, these fluctuations will be approximately normally distributed (Figure 

1.4B, C).  Conversely, heterogeneously regulated genes will exhibit substantial fluctuations from 

sample to sample.  The variance between samples is attributed to selecting fewer or more cells  
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from the population of cells expressing the given gene at a higher level (Figure 1.4B; see Chapter 

4).  We can statistically compare the distribution of measurements for both the homogenous and  

heterogeneous genes against a normal distribution (formally, with the Kolmogorov-Smirnov  

test).  Genes who have a measurement distribution significantly different than a normal 

distribution are flagged as candidate heterogeneously regulated genes (Figure 1.4B, C).  

 Stochastic profiling offers many advantages to other contemporary transcriptomic 

techniques (see Section 1.3).  First, we avoid the technical noise of single-cell techniques by 

using more cells without losing the ability to detect cell-to-cell differences (73).  Second, the 

technique has been optimized for several different biological contexts: cells in suspension, cells  

in culture, and tissue (Figure 1.3) (72).  The latter context is particularly important, because other 

population-level and single-cell techniques require tissue dissociation to collect the biological 

material (77).  Stochastic profiling is capable of working with laser capture microdissected 

tissue, allowing the preservation of important in situ contexts for the cells of interest (73).  More 

recently, the technique has been expanded to enable fluorescence guided laser capture 

microdissection, allowing the user to use genetically encoded fluorophores or fluorescent 

antibodies to specifically profile cells of interest.    

 Stochastic profiling was initially validated on an in vitro model of heterogeneity, three-

dimensional (3D) breast epithelial morphogenesis.  In this model, single normal breast epithelial 

cells are seeded on top of reconstituted basement membrane (97, 98).  Over the course of two  
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Figure 1.4  Stochastic profiling identifies regulatory heterogeneities in an unbiased manner. 
(A)  Schematic of homogenous and heterogeneous gene regulation.  Genes that are homogenously 
regulated (Gene A)  exhibit little cell-to-cell variability.  Any differences in gene expression are due 
to noise.  Conversely, heterogeneously regulated genes (Gene B) are expressed at a low, bsasl level 
and at a high level by a subpopulation of the cells (see Chapter 4).  (B) Stochastic profiling samples a 
given population of cells  and measures gene expression on this small pooled sample of cells.  Genes 
that are homogenously regulated (Gene A) exhibit low variance in their small-cell pooled samples.  
The distribution of measurements is not statistically different from a normal distribution.  Genes that 
are heterogeneously regulated (Gene B) exhibit high variance in their small-cell pooled samples.  The 
distribution of measurements is statistically different from a normal distribution.  (C) Example 
measurements of a homogenously regulated gene (GAPDH, left) and a heterogeneously regulated 
gene (GDF11, right, see Chapter 5) from (73).  
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weeks, the single breast cells proliferate, organize, and polarize into a spheroid.  By two weeks, 

the cells attached to the matrix will proliferation arrest.  Cells within the spheroid, not in contact 

with the extracellular matrix, undergo apoptosis and the spheroid hollows.  During the 

development of the spheroid, the cells attached the matrix are highly heterogeneous in their cell 

state (see Chapters 3-5) (53, 99, 100).  

 Previous work in the lab used laser capture microdissection to randomly select ten cells 

from the matrix-attached population and profile the transcriptome in those samples (73).  The 

analysis suggested that ~700 genes were heterogeneously regulated.  Using RNA FISH, we 

validated the heterogeneous regulation of a number of transcripts expressed amongst the matrix-

attached cells (73, 96).  Importantly, transcripts that had similar fluctuations in their 10-cell 

samples were highly correlated at the single cell level, suggesting that stochastic profiling 

identifies heterogeneously co-regulated gene programs (73).  The functions of these 

heterogeneities require experimental follow up to understand their role in breast epithelial 

morphogenesis (see Part II).  

1.5 Goals of dissertation 

Heterogeneity confounds many aspects of biological research.  By acknowledging 

heterogeneity, we can build tools, like stochastic profiling, to reduce the complexity that 

heterogeneity adds (7, 73, 83, 96, 101).  These tools can also uncover biology that would 

otherwise be masked by conventional techniques (53).  Consequently, the new biology that is 

discovered must be experimentally explored and validated.  The goals of this dissertation are to 

build computational tools to understand and quantify heterogeneity (Part I: Chapters 2-4) and to 

use stochastic profiling to uncover interesting biology in basal-like breast epithelia with potential 
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clinical applications (Chapter 3 and Part II: Chapter 5).  The central hypothesis to the 

Dissertation is that single-cell regulatory heterogeneities are not only correlative to poor 

prognosis, but play a functional role in the progression of basal-like breast cancers.  Identifying, 

describing, and understanding the role of transcriptional regulatory heterogeneities provides 

important and translational insight into basal-like breast cancer biology.  
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Part I:  Computational analyses of heterogeneity 

  

 

In this Part of the Dissertation, we discuss several computational approaches that we have 

developed to understand the biological role of heterogeneity.  Each Chapter within this Part 

builds a computational tool that helped us to simply the heterogeneity at different scales: patient-

to-patient variability (Chapter 2), multicellular heterogeneity (Chapters 2 and 3), intercellular 

heterogeneity (Chapter 3), and molecular heterogeneity (Chapter 4).  
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2 Chapter 2 – Digital morphometry quantifies heterogeneity in three-

dimensional phenotypes 

2.1 Foreword  

 Breast epithelial cells form three-dimensional (3D) spheroids when grown on top 

basement membrane (97, 98).  This in vitro assay can be used to study many different aspects of 

epithelial biology.  In this Dissertation, we use 3D culture as a model of non-genetic 

heterogeneity (Chapters 3-5).  The cells within the 3D spheroid are highly heterogeneous in their 

cell state (53, 73, 96).  We perturb genes identified by stochastic profiling and observe changes 

in 3D phenotype to indicate biological function of the predict heterogeneity (Chapters 3-5).  3D 

culture is capable of generating a diverse set of phenotypes from the same experimental set up, 

providing the ability to observe subtle phenotypic differences (102, 103).  Quantifying these 

phenotypes is time consuming and subject to bias.  In this Chapter, we present a computational 

approach to use image segmentation techniques to extract morphometric properties of individual 

spheroids.  We use this tool to show we can quantitatively probe differences in spheroid 

phenotypes from different basal-like breast cancer cell lines.  The proof of concept shows that 

these morphometric properties provide a signature for the geometric state of a spheroid.  In the 

future, we can use these data to reduce the time for quantification and allow for higher 

throughput 3D culture experimentation.  This unpublished work was done in collaboration with a 

Janes Lab undergraduate, Michael Borten, who put significant effort towards in implementing 

the computational algorithms, data acquisition, and data analysis presented here.  
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2.2 Introduction  

Cells in culture are very different from one another (1, 102).  Cell lines derived from the 

same biological source differ from each other (104, 105).  Individual cells within the same cell 

line also differ from each other (53, 96, 100, 102).  How these differences impact cellular 

phenotypes is unclear (52, 106). 

 Three-dimensional culture in vitro assays provide an experimentally tractable approach to 

study both inter- and intra-cell line heterogeneity (97-99, 107).  Single cells are seeded on top or 

within reconstituted basement membrane and proliferate to form three-dimensional (3D) 

spheroids (98). Heterogeneity of phenotypes between spheroids of different cell lines reflects the 

heterogeneity between cell lines (102).  As each spheroid originates clonally, differences in 

spheroid phenotype within the same cell line or culture reflect the intra-cell line heterogeneity 

(53).  3D spheroids are diverse in their phenotypes, so even small differences in cells in 2D 

culture could propagate to significant differences in 3D culture (102).      

 Documenting the results of a 3D experiment is nontrivial.  A common method is to 

simply present a representative brightfield image of a spheroid or a collection of spheroids to 

describe qualitative characteristics of the spheroid(s) (102, 107-110).  Another method is to score 

the spheroids into phenotypic bins by manual inspection of each spheroid individually (53).  

Both means of documentation are prone to bias from the experimenter.  Here, we present a 

computational approach to quantify spheroid phenotypes.  Our method uses image segmentation 

approaches to quantify morphometric properties of individual spheroids.  We applied this 

approach to basal-like breast cancer cell lines due to the extensive inter- and intra-cellular 

heterogeneity and clinical relevance of 3D culture (102-104, 111-114).  We show that we can 

segregate 3D spheroid phenotypes from different basal-like breast cell lines.  Additionally, using 
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the morphometric signatures, we devise a classifier that quantifies the intra-cell line spheroid 

phenotype heterogeneity.  Digital morphometry provides a means to perform quantitative 3D 

spheroid culture.   

2.3 Results 

2.3.1 Design of a segmentation pipeline for digital images of breast epithelial spheroids 

In order to characterize the morphometric properties of dozens to thousands of spheroids, 

we needed to develop an experimental and computational pipeline to acquire digital images of 

spheroids and convert them to a set of quantitative metrics (Figure 2.1).  First, we set up 3D 

cultures of a panel of basal-like breast cell lines with varying mutational and transcriptional 

profiles (102, 104, 105).  The cultures are established by coating the wells of a chamber slide 

with reconstituted basement membrane (Matrigel, Corning) and allowing the basement 

membrane to gel (98).  A suspension of single, dissociated cells and dilute basement membrane 

is overlaid on top of the gel (Figure 2.1; Step 1).  The single cells then proliferate to each form 

multicellular spheroids, which are documented with digital microscopy (Figure 2.1; Step 2).  We 

documented our panel of breast spheroids by serially and exhaustively imaging the culture every 

three to five days across four biological replicates for twenty days, generating a database of over 

1000 images capturing the entire morphogentic process. 
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Figure 2.1  Experimental and computational pipeline to generate morphometric profiles of 
breast epithelial spheroids.  
(1) 3D cultures are established by seeding single breast epithelial cells on top of reconstituted 
basement membrane.  (2)  Images of each culture are acquired with digital microscopy.  Multiple 
images per well are acquired across multiple biological replicates.  (3)  Each image is segmented to 
identify spheroids (Figure 2.2).  (4)  Segmented spheroids are analyzed for morphometric properties 
like area and perimeter.  (5)  The signatures are analyzed to identify groups between and within the 
cell lines tested (Figure 2.6 and Figure 2.7).  
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The geometric features (e.g., spheroid area and spheroid perimeter) of each spheroid can 

be measured manually by tracing the spheroid and creating a region of interest (ROI) (115).  The 

ROI contains information of the all pixels in the image for a single spheroid.  For example, the 

number of pixels can be counted to measure the area of the spheroid.  Other additional metrics 

(see below) are also easily obtained by analyzing the pixels within the ROI.  However, the time 

required to individually trace spheroids, even within a single image, prohibits manual analysis of 

the number of images in our database. 

We sought to leverage work in the areas of computer vision and image segmentation to 

design a computational algorithm that automatically defines the ROI for each spheroid (116-

118).  Image segmentation approaches have been successfully applied to fluorescent images of 

single-cell and whole organisms (117-119).  In fluorescence microscopy, the signal is white 

pixels on a black background, leading to a high signal-to-background contrast.  Image 

segmentation routines typically look for and enhance these contrasts to identify an ROI that 

encapsulates an object.  For brightfield images, the signal is gray-to-black pixels on a gray 

background, yielding a very low signal-to-background contrast. The low contrast presents a 

challenge when using image segmentation algorithms.     

 Edge detection and pixel thresholding are two common approaches for segmenting 

objects from a background.  Edge detection finds the boundaries of objects by looking for the 

highest contrasts in an image.  These contrasts occur when there is a change in pixel intensity, 

and could represent the transition from an object to the background.  After the contrasts are 

detected, they are connected to form an edge, which defines the ROI of an object.  We tried a 

number of edge detection routines, but the variation in pixel intensities within a spheroid and 

within the basement membrane layer consistently created false edges.  These false edges either 
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prevented reliable detection and segmentation of the spheroids or the false edges created 

segmented objects where there were no spheroids (Bajikar and Borten, unpublished 

observations).  We excluded edge detection based techniques to analyze our brightfield images. 

 Pixel thresholding creates a binary image from a grayscale image by setting the pixels of 

lower intensity than some threshold to background and all other pixels to foreground (signal).  

The binary image has high contrast between signal and background, resembling a black and 

white fluorescence image.  The threshold value can be empirically determined or calculated 

based on the pixel values in the image.  Minimizing the variance between the foreground and 

background pixels is a common first value to test as a threshold, an approach known as Otsu’s 

Method.  We applied Otsu’s Method to our images and observed that some spheroids were 

segmented from the background, as evaluated by comparing the raw image to the segmented, 

binary image.  However, the binary image consistently failed to capture entire regions of 

spheroids (Figure 2.2).  Additionally, this behavior was insensitive to the exact threshold value 

(Borten, unpublished observations).  Examination of these regions showed that the supposed 

background pixels had higher intensities than the threshold value.  This was due to the non-

uniformity in the basement membrane coating.  The coating is of varying thickness throughout 

the chamber and causes the illumination to be uneven.  The background pixel intensities are 

brighter in the areas of higher illumination and these pixels are incorrectly classified as 

foreground pixels.  While some spheroids were correctly segmented, these results indicate that 

global thresholding approaches are inappropriate for brightfield images of spheroids.  

The background pixel intensities were very similar in confined local regions, raising the 

possibility that pixel thresholding could be applied to subsets of the image.  We used a publicly 

available thresholding routine that performs Otsu’s Method on subsets of the image, which we 
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refer to henceforth as “adaptive thresholding”.  When we applied adaptive thresholding to our 

brightfield images, we observed that we now accurately segmented spheroids throughout the 

whole image (Figure 2.2).  The key difference with adaptive thresholding to standard Otsu’s 

thresholding is the window of the image over which the algorithm is applied.  We observed that 

different window sizes allowed us to capture bigger or smaller spheroids.  The window size is a 

convenient free parameter that allows the algorithm to be used generally for many cell lines. 

Adaptive threshold accurately segments spheroids defining ROIs we can further analyze (Figure 

2.1; Step 3).   

 Once the spheroids are segmented, we can use the information contained in the 

segmented ROI to calculate simple geometric measurements like area and perimeter (Figure 2.3). 

We can calculate additional metrics like Eccentricity, which quantifies the circularity of a 

segmented ROI.  The calculation of metrics is computationally cheap, so we accrued every 

possible metric we could for each spheroid (Figure 2.1; Step 4).  A full list of metrics can be 

found in Chapter 2 Methods.  The set of metrics provide a signature that describes the 

morphometric state of a given spheroid (digital morphometry).  
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Figure 2.2  Adaptive thresholding accurately segments breast epithelial spheroids from 
brightfield, digital images. 
Images of spheroids are acquired with brightfield, digital microscopy (left).  Using traditional 
thresholding techniques (Otsu’s Method), some spheroids are accurately segmented.  However, 
uneven illumination causes entire regions of the image to be classified as foreground (white pixels) 
incorrectly center).  Adaptive thresholding applies Otsu’s Method on subsets of the image to avoid 
the effects of uneven illumination.  With adaptive thresholding, spheroids across the entire image are 
accurately segmented (right).  Scale bar is 200 µm.  
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Figure 2.3  Morphometric properties obtained from segmented spheroids. 
Raw digital images (top left) are segmented with adaptive thresholding (top right).  In the segmented 
image, different colors represent individually identified spheroids.  Once the spheroids are identified, 
we can use the ROI defined by the segmentation algorithm to calculate morphometric properties.  
Two example spheroids are shown, in the raw image (bottom left) and segmented image (bottom 
right).  Example morphometric properties are shown in the table (bottom right).  Scale bar is 200 µm.  
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2.3.2 Design of a graphical user interface (GUI) for the segmentation algorithm    

Adaptive thresholding provides a means to deconstruct our library of images into 

quantitative signatures we can analyze (Figure 2.3).  However, the utility of the algorithm was 

limited by the necessity of running MATLAB and interfacing with the MATLAB command line.  

Users that are unfamiliar or do not have access to MATLAB would not be able to use our 

approach.  To generalize the utility for all users, we design a stand-alone graphical user interface 

(GUI) to house our segmentation routine (Figure 2.4).  Users import their images into the GUI 

with a menu system.  The user then defines the window size based on the size of the spheroid.  

The segmentation routine then runs on all the images imported.  If the segmentation is not 

accurate, the user can adjust the threshold until a suitable segmentation result is achieved.  

Additionally, if a spheroid cannot be accurately segmented despite adjusting the threshold 

parameter, the user can remove that spheroid from further analysis.  Lastly, the spheroid metrics 

can be exported to MATLAB or Excel for data processing and analysis.  The GUI allows any 

user to quickly and automatically quantify characteristics of their spheroid cultures across 

multiple images.  
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Figure 2.4  Graphical user interface (GUI) to interactively segment images. 
A GUI was created to house the segmentation routine, allowing users unfamiliar with or who do not 
have access to MATLAB to use the algorithm.  Raw images are loaded through the File drop menu.  
Adatpive threshold window size is selected by either choosing one of three heuristically determined 
bins (small,, medium, and large) or can be manually adjusted with the top slider bar.  The threshold 
value can be automatically calculated with the “Adaptive Thresholding” button or can be manually 
adjusted with the slider bar below.  The window size and threshold are applied to all images loaded.  
The segmented image is shown in the upper center panel, and the overlay of the segmented image and 
raw image is shown in the center bottom.  These two images help assess the quality of the 
segmentation.  Parameters can be adjusted to better segment an image if needed.  If a spheroid cannot 
be segmented, the spheroid can be removed from further analysis with the “Cell Removal Tool”.  
Once the segmentation is correct, the morphometric parameters are extracted to MATLAB or Excel 
with the “Store Signature” tool.  
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2.3.3 Segmentation quantifies growth kinetics in breast epithelial spheroids  

With an established segmentation routine and easy-to-use interface, we first tested if the 

extracted metrics could describe the growth characteristics of spheroids from different cell lines.  

We specifically focused on the metric of spheroid area, as we could qualitatively evaluate the 

fidelity of the results with visual inspection of the raw images.  The changes in spheroid area are 

well characterized for one of our basal-like breast cell lines, MCF10A-5E.  The MCF10A-5E 

cells are immortalized, but not transformed, and are used to model normal breast epithelial 

biology (97, 98).  Additionally, the MCF10A cell line has been extensively used in 3D culture.  

Previous work has stereotyped the 3D spheroid morphogenesis of the MCF10A cell line (98, 

120).  Initially, the single cells actively proliferate and establish polarity during the early stages 

(until about ten days of culture) and subsequently growth arrest and hollow towards the latter 

stages of morphogenesis (between twelve and twenty days of culture) (99).  These features of 

morphogenesis have been qualitatively described and supported through molecular analysis, but 

not quantified in a high throughput manner (99, 120).  

 We successfully segmented ~700 spheroids across five time points and assessed the 

population-level trajectory of spheroid growth.  In the MCF10A-5E cell line, we observed a 1.5-

fold increase in size from day four to day twelve in culture.  Afterwards, the average spheroid 

size did not significantly change, as expected.  The variance in sizes remained constant over time 

as well, suggesting that the population growth was stable and that the size variation is set at an 

early stage of morphogenesis. We then compared this growth trajectory to a Ras transformed 

variant of the MCF10A cells (MCF10ADCIS.COM) (121) and observed that Ras transformation 

drastically altered morphogenesis.  Despite starting at a near equivalent size, the average 

MCF10ADCIS.COM spheroid grew nearly five times as large as the  
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Figure 2.5  Digital morphometry quantifies spheroid growth trajectories. 
Images of spheroids from three cell lines (MCF10A-5E, MCF10ADCIS.COM, MDA-MB-231) were 
grown in 3D for twenty days.  Images were acquired every four days, and segmented with adaptive 
thresholding (Figure 2.2).  The spheroid area for each segmented spheroid was accrued over each 
time point.  The plot shows average spheroid area (mean ±SEM) for each cell line over time.  
Representative images of each cell line at day 4 and day 20 are shown to the left and right of the 
graph, respectively.  Scale bar is 200 µm.  
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average MCF10A-5E spheroid.  Similarly, the basal-like breast cancer cell line MDA-MB-231 

formed spheroids that continued to proliferate for the duration of observation.  The growth 

trajectory measured qualitatively matched the size distribution of spheroids in the raw images, 

validating the segmentation approach.  These data indicate that the morphometric measurements 

captured known growth characteristics and separate cell lines with different growth trajectories.  

 

2.3.4 Digital morphometry segregates spheroid phenotypes  

Previous work has categorized a number of breast cancer cell line spheroids in three 

phenotypic bins: mass, grape-like, and stellate (102, 103).  However, this phenotype 

classification uses immunofluorescent characterization of cell-to-cell adhesions, which requires 

the additional costs of antibodies, confocal microscopy, and importantly, time (102).  To test if 

morphometric signatures from the brightfield images could segregate spheroid phenotypes, we 

segmented spheroids and accrued signatures for every cell line in our panel.  We examined a 

single time point of morphogenesis for each cell line where the spheroids were clearly formed 

but not grown to the point of infringing upon each other.  For each cell line, we segmented ~50 

to ~800 spheroids at this time point of growth.  This time point captures the representative 

spheroid phenotype of each cell line.  

To compare cell line spheroids to one another, we generated a computational “average” 

spheroid for each cell line by taking the median of each metric.  We clustered the average 

signatures together to identify predominant groups of signatures, suggesting a common 

phenotypic bin for those cell lines (Figure 2.6A).  Clustering revealed three main groups of 

signatures; examining the raw images of each spheroid, we assigned three phenotypic bins to 

these groupings: non-invasive, partially invasive, and invasive (Figure 2.6B-D).  Spheroid area 



      43 

was a key metric in segregating phenotypes as invasive spheroids were larger than partially or 

non-invasive spheroids (Figure 2.6A, D).  Partially and non-invasive spheroids were 

distinguished by the Extent and Solidity metrics.  Both measurements quantify the overlap of the 

ROI with a fitted polygon to the area.  A non-invasive spheroid will have high Extent and 

Solidity as the spheroid will fit tightly within a bounding polygon (e.g., a circle fits tightly within 

a box); conversely, an invasive spheroid will have low Extent and Solidity (e.g., a star does not 

fit tightly within a box).  Additionally, we observed a qualitative correlation between our 

phenotypic bins and those previously published (102), suggesting that brightfield image 

morphometrics are sufficient to categorize breast cancer spheroid phenotypes Figure 2.1; Step 5). 

Within each spheroid phenotypic bin, there were additional subgroups, suggesting 

morphometry could identify finer gradations of spheroid phenotypes.  For example, amongst the 

non-invasive cell lines, three cell lines (MDA-MB-436, Hs578T, and HCC1395) had increased 

values for the Eccentricity metric.  Lower values for Eccentricity indicate more circular 

spheroids.  This subgrouping of non-invasive cell lines formed noncircular spheroids distinct 

from the circular spheroid signature (HCC1937 and MCF10A-5E) (Figure 2.6A, B).  Amongst 

the invasive cell lines, the SUM159PT had a lower value for Extent and Solidity, suggesting 

these spheroids had more invasive processes (Figure 2.6A, D).  These data suggest that digital 

morphometry reveals subtle differences between spheroids in the same phenotypic class.  
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Figure 2.6  Morphometric signatures segregate spheroid phenotypes. 
(A)  Morphometric signatures were collected by segmenting ~50- ~800 spheroids from thirteen basal-
like breast lines (x-asix).  An average signature was generated from the median of each metric (y-
axis).  The average signatures were clustered into three predominant groups with Euclidean distance 
and ward linkage.  (B) Representative images of MCF10A-5E and HCC1937 spheroids.  (C) 
Representative image of HCC70 spheroids.  (D) Representative images of MCF10ADCIS.COM, 
HCC1806, MDA-MB-231, and SUM159PT spheroids. Scale bar is 200 µm.  
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2.3.5 Digital morphometry quantifies spheroid phenotypic heterogeneity   

Phenotype segregation with an aggregated signature categorized the inter-cell line 

heterogeneity.  Could digital morphometry categorize, or ideally quantify, the intra-cell line 

spheroid heterogeneity?  We hypothesized that the combination of metrics could similarly group 

different spheroid phenotypes within a cell line.  Rather than biasedly selecting a subset of the 

metrics, we used principle component analysis (PCA) to reduce the dimensionality of the dataset 

to take all metrics into account.  Briefly, PCA collapses correlated metrics into a new variable 

capturing the variance of the data amongst those metrics (122).  By collapsing the metrics, we 

can turn our ten-metric signature into a two-metric signature that we can easily visualize.  We 

chose four cell lines to test the proof of concept: MCF10A-5E (non-invasive), HCC70 (partially 

invasive), MDA-MB-231 (invasive), and SUM159PT (invasive).  Importantly, the MCF10A-5E 

serves as a control as we observe little intra-spheroid heterogeneity in this cell line (Figure 

2.7A).  

Individual MCF10A-5E spheroids clustered tightly together, in stark contrast to the three 

basal-like breast cancer cell lines (Figure 2.7A).  The partially invasive and invasive cell lines 

were also segregated in the principal component space (Figure 2.7B-D).  For each breast cancer 

cell line, a subset of spheroids fell near the cluster of MCF10A-5E spheroids.  We sought to 

quantify the percentage of “MCF10A-5E-like” spheroids as a surrogate for quantifying non-

invasive spheroids.  With a simple gating of the principle component values near the MCF10A-

5E cluster, we created a classifier for non-invasive spheroids (Figure 2.7E-G).  As a positive  
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Figure 2.7  Analysis of morphometric signatures quantifies intra-cell line spheroid 
heterogeneity.  
(A-E)  Morphometric signatures for four cell lines (MCF10A-5E, HCC70, MDA-MB-231, 
SUM159PT) were generated for individual spheroids at a single time point.  Principle component 
analysis (PCA) reduced the dimensionality of the 10-metric signature to a 2-dimensional metric.  
Reduced metrics were plotted along the first two principle components for the MCF10A-5E (A), 
HCC70 (B), MDA-MB-231 (C), SUM159PT (D), and all together (E).  (F)  Zoom of gray boxed 
region in E to highlight relationship between MCF10A-5E spheroids and the other three cell lines.  
Yellow line shows values of the principle components gated to quantify MCF10A-5E-like spheroids.  
(G)  Quantification of percentage of MCF10A-5E-like spheroids in each cell line, determined through 
morphometric signatures.  Values shown are mean ±SEM.  
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control to verify the gating, we identified 95% of the MCF10A-5E spheroids as MCF10A-5E-

like.  In the HCC70 partially invasive cell line, we identified ~70% spheroids with MCF10A-5E-

like characteristics, while the invasive cell lines MDA-MB-231 and SUM159PT were ~50% and 

~40% MCF10A-5E-like respectively.  The MDA-MB-231 quantification qualitatively matches 

what we observe through manual classification of phenotypes (see Chapter 5, Figure 5.3), 

demonstrating that intra-cell line heterogeneity is both identified and quantified by digital 

morphometry.  

2.4 Discussion  

Digital morphometry provides quantitative metrics of individual spheroid shape.  Using 

these metrics, we quantitatively categorize inter-cell line spheroid heterogeneity and quantify the 

extent of intra-cell line spheroid heterogeneity.  By housing the algorithms in an easy-to-use 

interface, we have developed a platform for any user to quantify characteristics of their 3D 

spheroid cultures.  

Quantifying inter-cell line spheroid signatures provides a non-molecular comparator for 

cell line phenotype.  For example, the HCC1806 cell line has a Basal A transcriptional profile 

(123), yet, the HCC1806 cell line spheroids cluster tightly with several cell lines with a Basal B 

transcriptional profile (104).  Reciprocally, there are Basal B cell lines, MDA-MB-436 and 

Hs578T, that cluster further away from the invasive cell lines (102, 104).  This suggests that 

there may be other molecular markers outside of the basal-like markers that categorize tumor 

phenotype, or that there are multiple transcriptional states that lead to the same phenotypic 

outcome.   
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Using a simple gating strategy of the morphometric signatures, we quantified intra-cell line 

spheroid heterogeneity.  We can build off of this proof of concept by using more sophisticated 

classifier algorithms like support vector machines (124) or naïve Bayes classifiers (125), which 

will be able to quantify phenotypes in an unbiased manner (126).  Additionally, we can use 

image tracking techniques to quantify dynamic changes in individual spheroids (127), using the 

metrics to build predictive models (83, 101).  Quantifying and cataloguing spheroid phenotypes 

is a major limitation in the throughput of spheroid assays.  Using automated imaging systems 

coupled with our segmentation routine, we can significantly increase the scale of experiments.  

Given the clinical relevance of spheroid assays (107, 128, 129), high throughput drug or RNAi 

screens may yield higher quality hits than traditional two-dimensional culture screens.  
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3 Chapter 3 – Modeling intercellular regulatory heterogeneities  

3.1 Foreword 

 In the previous chapter, we discussed a computational approach to analyze heterogeneity 

between and amongst breast cancer cell line spheroids.  In this Chapter, we use computational 

approaches to better understand the role of intercellular regulatory heterogeneities in normal and 

malignant breast morphogenesis.  Previous work in the lab identified two anticorrelated clusters 

of genes from the prior stochastic profiling data set (73).  One cluster was highlighted by the 

TGF-β signaling co-receptor, TGFBR3, while the other cluster was highlighted by the 

transcription factor, JUND.  We went on to show that the regulation of these two genes was 

important to breast epithelial morphogenesis and that their regulation was intricately connected.  

In this Chapter, we discuss the construction and analysis of an ordinary differential equation 

(ODE) model of the purported circuit relating TGFBR3 and JUND.  Furthermore, we show that 

clinical specimens of early triple-negative breast cancer exhibit anticorrelation between 

TGFBRIII and JUND.  Interestingly, the anticorrelation was dependent on the extracellular 

matrix (ECM) local microenvironment, specifically the ECM protein tenascin C.  In this Chapter, 

we discuss the construction and analysis of an agent-based model describing the role of tenascin 

C in establishing patterns of biomarker heterogeneity in clinical specimens.  This work was done 

in collaboration with Chun-Chao Wang in the Janes lab.  Additionally, this work appears in 

Nature Cell Biology (Nat Cell Biol, 16, 345-56), specifically in Figures 3, 7, and the 

Supplemental Note.  
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3.2 Introduction  

Genetically identical cells often coexist in starkly different molecular states.  Stochastic 

heterogeneities can drive cell fates in specific developmental contexts (130, 131).  Within mature 

tissues, however, cell-autonomous heterogeneity is normally suppressed unless the molecular 

circuitry has been perturbed (22).  Accordingly, cell-to-cell heterogeneity has been extensively 

described in solid tumors, and heterogeneity within carcinoma cell lines has been associated with 

drug resistance (132-134). 

 Heterogeneity cannot be entirely explained by random biological noise—there are 

substantial contributions from a cell’s local environment and its history (2, 23).  For most 

epithelial tissues, it is difficult to track cell-to-cell variability in time and space (135).  

Organotypic 3D cultures provide an opportunity to monitor heterogeneity by supporting cells in 

reconstituted basement membrane (98, 136, 137).  The more-realistic geometry and ECM 

context can give rise to non-genetic variations in molecular state (73, 99).  For instance, ECM-

adhesion receptors comprise nearly all of the stem-progenitor markers for heterogeneity in breast 

tissue and breast cancer (138, 139).  Organotypic heterogeneities might provide insight into 

clinical mechanisms of tissue-tumor heterogeneity that would otherwise be inaccessible. 

 Using 3D basement-membrane cultures of basal-like breast epithelia (97, 98), we have 

uncovered a dynamic heterogeneity that develops among ECM-attached cells during acinar 

formation.  The overall expression circuit is composed of two anti-correlated transcriptional 

programs that establish a pair of expression states defined by TGFBR3 and JUND.  When this 

circuit is spontaneously excited, ECM-attached cells oscillate transiently and asynchronously 

between states, creating the static appearance of a cellular mosaic.  Single-cell TGFBR3–JUND 
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regulation tracks with heterogeneity of a diagnostic cytokeratin (KRT5) for ductal carcinomas in 

situ with basal-like features (basal-like DCIS).  Remarkably, KRT5 correlations reverse upon 

detachment in vitro and in ECM-poor regions of basal-like DCIS.  We link the reversal to a 

keratinization process that is maintained by expression of tenascin C (TNC). The dynamic and 

ECM-dependent transition of individual tumor cells between expression states may relate to the 

exceedingly poor prognosis of heterogeneous basal-like breast cancer (59, 71). 

 

3.3 Results  

3.3.1 TGFBR3–JUND heterogeneity is critical for normal acinar morphogenesis  

We recently described a random-sampling approach that profiles statistical fluctuations to 

uncover cell-to-cell heterogeneities in gene-expression regulation (72, 73).  Applying this 

“stochastic profiling” technique to a basal-like cell clone cultured in basement membrane, we 

cataloged 547 transcripts subject to strongly heterogeneous regulation.  17% of the transcripts 

fell into two clusters that were anticorrelated on a sampling-to-sampling basis.  The first cluster 

included TGFβ receptor III (TGFBR3, a high-affinity TGFβ receptor (140)), growth 

differentiation factor 11 (GDF11, a TGFβ-family ligand (141)), and TGFβ-induced protein 

(TGFBI, an ECM protein downstream of TGFβ-family signaling (142)).  The co-occurrence of a 

TGFβ receptor, ligand, and marker protein suggested that the first cluster might be linked to 

TGFBR3-dependent signaling and gene expression. 

 The triplet of TGFβ-related genes was strongly anticorrelated with the jun D proto-

oncogene (JUND), which was the only transcription factor in the second cluster comprised 

mostly of protein biosynthetic genes (73).  We verified the single-cell anticorrelation by RNA 
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FISH and further showed that JUND and TGFBR3 were expressed at reciprocal frequencies in 

ECM-attached cells.  TGFBR3 and JUND thus mark two states that basal-like cells 

spontaneously occupy when in contact with ECM. 

TGFBR3 expression is strongly induced during organotypic culture (Figure 3.1a) (143).  

If TGFBR3 upregulation occurred sporadically, then it could explain the heterogeneous pattern 

of expression observed among single ECM-attached cells (Figure 3.1d).  To test whether 

TGFBR3 induction was important for acinar morphogenesis, we knocked down TGFBR3 and 

verified specificity with an RNAi-resistant murine Tgfbr3 that is doxycycline (DOX) inducible 

(Tgfbr3 addback; Figure 3.1b).  Inhibiting TGFBR3 upregulation caused a profound ductal-

branching phenotype in ~30% of shTGFBR3 acini (Figure 3.1c,d).  Branching returned to 

baseline when Tgfbr3 was induced at day 4, the time when endogenous TGFBR3 levels normally 

begin to rise (Figure 3.1a,c,d).  Thus, TGFBR3 upregulation is specifically important to 

suppress ductal branching, conceivably by sensitizing cells to TGFβ-family ligands (see Chapter 

5) (140). 

