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Abstract

The successful exfoliation of graphene in 2004 ignited the interest in two-dimensional

materials within the scientific community. Since then, the study of atomically thin and

ultrathin layered materials has grown as an interdisciplinary field and over the years,

hundreds of new two-dimensional materials have been discovered. This dissertation

focuses on the transition metal dichalcogenides, which is the most commonly studied

family of two-dimensional materials after graphene. Among a wide range of physical

phenomena exhibited by these compounds, the incommensurate charge density wave

phase of the 2H− polytype of TaS2 is primarily analyzed in comparison to the similar

compounds, 2H − NbSe2 and 2H − TaSe2. Angle resolved photoemission spectroscopy

(ARPES) is used as the primary experimental probe for the presented band structure

studies due to its unique ability to resolve both energy and momentum in order to map

intricate details of the reciprocal space.

The momentum space of a 2H− transition metal dichalcogenide consists of concentric

double-walled Fermi barrels about both K and Γ high symmetry points in its normal

state. Using this momentum space landscape as a blueprint, the presented work iden-

tifies both generalizable and compound-specific features of the incommensurate charge

density wave order of these compounds. Reported experiments are conducted in energy,

momentum, and temperature domains.

In general, the Γ– centric Fermi surface barrels exhibit no charge density wave energy

gap, while K– centric barrels are preferentially gapped. However, the details of the



momentum specificity of the gap change among compounds. These variations can be

explained using the differences in orientations of transition metal d-orbitals. Further,

this gap is particle-hole asymmetric with respect to the chemical potential throughout

the momentum space. Contrary to the expectations, a gap is observed at temperatures

higher than the charge density wave transition temperature. Comparable pseudogaps

have been observed in several compounds under the scientific spotlight, including high

temperature cuprate superconductors. In the case of charge density waves, this pseudo-

gap can be related to short-range ordering in the sample which remains even at higher

temperatures, despite the long-range charge density wave phase coherence being dimin-

ished. When comparing momentum space maps among different samples, the sizes of the

Γ– centric Fermi surface barrels stay the same while the K– barrel sizes vary. Within the

samples studied, these variations can be correlated with charge density wave transition

temperatures of each compound.

Formulating a model applicable for the entire material class is of utmost importance as

a basis for further understanding of these materials. However, according to preceding

literature, initial attempts of explaining the formation of charge density waves using

the traditional ‘Fermi surface nesting’ model have been persistently unsuccessful. On

the other hand, in the case of presented work, an alternate tight binding model with

strong electron-collective mode coupling is successful in explaining the reported observa-

tions. In support of this model, observed band dispersions of the samples show distinct

renormalization signatures due to electrons getting coupled to some collective modes.

2H − TaS2 was further analyzed in order to probe the underlying cause of these col-

lective modes where they are identified as phonons. The work presented suggests that



the mechanism behind the incommensurate charge density wave phase of the 2H− poly-

type of transition metal dichalcogenides is the electron-phonon coupling, rather than the

Fermi surface nesting.

Lead chalcogenide, which is another class of transition metal chalcogenides with a three-

dimensional structure is studied in order to understand their band structure and the

mechanism leading to the outstanding thermoelectric performance observed above a

characteristic crossover temperature. The mechanism behind this phenomenon is con-

troversial, mainly in terms of predicted crossover temperature values. The study of n

and p doped PbTe, PbSe, and PbS reveal an upper valence band with lighter holes and

a lower valence band with heavier holes. This is the first experimental observation of

the lower valence band of these compounds.

Upon the increase of the temperature, the lower valence band which lies below the upper

valence band rises in energy and eventually crosses over to become the topmost valence

band. The heavier holes in the lower valence band increase the thermal carrier density,

leading to superior thermoelectric performance at higher temperatures. Additionally, the

indirect nature of the bandgap helps in mitigating any adverse effects due to intrinsic

carrier activation. Apart from demonstrating the details of this mechanism via a series

of temperature dependent ARPES measurements, crossover temperature values are also

predicted for the compounds under study. The superior thermoelectric efficiency of lead

chalcogenides can be explained by the temperature dependent convergence of light and

heavy hole valence bands.
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Chapter 1

Introduction

A two-dimensional material, in general, can be described as a hybrid between a solid, in

the periodic plane -and- a molecule, in the perpendicular direction[1]. In these materials,

electrons have the freedom of motion in a two-dimensional plane but are restricted in

the third dimension. Graphene, shown in the Fig. 1.1(a), is the simplest example and

is an atomically thin material[2]. These materials in their common form are stacked in

layers, such as graphite. Despite many fascinating properties of graphene, the lack of

an electronic bandgap has led to the discovery of other two-dimensional materials with

semiconducting properties[3, 4]. Of the several hundred two-dimensional materials that

exist, transition metal dichalcogenides (TMDs)[3] will be studied in this dissertation. As

shown in the Fig 1.1(g), these ultra-thin materials are quasi-two-dimensional structures.

Two-dimensional materials, including TMDs, possess a variety of electronic properties

existing as insulators, semimetals, metals, superconductors, charge density wave mate-

rials and semiconductors with direct and indirect band gaps covering the range from

ultraviolet to infrared including the visible spectrum. Band structures of TMDs will be

studied using angle resolved photoemission spectroscopy (ARPES).

1



Chapter 1. Introduction 2

Figure 1.1: Structures of two-dimensional materials. [1]
Atomically thin 2D materials: (a) graphene, (b) silicene, germanene and; (d,e)
their derivatives, (c) silicon carbide (SiC), hexagonal boron nitride (H-BN), the class
of α- transition metal chalcogenides (α-TMC). and (f) the class of β- transition metal
chalcogenides (β-TMC). Ultrathin 2D materials: (g) H and T polytypes of
transition metal dichalcogenides (TMD), (h) the class of transition metal
chalcogenides (TMC) and (i) the class of transition metal halides (TMH).
Unit cells are depicted in red. Color code: metals(M) in dark blue, halides(X) in
green, chalcogenides(Q) in yellow, nitrogen in medium blue, carbon in grey, silicon
and germanium in gold, boron in pink and hydrogen in white.
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1.1 Charge Density Waves in Transition Metal Dichalco-

genides

1.1.1 Transition Metal Dichalcogenides (TMDs)

Chalcogenides are chemical compounds consisting of group 16 anions (S, Se, and Te, in

particular) and at least one electropositive element. In the case of TMDs, this cation is

a transition metal. They have the chemical formula MQ2, where M is a transition metal,

and Q is a chalcogen. TMDs are about 60 in number, and about 40 (∼60%) of them are

quasi 2D layered structures[5], where a transition metal(M) layer is sandwiched between

two chalcogen(Q) layers as in Q-M-Q layering order as shown in Fig. 1.2(d). Atoms

are held with intra-layer chemical bondings, forming slabs. Such slabs are stacked in a

layered arrangement as in Fig. 1.2(c) with comparatively weak inter-layer Van-Der-Walls

bondings. This quasi-two-dimensional nature leads to a higher degree of anisotropy in

the electronic structure.

Layered TMDs is a class of materials with rich phase diagrams, spanning over a diverse

spectrum of quantum phenomena such as metallic phases, semiconductivity, Mott insu-

lator behavior, metal insulator-transitions, Kondo effect, superconductivity and charge

density waves[6–10][6, 11–18], including phase competition/coexistence of the latter

two[19–21]. The layered nature of TMDs make them quasi 2D structures, somewhat

analogous to graphene, but with a layer thickness of 3 atoms. Techniques such as strain

engineering [22], exfoliation [23] and chemical intercalation [11, 17, 24–30] can be used

to enhance desired properties of these materials [12, 13, 31–34]. Further, TMDs can be

formed into mono layers, ultra-thin layers and nanostructures for a series of applications

including chemical electro-catalysis, opto-electronics, batteries and supercapacitors[35].
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Figure 1.2: Crystal structure of transition metal dichalcogenides (TMDs).
(a) The 1T (octahedral) and 2H (trigonal prismatic) structures assumed by TMDs.
‘M’ is a transition metal cation and ‘Q’ is a chalcogen (group 16) anion. (b) Unit cell
for the 2H polytype, note that the existence of two MQ2 formula units in one unit cell.
(c) Two adjacent slabs of 2H -MQ2 held by Van-Der-Walls bondings. (d) Placement
of metal (M) and chalcogen (Q) atoms in an alternating layered arrangement in the
2H structure. (e) First Brillouin zone in the reciprocal space for the 2H -MQ2 with
key symmetry points labeled. (f) Hexagonal two dimensional Brillouin zone.
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For example, Fe intercalated 2H − TaSe2 alloys have shown highly improved magne-

tocrystalline anisotropy [36].

Among the several crystal structures exhibited by these compounds,Trigonal 1T and

Hexagonal 2H structures with octahedral (trigonal anti-prismatic) and trigonal pris-

matic coordination are the most prominent polytypes [5, 9, 37–39]. These structures

are shown in Fig. 1.2(a). This study considers 2H–polytype which consists of two QM2

formula units per unit cell as shown in the Fig. 1.2(b)[10]. 2H– structure has D3h point

group symmetry and P63/mmc (No.194) space group symmetry[40, 41] while the recip-

rocal space group is P6/mmm∗ (No.191). A simplified three-dimensional Brillouin zone

diagram is given in the Fig. 1.2(e) and the two-dimensional projection of this Brillouin

zone is a hexagon, as shown in the Fig. 1.2(f).

1.1.2 Charge Density Wave (CDW) Phenomena

The driving factor of the CDW order is the pairing of electrons and holes, while the

electron–electron pairing is responsible for superconductivity. In the latter case, Bogoli-

ubov dispersion is the signature of the pairing, which has been experimentally verified via

ARPES measurements for compounds like high temperature cuprate superconductors

[42–44]. In general, Bogoliubov dispersion is an approximate solution for the ground

state of a quantum system of identical bosons, for a given potential. To figure out the

characteristic dispersion signature for CDW pairing, denote the wave vector, qCDW as

q for the simplicity. As an example, Fig. 1.3(b) shows a specific case when q = 2kF ,

where kF is the Fermi momentum. Consider an electron with a momentum k which

would have an electronic dispersion (i.e., energy as a function of momentum), ϵk.
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Figure 1.3: Characteristics of the charge density wave (CDW) phase.
(a) A one dimensional chain of atoms subjected to the Peierls transition. CDW
modulation of the electronic charge distribution is shown with the underlying periodic
lattice distortion (PLD) of ion cores. (b) Bogoliubov dispersion of electronic bands.
This is for the specific case of q = 2kF (where kF is the Fermi momentum). Band
dispersion of CDW state is shown in a gray-scale proportional to the electron
occupancy while the expected normal state dispersion (ϵk) is given by a red dashed
line. At the CDW transition, dispersion splits into two branches, and at k = ±kF ,
they are separated by an interband gap of 2∆k, which is twice of the CDW energy
gap.



Chapter 1. Introduction 7

under the action of the CDW interaction, this electronic state will be coupled to another

state with momentum k+q, and thus the dispersion will be modified as [45]:

Ek =
1

2
(ϵk + ϵk+q)± [

1

4
(ϵk − ϵk+q)

2 +∆2
k]

1
2 (1.1)

where, ϵk is the dispersion of the normal state as shown by a red dashed line in Fig.

1.3(b), and ∆k = ∆CDW (k), which is the CDW energy gap[46]. From the equation

1.1, it is clear that the dispersion will split into two branches (±), an upper(+) branch

and a lower(−) branch, as shown in Fig. 1.3(b). When the momentum k associated

with an electron is increased from 0, for smaller k, its energy will follow the normal

dispersion (Ek −→ ϵk). But while approaching k −→(k+q), electronic energy Ek will

deviate to lower energies in the lower branch, reaching a maximum energy of (ϵk −∆k)

which will occur at the momentum k=(k+q). For the particular example considered,

this will occur at the momentum kF . On the other hand, the upper(+) branch is the

mirror image of the lower(−) branch on the horizontal energy (ω) axis, which drops to

a minimum energy of (ϵk + ∆k) at same momentum value (k+q) as for the lower(−)

branch. It can be seen that the interband gap = 2∆k = 2∆CDW (k). As evident from

the Fig. 1.3(b), branches of Ek do not cross through chemical potential, µ (i.e., at

ω = 0). Rather, lower(−) and upper(+) branches bend downward and upward at kF,

respectively. This bending of the electronic dispersion signifies the electron-hole pairing

of the CDW state.

The transition to the CDW phase, much like in superconductivity, is a phenomenon

emergent from a symmetry breaking of its core lattice[47]. To characterize the CDW

state, a complex order parameter, Ψ can be defined with a non-zero amplitude and phase
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for T < TCDW [48]. The amplitude of this order parameter is directly proportional to

the CDW energy gap, ∆CDW . Consider the one-dimensional chain of atoms subjected

to Peierls like CDW transition, as depicted in Fig. 1.3(a). The normal state spacial

charge density is ρ(r)avg, which is a constant, and the CDW state charge density is

ρ(r). The CDW order parameter Ψ is then ρ(r)− ρ(r)avg, which is a complex quantity

in general. In the CDW state, when T < TCDW , the order parameter Ψ will be a

sinusoidal modulation[45]:

ρ(r) = ρ(r)avg + ρ0 cos(qCDW .r+ ϕ) (1.2)

Ψ = ρ(r)− ρ(r)avg =
2∆CDW

g(|q|)
cos(qCDW .r+ ϕ) (1.3)

where the parameter g(|q|) is the momentum dependent electron-phonon coupling func-

tion. It is straightforward to see that the amplitude of the order parameter is directly

proportional to the magnitude of the CDW energy gap; ρ0 ∝ ∆CDW . The deformation

of the underlying lattice can be given as,

Yn = Y0 sin(n|qCDW |a+ ϕ) (1.4)

where, n is an integer which is the position index of an ion, Yn is the deviation of

the nth ion and a is the lattice constant. Since the order parameter and the lattice

deformation are represented by cosine and sine functions respectively, the periodic lattice

distortion(PLD) is out of phase with the charge density wave, as shown in the Fig. 1.3(a).
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The formation of CDWs is believed to be related to some of the interesting phenomena

observed in condensed matter physics such as the pseudogap in high temperature cuprate

superconductors [49–51], enormous mass renormalization of heavy fermions [52, 53] and

colossal magnetoresistance in manganite compounds [54, 55]. However, the study of

CDW order in these cases is challenging due to the simultaneous occurrence of several

different types of interactions in the systems[47]. Therefore, the study of prototype

CDW materials such as TMDs is useful since they possess comparatively simpler crystal

structures and electronic behaviors.

1.1.3 The Formation of Charge Density Waves in Transition Metal

Dichalcogenides

The Fig. 1.4 shows the nature of two-dimensional commensurate charge density waves

in 2H − TaSe2 (left column) and 1T − TaS2 (right column). The formation of the real

space super-lattice and the related subdivision of the momentum space is significant.

In the normal state, due to the underlying atomic periodicity, real space lattice has unit

cells as indicated in green dashed lines in the Fig. 1.4(a) and (b). The corresponding

reciprocal lattices, with Brillouin zones marked in green dashed lines are given in Fig.

1.4(c) and (d) respectively. Consider hexagonal clusters of Ta atoms in 2H − TaSe2

marked in the Fig. 1.4(a). Upon CDW transition, Ta atoms in the perimeter of the

hexagon marked as Tab (dark gray) would displace toward the Ta atom, Taa (black) in

the center. Similarly, in the case of 1T −TaS2, both Tab (dark gray) and Tac (light gray)

atoms in the perimeter of ‘star-of-David’ structures would move toward the Taa (black)

in the center.
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Figure 1.4: Normal and CDW states of 2H- and 1T -TMDs.
Please see the next page for the details.
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Normal and CDW states of 2H- and 1T -TMDs.
Continued from the previous page ...
Left side (a) (c) (e) corresponds to 2H −TaSe2 while right side (b) (d) (f) corresponds
to 1T −TaS2. (a, b) Schematic real space locations of Ta atoms. The arrows indicate
in-plane displacements of the Ta atoms from their original positions upon the
transition to commensurate CDW state (arrow lengths are not to scale). The Ta
atoms at sites labeled ‘a’, ‘b’, and ‘c’ behave differently in the periodic lattice
distortion (PLD) patterns. Normal state real space lattice unit cells are indicated in
green dashed lines while CDW state super-lattice lattice unit cells are outlined in blue
solid lines. (c, d) Simulated reciprocal space diagrams for normal (T > TCDW ) and
reconstructed commensurate CDW(T < TCDW ) phases. Normal state reciprocal
lattice unit cells (i.e., 1st Brillouin zones) are indicated in green dashed lines while
CDW state reciprocal lattice unit cells are outlined in blue solid lines. In (d), The red
arrows mark possible nesting vectors. (e) Experimental ARPES intensity map of
2H − TaSe2 for normal and CDW phases, which closely resemble (c). Darker tones
represent higher intensity. (ARPES Photon energy, hν= 82 eV) (f) Experimental
ARPES band structure of 1T − TaS2 for normal and CDW phases, ω is the energy
with respect to the Fermi level. Formation of gaps are significan in CDW phase. (hν=
96 eV) Adapted from [10].

This displacement would break the lattice periodicity of the normal state, and a CDW

state with a modified lattice periodicity will emerge. The real space unit cell of the CDW

state indicated in blue solid lines on the Fig. 1.4(a) and (b), would usually have a larger

unit cell with longer spacial periodicity giving rise to a super-lattice. Accordingly, the

momentum space will be subdivided into smaller Brillouin zones upon CDW transition.

The opening of band gaps in CDW state, as discussed in the section 1.1.2 can be seen

on the Fig. 1.4(f) as well.

Out of all the diverse properties and the multitude of layered TMD compounds, the

presented studies focus on 2H − TaS2 which is a prototype material for charge density

wave (CDW) behavior, and compare it with two similar candidates, 2H − NbSe2 and

2H − TaSe2. Three compounds 2H − TaS2, 2H − NbSe2 and 2H − TaSe2 have CDW

transition temperatures (TCDW ) ∼ 75 K, 33 K and 122 K, respectively [19, 56–58]. Below

TCDW , system enters into an incommensurate CDW order. Further, in the case of 2H−

TaSe2, the system goes from an incommensurate to a commensurate CDW order below ∼
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90 K. Phase competition is also significant in TMDs, just as in high temperature cuprate

superconductors. For 2H − TaS2, CDW order coexists with superconductivity[19–21]

below 0.8 K. In this incommensurate CDW state under study, the system shows a

hexagonal symmetry[59, 60] characterized by a CDW wave vector qCDW having the

magnitude[45]:

|qCDW | = (1− δ)
a∗

3
(1.5)

where a∗ = 4π/
√
3a, with a being the lattice constant. and δ ∼ 0.02.

1.2 Thermoelectric Performance of Lead Chalcogenides

1.2.1 Thermoelectric Effect

In 1794, in the process of testing and eventually disproving the concept of Luigi Galvani’s

animal electricity, Alessandro Volta observed that if a temperature difference exists

between the ends of an iron rod, it could excite spasms of a frog’s leg[61, 62]. Then in

1821, Thomas Johann Seebeck independently rediscovered the phenomenon of generating

electricity using a temperature gradient. In his experiment, a closed loop formed by wires

of two different metals joined together at either end was observed to deflect a compass

needle if there was a temperature gradient between the joints[63]. Later, Hans Christian

Ørsted established the term ‘thermoelectricity’ for this phenomenon [64]. Moreover, in

1950s Abram Ioffe found that doped semiconductors could demonstrate a much larger

thermoelectric effect[65].
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The Fermi level of metal is the highest occupied energy level in the conduction band

at a given temperature. When two metals are placed in electrical contact, electrons

flow out of the metal with a higher Fermi level to the metal with lower Fermi level in

order to minimize the overall energy of the system. This flow, driven by the electrostatic

potential difference due to the differing Fermi levels, will result in a current until the

Fermi levels of both metals become equal. If a closed circuit like the bi-metal loop in the

above mentioned Seebeck’s experiment is constructed, no net current will be observed

as the two contact potentials will be equal in magnitude and opposite in direction at

either joint. However, if the joints are at different temperatures, since the temperature

dependence of Fermi levels of two different metals is likely to be different, the contact

potentials will not be equal anymore. Therefore, a current will start to flow.

1.2.1.1 Seeback Effect

The Seeback effect is the above described phenomenon of observing a current flow by ex-

erting a temperature difference between two bi-metallic junctions. The electric potential

gradient, ∇V created by a temperature gradient, ∇T can be related as:

∇V = −S(T )∇T (1.6)

The temperature dependent coefficient S(T), which is a material property, is known as

the Seebeck coefficient or the thermopower. It is measured in Volts per Kelvin (V/K).

In Fig.1.5 (a) the Seebeck effect is illustrated for doped semiconductor junctions. When

the bottom contact is heated, the thermal and charge carriers, the electrons in the n-

doped semiconductor, and the holes in the p-doped semiconductor, moves upwards. This
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motion of electrons and holes manifests in the nominal electric current across the light

bulb in the direction indicated.

1.2.1.2 Peltier Effect

In 1834, Jean Charles Athanase Peltier passed an electric current through a similar bi-

metallic loop circuit and observed the absorption of heat at one junction and rejection

at the other junction [66]. This is the converse of the Seebeck effect. The rate of heat

generation due to the Peltier effect is:

∆Q

∆t
= (ΠA −ΠB)I (1.7)

Where I is the current passed and ΠA and ΠB are Peltier coefficients of respective

material.

In the Fig.1.5 (b) the Peltier cooling is illustrated for doped semiconductor junctions.

When the positive terminal of the battery is connected to the bottom contact of an n-

doped semiconductor, electrons from the top side will be drifted down. Similarly, since

the negative terminal of the battery is connected to the bottom contact of the p-doped

semiconductor, holes from the top side will also be drifted down. These electron and hole

movements result in a nominal electric current as shown by the arrows. Notice how all

the thermal carriers (electrons and holes) are moving downwards while extracting heat

from the top surface and rejecting it at the bottom surfaces. Thus, a persistent current

will effectively cool the top surface. Further, it can be seen that the thermoelectric

heating is also possible by flipping the utilized surfaces.
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Figure 1.5: Seeback and Peltier effects.
(a) Seeback effect: Heating a junction of n- and p- doped semiconductor drives a
current through relatively cold junction, which is the light bulb. This is an example of
thermocurrent generation. (b) Peltier effect: Driving a current through a loop
consisting of n- and p- doped semiconductors exerts a temperature difference between
either end. Shown is an example of thermoelectric cooling.

The Seebeck and Peltier coefficients are related via:

Π = ST (1.8)

1.2.1.3 Thomson Effect

From equation 1.6, where the Seebeck coefficient is defined, it is apparent that the

Seebeck coefficient will change along the circuit due to the spatial temperature gradient.

This will result in a continuously cascading Peltier effect. William Thomson (Lord

Kelvin) predicted this effect and then experimentally proved it in 1851 [67].
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1.2.1.4 Thermoelectric Figure of Merit

The performance of a thermoelectric material is characterized by a dimensionless quan-

tity ZT commonly known as the figure of merit, such that,

ZT =
σ

κ
S2T (1.9)

where S is the Seebeck Coefficient, σ is the electrical conductivity, and κ is the thermal

conductivity [68]. In order to obtain a higher figure of merit, higher electrical conduc-

tivity and lower thermal conductivity are required simultaneously. This is not trivially

accomplished because charge carriers (electrons and holes) usually act as thermal carri-

ers as well. Since all these physical quantities of a material are intimately related to its

electronic structure, a detailed knowledge of it is crucial toward formulating strategies

for optimization of ZT . Being a simultaneous probe for the energy and momentum of

the occupied electronic states in a solid, ARPES is ideally suited for this task [69].

1.2.2 Lead Chalcogenides

Lead chalcogenides, PbQ (Q=Te, Se, and S) are canonical systems for fundamental

studies of thermoelectric properties [70–72] due to their unique electronic structure.

Recently, new methods such as ‘all scale hierarchical architecture processing’ [73–75]

have lead to significant advancements in their thermoelectric performance. For instance,

p-type nanostructured PbTe holds a performance record for high temperature energy

conversion [76–78]. Despite being studied for decades, research involving PbQ is a hot

field. One such example is the recently discovered appearance of local Pb off-centering

dipoles on warming without a structural transition in PbTe [79, 80]. Moreover, these
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Figure 1.6: Real and reciprocal space structures of Lead chalcogenides.
(a) Real space lattice of Lead Chalcogenides are Face Centered Cubic (FCC). (b)
Since the reciprocal lattice is Body Centered Cubic (BCC), the 1st Brillouin zone is a
truncated octahedron. High symmetry points and their projection on to (001)
crystallographic plane are as marked[91].

systems have recently been shown to host various novel quantum states of matter. For

instance, Pb1−xSnxSe and Pb1−xSnxTe are shown to be topological crystalline insulators

[81–89], while superconductivity along with normal state charge Kondo anomaly occurs

at Tl doped PbTe [90].

Lead chalcogenides are three-dimensional materials with Face Centered Cubic (FCC)

real space lattice as shown in the Fig.1.6(a). The reciprocal lattice is Body Centered

Cubic (BCC) with the 1st Brillouin zone of truncated octahedron shape. The Fig.1.6(b)

shows this Brillouin zone with its key symmetry points (Γ, L, X, K, and W) marked. For

the ARPES experiments presented in this dissertation, PbQ samples were preferentially

cleaved along (001) plane, and hence, the relevant two-dimensional projection of some

useful symmetry points (Γ, X ,M) are also marked for reference.
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1.3 Organization of the Dissertation

In Chapter 1, material systems, which are transition metal dichalcogenides (TMD) and

Lead chalcogenides (PbQ) under study are covered. Brief overviews of physical phenom-

ena, namely, charge density waves (CDW) and the thermometric effect were presented

as well.

The experimental techniques used will be outlined in Chapter 2. Both energetics and

kinematics of photoemission will be discussed in a progressive cascade of approxima-

tions in order to outline the general interpretation of Angle Resolved Photoemission

Spectroscopy (ARPES). The spectral function formalism of ARPES data will then be

presented, and the concept of self-energy will be introduced in brief. Standard represen-

tations of ARPES data and a short overview of general data conditioning methods will

follow. Technical details of the presented experiments will complete this chapter.

The incommensurate charge density wave phase of 2H polytype of transition metal

dichalcogenides will be studied in both chapters 3 and 4. Via the analysis of the low

energy electronic structure of 2H−TaS2 and 2H−NbSe2, the suitability of ‘Fermi surface

nesting’ as the underlying CDW mechanism will be discussed. Next, the momentum and

temperature dependence of the CDW energy gap will be studied and then the evidence

for pseudogap will be presented and justified. Chapter 3 is mostly based on the articles:

Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density

wave gap of 2H − TaS2, Phys. Rev. B 96, 125103 (2017) [92] and Spectroscopic study

of the charge density wave order in 2H − TaS2, Proc. SPIE (Spintronics X), 10357:8

(2017)[45].
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Furthermore, the compound 2H − TaS2 will be further studied in Chapter 4 in terms

of self-energy analysis. Both momentum and temperature dependent data analysis will

be used in order to establish underlying collective modes which result in electronic band

renormalization as phonons. The study presented in Chapter 4 is mostly based on the

publication: Spectroscopic signature of moment dependent electron-phonon coupling in

2H − TaS2, J. Mater. Chem. C, 5:11310 (2017)[47].

The remarkable increase in the thermoelectric performance of Lead chalcogenides at

elevated temperatures will be analyzed in Chapter 5. Temperature dependent ARPES

analysis will be used to justify the reason behind the outstanding thermoelectric per-

formance as the temperature dependent convergence of light and heave hole valence

bands. Chapter 5 is mostly based on the article: Spectroscopic evidence for temperature-

dependent convergence of light- and heavy-hole valence bands of PbQ (Q = Te, Se, S),

EPL,117(2017) 27006 [91].

Finally, in Chapter 6, the results for both studies, charge density waves in transition

metal dichalcogenides and thermoelectric performance of Lead chalcogenides, will be

summarized and final conclusions will be drawn.



Chapter 2

Experimental Techniques

Angle resolved photoemission spectroscopy (ARPES) was the primary experimental

probe used in the studies presented in this dissertation. A brief discussion of the ARPES

technique, representation of ARPES data and a general overview of some data analysis

techniques will be given in this chapter.

2.1 Angle Resolved Photoemission Spectroscopy (ARPES)

2.1.1 The Photoelectric Effect

The photoelectric effect is the phenomenon of the emission of electrons when light is

incident upon a material. This was first discovered by Heinrich Hertz [69, 93] in 1887

by means of irradiating electrodes with ultraviolet light. However, this low energy

light−matter interaction occurred only above a certain cut-off frequency and could not

be explained with classical physics. Later, by extending the idea of the quantization of

electromagnetic energy put forward by Max planck in 1900, Albert Einstein was able

to construct a successful quantum mechanical description of the photoelectric effect in

1905 [93]. In 1914, Robert Millikan was able to use this phenomenon to experimentally

20
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Figure 2.1: The concept of angle resolved photoemission spectroscopy
(ARPES).
(a) The basic concept of ARPES: incident light from a monochromatic source will
eject photoelectrons from the sample, which can then be captured and analyzed in
terms of energy and momentum in order to probe the electronic band structure inside
the sample. (b) Experimental realization of an ARPES setup in a synchrotron light
source.[96]

discover the elementary electric charge of the electron via his famous ‘oil drop experi-

ment’. Albert Einstein and Robert Millikan were awarded Nobel prizes for physics in

1921[94] and 1923[95], respectively. Modern experimental techniques which come under

the broad category of Photoemission Spectroscopy (PES), are based on this photoelectric

effect.
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2.1.2 Energetics of Photoemission

Einstein’s law of photoelectric effect is a specific statement of the conservation of energy:

Evac
kin = hν − EB − ϕ (2.1)

where, Evac
kin is the kinetic energy of the emitted photoelectron, hν is the quantized energy

of the incident photon, EB is the binding energy of the electron (with respect to the

chemical potential, µ) and ϕ is the work function of the material. In other words, the

photoemission in its simplest picture is a process where a light photon with a specific

energy (hν) will spend some energy (EB) to remove an electron from its state and

another portion of energy to overcome the surface energy barrier (work function, ϕ) and

the ejected electron will carry the remainder of the energy (Evac
kin). Energy relationships

between the states inside the material and photoelectric energies detected are illustrated

in the Fig. 2.2.