 Unlike TGFBR3, JUND is easily detected under normal growth conditions and is 

frequently expressed in ECM-attached cells.  To examine the role of sporadic JUND 

downregulation, we constitutively expressed HA-tagged JUND.  This perturbation gave rise to 

stable cellular “bridges” across the acinar lumen, which are cytologically similar to the cribiform 

subtype of DCIS (144) (Figure 3.1e–g).  Heterogeneous JUND downregulation remained critical 

until late in morphogenesis, because induction of HA-JunD at day 9 caused cribiform acini 

weeks later.  To exclude artifacts caused by mild JUND overexpression, we coexpressed a stable 

shRNA against JUND together with an RNAi-resistant murine JunD that restored near-

endogenous levels (Figure 3.1h).  This homogenization of JUND expression also caused  
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Figure 3.1   TGFBR3 and JUND are functionally important for 3D morphogenesis. 
(a) Time-dependent expression of TGFBR3 during 3D morphogenesis(143). (b) Knockdown of 
TGFBR3 and inducible addback of murine RNAi-resistant Tgfbr3.  TGFBR3/Tgfbr3 levels for cells 
cultured in the absence (Lane 1 and 2) or presence (Lane 3) of 1 µg/ml DOX for 24 hours were 
analyzed by immunoblotting.  Hsp90 was used as a loading control.  Densitometry of 
TGFBR3/Tgfbr3 abundance is shown normalized to the shGFP control. (c and d) Blocking TGFBR3 
induction specifically elicits a ductal-branching phenotype.  The MCF10A-5E lines described in (b) 
were placed in morphogenesis in the absence (control and shTGFBR3) or presence (Tgfbr3 addback) 
of 1 µg/ml DOX from day 4–10.  Acini were fixed at day 10 of 3D culture, stained for E-cadherin 
(green) and HA-tagged Tgfbr3 (red), and analyzed by confocal immunofluorescence.  Cells were 
counterstained with DRAQ5 (blue) to label nuclei. (e) Constitutive expression of HA-tagged JUND 
analyzed by immunoblotting.  Densitometry of JUND abundance is shown normalized to pBabe 
vector control. (f and g) Constitutive JUND expression causes stable cribiform-like acinar structures.  
Acini from the MCF10A-5E lines described in (e) were placed in morphogenesis, fixed at day 28, 
stained for E-cadherin (green) and HA-tagged JUND (red), and analyzed by confocal 
immunofluorescence.  Cells were counterstained with DRAQ5 (blue) to label nuclei. (h) 
Homogenization of JUND expression by knockdown of JUND and addback with murine RNAi-
resistant JunD to near-endogenous expression levels.  JUND/JunD levels were determined by 
immunoblotting.  Densitometry of JUND/JunD abundance is shown normalized to the shGFP control.  
(i) Quantification of the cribiform-like phenotype at day 28 of 3D culture for the cells in (h).  For (a), 
(c), (g), and (i), data are shown as the mean ± s.e.m. of three (a) or four (c, g, i) independent 
experiments.  For (d) and (f), scale bar is 20 µm.  For (e) and (h), tubulin was used as a loading 
control and n.s. denotes a non-specific band.  

 

E-cadherin

DRAQ5

Control shTGFBR3 Tgfbr3 addback

Tgfbr3

e f

E-cadherin

DRAQ5

Control JUND-HA

HA

C
o
n
tr
o
l

JU
N
D
-H

A

tubulin

1 2.5

n.s.*

JUND

60

0

P
e
rc

e
n
t 
c
ri
b
if
o
rm

C
o
n
tr
o
l

JU
N
D
-H

A

60

0

P
e
rc

e
n
t 
c
ri
b
if
o
rm

C
o
n
tr
o
l

sh
JU

N
D

Ju
n
D

a
d
d
b
a
ck

1 0.17 1.2

C
o
n
tr
o
l

sh
JU

N
D

Ju
n
D
 a

d
d
b
a
ck

tubulin

n.s.*
JUND/

JunD

g h i

dba c
7

1

TG
FB
R
3 

e
x
p
re

s
s
io

n

1412108642

Day of 3D culture

35

0

P
e
rc

e
n
t 
b
ra

n
c
h
e
d

C
o
n
tr
o
l

sh
T
G
F
B
R
3

T
g
fb

r3

a
d
d
b
a
ck

C
o
n
tr
o
l

sh
T
G
F
B
R
3

T
g
fb

r3
 a

d
d
b
a
ck

Hsp90

1 0.3 5.6

TGFBR3/

Tgfbr3



      54 

 

cribiform acini (Figure 3.1i).  Therefore, heterogeneous regulation of JUND is critically 

important for acinar morphogenesis of basal-like cells.	  

3.3.2 TGFBR3–JUND signaling is oscillatory and dynamically coupled 

To determine whether the TGFBR3–JUND clusters were functionally linked, we 

constitutively expressed TGFBR3 or JUND and then analyzed endogenous mRNA levels of the 

other cluster (Figure 3.2a–c).  Constitutive JUND expression downregulated both TGFBR3 (P = 

0.0026, one-sided t test; Figure 3.2a) and TGFBI (P = 0.0027, one-sided t test; Fig. 3b), 

suggesting that JUND antagonizes expression of the TGFBR3 cluster.  Ectopic TGFBR3 

expression reciprocally inhibited JUND expression (P = 0.022, one-sided t test; Figure 3.2c), 

indicating that JUND does not simply act as an upstream repressor of the TGFBR3 cluster.  

Mutual TGFBR3–JUND antagonism creates a double-negative (positive) feedback loop, which 

can establish two distinct molecular states (145). 

 There were also two other negative autoregulatory feedbacks in the overall wiring.  

Consistent with earlier reports (146, 147), we found that constitutive JUND expression caused 

downregulation of endogenous JUND (P = 0.043, one-sided t test; Figure 3.2c), and TGFBR3 

expression was acutely downregulated upon signaling from TGFβ-family ligands (P = 1.4 × 10-5, 

one-sided t test; Figure 3.2d).  All together, we arrived at a hybrid signaling-transcriptional 

circuit comprised of one positive-feedback and two negative-feedback loops (Figure 3.2e). 

  Regulatory circuits with interlinked positive and negative feedback can oscillate between 

molecular states (145, 148).  We thus developed a live-cell imaging procedure for monitoring 

TGFBR3 and JUND activities simultaneously.  Active TGFβ-family signaling (TGFBR3*) was 

tracked by RFP1-labeled Smad2 (Figure 3.2e).  For JUND, we engineered a rapidly responsive 
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fluorescent reporter of endogenous promoter activity (Figure 3.2e).  We inserted ~2 kb of the 

JUND promoter (PJUND) upstream of the fast-maturing YFP variant, Venus (149), which was 

destabilized by N-end rule fusion to ubiquitin C and C-terminal fusion to a PEST sequence (150, 

151).  Coexpression of ultradestabilized Venus (udsVenus) (PJUND) and RFP1-Smad2 did not 

substantially perturb acinar morphogenesis relative to control cultures, suggesting that 

endogenous TGFBR3– JUND pathways were not dramatically affected.  For 3D-culture 

experiments in which stable time-lapse imaging was successful, we repeatedly observed at-least 

one ECM-attached cell with coupled dual-reporter dynamics. 

 To compile two-color reporter activities across multiple experiments, we combined 

spectral filtering with algorithms from multiple-sequence alignment (see Chapter 3 Methods).  

The aggregate alignment revealed that both reporters exhibited transient peaks of activity 

separated by 5–10 hr (Figure 3.2f,g).  When an ECM-attached cell remained in the optical plane 

long enough to observe two peaks, the second peak usually had smaller amplitude than the first, 

suggesting pathway damping (Figure 3.2f, upper rows; Figure 3.2g, middle rows).  Strikingly, 

when the two reporters were compared within the same cell, dynamics were antiphase at nearly 

all time points (152).  Asynchronous, antiphase dynamics within the TGFBR3–JUND circuit 

provide a mechanism for the static anticorrelation observed in fixed specimens. 
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Figure 3.2   JUND transcription and TGFβ-family signaling activity are functionally and dynamically 
coupled. 
(a and b) TGFBR3 and TGFBI are repressed by constitutive JUND expression. (c) Endogenous JUND 
is repressed by constitutive expression of TGFBR3 or JUND. (d) TGFBR3 is negatively regulated by 
TGFβ-family signaling. (e) Schematic of positive and negative feedback loops connecting TGFBR3 
and JUND.  The arrows and flat markers indicate the positive and negative relationships from (a–d).  
Black circles indicate the two fluorescent reporters (RFP1-Smad2 and udsVenus (PJUND)) used to 
monitor the single-cell dynamics of TGFβ-family activity and JUND promoter activity. (f and g) 
Multiple alignment of dynamic single-cell fluorescence trajectories.  Two-color live-cell confocal 
imaging was used to quantify the level of nuclear RFP1-Smad2 (left) and total udsVenus (PJUND) 
expression (right) of ECM-attached cells at day 10 of morphogenesis.  Gray indicates no data. (h) 
Damped oscillations in an ordinary differential equations model of the TGFBR3–JUND expression 
circuit induced by TGFBR3 activation (left; RFP1-Smad2 range:  [11.5–15.7], udsVenus (PJUND) 
range:  [13.0–20.6]), TGFBR3 upregulation (middle; RFP1-Smad2 range:  [12.1–23.2], udsVenus 
(PJUND) range:  [0.745–18.4]), or JUND upregulation (right; RFP1-Smad2 range:  [3.80–12.1], 
udsVenus (PJUND) range:  [18.4–65.2]).  In the model, the basal transcription rate was 4 hr-1, the basal 
translation rate was 100 mRNA-1 hr-1, the mRNA degradation rate was 0.23 hr-1, the degradation of 
TGFBR3 protein was 3 hr-1, the degradation of JUND protein was 0.37 hr-1, the degradation of 
udsVenus was 2.8 hr-1, and the activation rate of TGFBR3 was 1 hr-1 (Figure 3.3).  For (a–c), 
MCF10A-5E cells stably expressing JUND-HA, TGFBR3–HA, or vector control were placed in 3D 
culture and analyzed at day 10 of morphogenesis by quantitative PCR for the indicated genes.  
Endogenous JUND was analyzed with primers specific for the 3’ UTR of JUND.  For (d), MCF10A-
5E cells were stimulated with 250 ng/ml GDF11 for 4 hr and analyzed for TGFBR3 expression.  Data 
are shown as the mean ± s.e.m. of four independent samples, and P values were calculated by 
Student’s one-sided t test.   
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 We next used computational modeling to test whether the empirical circuit wiring could 

exhibit damped, antiphase responses like those observed in live cells (Figure 3.2f).  The circuit 

was modeled as a system of ordinary differential equations containing JUND (mRNA and 

protein) and TGFBR3 (mRNA, protein, and ligand-bound protein – TGFBR3*).  We modeled 

the dynamics of TGFBR3 mRNA, JUND mRNA, TGFBR3 protein, JUND protein, active 

TGFBR3* (as read out by the RFP1-Smad2 reporter), and the udsVenus reporter through the 

following system of six ordinary differential equations: 

 

 (1) 

            (2) 

               (3) 

                  (4) 

                (5) 

                 (6) 

 

The negative feedbacks relating JUND to TGFBR3 (Figure 3.2a), TGFBR3* to TGFBR3 (Figure 

3.2d), TGFBR3* to JUND (Figure 3.2c), and JUND to JUND (Figure 3.2c) were modeled as Hill 

functions.  For simplicity, we did not assume any cooperativity in the negative feedbacks (nH = 

1), and IC50 values were set to nonsaturating values (IC50TGFBR3 = 100, IC50JUND = 100).  The 

relative feedback strengths (f1, f2, and f3) were adjusted manually to capture the experimentally 

observed dynamics (Figure 3.2f,g; f1 = 7, f2 = 9, f3 = 5). 

d[TGFBR3]
dt

= kbasaltxn − f1
[TGFBR3*]nH

[TGFBR3*]nH + (IC50TGFBR3)
nH
− f3

[JUND]nH

[JUND]nH + (IC50JUND)
nH
− kdegRNA[TGFBR3]

d[JUND]
dt

= kbasaltxn − f2
[TGFBR3*]nH

[TGFBR3*]nH + (IC50TGFBR3)
nH
− f3

[JUND]nH

[JUND]nH + (IC50JUND)
nH
− kdegRNA[JUND]

d[TGFBR3]
dt

= ktranslation[TGFBR3]− kdegTGFBR3[TGFBR3]− kactivation[TGFBR3]

d[JUND]
dt

= ktranslation[JUND]− kdegJUND[JUND]

d[TGFBR3*]
dt

= kactivation[TGFBR3]− kdegTGFBR3[TGFBR3*]

d[udsVenus]
dt

= kbasaltxn[JUND]− kdegudsVenus[udsVenus]
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The degradation rates of TGFBR3, JUND, and udsVenus were estimated by treating cells 

with cycloheximide and quantifying protein loss by immunoblotting (Figure 3.3).  These 

experiments yielded half-life estimates of 14 min for TGFBR3, 1.86 hr for JUND, and 15 min 

for udsVenus.  Using the following relationship between degradation rate and half-life: 

 (7) 

 

We arrived at the following degradation rate estimates:  kdegTGFBR3 = 3.0 hr-1, kdegJUND = 0.37 hr-1, 

and kdegudsVenus = 2.8 hr-1.  Degradation of TGFBR3* was assumed to be equal to that of 

TGFBR3.  As the half-lives of TGFBR3 and JUND mRNA are comparable (t1/2 = 2–4 hr) (147, 

153), we assumed that kdegRNA = 0.23 hr-1 (t1/2 = 3 hr).  We obtained basal transcription (kbasaltxn = 

4 hr-1) and translation rates (ktranslation = 100 mRNA-1 hr-1) as representative values from 

proliferating mammalian cells (154).  The basal activation rate of TGFBR3 was calculated using 

kdegTGFBR3 and the steady-state ratio of nuclear-cytoplasmic fluorescence of the RFP1-Smad2 

reporter in unstimulated cells (assuming that the reporter is directly proportional to the relative 

activation of TGFBR3c): 
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Figure 3.3   Half-life estimates for JUND and TGFBRIII. 
Half-life estimates for endogenous TGFBR3 (t1/2 = 14 min) and JUND (t1/2 = 1.86 hr) following 
cycloheximide treatment.  The JUND kinase JNK is activated upon protein synthesis inhibition, 
causing the upshift in JUND at 30–60 min. 

 

 

  



      61 

The perturbations in Figure 3.2h were initiated by increasing kactivation of TGFBR3, kbasaltxn 

of TGFBR3, or kbasaltxn of JUND to 50% higher than the standard value for 1 hr.  The code for 

generating Figure 3.2h is available in the Chapter 3 Methods.  The perturbations in Figure 3.2h 

were initiated by increasing kactivation of TGFBR3, kbasaltxn of TGFBR3, or kbasaltxn of JUND to 50% 

higher than the standard value for 1 hr.  The code for generating Figure 3.2h is available in the 

Chapter 3 Methods.  The initial testing of the model showed that the coded circuit could generate 

anticorrelated oscillations that we observe experimentally.   

We further probed the model by trying a variety of perturbations and we found that the 

system response fell into five categories (Figure 3.4):  a) Undamped oscillations that remain in a 

limit cycle; b) Damped oscillations as in Figure 3.2h (left); c) No oscillations, characterized by a 

transient activation or repression event as in Figure 3.2h (right); d) Mixed oscillations, where one 

of the reporters oscillates but the other does not; e) Model error, where the steady-state activity 

of one reporter is near zero and the system no longer responds to the perturbation or returns 

infeasible values.  Focusing on the damped oscillations that were noted upon TGFBR3 activation 

in the model (Figure 3.2), we performed a sensitivity analysis.  For the six parameters that were 

not drawn from the literature or directly measured (f1, f2, f3, nH, IC50TGFBR3, IC50JUND), we 

systematically perturbed the default parameter by tenfold in either direction and then assessed 

system behavior.  This sensitivity analysis would indicate how fragile or robust the oscillatory 

network was to feedback parameters (148). 
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Figure 3.4   Categories of TGFBR3-JUND model response. 
Time courses are shown in the upper plots and a phase-plane representation is shown in the lower plot. 
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For nearly all feedback parameters, we found that the system exhibited damped or 

undamped oscillations for a wide range of parameters (Figure 3.5).  The one exception was for 

the relative strengths of the negative feedbacks from active TGFBR3 signaling and JUND 

expression to the expression of TGFBR3 mRNA, where damped oscillations were observed over 

a somewhat narrow window (Figure 3.5e).  If the three feedback terms were reasonably 

balanced, then oscillations were robust to any single change in feedback (Figure 3.5c-e).  

However, if the collective negative regulation on JUND was changed by concurrently increasing 

f2 and f3, then oscillations stopped.  This emphasizes the need for tight coupling between the 

TGFBR3 and JUND branches of the circuit (Figure 3.2e), which may explain why not all matrix-

attached basal breast epithelia oscillate during 3D culture, or why there is mosaicism in JUND or 

TGFBRIII protein levels amongst the matrix-attached basal breast epithelia.  
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Figure 3.5   Pairwise sensitivity analysis of the TGFBR3-JUND model in response to transient activation 
of TGFBR3. 
Model parameters were changed from 0.1x to 10x of their values listed in the Chapter text.  See 
Figure 3.4 for examples of each category of model response. 
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3.3.3 Stabilization of anticorrelated JUND–KRT5 by TNC 

 Cell-to-cell mosaicism is observed clinically in basal-like breast cancer, where ~50% of 

cases show highly nonuniform expression of basal cytokeratins for the subtype (60, 71).  

Interestingly, one diagnostic cytokeratin, KRT5, lies within the JUND cluster, and KRT5 is 

tightly coexpressed with JUND in ECM-attached cells (73).  The JUND–TGFBR3 expression 

circuit might therefore be specifically engaged in basal-like carcinomas or premalignant lesions 

with basal-like features (155) (“basal-like DCIS”). 

To explore the relationship between JUND and TGFBR3 in this clinical context, we 

collected an independent cohort of premalignant basal-like DCIS lesions with heterogeneous 

KRT5 expression (71, 155).  KRT5 is an important indicator of poor prognosis for basal-like 

carcinoma (59), and heterogeneous premalignancies would allow the cell-by-cell correlations of 

KRT5 to be examined with JUND and TGFBR3 while the tissue architecture was still intact.  In 

normal breast tissue, we found that KRT5 and TGFBR3 were strongly expressed in the basal 

layer.  KRT5 was predominantly localized to the ductal myoepithelia, whereas TGFBR3 was 

expressed mostly in the lobular myoepithelia.  Conversely, JUND protein was very low in 

normal tissue but increased substantially in basal-like DCIS, where TGFBR3 was often 

undetectable.  These results indicated a switch in TGFBR3–JUND–KRT5 regulation during 

premalignancy. 

 Next, we directly examined the coexpression of KRT5 and TGFBR3 or JUND in single 

cells by multicolor immunofluorescence.  In the 59% of premalignant lesions where TGFBR3 

could be detected, expression of TGFBR3 and KRT5 remained mutually exclusive (156) (Figure 

3.6a).  This single-cell anticorrelation was consistent with both our stochastic profiling of basal-

like cultures.  Conversely, in cases with KRT5-positive regions of primary DCIS (41% of total), 
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there was a strong positive correlation between KRT5 and JUND among single cells (Figure 

3.6b).  The striking agreement between the clinical and in vitro studies suggests that basal-like 

ECM cultures may mimic the burst of proliferation and environmental stress experienced by 

early neoplasms (97, 99, 100). 

High-grade intraductal carcinomas are frequently comprised of a primary DCIS region 

along with secondary regions of “clinging carcinoma” (CC) (157).  CC forms when neoplastic 

cells disseminate intraluminally from the DCIS and cancerize peripheral breast lobules and 

ducts.  When CC regions were carefully examined for JUND and KRT5, we discovered that the 

two proteins were anticorrelated (Figure 3.6c).  JUND–KRT5 switching occurred without gross 

cytological changes in cases with both DCIS and CC.  Tumor geography thus appeared to 

provide some sort of external control on the TGFBR3–JUND expression circuit and its 

coregulation with KRT5. 

 The dramatic reversal of JUND–KRT5 coexpression prompted us to reexamine their 

relationship in vitro.  During 3D culture, JUND and KRT5 proteins were coordinately expressed 

among outer cells.  For interior cells, however, the JUND–KRT5 coexpression pattern was 

anticorrelated.  This transition could not have been anticipated by our initial profiling study, 

which focused exclusively on outer cells (73).  Nonetheless, the finding provided an independent 

replication of the JUND–KRT5 switching observed in basal-like tumors (Figure 3.6).  We were 

corroborated by a few exceptional cases of DCIS where cells had detached partly or entirely 

from the tumor margin and JUND–KRT5 coexpression was reversed. 
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Figure 3.6  TGFBR3 and JUND expression reciprocally map to KRT5 in specific regions of 
heterogeneous basal-like premalignancies. 
(a) Expression of TGFBR3 and KRT5 proteins is mutually exclusive in ER-negative premalignant 
lesions. (b) Expression of JUND and KRT5 proteins is correlated in ER-negative ductal carcinoma in 
situ (DCIS). (c) Expression of JUND and KRT5 is anticorrelated in peripheral regions of clinging 
carcinoma. Paraffin sections from basal-like premalignant lesions were stained for KRT5 (green) and 
TGFBR3 (red; a) or JUND (red; b, c) and imaged by widefield immunofluorescence.  Nuclei were 
counterstained with DAPI (blue).  Single-color fluorescence images are pseudocolored in the first two 
subpanels of (a), (b), and (c) to highlight quantitative differences in immunoreactivity.  Correlated 
and anticorrelated regions of expression are indicated with arrows and rectangles respectively.  Scale 
bars are 20 µm. 
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 To identify the molecular basis for the JUND–KRT5 inversion, we considered the 

variegated microenvironments of ECM cultures and human tumors.  The most-recognized 

difference within ECM cultures is the spatially segregated access to basement membrane (97, 

143, 158).  Outer cells contact the ECM-rich culture support and also secrete their own ECM 

molecules basolaterally (97, 159).  Inner cells are deprived of both these ECM sources and thus 

should be starved for integrin engagement.  Analogously, in regions of DCIS, the local tumor 

stroma is potently activated, providing ECM to the primary tumor (160).  Cells in CC regions 

have left the primary site to colonize luminal, ECM-poor regions of the ductal tree and may 

behave like inner cells of the culture. 

 To simulate ECM deprivation, we placed cells in suspension culture.  Before anoikis was 

evident, we observed clear changes in single-cell JUND–KRT5 expression that were highly 

stereotyped.  For the first 8 hr, JUND–KRT5 were coexpressed as double-positive or double-

negative cells.  At 24 hr, the JUND+–KRT5+ and JUND––KRT5– subpopulations became more-

clearly separated, when KRT5 increased with a filamentous pattern (KRT5F) and anticorrelations 

started to appear.  By 48 hr, JUND+–KRT5F cells had vanished, and a fourth “keratinized” state 

emerged with intense KRT5 staining and no JUND protein or nuclear DNA (KRT5K).  Live-cell 

imaging showed that progression to the JUND––KRT5K state was rapidly executed, with 

keratinized skeletons eventually collapsing as cellular dust (Figure 3.7).  These late cellular steps 

are highly reminiscent of cornification, a cell-death process typically associated with skin (161). 
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Figure 3.7  Keratinization in detached breast epithelial cells. 

Loss of ECM-attachment induces keratinization and JUND–KRT5 anticorrelation.  MCF10A-5E cells 
were placed in polyHEMA-coated plates with assay medium containing 5 ng/ml EGF.  Cells were 
fixed at the indicated times, stained for KRT5 (green) and JUND (red), and analyzed by confocal 
immunofluorescence.  Cells were counterstained with DAPI (blue) to label nuclei Single cells 
representing intermediate stages of keratinization are highlighted with arrows.  Scale bar is 10 
µm.  
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 Endogenous JUND levels increased transiently before KRT5 upregulation, suggesting a 

role in the sequelae of ECM detachment.  Although ectopic expression of JunD did not affect the 

induction of KRT5 protein, JunD-overexpressing cells largely remained in a double-positive 

state without overt keratinization (P = 7.0 × 10-5 and 3.0 × 10-6, two-sided t test).  Conversely, 

JUND knockdown accelerated keratinization and augmented it, with KRT5K cells apparent as 

early as 8 hr (P = 2.4 × 10-4 and 8.7 × 10-4, two-sided t test), even though KRT5 upregulation was 

unaffected.  We conclude that JUND restrains detachment-induced keratinization but is 

independent of the upregulation of KRT5 itself. 

 Keratinization provided an appealing mechanism for the JUND–KRT5 anticorrelation 

observed in inner cells and in CC regions of basal-like breast cancer (Figure 3.6c).  It also 

created a paradox—if detachment from ECM rapidly causes irreversible loss of JUND and 

upregulation of KRT5, why do JUND+–KRT5– cells exist at all?  We carefully inspected the 

JUND–KRT5 staining pattern and noted that keratinized JUND––KRT5K cells were often 

surrounded by JUND+–KRT5– cells, suggesting that JUND––KRT5K cells could be exchanging 

juxtacrine signals with JUND+–KRT5– cells. 

 To identify candidate ECM ligands that could fulfill this role, we screened breast cancer 

immunohistochemistry from The Human Protein Atlas (162, 163).  Among 71 ligands (164), 

only one was expressed heterogeneously in a cell-intrinsic manner within CC regions of breast 

carcinoma:  the matricellular protein, TNC (165).  TNC plays a critical role in early colonization 

of breast-cancer metastases to the lung (166).  Sporadic TNC expression has also been noted in 

basal keratinocytes (167), suggesting a connection to epidermal keratinization.  We hypothesized 

that TNC could stabilize JUND+–KRT5– cells if it were endogenously expressed in vitro and in 

vivo. 
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 In ECM cultures, we found inner cells that strongly expressed TNC (Figure 3.8a). 

Interestingly, JUND+–KRT5– cells appeared to extend lamellipodia around TNC+–JUND––

KRT5K skeletons (Figure 3.8a, inset), suggesting extensive adhesive contacts.  In CC regions of 

basal-like premalignancies, TNC+–JUND––KRT5+ cells were similarly in direct apposition with 

cells that were JUND+–KRT5– (Figure 3.8b).  Upon ECM withdrawal, TNC was strongly 

upregulated in the KRT5F and KRT5K subpopulations (Figure 3.8c).  Unlike other keratinization-

related programs, TNC upregulation may be transcriptionally mediated.  Only 2–6% of detached 

cells expressed TNC, but ~60% of keratinized cells were TNC+.  Importantly, when TNC was 

added to 2D cultures of basal-like breast epithelia, the single-cell JUND–KRT5 correlation 

reversed (Figure 3.8d), illustrating that TNC actively participates in anticorrelating JUND and 

KRT5 expression. 

To determine whether TNC could explain the JUND–KRT5 mosaicism in ECM-poor 

microenvironments, we built a multi-cell agent-based model of CC (168).  We coded for an 

arbitrary CC geometry, where individual cancer cells (“agents”) spontaneously keratinize as a 

function of their JUND–KRT5 levels and the neighboring expression of TNC (see Chapter 3 

Methods).  The purpose of the agent-based model was to build a simplified representation of the 

mosaic KRT5–JUND expression patterns observed in ECM-poor regions of basal-like 

premalignancies.  Agent-based models allow the arbitrary arrangement of “agents” (here, 

clinging carcinoma [CC] cells) to react subject to a user-defined rule set that is simulated in 

discrete time intervals (168).  The process of keratinization happens within hours and is triggered 

before 24 hr of detachment (Figure 3.7).  Therefore, we assumed that the effects of proliferation, 

death, and migration would be negligible over this time period.  Notably, detachment-induced 
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cell death (anoikis) of basal breast epithelia is not maximal until 48 hr or later (Ref. (158)) and 

epithelial proliferation is generally minimal without integrin engagement (169). 

 The key facets of the model rule set are: 

• JUND and KRT5 compete to determine survival vs. keratinization  

• Keratinization is irreversible after the nucleus has been lost (Figure 3.7) 

• Keratinization is strongly associated with the expression of TNC  

• Cells adjacent to TNC-expressing cells often have not keratinized (Figure 3.8a,b) 

For the model, cells were seeded according to the characteristic geometry of a region of 

CC—multiple layers of neoplastic cells on the periphery of a hollow lumen.  In addition to the 

geometry of Figure 3.8e,f, we also tested alternative geometries with differing thicknesses of 

cells (Figure 3.9).  We consistently found strings of keratinized cells on the luminal face of the 

clinging region, as well as local homogeneities of JUND expression.  These additional 

simulations indicate that our conclusions are not limited to a specific geometry of CC.  Source 

code for the NetLogo script and tissue geometries can be found in the Chapter 3 Methods. 

Without TNC, we found that virtually all cells keratinized (Figure 3.8e), consistent with the 

irreversibility of keratinization in the model.  By contrast, including TNC caused a stable mosaic 

of cells that were JUND––KRT5K or JUND+–KRT5– (Figure 3.8f).  Importantly, this model 

made two predictions that were subsequently verified in clinical specimens.  First, keratinization 

should be extensive among cells immediately adjacent to the lumen because of fewer 

opportunities to be stabilized by adjacent TNC-positive cells (Figure 3.8f, solid).  

Retrospectively, we identified many stretches of keratinized cells along CC lumina (Figure 3.8g).  

Second, the model predicted multi-cellular clusters that were locally homogeneous for JUND 

(Figure 3.8f, dashed).  The reason here is that JUND increases up until keratinization occurs, and  
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Figure 3.8  JUND-KRT5 mosaicism in ECM-poor environments is stabilized by TNC. 
(a and b) The JUND–KRT5 anticorrelation state reflects a microenvironment that lacks basement 
membrane but contains TNC.  Day 10 frozen sections of MCF10-5E acini (a) and paraffin sections 
from premalignant basal-like neoplasms (b) were stained for KRT5 (green), JUND (red), and TNC 
(white) and imaged by widefield immunofluorescence. (c) TNC protein expression is upregulated 
during detachment.  MCF10A-5E cells were placed in suspension for the indicated times. Cells were 
fixed and stained for KRT5 (green), JUND (red), and TNC (white) and analyzed by confocal 
immunofluorescence.  Cells were counterstained with DAPI (blue) to label nuclei. (d) The JUND–
KRT5 correlation is reversed in vitro by exogenous TNC.  MCF10A-5E cells were grown on 
coverslips in assay medium(98) + 5 ng/ml EGF in the presence or absence of 5 µg/ml TNC for 8 
days.  The cells were stained with antibodies against KRT5 (green) and JUND (red) and imaged by 
widefield immunofluorescence.  Nuclei were counterstained with DAPI (blue).  In the first two 
panels, single-color fluorescence images are pseudocolored to highlight quantitative differences in 
immunoreactivity.  Dashed lines separate regions that stain strongly or weakly for KRT5 expression. 
(e and f) An agent-based model requires a TNC-like molecule to stabilize JUND–KRT5 expression 
patterns.  Solid lines highlight strings of keratinized cells adjacent to the lumen (yellow).  Dashed 
lines highlight clusters of locally homogeneous JUND expression (red). (g) Paraffin sections from 
early basal-like carcinomas were stained for KRT5 (green) and JUND (red) and imaged by widefield 
immunofluorescence.  Nuclei were counterstained with DAPI (blue).  In first two panels, single-color 
fluorescence images are pseudocolored to highlight quantitative differences in immunoreactivity.  
Strings of keratinized cells (solid) and clusters of local JUND homogeneity (dashed) are highlighted.  
For (a–d) and (g), scale bar is 20 µm.  For simulation code, see Chapter 3 Methods. 

 

 



      74 

 

TNC-positive cells “corral” the multi-cellular clusters at different times during the model 

simulation.  A similar mechanism may operate in CC, because we uncovered several multi-cell 

clusters with roughly equal JUND expression, even though lesions were heterogeneous overall 

(Figure 3.6c and Figure 3.8g).  We conclude that keratinization—triggered by detachment-

induced RPS6 dephosphorylation and modulated by TNC—is responsible for the single-cell 

anticorrelation of JUND–KRT5 in basal-like CC. 
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Figure 3.9  Agent-based model predictions do not depend on the specific geometry of clinging carcinoma. 
(a) Elliptical and (b) open-diagonal geometries were seeded with various thicknesses of carcinoma 
cells and simulated as described in the manuscript.  Keratinized cells (yellow) and JUND levels (red) 
are shown with and without the simulated role of TNC.  Stretches of luminally positioned, keratinized 
cells are highlighted in solid boxes.  Local homogeneities of JUND expression are highlighted in 
dashed boxes. 
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3.4 Discussion 

By profiling expression heterogeneities in a relevant ECM context, we have uncovered a 

major signaling circuit within basal-like breast epithelia.  Cells in contact with basement 

membrane undergo transient oscillations between two molecular states defined by their 

TGFBR3–JUND expression.  Perturbation of either state profoundly disrupts normal acinar 

morphogenesis.  Proper dynamic regulation of the circuit must be critical for establishing and 

stabilizing the identity of ECM-attached cells.  By extension, proliferating neoplasias may 

reengage the TGFBR3–JUND circuit in search of a cell fate amidst a heterogeneous ECM 

microenvironment. 

 Our study began with a transcriptional dichotomy between two single-cell expression 

states, but the overall circuit extends beyond transcription.  Circuit activation in ECM-attached 

cells likely occurs via posttranslational signaling from TGFβ-family receptors.  Interestingly, 

TGFβ ligands bind ECM and exist as latent complexes that become disinhibited by mechanical 

force (170).  Considering that breast epithelia are known to be mechanoresponsive (45), the 

earliest trigger for circuit oscillations may be changes in local cell-ECM mechanics. 

 The ECM-dependent relationship between KRT5 and TGFBR3–JUND is reflected both 

in basal-like cultures and preinvasive basal-like neoplasias.  Outer ECM-attached cells of 

cultured acini and primary DCIS show correlated expression of JUND–KRT5.  By contrast, the 

inner ECM-deprived cells of a 3D acinus may mimic facets of preinvasive dissemination that 

partly explain the macroscopic heterogeneity of clinical specimens.  Detached epithelial cells 

stochastically execute a keratinization program (171), which delays anoikis by creating a TNC 

mosaic within 3D cultures and in CC.  Breast-cancer patients with TNC-positive tumor cells 
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frequently have lymph-node metastases and very-poor prognosis (172).  Our data build on recent 

animal models (166) by suggesting that juxtacrine TNC may be critical for secondary orthotopic 

colonization within the duct. 

 The most-recognized driver of late-stage tumor heterogeneity is genomic instability, but 

how heterogeneous tumors evolve from premalignancy has been more enigmatic.  Our work here 

places renewed emphasis on the microenvironment and the dynamic asynchronicity of the 

constituent cells.  Reversible lineage switching has been described in several contexts (52, 173), 

suggesting together with our results that breast cancer may be far more dynamic than previously 

appreciated.  Lastly, we demonstrate that computational modeling, of different frameworks, can 

reduce the complexity of heterogeneity and reveal important insight into the role heterogeneity 

plays in the context of interest.  
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4 Chapter 4 – Parameterizing cell-to-cell regulatory heterogeneities via 
stochastic transcriptional profiles  

4.1 Foreword  

 Stochastic profiling uses repeated random gene expression measurements from a small 

(e.g., ten) number of cells to reveal heterogeneously regulated transcripts.  By using more than 

one cell, one avoids the increase in measurement noise that occurs with low starting material.  

Conversely, using a smaller number of cells avoids averaging out infrequent regulatory states.  

Despite these advantages, stochastic profiling is limited to giving a qualitative assessment on 

whether a given gene or gene program is heterogeneously regulated (see Section 1.4).  Here, we 

present a computational model that infers quantitative parameters of heterogeneous gene 

regulation, extending the utility of stochastic sampling.  With this approach, we can now obtain 

single-cell information without using single-cell techniques (see Section 1.3).  This work was 

done in collaboration with Christiane Fuchs, Andreas Roller, and Fabian Theis of the Helmholtz 

Center, Munich.  Additionally, this work was published in The Proceedings of the National 

Academy of Sciences (Proc Natl Acad Sci, 111, E626-35).   

 

4.2 Introduction  

Cell-to-cell differences in transcriptional or posttranslational regulation can give rise to 

heterogeneous phenotypes within a population (22, 52, 106, 130, 131, 133, 174).  There are 

several elegant techniques for monitoring regulatory states in single cells after a network of 

marker and effector genes has been identified (20, 80, 116, 175-177).  However, the options are 
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much more limited when seeking to discover novel  states without a predefined network.  At the 

transcript level, global methods have been developed to profile single cells by oligonucleotide 

microarrays (178, 179) or RNA-seq (13, 19, 89, 90).  But generally, such approaches overlook 

the considerable technical variation in RNA extraction (72) and reverse-transcription (95) when 

applied to the limited starting material of single cells.  Single-cell profiles also retain the 

biological noisiness (180) associated with each cell’s isolation and handling.  These confounding 

sources of variation cannot be separated from reproducible heterogeneities in regulation unless 

many (>50) cells are individually profiled (175).  Therefore, challenges remain for single-cell 

methods to discover regulatory heterogeneities in a reliable, unbiased, and efficient way. 

 An attractive alternative to single-cell methods is to analyze sets of population-averaged 

data and define regulatory signatures for discrete subpopulations.  Existing approaches for 

transcriptomic data are able to deconvolve mixed cellular states computationally, but they 

require hundreds of coexpressed markers (181) or calibration with purified cell populations (182, 

183).  Usually, the size or identity of regulatory states is not defined beforehand and their 

discovery is what motivates the study (20, 175, 184).  Certain states may also lack well-defined 

surface markers that would allow purification.  It thus remains unclear whether computational 

inference with multiple cell averages can track quantitative characteristics of regulatory states 

not previously thought to exist. 

 As a hybrid between single-cell and mixture-based approaches, we previously developed 

a technique that applies probability theory to transcriptome-wide measurements (73).  The 

method begins with random collections of up to 10 cells isolated in situ where cell-to-cell 

regulatory heterogeneities could possibly reside.  Each of these “stochastic samples” is then 

profiled for overall mRNA expression by using a heavily customized cDNA amplification 
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procedure together with oligonucleotide microarrays (72, 73).  The process of random sampling 

is repeated 15–20 times to build a distribution of 10-cell averages.  Transcripts with stark cell-to-

cell variations can be distinguished statistically because of binomial fluctuations in single-cell 

expression that convolve their 10-cell averages.  Last, candidate heterogeneities are clustered on 

a gene-by-gene basis according to the patterns of their sampling fluctuations to indicate putative 

regulatory states in single cells (73). 

 Stochastic-profiling experiments are quantitative and highly reproducible as a result of 

the 10-fold increase in starting material compared to a single cell (72).  However, a recognized 

drawback of the approach is that explicit information about single cells is “lost” in the 10-cell 

averages.  Here, we report that one can recover this information computationally and reconstruct 

the single-cell distribution of regulatory states with remarkable accuracy.  Our method combines 

maximum-likelihood estimation with mixture models that are grounded in known mechanisms of 

transcriptional regulation.  This approach of maximum-likelihood inference quantifies the single-

cell characteristics of each regulatory state, including the probability that a cell will reside in one 

state or the other.  Our predictions are validated with independent gene-specific observations in 

single cells, and we demonstrate for one very-rare state (~2–3% of the population) that it is 

important for normal morphogenesis of breast epithelial cells in 3D culture.  Last, we show that 

when sampling is limited to fewer than 20 observations, the parameterization of regulatory states 

is substantially more accurate when given 10-cell data compared to one-cell data.  Maximum-

likelihood inference now enables stochastic profiling to bridge the gap between -omic datasets 

and single-cell information. 

 

 



      81 

 

4.3 Results 

4.3.1 Probability models for heterogeneous transcriptional regulation 

 To make reliable single-cell inferences, it was critical to start with simple probabilistic 

models of gene expression that were biologically accurate.  Our method considers genes that 

exhibit two distinct regulatory states in a population of cells (19, 72, 73).  Within each state, the 

cell-to-cell variation of expression was originally described by a lognormal distribution 

according to measurements of high-copy transcripts in single mammalian cells (185, 186).  We 

tested whether there was a mechanistic foundation for using two lognormal subpopulations by 

examining a standard model of regulated gene expression (3, 187) (Figure 4.1).  In this model, 

transcript levels per cell are determined by the kinetics of polymerase binding-unbinding, 

transcriptional elongation, and mRNA degradation.  The relative magnitudes of the kinetic rate 

parameters together govern the steady-state distribution of transcripts in the population (188), 

allowing different regulatory states to be simulated. 
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Figure 4.1   Kinetic model of gene activation and mRNA expression. 
DNA activity is regulated by the rate of polymerase binding (kbinding) and the rate of polymerase 
unbinding (kunbinding).  Polymerase-bound DNA then transcribes mRNA copies at a defined 
elongation rate (kelongation).  The half-life of the mRNA species is determined by its degradation rate 
(kdegradation = log(2)/t1/2).  The mRNA distribution is calculated at the steady state of this model (3, 
187). 
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 For parameter sets where the probability of observing zero transcripts per cell was near 

zero, we found that the lognormal distribution was a suitable approximation of basal expression 

(Figure 4.2A, blue).  Parameter sets yielding median expression levels as low as 20 copies per 

cell showed only minor skewness in quantile-quantile (QQ) comparisons with a lognormal 

distribution (Figure 4.2A, blue inset).  Starting with this basal distribution, we simulated a second 

cellular regulatory state by increasing the rate of polymerase binding, decreasing the rate of 

mRNA degradation, or both (Figure 4.2A, orange).  The apparent rate of polymerase binding 

increases upon recruitment by transcription factors that are expressed or activated 

heterogeneously within a population of cells (130, 131).  Conversely, mRNA stabilization occurs 

posttranscriptionally through dedicated signal-transduction pathways activated by environmental 

stresses and proinflammatory stimuli (189).  We found that either mechanism of gene 

upregulation led to right-shifted distributions that were lognormal (Figure 4.2A, orange inset).  

These simulations indicated that lognormal random variables were appropriate for the regulated 

expression of mid- to high-abundance transcripts. 

 One drawback of the lognormal distribution is that it has no support at zero copies (190), 

making it poor for capturing low-abundance genes that are completely silenced in some cells.  To 

identify an alternative in this circumstance, we reconfigured the parameters of the model and 

defined a steady-state population where most cells would contain zero transcripts (Figure 4.2B, 

blue).  As noted before (188), this regulatory state was best captured by an exponential 

distribution (Figure 4.2B, blue inset).  Importantly, we found that when the kinetic parameters of  
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Figure 4.2   Simple probablity models capture regulated changes in gene expression. 
(A and B) Probability densities for the number of transcripts per cell were calculated using a kinetic 
model (3, 187) whose parameters led to basal regulatory states (blue) with either nonzero copies per 
cell in A or with zero copies per cell in B.  The basal-regulatory states were compared to a lognormal 
distribution in A or an exponential distribution in B through a quantile-quantile (QQ) plot (blue 
insets).  A second, induced regulatory state (orange) was created by increasing the polymerase 
binding rate (lower left), decreasing the transcript degradation rate (upper right), or both (lower right) 
in the model (Figure 4.1).  All induced regulatory states were compared to a lognormal distribution 
through a QQ plot (orange insets). 
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a basal exponential state were modified to create a second right-shifted state (Figure 4.2B, 

orange), the resulting distributions were lognormal (Figure 4.2B, orange inset).  Together, we 

conclude that the basic mechanisms of gene expression lead to steady-state distributions 

described by probability models that are relatively simple. 

4.3.2 Deconvolution of random 10-cell averages by maximum-likelihood inference 

 Our results from the gene-expression model suggested that single-cell regulatory 

heterogeneities could be depicted as a mixture of two lognormal states or as a mixture of an 

exponential state and a lognormal state (Figure 4.2).  Either mixture gives rise to a probability 

distribution characterized by four key parameters.  The lognormal-lognormal (LN–LN) mixture 

requires the log-mean expression of the two regulatory states (µ1, µ2), the log-standard deviation 

for biological noise (σ), and the expression frequency (F) describing the probability that cells 

will occupy the higher regulatory state (Step 1; Figure 4.3A).  (For simulations, the two 

lognormal states are assumed to share a common σ, but in practice we test whether inferences 

are improved when each lognormal state is allowed its own noise parameter; see below.)  Thus, 

an LN–LN gene that is expressed at an ~8 fold higher level in 20% of the population with a 

coefficient of variation (CV) of ~50% is captured by µ1 – µ2 = 2, F = 20%, and σ = 0.48. 

 The exponential-lognormal (EXP–LN) mixture also requires σ and F, along with a single 

log-mean for the high lognormal state (µ) and a rate parameter for the low exponential state (λ) 

(Step 1; Figure 4.4).  The rate parameter relates to how quickly the lower distribution decays 

above zero copies per cell.  For example, a rate parameter of λ = 1 creates a distribution that has 

~37% overlap with that of a high lognormal state of µ = 0.5 and σ = 0.225 when F = 50%, 

whereas λ = 3 causes only a ~6.3% overlap.  We modeled two distinct regulatory states by 
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restricting the simulations to rate parameters that caused negligible overlap with the high 

lognormal state (λ > 3).  Together, the different mixture models enabled us to simulate 

stochastic-profiling data by summing the expression of 10 cells randomly sampled from the 

appropriate two-state distribution (Step 2; Figure 4.3A and Figure 4.4). 

 To infer the most-likely parameters from a collection of random 10-cell samples, we 

derived maximum-likelihood estimators for the LN–LN and EXP–LN mixtures (see Chapter 4 

Methods).  Maximum-likelihood estimation requires a defined probability density function (pdf).  

The stochastic-sampling pdf is the convolution of 10 binomial choices drawn from the two 

underlying distributions in the mixture (Step 3; Figure 4.3A and Figure 4.4).  The pdf has an ≤11-

modal shape where each mode corresponds to choosing 0 to 10 cells from the high regulatory 

state.  The most-likely parameter combination was calculated by maximizing the likelihood 

function (see Chapter 4 Methods), yielding parameters with interval estimates that best explained 

the data (Step 4; Figure 4.3A and Figure 4.4).  By performing this maximum-likelihood 

estimation, we could “invert” stochastic profiling data to infer single-cell characteristics from 10-

cell samples. 
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Figure 4.3   Inferring cellular subpopulations by maximum-likelihood inference of stochastic 
ten-cell samples from an LN–LN mixture of regulatory states. 
(A) The maximum-likelihood approach involves four steps:  1) A model of heterogeneous gene 
regulation is posed, where single cells are assumed to express genes at a low or high level with a 
common coefficient of variation for both subpopulations.  The weight of each subpopulation is 
defined by the integrated single-cell expression distribution of the subpopulation (f1 and f2).  The four 
parameters of the model are the log-mean expression for each subpopulation (µ1, µ2), the proportion of 
cells in the high subpopulation (F), and the common log-standard deviation of expression (σ).  2) 
Random 10-cell samples are collected to build a distribution of measurements for inference by the 
model.  3) Based on the model in Step 1, a likelihood function is derived (see Chapter 4 Methods).  4) 
The likelihood function is then maximized by searching through the four parameters of the model to 
identify those that are most likely given the experimental observations.  Additionally, we obtain 
measures of confidence for each estimated parameter (gray).  (B–E) Accurate prediction of single-cell 
parameters from simulated ten-cell samples.  Ten-cell expression data were simulated using different 
values of (B) µ1, (C) µ2, (D) F, and (E) σ (gray solid) and then estimated by maximum likelihood.  For 
each group of simulations, the remaining three model parameters were kept fixed at (C–E) µ1 = 0.5, (B 
and D–E) µ2 = –2.5, (B–C and E) F = 22.5%, and (B–D) σ  = 0.225 (gray dashed).  Solid gray line 
shows the one-to-one mapping of inferred-to-known parameter value.  Off-diagonal plots are 
categorical plots of the fixed parameter estimates for a given value of the perturbed parameter.  
Graphs show the parameter estimates together with 95% maximum-likelihood confidence intervals 
from three independent sets of 50 ten-cell samples.  (F–H) Prediction and validation of expression 
frequency for the heterogeneous transcript, SOD2, during breast-epithelial acinar morphogenesis.  (F) 
Distribution of 81 ten-cell qPCR measurements of SOD2 in outer ECM-attached epithelial cells and 
estimated subpopulation distribution (red line).  Maximum-likelihood parameters (red box) are shown 
with 95% CI in brackets.  (G) Representative RNA FISH image of endogenous SOD2 expression.  A 
pseudocolored image (left) is shown alongside a two-color image with DRAQ5 counterstain to 
visualize nuclei (right).  Arrows indicate ECM-attached cells with high SOD2 expression.  Scale bar = 
20 µm.  (H) Percentage of cells showing high expression of SOD2 by RNA FISH (gray bar) compared 
with the maximum-likelihood estimate of F (white dashed).  RNA FISH data are shown as the mean 
percentage ± 95% CI of ECM-attached cells showing high expression of SOD2.  Maximum-likelihood 
predictions are shown as the parameter point estimate (white) ± 95% CI (red). 
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Figure 4.4   Inferring mixtures of a near-silen, exponential regulatory state and lognormal 
regulatory state. 
The inverse-modeling approach involves four steps similar to Figure 4.3A:  1) A model of 
heterogeneous gene regulation is posed, where single cells are assumed to express genes at an absent-
to-low or high level.  The weight of each subpopulation is defined by the integrated single-cell 
expression distribution of the subpopulation (φ1 and φ2).  The four parameters of the model are the 
rate parameter of the basal subpopulation (λ, where λ-1 is the mean expression), the mean of the 
second subpopulation ( µ*= exp µ +

σ 2

2
!

"
#

$

%
& ), the standard deviation of the second subpopulation (

σ*= exp σ 2( )−1"
#

$
%⋅exp σ

2 + 2µ( ) ), and the proportion of cells in the high subpopulation (F).  2) Random 10-cell 
samples are collected to build a distribution of measurements for inference by the model.  3) Based on 
the model in Step 1, a likelihood function is derived (Chapter 4 Methods).  4) The likelihood function 
is then maximized by searching through the four parameters of the model to identify those that are 
most likely given the experimental observations.  Additionally, we obtain measures of confidence for 
each estimated parameter (gray).   
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4.3.3 Theoretical and experimental validation of maximum-likelihood inference 

 We evaluated the performance of our approach by using computational simulations of 10-

cell samples with known distribution parameters.  First, it was important to identify the minimum 

number of random samples needed to ensure accurate parameter estimation.  Given hundreds to 

thousands of samples, we found that robust and accurate estimates were obtained for all model 

parameters irrespective of the mixture type (Figure 4.5A, B).  Conversely, with very few samples 

(~20 or fewer), the convolved distributions were incompletely populated and our resulting 

estimates were highly uncertain and sometimes inaccurate for the LN–LN and EXP–LN 

mixtures.  The transition between the two regimes occurred at 50–100 samples, which we 

defined as the approximate number of data points required for effective maximum-likelihood 

inference of single transcripts. 

 We next used simulations to identify the parameter ranges where maximum-likelihood 

inference makes accurate estimates of each regulatory state.  Starting with the LN–LN mixture, 

we perturbed µ1, µ2, σ, or F individually while keeping the other three parameters fixed and 

simulated 50 random 10-cell samples.  For a wide range of subpopulation log-means (µ1, µ2), 

maximum-likelihood inference accurately inferred model parameters with negligible bias (Figure 

4.3B, C).  We also observed good performance when altering the expression frequency (F).  

Accuracy declined near F = 50%, when the two subpopulations offset one another and disguise 

as a distribution with large σ (Figure 4.3D).  Nevertheless, the estimation procedure still 

accurately and confidently captured ~70% of the total parameter space (F = 0–35% over the 

range of 0–50%).  For the log-standard deviation (σ), performance declined only when this 

parameter was extremely high (Figure 4.3E).  Parameter estimates were accurate until σ reached 

~0.8, corresponding to a ~95% CV that is higher than nearly all genes examined thus far (191, 
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192).  None of the mixture parameters could be reliably inferred from higher-order moments of 

the 10-cell distributions, although low F or high σ correlated with a slight increase in skewness 

(Figure 4.6).  These results indicated that maximum-likelihood inference could extract 

parameters that were otherwise inaccessible by descriptive statistics. 

 We repeated the simulations for the EXP–LN mixture and arrived at very similar 

conclusions.  As long as λ and µ were large enough to prevent overlap of the two regulatory 

states, we found that parameter estimates were accurate, although the variance of inferred σ was 

somewhat higher than in the LN–LN mixture (Figure 4.7).  Together, these simulations 

suggested that maximum-likelihood inference is able to deconvolve a wide range of regulatory 

heterogeneities from 10-cell samples. 
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Figure 4.5   Parameter accuracy and confidence stabilizes with 50–100 random 10-cell samples.   
Ten-cell expression data were computational simulated at fixed parameters: µ1 = 0.5, µ2 = –2.5, F = 
22.5%, and σ  = 0.225, gray dashed for the LN–LN mixture (A); λ = 15, µ1 = 0.5, F = 22.5%, and σ  = 
0.225, gray dashed for the EXP–LN mixture (B), and the number of 10-cell samples varied from 10 to 
5000.  (C) Experimental 10-cell measurements of SOD2 from Figure 4.3F were resampled over the 
indicated range.  Gray dashed lined shows the central maximum-likelihood estimate with the full 
dataset.  Red asterisks indicate estimations that fell outside the indicated parameter range.  Note the 
decrease in parameter accuracy and confidence when the sample size is less than 50 samples.  Graphs 
show the central parameter estimate ± 95% CI from three independent sets of the indicated number of 
10-cell samples. 
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Figure 4.6   Skewness and kurtosis are not strongly predictive of subpopulation parameters. 
(A,B) Stochastic profiles were computationally simulated (see Chapter 4 Methods) with three fixed 
parameters (top) and one varying parameter (x-axis) for either the LN–LN mixture with 50 samples 
(A) or the EXP–LN mixture with 100 samples (B).  The skewness and kurtosis were calculated for 
each simulated distribution.  Box plot shows the distribution of 1000 independent computational 
simulations.  Qualitatively similar results were obtained for the EXP–LN mixture with 50 samples. 
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Figure 4.7   Accurate prediction of single-cell parameters from simulated ten-cell samples of an 
EXP–LN mixture of regulatory states.   
(A–D) Ten-cell expression data were simulated using different values of λ (A), µ (B), σ (C), and F (D) 
(gray solid) and then estimated by maximum likelihood.  For each group of simulations, the 
remaining three model parameters were kept fixed at λ = 15 (B–D), µ = 0.5 (A, C–D), σ  = 0.225 (A–
B, D), and F = 22.5% (A-C) (gray dashed).  Solid gray line shows the one-to-one mapping of inferred-
to-known parameter value.  Off-diagonal plots are categorical plots of the fixed parameter estimates 
for a given value of the perturbed parameter.  Graphs show the parameter estimates together with 
95% maximum-likelihood confidence intervals from three independent sets of 100 ten-cell samples.  
Asterisks indicate inferences that fell outside of the axis range.  Qualitatively similar results were 
obtained for three independent sets of 50 ten-cell samples. 
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 To examine the accuracy of maximum-likelihood inference with real 10-cell samples, we 

focused on expression of the detoxifying enzyme, SOD2, during breast-epithelial acinar 

morphogenesis.  We used a culture model in which immortalized human breast epithelial cells 

are grown as single-cell clones in reconstituted basement-membrane extracellular matrix (ECM) 

to form 3D organotypic spheroids (97, 98).  Earlier stochastic-profiling studies of developing 

spheroids had suggested that there were two SOD2 regulatory states among the ECM-attached 

cells (73, 100).  To apply maximum-likelihood inference, we deeply sampled SOD2 expression 

by qPCR in 81 random samples of 10 ECM-attached cells (left; Figure 4.3F).  Using these data, 

we maximized the likelihood of the LN–LN and EXP–LN estimators, as well as that of a relaxed 

LN–LN estimator, which allowed each regulatory state to have its own log-standard deviation 

(σ1 and σ2).  The three inferences were compared by using the Bayesian Information Criterion 

(BIC) score to calculate the quality of the fit relative to the number of inferred parameters (Table 

1).  The best overall inference was the mixture model that parameterized two distinct regulatory 

states with the lowest BIC score. 

 For the 10-cell measurements of SOD2, we found that the LN–LN mixture was slightly 

preferred over the EXP–LN mixture (right; Figure 4.3F and Table 1).  The inability to 

discriminate clearly between these two models was likely caused by the basal regulatory state, 

which could be described as an exponential distribution (λ = 46) or a lognormal distribution with 

a very small log-mean (µ2 = –4.1) given the sampling data.  Regardless, the two models 

predicted similar SOD2 expression frequencies among ECM-attached cells:  23% (13–33%) for 

the LN–LN mixture vs. 19% (12–27%) for the EXP–LN mixture.  To determine the accuracy of 

this shared prediction, we directly measured F in 3D spheroids by RNA fluorescence in situ 
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hybridization (RNA FISH) (Figure 4.3G).  Scoring individual cells with high SOD2 fluorescence 

intensity, we calculated an expression frequency of ~26%.  This measurement closely agreed 

with the inferred parameter of the LN–LN mixture (the better scoring model; Figure 4.3H and 

Table 1) and lay within the estimated confidence interval of the EXP–LN mixture.  By 

resampling the 10-cell SOD2 data, we found that at-least 50 observations were required to arrive 

at an accurate result (Figure 4.5C), confirming our earlier estimates using simulated data (Figure 

4.5A, B).  The SOD2 parameterization suggested that maximum-likelihood inference could 

correctly extract single-cell information from 10-cell sampling data. 

4.3.4 Maximum-likelihood inference of coordinated stochastic transcriptional profiles 

 Programs of gene expression are often controlled by common upstream factors that 

enforce the regulatory state.  We reasoned that coordinated single-cell gene programs would be 

the product of an overarching regulatory heterogeneity characterized by a shared F.  If true, then 

it should be possible to estimate the expression frequency more confidently and with fewer 

samples by extending maximum-likelihood inference to gene clusters with coordinated 10-cell 

fluctuations. 

 We extended the approach as follows (Figure 4.8A).  First, each gene within the cluster 

was assigned its own µ1 and µ2 (or µ and λ for the EXP–LN mixture) to account for gene-to-gene 

differences in expression level and detection sensitivity.  Next, we assumed that the genes within 

a cluster share a common F and σ (or F, σ1, and σ2 in the relaxed LN–LN mixture), implying a 

shared mechanism of regulation (100, 193).  Therefore, each mixture model of a cluster of g 

genes involved 2g + 2 or 2g + 3 parameters.  Even for small gene programs (g ≤ 10), this 

parameter search space was too large for non-convex optimization methods to maximize the 

global  
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Figure 4.8   Maximum-likelihood inference accurately estimates subpopulation frequencies 
from 10-cell gene-expression clusters. 
(A) The maximum-likelihood approach was modified for gene clusters with coordinated 10-cell 
sampling fluctuations as follows:  1) Global gene measurements are grouped and assumed to share a 
common F and σ.  2) An expression cluster of interest is divided into four-gene subsets for the first 
round of parameter estimation of µ1 and µ2 for each gene in the subset.  3) A maximum-likelihood 
estimator is derived based on an expanded version of the model in Figure 4.3A, where each gene k in 
a group of genes, 1, …, g, has its own µ1

(k )  and µ2
(k ) .  The likelihood function is maximized to infer 

µ1
(k ) and µ2

(k )  locally.  4) The likelihood function is then re-maximized for the entire dataset keeping 

the log-mean estimates ( µ̂1
(k )  and µ̂2

(k ) ) fixed to provide clusterwide estimates of F and σ.  Note that 
each gene has a different range of gene expression to reflect differences in overall expression levels, 
which are captured in the model predictions as well.  (B–G) Prediction and validation of expression 
frequency for heterogeneously expressed gene programs during breast-epithelial acinar 
morphogenesis.  (B and C) Heatmap of clustered 10-cell transcriptional profiles (73).  Gray labels 
indicate the 10-cell sample numbers.  Maximum-likelihood estimate of expression frequency (red 
box) is shown with 95% CI in brackets for each cluster.  Note that the two gene clusters are predicted 
to have substantially different frequencies of high expression based on their 10-cell sampling 
fluctuations.  (D and E) Representative RNA FISH images of transcripts from (D) the infrequent 
cluster and (E) the rare cluster.  Images are shown with DRAQ5 counterstain to visualize nuclei.  
Arrows show ECM-attached cells with high expression.  Scale bar = 10 µm.  (F and G) Percentage of 
cells showing high expression by RNA FISH (gray bar) of a subset of genes in each cluster compared 
with the maximum-likelihood estimate of F (white dashed).  RNA FISH data are shown as the mean 
percentage ± 95% CI of ECM-attached cells showing high expression.  Maximum-likelihood 
predictions are shown as the parameter point estimate (white) ± 95% CI (red). 
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likelihood function quickly (see Chapter 4 Methods).  To increase the speed and efficiency of 

estimation, the cluster was broken down into smaller four-gene subgroups to infer log-means for 

each gene in the subgroup together with local estimates of F, σ, and λ  (Steps 1–2; Figure 4.8A).  

After log-means were locally estimated, the remaining parameters were globally inferred by re-

maximizing the likelihood function for the entire gene cluster while retaining the local gene-

specific estimates of µ1 and µ2 (LN–LN mixture) or µ (EXP–LN mixture) (Steps 3–4; Figure 

4.8A).  As before, selection of the LN–LN, relaxed LN–LN, and EXP–LN mixture model was 

made according to the lowest BIC score (Table 1).  This revised formulation of maximum-

likelihood inference enabled accurate and confident estimates of the expression frequency while 

requiring only ~1/3 of the sample size (Figure 4.9). 

 We tested our extension of maximum-likelihood inference by extracting from an earlier 

study two coexpression clusters that were completely uncharacterized (73) (Figure 4.10).  These 

clusters contained one- to two-dozen genes with strongly coordinated expression fluctuations 

across 16 samples of 10 ECM-attached cells, but the patterns of fluctuation for each cluster were 

markedly different (Figure 4.8B,C).  Accordingly, when we inferred the parameters for the two 

clusters, the model predicted two very different expression frequencies.  The first “infrequent” 

gene cluster was predicted to be upregulated in ~25% of the ECM-attached population (Figure 

4.8B).  The LN–LN mixture model was preferred over the EXP–LN or relaxed LN–LN mixtures 

(Table 1), although all three models converged upon similar values for F.  By contrast, the 

expression frequency of the “rare” second cluster was predicted to be ~10% by the LN–LN 

mixture (Figure 4.8C), which was the best scoring model of the three (Table 1).  Our 

parameterization of the two clusters emphasizes the mosaicked regulatory states that evolve even 

in a very simple model of tissue architecture (73, 97, 135). 
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Figure 4.9   Parameter estimation with limited samples is improved by evaluating coexpression 
clusters.   
Groups of stochastic 10-cell samples were computationally simulated with known parameters as in 
Figure 4.3  The estimation procedure was performed on a single gene, all pairwise combinations ([4–

1]C[2–1] = 3 combinations), all triplicate combinations ([4–1]C[3–1] = 3 combinations), and all four genes 
together.  Estimations with increasing number of genes use the previous iteration as a seed guess for 
optimization.  Note that parameter predictions stabilize when 3–4 genes are considered 
simultaneously.   Red boxes highlight poor estimations that improve as more genes are considered.  
Red asterisks indicate estimations that fell outside the indicated parameter range.  Genes 9–12 
correspond to genes 9–12 in the heatmap in Figure 4.8A. 
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Figure 4.10   Heterogeneously coregulated transcriptional programs parameterized by 
maximum-likelihood inference. 
Heatmap of clustered 10-cell transcriptional profiles identified by stochastic profiling (73).  Profiles 
were used for the inferences in the indicated subpanels in the main figures.  Individual genes are 
listed for the coregulated clusters used in Figure 4.13. 
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Table 1   Bayes information criterion scores for different maximum-likelihood inferences.  

 

Mixture model 

	  

LN–LN Relaxed LN–LN EXP–LN 

SOD2 183 165a 184 

Infrequent cluster 2286 2296 2373 

Rare cluster 440 454 580 

Very-rare cluster –17 –37b 14 

Fig. 4A 308c 311 515 

Fig. 4B 780 1087 875 

Fig. 4C 898 972 1090 

Fig. 4D 910 922 967 

Minimum scores indicating best fit are underlined.  LN, lognormal; EXP, exponential 

aRelaxed LN–LN was excluded here because the two log-means associated with this inference were less than 

twofold different from one another.  A constrained optimization of this model (see Chapter 4 Methods) yielded 

F  = 24.3% with BIC = 180. 

bConstrained optimization of this model yielded F = 2.3% with BIC =  –35. 

cConstrained optimization of this model yielded F = 5.1% with BIC = 309. 
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 To test if the predicted values of F were accurate within the coexpressed clusters, we 

designed and validated riboprobes for 4–5 genes in each cluster and quantified their frequency of 

high expression by RNA FISH (Figure 4.11A, B).  We found that transcripts in the infrequent 

expression cluster were strongly expressed in 3–5 ECM-attached cells per acinus cross-section 

(Figure 4.8D and F and Figure 4.12A), yielding an average expression frequency of ~25%.  

Conversely, genes in the rare expression cluster (Figure 4.8E, G and Figure 4.12) were strongly 

expressed in 1–2 ECM-attached cells per acinus cross-section, consistent with an expression 

frequency of ~10%.  The expression frequencies of both clusters closely agreed with the inferred 

F parameters, suggesting that our extended inference approach was effective and accurate. 

 We evaluated the estimates of expression frequency more broadly by selecting four 

additional clusters from the same dataset for parameterization (Figure 4.10) (73).  The clusters 

showed distinct fluctuation patterns and consequently led to F inferences that ranged from less 

than 5% to greater than 25% (Figure 4.13A–D, upper).  We validated riboprobes for 

representative gene in each cluster and scored the expression frequency (Figure 4.13A–D, lower 

and Figure 4.11C).  Together with the earlier clusters, we observed a strong correlation between 

the expression frequency inferred computationally and the manual counts obtained by RNA 

FISH (R = 0.89, Figure 4.13E).  The accuracy of the manual counts was further confirmed by 

correlation with an expression-frequency index derived from digital image analysis of segmented 

acini (Figure 4.14 and Chapter 4 Methods).  Taken together, these data indicate that maximum-

likelihood inference accurately infers single-cell expression frequencies from cluster-wide 

patterns of 10-cell fluctuations. 
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Figure 4.11   Fluorescence intensities for RNA FISH are specific to endogenous transcripts. 
Riboprobes against each of the indicated genes were hybridized to MCF10A-5E day 10 frozen 
sections of 3D acini and imaged by widefield immunofluorescence (see Methods).  For each gene, the 
antisense and sense control are shown in identically hybridized samples.  The exposure time and 
image scaling is matched for each pair of antisense-sense samples to compare specific (antisense) and 
background (sense) signal strength.  Probe validations are for genes in the infrequent cluster (A), the 
rare cluster (B), assorted clusters in Figure 4.13 (C), and the very-rare cluster (D).  Scale bar is 20 µm. 

 

 

 

Antisense Sense

CLDN7

PIK3CD

POT1

TTC1

UBA6

Antisense Sense

CKS2

COPS5

MMP7

PRMT5

VIPAR

A B

D

C Antisense Sense

IL18

EEF1A1

DDR1

SERPINB1

FEM1A



      105 

 

 

 

 

Figure 4.12   RNA FISH validation of gene expression frequencies. 
Representative RNA FISH images of genes in the infrequent cluster (A) and the rare cluster (B) at day 
10 of MCF10A-5E 3D morphogenesis.  Images are shown alongside DRAQ5 counterstain to 
visualize nuclei.  Arrows show ECM-attached cells with high expression.  Scale bar = 10 µm. 
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Figure 4.13   Widespread parameterization of single-cell expression frequency by maximum-
likelihood inference. 
(A–D, upper) Clusters of 10-cell expression fluctuations among ECM-attached cells (73).  A complete 
list of transcripts in each cluster is shown in Figure 4.10.  Maximum-likelihood estimate of 
expression frequency (red box) is shown with 95% CI in brackets for each cluster.  (A–D, lower) 
RNA FISH images of a representative transcript in each cluster.  Images are shown with DRAQ5 
counterstain to visualize nuclei.  Arrows show ECM-attached cells with high expression.  Scale bar = 
10 µm.  (E) Percentage of cells scored for high expression by RNA FISH compared with the 
maximum-likelihood estimate of F.  RNA FISH data are shown as the mean percentage ± 95% CI of 
ECM-attached cells showing high expression.  Maximum-likelihood predictions are shown as the 
parameter point estimate ± 95% CI.  The gray bar shows a one-to-one correspondence with 5% 
measurement tolerance.  Estimates for SOD2 are reprinted from Figure 4.3H.  Estimates for Figure 
4.8, D and E were calculated by pooling all scored transcripts within each cluster.  Pearson correlation 
(R) between measured and inferred expression frequencies is shown. 
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Figure 4.14   Manually scored expression frequencies correlate with a digitally quantified 
frequency index. 
A minimum of 18 image fields of view (10+ cells per field of view) were manually segmented and 
analyzed digitally (see Chapter 4 Methods).  The median frequency index (left axis) with 95% 
nonparametric confidence interval is displayed in black with individual replicates shown in gray.  The 
manually scored frequencies (right axis) are reprinted in red from Figure 4.3H, Figure 4.8G, Figure 
4.8H, Figure 4.13A, and Figure 4.13D.  Pearson (R) and Spearman (ρ) correlations are shown. 
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4.3.5 Identification of a peculiar, very-rare transcriptional regulatory state 

 Maximum-likelihood inference provides critical information about the state distribution 

and expression frequency of any gene cluster identified by stochastic profiling to be 

heterogeneously regulated.  As a proof-of-concept application, we screened gene clusters from 

the 3D profiling data (73) to identify unusual regulatory states that warranted follow-up study.  

One cluster was notable among those surveyed because the predicted expression frequency of the 

high regulatory state was very rare (F = 2.3%).  The “very-rare” cluster was also distinguished  

by its strong concordance with the relaxed LN–LN mixture compared to the alternative mixture 

models (Table 1).  Moreover, the log-mean of the low regulatory state was extremely low (µ2 ~ –

3.3), suggesting that the cluster was at or below detection in the population.  Within this 

coexpression cluster, we recognized several genes that were strongly associated with breast 

cancer, including the breast cancer susceptibility gene BRIP1 (alternatively called FANCJ or 

BACH1 (194)), the breast cancer associated gene IRF2 (195), and the zinc-finger gene HIVEP2, 

which is frequently downregulated or mutated in breast cancer (41, 196) (Figure 4.15A).  We 

speculated that genes within the cluster were tightly regulated so that they could be activated in a 

restricted cellular context where their expression was critical. 