Evac
kin is stated with respect to the vacuum energy, Evac while the work function for a

material is defined as the energy required by an electron at the chemical potential (Fermi

level) to escape the material and reach the vacuum:

ϕ = Evac − µ (2.2)

work function (∼4 to 5 eV in metal) acts as a surface potential barrier which prevents

valence electrons from escaping the material[96].
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Figure 2.2: Energetics of photoemission spectroscopy.
Plots of Energy vs. Density of States (N) for electronics; (a) In the band structure
inside the sample, and (b) in the detected kinetic energy (Ekin) spectrum. Evac is the
vacuum level, EF denotes the Fermi level, E0 is the valence band bottom. Both the
work function, ϕ and the inner potential, V0 are marked. hν is the energy of the
incident photons. For the band structure (a), the convenient reference for binding
energy (EB=0) is EF (the red horizontal dashed line) whereas for the photoemission
spectrum (b), the (Ekin=0) is Evac (the green horizontal dashed line). Both spectra
are related to each other with the photoelectric relationship, Ekin = hν − |EB | − ϕ.
Adapted from [69, 96].

Above parameters, Evac
kin or Evac can neither be directly measurable nor of experimental

interest. However, in practical experimental setups, the sample and the electron energy

detector are mutually connected to share a common potential, hence what measured

is Eµ
kin, which is the kinetic energy of the photoelectron with respect to the chemi-

cal potential[97]. Therefore, the measured electronic energy can be related to incident
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photoenergy and the electronic binding energy as:

Eµ
kin = hν − EB (2.3)

Since the incident photoenergy is known, the detected electronic energy can be used to

probe the electronic information inside the sample. This is the basis of photoemission

spectroscopy (PES).

ARPES incorporates the angle resolution to the above explained photoemission spec-

troscopy, by means which the momentum information is also extracted in addition to

the energy information as elaborated below. A conceptual illustration of ARPES is given

in the Fig. 2.1.

2.1.3 Visualization of the Photoemission Process

For any approach in explaining the photoemission process, the initial state of the electron

should be a Bloch state in the bulk. Via photoemission, this electron gets excited to a

free-electron plain wave final state. There are two main perspectives for visualizing this

transformation [96].

• One-step model - A quantum mechanical picture.

• Three-step model - A classical phenomenological model with the ‘sudden’ approx-

imation.

These models are illustrated side by side in the Fig. 2.3



Chapter 2. Experimental Techniques 25

Figure 2.3: One- and three- step models of photoemission.
(a) The quantum mechanical one-step model explains the photoemission process as
an instantaneous transition from an initial state to a final state. (b) The
phenomenological three-step model, which visualizes the photoemission in three
successive steps under the sudden approximation: 1. Photoexcitation of a bulk initial
electronic state to a bulk final state. 2. Traveling of the excited electron to
the sample surface. 3. Escape of the photoelectron into the vacuum. Adapted from [69].

2.1.3.1 One-Step Model

This is a quantum mechanical description of the photoemission, as an instantaneous

single-step process. This approach is illustrated in the Fig. 2.3(a) and a simple descrip-

tion of the model would be as follows.

• The initial and final states involved are many body wavefunctions, ΨN , which obey

boundary conditions at the surface of the crystal.

• The initial state, ΨN
i , is one of the possible N-electron eigenstates of the semi-

infinite crystal.
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• The final state, ΨN
f , has two components, one of possible (N-1) electron eigenstates

of the semi infinite crystal which is ionized, -and- a component with a propagating

plane wave in the vacuum which represents an ejected photoelectron. The latter

should have a finite amplitude inside the crystal with some overlap with the initial

state (ΨN
i ) as required by quantum mechanics.

The process of photoemission in this one step model is an optical transition between

above specified initial and final many-body states. The transition probability is given

by the Fermi’s golden rule:

wfi =
2π

~
|⟨ΨN

f |Hone−step
int |ΨN

i ⟩|2δ(EN
f − EN

i − hν) (2.4)

where Hone−step
int , EN

f , and EN
i are the interaction Hamiltonian, the final state energy,

and the initial state energy, respectively.

Requirements for such a transition are, the finite overlap between initial and final states,

and the conservation of the energy as well as the momentum within the whole system

consisting of the crystal, photoelectron, and the incoming photon.

EN
f − EN

i = hν (2.5)

kN
f − kN

i = khν (2.6)

The khν here is the incoming photon momentum.



Chapter 2. Experimental Techniques 27

Figure 2.4: Initial and final eigenstates for a semi-infinite crystal. [69, 113]
Initial states: (a) Surface resonance. (b) In-gap surface Shockley state (in the gap
of the bulk band structure). (c) Bulk Bloch initial state. Final states: (d) Surface
resonance. (e) In-gap evanescent state. (f) Bulk Bloch final state. The red dashed
horizontal line marks the chemical potential. Note, the initial states (left) have
decaying components in the vacuum while final states (right) have propagating
vacuum components.

In this one step model, the absorption of the photon, removal of an electron, and the

detection of the electron are treated as a single, instantaneous and coherent quantum me-

chanical process [96, 98–112]. However, in this rigorous many-body treatment, the bulk,

surface, and vacuum of the crystal should be described in the Hamiltonian Hone−step
int ,

which implies that not only bulk Bloch states, but also surface and evanescent states as

well as surface resonances should be considered (see Fig.2.4). Due to this complexity,

a simpler approach known as the ‘three-step model’ is widely used in the literature in

explaining the phenomenon of photoemission[96].
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2.1.3.2 Three-Step Model

Three-step model is a classical phenomenological approach with many simplifications but

is proven to be successful in explaining most practical photoemission data[103, 114, 115].

This approach is as illustrated in the Fig. 2.3(b), where the photoemission process is

explained as a cascade of three mutually exclusive and sequential events:

1. Optical excitation of the electron in the bulk by means of an incident photon.

2. Traverse of this excited electron to the surface.

3. Ejection of this electron (photoelectron) into the vacuum.

The resultant photoemission intensity is the product of probabilities of these three in-

dependent steps.

Photoemission
intensity ∝

 Total probability of
an optical transition




probability for
non-scattering
of traveling
electrons




Transmission
probability
through surface
potential barrier


The probability of the step (1), photoexcitation, is determined by the intrinsic electronic

structure of the crystal which is the information needed. Therefore, the general objective

of ARPES or any other photoelectron spectroscopy (PES) data analysis procedure is to

isolate the contribution from this step, from the observed photoemission intensity. This

probability can be determined using the Fermi’s golden rule:

wfi =
2π

~
|⟨ΨN

f |Hdipole
int |ΨN

i ⟩|2δ(EN
f − EN

i − hν) (2.7)



Chapter 2. Experimental Techniques 29

where wfi gives the transition probability from an N-electron initial state, ΨN
i to an

N-electron final state ΨN
f .

EN
f = EN−1

f + Ekin (2.8)

EN
i − EN−1

i + Ek
B (2.9)

Here, Ek
B is the binding energy of the photoexcitated electron with kinetic energy Ekin

and crystal momentum k.

From the perturbation theory, the total Hamiltonian is:

Htotal =
1

2m
(p)2 +

1

2m

(e
c

)
(A.p+ p.A) +

1

2m

(e
c

)2
(A)2 (2.10)

where, A is the magnetic vector potential and p is the electronic momentum operator.

Note that a gauge choice of which electric scalar potential Φ = 0 has been made. The

first term here is just H0, and the third term ∼ A2 describes non-linear interactions

which can be ignored in this context.

By utilizing the commutator relationship [p,A] = −i~∇.A and then, the dipole approx-

imation which means the variation of the vector potential, A is negligible over atomic

dimensions (i.e., ∇.A = 0), this interaction Hamiltonian in its simpler form is:

Hdipole
int =

1

2m

(e
c

)
(A.p+ p.A) =

( e

mc

)
A.p (2.11)
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Step (2) involves the probability for an excited electron to travel to the crystal surface

without losing its energy or momentum by means of scattering. This can be understood

in terms of the effective mean free path of an electron in the system under study. The

inelastic scattering processes would result in a continuous background signal which will

be subtracted before data analysis. The probability of these stray processes would also

determine the surface sensitivity of photoemission [96].

Subsequent to the above two steps, the electron must escape to the vacuum by surpassing

the surface potential barrier, characterized by the work function. It can be seen that an

excited electron must pay an energy cost, in step (1) against the electron binding energy

E0 and in step (3) against the work function, ϕ. So, a condition for photoemission can

be drawn as,

~2k2
⊥

2m
≥ |E0|+ ϕ (2.12)

where k⊥ is the component of the electron crystal momentum, perpendicular to the

surface.

2.1.3.3 The Sudden Approximation

The next step in simplifying the equation 2.7 would be to factorize the wavefunctions

into a photoexcited electron component -and- to another component describing (N-

1) remaining electrons. Note that a similar separation of energies has been trivially

done in equations 2.8 and 2.9. This would not be possible in a general case where

the subsequent relaxation of the system, followed by the photoexcitation will result in
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multiple possibilities of complex post-collisional interactions between the excited electron

and the rest of (N-1) electrons.

To overcome these complications, assuming sufficiently high incident photon energy, the

sudden approximation is adopted where the excited electron is considered to be instan-

taneously removed from the crystal with zero possibility of interaction. This follows an

instantaneous and discontinuous change in the effective potential of the system.

Note, on the other hand, in the adiabatic limit where low kinetic energy photoelectrons

are analyzed, the escape time will be significant compared to the system relaxation time.

In such a scenario, this factorization approach would fail, and an intricate treatment of

the screening effect should be utilized[96, 116].

Under this sudden approximation, the final state of the system can be factorized as:

ΨN
f = Aϕk

fΨ
N−1
f (2.13)

Here, the purpose of the operator A is to antisymmetrize the N-electron wavefunction

in order to satisfy the Pauli’s exclusion principle. The wavefunction ϕk
f represents a

photoexcited electron with a momentum, k while ΨN−1
f is the excited final state of the

remaining (N-1) electron system.

The state ΨN−1
f can be expressed to have the eigenfunction ΨN−1

m with eigenenergy

EN−1
m , and the total transition probability, wif should then be the sum over all such

possible excited states characterized by m.
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2.1.3.4 Photoemission Intensity

Assume the initial state of this fermionic system is a single Slater determinant under

the Hartree–Fock formalism,

ΨN
i = Aϕk

i Ψ
N−1
i (2.14)

Just like equation 2.13 above, this is an antisymmetrized, factorized product of a single

electron orbital component, ϕk
i and the remaining (N-1) particle system as a whole

(ΨN−1
i ). This factorization is simple enough to move on with the treatment, but it

should be noted that, the rest of the system is better modeled as:

ΨN−1
i = ckΨ

N
i (2.15)

where ck is the quantum mechanical annihilation operator for an electron with momen-

tum k. Also note that the ΨN−1
i representing the rest of the system is not an eigenstate

of an (N-1) particle Hamiltonian, rather the mere remnant of the previous N-particle

wavefunction subsequent to the removal of a photoelectron.

With these simplifications performed under due approximations stated above, the matrix

element of the Fermi’s golden rule in the equation 2.7 can be factorized as,

⟨ΨN
f |Hdipole

int |ΨN
i ⟩ = ⟨ϕk

f |H
dipole
int |ϕk

i ⟩⟨ΨN−1
m |ΨN−1

i ⟩ (2.16)

With the one-electron dipole matrix element:
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Mk
f,i = ⟨ϕk

f |H
dipole
int |ϕk

i ⟩ (2.17)

and the coefficient:

cm,i = ⟨ΨN−1
m |ΨN−1

i ⟩ (2.18)

which is the overlap integral for remaining (N-1) electrons in the system. The probability

that the removal of an electron from state i will leave the (N-1) particle system in the

excited state m will then be |cm,i|2.

By substituting these to the equation 2.7, the photoemission intensity due to one such

possible final state f = m can be found as,

wfi =
2π

~
|⟨ϕk

f |H
dipole
int |ϕk

i ⟩|2|⟨ΨN−1
f=m|ΨN−1

i ⟩|2δ(EN
f − EN

i − hν) (2.19)

wfi = |Mk
f,i|2|cf=m,i|2δ(EN

f − EN
i − hν) (2.20)

The total photoemission intensity, as a function of Ekin at a momentum k, over all the

final states with all possible m values is then,

I(Ekin,k) =
∑
f,i

wfi (2.21)

and finally,



Chapter 2. Experimental Techniques 34

I(Ekin,k) ∝
∑
f,i

|Mk
f,i|2

∑
m

|cf=m,i|2δ(Ekin + EN
f − EN

i − hν) (2.22)

For a non-interacting electronic system, for a particulate m = m0; if ΨN−1
i = ΨN−1

m0

occurs and the transition is allowed (i.e., Mk
f,i ̸= 0), the relevant probability becomes

|cm0,i|2 = 1 while other cm ̸=m0,i coefficients are zero. In such a non interacting case, the

theoretical ARPES spectrum will be a single well-defined delta function at the Hartree–

Fock orbital energy Ek
B = −ϵk. This is illustrated on the Fig. 2.5(a). On the other hand,

in a strongly correlated system, even the removal of a single electron would lead ΨN−1
i

to overlap many eigenstates (ΨN−1
m ), due to significant changes in effective potential.

The Fig. 2.5(b) shows such an example in the context of a Fermi liquid system.[96]

Figure 2.5: Schematic photoemission spectra for interacting and
non-interacting electronic systems. [96]
Ground-state (T = 0 K) momentum distribution functions n(k) (top) and theoretical
photoemission spectra for; (a) A non-interacting electronic system, with a single
energy band dispersing across the Fermi level. (b) An interacting Fermi liquid system.
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2.1.4 Kinematics of Photoemission

Upon the incident of photons with energy hν, photoelectrons are ejected into the vac-

uum and by detecting these photoelectrons with an electron energy analyzer with a

known acceptance angle, their kinetic energy Ekin can be determined for given emission

direction. Energetics of this photoemission process was discussed in the section 2.1.2.

In addition, ARPES utilizes the ability of angle specificity of the detector to acquire

momentum (or wave vector) information as well. The magnitude of the photoelectron

momentum measured in the vacuum is:

K = |K| = p

~
=

1

~
√

2mEkin (2.23)

Note, from here onward, the upper case K notation will be used in referring to the

photoelectron momenta measured in the vacuum while the lower case k notation is

being used for crystal momenta inside the solid. The vector K can be resolved into two

convenient components as follows.

Components parallel to the sample surface:

K∥ = Kx +Ky = Kxêx +Kyêy (2.24)

The component perpendicular to the sample surface:

K⊥ = Kz = Kzêz (2.25)
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Figure 2.6: The geometry of angle resolved photoemission.
The coordinate system for determining the momentum of a photoemitted electron by
means of angular resolution. polar (θ) and azimuthal (φ) angles are defined as shown.

Using the spherical coordinate system given in the Fig. 2.6, these magnitudes can be

found as,

|K∥| =
1

~
√

2mEkinsin(θ) =


Kx =

1

~
√
2mEkinsin(θ)cos(φ) (2.26)

Ky =
1

~
√

2mEkinsin(θ)sin(φ) (2.27)

and,

Kz =
1

~
√
2mEkincos(θ) (2.28)

where the θ and the φ are the polar and azimuthal emission angles, respectively.