 Among the genes in the very-rare cluster, we were most intrigued by the 

phosphoinositide-3-kinase (PI3K) isoform PIK3CD (alternatively called p110δ).  3D breast 

epithelial cultures abundantly express two other PI3K isoforms, PIK3CA and PIK3CB (Figure 

4.15B and Figure 4.16), and it is generally thought that any PI3K isoform can support 

proliferation and survival (197).  Nevertheless, we found that the low-copy expression of 

PIK3CD was transcriptionally upregulated with delayed kinetics compared to the other PI3K 

isoforms (Figure 4.15B), suggesting a unique regulatory mechanism.  When PIK3CD abundance 
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was visualized in single cells by RNA FISH, we observed a striking pattern.  Most cells lacked 

PIK3CD or expressed it at very-low levels; however, we consistently identified a sporadic 

subpopulation of cells (roughly 1–2 cells every other acinus cross-section) with high PIK3CD 

expression (Figure 4.15C and Figure 4.11D).  The overall frequency of cells in the PIK3CDhi 

state was somewhat higher than the maximum-likelihood inferences of F for the cluster, but the 

inferred frequency agreed with the very-rare expression of two other members of the cluster, 

FEM1A and IRF2 (Figure 4.17).  Together, these observations pointed to an acute (and likely 

transient) regulatory event triggering the selective induction of cluster genes in single ECM-

attached cells. 
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Figure 4.15   A unique, very-rare regulatory state is marked by PIK3CD, which is important for 
normal suppression of proliferation during breast epithelial acinar morphogenesis. 
(A) Heatmap of clustered 10-cell transcriptional profiles (73).  Gray labels indicate the 10-cell sample 
numbers.  Maximum-likelihood estimate of expression frequency (red box) is shown with 95% CI in 
brackets.  (B) PIK3CD expression is upregulated during 3D morphogenesis.  Relative PIK3CA (red), 
PIK3CB (blue), and PIK3CD (black) expression was measured by qPCR at various time points during 
3D morphogenesis.  Data are shown as mean expression ± s.e.m. normalized to the day 4 expression 
of PIK3CD of three independent experiments.  PIK3CG was not expressed in MCF10A-5E cells 
(Figure 4.16).  (C) Representative RNA FISH image of PIK3CD expression is shown with DRAQ5 
counterstain to visualize nuclei.  Arrow shows ECM-attached cells with high expression of PIK3CD.  
Scale bar = 20 µm.  (D) Knockdown of p110δ by shRNA.  MCF10A-5E cells were infected with 
either shGFP (lane 1) or with one of two shRNA sequences targeting p110δ (lanes 2 and 3).  Lysates 
were analyzed by immunoblotting with tubulin used as the loading control.  Densitometry of 
p110δ abundance is shown relative to the shGFP control.  (E, F) Disruption of normal PIK3CD 
regulation elicits a hyperproliferative phenotype in 3D culture.  shGFP, shPIK3CD #1, and 
shPIK3CD #2 cells or shGFP cells + 20 µM p110δ inhibitor IC87114 were fixed at day 15 of 3D 
morphogenesis, stained for pRb (red), and analyzed by confocal immunofluorescence.  Cells were 
counterstained with DRAQ5 (blue) to label nuclei.  Arrows in F highlight pRb-positive cells.  Scale 
bar = 20 µm.  Quantification of proliferating acini in each condition is shown in E as the mean ± 
s.e.m. of eight independent experiments. 
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 We next asked whether PIK3CD was specifically important for normal acinar 

morphogenesis.  To eliminate the very-rare PIK3CDhi subpopulation, we perturbed p110δ by two 

independent methods:  RNA interference and the p110δ-specific small-molecule inhibitor, 

IC87114 (ref. (198); Figure 4.15D and  Figure 4.18).  When shPIK3CD cells were placed in 3D 

culture, we found that acini were larger and distorted, suggesting a defect in proliferation arrest.  

Using phosphorylated Rb (pRb) as a proliferative marker, we observed that shPIK3CD acini 

were still cycling after fifteen days of 3D culture when shGFP control acini had quiesced (Figure 

4.15E, F).  Furthermore, when control cells were cultured with IC87114, we observed sustained 

proliferation that phenocopied PIK3CD knockdown (Figure 4.15E, F).  These data together 

indicate that p110δ activity stemming from the very-rare PIK3CDhi regulatory state is critical for 

normal proliferation arrest of breast epithelia in 3D culture.  More broadly, our results with the 

very-rare cluster illustrate how maximum-likelihood inference can be used to hone in on gene 

programs with an expression frequency or regulatory pattern of interest. 
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Figure 4.16   PIK3CG is not expressed in MCF10A-5E cells.  qPCR amplicons for the indicated 
primer sets were run on an agarose gel.   
qPCR amplicons for the indicated primer sets were run on an agarose gel.  PIK3CA, PIK3CB, and 
PIK3CD were detected in MCF10A-5E cells, while PIK3CG was not.  PIK3CG in 293T cells was 
used as a positive control for PIK3CG amplification.  Representative blank and no RT samples are 
shown in the left two lanes. 

 

Blank No RT PIK3CA PIK3CB PIK3CD PIK3CGPIK3CG
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Figure 4.17   Extended validation in ECM-attached cells of a very-rare regulatory state. 
(A)  Representative image of FEM1A (yellow) shown together with DRAQ5 counterstain (blue) to 
visualize nuclei.  The arrow shows an ECM-attached cell with expression of FEM1A.  (B) 
Representative image of IRF2 protein (red), whose transcript was predicted to have very-rare 
expression.  Image is shown together with E-cadherin (green) to visualize cell membranes and DAPI 
counterstain (blue) to visualize nuclei.  The arrow shows an ECM-attached cell with expression of 
IRF2.  (C) Percentage of cells showing high expression of PIK3CD transcript, FEM1A transcript, or 
IRF2 protein (gray bar) compared with the maximum-likelihood estimate of F (white dashed) for the 
very-rare expressed cluster.  Data are shown as the mean percentage ± 95% CI of ECM-attached cells 
showing high expression.  Inverse-modeling predictions are shown as the parameter point estimate 
(white) ± 95% CI (red).  Scale bar is 20 µm. 
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 Figure 4.18   IC87114 inhibits Akt phosphorylation stimulated by p110δ . 
MCF10A-5E cells were serum starved overnight and stimulated with the p110δ agonist 
lysophosphatidic acid (LPA, 10 µM for 5 min) in the presence or absence of 20 µM IC87114 
(198). 
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4.3.6 Comparison with alternative deconvolution methods 

 We compared the performance of maximum-likelihood inference to other computational 

approaches for deconvolving mixed populations (199-201).  The alternative methods invoked 

different mathematical formalisms—Bayesian statistics (199), nonnegative matrix factorization 

(200), and principal component analysis (201)—and none had previously been applied to 

transcriptional profiles of small samples.  Using the sampling fluctuations within the infrequent, 

rare, and very-rare clusters, we attempted inferences of expression frequency and found that all 

were substantially less accurate than maximum-likelihood inference (Table 2).  The comparison 

illustrates that our method is uniquely effective at parameterizing transcriptional regulatory states 

within cell populations. 
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Table 2   Expression frequency inferences from alternative deconvolution methods  
 Stochastic-profiling cluster 

Method Infrequent Rare Very Rare 

Erkkila et al. (48)a 20% ~0%b ~0%b 

Repsilber et al. (49) 22% 60% 25% 

Tolliver et al. (50) 18, 40, 23, 19%c 59, 7.2, 11, 22% 30, 21, 19, 30% 

Maximum-likelihood 

inference 

25% [24%, 27%]d 10% [8.6%, 12%] 2.3% [1.5%, 

3.3%] 

RNA FISH  25% [24%, 26%]d 10% [9.4%, 12%] 5.6% [4.7%, 

7.3%] 

aBayesian priors were set to 25%, 10%, and 5% for the infrequent, rare, and very-rare clusters, respectively. 

bThe estimated frequency was 2 × 10-12%. 

cA minimum of four subpopulations must be estimated with this deconvolution method. 

dBracket denotes 95% confidence interval. 
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4.3.7 Direct comparison of single-cell and ten-cell sampling strategies 

 Maximum-likelihood inference reconstructs the single-cell expression distribution 

without the need to measure single cells.  Ignoring the technical challenges of global single-cell 

methods (72, 73, 89, 95), it should also be theoretically possible to recreate the complete 

expression distribution by measuring many individual cells.  However, it was not clear whether 

single-cell profiling would be as effective as stochastic profiling when reconstructing from a 

limited number of one- or 10-cell samples.  We anticipated that low expression frequencies 

would be particularly difficult for single-cell methods to characterize because of uncertainty in 

reliably capturing the rare regulatory state. 

 To compare single-cell profiling with stochastic profiling, we repeatedly simulated one- 

or 10-cell measurements of gene clusters with similar characteristics to those previously 

examined (Figure 4.8F and G, 5A, and Chapter 4 Methods).  The three 12-gene clusters varied in 

their expression fraction—infrequent (F = 25%), rare (F = 10%), and very rare (F = 5%)—and 

the very-rare cluster was simulated as an LN–LN mixture or an EXP–LN mixture.  When the 

number of observations was limited to 16 (as in the actual data), we found that maximum-

likelihood inference provided superior estimates of F when using 10-cell groups (Table 3).  

Inferences from simulated observations of 16 single cells showed substantially higher mean 

squared error (MSE) for all gene clusters when compared to 16 10-cell observations.  The larger 

MSE of one-cell inferences was caused by increases in both the bias and variance of the 

estimate, whose magnitudes depended on the cluster characteristics and mixture model.  These 

computational simulations provide an upper bound on performance, because experimental error 

from actual single-cell experiments (19, 89) should blur the data much more.  By collecting a 

greater total number of cells when observations are limited, maximum-likelihood inference of 
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stochastic 10-cell profiles provides a more-accurate picture of the single-cell distribution than 

single-cell profiles. 
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Table 3   Expression frequency inferences from repeated observations of one vs. ten cells 
True 

F 
Mixture Cells 

Maximum-likelihood estimate of F 

MSE × 10-2 Bias × 10-2 Variance × 10-2 

25% LN–LN 1 4.32 –20.76 0.01 

  10 0.30 –3.40 0.19 

10% LN–LN 1 2.35 –2.83 2.27 

  10 0.19 1.37 0.17 

5% LN–LN 1 19.73 29.09 11.27 

  10 0.16 1.73 0.13 

5% EXP–LN 1 57.18 75.1 0.79 

  10 4.50 0.80 1.77 

MSE, bias, and variance were calculated across 100 simulations of 16 observations.  F is defined 

from 0–100 × 10-2.  MSE = bias2 + variance.  MSE, mean squared error; LN, lognormal; EXP, 

exponential. 
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4.4 Discussion  

 Maximum-likelihood inference of mixed regulatory states enables accurate single-cell 

expression characteristics to be gleaned from 10-cell measurements.  For individual genes, the 

model requires a large number of samples to obtain precise estimates, and its advantage over 

explicit single-cell methods is debatable.  However, by extending the approach to coregulated 

gene clusters (73, 100, 193), we can infer expression frequencies much more robustly than 

single-cell methods when the extent of sampling is limited.  In fact, after identifying 

heterogeneously regulated genes at the transcriptome-wide level by stochastic profiling (72, 73), 

global inferences are achievable with the same number of random 10-cell samples.  Maximum-

likelihood inference can thus be immediately incorporated into stochastic profiling studies that 

seek a further understanding of single-cell regulation (72, 100). 

 Multiple studies have demonstrated that heterogeneous phenotypes are primed by earlier 

regulatory non-uniformities in gene expression (22, 52, 106, 130, 131, 133, 174).  But to date, 

these discoveries have relied on either predefined intracellular circuits or a mix of screening and 

serendipity.  By combining stochastic profiling with maximum-likelihood inference, one can 

now examine the single-cell transcriptome for expression frequencies or other regulatory patterns 

that correlate with a downstream phenotype of interest.  Such programs are most likely to contain 

one or more triggers of the heterogeneous phenotype.  For example, our follow-on work with 

PIK3CD suggests that it may enforce a quiescent phenotype in a subpopulation of cells that 

would otherwise enter the cell cycle. 

 One day, it may be possible to measure the genome, transcriptome, and proteome 

accurately and cheaply in single cells.  While progress is being made toward this goal (37, 89, 

90, 175, 191), in the meantime it is valuable to develop alternative methods with less-stringent 
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sample requirements.  Our study shows that a surprising amount of quantitative single-cell 

information can be deconvolved mathematically from measurements with 10-fold more starting 

material.  The average cell might indeed be a myth (74), but that does not mean that small-

sample averages of cells cannot point to the truth. 
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Part II:  Experimental analyses of heterogeneity 

  

 

In this Part of the Dissertation, we discuss the experimental follow up to identify the 

biological function of growth-differentiation factor 11 (GDF11) heterogeneity.  In Chapter 5, we 

begin with simple experiments to identify a function of GDF11, which we continue to explore 

down to the molecular mediators of the function.  Additionally, we use xenograft experiments to 

extend these in vitro observations.  Last, we use clinical specimens obtained from the University 

of Virginia hospital to show relevance of our in vitro and in vivo findings to the human disease.  

Chapter 5 serves as a case study on how to study a regulatory heterogeneity and identify biology 

importance to human disease and yield potential translational impact.  
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5 Chapter 5 – Growth-differentiation factor 11 (GDF11) tumor suppression 

is sequestered by basal-like breast cancer cells   

5.1 Foreword  

 The previous Chapters focused on development of computational methods to uncover 

new importance to cellular heterogeneity.  The methods make predictions or analyses about 

molecular or cellular phenotype, but these observations must be validated experimentally for the 

results to hold any biological traction.  In this Chapter, we closely study the heterogeneous 

regulation of a TGFβ-family member ligand, growth differentiation factor 11 (GDF11).  GDF11 

was discovered in the original stochastic profiling dataset, but its function in breast epithelial 

biology was unknown.  The tools and rationale used in this Chapter demonstrate how molecular 

heterogeneities in our 3D spheroid model can be propagated to understand human basal-like 

breast cancers.  Excitingly, we uncover a peculiar mechanism of tumor suppressor silencing that 

is based on cell biology, not on genomic or epigenetic mechanisms.  

 

5.2 Introduction  

 Breast cancer is a heterogeneous disease (57).  Efforts cataloguing patient-to-patient 

variability have identified predominant subtypes of the disease (27).  Of these subtypes, basal-

like and claudin-low are molecularly a completely different disease than hormone- and receptor-

positive breast cancers (61, 202).  These subtypes tend to be negative for the three 
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therapeutically relevant receptors.  This triple-negative status gives the basal-like and claudin-

low tumors a particularly poor prognosis (63).  

 Basal-like and claudin-low tumors also exhibit significant intratumoral variation between 

individual cells.  Intratumor heterogeneity has been linked to poor prognosis, suggesting a role 

for heterogeneity in the progression of the disease (58).  Uncovering the role of heterogeneity in 

tumor progression is limited by two factors: 1) the identification of heterogeneously regulated 

molecular markers (58) and 2) a scarcity of premalignant, triple-negative, basal-like ductal 

carcinoma in situ (DCIS) clinical specimens (203).  We have developed a suite of tools that 

allows us to globally identify heterogeneously regulated genes, which we applied to breast 

epithelial morphogenesis (70, 73, 96).  Breast epithelial spheroid morphogenesis shares similar 

molecular states that occur during tumor progression from lobular epithelial tissue to carcinomas 

(53).    

 We previously uncovered a set of heterogeneously regulated TGFβ-related genes in 

basal-like breast epithelial spheroids.  This program of genes was highlighted by growth-

differentiation factor 11 (GDF11), transforming growth factor beta receptor 3 (TGFBR3), and 

transforming growth factor beta induced (TGFBI).  While roles of TGFBR3 and TGFBI have 

been studies in the context of cancer (53, 142, 156, 204, 205), no role has been identified for 

GDF11.  Previously implicated in development and regenerative medicine (206, 207), here, we 

discover a role for GDF11 as a tumor suppressor of basal-like breast cancer.  GDF11 treatment 

improved normal breast epithelial morphogenesis and reduced invasion in a panel of basal-like 

breast cancer (BLBC) cell lines.  We identify SMAD4 and ID2 as critical mediators for GDF11 

to improve spheroid morphology, and demonstrate that the GDF11 pathway is inactive in a 

subset of triple-negative breast cancers (TNBC).  GDF11 treatment inhibits intraductal growth of 
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claudin-low breast cancer cells in vivo, suggesting a role for GDF11 in breast cancer 

progression.  In human specimens of normal, ductal carcinoma in situ (DCIS), and TNBC, we 

discover that GDF11 displays different patterns of GDF11 immunoreactivity, which we link to a 

secretion defect of GDF11.  Basal-like breast cancer cells may inactive tumor suppressors by 

sequestering them in advantageous cellular compartments.    

 

5.3 Results 

5.3.1 GDF11 is a heterogeneously regulated transcript important for 3D morphogenesis of 
immortalized breast epithelial cell lines  

 The stochastic profiling method identifies transcripts whose 10-cell sampling fluctuations 

fall far outside the range for normal biological variation; some transcripts could covary with a 

heterogeneous regulatory state but get overlooked by the analysis because of the stringent false-

discovery rate required to screen the entire transcriptome (72, 73).  To determine whether 

GDF11, TGFBR3, and TGFBI were indicative of a broader TGFβ-related transcriptional 

program, we searched the profiling dataset for the strongest covariates and identified thirteen 

genes strongly implicated in TGFβ-family signaling (Figure 5.1A).  Notably, this gene set 

included the activin type-IIB receptor (ACVR2B) that, together with GDF11, comprised the only 

TGFβ-family ligand-receptor pair in the panel (Figure 5.1A) (208).  We confirmed GDF11 

expression heterogeneity at the transcript level by RNA FISH and at the protein level by 

immunofluorescence with two separate monoclonal antibodies.  GDF11 transcripts were 

abundant in ~20% of matrix-attached cells (Figure 5.1B), and both antibodies labeled with Golgi 

nonuniformly within MCF10A-5E 3D cultures (Figure 5.1C-D).  Although the cleaner GDF11 

antibody (“EPR”) also recognizes GDF8/MSTN (209), GDF11 is significantly more abundant in 
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51 of 53 breast cancer cell lines, as well as 97 or 97 basal-like and 121 of 122 triple-negative 

breast cancers in The Cancer Genome Atlas, suggesting specificity for GDF11 in breast tissue 

(Figure 5.1E) (27, 210, 211).  Our observations raised the possibility of GDF11 triggered 

signaling heterogeneities during reorganization and stress adaptation of proliferating 3D breast-

epithelial cultures.    

 In MCF10A-5E cells, knockdown of TGFBR3 results in large, budding structures that are 

distinct from the proliferation-arrested spheroids normally observed during 3D culture (53).  As a 

high-affinity coreceptor for many TGFβ-family ligands (140), we hypothesized that the 

shTGFBR3 phenotype was caused by a diminished sensitivity to endogenous GDF11, which was 

locally and heterogeneously produced.  To abrogate the need for TGFBRIII, we treated the 

shTGFBR3 spheroids with saturating levels of GDF11.  Remarkably, exogenous GDF11 

completely blocked the larger, budding spheroids from forming (Figure 5.1E).  The improved 

circularity in the control condition upon GDF11 treatment suggested that GDF11 treatment could 

also improve normal breast spheroid morphology.  We treated MCF10A-5E and normal murine 

mammary gland (NMuMG (212, 213)) spheroids with exogenous GDF11 (Figure 5.1G-H).  We 

first observed that GDF11 treatment reduced the size variation (Figure 5.1F) and increased 

lobular morphology in MCF10A-5E spheroids (Figure 5.1G).  Additionally, the size variation of 

MCF10A-5E spheroids was increased upon knockdown of GDF11 with two shRNA hairpins 

(Figure 5.2).  Structurally, the cells in the MCF10A-5E treated spheroids show a columnar, 

epithelial phenotype (Figure 5.1H).  A significant increase in rounding was observed in the 

NMuMG cell line (Figure 5.1I), and structurally, individual cells were packed close together 

after GDF11 treatment (Figure 5.1J).  These data suggest that GDF11 is an important molecule 

in breast epithelial morphogenesis, particularly in driving compacted, lobular architecture.  



      128 

 

 

 

Figure 5.1  GDF11 is a heterogenously regulated transcript important to 3D morphogensis of 
immortalized breast epithelial cells. 
(A) Stochastic profiling of ECM-attached MCF10A-5E cells in 3D culture.  Transcripts that were 
highly correlated to GDF11, TGFBI, and TGFBR3 were hierarchically clustered.  (B)  GDF11 
expression is heterogeneous amongst matrix-attached breast epithelia as measured by RNA FISH.  
(C)  GDF11 expression is heterogeneous amongst matrix-attached breast epithelia as measured by 
two-color immunofluorescence with two monoclonal antibodies raised against GDF11.  (D)  RNA-
seq data shows that GDF11 is more abundant than GDF8/MSTN in breast cancer cell lines, human 
basal-like breast cancers, and human triple-negative breast cancers.  (E) GDF11 reduces the 
percentage of budding structures induced by knockdown of TGFBR3.  (F)  Knockdown of GDF11 
increases the variation in spheroid area.  Lower plot shows the histogram of spheroid area and the 
median coefficient of variation.  (G, I)  GDF11 treatment promotes rounding in MCF10A-5E (G) and 
NMuMG (I) spheroids.  (H) GDF11 causes a columnar arrangement in MCF10A-5E spheroids.  (J)  
GDF11 treatment causes more condensed packing of cells in NMuMG spheroids.  Data is mean ±	 
s.e.m. for (E), (G), and (I).  Data is median ±	 95% confidence interval for (F).  Scale bar is 200 µm 
for (E) , (G), (I), and 20 µm for (B), (C), (H), and (J).  
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Figure 5.2  GDF11 knockdown increases size variation in MCF10A-5E spheroids. 
Coefficient of variation (CV) in spheroid size was measured in quadruplicate for two GDF11 hairpins 
and hairpin control.  Data is median ±	 95% confidence interval. 
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5.3.2 GDF11 uniquely promotes compact tissue architecture of BLBC spheroids  

 We explored the possibility that GDF11 treatment could induce rounding and improve 

spheroid morphologies in transformed cells.  We first tested this hypothesis by transforming a 

cell line we knew to be responsive to GDF11 (Figure 5.1E-H).  We engineered a transformed 

version of our MCF10A-5E cell line by ectopically expressing oncogenic RasV12 (214) .  In the 

absence of treatment, the RasV12 spheroids were highly invasive, even at an early time point of 

morphogenesis (Figure 5.3A).  Treatment with GDF11 significantly increased the frequency of 

rounded spheroids.  We next sought to test GDF11 treatment in basal-like breast cancer cell lines 

(BLBC).  We assembled a panel of cell lines containing basal-like and claudin-low cell lines, 

spanning the two categories of BLBCs and 50% of the TNBC categories (65).  Across many cell 

lines that could transduce GDF11, we observed a recurring pattern where GDF11 promoted a 

rounded, non-invasive phenotype (Figure 5.3B and Figure 5.4).  For example, GDF11 treatment 

significantly reduces the invasion in the claudin-low cell line MDA-MB-231 (Figure 5.3B).  

Analogously, GDF11 treatment significantly reduced sheet-like protrusions in the basal-like cell 

line HCC1937 (Figure 5.4A).  These data suggest that GDF11 reduces invasion and improves 

roundness in BLBC spheroids.  

 To test if the improvement in rounding and decrease in invasion induced by GDF11 was 

not due to a generic TGFβ response, we tested GDF11 against the closest and biologically 

relevant TGFβ−family member, TGFβ1 (215).  We first measured extent of pathway activation 

by stimulating cells with saturating concentrations of GDF11 or TGFβ1.  We used a canonical 

downstream target of TGFβR1, SMAD2, as a measure of pathway activity (215).  Across two 

phosphosites, GDF11 was a weaker agonist of the pathway (Figure 5.3C-D).  To exclude if 

GDF11 functioned as a TGFβ1 hypomorph, we tested lower doses of TGFβ1 to find a 
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concentration of ligand that equally activated the pathway (Figure 5.3E).  Importantly, we could 

not recapitulate the rounding phenotype with lower concentrations of TGFβ1, which instead 

induced a dissociated, EMT-like phenotype (Figure 5.3F) (216).  The specificity of the rounding 

phenotype in response to GDF11 was also observed in the Hs578T cell line as well (Figure 

5.4B).  These data demonstrate that GDF11 is unique in its ability to promote lobular phenotypes 

in BLBC spheroids.   
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Figure 5.3  GDF11 uniquely promotes compact tissue architecture of BLBC spheroids. 
(A) GDF11 improves rounding in RasV12 transformed MCF10A-5E spheroids.  (B) GDF11 blocks 
stellate invasion of MDA-MB-231 claudin-low breast carcinoma cells. (C,D) GDF11 is a weaker 
agonist of Smad2 phosphorylation on C-terminal (CT) sites and linker (link) sites.  *p < 0.05.  **p < 
0.01.  ***p < 0.001.  ****p < 10-6.  (E,F) Lower concentrations of TGFβ1 cannot mimic the 
normalization phenotype of GDF11 in MDA-MB-231 cells.  Scale bar is 200 µm.   
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Figure 5.4  GDF11 promotes compact tissue architecture in a panel of BLBC spheroids. 
(A) GDF11 blocks sheet-like protrusion of HCC1937 basal-like breast carcinoma cells, stellate 
invasion of BT-549 claudin-low breast carcinoma cells, and sheet-like invasion of HCC38 claudin-
low breast carcinoma cells.  GDF11, but not TGFβ1, improves lobule-like organization of Hs578T 
spheroids.  Scale bar is 200 µm. 
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5.3.3 GDF11 phenotype requires SMAD4 and ID2 

The perplexing difference in phenotypes induced by GDF11 and TGFβ1, despite equal 

pathway activation, warranted further examination.  To test whether transcriptional changes were 

required for the GDF11-induced phenotype, we knocked down a central node of the canonical 

TGFβ-family transcriptional pathway, SMAD4 (Figure 5.5A) (217).  In MDA-MB-231 cells, 

knockdown of SMAD4 caused an increase in invasion, suggesting TGFβ-family responsiveness 

is key in mitigating invasion in the parental cell line.  Importantly, treatment of shSMAD4 

spheroids with GDF11 resulted in no change in invasion or rounding (Figure 5.5B).  We tested 

the gain of SMAD4 function by ectopically expressing SMAD4 in the MDA-MB-468 basal-like 

cell line that has a genomic deletion of SMAD4 (Figure 5.5C) (218).  In the absence of SMAD4 

expression, GDF11 elicited no change in spheroid phenotype.  However, upon expression of 

SMAD4, GDF11 treatment induced rounded spheroids (Figure 5.5D).  Together, these data 

suggest that SMAD4 is a critical transcriptional mediator of the GDF11-induced phenotype. 

 We next sought to identify downstream transcriptional targets of SMAD4 that could 

further mediate GDF11 function.  We transcriptionally profiled two non-transformed breast 

epithelial cell lines (MCF10A-5E and NMuMG) with normally functioning TGFβ pathways, 

stimulated with either GDF11 or TGFβ1 (212, 213, 219).  Of the transcripts that were 

differentially by GDF11, we identified a single transcriptional regulator that was upregulated by 

GDF11, inhibitor of DNA binding 2 (ID2) (Figure 5.5E).  Inhibitor of DNA binding (ID) family 

members have been implicated in TGFβ signaling (220), but not in the context of GDF11.  

Additionally, ID2 has been associated with decreased invasion and improved prognosis in breast 

cancer cells, corroborating a potential role for ID2 in mediating phenotypes induced by GDF11 

(221). We used a loss of function approach to test if ID2 was required for GDF11 to promote 
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compacted, lobular architecture.  Knockdown of Id2 in NMuMG spheroids prevented GDF11 

from blocking abnormal morphogenesis (Figure 5.5F).  Similarly, knockdown of ID2 in MDA-

MB-231 spheroids prevented GDF11 from blocking invasion (Figure 5.5G), suggesting ID2 is 

required for the phenotype changes induced by GDF11.  

 To examine if ID2 was relevant to breast cancers where GDF11 signaling could be 

active, we mined the breast cancer TCGA data (27).  There were not enough claudin-low tumors 

for a statistical analysis, but among basal-like breast cancers, we found that GDF11, ACVR2B, 

TGFBR3, and ID2 showed substantially more interpatient variability than canonical pathway 

components TGFBR1, SMAD2/3, and SMAD4 (Figure 5.6A).  When examining tumors in the 

upper 40th percentile of GDF11 expression, we observed a significant increase in tumors with 

higher expression of the GDF11-receptors, ACVR2B and TGFBR3, suggesting this pathway 

could be active in a subset of BLBCs (Figure 5.6B).  These data support SMAD-dependent 

transcriptional regulation of ID2 as a key effector of GDF11 in 3D breast epithelial cultures and 

in human BLBCs.    
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Figure 5.5  GDF11-specific phenotype are mediated by SMAD4 and ID2. 
(A) Inducible knockdown of SMAD4 in MDA-MB-231 claudin-low breast cancer cells.  (B)  
Knockdown of SMAD4 prevents GDF11 from reducing invasion in MDA-MB-231 spheroids.  (C)  
Inducible overexpression of SMAD4 in the SMAD4 null MDA-MB-468 basal-like breast cancer line. 
(D)  SMAD4 expression allows GDF11 to improve rounding in MDA-MB-468 spheroids.  (E)  
Identified signaling axis for GDF11-induced lobule-like phenotypes.  (F)  Transcriptional profiling of 
NMuMG cells stimulated with GDF11 or TGFβ1.  (G)  Knockdown of Id2 prevents GDF11 from 
reducing abnormal NMuMG morphogenesis.  (H)  Inducible knockdown of ID2 in MDA-MB-231 
claudin-low breast cancer cells. (I)  Knockdown of ID2 prevents GDF11 from reducing invasion in 
MDA-MB-231 spheroids.  Scale bar is 200 µm.   
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Figure 5.6  GDF11 signaling axis is present in human basal-like breast cancers. 
(A) TCGA breast cancer sequencing data was mined for expression of GDF11 signaling components.  
The coefficient of variation amongst patients for each transcript shows high variability in GDF11, 
ACVR2B, TGFBR3, and ID2.  (B)  ID2 levels are higher in basal-like breast cancers with expression 
of GDF11 receptors ACVR2B and TGFBR3.  
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5.3.4 GDF11 effects in vivo  

 The TCGA meta-analysis suggested that GDF11 signaling was active in a subset of 

BLBCs; however, ~10% of BLBCs have less than one copy of GDF11 per cell, implying that in 

these samples GDF11 is absent in over half of the tumor cells (27).  To test if loss of GDF11 

altered BLBC phenotype, we knocked down GDF11 in a transformed derivative of the MCF10A, 

MCF10ADCIS.COM (121), and a basal-like breast cancer cell line, HCC1937, which could 

secrete GDF11 at high levels (Figure 5.10E).  Delayed knockdown of GDF11 caused a ruptured-

like appearance in both cell lines, which was not observed in a non-transformed cell line 

(MCF10A-5E) (Figure 5.7A).  These data suggest that loss of GDF11 caused a cellular state that 

is stressful for transformed cells. 

 To test if this cellular stress had a role in tumorigenesis, we injected luciferase labeled 

MCF10ADCIS.COM cells expressing an inducible hairpin against control or GDF11 into the 

murine mammary gland intraductally.  Intraductal injection xenografts are a stringent model of 

tumorigenesis, requiring tumor cells to survive in suspension until they colonize in the duct, 

proliferate to fill the duct forming an early in situ lesion, and progressing to invasive carcinoma 

only after the cells have invaded through the basement membrane surrounding the murine 

epithelium (222).  Additionally, the progression of cell behavior in the xenograft model closely 

mimics the cellular state transitions present in our 3D spheroid model (53).  We allowed the 

MCF10ADCIS.COM tumors to grow for two weeks and then induced the hairpin.  In a pilot 

study, we observed a significant increase in bioluminescence in GDF11 knockdown tumors with 

one of our two validated GDF11 hairpins.   

 To rigorously confirm the results of the pilot study, we created a preregistered study on 

the Open Science Framework (https://osf.io/8pv7d/) (223).  Pregistration creates a binding 
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documentation of the data collection, data analysis and processing, and statistical analysis of the 

data before it is collected.  The goal of this process is to increase openness in science research, 

promoting reproducibility (224).  All pilot data collected informs the design of the confirmatory 

study, but is not publishable.  In the confirmatory study, we injected MCF10ADCIS.COM cells 

expressing one of two GDF11 hairpins into one mammary gland.  The contralateral mammary 

gland was injected with MCF10ADCIS.COM cells expressing a control hairpin sequence.  After 

two weeks of hairpin expression, we observed only a modest increase in bioluminescence 

(Figure 5.7B).  The effect size was smaller than in our pilot study (224), suggesting that loss of 

GDF11 does not significantly alter tumor growth.  

 Based on pathway expression, GDF11 was suggested to be bioactive in a subset of 

human BLBCs, raising the question of its role in tumorigenesis, particularly in early 

premalignancies where cells must colonize the duct (53).  To explore this question, luciferase 

labeled MDA-MB-231 cells were injected into the mammary gland.  As we could not 

overexpress bioactive GDF11 in this cell line (Figure 5.10C,E), we tested overexpression of 

GDF11 by co-inoculating the mammary gland with GDF11 or BSA as control.  In a pilot study, 

we observed that GDF11 significantly reduced the growth rate of intraductal tumors.  However, 

the mouse-to-mouse variation exceeded the variation in bioluminescence, precluding a direct 

comparison of tumor bioluminescence.  In a preregistered study (https://osf.io/kjypa/), we 

proposed a paired design with one gland receiving GDF11 co-inoculation and the contralateral 

gland receiving BSA as control, alleviating any overall mouse-to-mouse variation.  The BSA 

tumor bioluminescence decreased until approximately two weeks post injection and then began 

to increase for the duration of the experiment.  This suggests the intraductal environment is 

stressful and difficult to survive for most BLBCs and also causes selection for robust tumor 
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clones.  In contrast, the GDF11 treated tumors had a minimal rebound from the selection process, 

with many tumors failing to grow (Figure 5.7C).  This suggests that GDF11 inhibits the ability of 

claudin-low breast cancer cells to seed tumors.  
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Figure 5.7  Loss and gain of GDF11 function during tumorigenesis. 
(A)  The transformed cells MCF10ADCIS.COM (left) and basal-like breast carcinoma cell line 
HCC1937 (center) rupture from knockdown of GDF11.  This phenotype is not seen in a non-
transformed breast epithelial cell line MCF10A-5E (right).  (B)  Intraductal injection of luciferase 
labeled MCF10ADCIS.COM cells.  Knockdown of GDF11 was induced at day 14 and 
bioluminescence was recorded weekly.  (C)  Co-inoculation of 100 µg/mL GDF11 in intraductal 
injections of luciferase labeled MDA-MB-231 cells blocks tumor seeding and growth.  Scale bar is 
200 µm.  
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5.3.5 GDF11 expression in human breast and basal-like breast cancers  

 GDF11 transcript abundance was highly variable among clinical breast cancer cases and 

at the single-cell level in 3D breast epithelial cultures (Figure 5.1C).  These two observations 

could be reconciled if there were intratumor heterogeneity of GDF1 bioactivity in advanced 

tumors.  Using the EPR antibody clone as the cleanest reagent for detection of GDF11 in tissue 

(Figure 5.1C), we optimized immunohistochemical conditions for formalin fixed paraffin 

embedded (FFPE) samples and examined dozens of cases of reduction mammoplasty (“normal”), 

premalignant ductal carcinoma in situ lesions with basal-like features (“basal-like DCIS”), and 

advanced breast cancers deemed triple-negative by routine clinical pathology (“TNBC”).  In 

normal tissue, we observed positive EPR staining that was often stronger in the lobules 

compared to the duct (Figure 5.8A), consistent with the lobule-like phenotypes induced by 

recombinant GDF11 in 3D culture (Figure 5.1G,I).  Moreover, when TNBC was compared to 

adjacent normal tissue, there was a significant enhancement of GDF11 abundance in the tumor 

(Figure 5.8B).  Contrary to our expectation based on animal experiments, the clinical data 

indicated that GDF11 protein abundance increases in breast cancer cells during progression. 

 While performing the immunohistochemical studies, we serendipitously discovered a 

second monoclonal GDF8/11 antibody (“1E6”) marketed commercially for ELISA.  Under the 

same antigen-retrieval conditions, this antibody yielded a specific staining pattern that was 

distinct from the EPR antibody.  GDF11 staining with 1E6 was elevated in lobules compared to 

ducts of normal breast tissue as with the EPR clone.  However, rather than localizing to the 

Golgi, 1E6 immunoreactivity was more diffusely localized to intracellular vesicles and the 

pericellular space (Figure 5.8C).  The discrepancy could be explained if the 1E6 antibody were 
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selective for a more-mature proteoform of GDF11 (225).  Both antibodies were raised against 

similar C-terminal fragments of GDF11, and we observed correlated signal between the two  

antibodies by two-color immunoblotting and immunofluorescence (Figure 5.9C,D).  By contrast, 

1E6 did not clearly detect proGDF11 unless its prodomain was deglycosylated, indicating that 

glycosylation of the GDF11 precursor masks the 1E6 epitope.  We conclude that the 1E6 

antibody achieves selectivity for mature GDF11 once the prodomain has been cleaved by the 

proprotein convertase PCSK5 (226), an isoform of which is sorted to secretory granules (227).   

 When staining of the basal-like DCIS and TNBC cohorts was repeated with the 1E6 

antibody, we observed a markedly different trend of GDF11 immunoreactivity.  In contrast to 

EPR, there was no clear difference in overall 1E6 staining between tumor and normal tissue.  

Instead, TNBC cases were distinguished by their intratumor heterogeneity, evidenced by 

sporadic foci of intense 1E6 immunoreactivity that diffused radially from single cells (Figure 

5.8D,H).  TNBC specimens that lacked foci were often characterized by pockets of tumor cells 

engorged with 1E6-reactive vesicles, further indicating a heterogeneous misregulation in GDF11 

processing or release (Figure 5.8G).  1E6 foci were almost never found in normal tissue (Figure 

5.8E), but a TNBC-like pattern was noted in ~40% of basal-like DCIS cases, raising the 

possibility that a shift in GDF11 regulation precedes the premalignant-to-malignant transition 

(Figure 5.8F).  Despite an overall increase in GDF11 protein, the 1E6 staining results suggest 

that TNBC cells are largely unable to convert it into a bioactive autocrine or paracrine ligand. 
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Figure 5.8  Distinct immunolocalization of GDF11 in triple-negative breast cancer according to 
EPR and 1E6 monoclonal antibodies.  
(A,C) Coordinate localization of (A) EPR and (C) 1E6 immunoreactivity on the apical side of lobular 
epithelia in normal breast. (B,D) Discrepant localization of (E) EPR and (F) 1E6 immunoreactivity in 
triple-negative breast cancer.  (E, F)  Quantification of 1E6 immunoreactive foci in matched normal-
tumor pairs (E) and broadly across reduction mammoplasties, DCIS, and TNBC (F).  (G) Example of 
TNBC tumor with no 1E6 immunoreactive foci, but high intracellular immunoreactivity.  (H) 
Example of DCIS lesion with 1E6 immunoreactive foci. Scale bar is 200 µm (A,B,C,D left), 80 µm 
(G,H), 20 µm (A,B,E,F right).   
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Figure 5.9  Validation of EPR and 1E6 monoclonal antibodies. 
(A) Immunohistochemical staining of 293T cells overexpressing GDF11 or LacZ control with or 
without GDF11 knockdown.  Scale bar is 200 µm.  (B) Inducible shRNA knockdown of 1E6 focus 
count and endogenous GDF11 in MDA-MB-231 cell pellets.  (C) EPR and 1E6 immunoblot 
intensities from 40–55 kDa are highly correlated among breast-mammary cancer lines (black) and 
immortalized cells (red).  GAPDH and tubulin were reprobed as a control for spurious correlations 
caused by loading.  (D) EPR immunoreactivity (green) is adjacent to and overlapping with the cis-
Golgi marker GM130 (magenta).  A single MCF10A-5E cell (dashed arrow) in 3D culture is 
highlighted. (E) Deglycosylation of MDA-MB-231 cellular extracts causes the EPR (green) and 1E6 
(magenta) antibodies to colocalize on a ~42 kDa band consistent with the predicted mass of pro-
GDF11.  p38 and GAPDH were used as loading controls. 
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5.3.6 GDF11 secretory defect in TNBCs 

 To examine the conversation of proGDF11 in greater detail, we returned to in vitro 

studies using TNBC cell lines.  Paraffin-embedded pellets of MDA-MB-231 cells showed the 

same 1E6-reactive foci as TNBC patients, and focal counts were significantly reduced to an 

extent proportional to GDF11 knockdown (Figure 5.10A and Figure 5.9B).  In this setting, 

ectopic overexpression of V5-tagged GDF11 had no effect on invasive 3D growth of MDA-MB-

231 cells, whereas recombinant GDF11 remained strongly repressive (Figure 5.10B,C).  These 

results correlate 1E6 foci with a lack of cell-derived GDF11 bioactivity. 

 Recently, it was reported that TNBC cells widely exhibit a chronic unfolded protein 

response (UPR) (228), which could disrupt the trafficking of secreted factors with stringent 

folding requirements (229).  Like other TGFβ-family members, GDF11 requires one 

intermolecular and multiple intramolecular disulfide bonds to bioactivity (230); improper folding 

of GDF11 should block secretion and promote its intracellular retention.  Using conditioned 

medium from non-transformed MCF10A-5E cells, we confirmed normal GDF11-V5 secretion 

was eliminated by various UPR inducers that block secretion of other ligands (Figure 5.10D) 

(231).  We next tested for cancer-associated defects in GDF11 release by expressing GDF11-V5 

in nine cell lines from various TNBC subtypes and detecting GDF11 secretion by V5 

immunoprecipitation.  Compared to MCF10A-5E cells, seven of nine TNBC lines were clearly 

deficient in the release of GDF11-V5 (Figure 5.10E).  Defective GDF11 secretion did not reflect 

a global blockage of cytokine release, as TGFβ1 was readily detected in the conditioned medium 

of most TNBC lines (Figure 5.10E).  Furthermore, GDF11 secretion was not inversely correlated 

with the established EPR markers, GRP78 and ATF4 (232), suggesting a mechanism of 

regulation that was distinct from a canonical UPR, yet unique to TNBC.  These data suggest that 
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TNBC cells sequester GDF11 intracellularly, which blocks the tumor suppressor ability of 

GDF11 (Figure 5.7C and Figure 5.10C).  
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Figure 5.10  Misregulation of GDF11 secretion in TNBC. 
(A) MDA-MB-231 claudin-low breast carcinoma cell pellet shows similar 1E6 immunoreactive foci 
as observed in clinical specimens of TNBC.  (B)  Constitutive overexpression of GDF11 in MDA-
MB-231 cells.  (C)  Overexpression of GDF11 does not block invasion of MDA-MB-231 spheroids.  
(D)  UPR inducers alter proGDF11 abundance and glycosylation, upregulate GRP78, and block 
mature GDF11 release.  (E) Multiple triple-negative subtypes (72) show defects in secretion of 
ectopic GDF11.  For (D) and (E), secreted GDF11 was measured by V5 immunoprecipitation from 
conditioned medium.  Scale bar is 80 µm in (A) and 200 µm in (C).   
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5.4 Discussion 

In this study, we identified a tumor suppressive role for GDF11 that is uniquely post-

translationally misregulated in human basal-like breast cancers.  We began by profiling 

expression heterogeneities in basal-like breast epithelial 3D spheroids and discovered that 

GDF11 was heterogeneous amongst individual cells in these spheroids.  Normalizing GDF11 

expression led to improved lobular-like spheroid morphology, which was also observed in BLBC 

cell line spheroids.  Consistent detection of GDF11 in human specimens of TNBC contradicted 

our in vitro and in vivo results.  By carefully examining GDF11 processing in BLBC cells, we 

discovered that GDF11 is post-translationally sequestered, inactivating its tumor suppressive 

function.  We propose intracellular sequestration as a new mechanism of how cancer cells escape 

from secreted tumor suppressors.   

5.4.1 GDF11 as a tumor suppressor  

The role of GDF11 in breast cancer has not been previously studied.  GDF11 has been 

mostly implicated in development (141, 207, 233, 234) and, controversially, in regeneration of 

cardiac, muscle, and brain tissue (206, 209, 235-239).  While mechanism of GDF11’s 

regenerative ability is not currently known, GDF11 plays an important role in tissue patterning 

during development (207, 234).  Additionally, GDF11 controls cell fate decisions and tissue 

homeostasis in various contexts (240-242).  Interestingly, intracellular GDF11 displayed highly 

regular, polarized expression in normal breast epithelial cells (Figure 5.8A).  GDF11 may 

function to define lobular epithelial cell patterning in mammary tissue, supported by the 

increased protein expression seen in the lobular regions of normal human breast tissue (Figure 

5.8A, C).  Heterogeneous expression of GDF11 in our spheroid model may be the individual 
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cells in the spheroid asynchronously setting a lobular pattern during morphogenesis.  Exogenous 

GDF11 homogenously forces the pattern across all the cells in the spheroid, leading to an 

improved lobular phenotype (Figure 5.1G,H).  Loss of functional GDF11 in early DCIS lesions 

may remove an important instructive cue for the transformed epithelial cells to remain lobular-

like and allow them to continue along a malignant trajectory (Figure 5.7A and Figure 5.8E,H) 

(242).  

5.4.2 GDF11 as a clinical biomarker 

GDF11 secretion is misregulated in TNBC and a subset of DCIS (Figure 5.8F and Figure 

5.10).  The correlation of improper GDF11 secretion with tumor progression suggests that this 

cell biology phenotype in the cancer cells could be used as a biomarker of prognosis.  DCIS 

lesions are commonly identified by mammography (243).  Interestingly, only a small subset of 

DCIS lesions will progress to invasive ductal carcinoma.  There are no known biomarkers that 

differentiate the relatively benign and aggressive DCIS (243).  Thus, all identified DCIS are 

treated aggressively, overtreating a large subset of patients that would otherwise progress very 

slowly (244, 245).  Our data suggests that GDF11 secretion, as measured with the 1E6 antibody, 

could be an informative biomarker to predict aggressive DCIS lesions.  Those DCIS tissues with 

misregulated GDF11 secretion (increased 1E6 foci) would be predicted to be more aggressive as 

their tissue staining is more similar to the advanced tumors than normal tissue.   

GDF11 levels have been reported to increase in colorectal cancer (246), contradicting the 

role we identify for GDF11 in basal-like breast cancer.  This work and our study can be 

reconciled, as we also observed an increase in intracellular GDF11 in our clinical specimens.  

GDF11 may also be post-translationally misregulated in colorectal cancers, and the increase in 

GDF11 transcripts being an indicator of the cancer cells trying to express GDF11.  The seeming 
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contradiction in the results further points to the need to understand the bioactivity and 

bioavailability of genes and proteins in the context of cancer.  

5.4.3 Selective misregulation of secreted tumor suppressors  

GDF11 misregulation aligns with cancers disrupting development pathways (247-249).  

These pathways are typically activated or silenced by genetic mutation, as many other oncogenes 

or tumor suppressors (27).  GDF11, by contrast, is misregulated post-translationally via 

intracellular sequestration.  Other tumor suppressive secreted ligands may be inactivated in a 

similar manner.  For example, growth-differentiation factor 15 (GDF15) has been shown to 

inhibit tumorigenesis in many contexts (250-254).  The effects of GDF15 have been noted to be 

more potent at early stages of tumor progress and not reported to be silenced (251, 255).  GDF15 

may be post-translationally inactivated, allowing the cancer cells to escape growth inhibition.  

The inability of TNBC cell lines to secrete GDF11 was surprisingly anticorrelated with 

canonical UPR markers (Figure 5.10D), suggesting GDF11 inactivation is regulated.  Identifying 

the genes involved in GDF11 inactivation could reveal important and surprising oncogenes.  

Using conventional global approaches, GDF11 misregulation would not be identified on the 

genomic, transcriptomic, or proteomic level.  Our work broadly suggests that there may be many 

tumor suppressor proteins that are misregulated post-translationally.    
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6 Chapter 6 – Conclusions and future directions   

6.1 Summary of Dissertation  

 In this Dissertation, we used multiple approaches to demonstrate that transcriptional 

regulatory heterogeneities play a critical role in breast epithelial morphogenesis.  Computational 

analyses (Part I) were used to extract parameters that were difficult to obtain (Chapters 2 and 4), 

and we use these parameters to quantitatively examine heterogeneity, leading to nonobvious 

roles for certain genes (Chapters 3 and 4).  Additionally, modeling was used to synthesize 

multiple sets of experimental data to develop and support hypotheses by exploring the emergent 

phenotypic outcomes of the models (Chapter 3).  Computational approaches can highlight or 

suggest biological function, but these predictions must be experimentally validated (Part II).  We 

started with the prediction that GDF11 was heterogeneously regulated in our 3D spheroid model.  

Through careful, mechanistic experimentation, we identified a pivotal role for GDF11 in breast 

cancer morphogenesis. Additionally, GDF11 treatment blocked the ability of a basal-like breast 

cancer cell line from seeding tumors, suggesting GDF11 plays a role in tumorigenesis.  By 

examining human specimens of triple-negative breast cancer, we discovered that advanced 

tumors accumulated intracellular GDF11, seemingly contradicting both the in vitro and in vivo 

roles of GDF11 we had identified.  However, by looking at multiple forms of GDF11, namely 

the processed, secreted form, we observed that the intracellular accumulation of GDF11 

correlated with a lack of GDF11 secretion.  Strikingly, we found that triple-negative breast post-

translationally silence GDF11 through a defect in GDF11 secretion.  This unusual mechanism of 
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tumor suppressor silencing could not be detected with genomic, transcriptomic, or proteomic 

approaches (Chapter 5).     

 

6.2 Future directions  

 While the work in this Dissertation shed light into the function of heterogeneity in basal-

like breast epithelia, the approaches and results presented can still be further extended to uncover 

additional roles of heterogeneity.  In this Section, we discuss future directions of the work 

presented in each Chapter. 

6.2.1 Chapter 2 future work  

 In Chapter 2, we developed an automatic, computational approach to quantify spheroid 

metrics.  We applied this approach to basal-like breast cancer spheroids and were able to use the 

quantified metrics to distinguish spheroid phenotypes in different cell lines.  Additionally, we 

used the metrics to quantify spheroid phenotypic heterogeneity.  This particular spheroid culture 

system was chosen for its relevance to the work in the Dissertation and for its potential utility in 

the lab (53).  However, there are many 3D spheroid models, and the approach is poised to be 

applied to any of them (107, 114, 128, 136, 137, 256-259). 

 3D spheroids can be generated from patient derived material.  Recently, efforts have gone 

towards identifying the isolation and culturing conditions needed to propagate both normal and 

tumor epithelial tissues, most notably in the colon and pancreas, in an organoid model (107, 114, 

128, 129).  These organoids have the potential to be powerful tools for personalized medicine as 

they recapitulate key characteristics of the primary tumor (107), yet can be perturbed in an 

experimentally tractable and timely manner (129, 260).  Additionally, these organoids have been 
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primarily characterized molecularly and qualitatively through histology or immunofluorescence 

(107, 114, 128).  The morphometric properties of these organoids have not been examined.  

 We obtained a small set of images of tumor organoids derived from different primary 

tumors by Hans Clevers’ group.  The Clevers group split the primary tumors and generated 

organoids from different clones from the same patient.   Through these efforts, they have 

observed inter- and intra-tumor heterogeneity in organoids phenotypes.  We confirmed these 

observations quantitatively by segmenting individual organoids from two different patients and 

different subclones. We identified a cluster of organoids for each patient.  Within each cluster, 

the clones varied.  Additionally, each cluster contained spheroids from the other patient.  There 

were also smaller clusters of organoids that were comprised of organoids from both patients 

across multiple clones (Figure 6.1).  These results suggest that irrespective of patient (intertumor 

heterogeneity) and subclone (intratumor heterogeneity), there are categories of similar 

phenotypic behavior.  Understanding the regulators of these phenotypes could yield important 

therapeutic targets that push organoids from aggressive to non-aggressive phenotypes.    

 Testing the algorithm on another spheroid system raised challenges not presented by our 

breast epithelial spheroid model.  In the patient derived organoids, the density of cells is higher 

and the distance between spheroids is smaller.  We observed many spheroids that were 

overlapping or had the appearance of being fused to one another.  The analysis presented ignores 

all such spheroids.  One future improvement we are currently working on is a means to fit the 

correct spheroids within a clump or overlapped region.  While our eyes can do this segmentation 

quite easily, the computer cannot (261).  Improvements to the algorithm will further enhance the 

utility and generality of digital morphometry.  
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Figure 6.1  Digital morphometry quantifies tumor organoid heterogeneity. 
Digital morphometry (see Chapter 2) was applied to tumor organoids derived and cultured in the 
Clevers group.  Extracted signatures of tumor organoids were hierarchically clustered.  Organoid 
metrics are displayed along the rows.  Organoids from two patients were analyzed; the patient is 
shown below the clustergram, with white and black designating the two patients.  Multiple subclones 
per patient were isolated, and the subclone status is shown by the colorbar underneath patient status.  
Yellow boxes highlight pockets of organoids from the same patient but different subclones.  
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6.2.2 Chapter 3 future work  

 In Chapter 3, we used an ODE model to demonstrate how connections between JUND 

and TGFBR3 regulation led to damped, anticorrelated oscillations.  We next used an agent-based 

model of the matrix molecule TNC to show how its regulation could explain the expression 

patterns of JUND and KRT5 in human basal-like breast cancers (53).  Perturbing the models 

showed the robustness of the behaviors, and in the case of the ODE model, help motivate other 

work in this Dissertation by identifying GDF11 as a potential trigger of the oscillations (see 

Chapter 5).  These two results show the power of using the emergent behavior of computational 

modeling to explain and simplify cellular heterogeneity.   

 Each of these models was constructed to explain distinctly different scales of cellular 

heterogeneity.  The ODE model captured the dynamics that characterize JUND intercellular 

heterogeneity at the molecular level.  The agent-based model captured the dynamics that 

characterize JUND intratumor heterogeneity at the multicellular level.  Given the common 

molecular component between the two models (JUND), future effort could go toward fusing and 

reconciling these models into a singular, multi-scale model (Figure 6.2) (262, 263).  The 

aggregated could be used to further understand the regulation of TNC in basal-like breast cancer 

and clinging carcinomas, as we have observed that TNC expression is required for basal-like 

breast tumor cell seeding.  Perturbations of the model could elucidate potential therapeutics to 

mitigate the effects of TNC and prevent breast cancer cells from locally spreading throughout the 

ductal network.  
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Figure 6.2  A multiscale model of JUND and TNC regulation in human basal-like breast cancer. 
Computational models were used in Chapter 3 to characterize JUND heterogeneity at the single cell 
(ODE) and multicellular (agent-based) levels.  Future extensions of these models could focus on 
integrating the two scales of models into one cogent story of TNC and JUND regulation and the effect 
of keratinization in basal-like breast cancer biology.  
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6.2.3 Chapter 4 future work 

 In Chapter 4, we developed a maximum-likelihood approach to infer parameters of 

single-cell expression from the 10-cell stochastic transcriptional profiles.  We validated this 

approach by inferring parameters from the original stochastic profiling dataset and 

experimentally measuring a test parameter with RNA FISH.  We provisionally applied this 

approach to identify a rare transcriptional program.  Remarkably, one gene from this program, 

PIK3CD, was important to the normal proliferation arrest of the MCF10A-5E breast spheroids, 

despite its rare expression (96). 

 Quantifying the single-cell expression distribution has many downstream applications.  

For example, drug resistance continues to be a challenge in cancer research (264).  Cellular 

heterogeneity has been heavily implicated in contributing to drug resistance (54, 265).  A 

prevailing question regarding drug resistance is where do these resistant clones come from?  The 

resistant clones could either be already present in the tumor population before treatment, or 

treatment is acquired as a result of selective pressure (266).  Intriguingly, the cellular population 

post treatment is sparse, implying that, regardless of the hypothesis, resistance is a rare 

characteristic in the tumor.  Rare events are particularly challenging to capture with conventional 

techniques (see Section 1.3), which makes stochastic profiling a uniquely powerful tool to 

identify the regulatory mechanisms behind drug resistance.  

 Stochastic profiling can identify regulatory heterogeneities present in as few as ~1% of 

the cellular population (72, 96), the same order of magnitude as the percentage of drug resistant 

cells (134).  To test which hypothesis of drug resistance is correct, we can stochastically sample 

cancer cells before and during treatment before the cells start dying (Figure 6.3).  Since the 

percentage of resistant cells post-treatment is known for a given drug and cell line (or is easily 
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measured), we can use the maximum-likelihood approach to identify gene regulatory programs 

with a matching expression frequency.  We can scour the entire transcriptome for genes 

specifically upregulated in ~1-5% of the cells.  These genes would be likely candidates that 

mediate drug resistance.  If drug resistance were innate within the cell line, we would detect 

rarely expressed genes both before and during drug treatment.  Additionally, the overlap between 

the genes identified would be the strongest candidate genes involved in resistance.  Conventional 

techniques could not provide the same candidates, as the measurements would average out the 

rare behavior.  Conversely, if resistance were acquired, we would expect to detect genes that 

correlate with resistance frequency in the samples collecting during drug treatment.  Importantly, 

conventional techniques could not provide these candidates as well because we would have to 

rely on comparing molecular signatures pre- and post-treatment.  The post-treatment signature 

will be a consequence of acquiring resistance and not necessarily the signature required to 

acquire resistance in the first place.   

 Identifying regulators of incompletely penetrant phenotypes is a challenging problem 

(22).  To use conventional approaches, a pre- and post-phenotype strategy would be required, 

leading to identifying consequences rather than the causes of the phenotype.  Stochastic profiling 

coupled with maximum-likelihood inference can uniquely address this problem, and can do so 

without the need to develop new techniques.  
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Figure 6.3  Using maximum-likelihood estimation to identify regulators of drug resistance. 
The acquisition of drug resistance remains a challenge in cancer research.  However, the drug-
resistant population may exist in the population before the drug is even added, suggesting intrinsic 
heterogeneity in cancers is responsible for drug resistance.  Stochastic profiling coupled with 
maximum-likelihood estimation is uniquely poised to address these hypotheses.  Cancer cells are 
profiled before and during drug treatment.  Maximum-likelihood inference identifies gene expression 
programs with an expression frequency equivalent to the proportion of resistant cells.  Identifying 
these programs before and during treatment could provide a stringent candidate list to test with further 
experimental follow up.    
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6.2.4 Chapter 5 future work 

 In Chapter 5, we identified a role of GDF11 in normal and abnormal breast epithelial 

morphogenesis in promoting compacted tissue architecture.  Strikingly, GDF11 was 

posttranslationally misregulated in basal-like breast cancer cell lines and clinical specimens.  The 

work in this Chapter suggested that GDF11 could be used as a therapy or biomarker for basal-

like breast cancers. 

 We established a pilot cohort of patients to screen GDF11 immunoreactivity in human 

specimens of normal and triple-negative breast cancers.  We observed an increase in 1E6 

monoclonal antibody staining in a subset of premalignancies and virtually all advanced triple-

negative tumors.  These data correlated defects in GDF11 secretion, as measured by increased 

1E6 foci, to tumor progression.  Importantly, in parallel with accessing patient specimens, we 

can gain access to the clinical records for each patient.  To test if the presence and amount of 1E6 

foci are truly indicators of tumor behavior, we correlate focal counts with tumor grade, stage, and 

ultimately, patient outcome.  The prediction would be that advanced triple-negative tumors have 

more 1E6 reactive foci and have worse clinical outcomes.  Additionally, we would expect the 

subset of premalignancies that display 1E6 foci to eventually present with invasive ductal 

carcinoma if they did not receive surgery.  If the results follow the hypothesis, GDF11 secretion 

would present the first specific immunohistochemical biomarker for assessing triple-negative 

breast cancer prognosis, particularly for early lesions.  

 GDF11 may also have therapeutic benefit in treating human basal-like breast cancers.  

Our data suggests that GDF11 prevents tumor seeding and decreases proliferation.  GDF11 may 

be a potent tumor static treatment and prevent tumor progression and metastases (tumor seeding).  

However, GDF11 has a fast half-life in the circulation (206), suggesting that the ligand would be 
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very difficult to dose clinically.  Moving forward, modifications to GDF11 could increase the 

half-life and increase the bioavailability of GDF11 (267).  Alternatively, small molecular 

libraries could be screened to identify activin receptor type IIB agonists.  This same set of 

libraries could be screened to identify molecules that upregulate ID2.  Increasing GDF11 

expression through drug treatment has been reported (268), but our data suggests this approach 

would not work, as the tumor cells would still not be able to secrete the ligand.  Drugs, however, 

could be identified that correct the secretion defect of GDF11 in breast cancer cells.  Identifying 

a clinically viable option for inducing GDF11 phenotypes could present the first targeted therapy 

for basal-like breast cancer.  

 GDF11 function may not be limited to basal-like breast cancers.  For example, we have 

anecdotally observed that EPR immunoreactivity is high in normal human pancreas.  

Interestingly, the pattern of expression is highly analogous to the normal breast tissue, where 

lobular tissue stained stronger for EPR than the ductal tissue (Figure 6.4).  Additionally, 

pancreatic cancer cell lines display a similar heterogeneity in GDF11 expression (105). These 

correlations may suggest that GDF11 acts globally to promote lobular-like phenotypes of 

epithelial cells in multiple organs.  
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Figure 6.4  Expression of GDF11 in normal human breast and pancreas. 
GDF11 expression measured by EPR immunoreactivity is analogous in human breast and human 
pancreas.  Lobular units show high intracellular GDF11, while ductal tissue shows comparatively 
lower expression of GDF11.  
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6.3 Future outlook 

The work in this Dissertation demonstrates the functional importance of the heterogeneous 

regulation of several genes to spheroid morphogenesis and human basal-like breast cancers. With 

stochastic profiling, we can globally identify heterogeneously regulated transcripts, but 

significant experimental follow up is required to identify function and importance.  The 

workflow used in this Dissertation limited the functional analysis to a handful of genes and only 

in-depth analysis of one, GDF11.  Developing methods to rapidly and reliably screen candidates 

from a stochastic profiling experiment will greatly enhance our understanding of heterogeneity.   

Screening methods are strongly positioned to uncover functional importance to the panel 

of candidate regulatory heterogeneities genes during spheroid morphogenesis.  Extending 

previously designed high throughput in vivo assays with single-cell overexpression could rapidly 

identify genes that alter morphogenesis when heterogeneously upregulated (269, 270).  Coupling 

these experimental approaches with the work presented in Chapter 2, we can quickly arrive at the 

key set of genes whose heterogeneity has functional importance in spheroid morphogenesis.  

Intriguingly, these analyses may identify pathways or interacting genes that could begin to 

assemble the picture of how heterogeneities influence each other towards a biological outcome.  

 While genomic diversity and heterogeneity has been catalogued in human cancers, the 

extent of transcriptional heterogeneity is unknown.  To exclude genomic differences, stochastic 

profiling should be first applied to xenograft models.  Importantly, heterogeneity in xenograft 

models has been shown to have functional importance in the progression of the tumors (271).  

Stochastic profiling can catalogue regulatory differences in this “simple” context as proof of 

concept for exploring regulatory heterogeneity in human cancers.   Before exerting the effort to 

stochastically profile human tumors, the technique should be extended to allow for genomic 
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sequencing of the small-cell sample.  A recent study profiled clinical material for both DNA and 

RNA (272); however, these analyses were performed on bulk samples.  If stochastic profiling 

can be optimized to successfully purify the DNA and RNA from the same small cell samples, we 

can comprehensively catalogue the genomic (e.g., mutational) and transcriptional states within 

tumors.  Importantly, the paired analysis would allow us to separate or correlate genomic 

heterogeneity from transcriptional regulatory heterogeneity with high fidelity.   

 

6.4 Concluding remarks  

 By embracing the difficulties heterogeneity presents in biological research, we have 

developed a suite of tools that can address a multitude of questions that conventional approaches 

cannot.  We started with a simple in vitro model of heterogeneity, identified a set of 

heterogeneously regulated transcripts, and discovered important roles for those transcripts in 

normal breast epithelial biology.  Unexpectedly, those roles propagated from in vitro 

morphogenesis to the development of human basal-like breast cancers.  Additionally, when the 

roles of these genes were different in cancers, they pointed to new ways in which cancer cells 

can seed tumors or avoid endogenous tumor suppressors.  This Dissertation demonstrates that 

with the proper toolbox, we can begin to understand how human cancers work down to the single 

cell.   
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7 Methods  

7.1 Chapter 2 Methods 

7.1.1 Cell lines and 3D culture 

 Cell lines were obtained from the ATCC and maintained according to their specifications.  

3D culture was performed as previously described (98).  Cells were seeded at either 5,000 or 

7,500 cells per well.  3D cultures were cultured in MCF10A-5E assay media or the growth media 

of the cell line.  3D cultures were reefed every four days.  

7.1.2 Digital image acquisition 

 Digital images were acquired at 4x magnification with QCapture software using a QColor 

camera attached to an Olympus CKX41 inverted microscope.  Chamber slides were placed onto 

a slide adapter for the microscope stage.  The phase ring is removed from the optical path and the 

aperture stop is increased to provide contrast for the spheroids.  Acquired images were imported 

into MATLAB segmentation routine (below).     

7.1.3 Spheroid segmentation software 

function varargout = adaptiveSegmentation(varargin) 
% ADAPTIVESEGMENTATION MATLAB code for adaptiveSegmentation.fig 
%      ADAPTIVESEGMENTATION, by itself, creates a new ADAPTIVESEGMENTATION or 
raises the existing 
%      singleton*. 
% 
%      H = ADAPTIVESEGMENTATION returns the handle to a new 
ADAPTIVESEGMENTATION or the handle to 
%      the existing singleton*. 
% 
%      ADAPTIVESEGMENTATION('CALLBACK',hObject,eventData,handles,...) calls 
the local 
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%      function named CALLBACK in ADAPTIVESEGMENTATION.M with the given input 
arguments. 
% 
%      ADAPTIVESEGMENTATION('Property','Value',...) creates a new 
ADAPTIVESEGMENTATION or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before adaptiveSegmentation_OpeningFcn gets called.  
An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to adaptiveSegmentation_OpeningFcn via 
varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help adaptiveSegmentation 
global globalStruct 
% Last Modified by GUIDE v2.5 23-Dec-2015 22:38:50 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
    'gui_Singleton',  gui_Singleton, ... 
    'gui_OpeningFcn', @adaptiveSegmentation_OpeningFcn, ... 
    'gui_OutputFcn',  @adaptiveSegmentation_OutputFcn, ... 
    'gui_LayoutFcn',  [] , ... 
    'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before adaptiveSegmentation is made visible. 
function adaptiveSegmentation_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to adaptiveSegmentation (see VARARGIN) 
 
% Choose default command line output for adaptiveSegmentation 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes adaptiveSegmentation wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
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% --- Outputs from this function are returned to the command line. 
function varargout = adaptiveSegmentation_OutputFcn(hObject, eventdata, 
handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
 
varargout{1} = handles.output; 
 
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a 
double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as a 
double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%Read image 
contents = get(hObject,'Value'); 
switch contents 
    case 1 
        rgb = imread('5E_D8_GDF11_0303.tiff'); 
    case 2 
        rgb = imread('231_D16_notx_0303.tiff'); 
    case 3 
        rgb = imread('BT20_D12_assay_notx_2.tiff'); 
    case 4 
        rgb = imread('HCC1937_D12_growth_notx_1.tiff'); 
    case 5 
        rgb = imread('HCC_D16_growth_notx_4.tiff'); 
    case 6 
        rgb = imread('Hs578T_D12_assay_notx_2.tiff'); 
    case 7 
        rgb = imread('shID2v2_D8_dox_gdf11_2.tiff'); 
    otherwise 
        disp('error'); 
end 
I = rgb2gray(rgb); 
handles.I = I; 
guidata(hObject,handles); 
%Display raw image in GUI 
axes(handles.axes1); 
imshow(I,[]) 
 
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu1 
 
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 as a 
double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of 
slider 
 
selected = get(handles.listbox2,'Value'); 
if isfield(handles,'centersDeleted') 
    handles = 
rmfield(handles,{'centersDeleted','diametersDeleted','signatureDeleted','ccDe
leted'}); 
end 
%Check for image load 
checkImage = isfield(handles,'bulkI'); 
%Check for radio button 
radioCheck1 = get(handles.radiobutton1,'Value'); 
radioCheck2 = get(handles.radiobutton2,'Value'); 
radioCheck3 = get(handles.radiobutton3,'Value'); 
 
if checkImage == 0 
    set(hObject,'Value',0); 
    mb1 = msgbox('Please select an image file'); 
    t = timer; 
    t.StartDelay = 3; 
    t.TimerFcn = @(~,~) delete(mb1); 
    start(t) 
    % elseif radioCheck1 == 0 && radioCheck2 == 0 && radioCheck3 == 0 
    %     mb2 = msgbox('Please select a cell size'); 
    %     t = timer; 
    %     t.StartDelay = 3; 
    %     t.TimerFcn = @(~,~) delete(mb2); 
    %     start(t) 
elseif isfield(handles,'coloredLabels') 
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    fudgeFactor = get(hObject, 'Value'); 
     
    I = handles.I; 
     
    %Opening and closing by reconstruction 
     
    %Create structure element 
    se = strel('disk', 5); 
     
    %Erode and open 
    Ie = imerode(I, se); 
    Iobr = imreconstruct(Ie, I); 
     
    %Opening-closing by reconstruction(Iobrcbr) 
    Iobrd = imdilate(Iobr, se); 
    Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr)); 
    Iobrcbr = imcomplement(Iobrcbr); 
     
    % %border 
    Iobrcbr(1:end,1) = Iobrcbr([2 2:end],2); 
    Iobrcbr(1:end,end) = Iobrcbr([2 2:end],end-1); 
    Iobrcbr(1,1:end) = Iobrcbr(2,[2 2:end]); 
    Iobrcbr(end,1:end) = Iobrcbr(end-1,[2 2:end]); 
     
    %Threshold 
    ws = handles.ws; 
    small = handles.small; 
    bwEdge = adaptivethreshold(Iobrcbr,ws,fudgeFactor); 
    %bwEdge = adaptivethreshold(Iobrcbr,[50 50]); 
    edgeBetter = bwareaopen(bwEdge, small); 
    bw = imclearborder(edgeBetter,4); 
    %figure, imshow(bwnobord,[]) 
    % props = regionprops(bwnobord,'all'); 
    % boxProps = {props.BoundingBox}; 
    % bw = zeros(size(I,1),size(I,2)); 
     