Next step of the ARPES process is to deduce crystal momentum components, kx, ky

and kz by applying the conservation of momentum (equation 2.6). For typical ARPES
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photoenergies, (hν < 100 eV), the momentum of the incoming photon is negligible com-

pared to typical momentum space Brillouin zone dimension, 2π
a . So, in the reduced zone

scheme (i.e., considering only the first Brillouin zone), the conservation of momentum

reduces to:

kf − ki = khν ≈ 0 (2.29)

This represents a vertical transition in the reduced-zone scheme as shown with a blue

Figure 2.7: Kinematics of photoemission spectroscopy.
Kinematics of photoemission spectroscopy according to the three-step nearly free
electron model. (a) Kinematics in the momentum space. The blue vertical arrow
shows the direct optical transition in the reduced zone scheme while the red arrow
shows a compatible transition in the extended zone scheme. ki is the momentum of
the initial state while G is the reciprocal lattice vector. (b) Nearly free electron final
state dispersion in the vacuum. (c) corresponding photoelectron energy spectrum,
with a background due to the scattered electrons. EB is the electron binding energy
with reference to the chemical potential, Ekin is detected electronic kinetic energy,
N(Ekin) is the detected density of states, Ei and Ef are initial and final state
energies respectfully, EF (red horizontal dashed line) is the Fermi level where EB = 0,
Evac (green horizontal dashed line) is the vacuum level and EO is the valence band
bottom. The work function (ϕ) and the inner potential (V0) are also marked.
Adapted from [69, 117].
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vertical arrow on the Fig. 2.7(a). However, it has been repeatedly pointed out in

the literature that, it is more useful to visualize photoemission in an extended-zone

scheme[96, 98]. In an extended zone diagram, the crystal momentum would provide the

additional momentum required by the photoexcitation in integer multiples of G, while

the photon provides the additional energy. Such a transition is indicated with a red

arrow on the Fig. 2.7(a) and the conservation law of momentum thus can be generalized

as,

kN
f − kN

i = G (2.30)

where G is the reciprocal lattice vector.

In the following discussion, the relationships of photoelectron (K) and crystal (k) mo-

menta will be built via three stages of approximation with increasing complexity.

Approximation Level 1: Infinite crystal with no periodic potential

Consider the simplest case where no surface (i.e., no work function, ϕ) and no periodic

lattice potential is present. This is an infinite free electron gas, thus no Brillouin zones

in the momentum space. The dispersion relation is a simple parabola.

In this case, under the above assumption of khν ≈ 0, no momentum conserving transition

such that kf = ki is possible. Such direct transitions are forbidden since no final states

are available. Even though the photon can provide energy, there is no agent (i.e., G) to

provide the necessary momentum.
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Approximation Level 2: Semi-infinite crystal with no periodic potential

For the next level of complexity, a surface for the free electron gas is introduced. In

such a semi-infinite crystal, the surface would not perturb the translational symmetry

in the x–y plane, chosen parallel to the surface. k∥ (kx,ky) will still be conserved up

to a constant reciprocal lattice vector, G∥ and therefore, will remain a good quantum

number.

On the contrary, k⊥ will be subjected to an abrupt change at the surface and so, kz

will no longer be a good quantum number. However, this momentum discontinuity at

the surface can conserve the momentum in indirect transitions even in the absence of a

crystal potential. This will give rise to a special case of photoemission known as surface

photoelectric effect[96], and is beyond the scope of this introductory discussion.

Approximation Level 3: Semi-infinite crystal with a periodic potential

In a more realistic case of a crystal with a surface and a periodic lattice potential, as

illustrated in the Fig. 2.7(a), the three-step model discussed in the section 2.1.3.2 can be

applied. Toward the objective of expressing detected momenta (K) in terms of crystal

momenta (k), the bulk Bloch eigenstates inside the crystal are matched to free electron

plane waves in the vacuum, as shown in the Fig. 2.4.

For momentum components parallel to the surface, the translational symmetry is still

valid and it is trivial that,

k∥ = K∥ =
1

~
√
2mEkinsin(θ) (2.31)
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with k∥ = |k∥|, where k∥ is the crystal momentum component parallel to the surface.

In the extended-zone scheme, this can be projected on to the first order Brillouin zone

by subtracting the reciprocal lattice vector, G∥.

For the work presented in this dissertation as well as in most ARPES studies in the lit-

erature, the interpretation of the parallel momentum components is sufficient. However,

for the sake of completeness, the perpendicular momentum component can be expressed

as follows.

k⊥ =
1

~
√
2m(Ekincos2(θ) + V0) (2.32)

In terms of the equation 2.28, this becomes,

k⊥ =

√
K2

⊥ +
2m

~2
V0 (2.33)

The parameter ‘inner potential’, V0 above is defined using the work function, ϕ and the

bottom of the valence band, E0 with reference to the chemical potential, Ef (see Fig.

2.2) as follows[96].

V0 = |E0|+ ϕ (2.34)

Determination of this inner potential is done in several methods under appropriate

approximations for each case [69, 118–120].
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2.1.4.1 ARPES of Low-Dimensional Systems

One particular case in which the k⊥ is practically needless is, in low-dimensional systems

with an anisotropic electronic structure having insignificant dispersion along the z-axis;

therefore, the electronic dispersion is almost E(k∥)[96]. Transition metal oxides like

copper oxide superconductors [118, 121] and transition metal dichalcogenides are widely

studied examples under this category. Chapters 3 and 4 present ARPES studies on such

quasi two dimensional systems.

In the case of low dimensional samples, the width of the photoemission peaks can be

directly correlated to the lifetime of the photohole states[122]. These lifetimes, related

to the imaginary part of the electron self-energy, can be used in probing quasiparticle

correlation effects of the crystal. Such a study is presented in the chapter 4.

Finally, the energy and momentum relationships between detected photoelectrons and

the states inside the crystal can be summarized as[123]:

E = −EB = Ekin − hν (2.35)

kx = Kx =
1

~
√

2mEkinsin(θ)cos(φ) (2.36)

ky = Ky =
1

~
√

2mEkinsin(θ)sin(φ) (2.37)

In a nutshell, ARPES exposes the sample to photon with energy hν, and then detects

Ekin and K of the photoelectrons ejected into the vacuum. Next, it determines the
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binding energy EB and the crystal electronic momentum k, and finally constructs the

electronic band dispersion: E(k).

2.1.5 Spectral Function Formalism of ARPES Data

The photoemission process, mainly in the regime of correlated electron systems as dis-

cussed in the section (2.1.3.4) is conveniently explained with a spectral function for-

malism. In this scheme, the propagation of a single electron in a many-body system

is described using a time-ordered one-electron Green’s function, G(t − t′) [124–129].

Squared Green’s function can be interpreted as the probability that an electron in a

Bloch state with momentum k at a t = 0 will still remain in the same state after a time

|t− t′| [96]. This Green’s function can be Fourier transformed from the time domain to

the energy-momentum domain as,

G(k, ω) = G+(k, ω) + G−(k, ω) (2.38)

where the advanced Green’s function, G+(k, ω) and the retarded Green’s function,

G−(k, ω) respectively represent one-electron addition and removal. Define the electron

annihilation operator c−k = c†k such that,

ΨN−1 = ckσΨ
N (2.39)

and also the corresponding electron creation operator c+k = ckσ. These operators act

upon the N-partial initial state ΨN
i to create or annihilate an electron with the energy
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ω, momentum k, and the spin σ. In the zero temperature limit, Greens functions can

be explicitly expressed as, (by taking ~ = 1)

G±(k, ω) =
∑
m

|⟨ΨN±1
m |c±k |Ψ

N
i ⟩|2

ω − EN±1
m + EN

i ± iη
(2.40)

where η is a positive infinitesimal. In the limit of η −→ 0+, using the integration identity,

(x ± iη)−1 = P(1/x) ∓ iπδ(x) where P is the principle value, the one-particle spectral

function can be defined as,

A(k, ω) = − 1

π
Im {G(k, ω)} (2.41)

or,

A+(k, ω) +A−(k, ω) = − 1

π
Im

{
G+(k, ω) + [G−(k, ω)]∗

}
(2.42)

Here [G−(k, ω)]∗ accounts for the retarded Green’s function while A+(k, ω) and A−(k, ω)

define spectra resultant in one electron addition and removal, respectively. Electron

addition can be probed with direct photoemission and the removal, in theory, can be

probed with inverse photoemission. These spectral functions can now be explicitly stated

as,

A±(k, ω) =
∑
m

|⟨ΨN±1
m |c±k |Ψ

N
i ⟩|2δ(ω − EN±1

m − EN
i ) (2.43)



Chapter 2. Experimental Techniques 44

This is derived in the zero temperature limit, but the same procedure can be followed

for finite temperatures as well, by starting with appropriate Green’s functions [127]. By

utilizing the sudden approximation discussed above in the section 2.1.3.3, the measured

ARPES intensity can be expressed in terms of the spectral function as,

I(k, ω) = I0(k, ν,A)f(ω)A(k, ω) (2.44)

In a two-dimensional single band system, k = k∥ and energy ω is the electron energy

measured with respect to the chemical potential. ν is the frequency of incoming photon

while A is the electromagnetic vector potential and,

I0(k, ν,A) ∝ |Mk
f,i|2 (2.45)

is the one-electron matrix element which was established in the section 2.1.3.4 via equa-

tions 2.19 and 2.20. It depends on the electron momentum, photon energy, and photon

polarization.

The intensity modulation by Fermi function,

f(ω) =
1

1 + e
ω

kBT

(2.46)

relates to the fact that, the direct ARPES only can detect the occupied electronic states.

Since A(k, ω) is the probability of removing or adding an electron with momentum

k and energy ω to a many-particle system, it should theoretically fulfill the following

relationship,
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∫ +∞

−∞
A(k, ω)dω = 1 (2.47)

for the practical case of photoemission experiments where only the electron removal

spectrum (A−(k, ω)) is available, the relationship,

∫ +∞

−∞
f(ω)A(k, ω)dω = n(k) (2.48)

is more useful in practice, where n(k) is the momentum distribution.

2.1.5.1 Self Energy Formalism

Augmentations to the spectral function due to quasi-particle interactions can be taken

into account using the proper self-energy function. This complex function can be ex-

pressed as,

Σ(k, ω) = Σ′(k, ω) + iΣ′′(k, ω) (2.49)

The real part, Σ′(k, ω) contains information about band renormalizations while the

imaginary part, Σ′′(k, ω) holds information about life times.

An electron of band energy ϵk and crystal momentum k, propagating in a many-particle

system would have a Green’s Function:

G(k, ω) =
1

ω − ϵk − Σ(k, ω)
(2.50)
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Then, by the relationship 2.41, the spectral function becomes,

A(k, ω) = − 1

π

Σ′′(k, ω)

[ω − ϵk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
(2.51)

The G(t, t′) is a linear response function to an external perturbation and G(k, ω) is its

Fourier transform as discussed above. This is bound to satisfy causality, which means in

principle, real and imaginary parts of G(k, ω) are related via Kramers–Kronig relations.

If the complete spectral function as in the equation 2.42 is available experimentally,

Im {G(k, ω)} can be found from the equation 2.41, and then Re {G(k, ω)} can be cal-

culated with Kramers–Kronig relations. Then the equation 2.49 can be used to find

self energy, Σ(k, ω). However, in reality, due to the lack of inverse photoemission data,

complete spectral function A(k, ω) is not possible to measure, and this approach is not

applicable. Rather, in practice, system-specific approximations are used in finding real

and imaginary self energy components[47, 96, 130]. Such a study is presented in Chapter

4.

2.2 Representation of ARPES Data

ARPES data obtained for a fixed photoenergy, hν is shown in the Fig. 2.8(a). Inde-

pendent variables are two orthogonal momentum components (e.g. kx, ky) and energy

(ω). Momenta are usually expressed in units of inverse-angstroms (Å−1) since they rep-

resent reciprocal space dimensions. In some cases, angle (θ) with units of degrees is

also used as, in ARPES, momentum is resolved by means of the emission angle of the

photoelectron (see the Fig. 2.6).
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Figure 2.8: Representation of ARPES data.
Please see the next page for the details.
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Representation of ARPES data.
Continued from the previous page ...
(a) Primary ARPES data: Intensity I(kx, ky, ω) as a function of independent
variables, energy ω and in-plane momentum components kx and ky. (b, c) EMIM:
Energy Momentum Intensity Maps, where the intensity is plotted as a function of
energy and one momentum component while the other momentum component is
fixed. (b) is I(kx, ω) for fixed ky, or the image slice marked on (a) with a green
dashed line, while (c) is I(ky, ω) for fixed kx, or the image slice marked on (a) with
red dashed lines. (d) CEIM: Constant Energy Intensity Maps, where the intensity is
plotted as a function of in-plane momentum components for a fixed energy. These are
energy iso-surfaces and a stack of such I(kx, ky) image slices are shown. Note the top
most CEIM is the Fermi surface intensity map as it corresponds to ω = 0. (e) A
three-dimensional CEIM representation (of the Fermi surface) where the height
represents intensity. (f) MDC: A Momentum Distribution Curve, where the intensity
is plotted as a function of one momentum component while the other momentum
component and the energy are held constant. (f) Shows such an MDC, I(ky) which
can be visualized either as the intensity profile on the frame outlined by blue dashed
lines on (e), or as the image line profile taken on blue dashed lines marked on (c) or
(d). (g) EDC: A Energy Distribution Curve, where the intensity is plotted as a
function of energy with both in-plane momentum components (kx, ky) are fixed. Such
an EDC, I(ω) taken at the momentum location indicated by a pink dot on (a),(c) and
(d) is shown in (f). This EDC can be visualized either as the image line profile taken
on pink vertical dashed lines, marked on (c) or passes through the stack of CEIMs in (d).

Energy can be expressed as electron binding energies with the chemical potential as the

zero energy level. Commonly used energy units are electron-Volts (eV).

The dependent variable is the signal intensity, which is the photoelectron count. It is

proportional to the occupation probability of the filled states. Raw ARPES data is the

intensity I = I(kx, ky, ω) where ω is the energy. In this dissertation, the notation ω

will be used in representing energies expressed with respect to the chemical potential,

µ, where,

ω = ω − µ (2.52)

The Raw ARPES data is in four-dimensional ‘chunks’ as in the Fig. 2.8(a). For visual-

ization, analysis and communication purposes, four standard types of data subsets are
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used in the literature. Two of them are three-dimensional where intensity is the depen-

dent variable while two of kx, ky, or ω being independent variables, while the other is

fixed. These are called Intensity Maps (IMs). Intensity is usually represented as color

as in Fig. 2.8(b),(c) and (e), or occasionally as height as in the Fig. 2.8(e).

Two kinds of two-dimensional representations, known as Curves are also used. These

curves can be visualized as subsets of intensity maps. The dependent variable is always

the intensity which usually is the vertical axis, and the horizontal axis will the represent

dependent variable which is either a momentum component, k or the energy, ω.

2.2.1 Energy Momentum Intensity Maps (EMIMs)

An EMIM is the intensity I(k1, ω) plotted as a function of one momentum component,

k1 and energy, ω, by fixing the value of the other momentum component. In the Fig.

2.8(b),such an EMIM of I(kx, ω), for a fixed ky is shown. Relevant image slice is marked

with green dashed lines on the Fig. 2.8(a). Another EMIM which is I(ky, ω), for a

fixed kx is given in the Fig. 2.8(c) and the corresponding image slice location is marked

with red dashed lines on the Fig. 2.8(a). Other types of EMIMs which are not strictly

parallel to kx or ky can be constructed as well, by means of a momentum relationship

that defines a line on the two-dimensional momentum plane (e.g., kx − 2ky = 0).

Since EMIMs have Energy (ω) and momentum (k) as axes, they are conveniently used

in analyzing electronic band structure ω(k). Chapters 4 and 5 depict such analysis.
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2.2.2 Constant Energy Intensity Maps (CEIMs)

Energy iso-surfaces or CEIMs are maps of ARPES intensity I(kx, ky) as a function of

in-plane momentum components kx and ky at a fixed energy ω. A series of such CEIMs

are shown in the Fig. 2.8(d). The special CEIM at ω = 0 is refereed to as the ‘Fermi

surface intensity map’. Such maps will be used in laying out blue prints for analysis in

chapters 3, 4 and 5.