    % for i = 1:length(boxProps) 
    %     w = round(boxProps{i}(3)); 
    %     h = round(boxProps{i}(4)); 
    %     x = round(boxProps{i}(1)); 
    %     y = round(boxProps{i}(2)); 
    % 
    %     bw(y:(y+h),x:(x+w)) = 
imcomplement(im2bw(imsharpen(I(y:(y+h),x:(x+w))),graythresh(I(y:(y+h),x:(x+w)
)))); 
    % 
    % end 
     
    %remove small nonsense again 
    bwsmall = bwareaopen(bw, small); 
     
    %fill any remaining holes 
    bwfinal = bwfill(bwsmall,'holes'); 
    %figure, imshow(bwfinal,[]) 
     
    %Add color labels 
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    CC = handles.CC; 
    CC{selected} = bwconncomp(bwfinal); 
    handles.CC = CC; 
    CClabel = labelmatrix(CC{selected}); 
    coloredLabels = handles.coloredLabels; 
    coloredLabels{selected} = label2rgb(CClabel, 'hsv', 'k', 'shuffle'); 
    handles.coloredLabels = coloredLabels; 
    %Display segmented image in GUI 
    axes(handles.axes2); 
    imshow(coloredLabels{selected},[]) 
     
    recenters = handles.centers; 
    diameters = handles.diameter; 
    %Label numbers 
    statsBW = regionprops(bwfinal, 'all'); 
    centers = [statsBW.Centroid]; 
    recenters{selected} = reshape(centers, 2, length(statsBW))'; 
    handles.centers = recenters; 
     
    %     for i = 1:length(statsBW) 
    %         text(recenters{selected}(i,1), recenters{selected}(i,2), 
num2str(i), 'color', 'w', 'FontSize', 10); 
    %     end 
     
     
    Area = [statsBW.Area]; 
    MajorAxisLength = [statsBW.MajorAxisLength]; 
    MinorAxisLength = [statsBW.MinorAxisLength]; 
    Eccentricity = [statsBW.Eccentricity]; 
    Orientation = [statsBW.Orientation]; 
    ConvexArea = [statsBW.ConvexArea]; 
    EquivDiameter = [statsBW.EquivDiameter]; 
    diameters{selected} = EquivDiameter; 
    handles.diameter = diameters; 
    Solidity = [statsBW.Solidity]; 
    Extent = [statsBW.Extent]; 
    Perimeter = [statsBW.Perimeter]; 
    p2a = Perimeter./Area; 
    %zernike moments 
    boundingBox = {statsBW.BoundingBox}; 
    Z = zeros(1,length(boundingBox)); 
    A = zeros(1,length(boundingBox)); 
    Phi = zeros(1,length(boundingBox)); 
    meanTotalPixels = zeros(1,length(boundingBox)); 
    stdTotalPixels = zeros(1,length(boundingBox)); 
    for i = 1:length(boundingBox) 
        p = imcrop(bwfinal,boundingBox{i}); 
        if boundingBox{i}(3) > boundingBox{i}(4) 
            p2 = zeros(boundingBox{i}(3)-
boundingBox{i}(4),boundingBox{i}(3)+1); 
            p = [p2;p]; 
        else 
            p2 = zeros(boundingBox{i}(4)+1,boundingBox{i}(4)-
boundingBox{i}(3)); 
            p = [p2 p]; 
        end 
        [Z(i),A(i),Phi(i)] = Zernikmoment(p,4,2); 
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        %pixel characteristics 
        mask = double(CClabel == i); 
        totalCell = double(I).*mask; 
        totalCellPixels = totalCell(mask == 1); 
        meanTotalPixels(i) = mean(totalCellPixels); 
        stdTotalPixels(i) = std(totalCellPixels); 
    end 
     
    signature = handles.signature; 
     
    signature{selected} = {Area; MajorAxisLength; MinorAxisLength; 
Eccentricity; Orientation; ConvexArea; EquivDiameter; Solidity; Extent; 
Perimeter; Z; A; Phi; meanTotalPixels; stdTotalPixels; p2a}; 
    handles.signature = signature; 
     
    imgMasked = handles.imgMasked; 
    imgMasked{selected} = imoverlay(I,bwfinal); 
    handles.imgMasked = imgMasked; 
    axes(handles.axes3) 
    hold on 
    axesChild = imshow(imgMasked{selected},[]); 
    handles.axesChild = axesChild; 
    set(axesChild, 'ButtonDownFcn', 
{@MyCustomAxesButtonDownFunction,handles}); 
     
    %Store FudgeFactor 
    thresh = handles.thresh; 
    thresh{selected} = fudgeFactor; 
    handles.thresh = thresh; 
     
    guidata(hObject,handles); 
else 
    set(hObject,'Value',0); 
end 
 
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 
 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%Check for image load 
checkImage = isfield(handles,'bulkI'); 
%Check for radio button 
radioCheck1 = get(handles.radiobutton1,'Value'); 
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radioCheck2 = get(handles.radiobutton2,'Value'); 
radioCheck3 = get(handles.radiobutton3,'Value'); 
if checkImage == 0 
    mb1 = msgbox('Please select an image file'); 
    t = timer; 
    t.StartDelay = 3; 
    t.TimerFcn = @(~,~) delete(mb1); 
    start(t) 
    % elseif radioCheck1 == 0 && radioCheck2 == 0 && radioCheck3 == 0 
    %     mb2 = msgbox('Please select a cell size'); 
    %     t = timer; 
    %     t.StartDelay = 3; 
    %     t.TimerFcn = @(~,~) delete(mb2); 
    %     start(t) 
else 
     
    bulkI = handles.bulkI; 
    ws = handles.ws; 
    small = handles.small; 
    %Start waitbar 
    h = waitbar(0,'Please wait...Segmenting Cells'); 
    for i = 1:length(bulkI) 
        % slider position 
        tempThresh = get(hObject, 'Value'); 
         
        I = bulkI{i}; 
         
        %Opening and closing by reconstruction 
         
        %Create structure element 
        se = strel('disk', 5); 
         
        %Erode and open 
        Ie = imerode(I, se); 
        Iobr = imreconstruct(Ie, I); 
         
        %Opening-closing by reconstruction(Iobrcbr) 
        Iobrd = imdilate(Iobr, se); 
        Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr)); 
        Iobrcbr = imcomplement(Iobrcbr); 
         
        % %border 
        Iobrcbr(1:end,1) = Iobrcbr([2 2:end],2); 
        Iobrcbr(1:end,end) = Iobrcbr([2 2:end],end-1); 
        Iobrcbr(1,1:end) = Iobrcbr(2,[2 2:end]); 
        Iobrcbr(end,1:end) = Iobrcbr(end-1,[2 2:end]); 
         
        %Threshold 
        [bwEdgeFalse, thresh] = adaptivethreshold(Iobrcbr,ws,tempThresh); 
        threshAll{i} = thresh/2; 
        handles.thresh = threshAll; 
        guidata(hObject,handles); 
        bwEdge = adaptivethreshold(Iobrcbr,ws,thresh/2); 
        set(handles.slider1, 'Value', thresh/2); 
         
        %bwEdge = adaptivethreshold(Iobrcbr,[50 50]); 
        edgeBetter = bwareaopen(bwEdge, small); 
        bw = imclearborder(edgeBetter,4); 
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        %figure, imshow(bwnobord,[]) 
        % props = regionprops(bwnobord,'all'); 
        % boxProps = {props.BoundingBox}; 
        % bw = zeros(size(I,1),size(I,2)); 
         
        % for i = 1:length(boxProps) 
        %     w = round(boxProps{i}(3)); 
        %     h = round(boxProps{i}(4)); 
        %     x = round(boxProps{i}(1)); 
        %     y = round(boxProps{i}(2)); 
        % 
        %     bw(y:(y+h),x:(x+w)) = 
imcomplement(im2bw(imsharpen(I(y:(y+h),x:(x+w))),graythresh(I(y:(y+h),x:(x+w)
)))); 
        % 
        % end 
         
        %remove small nonsense again 
        bwsmall = bwareaopen(bw, small); 
         
        %fill any remaining holes 
        bwfinal = bwfill(bwsmall,'holes'); 
        %figure, imshow(bwfinal,[]) 
         
        %Add color labels 
        CC{i} = bwconncomp(bwfinal); 
        handles.CC = CC; 
        CClabel = labelmatrix(CC{i}); 
        coloredLabels{i} = label2rgb(CClabel, 'hsv', 'k', 'shuffle'); 
         
         
        %Label numbers 
        statsBW = regionprops(bwfinal, 'all'); 
        centers = [statsBW.Centroid]; 
        recenters{i} = reshape(centers, 2, length(statsBW))'; 
        handles.centers = recenters; 
        % centers{i} = reshape(centers{i}, 2, length(statsBW))'; 
        % 
        % for j = 1:length(statsBW) 
        %     text(centers{i}(j,1), centers{i}(j,2), num2str(j), 'color', 
'w', 'FontSize', 8); 
        % end 
         
        Area = [statsBW.Area]; 
        MajorAxisLength = [statsBW.MajorAxisLength]; 
        MinorAxisLength = [statsBW.MinorAxisLength]; 
        Eccentricity = [statsBW.Eccentricity]; 
        Orientation = [statsBW.Orientation]; 
        ConvexArea = [statsBW.ConvexArea]; 
        EquivDiameter = [statsBW.EquivDiameter]; 
        handles.diameter{i} = EquivDiameter; 
        Solidity = [statsBW.Solidity]; 
        Extent = [statsBW.Extent]; 
        Perimeter = [statsBW.Perimeter]; 
        p2a = Perimeter./Area; 
         
         
        %zernike moments 
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        boundingBox = {statsBW.BoundingBox}; 
        Z = zeros(1,length(boundingBox)); 
        A = zeros(1,length(boundingBox)); 
        Phi = zeros(1,length(boundingBox)); 
        meanTotalPixels = zeros(1,length(boundingBox)); 
        stdTotalPixels = zeros(1,length(boundingBox)); 
         
        for j = 1:length(boundingBox) 
            p = imcrop(bwfinal,boundingBox{j}); 
            if boundingBox{j}(3) > boundingBox{j}(4) 
                p2 = zeros(boundingBox{j}(3)-
boundingBox{j}(4),boundingBox{j}(3)+1); 
                p = [p2;p]; 
            else 
                p2 = zeros(boundingBox{j}(4)+1,boundingBox{j}(4)-
boundingBox{j}(3)); 
                p = [p2 p]; 
            end 
            [Z(j),A(j),Phi(j)] = Zernikmoment(p,4,2); 
             
            %pixel characteristics 
            mask = double(CClabel == j); 
            totalCell = double(I).*mask; 
            totalCellPixels = totalCell(mask == 1); 
            meanTotalPixels(j) = mean(totalCellPixels); 
            stdTotalPixels(j) = std(totalCellPixels); 
             
        end 
         
        signature{i} = {Area; MajorAxisLength; MinorAxisLength; Eccentricity; 
Orientation; ConvexArea; EquivDiameter; Solidity; Extent; Perimeter; Z; A; 
Phi; meanTotalPixels; stdTotalPixels; p2a}; 
         
        imgMasked{i} = imoverlay(I,bwfinal); 
         
        guidata(hObject,handles); 
         
        %update waitbar 
        waitbar(i/length(bulkI)) 
    end 
     
    %Store signature cell 
    handles.signature = signature; 
    %Store segmented images 
    handles.coloredLabels = coloredLabels; 
    %Store overlayed images 
    handles.imgMasked = imgMasked; 
     
    %Store last image in set 
    handles.I = I; 
     
     
    set(handles.listbox2,'Value',length(bulkI)) 
     
    %Display original image in GUI 
    axes(handles.axes1); 
    imshow(bulkI{end},[]); 
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    %Display segmented image in GUI 
    axes(handles.axes2); 
    imshow(coloredLabels{end},[]); 
     
    %Display overlayed image in GUI 
    axes(handles.axes3); 
    hold on 
    axesChild = imshow(imgMasked{end},[]); 
    handles.axesChild = axesChild; 
    set(axesChild, 'ButtonDownFcn', 
{@MyCustomAxesButtonDownFunction,handles}); 
    %Close waitbar 
    close(h); 
    guidata(hObject,handles) 
end 
 
 
% --- Executes during object creation, after setting all properties. 
function uipanel2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to uipanel2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% --- Executes when selected object is changed in uipanel2. 
function uipanel2_SelectionChangeFcn(hObject, eventdata, handles) 
% hObject    handle to the selected object in uipanel2 
% eventdata  structure with the following fields (see UIBUTTONGROUP) 
% EventName: string 'SelectionChanged' (read only) 
% OldValue: handle of the previously selected object or empty if none was 
selected 
% NewValue: handle of the currently selected object 
% handles    structure with handles and user data (see GUIDATA) 
 
%Check for image load 
checkImage = isfield(handles,'bulkI'); 
if checkImage == 0 
    mb = msgbox('Please select an image file'); 
    set(handles.radiobutton1,'Value',0); 
    set(handles.radiobutton2,'Value',0); 
    set(handles.radiobutton3,'Value',0); 
    t = timer; 
    t.StartDelay = 3; 
    t.TimerFcn = @(~,~) delete(mb); 
    start(t) 
else 
     
    switch get(eventdata.NewValue,'Tag') % Get Tag of selected object. 
        case 'radiobutton1' 
            % Code for when radiobutton1 is selected. 
            handles.ws = [100 100]; 
            handles.small = 100; 
            guidata(hObject,handles); 
            set(handles.slider2,'Value',100); 
            %             handles.ws = [150 150]; 
            %             handles.small = 300; 
        case 'radiobutton2' 
            % Code for when radiobutton2 is selected. 
            handles.ws = [250 250]; 
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            handles.small = 250; 
            guidata(hObject,handles); 
            set(handles.slider2,'Value',250); 
        case 'radiobutton3' 
            % Code for when radiobutton3 is selected. 
            handles.ws = [400 400]; 
            handles.small = 400; 
            guidata(hObject,handles); 
            set(handles.slider2,'Value',400); 
        otherwise 
    end 
    %Check for image load 
    checkImage = isfield(handles,'bulkI'); 
    %Check for radio button 
    radioCheck1 = get(handles.radiobutton1,'Value'); 
    radioCheck2 = get(handles.radiobutton2,'Value'); 
    radioCheck3 = get(handles.radiobutton3,'Value'); 
     
    if checkImage == 0 
        set(hObject,'Value',250); 
        mb1 = msgbox('Please select an image file'); 
        t = timer; 
        t.StartDelay = 3; 
        t.TimerFcn = @(~,~) delete(mb1); 
        start(t) 
        % elseif radioCheck1 == 0 && radioCheck2 == 0 && radioCheck3 == 0 
        %     set(hObject,'Value',250); 
        %     mb2 = msgbox('Please select a cell size'); 
        %     t = timer; 
        %     t.StartDelay = 3; 
        %     t.TimerFcn = @(~,~) delete(mb2); 
        %     start(t) 
    elseif isfield(handles,'thresh') 
         
        selected = get(handles.listbox2,'Value'); 
         
        I = handles.I; 
         
        %Opening and closing by reconstruction 
         
        %Create structure element 
        se = strel('disk', 5); 
         
        %Erode and open 
        Ie = imerode(I, se); 
        Iobr = imreconstruct(Ie, I); 
         
        %Opening-closing by reconstruction(Iobrcbr) 
        Iobrd = imdilate(Iobr, se); 
        Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr)); 
        Iobrcbr = imcomplement(Iobrcbr); 
         
        % %border 
        Iobrcbr(1:end,1) = Iobrcbr([2 2:end],2); 
        Iobrcbr(1:end,end) = Iobrcbr([2 2:end],end-1); 
        Iobrcbr(1,1:end) = Iobrcbr(2,[2 2:end]); 
        Iobrcbr(end,1:end) = Iobrcbr(end-1,[2 2:end]); 
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        %Threshold 
        ws = handles.ws; 
        small = handles.small; 
        thresh = handles.thresh; 
        bwEdge = adaptivethreshold(Iobrcbr,ws,thresh{selected}); 
        %bwEdge = adaptivethreshold(Iobrcbr,[50 50]); 
        edgeBetter = bwareaopen(bwEdge, small); 
        bw = imclearborder(edgeBetter,4); 
        %figure, imshow(bwnobord,[]) 
        % props = regionprops(bwnobord,'all'); 
        % boxProps = {props.BoundingBox}; 
        % bw = zeros(size(I,1),size(I,2)); 
         
        % for i = 1:length(boxProps) 
        %     w = round(boxProps{i}(3)); 
        %     h = round(boxProps{i}(4)); 
        %     x = round(boxProps{i}(1)); 
        %     y = round(boxProps{i}(2)); 
        % 
        %     bw(y:(y+h),x:(x+w)) = 
imcomplement(im2bw(imsharpen(I(y:(y+h),x:(x+w))),graythresh(I(y:(y+h),x:(x+w)
)))); 
        % 
        % end 
         
        %remove small nonsense again 
        bwsmall = bwareaopen(bw, small); 
         
        %fill any remaining holes 
        bwfinal = bwfill(bwsmall,'holes'); 
        %figure, imshow(bwfinal,[]) 
         
        %Add color labels 
        CC{selected} = bwconncomp(bwfinal); 
        handles.CC = CC; 
        CClabel = labelmatrix(CC{selected}); 
        coloredLabels = handles.coloredLabels; 
        coloredLabels{selected} = label2rgb(CClabel, 'hsv', 'k', 'shuffle'); 
        handles.coloredLabels = coloredLabels; 
        %Display segmented image in GUI 
        axes(handles.axes2); 
        imshow(coloredLabels{selected},[]) 
         
        recenters = handles.centers; 
        diameters = handles.diameter; 
         
        %Label numbers 
        statsBW = regionprops(bwfinal, 'all'); 
        centers = [statsBW.Centroid]; 
        recenters{selected} = reshape(centers, 2, length(statsBW))'; 
        handles.centers = recenters; 
         
        for i = 1:length(statsBW) 
            text(recenters{selected}(i,1), recenters{selected}(i,2), 
num2str(i), 'color', 'w', 'FontSize', 8); 
        end 
         
        Area = [statsBW.Area]; 
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        MajorAxisLength = [statsBW.MajorAxisLength]; 
        MinorAxisLength = [statsBW.MinorAxisLength]; 
        Eccentricity = [statsBW.Eccentricity]; 
        Orientation = [statsBW.Orientation]; 
        ConvexArea = [statsBW.ConvexArea]; 
        EquivDiameter = [statsBW.EquivDiameter]; 
        diameters{selected} = EquivDiameter; 
        handles.diameter = diameters; 
        Solidity = [statsBW.Solidity]; 
        Extent = [statsBW.Extent]; 
        Perimeter = [statsBW.Perimeter]; 
        p2a = Perimeter./Area; 
         
        %zernike moments 
        boundingBox = {statsBW.BoundingBox}; 
        Z = zeros(1,length(boundingBox)); 
        A = zeros(1,length(boundingBox)); 
        Phi = zeros(1,length(boundingBox)); 
        meanTotalPixels = zeros(1,length(boundingBox)); 
        stdTotalPixels = zeros(1,length(boundingBox)); 
         
        for j = 1:length(boundingBox) 
            p = imcrop(bwfinal,boundingBox{j}); 
            if boundingBox{j}(3) > boundingBox{j}(4) 
                p2 = zeros(boundingBox{j}(3)-
boundingBox{j}(4),boundingBox{j}(3)+1); 
                p = [p2;p]; 
            else 
                p2 = zeros(boundingBox{j}(4)+1,boundingBox{j}(4)-
boundingBox{j}(3)); 
                p = [p2 p]; 
            end 
            [Z(j),A(j),Phi(j)] = Zernikmoment(p,4,2); 
             
            %pixel characteristics 
            mask = double(CClabel == j); 
            totalCell = double(I).*mask; 
            totalCellPixels = totalCell(mask == 1); 
            meanTotalPixels(j) = mean(totalCellPixels); 
            stdTotalPixels(j) = std(totalCellPixels); 
             
        end 
         
         
        signature = handles.signature; 
        signature{selected} = {Area; MajorAxisLength; MinorAxisLength; 
Eccentricity; Orientation; ConvexArea; EquivDiameter; Solidity; Extent; 
Perimeter; Z; A; Phi; meanTotalPixels; stdTotalPixels; p2a}; 
        handles.signature = signature; 
         
        imgMasked = handles.imgMasked; 
        imgMasked{selected} = imoverlay(I,bwfinal); 
        handles.imgMasked = imgMasked; 
        axes(handles.axes3) 
        hold on 
        axesChild = imshow(imgMasked{selected},[]); 
        handles.axesChild = axesChild; 
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        set(axesChild, 'ButtonDownFcn', 
{@MyCustomAxesButtonDownFunction,handles}); 
         
         
        guidata(hObject,handles); 
    else 
    end 
end 
 
% -------------------------------------------------------------------- 
function dropdown1_Callback(hObject, eventdata, handles) 
% hObject    handle to dropdown1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function open_Callback(hObject, eventdata, handles) 
% hObject    handle to open (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% --- Executes on selection change in listbox2. 
function listbox2_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = cellstr(get(hObject,'String')) returns listbox2 contents 
as cell array 
%        contents{get(hObject,'Value')} returns selected item from listbox2 
set(handles.radiobutton1,'Value',0); 
set(handles.radiobutton2,'Value',0); 
set(handles.radiobutton3,'Value',0); 
selected = get(hObject,'Value'); 
 
bulkI = handles.bulkI; 
 
 
%Store temporary image for manual thresholding 
handles.I = bulkI{selected}; 
handles.num = selected; 
guidata(hObject,handles); 
 
if isfield(handles,'coloredLabels') == 0 
    axes(handles.axes1); 
    imshow(bulkI{selected},[]); 
else 
    %Set slider bar to correct thresh 
    thresh = handles.thresh; 
    set(handles.slider1, 'Value', thresh{selected}); 
    %Load data 
    coloredLabels = handles.coloredLabels; 
    imgMasked = handles.imgMasked; 
    %Display original image in GUI 
    axes(handles.axes1); 
    imshow(bulkI{selected},[]); 
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    %Display segmented image in GUI 
    axes(handles.axes2); 
    imshow(coloredLabels{selected},[]) 
     
    % handles = 
rmfield(handles,{'CC','ccDeleted','centersDeleted','signatureDeleted','diamet
ersDeleted'}); 
     
    %Display overlayed image in GUI 
    axes(handles.axes3) 
    hold on 
    axesChild = imshow(imgMasked{selected},[]); 
    handles.axesChild = axesChild; 
    set(axesChild, 'ButtonDownFcn', 
{@MyCustomAxesButtonDownFunction,handles}); 
     
     
end 
% --- Executes during object creation, after setting all properties. 
function listbox2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on slider movement. 
function slider2_Callback(hObject, eventdata, handles) 
% hObject    handle to slider2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of 
slider 
%Check for image load 
checkImage = isfield(handles,'bulkI'); 
%Check for radio button 
radioCheck1 = get(handles.radiobutton1,'Value'); 
radioCheck2 = get(handles.radiobutton2,'Value'); 
radioCheck3 = get(handles.radiobutton3,'Value'); 
 
if checkImage == 0 
    set(hObject,'Value',250); 
    mb1 = msgbox('Please select an image file'); 
    t = timer; 
    t.StartDelay = 3; 
    t.TimerFcn = @(~,~) delete(mb1); 
    start(t) 
    % elseif radioCheck1 == 0 && radioCheck2 == 0 && radioCheck3 == 0 
    %     set(hObject,'Value',250); 
    %     mb2 = msgbox('Please select a cell size'); 
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    %     t = timer; 
    %     t.StartDelay = 3; 
    %     t.TimerFcn = @(~,~) delete(mb2); 
    %     start(t) 
elseif isfield(handles,'thresh') 
    % handles.ws = [round(get(hObject,'Value')), 
round(get(hObject,'Value'))]; 
    handles.small = round(get(hObject,'Value')); 
    guidata(hObject,handles); 
     
    selected = get(handles.listbox2,'Value'); 
     
    I = handles.I; 
     
    %Opening and closing by reconstruction 
     
    %Create structure element 
    se = strel('disk', 5); 
     
    %Erode and open 
    Ie = imerode(I, se); 
    Iobr = imreconstruct(Ie, I); 
     
    %Opening-closing by reconstruction(Iobrcbr) 
    Iobrd = imdilate(Iobr, se); 
    Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr)); 
    Iobrcbr = imcomplement(Iobrcbr); 
     
    % %border 
    Iobrcbr(1:end,1) = Iobrcbr([2 2:end],2); 
    Iobrcbr(1:end,end) = Iobrcbr([2 2:end],end-1); 
    Iobrcbr(1,1:end) = Iobrcbr(2,[2 2:end]); 
    Iobrcbr(end,1:end) = Iobrcbr(end-1,[2 2:end]); 
     
    %Threshold 
    ws = handles.ws; 
    small = handles.small; 
    thresh = handles.thresh; 
    bwEdge = adaptivethreshold(Iobrcbr,ws,thresh{selected}); 
    %bwEdge = adaptivethreshold(Iobrcbr,[50 50]); 
    edgeBetter = bwareaopen(bwEdge, small); 
    bw = imclearborder(edgeBetter,4); 
    %figure, imshow(bwnobord,[]) 
    % props = regionprops(bwnobord,'all'); 
    % boxProps = {props.BoundingBox}; 
    % bw = zeros(size(I,1),size(I,2)); 
     
    % for i = 1:length(boxProps) 
    %     w = round(boxProps{i}(3)); 
    %     h = round(boxProps{i}(4)); 
    %     x = round(boxProps{i}(1)); 
    %     y = round(boxProps{i}(2)); 
    % 
    %     bw(y:(y+h),x:(x+w)) = 
imcomplement(im2bw(imsharpen(I(y:(y+h),x:(x+w))),graythresh(I(y:(y+h),x:(x+w)
)))); 
    % 
    % end 
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    %remove small nonsense again 
    bwsmall = bwareaopen(bw, small); 
     
    %fill any remaining holes 
    bwfinal = bwfill(bwsmall,'holes'); 
    %figure, imshow(bwfinal,[]) 
     
    %Add color labels 
    CC = handles.CC; 
    CC{selected} = bwconncomp(bwfinal); 
    handles.CC = CC; 
    CClabel = labelmatrix(CC{selected}); 
    coloredLabels = handles.coloredLabels; 
    coloredLabels{selected} = label2rgb(CClabel, 'hsv', 'k', 'shuffle'); 
    handles.coloredLabels = coloredLabels; 
    %Display segmented image in GUI 
    axes(handles.axes2); 
    imshow(coloredLabels{selected},[]) 
     
    recenters = handles.centers; 
    diameters = handles.diameter; 
    %Label numbers 
    statsBW = regionprops(bwfinal, 'all'); 
    centers = [statsBW.Centroid]; 
    recenters{selected} = reshape(centers, 2, length(statsBW))'; 
    handles.centers = recenters; 
     
    for i = 1:length(statsBW) 
        text(recenters{selected}(i,1), recenters{selected}(i,2), num2str(i), 
'color', 'w', 'FontSize', 8); 
    end 
     
    Area = [statsBW.Area]; 
    MajorAxisLength = [statsBW.MajorAxisLength]; 
    MinorAxisLength = [statsBW.MinorAxisLength]; 
    Eccentricity = [statsBW.Eccentricity]; 
    Orientation = [statsBW.Orientation]; 
    ConvexArea = [statsBW.ConvexArea]; 
    EquivDiameter = [statsBW.EquivDiameter]; 
    diameters{selected} = EquivDiameter; 
    handles.diameter = diameters; 
    Solidity = [statsBW.Solidity]; 
    Extent = [statsBW.Extent]; 
    Perimeter = [statsBW.Perimeter]; 
    p2a = Perimeter./Area; 
     
    %zernike moments 
    boundingBox = {statsBW.BoundingBox}; 
    Z = zeros(1,length(boundingBox)); 
    A = zeros(1,length(boundingBox)); 
    Phi = zeros(1,length(boundingBox)); 
    meanTotalPixels = zeros(1,length(boundingBox)); 
    stdTotalPixels = zeros(1,length(boundingBox)); 
     
    for j = 1:length(boundingBox) 
        p = imcrop(bwfinal,boundingBox{j}); 
        if boundingBox{j}(3) > boundingBox{j}(4) 
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            p2 = zeros(boundingBox{j}(3)-
boundingBox{j}(4),boundingBox{j}(3)+1); 
            p = [p2;p]; 
        else 
            p2 = zeros(boundingBox{j}(4)+1,boundingBox{j}(4)-
boundingBox{j}(3)); 
            p = [p2 p]; 
        end 
        [Z(j),A(j),Phi(j)] = Zernikmoment(p,4,2); 
         
        %pixel characteristics 
        mask = double(CClabel == j); 
        totalCell = double(I).*mask; 
        totalCellPixels = totalCell(mask == 1); 
        meanTotalPixels(j) = mean(totalCellPixels); 
        stdTotalPixels(j) = std(totalCellPixels); 
         
    end 
     
     
    signature = handles.signature; 
    signature{selected} = {Area; MajorAxisLength; MinorAxisLength; 
Eccentricity; Orientation; ConvexArea; EquivDiameter; Solidity; Extent; 
Perimeter; Z; A; Phi; meanTotalPixels; stdTotalPixels; p2a}; 
    handles.signature = signature; 
     
     
    imgMasked = handles.imgMasked; 
    imgMasked{selected} = imoverlay(I,bwfinal); 
    handles.imgMasked = imgMasked; 
    axes(handles.axes3) 
    hold on 
    axesChild = imshow(imgMasked{selected},[]); 
    handles.axesChild = axesChild; 
    set(axesChild, 'ButtonDownFcn', 
{@MyCustomAxesButtonDownFunction,handles}); 
     
     
    guidata(hObject,handles); 
else 
    set(hObject,'Value',handles.small); 
end 
 
 
% --- Executes during object creation, after setting all properties. 
function slider2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to slider2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
set(hObject,'Value',250); 
handles.ws = [250,250]; 
handles.small = 250; 
guidata(hObject,handles); 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
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function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 as a 
double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on key press with focus on figure1 and none of its controls. 
function figure1_KeyPressFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  structure with the following fields (see FIGURE) 
% Key: name of the key that was pressed, in lower case 
% Character: character interpretation of the key(s) that was pressed 
% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed 
% handles    structure with handles and user data (see GUIDATA) 
modifier = eventdata.Modifier; 
key = eventdata.Key; 
modCheck = strcmp(modifier,'control'); 
keyCheck = strcmp(key,'o'); 
if  modCheck && keyCheck 
    newOpen_Callback(hObject,eventdata,handles) 
end 
 
 
% --- Executes on key press with focus on slider2 and none of its controls. 
function slider2_KeyPressFcn(hObject, eventdata, handles) 
% hObject    handle to slider2 (see GCBO) 
% eventdata  structure with the following fields (see UICONTROL) 
% Key: name of the key that was pressed, in lower case 
% Character: character interpretation of the key(s) that was pressed 
% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed 
% handles    structure with handles and user data (see GUIDATA) 
% key = double(get(gcf,'CurrentCharacter')); 
% if key == 28 
%     current = get(slider2,'Value'); 
%     step = get(slider2,'SliderStep'); 
%     set(slider2,'Value',current-step); 
% end 
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function MyCustomAxesButtonDownFunction(hObject, eventData, handles) 
if get(handles.togglebutton1,'Value') == 1 
     
    selected = get(handles.listbox2,'Value'); 
    [coords] = get(handles.axes3,'CurrentPoint'); 
     
    centers = handles.centers{selected}; 
    diameters = handles.diameter{selected}; 
     
    coloredLabels = handles.coloredLabels{selected}; 
    imgMasked = handles.imgMasked{selected}; 
    CC = handles.CC; 
    signature = handles.signature; 
     
    if isfield(handles,'centersDeleted') == 0 
        % centersDeleted = zeros(length(CC{selected}.PixelIdxList),2); 
        % signatureDeleted = []; 
        % diametersDeleted = zeros(1,length(CC{selected}.PixelIdxList)); 
        % ccDeleted = []; 
        handles.centersDeleted = cell(1,length(CC)); 
        handles.signatureDeleted = cell(1,length(CC)); 
        handles.diametersDeleted = cell(1,length(CC)); 
        handles.ccDeleted = cell(1,length(CC)); 
        centersDeleted = zeros(length(CC{selected}.PixelIdxList),2); 
        signatureDeleted = []; 
        diametersDeleted = zeros(1,length(CC{selected}.PixelIdxList)); 
        ccDeleted = []; 
    elseif isempty(handles.centersDeleted{selected}) == 1 
        centersDeleted = zeros(length(CC{selected}.PixelIdxList),2); 
        signatureDeleted = []; 
        diametersDeleted = zeros(1,length(CC{selected}.PixelIdxList)); 
        ccDeleted = []; 
    else 
        centersDeleted = handles.centersDeleted{selected}; 
        diametersDeleted = handles.diametersDeleted{selected}; 
        signatureDeleted = handles.signatureDeleted{selected}; 
        ccDeleted = handles.ccDeleted{selected}; 
    end 
    for i = 1:length(centers) 
         
        if ((coords(1,1)-centers(i,1))^2+(coords(1,2)-centers(i,2))^2) <= 
(diameters(i)/2)^2 
            ccDeleted{i} = CC{selected}.PixelIdxList{i}; 
            CC{selected}.PixelIdxList{i} = []; 
            CClabel = labelmatrix(CC{selected}); 
            coloredLabels = label2rgb(CClabel, 'hsv', 'k', 'shuffle'); 
            grayLabel = rgb2gray(coloredLabels); 
            grayLabel(grayLabel > 0) = 1; 
            %bwMock = im2bw(CClabel); 
            bwMock = grayLabel; 
            imgMasked = imoverlay(handles.I,bwMock); 
            centersDeleted(i,:) = centers(i,:); 
            centers(i,:) = NaN; 
             
            for j = 1:length(signature{selected}) 
                signatureDeleted{j}{i} = signature{selected}{j}(i); 
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                signature{selected}{j}(i) = NaN; 
            end 
            diametersDeleted(i)= handles.diameter{selected}(i); 
            handles.diameter{selected}(i) = NaN; 
            break 
        elseif ((coords(1,1)-centersDeleted(i,1))^2+(coords(1,2)-
centersDeleted(i,2))^2) <= (diametersDeleted(i)/2)^2 
            CC{selected}.PixelIdxList{i} = ccDeleted{i}; 
            CClabel = labelmatrix(CC{selected}); 
            coloredLabels = label2rgb(CClabel,'hsv','k','shuffle'); 
            grayLabel = rgb2gray(coloredLabels); 
            grayLabel(grayLabel > 0) = 1; 
            bwMock = grayLabel; 
            imgMasked = imoverlay(handles.I,bwMock); 
            centers(i,:) = centersDeleted(i,:); 
            handles.diameter{selected}(i) = diametersDeleted(i); 
            for j = 1:length(signature{selected}) 
                signature{selected}{j}(i) = signatureDeleted{j}{i}; 
            end 
        end 
    end 
    handles.signature = signature; 
    handles.ccDeleted{selected} = ccDeleted; 
    handles.centersDeleted{selected} = centersDeleted; 
    handles.signatureDeleted{selected} = signatureDeleted; 
    handles.diametersDeleted{selected} = diametersDeleted; 
    handles.CC = CC; 
    handles.centers{selected} = centers; 
    handles.coloredLabels{selected} = coloredLabels; 
    handles.imgMasked{selected} = imgMasked; 
     
    guidata(hObject,handles); 
     
    axes(handles.axes2); 
    imshow(coloredLabels,[]); 
    axes(handles.axes3); 
    hold on 
    axesChild = imshow(imgMasked,[]); 
    handles.axesChild = axesChild; 
    set(axesChild, 'ButtonDownFcn', 
{@MyCustomAxesButtonDownFunction,handles}); 
else 
end 
 