In quasi two-dimensional materials, CEIMs often provide a general insight into the

momentum space landscape. Another representation of CEIM is given in the Fig. 2.8(e)

where the height (as well as the color) represents intensity. Both Fig. 2.8(d) and (e)

visualizes the characteristic double-walled barrel structure in the momentum space of

2H− transition metal dichalcogenides.

2.2.3 Momentum Distribution Curves (MDCs)

An MDC is, intensity I(k1) plotted as a function of a momentum component k1, for fixed

values of energy ω and the other momentum component. The Fig. 2.8(f) shows such

an MDC I(ky) for a particular kx and ω. This MDC can be primarily visualized as the

intensity on the plane defined with a blue dashed frame on the Fig. 2.8(e). Alternatively,

it is the intensity profiles at image line cuts denoted by the blue dashed lines on the

EMIM-II (Fig. 2.8(c)) or on the topmost Fermi surface CEIM of Fig. 2.8(d).

In general, MDCs taken near the chemical potential are expected to show sharp peaks

corresponding to bands. In Chapter 4, such an MDC analysis will be used to trace

intricate details of band dispersions.
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2.2.4 Energy Distribution Curves (EDCs)

An EDC, I(ω), is a plot of ARPES intensity as a function of ω taken at a fixed point

in the momentum space (kx, ky). An example EDC is given in the Fig. 2.8(g) and

corresponding locations can be visualized as purple vertical dashed lines on either EMIM-

II (the Fig. 2.8(c)) or on the stack of CEIMS in the Fig. 2.8(d). This momentum location

is marked as a purple dot on the Fig. 2.8(a) as well.

EDCs are primarily useful in determining energy gaps, as can be seen in Chapter 3.

They can also be used in determining band structure, particularly when the features

under analysis are away from the chemical potential. Such a case will be studied in

Chapter 5.

2.2.5 Conditioning ARPES Data

Here ‘conditioning’ refers to the general procedure performed on raw ARPES data before

any particulate analysis. This can be considered as the initial step of any ARPES data

normalization. Subsequent steps of data normalization that are specific to each analysis

will further be discussed in relevant contexts in the proceeding chapters.

As per equation 2.44, measured ARPES intensity signal is the convolution of the spectral

function, A(k, ω) and the Fermi distribution function, f(ω). Also, on the other hand,

the detector has finite energy and momentum resolutions and should be compensated

for as well. To isolate the spectral function data from the raw ARPES intensity data,

two main methods are utilized in the literature.
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2.2.5.1 Division by the Fermi Function

In this method, the raw data gets divided by a Fermi distribution function characterized

by an effective temperature, Teff .

1. Determine the full-width-at-half-maxima (FWHM) associated with the detector

energy resolution, W . This resolution broadening is of Gaussian type.

2. Calculate the effective temperature, Teff which accounts for both Fermi distribu-

tion expected at the actual temperature T the data were acquired -and- for the

above mentioned resolution broadening, W . A good approximation, as shown in

the Fig. 2.9 is,

(KBTeff )
2 = (KBT )

2 +

(
W

4

)2

(2.53)

3. Construct a Fermi distribution function with this effective temperature,

f(ω) =
1

1 + e
ω

kBTeff

(2.54)

4. Divide the raw data with this effective Fermi function. Specifically, each energy

distribution curve (EDC) can be divided by this or, an entire energy momentum

intensity map (EMIM) can be divided by a two dimensional Fermi function value

set.

For energies above the chemical potential, the Fermi function quickly approaches zero,

and so the Fermi function division blows up. However, as discussed in the section 2.1.5,

this should not become a significant problem in practice, since no photoemission data
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Figure 2.9: Fermi function and effective temperature.
The effective temperature due to the finite detector energy resolution is estimated as

Teff =

√
(T )2 +

(
W

4KB

)2

. (a) Fermi functions at T = 11K (blue doted line) and for
an effective temperature Teff , compensating for an energy resolution of 5 meV (large
light blue dots). Red fit is used to extract KBTeff . (b) Effective temperature vs
actual sample temperature. Note how the finite detector resolution results in an
overestimation for lower temperatures.

can be acquired due to the lack of occupied electronic states in this region anyway. Fermi

function division is a widely used method and was unitized in all the studies presented

in this dissertation as well.

2.2.5.2 Lucy-Richardson Deconvolution

The Lucy-Richardson iterative deconvolution algorithm is popular in image analysis.

In this method, data is deconvoluted by using a deconvolution filter, also known as a

kernel which is a point-spread function (PSF) in this context. First, the raw ARPES

data is divided by a Fermi function as explained above, but using the actual sample

temperature T . Then the resultant data is deconvoluted with a Gaussian deconvolution

filter with an FWHM determined by the detector resolution, W.
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In practical ARPES data analysis, such as EDC analysis, a one-dimensional deconvolu-

tion filter that accounts only for the energy resolution might be sufficient. However, it

is possible to construct an asymmetric two-dimensional deconvolution filter with both

energy and momentum widths and deconvolute an entire EMIM at once. Usage of

this method is limited so far in the literature [131], but for the presented work, both

the Lucy-Richardson deconvolution and the Fermi function division resulted in similar

results.

Alternatively, instead of trying to remove the effect of finite detector resolution, Fermi

function divided data can be fitted with Voigt fits. A Voigt function is a convolution of a

Lorentzian form with a Gaussian form. By fitting peaks with a Voigt model with a fixed

Gaussian width which accounts for detector resolution, the effective Lorentzian width of

the optical transition can be determined. This method is particularly useful in analyzing

peak widths of momentum distribution curves (MDCs), as the Fermi function division

method explained above is unable to compensate for detector momentum resolution.

Chapter 4 outlines such an analysis.

2.3 Experimental Details

The ARPES measurements reported in chapter 3 and 4 were conducted using the 21.2

eV Helium-I line from a discharge lamp along with a Scientar R3000 analyzer at the

University of Virginia, Virginia, USA, and using a Scientar R4000 analyzer at the plane

grating monochromator (PGM) beamline (22 and 75 eV) of the Synchrotron Radiation

Center (SRC), Wisconsin, USA. The angular resolution was ∼ 0.01 Å−1 (0.3 degree),

while the energy resolution was ∼ 8–15 meV. Samples used in these studies were syn-

thesized using the standard Iodine vapor deposition method.
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For the study in Chapter 5 which was conducted in the SRC’s PGM beamline with 22 eV

synchrotron light, the energy resolution was ∼ 20 eV, and the momentum resolution was

0.0055 Å−1. Samples for this study were prepared by melting mixtures of constituents

inside evacuated fused silica tubes.

All the ARPES measurements were done in ultra-high vacuum environments (pressure

less than 5 × 10−11 Torr), in both facilities. Temperatures were measured using silicon

diode sensors located close to the sample holder. Temperature dependent data were

collected in cyclic manners to verify that there were no effects due to sample aging.

During each measurement, the chemical potential µ of the system was determined by

fitting a Fermi function to an ARPES spectrum obtained for a polycrystalline gold

reference sample in electrical contact with the sample under study[69].



Chapter 3

Charge Density Waves in
Transition Metal Dichalcogenides

3.1 Background

The charge density wave (CDW) phenomenon is believed to be related to some of the

interesting observations in the field of condensed matter physics such as pseudogap in

cuprate high-temperature superconductors [49–51], enormous mass renormalization of

heavy fermions [52, 53] and colossal magnetoresistance in manganite compounds [54,

55]. However, the study of the charge density wave order in these materials becomes

challenging due to the simultaneous occurrence of various competing interactions in

the systems[47]. Because of this, the study of prototype charge density wave materials

such as transition metal dichalcogenides (TMDs) is useful as they possess comparatively

simpler crystal and electronic structures. TMDs can be considered as an ideal class of

material to study CDW formation in low dimensions due to this simplicity. Additionally,

the CDW orders in the TMDs can be modulated via various external perturbations

leading to fascinating phase diagrams.

56
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We conducted a series of Angle Resolved Photo-Emission Spectroscopy (ARPES) stud-

ies to probe both generalizable and compound-specific features of the incommensurate

CDW order in layered TMDs in momentum, energy, and temperature domains. This

study focuses on 2H − TaS2, 2H − TaSe2 and 2H − NbSe2 which are canonical quasi-

two-dimensional CDW materials[6, 7, 10]. All three compounds exhibit a transition

from a metallic to an incommensurate CDW state, and in the case of 2H − TaSe2, a

commensurate CDW phase also exists upon further reduction in temperature. At very

low temperatures, the co-existence of charge density waves with superconductivity is

observed. For 2H − TaS2, this phase coexistence occurs below 0.8 K [19–21].

3.2 The Charge Density Wave Vector, qCDW

For an incommensurate charge density wave state, the periodicity of the charge density

modulation is different from the lattice periodicity. In other words, the wavelength

of the charge density wave is not an integer multiple of the lattice periodicity. the

incommensurate CDW phase of these layered transition metal dichalcogenides show a

hexagonal symmetry[59, 60], characterized by a charge density wave vector qCDW having

the magnitude of[45]:

|qCDW | = (1− δ)
a∗

3
(3.1)

The parameter δ ∼ 0.02, determines the degree of incommensuration while a∗ is the

reciprocal lattice constant. If the hexagonal real space Bravais lattice has a lattice

constant of a, this reciprocal lattice constant, a∗ of its self-dual hexagonal reciprocal

lattice can be given as:
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Figure 3.1: Charge density wave vectors of 2H− transition metal
dichalcogenides.
(a) Calculated Fermi surface for a general 2H−TMD [132]. (b) and (c)
Experimental Fermi surface of 2H − TaS2 and 2H −NbSe2, respectively [92, 133].
Black solid arrows represent individual charge density wave vectors in each diagram.

a∗ = 4π/
√
3a (3.2)

The Fig. 3.1(a) depicts these charge density wave vectors with reference to a calculated

Fermi surface diagram [132] whereas Fig. 3.1(b) and (c) overlay such CDW wave vectors

on experimentally observed normal state (T > TCDW ) Fermi surface diagrams for 2H −
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TaS2 and for 2H − NbSe2, respectively. Note the relative size of black arrows that

represent charge density wave vectors, compared to the underlying reciprocal space

lattice.

3.3 Low Energy Electronic Structure of 2H - TMDs

3.3.1 Fermi Surface Topology

Band structure calculations for 2H− transition metal dichalcogenide material under

investigation predict two closely spaced pairs of quasi-two-dimensional Fermi surface

(FS) barrels centered around Γ and K symmetry points[132]. A schematic is shown in

the Fig. 3.1(a). These barrels are associated with bonding and anti–bonding bands

derived from the transition metal d orbitals[38, 40, 92, 134, 135]. Further, these barrels

are double-walled because there are two ‘MQ2’ formula units per unit cell as shown in

Fig. 1.2.

Experimental Fermi surface intensity maps of 2H−TaS2 and 2H−NbSe2 are presented

in Fig. 3.2(a) and (b), respectively. These are intensity plots of electron count I(kx, ky)

as a function of the in-plane momentum components kx and ky, taken at the energy

isosurface of ω = 0. The parameter ω is the electronic energy with respect to the

chemical potential, µ. These Fermi surface maps were constructed for the normal state

with the data collected at temperatures T > TCDW , for both materials. Fermi surface

intensity map for 2H − TaS2 in Fig. 3.2(a) is based on ARPES data collected with 75

eV photon energy (hν) at a temperature, T ∼ 90K, while data for 2H − NbSe2 in Fig.

3.2(b) corresponds to hν = 22 eV at T ∼ 50K.
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Figure 3.2: Fermi surfaces and charge density wave vectors.
Fermi surface of (a) 2H − TaS2 and (b) 2H −NbSe2. Black arrows in (a) and (b)
represent individual charge density wave vectors [92, 133].

Experimental data shown in the Fig. 3.2 agree well with band structure calculations[132].

The common observations for both 2H − TaS2 and 2H −NbSe2 are:

• There are double–walled FS barrels centered around Γ and K points.

• Saddle bands are visible as regions of high intensity along Γ––K lines.

However, there are certain compound specific features as well. For example:

• The pancake like intensity profile around Γ point observed for 2H − NbSe2 as in

the Fig. 3.2 (b) seems to be nonexistent for 2H − TaS2 in the Fig. 3.2 (a). This

difference might be more elaborate when comparing Fig. 3.1 (b) against (c), which

represents the same data as in Fig. 3.2 (a) and (b), in a symmetrized/normalized

manner.
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• While the size of the Γ centric barrels stay almost the same for both systems, K

centric barrels of 2H − NbSe2 are larger in size compared to those of 2H − TaS2.

This dichotomy in the size of the K centric Fermi surface barrels might have a role

in determining the charge density wave transition temperature, TCDW .

3.3.2 Fermi Surface Barrels

Consider some ARPES energy-momentum-intensity maps (EMIMs). An EMIM is the

electron intensity I(kx, ω) plotted as a function of a momentum component (say, kx)

and energy ω, taken by fixing the value of the other (say, ky) momentum component.

The Fig. 3.3(a) is used as a blueprint to mark momentum locations in the following

discussion.

Two EMIMs are shown in Fig. 3.3(c) and (d). The EMIM in the Fig. 3.3(c) is taken

along the momentum cut-I, indicated by a pink dashed line on the Fig. 3.3(a). Similarly,

the EMIM corresponding to the momentum cut-II, indicated by a black dashed line, is

given in the Fig. 3.3(d). These EMIMs clearly display the bi-layer structure around K

as well as Γ points.
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Figure 3.3: Fermi surface of 2H−TaS2.
Please see the next page for the details.
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Fermi surface of 2H−TaS2.
Continued from the previous page ...
(a) The Fermi surface of 2H − TaS2, pink and black dashed lines denote momentum
cuts I and II, respectively. Two momentum points are also marked as yellow and lght
blue dots. (b) A three-dimensional representation of the Fermi surface, where
intensity (height and color) are proportional to the electron occupation. Two planes
marked in pink and black indicate momentum cuts I and II as identified on (a). (c)
The energy-momentum intensity map (EMIM) along the momentum cut-I, with four
Fermi crossings. (d) The EMIM taken along the momentum cuts-II. (e) The
momentum distribution curve (MDC) along cut-I, together with Voigt fits indicated
in blue. There is one-to-one correspondence between the peaks of the MDC and the
Fermi crossings of the bands in (c). (f) The MDC along the momentum cuts-II. Here
we only have focused on two rightmost Fermi crossings. (g) The energy distribution
curve-I (EDC), at the momentum point marked as a light blue dot on (a) (or the
intensity profile along the light blue dotted line on (c)). Peaks identified as E.I-1 and
E.I-2 correspond to black and purple points marked on (c), respectively. (h) The
EDC-II at the momentum point marked as a yellow dot on (a) (or along the yellow
dotted line on (d)). Peaks identified as E.II-1 an E.II-2 corresponds to black and
purple points on (d).

We also observe this bi-layer splitting of energy bands from momentum distribution

curves (MDCs), which are line plots of I(kx) for a specific value of momentum, ky and

energy, ω. Fig. 3.3(e) and (f) are taken at the Fermi level (i.e.: at the chemical potential

where ω =0) and they follow double-splittings of the energy bands expected due to the

double-barreled nature. The momentum distribution curve in Fig. 3.3(e) clearly displays

four peaks associated with four Fermi crossings (numbered 1, 2, 3, 4) and on the MDC

in the Fig. 3.3(f), only two right peaks (numbered 3 and 4) are shown due to the weak

intensity of left side peaks.

Alternatively, these momentum distribution curves in Fig. 3.3(e) and (f) can be visual-

ized as intensities on the pink (I) and black (II) planes marked on the 3D diagram in

Fig. 3.3(b). On both MDCs, experimental data points are represented by red markers

while blue lines are the Voigt model fits to those data.
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Further, we can use energy distribution curves (EDCs) to examine the double-walled

structure of the energy bands. An EDC is a plot of ARPES intensity I(ω) or the electron

count as a function of energy ω, taken at a fixed of momentum point (kx, ky). Fig. 3.3(g)

and (h) show EDCs at the momentum locations marked by light-blue and yellow dotted

lines on Fig. 3.3(c) and (d), respectively. These momentum locations are marked on the

Fermi surface map on Fig. 3.3(a) as light-blue and yellow dots accordingly, as well. Two

peak structures of these EDCs are signatures of the bi-layer split bands in each case.

3.3.3 Possibility of Fermi Surface Nesting

3.3.3.1 Fermi Surface Nesting as a CDW Mechanism

The most common explanation for the formation of charge density is the Peierls distor-

tion in one-dimensional systems [136, 137]. Consider the Peierls distortion, occurring

at T = TCDW in a hypothetical one-dimensional system as in the Fig. 1.3(a). The

energy stored in the electronic bands decreases as the opening up of the gap leads to the

removal of the density of states around the chemical potential µ (see Fig. 1.3(b)). At

the same time, the elastic energy of the system increases due to the underlying periodic

lattice distortion (PLD). For the stability and persistence of such a charge density wave

order, the reduction in the electronic kinetic energy should always exceed the increase in

elastic potential energy of the lattice and thus, the total energy of the system is lowered

in overall. In such a case, the system can undergo a transition from a high-temperature

metallic phase to a distorted phase.

In case of CDW order driven by Fermi surface nesting, one would expect the following[138]:
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• Regions that are sufficiently parallel to each other should be present on the Fermi

surface.

• The charge density wave vector, qCDW should be able to join two such parallel

regions of the Fermi surface, or in other words, the magnitude (length) of the

CDW wave-vector, |qCDW| should match the momentum separation between those

parallel regions.

3.3.3.2 Nesting Conditions in TMDs

In both 2H − TaS2 and 2H −NbSe2, there exist a number of above mentioned parallel

regions with higher electronic occupation on their Fermi surfaces. This is evident from

the orientation of red or white colored regions in Fig. 3.1(b) and (c). One possible set

of hypothetical nesting vectors are shown as green arrows on Fig. 3.4(a), as an example.

Hence, at least in concept, such a nesting phenomenon seems viable in these transition

metal dichalcogenides.

However, in contrary, experimental data does not support this idea for both cases of

2H − TaS2 and 2H − NbSe2. The calculated charge density wave vector, qCDW has a

magnitude given by the equation 3.1, and are marked with black arrows on a representa-

tive Fermi surface of 2H−TaS2 on Fig. 3.4(b). It is clear that the separation of parallel

Fermi surface regions does not agree with this magnitude of the observed CDW wave

vectors[11, 45, 92, 134], as the separation between parallel regions on the Fermi surfaces

(green arrows) are clearly too large to be self-nested by qCDW (black arrows). From the

Fig. 3.4(c), it can be inferred that an identical argument applies for the 2H −NbSe2 as

well.
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Figure 3.4: Nesting vectors Vs. charge density wave vectors.
(a) A possible set of hypothetical nesting vectors indicated in green arrows and (b)
Observed charge density wave vectors shown in black arrows. Both are marked on
identical representative Fermi surface maps of 2H − TaS2.

For 2H−NbSe2, it has been experimentally shown that the simple Fermi surface nesting

is not sufficient to explain its charge density wave instability[133, 139]. But on the other

hand, reports do not agree with the applicability of Fermi surface nesting for the case

of 2H −TaSe2 [140, 141]. Even though some nesting conditions appeared to be fulfilled

in TMDs (like the existence of parallel regions), the above mentioned simple model of

Fermi surface nesting cannot be considered as the mechanism behind charge density

wave vector transition metal dichalcogenides.

3.3.3.3 Electronic Susceptibility Studies

From another perspective, if such a nesting within parallel sections of the Fermi surface

occurs, the phenomenon should manifest itself as significant peaks in both the real and

imaginary components of the non-interacting electronic susceptibility (i.e.: Lindhard

susceptibility), χ0(q, ω) [138]. These signature peaks are expected when[46],

• The momentum-transfer, q = qcdw and
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• Energy, ω = 0,

where ω = ω − µ (i.e.: energy with respect to the chemical potential).

However, theoretical calculations of the Lindhard susceptibility for 2H − NbSe2 has

found that the Fermi surface nesting itself is not a sufficient mechanism in explaining its

charge density wave instability, due to the absence of expected susceptibility signatures

[142, 143].

3.3.3.4 Motivation for a Strong Coupling Approximation

Other attempted explanations in the weak coupling regime have assumed alternate nest-

ing mechanisms such as nesting within the saddle bands near the chemical potential

due to Van Hove singularities[144], or a combination of nesting within Fermi surface,

explained above, and nesting between such Van Hove singularities [145]. These alterna-

tive nesting models still lack the appropriate correlations with experimentally observed

energies[92, 133, 145–149]. The consistent lack of experimental support for these candi-

date nesting models suggest that the weak coupling approach might not be sufficient in

explaining the general mechanism of charge density wave formation in transition metal

dichalcogenides [45].

On the other hand, An interesting observation has been reported. Namely, the pseu-

dogap phenomena which means the persistence of non-zero charge density wave energy

gap (∆CDW ) even for temperatures much higher than the charge density wave tran-

sition temperature (TCDW ) [92, 133, 146](see the section 3.4.4). Motivated by this

observation, a handful of explanations have been formulated in the strong coupling

limit[132, 150–153]. Several experimental studies have shown support for this approach
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as well [45, 47, 92, 139, 154, 155], especially for the models in favor of the strong electron-

phonon coupling and its momentum anisotropic nature. (see Chapter 4). In this study,

high-resolution ARPES data, with energy, momentum, and temperature specificity were

analyzed with the objective of developing a concise microscopic explanation of the charge

density wave order in layered transition metal dichalcogenides in the strong coupling

limit [45, 47, 92].

3.4 Charge Density Wave Energy Gap, ∆CDW

3.4.1 Analysis Procedure for the CDW Energy Gap

From the section 1.1.2, it follows that the amplitude of the charge density wave order

parameter, |Ψ| is directly proportional to the charge density wave energy gap, ∆CDW .

This energy gap can be measured using ARPES[118, 156, 157] (see equations 3.3 and

3.4 as well). To probe this gap:

1. Energy distribution curves (EDCs: graphs of Intensity as a function of energy I(ω)

for a fixed momentum value) were constructed from the raw data.

2. These EDCs were normalized to account for the finite energy resolution of the

detector, as well as for the effect of the Fermi-Dirac distribution function.

3. Resultant graphs are called Fermi function divided EDCs or normalized EDCs

in general. Two different methods for this normalization were attempted (see the

section 2.2.5). The first method was to divide EDCs by resolution broadened Fermi

function [118, 158] while the second method being the Lucy-Richardson iterative
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deconvolution [131, 159, 160]. Since both methods lead to similar conclusions, the

first method was used thereafter.

4. These Fermi function divided EDCs were then analyzed for the momentum and

temperature dependence of the CDW energy gap, ∆CDW .

3.4.2 Momentum Dependence of the CDW Energy Gap

3.4.2.1 Bogoliubov Dispersion Signatures of the CDW Phase

Observe some energy distribution curves about the K– symmetry point, taken in the

vicinity of the Fermi momentum (kF ) for 2H − TaS2 and compare them to a similar

analysis [146] done on 2H−NbSe2. For 2H−TaS2, momentum locations where the EDCs

were taken, are marked on the schematic diagram in the Fig. 3.5(a) and also on the

experimental Fermi surface map on the Fig. 3.5(b) using solid circles. For 2H −NbSe2,

such EDC momentum locations are marked with ’X’ marks, on the schematic Fig. 3.5(a)

and on the Fermi surface map in the Fig. 3.5(c) as well. In all these EDCs, the color

red indicates the Fermi momentum, kF . The color purple represents EDCs taken at the

locations with slightly lower momentum values than kF , which are the points closer to the

center and ‘inside’ of the barrel. Similarly, the color blue denotes EDCs corresponding

to momentum values slightly higher than kF (i.e., away from the center, and ‘outside’ of

the barrel). Note that, all the reported EDCs are taken at the immediate vicinity of the

Fermi momentum and the deviations above and below from the kF were small. Also note

that in the case of 2H − TaS2 the outer K– centric Fermi surface barrel is considered,

whereas for the case of 2H −NbSe2, the inner K– centric Fermi surface barrel has been

used.
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Figure 3.5: Back bending of the bands due to Bogoliubov dispersion.
(a) The schematic Fermi surface diagram of 2H −MQ2. Momentum locations in the
neighborhood of the K point are marked where energy distribution curves (EDCs) in
(d) and (e) are taken. (b) The Fermi surface map for 2H −TaS2, solid circles indicate
momentum locations in the vicinity of the outer Fermi surface barrel where EDCs in
(d) are taken. (c) The Fermi surface map for 2H −NbSe2, X marks indicate
momentum locations in the vicinity of the inner barrel where EDCs in (e) are taken.
(d) EDCs for 2H − TaS2 at momentum locations denoted on (a) and (b) as solid
circles near outer barrel, taken at T = 30 K. (e) EDCs for 2H −NbSe2 at momentum
locations denoted on (a) and (c) as X marks near inner barrel, taken at T = 26
K[146]. In both (d) and (e), the chemical potential (ω = 0) is indicated as a red
dotted line. The red EDC is taken on the barrel (i.e: at the Fermi momentum, kF )
while purple and blue EDCs are taken just inside and outside the barrel for slightly
lower and higher momenta, respectively. Black dots indicate peak positions of each
EDC, which clearly exhibit Bogoliubov like back bending signature.

Relevant EDCs for 2H − TaS2 and 2H − NbSe2 are given in Fig. 3.5(d) and (e), re-

spectively. Peak positions of these EDCs, which correspond to energy values of highest

electron populations, are marked with black dots. Fermi energy (ω = 0) is marked by

red dotted lines. Compare the change in peak position relative to the Fermi energy for

different EDCs taken below, on, and above the Fermi momentum. These peaks clearly

follow the Bogoliubov like back-bending of the electronic dispersion as elaborated in the
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section 1.1.2. Similar behavior has been observed in both transition metal dichalco-

genides compounds, 2H − TaS2 and 2H −NbSe2.

Note that the unoccupied upper branch of this dispersion (hole band) could not be ob-

served since the ARPES technique is only sensitive to the occupied electronic states[45].

3.4.2.2 Momentum Anisotropy of the CDW Energy Gap

Series of energy distribution curves were taken in the K–neighborhood, as marked on the

Fig. 3.6(a) and (b). These EDCs, taken along the circumference of both outer and inner

K–centric Fermi surface barrels are plotted with marker and EDC color coordination

in Fig. 3.6(d) and (e) for each barrel, respectively. Also, another series of EDCs were

taken along the cut indicated by a black dotted arrow that spans approximately radially

across both barrels, as shown on Fig. 3.6(b). These EDCs were taken at points with

equal momentum separation. Corresponding EDCs are shown in the Fig. 3.6(f) in black,

while two blue EDCs represent ones taken on the inner and outer Fermi surface barrels.

Observing the locations of the peaks relative to the chemical potential (ω = 0) for the

EDCs on Fig. 3.6(d), (e) and (f), it is evident that, the energy (ω) position of the

quasi-particle peak in each EDC, at each momentum location, on both inner and outer

K–centric Fermi surface barrels, consistently lie below the chemical potential. This

means that the both K–centric Fermi surface barrels are always gapped.
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Figure 3.6: Energy distribution curves (EDCs) around K and Γ symmetry
points in the charge density wave state of 2H−TaS2.
Please see the next page for the details.



Chapter 3. Charge Density Waves in Transition Metal Dichalcogenides 73

Energy distribution curves (EDC) around K and Γ symmetry points in the
charge density wave state of 2H−TaS2 (T = 45K < TCDW , ARPES photon
energy, hν = 22 eV).
Continued from the previous page ...
(a) Regions of interest in the neighborhoods of Γ and K points, marked on a normal
state (> TCDW ) Fermi surface map. (b) Color coded momentum locations around K
point, where EDCs shown in (d),(e) and (f) are taken. (c) Color coded momentum
locations around Γ point, where EDCs shown in (g) are taken. (d) EDCs taken on
the outer K centric Fermi surface barrel, corresponding to momentum points marked
on (b) with same color. (e) EDCs taken on the inner K barrel, corresponding to
points marked on (b). (f) EDCs taken at a series of momentum points along the cut
marked as a black dotted line on (b). (g) EDCs taken on the outer Γ centric Fermi
surface barrel, corresponding to momentum points marked on (c). (h, i, j, k)
Unnormalized EDCs corrsponidng to (d,e,f,g) respectively. Chemical potential
(ω = 0) is denoted by a red dotted line. EDCs in (d), (e) and (f), taken in the vicinity
of K point always peak below ω = 0 while EDCs in (g), in the vicinity of Γ point peak
at ω = 0. All the EDCs have their minima falling above ω = 0.

A similar analysis was done about the Γ point on the respective Fermi surface region

marked on Fig. 3.6(a) and (c). Corresponding color coded EDCs are presented in the

Fig. 3.6(g). In contrary to the observations for K–centric Fermi surface barrels, all these

EDC peaks align with the red dotted line denoting ω = 0 (the chemical potential). This

means Γ–centered Fermi Surface barrels are always gapless (i.e., ∆CDW = 0).

3.4.2.3 Momentum Specificity of the CDW Energy Gap

The charge density wave energy gap can be quantified by the energy separation between

the peak of an energy distribution curve -and- the energy location of its minimum.

Usually, ∆CDW is measured using EDCs taken at Fermi momentum, which means on

the Fermi surface barrels, for this case. This follows from the equation 1.3 and can be

visualized from the Fig. 1.3(b) as well. In the case of incommensurate CDW order as in

2H −NbSe2 and 2H − TaS2, this charge density wave energy gap has been reported to
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Figure 3.7: Variation of the energy gap in 2H−NbSe2 [37]
Spectral gaps corresponding to charge density wave and superconducting phenomena
in 2H −NbSe2. Observed gaps are anisotropic in momentum. The charge density
wave energy gap, colored in yellow-red, opens up only in specific locations in the
vicinity of the K – point, as at the intersection of the line joining K – M momentum
points and the Inner K – centered Fermi surface barrel (circle - C). Charge density
wave gap is non-existent about the Γ – point.

demonstrate a variation of its magnitude, depending on the momentum location it has

been measured. [37, 46, 133, 145, 161–167].

In order to probe for a possible momentum dependence of the ∆CDW , specific points

in the momentum space were chosen about both Γ and K symmetry points. Then

energy distribution curves corresponding to these points, taken at the CDW state (T <

TCDW ) were examined. Such normalized (Fermi function divided) EDCs are given in

Fig. 3.6(d,e,f, and g), while 3.6(h,i,j, and k) shows raw EDCs before normalization.

Previously reported ARPES studies have also shown evidence for similar preferential

existence of ∆CDW which opens up only around the K–point, for series of related material

including 2H−NbSe2, 2H−TaS2, 2H−TaSe2 [133, 145, 146] and NaxTaS2 [164, 165] as

well. As discussed above, the fully gapped nature of K–centered Fermi surface barrels in
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2H −TaS2[92] here is evident by finite down-shift of all the K–centric EDC peaks, with

respect to the chemical potential as in Fig. 3.6(d), (e) and (f), for all the circumferential

and radial momentum locations measured. In contrast to this, for the case of 2H −

NbSe2, it has been observed that ∆CDW opens up only on some specific momentum

locations[37, 133] such as at the intercept of the inner K–barrel and the hypothetical

line between K–M symmetry points as in the Fig. 3.7.