% -------------------------------------------------------------------- 
function newOpen_Callback(hObject, eventdata, handles) 
% hObject    handle to newOpen (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set(handles.slider2,'Value',250); 
handles.ws = [250,250]; 
handles.small = 250; 
guidata(hObject,handles); 
 
checkImage = isfield(handles,'bulkI'); 
checkSegment = isfield(handles,'coloredLabels'); 
checkDeleted = isfield(handles,'ccDeleted'); 
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if checkDeleted == 1 
    handles = 
rmfield(handles,{'signature','ccDeleted','centersDeleted','signatureDeleted',
'diametersDeleted','CC','ws','small','bulkI','coloredLabels','imgMasked','thr
esh','centers','diameter'}); 
    guidata(hObject,handles); 
elseif checkSegment == 1 
    handles = 
rmfield(handles,{'signature','CC','ws','small','bulkI','coloredLabels','imgMa
sked','thresh'}); 
    guidata(hObject,handles); 
elseif  checkImage == 1 
    handles = rmfield(handles,'bulkI'); 
    guidata(hObject,handles); 
     
end 
 
%Clear all axes and listbox 
cla(handles.axes1); 
cla(handles.axes2); 
cla(handles.axes3); 
set(handles.listbox2,'String',''); 
set(handles.radiobutton1,'Value',0); 
set(handles.radiobutton2,'Value',0); 
set(handles.radiobutton3,'Value',0); 
 
 
 
[filename, baseName] = uigetfile('*.jpg;*.tiff;*.tif','Select an 
Image','Multiselect', 'on'); 
if isequal(filename,0) 
elseif iscellstr(filename) == 0 
    handles.filename = filename; 
    handles.baseName = baseName; 
    set(handles.listbox2,'String',filename); 
    rgb = imread(strcat(baseName,filename)); 
    bulkI{1} = rgb2gray(rgb); 
    axes(handles.axes1); 
    set(handles.listbox2,'Value',1); 
    imshow(bulkI{1},[]); 
    handles.bulkI = bulkI; 
    handles.I = bulkI{1}; 
    guidata(hObject,handles); 
else 
    handles.filename = filename; 
    handles.baseName = baseName; 
    set(handles.listbox2,'String',filename); 
    for i = 1:length(filename) 
        rgb = imread(strcat(baseName,filename{i})); 
        bulkI{i} = rgb2gray(rgb); 
    end 
    axes(handles.axes1); 
    set(handles.listbox2,'Value',1); 
    imshow(bulkI{1},[]); 
    handles.bulkI = bulkI; 
    handles.I = bulkI{1}; 
    guidata(hObject,handles); 
end 



      190 

 
 
% -------------------------------------------------------------------- 
function prevOpen_Callback(hObject, eventdata, handles) 
% hObject    handle to prevOpen (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set(handles.slider2,'Value',250); 
handles.ws = [250,250]; 
handles.small = 250; 
guidata(hObject,handles); 
 
checkImage = isfield(handles,'bulkI'); 
checkSegment = isfield(handles,'coloredLabels'); 
checkDeleted = isfield(handles,'ccDeleted'); 
if checkDeleted == 1 
    handles = 
rmfield(handles,{'signature','ccDeleted','centersDeleted','signatureDeleted',
'diametersDeleted','CC','ws','small','bulkI','coloredLabels','imgMasked','thr
esh','centers','diameter'}); 
    guidata(hObject,handles); 
elseif checkSegment == 1 
    handles = 
rmfield(handles,{'signature','CC','ws','small','bulkI','coloredLabels','imgMa
sked','thresh'}); 
    guidata(hObject,handles); 
elseif  checkImage == 1 
    handles = rmfield(handles,'bulkI'); 
    guidata(hObject,handles); 
     
end 
%Clear all axes and listbox 
cla(handles.axes1); 
cla(handles.axes2); 
cla(handles.axes3); 
set(handles.listbox2,'String',''); 
set(handles.radiobutton1,'Value',0); 
set(handles.radiobutton2,'Value',0); 
set(handles.radiobutton3,'Value',0); 
 
 
[filenameNew, baseName] = uigetfile('*.mat' ,'Select an image set'); 
if isequal(filenameNew,0) 
else 
    load(strcat(baseName,filenameNew)); 
    handles.baseName = baseName; 
    handles.filename = filename; 
    handles.signature = signatureAllMetrics; 
    handles.bulkI = bulkI; 
    handles.coloredLabels = coloredLabels; 
    handles.imgMasked = imgMasked; 
    handles.CC = CC; 
    handles.ccDeleted = ccDeleted; 
    handles.centersDeleted = centersDeleted; 
    handles.signatureDeleted = signatureDeleted; 
    handles.diametersDeleted = diametersDeleted; 
    handles.centers = centers; 
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    handles.diameter = diameters; 
    handles.thresh = thresh; 
    % handles.ws = ws; 
    % handles.small = small; 
    % set(handles.slider2,'Value',small); 
     
    guidata(hObject,handles); 
     
    set(handles.listbox2,'String',handles.filename); 
    % rgb = imread(filename); 
    % bulkI{1} = rgb2gray(rgb); 
    for i = 1:length(filename) 
        rgb = imread(strcat(baseName,filename{i})); 
        bulkI{i} = rgb2gray(rgb); 
    end 
    axes(handles.axes1); 
    set(handles.listbox2,'Value',1); 
    imshow(bulkI{1},[]); 
    handles.bulkI = bulkI; 
    handles.I = bulkI{1}; 
     
    axes(handles.axes2); 
    imshow(coloredLabels{1},[]) 
     
    axes(handles.axes3); 
    imshow(imgMasked{1},[]) 
    guidata(hObject,handles); 
end 
 
 
% --- Executes on button press in togglebutton1. 
function togglebutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of togglebutton1 
selected = get(handles.listbox2,'Value'); 
I = handles.bulkI{selected}; 
CC = handles.CC{selected}; 
imgMasked = handles.imgMasked{selected}; 
CClabel = labelmatrix(CC); 
% % CClabel(CClabel == 1) = 2; 
% % CClabel(CClabel == 3) = 1; 
% % CClabel(CClabel == 2) = 3; 
% % CClabel(CClabel == 4) = 3; 
% % CClabel(CClabel > 4) = 1; 
% CClabel(CClabel < 13 & CClabel > 0) = 1; 
% CClabel(CClabel == 13) = 3; 
coloredLabels = label2rgb(CClabel, 'hsv', 'k','shuffle'); 
% % 
% % 
% figure, imshow(I,[]); 
% figure, imshow(coloredLabels,[]); 
% % imwrite(coloredLabels,'coloredSUM159_presentation.jpeg'); 
% imwrite(I,'SUM159_presentation_2.jpeg'); 
 
imwrite(coloredLabels,'labels_SUM159_Iobrcbr.tiff'); 
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% % save('image_5E','I','-jpeg'); 
% % save('labels_5E','coloredLabels','jpeg'); 
 
 
% -------------------------------------------------------------------- 
function dropdown2_Callback(hObject, eventdata, handles) 
% hObject    handle to dropdown2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function metrics_Callback(hObject, eventdata, handles) 
% hObject    handle to metrics (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global globalStruct 
standaloneCheckBox 
 
 
% --- Executes on button press in pushbutton8. 
function pushbutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global globalStruct 
 
%check if metrics have been selected or if default is necessary 
if isfield(globalStruct,'default') == 0 
    globalStruct.area = 1; 
    globalStruct.majorAxisLength = 0; 
    globalStruct.minorAxisLength = 0; 
    globalStruct.eccentricity = 1; 
    globalStruct.orientation = 0; 
    globalStruct.convexArea = 0; 
    globalStruct.diameter = 0; 
    globalStruct.solidity = 0; 
    globalStruct.extent = 0; 
    globalStruct.perimeter = 1; 
    globalStruct.Z = 0; 
    globalStruct.A = 0; 
    globalStruct.Phi = 0; 
    globalStruct.meanTotalPixels = 0; 
    globalStruct.stdTotalPixels = 0; 
    globalStruct.p2a = 0; 
    globalStruct.default = [1 4 10]; 
else 
end 
 
 
%Check for image load 
checkImage = isfield(handles,'bulkI'); 
%Check for radio button 
radioCheck1 = get(handles.radiobutton1,'Value'); 
radioCheck2 = get(handles.radiobutton2,'Value'); 
radioCheck3 = get(handles.radiobutton3,'Value'); 
%Check for segmentation 
segmentCheck = isfield(handles,'coloredLabels'); 
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if checkImage == 0 
    mb1 = msgbox('Please select an image file'); 
    t = timer; 
    t.StartDelay = 3; 
    t.TimerFcn = @(~,~) delete(mb1); 
    start(t) 
    % elseif radioCheck1 == 0 && radioCheck2 == 0 && radioCheck3 == 0 
    %     mb2 = msgbox('Please select a cell size'); 
    %     t = timer; 
    %     t.StartDelay = 3; 
    %     t.TimerFcn = @(~,~) delete(mb2); 
    %     start(t) 
elseif segmentCheck == 0 
    mb3 = msgbox('Please choose automatic threshold'); 
    t = timer; 
    t.StartDelay = 3; 
    t.TimerFcn = @(~,~) delete(mb3); 
    start(t) 
else 
    if isfield(handles,'ccDeleted') == 0 
        handles.ccDeleted = []; 
        handles.centersDeleted = []; 
        handles.signatureDeleted = []; 
        handles.diametersDeleted = []; 
    end 
     
    [answer,PathName] = uiputfile({'*.mat','MAT-files (*.mat)';'*xls','Excel 
Files (*.xls)'},'Export Metrics As'); 
     
    if answer == 0 
 
    elseif isempty(strfind(answer,'.mat')) == 1 
        keepMetrics = [globalStruct.area, globalStruct.majorAxisLength 
globalStruct.minorAxisLength ... 
            globalStruct.eccentricity globalStruct.orientation 
globalStruct.convexArea globalStruct.diameter ... 
            globalStruct.solidity globalStruct.extent globalStruct.perimeter 
... 
            globalStruct.Z globalStruct.A globalStruct.Phi 
globalStruct.meanTotalPixels ... 
            globalStruct.stdTotalPixels globalStruct.p2a]; 
        keepMetrics = find(keepMetrics); 
        signature = handles.signature; 
        metrics = {'Area', 'MajorAxisLength', 'MinorAxisLength', ... 
            'Eccentricity', 'Orientation', 'ConvexArea', 'EquivDiameter', ... 
            'Solidity', 'Extent', 'Perimeter', 'Z', 'A', 'Phi', ... 
            'meanTotalPixels', 'stdTotalPixels','p2a'}; 
        metrics = metrics(keepMetrics); 
        h = waitbar(0,'Please wait...Exporting to Excel'); 
         
        for j = 1:length(signature) 
            signature{j} = signature{j}(keepMetrics,:); 
            sheet = j; 
            xlswrite(char(strcat(PathName,answer,'.xls')),{'Spheroid 
#'},sheet,'A1'); 
            
xlswrite(char(strcat(PathName,answer,'.xls')),[1:100]',sheet,'A2'); 
            for i = 1:length(metrics) 
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                xlRange1 = strcat(char('A'+i),'1'); 
                xlRange2 = strcat(char('A'+i),'2'); 
                
xlswrite(char(strcat(PathName,answer,'.xls')),metrics(i),sheet,xlRange1); 
                
xlswrite(char(strcat(PathName,answer,'.xls')),signature{j}{i}',sheet,xlRange2
); 
                waitbar(((i/length(metrics))*(1/length(signature)))+((j-
1)/length(signature))); 
            end 
            waitbar(j/length(signature)) 
        end 
        close(h); 
        %Display message box 
        mb = msgbox('Signature Export Successful!'); 
        t = timer; 
        t.StartDelay = 2; 
        t.TimerFcn = @(~,~) delete(mb); 
        start(t) 
         
         
         
    else 
         
        keepMetrics = [globalStruct.area, globalStruct.majorAxisLength 
globalStruct.minorAxisLength ... 
            globalStruct.eccentricity globalStruct.orientation 
globalStruct.convexArea globalStruct.diameter ... 
            globalStruct.solidity globalStruct.extent globalStruct.perimeter 
... 
            globalStruct.Z globalStruct.A globalStruct.Phi 
globalStruct.meanTotalPixels ... 
            globalStruct.stdTotalPixels globalStruct.p2a]; 
        keepMetrics = find(keepMetrics); 
        filename = handles.filename; 
        signatureAllMetrics = handles.signature; 
        for i = 1:length(signatureAllMetrics) 
            signatureTrimmed{i} = signatureAllMetrics{i}(keepMetrics,:); 
        end 
        bulkI = handles.bulkI; 
        coloredLabels = handles.coloredLabels; 
        imgMasked = handles.imgMasked; 
        CC = handles.CC; 
        ccDeleted = handles.ccDeleted; 
        centersDeleted = handles.centersDeleted; 
        signatureDeleted = handles.signatureDeleted; 
        diametersDeleted = handles.diametersDeleted; 
        centers = handles.centers; 
        diameters = handles.diameter; 
        thresh = handles.thresh; 
        ws = handles.ws; 
        small = handles.small; 
        baseName = handles.baseName; 
         
        save(char(strcat(PathName,answer)),'filename','signatureTrimmed', 
'signatureAllMetrics','bulkI',... 
            'coloredLabels','imgMasked','thresh', 
'CC','ccDeleted','centersDeleted',... 
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            'signatureDeleted','diametersDeleted','centers','diameters','ws', 
'small','baseName'); 
        %Uncheck radio buttons 
        set(handles.radiobutton1,'Value',0); 
        set(handles.radiobutton2,'Value',0); 
        set(handles.radiobutton3,'Value',0); 
        %Clear all axes and data 
        cla(handles.axes1); 
        cla(handles.axes2); 
        cla(handles.axes3); 
        handles = 
rmfield(handles,{'ws','small','bulkI','coloredLabels','imgMasked','thresh', 
'CC','ccDeleted','centersDeleted','signatureDeleted','diametersDeleted'}); 
        guidata(hObject,handles); 
        set(handles.listbox2,'String',''); 
        clearvars -global 
         
        %Display message box 
        mb = msgbox('Signature Export Successful!'); 
        t = timer; 
        t.StartDelay = 2; 
        t.TimerFcn = @(~,~) delete(mb); 
        start(t) 
         
    end 
end 
% -------------------------------------------------------------------- 
function calibration_Callback(hObject, eventdata, handles) 
% hObject    handle to calibration (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
prompt = {'Pixels:','Microns:'}; 
dlg_title = 'Calibration'; 
num_lines = 1; 
% defaultans = {'20','hsv'}; 
answer = inputdlg(prompt,dlg_title,num_lines); 
m2p = str2num(answer{2})./str2num(answer{1}); 
signature = handles.signature; 
for i = 1:length(signature) 
    signatureMicrons{i} = cellfun(@(x) x.*m2p,signature{i},'un',0); 
end 
handles.signature = signatureMicrons; 
guidata(hObject,handles); 
 

7.1.4 Image spheroid metrics 

 Spheroid area, perimeter, major axis length, minor axis length, equivalent diameter, 

convex area, solidity, extent, orientation, and eccentricity were calculated using the bwconncomp 
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function in MATLAB.  The perimeter to area ratio was calculated from the extracted parameters.  

The Zernike moments were calculated using publicly available functions.  

7.1.5 Image signature analysis  

 Cell lines spheroid heterogeneity was analyzed by collecting the profiles across dozens to 

hundreds of spheroids.  The median value for each metric was collected to make an aggregate 

signature.  These aggregate signatures were clustered by Euclidean distance and ward linkage.  

Spheroid heterogeneity was quantified by gating the principle component values of the spheroid 

signatures to be less than 0.1 along principle component #1, and between 0 and -0.2 along 

principle component #2.  

  

7.2 Chapter 3 Methods  

7.2.1 Cell lines and 3D culture  

 The MCF10A-5E clone was previously reported and was grown in organotypic 3D 

culture as described for MCF10A cells (98, 273).  MCF10DCIS.com cells (121) were originally 

obtained from Wayne State University and cultured in DMEM/F-12 medium (Invitrogen) plus 

5% horse serum (Invitrogen).  MDA-MB-468 cells were obtained from ATCC and cultured in L-

15 medium (Invitrogen) plus 10% fetal bovine serum (Hyclone) without supplemental CO2. 

7.2.2 Plasmids 

 pLKO.1 shGFP puro (Addgene #12273),  pLKO.1 shTGFBR3 puro (TRCN0000033430), 

and pLKO.1 shJUND puro (TRCN0000014974) were obtained from The RNAi Consortium 

(274) or Addgene.  pBabe JunD-HA neo, pBabe JUND-HA neo, pBabe RFP1-Smad2 neo, 
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pBabe JunD-Venus puro, and pBabe RFP1-KRT5 hygro were constructed by PCR cloning from 

plasmid templates (Open Biosystems) into the retroviral vector pBabe neo, pBabe puro, or pBabe 

hygro. Doxycycline-inducible Tgfbr3-HA, JunD-HA and expression vectors were constructed by 

PCR cloning or subcloning into the entry vector pEN_TTmiRc2, followed by LR recombination 

into the lentiviral vector pSLIK neo (275). The human TRIPZ lentiviral inducible shTNC 

construct V2THS_133229 (Ref. (276)) were obtained from Open Biosystems.  pLenti PGK Blast 

V5-LUC (w528-1) was obtained from Addgene. 

 pTRF.1 udsVenus (PJUND) was constructed starting with the commercial lentiviral vector, 

pTRF1-mCMV-dscGFP (System Biosciences).  First, cGFP was excised from pTRF1-mCMV-

dscGFP by restriction digest with HindIII and EcoRV, and the vector was ligated with a similarly 

digested Venus (149) prepared by PCR cloning designed to contain the appropriate motif for N-

end rule degradation (149, 151).  The resulting pTRF.1-mCMV-dsVenus was then digested with 

HindIII, dephosphorylated, and ligated with a similarly digested ubiquitin C monomer prepared 

by PCR cloning from oligo(dT)-primed MCF10A-5E cDNA to produce pTRF.1-mCMV-

udsVenus.  Last, this vector was digested with EcoRI and SpeI and ligated with a similarly 

digested PJUND prepared by PCR from MCF10A-5E genomic DNA to produce pTRF.1 udsVenus 

(PJUND).  All constructs were verified by sequencing. 

7.2.3 Viral transduction  

 Lentiviruses were prepared in 293T cells (ATCC) by triple transfection of the lentiviral 

vector together with psPAX2 + pMD.2G (Addgene) and transduced into MCF10A-5E, MDA-

MB-468, and MCF10DCIS.com cells as described previously (277).  Retroviruses were similarly 

prepared by double transfection of the pBabe construct together with pCL ampho (Addgene) and 

transduced into MCF10A-5E cells as described previously (277).  For viral vectors carrying 
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selectable markers, transduced cells were selected in growth medium containing 2 µg/ml 

puromycin, 300 µg/ml G418, 100 µg/ml hygromycin, or 4–6 µg/ml blasticidin until control 

plates had cleared.  For addback experiments, viral titers were adjusted to match the endogenous 

protein expression as closely as possible.  For live-cell reporters, we used the minimum viral titer 

that gave sufficient signal above background for long-term imaging.  For pTRF.1 udsVenus 

(PJUND), which lacks a selectable marker, transduced cells were flow sorted for baseline Venus 

fluorescence at the University of Virginia Flow Cytometry Core Facility. 

7.2.4 Quantitative PCR  

Quantitative PCR was performed as described elsewhere (278).  Primer sequences are as follows:  

TGFBR3, 5’- tgtcacctggcacattcatt -3’ (forward), 5’- acaggatttgccatgcattt -3’ (reverse); TGFBI, 

5’- ctatgccaagtccctggaaa -3’ (forward), 5’- cctccaagccacgtgtagat -3’ (reverse); JUND, 5’- 

cgttggttgtgtgtgtgtgt -3’ (forward), 5’- ggcgaaccaaggattacaaa -3’ (reverse); KRT5, 5’- 

tttgtctccaccacctcctc -3’ (forward), 5’-cctgggaaccaaagaatgtg -3’ (reverse); RPS6, 5’- 

ccccaaaagagctagcagaa -3’ (forward), 5’- ctgcaggacacgtggagtaa -3’ (reverse); TNC, .5’- 

aaccccaggagtttgagacc –3’ (forward), 5’- gggctccagtgattttccta -3’ (reverse). 

 

7.2.5 Immunoblotting 

 MCF10A-5E cells expressing the indicated constructs were lysed in 50 mM Tris (pH 

8.0), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate.  

20–30 μg of clarified extract was separated on an 8 or 10% SDS-PAGE gel and transferred to 

PVDF (Immobilon-FL, Millipore).  Membranes were blocked with 0.5× Odyssey blocking 

buffer (LI-COR, 1:1 in PBS) and incubated overnight at 4ºC in 0.5× Odyssey blocking buffer 
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(LI-COR) + 0.1% Tween, containing one of the following primary antibodies: TGF-β Receptor 

III (1:1000, Cell Signaling, #2519), HSP 90α/β (H-114) (1:1000, Santa Cruz, sc-7947), Jun D 

(329) (1:1000, Santa Cruz, sc-74), S6 Ribosomal Protein (54D2) (1:1000, Cell Signaling, 

#2317), Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) (1:1000, Cell Signaling, #5364), 

α/β-tubulin (1:1000, Cell Signaling, #2148), α-tubulin (1:20,000, Abcam, ab89984), β-actin 

(1:1000, Ambion, #AM4302), Keratin 5 (1:1000, Covance, SIG-3475), Keratin 14 (1:1000, 

Covance, PRB-155P), Smad2 (L16D3) (1:1000, Cell Signaling, #3103), GFP (1:1000, 

Invitrogen, A-11122), Tenascin (BC-24) (1:1000, Sigma, T2551), vimentin (SP20) (1:100, 

Abcam, ab16700), E-cadherin (36) (1:1000, BD Biosciences, #610182), caspase-3 (1:1000, Cell 

Signaling, #9662), and KRT15 (1:1000, Thermo, MA5-15567).  Membranes were washed 4 × 5 

minutes in PBS-T (PBS + 0.1% Tween) and incubated for 1 hr at room temperature in secondary 

antibody solution (0.5× Odyssey blocking buffer + 0.01% SDS + 0.1% Tween) containing IrDye 

800 or IrDye 680LT-conjugated secondary antibody (1:20,000, LI-COR).  Membranes were 

washed 4 × 5 minutes in PBS-T, rinsed with PBS, and imaged by infrared fluorescence on a LI-

COR Odyssey instrument.  Relative band intensities were quantified by densitometry with 

ImageJ. 

7.2.6 Clinical samples  

 The pathology database at the University of Virginia from 2004-2012 was searched for 

all cases of high-grade DCIS, since this is the cohort that contains the basaloid subgroup.  The 

set was then searched for estrogen receptor status and only those that were ER negative were 

selected.  The search was confined to 2004 and later because 2004 was the year pathologists 

began reflexively testing DCIS for estrogen receptor status.  All cases with an invasive 

carcinoma component were excluded.  This resulted in 5–7 cases per year.  The cases were 
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deidentified for any patient demographics and used for immunohistochemical analysis of 

cytokeratin 5/6.  Samples that were positive for cytokeratin 5/6 were followed up with a panel of 

six immunohistochemical markers:  p53 (11/22 positive), E-cadherin (22/22 positive), KRT18 

(21/22 positive), p63 (1/22 positive), smooth-muscle actin (21/22 positive), and vimentin (6/22 

positive) (Supplementary Table 1).  All clinical work was done according to a protocol under 

IRB-HSR approval #14176 and PRC approval #1363 (502-09). 

7.2.7 Immunofluorescence. 

Immunofluorescence in frozen sections or on coverslips was performed as described previously 

(277) using the following primary antibodies: Cytokeratin 5/6 (D5/16 B4) (1:200, Dako, 

M7237), Keratin 5 (1:5000, Covance, SIG-3475), Tenascin (BC-24) (1:2000, Sigma, T2551),  or 

Jun D (329) (1:500, Santa Cruz, sc-74).  For paraffin sections, slides underwent antigen retrieval 

before immunostaining as described for TGFBR3 below.  Whole-mount immunofluorescence of 

day 10 acini was performed as described previously (277) using the following primary 

antibodies:  E-cadherin (36) (1:500, BD Biosciences, #610182) or HA (3F10) (1:200, Roche, 

#11815016001). 

7.2.8 Two-color time-lapse confocal imaging.  

 Live-cell experiments involved MCF10A-5E cells stably transduced with pTRF.1 

udsVenus (PJUND) and pBabe RFP1-Smad2 neo as described above.  For long-term live-cell 

imaging of 3D acini, a plastic coverslip was cut to size and placed at the base of an 8-well 

chamber slide (BD Biosciences) before starting.  Coverslipped chamber slides were then coated 

with Matrigel (BD Biosciences), and cells were grown in organotypic 3D culture as described for 

MCF10A cells (98).  At day 10, the Matrigel-coated plastic coverslip containing adherent 3D 
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acini was removed and flipped upside down into a culture dish with a fused glass coverslip 

(MatTek) filled with conditioned medium from the 3D culture.  A second glass coverslip was 

placed on top of the inverted plastic coverslip, and the air-tight reservoir was sealed by applying 

high vacuum grease (Dow Corning) followed by a mixture of Vaseline, lanolin, and paraffin.  

The sealed reservoir was then covered with light mineral oil to prevent evaporation during 

imaging. 

 Live acinar cultures were maintained at 37°C with a heated blower.  Time-lapse imaging 

was performed using a laser scanning confocal microscope (LSM 700, Carl Zeiss) equipped with 

an EC Plan-Neofluar 40x/1.30 oil-immersion objective and four diode lasers (5–10 mW) 

centered at 405, 488, 555, and 639 nm.  udsVenus was excited at 488 nm and its emission 

detected between 488 and 585nm.  RFP1 was excited at 555 nm and its emission detected above 

582 nm.  The confocal pinhole was kept at 1 Airy unit, and laser powers were typically set at 2–

5% to minimize photobleaching.  Time-lapse images were acquired every 15 minutes for 15–20 

hr.  Image assembly and processing were performed using MetaMorph (Molecular Devices). 

7.2.9 Image segmentation and quantification.  

 Single cells and nuclei from live-cell images were manually segmented and applied to the 

RFP1 and udsVenus fluorescence stacks to calculate median nuclear, cytoplasmic, and total 

fluorescence intensities.  The RFP1-Smad2 signal was evaluated as the ratio of median nuclear-

to-cytoplasmic fluorescence.  The median total udsVenus fluorescence per cell was normalized 

to the overall fluorescence intensity of cells in the same frame to account for photobleaching. 

 For RNA FISH scoring, single ECM-attached cells were manually binned into high 

expression and low-no expression based on DNP-labeled riboprobe staining intensity.  A 

minimum of 150 cells was scored per hybridization across four independent hybridizations. 
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7.2.10 Time course alignment.  

 Data from live cell imaging time courses were spectrally decomposed with the fft 

function in MATLAB, smoothed by low-pass filtering at 8.6e-5 Hz, and then reconstructed with 

the ifft function in MATLAB.  After spectral filtering, individual time courses were standardized 

and clustered hierarchically based on the joint alignment of the RFP1-Smad2 and udsVenus 

traces between experiments.  The alignment algorithm is based on a full sliding window of both 

traces with zero gaps and a cost function that uses the sum-of-squared difference between the 

two experiments to be aligned, scaled by the extent of overlap between them.  All possible 

experiment pairs and alignments within the dataset were considered, and the experiments with 

the best pairwise alignment were combined by average linkage.  The exhaustive pairwise 

comparisons and linkages were repeated until all of the independent experiments were aligned.  

In the final pairwise comparison, one of two nearly equivalent alignments was visually selected. 

7.2.11 Computational modeling 

 The TGFBR3–JUND circuit was modeled as a system of coupled ordinary differential 

equations.  mRNA and protein species were assigned basal synthesis and degradation rates as 

described in Chapter 3.  Transcriptional inhibition steps were modeled using the Hill equation 

without cooperativity, and feedback strengths were adjusted manually as free parameters to 

reproduce the damped periodicity observed experimentally.  Sensitivity analysis on the manually 

adjusted parameters is described in Chapter 3.  The model was simulated with ode15s in 

MATLAB and allowed to reach steady state before exciting the system with a 50% increase in 

the appropriate reaction rate for 1 hr.   
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 The agent-based model of CC was constructed using NetLogo v4.1.1 

(http://ccl.northwestern.edu/netlogo/).  Single cells were seeded at a predefined geometry and 

initialized with the same basal level of KRT5 and JUND.  During each time step of the 

simulation, KRT5 and JUND were incremented by a uniform pseudorandom number between 

zero and one [U(0,1)] that was inversely scaled by the number of neighboring TNC-positive cells 

(TNC+) as follows:  U(0,1)
2TNC

+ .  Since JUND inhibits late keratinization, the fluctuating JUND–

KRT5 difference was used as a proxy for keratinization.  The JUND–KRT5 difference was 

evaluated after each time step, and keratinization occurred when the difference reached a critical 

negative threshold.  Keratinized cells then expressed TNC and were no longer incremented for 

KRT5 or JUND expression.  The model was run until steady state, and the final display was used 

as the model output.   

7.2.12 Ordinary differential equation model code 

function dJT_dt = JR3ode(t,JT, params) 
% nH;                   %Hill coefficient for transcription steps 
% IC50_TGFbetaRIII;     %IC50 for TGFbetaRIII inhibition of transcription 
% IC50_junD;            %IC50 for junD inhibition of transcription 
% k_basaltxn;           %baseline transcription rate 
% k_translation;        %constant translation rate 
% k_deg_RNA;            %RNA turnover rate 
% k_activation;         %Activation of ligand bound R3 
% k_deg_junD;           %Degradation of JUND protein 
% k_deg_R3;             %Degradataion of TGFBR3 protein 
% k_deg_udsVenus;       %Degradation of Venus protein  
  
%unpackage parameters  
paramsCell=mat2cell(params,ones(size(params,1),1),ones(size(params,2),1)); 
[nH, IC50_TGFbetaRIII, IC50_junD, k_basaltxn_R, k_basaltxn_J, k_translation, 
... 
    k_deg_RNA, k_deg_junD, k_deg_R3, k_activation, k_deg_udsVenus, f1, f2, 
f3] = paramsCell{:};  
 
  
%Species 
JUND=JT(1); 
junD=JT(2); 
TGFBR3=JT(3); 
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TGFbetaRIII=JT(4); 
R3star = JT(5);  
Venus = JT(6); 
 
 
%Remove negative values 
if JUND<0 
    JUND=0; 
end 
if junD<0 
    junD=0; 
end 
if TGFBR3<0 
    TGFBR3=0; 
end 
if TGFbetaRIII<0 
    TGFbetaRIII=0; 
end 
if R3star < 0 
    R3star = 0; 
end 
if Venus < 0; 
    Venus = 0; 
end 
 
%Differential equations determining change of species at each time step - see 
Supplemental Note for details   
dTGFBR3_dt=k_basaltxn_R-f1*R3star^nH/(R3star^nH+IC50_TGFbetaRIII^nH)- ... 
    f3*junD^nH/(junD^nH+IC50_junD^nH)-k_deg_RNA*TGFBR3; 
 
dJUND_dt=k_basaltxn_J-f2*R3star^nH/(R3star^nH+IC50_TGFbetaRIII^nH)- ... 
   f3*junD^nH/(junD^nH+IC50_junD^nH)-k_deg_RNA*JUND; 
 
dTGFbetaRIII_dt=k_translation*TGFBR3-k_deg_R3*TGFbetaRIII-
k_activation*TGFbetaRIII; 
 
djunD_dt=k_translation*JUND-k_deg_junD*junD; 
 
dR3star_dt = k_activation*TGFbetaRIII-k_deg_R3*R3star;  
 
dVenus_dt = k_translation*JUND-k_deg_udsVenus*Venus;  
 
%Do not allow species to go below 0 units  
if JUND==0 && dJUND_dt<0 
    dJUND_dt=0; 
  
end 
if junD==0 && djunD_dt<0 
    djunD_dt=0; 
    
end 
if TGFBR3==0 && dTGFBR3_dt<0 
    dTGFBR3_dt=0; 
end 
if TGFbetaRIII==0 && dTGFbetaRIII_dt<0 
    dTGFbetaRIII_dt=0; 
end 
if R3star==0 && dR3star_dt<0 
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    dR3star_dt=0; 
end 
if Venus==0 && dVenus_dt<0 
    dVenus_dt=0; 
end 
 
%Repackage outputs  
dJT_dt=[dJUND_dt; djunD_dt; dTGFBR3_dt; dTGFbetaRIII_dt; dR3star_dt; 
dVenus_dt];    
 
return 
 
% Run JUND-R3 module 
 
clear all 
close all 
clc 
 
%Initialize parameters 
%Hill parameters 
nH = 1; 
IC50_TGFBRIII = 100; 
IC50_junD = 100;  
 
%Synthesis and degradation 
k_basaltxn_J = 4;       %hr^-1 based on Schwanhausser et al. Nature 473:337-
42 (2011) 
k_basaltxn_R = 4;       %hr^-1 based on Schwanhausser et al. Nature 473:337-
42 (2011) 
k_translation = 100;    %mRNA^-1 hr^-1 based on Schwanhausser et al. Nature 
473:337-42 (2011) 
 
%Degradation rates (see Supplemental Note 1) 
k_deg_RNA = 0.23;       %hr^-1 based on Zou et al. Mol Cell Biol 30:5021-32 
(2010) and 
                        %Hempel et al. Carcinogenesis 29:905-12 (2008) 
k_deg_junD = 0.37;      %hr^-1 based on Fig. SN1 in Supplementary Note 1  
k_deg_R3 = 3.0;         %hr^-1 based on Fig. SN1 in Supplementary Note 1 
 
%R3 -> R3* 
k_activation = 1;     %hr^-1 based on steady-state distribution of RFP1-Smad2 
reporter 
                        %in Supplementary Fig. S3b (see Eqn. 8 in 
Supplementary Note 1) 
 
%Venus degradation 
k_deg_udsVenus = 2.8;   %hr^-1 based on Supplementary Fig. S3d 
 
%Feedback strengths 
f1 = 7; 
f2 = 9; 
f3 = 5; 
 
%Assign parameters 
params = [nH, IC50_TGFBRIII, IC50_junD, k_basaltxn_R, k_basaltxn_J, 
k_translation, ... 
    k_deg_RNA, k_deg_junD, k_deg_R3, k_activation, k_deg_udsVenus, f1, f2, 
f3]; 
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%Initial conditions for JUND mRNA, junD protein, TGFBR3 mRNA, ... 
%TGFbetaRIII protein, active R3* (SMAD reporter), Venus  
init_cond = 1000*ones(1,6);  
 
tspan1 = [0 501]; 
tspan2 = [501 502]; 
tspan3 = [502 800]; 
 
%% Excite the system by increasing k_activation by 1.5x 
 
%Run model to steady state  
options = []; 
[time,JT_soln]=ode15s(@JR3ode, tspan1, init_cond, options, params); 
 