In comparison, when accounting for the charge density wave energy gap, 2H − TaS2

has its K–centered Fermi surface barrels are fully gapped, despite the anisotropic gap-

size variation, whereas in 2H −NbSe2, the K–neighborhood was only partially gapped.

On the other hand, the Γ–centered Fermi surface barrels were gapless in both TMD

material.

This difference of gapping between very similar compounds can be attributed to the

differences in electronic orbits in candidate compounds[92] as elaborated in the section

3.4.5. In general, it can be concluded that the coexistence of gapped and gapless regions

of Fermi surfaces are characteristic for the incommensurate CDW phase in 2H–TMD

materials, as similar features have been reported for all three compounds 2H − TaS2,

2H −NbSe2 and 2H − TaSe2 [133, 141, 146].

3.4.2.4 Particle – Hole Asymmetry of the CDW Energy Gap

The relative position of the minima of an EDC with respect to the chemical potential

can be used to determine whether the CDW energy gap is particle-hole symmetric.

Consider some representative EDCs of 2H − TaS2 in the vicinity of Γ and K points

given in Fig. 3.8(b) and (c). These EDCs are taken at the momentum locations denoted

on the schematic Fig. 3.8(a); as a yellow dot, on the inner Γ–centered Fermi surface
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Figure 3.8: Symmetry of energy gaps in charge density wave state Vs.
superconducting state.
(a) Relevant momentum locations for (b) and (c), marked on the schematic Fermi
Surface of 2H − TaS2. (b) A representative EDC taken on the inner Γ–centric Fermi
surface barrel of 2H − TaS2, at the momentum point marked as P1 on (a). (c) An
EDC taken on the outer K–barrel of 2H − TaS2, at P2 on (a). (d) An EDC taken at
an antinode of the superconducting gap of an underdoped Bi 2212 high temperature
superconductor sample. In (b) and (c), the charge density wave energy gap is
asymmetric while in (d), the superconducting energy gap is symmetric about the
chemical potential, ω = 0 (marked by a red dotted line).

barrel and as a light blue dot on the outer Γ–centered Fermi surface barrel, respectively.

It is clear that for both K and Γ–centric Fermi surface barrels, minima of all the EDCs

are shifted above from the chemical potential (ω > 0). This is evident from both Fig.

3.8(b and c), as well as from Fig. 3.6(d,e,f, and g). This shift reveals that the charge

density wave energy gap, ∆CDW is particle – hole asymmetric with respect to the the

chemical potential[92]. Such an asymmetry is expected for these systems as a charge

density wave instability involves a finite momentum (q) transfer[45], where the q does

not match with one of the CDW wavevectors. Similar asymmetry of ∆CDW has been

observed for 2H −NbSe2 as well [46, 132, 146, 150].

The behavior of the charge density wave energy gap is quite different from a super-

conducting energy gap, which is particle-hole symmetric because it is a zero-momentum

transfer (q = 0) instability[45]. Compare these EDCs on Fig. 3.8(b) and (c) from charge
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density wave material with an EDC from a superconducting material, shown on the Fig.

3.8(d). This system is underdoped BISCO (Bi 2212: Bi2Sr2CaCu2O8+δ) cuprate high

temperature superconductor (HTSC) with superconducting critical temperature TC =

87K[45]. (Note: the superconducting energy gap of such a cuprate HTSC is anisotropic

along the Fermi surface and the shown EDC is taken at an antinode where this supercon-

ducting gap attains its maximum value.) Further, the absence of Fermi surface nesting

in transition metal dichalcogenides as stated in the section 3.3.3 can be understood in

terms of this particle–hole asymmetry of the ∆CDW as well.

3.4.3 Temperature Dependence of the CDW Energy Gap

In search of any temperature evolution of the charge density wave energy gap, a mo-

mentum point on the outer Fermi surface barrel around the K–point was selected as

indicated on the Fig. 3.9(a) with a light blue point, Pa. A series of EDCs for this point

was taken for a range of temperatures from 12 K to 100 K [92] and are shown in the

Fig. 3.9(b). In the charge density wave phase, For T < TCDW , the CDW coherence

peak was significant. When temperature was increased, peak height got decreased, and

eventually diminished when T = TCDW . This behavior is expected.

For the further increase in temperature above TCDW , the energy distribution curve was

expected to transform into a peak-less EDC, as no charge density wave is observed

at these elevated temperatures. But in contrary to the expected behavior, a ‘kink’

feature was visible even in higher temperature EDCs. A kink indicates a suppression of

density of stats, as can easily be seen in the Fig. 3.9. This kink appeared at the same

energy ω location where the low-temperature peak used to appear. For much higher

temperatures, further evolution of the EDC stopped, but the kink remained in place
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Figure 3.9: Temperature dependence of the energy distribution curves.
(a) Fermi surface schematic of 2H −MQ2, indicating momentum locations where
EDCs in (b) and (c) are taken. (b) Series of EDCs taken at different temperatures for
2H −TaS2 at the momentum point Pa, marked as a light blue dot on (a) on the outer
K–centered Fermi surface barrel. (c) Series of EDCs taken at different T for
2H −NbSe2 at the momentum point Pb, marked as a purple dot on (a) on the inner
K barrel[146]. In both (b) and (c) for both samples, when T < TCDW , the CDW
coherence peak is pronounced and diminishes When T is increased. For T > TCDW ,
the peak evolves in to a kink feature. Both the peak and the kink lie approximately
on the same energy location for all the temperatures, as marked by a blue dashed line.

for the range of temperatures observed. The existence of a low-energy suppression of

spectral weight, even for temperature T > TCDW , is commonly known as the pseudogap

behavior. Besides the pseudogap, the particle-hole asymmetry of the charge density

wave energy gap, mentioned in the section 3.4.2 was also significant for the entire range

of temperatures investigated.

Similar observations have been reported for 2H −NbSe2 [133, 146] and for 2H −TaSe2

[140] as well. Fig. 3.9(c) shows a series of EDCs over a comparable range of temperates

for 2H − NbSe2[146]. These were taken on the inner K–centric Fermi surface barrel,

indicated as a purple point Pb on Fig. 3.9(a). Apart from the material class of transition

metal dichalcogenides, This kind of pseudogap behavior has been observed in other
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materials such as under-doped cuprate high temperature superconductors (HTSCs)[168–

171] as well.

3.4.4 Origin of the Pseudogap

A charge density wave state, as elaborated in the section 1.1.2, can be characterized

with an order parameter, Ψ as followed from the equation 1.3.

Ψ = ρ0 cos(qCDW .r+ ϕ) (3.3)

with an amplitude ρ0 given by,

ρ0 =
2∆CDW

g(|q|)
(3.4)

where, ∆CDW is the charge density wave energy gap, qCDW is the CDW wave vector, r is

a position vector, ϕ is the phase factor, and parameter g(|q|) is a measure of momentum

dependent electron-phonon coupling.

Such a charge modulation can disappear due to the loss of either the amplitude, ρ0 or the

randomization of the phase, ϕ. In weak coupling theory, destruction of CDW order via

phase randomization is unlikely. However, this can, in principal, happen in a strongly

coupled CDW system.

for T < TCDW , the charge density wave energy gap ∆CDW exists in association with a

true long-range ordered CDW phase. On the other hand, for T > TCDW , thought the

phase coherence is diminished in the long range, the local amplitude, ρ0 may still remain
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finite. As above equation 3.4 reveals, CDW energy gap is proportional to this local am-

plitude (∆CDW ∝ ρ0) So, even for T > TCDW , a short range charge density ordering can

still be expected, despite the long range phase coherence being suppressed. Therefore,

a pseudogap can be observed due to such a short-range modulations as discussed in the

section 3.4.3.

Supporting observations for such short range charge ordering have been reported in

previous studies of 2H − TaS2 [11] and 2H − NbSe2 [146] where transmission electron

microscopy (TEM) and scanning tunneling microscopy (STM) studies have identified

peaks related to a charge density wave supper–lattice, even for temperatures, T > TCDW

in respective systems.

It can be suggested that the transition from long-ranged CDW state to the higher

temperature pseudogap state in both incommensurate charge density wave systems and

underdoped cuprate HTSCs can thus be viewed as “a coherent and gapped electronic

state in low temperature, transforming to an incoherent, yet still gapped state in a

higher temperature, by means of losing the long-range phase coherence while holding

some reminiscent local ordering”.

3.4.5 Orbital Selectivity and the Anisotropy of the CDW Energy Gap

In the context of superconductivity, BCS theory explains the weak coupling limit, while

the Eliashberg theory explains the strong coupling limit. Analogous to this, in the

context of charge density wave phenomenon, Peierls like Fermi surface nesting is the

general model for the weak coupling limit (see the section 3.3.3). At least for the charge

density wave phenomena in transition metal dichalcogenides [45, 47, 92], a more specific

tight binding model[132, 150] which considers both the orbital dependence of electrons,
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Figure 3.10: Tight binding model band structure for 2H−NbSe2[150].
(a) Blue lines indicate two band crossing the Fermi level. These arise from Nb-dz2

orbitals which are aligned with crystallographic c axis as shown as insets. (b) The
Fermi surface schematic of 2H − TaS2, dz2 . (c) The layered atomic structure, with
two transition metal (Nb) atoms per unit cell, which gives rise to bonding and
anti-bonding orbitals and bands highlighted on (a).

participate in charge density wave pairing -and- the momentum dependence of electron-

phonon interactions can sufficiently explain above observations. It can tackle both the

similarities among candidate TMD compounds, 2H − TaS2 and 2H − NbSe2 as well as

the differences between them[92].

As explained in the section 3.3.1, dz2 electronic orbitals of transition metal (Ta and Nb)

cations give rise to K–centered Fermi surface barrels. The modeled band structure[150]

for 2H−NbSe2 and the nature of these constituting orbitals are shown in the Fig. 3.10.

Two bands, corresponding to two barrels are expected because, two transition metal

atoms exist in a unit cell. On the Fermi surface, near the K–symmetry point, Inner

Fermi surface barrel is derived from bonding orbitals, and the outer barrel comes from

anti-bonding orbitals. Here, for the case of 2H −NbSe2, these dz2 orbitals are oriented
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Figure 3.11: Possible orientations for dz2 orbitals of three neighboring
transition metal cations (Nb and Ta in this context). These orbitals are associated
with K–centered Fermi surface barrels. Overlap integrals appear in the tight-binding
description are marked as S1, S2 and S3 (values of these integrals are given in the
Table 1). (a) In 2H −NbSe2, dz2 orbitals are aligned with crystallographic c axis.
note that S1 = S2 due to the geometry. (b) In 2H − TaS2, dz2 orbitals lie on the a–b
plane.

along the c-axis of the crystallographic coordinate system. This band structure and

orbital orientations are elaborated in the Fig. 3.11(a).

But in the case of, 2H − TaS2 the smaller size of the Fermi surface barrel and the

proximity to a high-symmetry point cause its dz2 orbitals to lie on the crystallographic

ab-plane [134, 150, 172, 173] as shown in comparison to the former case, on the Fig.

3.11(b). This rotation of the orbital orientation in 2H − TaS2 has been previously

considered to give rise to some other phenomena such as the presence of a hidden one-

dimensional order[172], and specific orbital order type[173], as well.

This drastic difference of dz2 orbital orientation results in a difference of strengths of the

electron-phonon coupling for K-centered Fermi surface barrels between 2H − TaS2 and

2H − NbSe2. In the table 3.1, Orbital overlap Integrals S1,S2 and S3 are expressed in

terms of d−d orbital character (σ, π and δ). When considering only the nearest neighbor

overlaps at the K– momentum point, diagonal entries of the overlap matrix S(k) has
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the value (1 + 2S2 − S1) while off-diagonal elements are S3[92]. In general, in-plane

interactions are represented by the diagonal elements while out-of-plane interactions are

determined by off-diagonal elements. Relative magnitudes of electron-phonon couplings

are determined by the squared ratio of these components in S(k). Once this method is

applied to K– centered inner and outer Fermi surface barrels, the ratio of charge density

wave energy gap sizes between both barrels can be determined[132, 150].

Table 3.1: Comparison of orbital overlap integrals in
2H−TaS2 and 2H−NbSe2.

S 2H −NbSe2 2H − TaS2

S1
1
4(ddσ)1 +

3
4(ddδ)1 (ddσ)1

S2
1
4(ddσ)1 +

3
4(ddδ)1

1
64(ddσ)1 +

9
16(ddπ)1 +

27
64(ddδ)1

S3 (ddσ)2
1
4(ddσ)2 +

3
4(ddδ)2

Composition of the orbital overlap integrals S1,S2 and
S3 are expressed in terms of (ddσ), (ddδ) and (ddπ) or-
bital character for K–centric Fermi surface barrels in
2H−NbSe2 and 2H−TaS2. Spacial orientations of these
orbital overlap integrals are as shown in the schematic
diagram, Fig. 3.11.

Such a tight-binding model to the band structure was utilized to estimate the strength

of this effect[174]. For both 2H −TaS2 and 2H −NbSe2, the same set of orbital overlap

integrals between adjacent d-orbitals were used. To compare gap ratio between inner

and outer barrels within both material around the K–point, the procedure was to set

integral S1 of 2H − TaS2 equal to S3 of 2H − NbSe2 .More specifically, as understood

from the table 3.1, set (ddσ)1 = (ddσ)2 ≈ 0.5 and set all others integrals to be zero.

For 2H − NbSe2 this analysis predicted a CDW energy gap ratio of 6.8 between inner

and outer barrels. This value agrees with ARPES studies[37, 133] of 2H −NbSe2 where
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∆CDW opens up only in the inner barrel. On the other hand, for 2H − TaS2, this gap

ratio was smaller(∼ 2.7) compared to partially gapped 2H − NbSe2. This calculation

also supports experimental observations[92] mentioned in the section 3.4.2, since both

barrels are fully gapped throughout the K–centric barrel system in 2H − TaS2.

3.5 Summary

In summary, an ARPES study on the charge density wave (CDW) phenomenon in

the transition metal dichalcogenide (TMD) compound 2H − TaS2, with emphasis on

momentum and temperature dependencies is being reported. This analysis was done in

comparison to similar TMDs, 2H −NbSe2, and 2H − TaSe2.

Several universal phenomena, generalizable among the entire family of layered transition

metal dichalcogenides with 2H polytype, were found.

i In the momentum space, Fermi pockets of electrons and holes were segregated into

concentric double barrel patterns about K and Γ high symmetry points.

ii The charge density wave energy gap (∆CDW ) existed only on some of the Fermi

surface barrels; K–centric Fermi surface barrels were fully, or at least partially

gapped while Γ-centric barrels remains ungapped.

iii Simple Peierls like Fermi surface nesting model was not sufficient in the explanation

of the charge density wave formation in transition metal dichalcogenides.

iv The charge density wave energy gap was particle-hole asymmetric with respect to

the chemical potential, whenever the gap opens up.
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v The Pseudogap behavior (persistence of the ∆CDW for T > TCDW ) was observed

due to short-range charge ordering in local neighborhoods, despite the long-range

phase coherence being diminished at elevated temperatures.