% Increase k_activation 1.5 fold for one hour  
params(10) = 1.5*params(10);  
init_cond_2 = JT_soln(end,:); 
[time2,JT_soln2]=ode15s(@JR3ode,tspan2,init_cond_2, options, params); 
 
%Allow model to relax after activation  
params(10) = k_activation; 
init_cond_3 = JT_soln2(end,:); 
[time3,JT_soln3]=ode15s(@JR3ode,tspan3,init_cond_3, options, params); 
 
%Collect total traces for each species  
time=[time' time2' time3']'; 
 
JUND_soln=[JT_soln(:,1)' JT_soln2(:,1)' JT_soln3(:,1)']'; 
junD_soln=[JT_soln(:,2)' JT_soln2(:,2)' JT_soln3(:,2)']'; 
TGFBR3_soln=[JT_soln(:,3)' JT_soln2(:,3)' JT_soln3(:,3)']'; 
TGFbetaRIII_soln=[JT_soln(:,4)' JT_soln2(:,4)' JT_soln3(:,4)']'; 
R3_star=[JT_soln(:,5)' JT_soln2(:,5)' JT_soln3(:,5)']'; 
Venus =[JT_soln(:,6)' JT_soln2(:,6)' JT_soln3(:,6)']'; 
 
R3_star_o =[JT_soln3(:,5)']'; 
Venus_o =[JT_soln3(:,6)']'; 
 
%Fig. 3H-i plot  
figure(1) 
 
a = subplot(2,3,1); 
 
plot(time, R3_star, 'r') 
xlim([490 550]) 
xlabel('Time') 
ylabel('TGFBR3* reporter strength'); 
title(a, 'Increase k_a_c_t of TGFBR3 as system stimulus'); 
 
figure(1) 
subplot(2,3,4) 
plot(time, Venus, 'g') 
xlim([490 550]) 
xlabel('Time') 
ylabel('JUND reporter strength'); 
 
%% Excite the system by increasing k_txn_R3 by 1.5x 
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% Run model to steady state  
options = []; 
[time,JT_soln]=ode15s(@JR3ode, tspan1, init_cond, options, params); 
 
%Increase k_txn_JUND 1.5 fold for one hour 
params(4) = 1.5*params(4);  
init_cond_2 = JT_soln(end,:); 
[time2,JT_soln2]=ode15s(@JR3ode,tspan2,init_cond_2, options, params); 
 
%Allow model to relax after activation 
params(4) = k_basaltxn_R; 
init_cond_3 = JT_soln2(end,:); 
[time3,JT_soln3]=ode15s(@JR3ode,tspan3,init_cond_3, options, params); 
 
%Collect total traces for each species 
time=[time' time2' time3']'; 
 
JUND_soln=[JT_soln(:,1)' JT_soln2(:,1)' JT_soln3(:,1)']'; 
junD_soln=[JT_soln(:,2)' JT_soln2(:,2)' JT_soln3(:,2)']'; 
TGFBR3_soln=[JT_soln(:,3)' JT_soln2(:,3)' JT_soln3(:,3)']'; 
TGFbetaRIII_soln=[JT_soln(:,4)' JT_soln2(:,4)' JT_soln3(:,4)']'; 
R3_star=[JT_soln(:,5)' JT_soln2(:,5)' JT_soln3(:,5)']'; 
Venus =[JT_soln(:,6)' JT_soln2(:,6)' JT_soln3(:,6)']'; 
 
% %Fig. 3H-ii plot 
figure(1) 
 
a = subplot(2,3,2); 
plot(time, R3_star, 'r') 
xlim([490 550]) 
xlabel('Time') 
ylabel('TGFBR3* reporter strength'); 
title(a, 'Increase k_t_x_n of TGFRB3 as system stimulus'); 
 
figure(1) 
subplot(2,3,5) 
plot(time, Venus, 'g') 
xlim([490 550]) 
xlabel('Time') 
ylabel('JUND reporter strength'); 
 
 
%% Excite the system by increasing k_txn_JUND by 1.5x 
 
% Run model to steady state  
options = []; 
[time,JT_soln]=ode15s(@JR3ode, tspan1, init_cond, options, params); 
 
%Increase k_txn_JUND 1.5 fold for one hour  
params(5) = 1.5*params(5);  
init_cond_2 = JT_soln(end,:); 
[time2,JT_soln2]=ode15s(@JR3ode,tspan2,init_cond_2, options, params); 
 
%Allow model to relax after activation  
params(5) = k_basaltxn_J; 
init_cond_3 = JT_soln2(end,:); 
[time3,JT_soln3]=ode15s(@JR3ode,tspan3,init_cond_3, options, params); 
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%Collect total traces for each species 
time=[time' time2' time3']'; 
 
JUND_soln=[JT_soln(:,1)' JT_soln2(:,1)' JT_soln3(:,1)']'; 
junD_soln=[JT_soln(:,2)' JT_soln2(:,2)' JT_soln3(:,2)']'; 
TGFBR3_soln=[JT_soln(:,3)' JT_soln2(:,3)' JT_soln3(:,3)']'; 
TGFbetaRIII_soln=[JT_soln(:,4)' JT_soln2(:,4)' JT_soln3(:,4)']'; 
R3_star=[JT_soln(:,5)' JT_soln2(:,5)' JT_soln3(:,5)']'; 
Venus =[JT_soln(:,6)' JT_soln2(:,6)' JT_soln3(:,6)']'; 
 
R3_star_o =[JT_soln3(:,5)']'; 
Venus_o =[JT_soln3(:,6)']'; 
 
%Fig. 3H-iii plot 
figure(1) 
 
a = subplot(2,3,3); 
plot(time, R3_star, 'r') 
xlim([490 550]) 
%axis([450 801 10 40]) 
 
xlabel('Time') 
ylabel('TGFBR3* reporter strength'); 
title(a, 'Increase k_t_x_n of JUND as system stimulus'); 
 
figure(1) 
subplot(2,3,6) 
plot(time, Venus, 'g') 
xlim([490 550]) 
%axis([450 801 80 120]) 
 
xlabel('Time') 
ylabel('JUND reporter strength'); 
 

7.2.13 Agent-based model code  

; Global variable  
breed [cells cell] 
breed [ghosts ghost] 
 
turtles-own [ KRT5 JUND locked TNC_prob] 
 
to setup 
; This flag is for if you want to draw a custom geometry or if you want to 
load a predetermined geometry 
  ifelse drawornot [import-world "cc_4.csv"] 
  [ 
   
  ] 
; Reset the random seed generator  
  random-seed timer  
; Set the default shapes for the cells 
  set-default-shape cells "circle" 
  set-default-shape ghosts "circle" 
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; Spawn a cell on any gray patch, and initialize the KRT5 and JUND basal 
levels 
ask patches [  
   if pcolor = gray [ 
     sprout-cells 1 [ 
      set KRT5 1 
      set JUND 1 
 
      set color 11 
      set locked 0 
      set TNC_prob 1 
    ] 
  ]   
  ] 
end 
 
to go 
; Ask patches to disappear  
  ask patches [set pcolor black] 
; Progress the cells  
  if ticks < 5000 [ 
    ask cells [progress] 
    ask cells [isghost] 
; Scale the color of the cells to the JUND level  
    ask cells [ 
      ifelse ((11 + (JUND / 100)) < 15) 
      [set color (11 + JUND / 100)] 
      [set color 15] 
] 
; Progress 
    tick 
  ] 
 
end 
 
to progress 
; If not a KRT+ cell, ramp up both KRT5 and JUND by a random amount scaled by 
the local TNC  
  if locked < 1 [ 
    set KRT5 KRT5 + ((random 100) / 100) / TNC_prob 
    set JUND JUND + ((random 100) / 100) / TNC_prob 
] 
end 
 
to isghost 
; If the KRT5 level exceeds the threshold, set the cell to a keratinized cell 
and secrete local TNC  
if KRT5 - JUND > threshold [ 
    ask cells-here[ 
      set breed ghosts 
      set color 45 
      if TNC [ 
        ask cells-on neighbors [ 
       set TNC_prob 2 * TNC_prob 
       ] 
      ] 
    ] 
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] 
end   
   
to clear 
  clear-all 
end 
 
; Draw custom geometries  
to draw-tumor 
   
   if mouse-down?[ 
    ask patch (mouse-xcor) (mouse-ycor) [ set pcolor gray ] 
   ] 
end 
 

 

7.2.14 Suspension assays 

 MCF10A-5E cells expressing the indicated constructs were trypsinized and plated at 

400,000 cells/ml in assay medium containing 5 ng/ml EGF on poly-(2-hydroxyethyl 

methacrylate) (poly-HEMA) coated tissue culture plates.  At the indicated time points, medium 

was removed by centrifugation at 150 rcf for 3 minutes.  Cells were washed with 500 µl ice-cold 

PBS.  For immunoblotting, cells were lysed in 62.5 mM Tris (pH 6.8), 2% SDS, 10% glycerol, 

0.01% bromphenol blue, 2.5% EtOH (0.04%), 100 mM DTT, and whole-cell extracts were 

separated on 6% or 12% SDS-PAGE gel.  For immunofluorescence, cells were fixed with 3.7% 

PFA at room temperature for 15 minutes, permeabilized with 0.3% Triton X-100 in PBS, and 

then processed for immunofluorescence as described above. 

 

7.3 Chapter 4 Methods  
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7.3.1 Single-cell model of regulated gene expression 

 Distributions of transcripts per cell were generated under the steady-state approximation 

as previously described (279, 280).  The basal lognormal regulatory state (Fig. 1A, blue) was 

defined with the following model parameters:  kbinding = 5, kunbinding = 10, kelongation = 50, kdegradation 

= 1. The exponential regulatory state (Fig. 1B, blue) was defined with the following model 

parameters:  kbinding = 0.5, kunbinding = 10, kelongation = 50, kdegradation = 1.  Basal regulatory states 

were perturbed by increasing kbinding by 10-fold (lognormal) or 20-fold (exponential), decreasing 

kdegradation by 3.3-fold (lognormal) or 5-fold (exponential), or both.  Probability densities were 

compared with the lognormal and exponential test distributions by integrating over integer copy 

numbers to generate a representative observation set.  Observations and distributions were 

compared with the qqplot function in MATLAB (Mathworks). 

 

7.3.2 Simulations of random 10-cell samples 

 Simulated 10-cell expression profiles were generated in MATLAB with the statistics 

toolbox or in R.  The LN–LN model assumes a binomial distribution for the two regulatory states 

and a lognormal distribution of the transcripts within each state.  For a random n-cell sampling 

(here n = 10), the number of cells drawn from the high regulatory state (h) was specified by a 

binomial distribution with parameters n and F.  Next, h expression measurements were randomly 

drawn from a lognormal distribution with log-mean µ1 and log-standard deviation σ.  The 

remaining n – h expression measurements were also drawn from a lognormal distribution with 

log-mean µ2 and log-standard deviation σ.  The sum of n measurements constituted one 

stochastic n-cell sample.  In the EXP–LN model, transcripts from the basal regulatory state were 
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drawn from an exponential distribution with rate parameter λ.  This procedure was repeated for 

the indicated number of random samples. 

7.3.3 Derivation of LN–LN maximum likelihood estimator 

 To derive the LN–LN maximum-likelihood estimator, we began with a mixed population 

of cells occupying one of two regulatory states.  The basal regulatory state expresses a transcript 

(g) at a low level with log-mean µ2
(g)

 and log-standard deviation σ.  The induced regulatory state 

expresses the transcript at a higher level with log-mean µ1
(g)

 and log-standard deviation σ.  The 

probability of drawing a single cell from the high regulatory state is characterized by the 

parameter F. 

 According to the two-state model, the single-cell expression for transcript g follows the 

pdf: 

fmixture
(g) = F ⋅ f1

(g) + (1−F) ⋅ f2
(g)

   (1) , 

where f2
(g)  and f1

(g)  are defined as: 

fv
(g),LN−LN (x) = 1

2πσ x
⋅exp −

log(x)−µv
(g)#$ %&

2

2σ 2

'
(
)

*)

+
,
)

-)
for x > 0 and v ∈ {1,2}  (2) . 

The ith random sample of transcript g, Yi
(g) , is the sum of n independent single-cell expression 

measurements (here, n = 10): 

 

Yi
(g) = Xij

(g)

j=1

n

∑
 

 (3) , 
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where Xij
(g)  is the expression of transcript g in the jth cell of the ith random sample.  Together, the 

random sample Yi
(g)  describing the n-cell mixture has the pdf:  

fn
LN−LN (y | F, µ1

(g), µ2
(g),σ ) =

n
j
"

#
$
%

&
'

j=0

n

∑ F j (1−F)n− j f( j, n− j )
(g),LN−LN (y)     (4) . 

n
j
!

"
#
$

%
& F j (1−F)n− j !

! F! ∙ 1-‐F
!-‐!

 represents the binomial selection of cells from the basal or 

induced regulatory states with probabilities F and 1 – F, respectively.  f( j, n− j )
(g)  is the density of a 

sum Z1 + … + Zn  of independent random variables representing the n-cell draw from the 

following mixture model: 

Zc
LN−LN =

LN(µ1
(g),σ 2 ) if 1≤ c ≤ j

LN(µ2
(g),σ 2 ) if j < c ≤ n

#
$
%

&%  
    (5) . 

The pdf for the sum of lognormally distributed random variables was approximated as previously 

described (281). 

 When expanded to a cluster of m transcripts, the log-likelihood function for the model 

parameters given k random n-cell samples is: 

 

LN−LN (F, µ1, µ2,σ ) = log[ fn
LN−LN (yi

(g) | F, µ1
(g), µ2

(g),σ )]
i=1

k

∑
g=1

m

∑   (6) , 

where µ1  and µ2  are vectors containing the transcript-specific log-means for the two regulatory 

states: µ1 = (µ1
(1), … , µ1

(m) )
 
and

 
µ2 = (µ2

(1), … , µ2
(m) ) .  The log-likelihood functions assume that 

the expression levels of each transcript are independent as defined by the specific mixture model 

and F.   
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 To derive the panel of maximum likelihood estimators, we began with a mixed 

population of cells occupying one of two regulatory states.  The basal regulatory state expresses 

a transcript (g) at a low level with 1) log-mean µ2
(g)

 and log-standard deviation σ for the LN–LN 

model, 2) log-mean µ2
(g)

 and log-standard deviation σ2 for the relaxed LN–LN model, or 3) mean 

and standard deviation (λ (g) )−1  for the EXP–LN model.  The induced regulatory state expresses 

the transcript at a higher level with 1) log-mean µ1
(g)

 and log-standard deviation σ for the LN–

LN model, 2) log-mean µ1
(g)

 and log-standard deviation σ1 for the relaxed LN–LN model, or 3) 

log-mean µ (g)  and log-standard deviation σ for the EXP–LN model.  In all mixture models, the 

probability of drawing a single cell from the high regulatory state is characterized by the 

parameter F. 

 According to the two-state model, the single-cell expression for transcript g follows the 

pdf: 

fmixture
(g) = F ⋅ f1

(g) + (1−F) ⋅ f2
(g)

   (7) , 

where f2
(g)  and f1

(g)  for the LN–LN mixture model are defined as: 

fv
(g) (x) = 1

2πσ x
⋅exp −

log(x)−µv
(g)#$ %&

2

2σ 2

'
(
)

*)

+
,
)

-)
for x > 0 and v ∈ {1,2}  (8) , 

f2
(g)  and f1

(g)  for the relaxed LN–LN mixture model are defined as: 

fv
(g) (x) = 1

2πσν x
⋅exp −

log(x)−µv
(g)#$ %&

2

2σν
2

'
(
)

*)

+
,
)

-)
for x > 0 and v ∈ {1,2}  (9) , 

and f2
(g)  and f1

(g)  for the EXP–LN mixture model are defined as: 
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f2
(g) (x) = λ (g) ⋅exp(−λ (g) ⋅ x) for x ≥ 0

f1
(g) (x) = 1

2πσ x
⋅exp −

log(x)−µ (g)$% &'
2

2σ 2

(
)
*

+*

,
-
*

.*
for x > 0

 (10) . 

The ith random sample of transcript g, Yi
(g) , is the sum of n independent single-cell expression 

measurements (here, n = 10): 

Yi
(g) = Xij

(g)

j=1

n

∑
 

 (11) , 

where Xij
(g)  is the expression of transcript g in the jth cell of the ith random sample.  Together, the 

random variable Yi
(g)  describing the n-cell LN–LN mixture has the pdf:  

fn (y | F, µ1
(g), µ2

(g),σ ) =
n
j
!

"
#
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%
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j=0

n

∑ F j (1−F)n− j f( j, n− j )
(g) (y)    (12) , 

the relaxed LN–LN mixture has the pdf: 

fn (y | F, µ1
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and the EXP–LN mixture has the pdf: 
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 represents the binomial selection of cells from the basal or 

induced regulatory states with probabilities F and 1 – F, respectively.  f( j, n− j )
(g)  is the density of a 

sum Z1 + … + Zn  of independent random variables representing the n-cell draw: 

Zc =
LN (µ1

(g ) ,σ 2 ) if 1≤ c ≤ j

LN (µ2
(g ) ,σ 2 ) if j < c ≤ n

"
#
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  (LN–LN mixture)  (15) , 
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Zc =
LN(µ1

(g),σ1
2 ) if 1≤ c ≤ j

LN(µ2
(g),σ 2

2 ) if j < c ≤ n

"
#
$

%$  
  (relaxed LN–LN mixture) (16) , 

Zc =
LN(µ (g),σ 2 ) if 1≤ c ≤ j
EXP(λ (g) ) if j < c ≤ n

"
#
$

%$   
(EXP–LN mixture)  (17) . 

The pdf for the sum of log-normally distributed random variables was approximated as 

previously described(281) and applied to the LN–LN and relaxed LN–LN mixture models.  The 

sum of independent exponentially distributed random variables follows an Erlang 

distribution(282).  The pdf for the EXP–LN mixture model is the convolution of a log-normal 

and an Erlang density, whose integral was solved numerically. 

 When expanded to a cluster of m transcripts, the log-likelihood function for the model 

parameters given k random n-cell samples is: 

(F, µ1, µ2,σ ) = log[ fn (yi
(g) | F, µ1

(g), µ2
(g),σ )]

i=1

k

∑
g=1

m

∑    (LN–LN mixture)  (18)
 

(F, µ1, µ2,σ1,σ 2 ) = log[ fn (yi
(g) | F, µ1

(g), µ2
(g),σ1,σ 2 )]

i=1

k

∑
g=1

m

∑   (relaxed LN–LN mixture)  (19)
 

(F, µ, λ,σ ) = log[ fn (yi
(g) | F, µ (g), λ (g),σ )]

i=1

k

∑
g=1

m

∑   (EXP–LN mixture)  (20) 

where µ1 , µ2 , µ , and λ  are vectors containing the transcript-specific log-means (or inverse 

means for λ  in EXP–LN mixture) for the two regulatory states: µ1 = (µ1
(1), … , µ1

(m) )
 
,
 

µ2 = (µ2
(1), … , µ2

(m) ) , µ = (µ (1), … , µ (m) ) ,  and λ = (λ (1),…,λ (m) ) .  The log-likelihood functions 

assume that the expression levels of each transcript are independent within the two regulatory 

states defined by the specific mixture model and F. 
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7.3.4 Maximum-likelihood parameter estimation and model selection 

 The derived log-likelihood functions in equations 18–20 are maximized by the most 

likely combination of parameters for the data Yi
(g) .  To estimate the parameters for the LN–LN 

mixtures, we required that µ
1

(1) > µ2
(1)µμ!

(!) > µμ!
(!).  This constraint ensured identifiability because 

(F, µ1, µ2,σ ) = (1−F, µ2, µ1,σ ) .  We also transformed F with the logit function andλ  and σ 

with the logarithm function to enable the use of faster, unconstrained optimization algorithms. 

 Because the log-likelihood function was multimodal, it precluded the straightforward use 

of gradient-based approaches to find globally optimal parameter combinations.  We solved the 

high-dimensional non-convex global optimization problem by combining genetic and simplex 

algorithms.  First, the log-likelihood function was computed at randomly drawn parameter 

combinations to identify high-likelihood regions in parameter space at computationally low cost.  

In the regions of highest log-likelihood, we then used the Nelder-Mead algorithm (283) to 

identify local maxima of the likelihood function.  We further localized the global optimum by 

repeating a random search of parameter space around the optimum identified by the Nelder-

Mead algorithm.  The resulting high-likelihood regions were used to seed another Nelder-Mead 

optimization.  The iterations of random search and Nelder-Mead optimization continued until 

convergence. 

 For estimating model parameters from transcriptional clusters, we first considered 

smaller subgroups of the cluster of interest.  The best balance of computational time and stability 

of the resulting parameter estimates was achieved with four-gene subgroups (See SI Appendix, 

fig. S6).  The log-likelihood of each subgroup was optimized by the algorithm described above 

to identify the most-likely parameters for the transcripts in the subgroup.  Based on the subgroup 
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estimate, we then kept fixed µ1 and µ2 (for the LN–LN and relaxed LN–LN models) or µ  (for 

the EXP–LN model) and globally inferred F and σ (or F, σ1, and σ2 for the relaxed LN–LN 

model, or λ , F, and σ for the EXP–LN model) by using the optimization algorithm described 

above.  To confirm that the global optimum for each model had been identified, we pursued a 

constrained optimization in parallel, which required that the two regulatory states were 

sufficiently distinct from each other.  Specifically, the density of the high regulatory state was 

constrained to be greater than the low regulatory state in the domain between the mode of the 

high state and the largest observation in the dataset.  The likelihoods of the constrained and 

unconstrained optimizations were compared, and the higher likelihood inference was selected as 

the best parameterization for that mixture model.  Last, the three mixture models were compared 

according to their BIC score: 

BIC = −2(θ̂ )+ c log(mk)  (7) 

where θ̂  is the vector of inferred parameters, c is the number of inferred parameters in the model 

(including subgroup inferences), m is the number of transcripts in the cluster, and k is the number 

of n-cell random samples for each transcript.  The best model predicted two distinct regulatory 

states with the lowest BIC score. 

 Approximate 95% confidence intervals for the best model were estimated by numerically 

computing the inverse Hessian matrix of the negative log-likelihood function evaluated at the 

optimal parameter combination.  Each ith diagonal element (di) of this matrix leads to the 

confidence in the ith inferred parameter (θ̂i ) as follows:  

95%CIi = θ̂i ±1.96 di   (8) 
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 Source code for the maximum-likelihood parameter estimation can be found at 

http://hmgu.de/icb/StochasticProfiling_ML. 

 

7.3.5 Inference comparisons of one- and ten-cell random samples 

We simulated measurements for various gene clusters as described above with either n = 1 or 

n = 10, m = 12, and k = 16 with the mixture model and F specified in Table 1.  Values of µ1 , µ2

, λ , µ , and σ were drawn randomly from the individual transcripts comprising the inferences of 

Fig. 3 F and G and 4A.  Model parameters were inferred as described above with the correct 

value of n in equations 12 and 14.  The inference procedure was repeated 100 times, yielding 

estimates θ̂i
j  (j = 1, 2, ... 100) for each true parameter θi .  This gives the following Monte Carlo 

estimates of bias, variance, and mean-squared error: 

Bias(θ̂i ) =
1
100

θ̂i
j

j=1

100

∑ −θi

Var(θ̂i ) =
1
99

{θ̂i
j

j=1

100

∑ −θi}
2

MSE(θ̂i ) = Bias(θ̂i )
2 +Var(θ̂i )

 (9) 

 

 

7.3.6 Stochastic sampling 

Stochastic samples of SOD2 were collected as previously described (273, 277, 284).  Briefly, 3D 

cultures were snap frozen and sectioned at day 10 of morphogenesis.  Random 10-cell samples of 

ECM-attached acinar cells were achieved by laser-capture microdissection from cryosections.  
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The RNA collected from these samples was amplified with a custom small-sample mRNA 

amplification procedure and quantified by qPCR or microarray (273, 277, 284).  Microarray-

based expression clusters were identified based on correlated expression fluctuations as 

described (273, 277). 

7.3.7 Digital scoring of expression-frequency index 

Multicolor RNA FISH images were acquired with WGA, the riboprobe of interest, and the 

loading-control riboprobes as described above.  Individual ECM-attached cells were manually 

segmented in ImageJ using the WGA, riboprobe, and loading-control stains to determine cell 

boundaries.  The segmented regions of interest (ROIs) were saved as a single ZIP-file in ImageJ.  

The pixels within each ROI were extracted and compared against a null pixel distribution 

comprised of a random set of pixels from segmented cells within the same image.  The 85th–95th 

percentiles of the cell ROI and the null distribution were compared after bootstrapping each 

distribution 300 times.  A cell was scored in the high regulatory state if the 90% bootstrapped CI 

of the cell ROI was consistently greater than the 90% bootstrapped CI of the null distribution 

when evaluated from the 85th–95th percentile of pixels.  Performing the same analysis on the 

loading-control riboprobes showed that less than 1% of all cells segmented showed detectable 

differences in total RNA expression.  Therefore, the expression-frequency index for a field of 

view was quantified as the number of cells detected in the high regulatory state divided by the 

total number of cells segmented.  At least 18 fields of view with at least 10 cells per field were 

acquired for each gene analyzed.  Source code for image analysis can be found at 

http://hmgu.de/icb/StochasticProfiling_ML. 
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7.3.8 shRNA cloning and lentiviral RNAi 

shRNA sequences against PIK3CD were cloned based on the targeting sequences suggested by 

the RNAi Consortium, except that the XhoI restriction site in the shRNA loop was changed to a 

PstI site for easier diagnosis during cloning.  shGFP control was used as previously described 

(47).  Primers were annealed at 95ºC in annealing buffer (10 mM Tris-HCl, 100 mM NaCl, 1 

mM EDTA) for 5 min on a thermocycler and cooled slowly to room temperature by unplugging 

the instrument.  Annealed primers were phosphorylated in vitro with T4 polynucleotide kinase 

(New England Biolabs) and then cloned into pLKO.1 puro (274) that had been digested with 

EcoR1 and AgeI.  Lentiviruses were packaged and transduced into MCF10A-5E cells as 

previously described (277).  Stable lines were screened for knockdown efficiency by 

immunoblotting. 

7.3.9 Cell lines 

 The MCF10A-5E clone was maintained as previously described (73). shGFP and 

shPIK3CD cell lines were derived by transducing MCF10A-5E cells with lentiviruses 

and selecting with 2 µg/ml puromycin as previously described (100). 

7.3.10 3D culture 

 MCF10A-5E, shGFP, and shPIK3CD cell lines were cultured in 3D as previously 

described (98). For p110δ inhibitor experiments, 20 µM IC87114 (Calbiochem) was 

added to the assay medium and replaced every four days. 

7.3.11 Riboprobe synthesis 

 Digoxigenin or dinitrophenol-labeled riboprobes for the genes of interest were cloned, 
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synthesized, and validated as previously described (73, 100). 

7.3.12 RNA FISH and expression-frequency scoring 

 MCF10A-5E 3D cultures were processed for RNA FISH as previously described (73, 

100).  Individual ECM-attached cells were scored manually by fluorescence intensity. 

Experimental estimates of F were measured by calculating the number of ECM-attached cells 

with strong fluorescent signal over basal levels of the probe divided by the entire ECM-attached 

population in a given tissue section. At least 150 ECM-attached cells were scored per slide. 

7.3.13 Frozen section immunofluorescence and expression-frequency scoring 

 MCF10A-5E 3D cultures were processed for immunofluorescence as previously 

described (100). Sections were stained for IRF2 (1:200; Santa Cruz) and E-cadherin (1:500; 

BD Transduction Laboratories) and counterstained with DAPI to visualize nuclei. 

Experimental estimates of F were measured by calculating the number of ECM-attached 

cells with strong fluorescent signal over basal levels of the probe divided by the entire 

ECM-attached population in a given tissue section. At least 150 ECM-attached cells 

were scored per slide. 

7.3.14 Confocal microscopy 

 RNA FISH sections or whole-mount stained 3D cultures were imaged with a 40°—, 1.3 

NA oil objective on a Nikon TE-2002-E2 inverted confocal microscope with one 488 nm Ar 

laser and two HeNe lasers with excitation wavelengths of 543 and 632 nm (Melles Griot). 

Wheat germ agglutinin (WGA) conjugated to Alexa Fluor 488 (Molecular Probes) was 

imaged using a 488 nm excitation laser and bandpass emission filter of 515–530 nm. 
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RNA FISH probes and pRb immunofluorescence samples were imaged using a 543 nm 

excitation laser and bandpass emission filter of 565–615 nm. DRAQ5 nuclear 

counterstains and loading control riboprobes (100) were imaged using a 632 nm excitation 

filter and 650 nm long-pass emission filter. Laser gains were adjusted to avoid 

widespread saturation of the photomultiplier tubes during imaging. 

7.3.15 Whole-mount immunofluorescence and pRb quantification 

 Whole-mount immunofluorescence of shGFP and shPIK3CD cultures was performed as 

previously described (100). Samples were stained for phospho-Rb Ser807/811 (1:200; Cell 

Signaling) and counterstained with DRAQ5 to visualize nuclei. Samples were scored for 

pRb-positive acini as before (100). 

7.3.16 Image processing 

 For probe validation images, antisense and sense control images were exposure matched 

and scaled to identical linear ranges of intensity display. Representative images of 

riboprobe staining and pRb staining were scaled to highlight regions of strong staining. 

7.3.17 qPCR 

 qPCR was performed on cDNA reverse transcribed from MCF10A-5E RNA isolated 

during 3D culture as previously described (278). Relative copy numbers of PIK3CA, 

PIK3CB, and PIK3CD were obtained using a common standard of MCF10A-5E genomic 

DNA. 
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7.3.18 IC87114 inhibitor validation 

 MCF10A-5E cells were plated in 6-well dishes and cultured in serum-free medium 

overnight. Wells were pre-treated with or without 20 µM IC87114 (Calbiochem) for one 

hour and then stimulated with 10 µM lysophosphatidic acid (Sigma-Aldrich) for five 

minutes. Cells were lysed as previously described (100), and lysates were probed for pAkt 

levels by immunoblotting. 

7.3.19 Immunoblotting 

 30–50 µg of clarified cell extract was separated on an 8% or 10% SDS-PAGE gel and 

transferred to PVDF (Millipore). Membranes were blocked in 0.5°— Odyssey blocking 

buffer (Licor) for one hour and incubated overnight at 4°C in 0.5°— Odyssey blocking 

buffer with 0.1% Tween containing one of the following primary antibodies: anti-p110δ 

(1:500; Santa Cruz Biotechnology) or anti-pAkt Ser473 (1:1000; Cell Signaling). 

Additionally, chicken anti-tubulin (1:20000; Abcam) was added to each primary solution 

as a loading control. Membranes were washed four times in phosphate buffered saline + 

0.1% Tween (PBS-T) for five minutes each, and incubated in 0.5°— Odyssey + 0.1% 

Tween + 0.01% SDS with the following secondary antibodies: goat anti-rabbit 800 (1:20000; 

Licor) and goat anti-chicken 680 (1:20000; Licor). Membranes were washed 

four times with PBS-T and once with PBS for five minutes each before imaging with an 

Odyssey detection system (Licor). 

 

7.4 Chapter 5 Methods 
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7.4.1 Cell culture, 3D spheroid assay, phenotype scoring  

Cells were cultured as previously described or by ATCC standards (53).  3D cultures 

were performed as previously described (53).  Constitutive knockdown assays were performed 

by inducing hairpins three days in 2D before seeding in 3D.  Overexpression assays were 

performed by inducing overexpression 24 hours in 2D before seeding in 3D.  Breast cancer cell 

line spheroids were grown in the same conditions as the MCF10A-5E spheroids or in the ATCC 

growth media.  Cultures were treated with the corresponding concentrations of ligands prepared 

according to datasheet (Peproech).  Phenotypes were scored based on criteria for each 

phenotype.  The premise was done as previous described (53).  

7.4.2 Stochastic profiling transcriptional analysis  

Stochastic transcriptional profiles were collected in a previous study (73).  Measurements 

were analyzed by creating an average signature of the Z-score profiles of GDF11, TGFBR3, and 

TGFBI.  Every reliably detected transcript was correlated to the aggregate profile by Pearson and 

Spearman correlation.  The top candidates were manually curated and GO-term curated for 

TGFβ-related genes (285).  

7.4.3 Cryosection RNA FISH and protein immunofluorescence 

RNA FISH and protein immunofluorescence on spheroid cryosections were performed as 

previously described (53).  Immunofluorescent slides underwent antigen retrieval as previously 

described.  GDF11 antisense probe was used at 20 ng/mL with a 60 degrees Celsius 

hybridization temperature.  EPR, R+D, and 1E6 monoclonal antibodies were used at 1:200 

dilution.  
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7.4.4 Whole mount immunofluorescence  

Whole mount immunofluorescence was performed as previous described (53).  

7.4.5 RNA sequencing analysis  

RNA sequencing data was downloaded from public repositories (27, 211).  The reads per 

million were calculated for the analyzed transcripts.  

7.4.6 Immunoblotting 

Immunoblotting was peformed as previously described (286).  All antibodies used at 

1:1000 dilution except for p38, HSP90, V5, FLAG (1:5000) and GAPDH, vinculin, tubulin 

(1:20000).  

7.4.7 Transcriptional profiling   

MCF10A-5E or NMuMG spheroids were cultured for six days in 3D.  Each cell line was 

stimulated with 250 ng/mL GDF11 or 50 ng/mL TGFβ1 for 4 hours. RNA was collected as 

previously described (100).  RNA was profiled using Illumina BeadChip arrays and analyzed 

using the lumi R package.   

7.4.8 Intraductal imaging and bioluminescence imaging  

Intraductal injectiions and bioluminescence imaging were performed as previously 

described (53).  Knockdowns were induced by placing the mice on doxycycline chow (625 

mg/kg) after two weeks of standard chow.  GDF11 inocluation was performed by diluting 1 

mg/mL GDF11 (Peprotech) into the cell suspension (final concentration: 100 µg/mL).   
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7.4.9 Clinical immunohistochemistry and scoring 

Clinical immunohistochemistry was performed as previously described (53).  1E6 foci 

were counted across every 4x field of view with normal or tumor tissue present.  

7.4.10 Anitbody validation  

Cell pellets from 293Ts were transfected with LacZ or GDF11 overexpression and 

GDF11 hairpins.  These pellets were paraffin embedded.  Slides were stained with EPR antibody 

similarly as the clinical specimens.  Cell pellets from MDA-MB-231 cells were transfected with 

GDF11 hairpins, prepared as cell pellets, and stained for 1E6 antibody.  Whole cell lysates were 

degylcosylated with the New England Biolabs Protein Deglycosylation Kit.  

7.4.11 Conditioned medium analysis  

0.5 micrograms of anti-V5 antibody was co-inbuated with 500 microliters of conditioned 

media overnight at 4 degrees Celsius.  Protein A/G beads purify the antibody, and the sample is 

examined by Western blot.  TGFβ1 ELISA was performed as described by the purchased kit 

(R+D systems).   

7.4.12 Plasmids  

Hairpin plasmids were cloned as previously described (96), with targeting sequences 

identified from the RNAi consortium.  GDF11 overexpression constructs were obtained by 

recombining a GDF11 expression plasmid from Arizona State into the panel of destination 

vectors.  SMAD4 and ID2 overexpression plasmids were obtained by recombining the coding 

sequnces of those two genes cloned into a 3xFLAG pEN_TT_mirC2 plasmid and pSLIK_NEO.   
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