Apart from the general features listed above, noticeable differences between comparable

transition metal dichalcogenide compounds were observed as well,

i In the case of 2H −TaS2, The charge density wave energy gap opened up at each

momentum location on both k–centric Fermi surface barrels. This is in drastic

contrast to the CDW energy gap of 2H − NbSe2, where existence and magnitude

of ∆CDW was observed to be momentum specific and so, even K–barrels were only

partially gapped.

ii When expressed with respect to their own lattice dimensions, Γ-centric Fermi

surface barrels were almost the same size among both compounds, while the size

of K– centric Fermi surface barrels for 2H−TaS2 were observed to be smaller than

the size of K– barrels in 2H −NbSe2.

These differences can be understood using a tight binding model with strong electron-

phonon coupling which takes the differences of orbital orientations between these mate-

rials into account. These differences in orbital arrangements and its consequences on the

momentum space might be the determining factor of the charge density wave transition

temperature.



Chapter 4

Electron–Phonon Coupling in
2H−TaS2

4.1 Background

Information regarding interactions between an electron and some collective excitations

in a system, such as phonons, magnons, plasmons, etc., can be extracted by carefully

analyzing electronic dispersion. Typically, such interactions are expected to renormalize

electronic dispersion. The shift in this renormalized band dispersion with respect to the

bare dispersion can be considered as a measure of the strength of the coupling between

electrons and the collective excitation.

In addition, a modification to electronic state lifetimes will follow. Hints for the existence

of such collective modes can be captured using techniques like heat capacity measure-

ments and tunneling spectroscopy, but these methods inherently provide information

averaged over the entire Fermi surface of the system. On the other hand, ARPES can

resolve momentum specific features making it a unique probe of mapping finer details

of the Fermi surface with energy and momentum resolution.

86
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As followed from the previous chapter 3, Angle Resolved Photo-Emission Spectroscopy

(ARPES) was used to observe energy, momentum[45] and temperature[92] dependence of

the electronic structure of 2H−TaS2 in order to investigate the general and compound-

specific features of its charge density wave energy gap. Upon further observations into

the same material system, a strong coupling of band electrons to some collective modes

which lead to the renormalization of the energy dispersion was observed. Hence, a

detailed analysis of the electronic band renormalization in momentum space was called

for, in order to gather the details on these underlying collective modes.

The study presented here depicts direct evidence for strong coupling between electrons

and phonons. The observation of temperature independence of these renormalization

signatures further support this phononic origin. Similar signatures of electron-phonon

coupling have been observed in other 2H-Polytypes. Phonons are the quasi-particle

representation of quantized lattice vibrations. In general, phonons occur in two different

categories, optical and acoustic. Acoustic phonons exhibit a phonon dispersion; ω(k) −→

0 as k −→ 0 . On the other hand, optical phonons occur only above a certain cut-off

frequency.

Beyond the material class of transition metal dichalcogenides, such signatures of elec-

tronic band renormalization have been observed in a wide range of materials including

conventional superconductors[175], cuprate[118, 158, 176] and pnictide[177] high tem-

perature superconductors, metals [178, 179] and Manganites [180]. In the case of TMDs,

band renormalizations in 2H − NbSe2[37, 181] and 2H − TeSe2 [181, 182] has been re-

ported. This study employees self-energy analysis[47] on ARPES data to identity band

renormalizations in 2H − TaS2 and then characterize observed features to be due to a

phononic origin.
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4.2 Self-Energy of the Band Renormalization

4.2.1 Self-Energy and the Spectral Function

The effect excreted by a collective mode, via coupling to the electronic dispersion of

a system can be captured using the a microscopic attribute called ‘single particle self-

energy’, symbolized as Σ(k, ω). In general, self-energy is a function of both energy, ω

and momentum, k. and is complex valued [127].

• The real part: Σ
′
(k, ω), is a measure of the deviations from the bare electronic

dispersion due to the interaction with collective modes.

• The imaginary part: Σ
′′
(k, ω), is the modification of the life-times of electronic

states due to the electron-collective mode coupling.

Note that, the energy parameter ω here is the energy with respect to the chemical

potential, µ.

ω = ω − µ (4.1)

The intensity I(k, ω) of an ARPES signal can generally be approximated as:

I(k, ω) = M(k)A(k, ω)f(ω) (4.2)

where M(k) is the dipole matrix element and A(k, ω) is the spectral function, while

f(ω) is the Fermi Dirac distribution function.
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f(ω) =
1

1 + e
ω
kT

=
1

1 + e
(ω−µ)
kT

(4.3)

The spectral function can be further expanded in terms of both the real and imaginary

self-energy components as[69, 118, 158, 176]:

A(k, ω) = Σ
′′
(k, ω)

(ω − ϵk − Σ′(k, ω))2 +Σ′′(k, ω)2
(4.4)

where, ϵk is the un-renormalized (bare) electronic dispersion in the absence of any col-

lective mode interactions.

4.2.2 Extraction of the Self-Energy Components from ARPES Data

Consider one-dimensional line graph representations of ARPES data (see the section

2.2). A momentum distribution curve (MDC), is an intensity map, I(kx) for a specific

value of ky and ω. On the other hand, an energy distribution curve (EDC) is another

type of a line graph, I(ω) for a fixed coordinate of kx and ky. In principle both line

graphs EDCs, and MDCs can be used to extract quasi-particle self-energies responsible

for band renormalization. An MDC analysis near the chemical potential was employed

in this study.

In principle, both of the real (Σ′) and imaginary (Σ′′) components of the self-energy

can be found from ARPES data. However, in practice, such an evaluation can be

very difficult to handle if the self-energy depends on both energy and momentum. The

extraction of useful information on self-energy becomes rather straightforward when the

self-energy behaves practically momentum-independent.
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Given this condition is satisfied, and further, if the data were taken in the neighborhood

of the Fermi momentum kF , or in other words in the low binding energy region near

chemical potential, it is safe and simple to approximate the above stated bare electronic

dispersion, ϵk as:

ϵk ∼ v0F (|k| − kF ) (4.5)

here, kF is the Fermi momentum and v0F is the bare Fermi velocity.

4.2.3 Self-Energy and the Lineshapes of MDC Peaks

If the following two conditions are satisfied for ARPES momentum distribution curves

(MDCs):

• The real, Σ′
(k, ω) and imaginary, Σ′′

(k, ω) components of the self-energy, as well

as the dipole matrix elements, M(k) shows no significant dependence on the mo-

mentum, k.

• The region where MDCs were taken is strictly in the vicinity of the chemical

potential of the system, or in other words; |k| ∼ kF , where kF is the Fermi-

momentum.

The peaks in such an MDC can be successfully approximated with simple Lorentzian

line shapes. To further clarify this point, consider the definition of the simple Lorentzian

model:
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L(x) ∼ σ

(x− x0)2 + σ2
(4.6)

where, x is the independent variable, x0 is the center of the peak and σ is the line width

(FWHM).

Comparison of this form (equation 4.6) to the spectral function expressed in the equation

4.4 reveals the following features about self-energy components.

• The real part of the self-energy, Σ′
(k, ω) is a measure of the deviation from the

bare electronic dispersion and so, Σ
′
(k, ω) can be found by subtracting the ex-

pected bare dispersion (ϵk) from the experimentally observed (i.e.: renormalized)

dispersion, ω(k).

Σ
′
(k, ω) = ω(k)− ϵk (4.7)

• The imaginary part of the self-energy, Σ′′
(k, ω) serves as a width parameter(σ).

Σ
′′
(k, ω) ∼ σ (4.8)

Call the widths obtained from the Lorentzian fits to momentum distribution

curves: W (ω). It can be expressed as[69, 118, 158, 176]:

W (ω) =
Σ

′′
(ω)

v0F
(4.9)

Which is a measure of the modification of electronic state lifetimes as mentioned

above.
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It should be noted that, in reality, the ARPES data will be subjected to additional

broadening other than due to the lifetimes, upon various physical and systematic fac-

tors such as the detector resolution. If these broadening mechanisms are considered to

be of Gaussian type, The Voigt model, which is a convolution of a Gaussian with a

Lorentzian, happens to be a better fitting model for experimental MDC peaks. This

model is characterized by two independent width parameters (one Gaussian width and

one Lorentzian), and several analysis methods can be utilized to isolate the Lorentzian

width, which holds electronic state lifetime information (see the section 2.1.5.1).

4.3 Identification of the Phonon Modes in 2H−TaS2

4.3.1 Tracing the Electronic Band Dispersion

Consider the momentum cut marked on the Fermi surface blueprint as a red dashed line

on the Fig. 4.1(a). A series of momentum distribution curves (MDCs) along this mo-

mentum cut, as well as along similar cuts on energy iso-surfaces (CEIMs) with stronger

binding energies (ω < 0) were taken. Orientations of these MDC-cuts are visualized

on the Fig. 4.1(b) where few representative energy iso-surfaces (i.e., constant energy

intensity maps - CEIMs) are stacked. Resultant representative MDCs are shown on the

Fig. 4.1(c), with arbitrary baseline shifts along the vertical (energy) axis.

Such MDCs were taken for a series of CEIMs of energies ranging from ω = 0 (i.e., on

the Fermi surface), all the way past -0.13 eV. Resultant MDCs are shown on the Fig.

4.1(c). Data points which are represented with blue markers were then fitted with Voigt

fits, given as red lines. The momentum locations of these fitted peaks can be identified

for each MDC. (i.e., for each energy).
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Figure 4.1: Band reconstruction of 2H−TaS2 using momentum
distribution curves (MDCs).
Please see the next page for the details.



Chapter 4. Electron–Phonon Coupling in 2H − TaS2 94

Band reconstruction of 2H−TaS2 using momentum distribution curves
(MDCs).
Continued from the previous page...
(a) The Fermi surface map with a momentum cut (red dashed line) indicated.
Momentum distribution curves (MDCs) shown in (c) were taken along this
momentum cut, for a series of energy (ω) values. (b) The stack of energy iso-surfaces
(CEIMs) considered for the MDC analysis. The red plane is defined by a Ky

momentum held constant, and MDCs taken on this plane, for each energy value (ω)
are shown in (c). Note that the top CEIM at ω = 0 is the same as the Fermi surface
in (a). (c) Some representative MDCs taken for few diffrent energy values. Data are
represented as blue markers, while Voigt fits are given as red lines. curves are baseline
shifted for the visual clarity. Momentum Kx is the indipendent variable, while Ky

momentum component was constant throughout. Each MDC is characterized by the
the energy. (d) Observed electronic band dispersion (green circles) of the left most
peak, traced by tracking the correspoinding peak locations of MDCs, such as the
curves shown in (c) for a range of energies. (Note: this is the band due to the outer
K–centric Fermi surface barrel)

The experimental band dispersion for the corresponding peak, ω(k) can be obtained

by plotting the MDC energy values (in eV), against corresponding peak positions in

momentum (in Å−1). An example band trace constructed using this method is plotted

on the 4.1(d), in green circles. The band depicted is the left outer K– centered Fermi

surface barrel of 2H − TaS2.

4.3.2 Renormalization Signatures in the Electronic Band Dispersion

Experimental band trace above is superimposed on an EMIM (energy momentum in-

tensity map) on the Fig. 4.2(b). The EMIM depicts the intensity profile of the barrel

wall corresponding to the band. A zoomed-out EMIM which shows the experimental

band profile of the entire K–centric Fermi barrel system is given on the Fig. 4.2(a) as

a reference. The MDC mapped band dispersion (green circles) shows a good agreement

with this intensity profile. Note that, this EMIM can be alternatively visualized as the

ARPES intensity profile on the red colored intersection plane marked on the Fig. 4.1(b).
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Figure 4.2: Band renormalization signatures of 2H−TaS2 due to the
presence of collective modes (a.k.a., kinks).
(a) An ARPES energy–momentum intensity map (EMIM) depicting the band profile
of the K–centric Fermi surface barrel system of 2H −TaS2. (b) Line of green circles is
the experimental electronic dispersion trace, due to the band corresponding to the
outer K–centric Fermi surface barrel. Approximated bare band dispersion is shown by
black dashed line. Band renormalization signatures (i.e.: the kink locations) are
marked with horizontal black arrows. Band traces are superimposed on a portion of
the EMIM shown on (a), zoomed in to the neighborhood of the Fermi crossing 1.
Fermi level is marked with a red dashed line on both figures.

An elaborate discussion on the experimental band structure of 2H − TaS2 is provided

in the section 3.3 while the Fig. 3.3 summarize the details.

Expected bare-band dispersion is also plotted as a black dashed line on the Fig 4.2(b).

Note that this kind of MDC analysis is valid only in the vicinity of the chemical potential

as given by the equation 4.5. In this tight region under analysis, the bare band can be

approximated with a straight line segment with a slope equal to the Fermi velocity

(v0F ). The bare band (black dashed line) will pass through the same Fermi crossing

(i.e., same energy-momentum coordinate) as the experimentally observed renormalized

band (trace of green circles). Finer details of this band dispersion show multiple places

with drastic slope changes with significant deviations from the bare dispersion. These
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renormalization features are known as kinks and are due to the scattering of electrons

from the collective modes in the system. Out of several renormalization signatures, two

of the most prominent kinks are indicated with black horizontal arrows on Fig. 4.2(b),

These kinks are identified at energies ω ∼ 18 meV and ∼ 35 meV.

Reported observations from Raman spectroscopy data [183] and calculations of theoret-

ical phonon energies[184, 185] predict phonon modes at energies 24.8 meV, 28.2 meV,

34.7 meV and 49.59 meV for 2H − TaS2. Given the agreement between this ARPES

Figure 4.3: Band renormalization signatures of 2H−NbSe2[37].
(a,b) Fermi surface schematics of 2H −NbSe2, showing both Γ and K centric Fermi
barrel systems, respectively. (c) Experimental band dispersion trace, due to the band
corresponding to the outer K–centric Fermi surface barrel, taken at the point
indicated with blue circle on (a). Approximated bare band dispersion is shown as a
black dashed line. (d) Band traces, due to the inner and outer Γ–barrels, taken at the
point indicated with a red circle on (b). Locations of band renormalizations (i.e., the
kinks) are marked with horizontal dashed lines. Band traces are superimposed on
ARPES energy momentum intensity maps (EMIMs)
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analysis and the phonon energies, band renormalizations identified above can be re-

lated to phonon modes coupling to the electronic band dispersion. This conclusion is

in line with ARPES studies of 2H − NbSe2 where, again, underlying collective modes

were found to be phonons[37, 181]. Fig. 4.3 shows such renormalized bands obtained for

2H−NbSe2 via a similar MDC analysis procedure[37]. In the case of 2H−TaSe2, compa-

rable signatures of collective modes have been observed but yet to be identified[181, 182].

Beyond transition metal dichalcogenide materials, similar renormalizations due to col-

lective modes including, but not limited to phonons have been reported for a variety of

materials[175, 178–180] including high temperature superconductors [118, 158, 176, 177].

4.3.3 Renormalization Signatures in the Self-Energy

The behavior of real, Σ′
(ω) and imaginary, Σ′′

(ω) parts of the self-energy due to above

identified electronic band renormalizations can be characterized as well. Admitting to

a method repeatedly used in the proceeding literature[37, 118, 158, 175–177, 180], bare

electronic band dispersion(ϵk) was approximated as a straight line in a tight region of

energy and momentum in the vicinity of the kinks.

In the light of the Fig. 4.2(b) (or the Fig. 4.4(a)), notice the following behaviors of both

bare -and- renormalized electronic bands, in high and low energy limits.

• At higher electronic binding energies than kink energies, the bare dispersion (repre-

sented by a black dashed line), aligns with the experimentally observed renormal-

ized dispersion (plotted as green circles). Observe this behavior at deep binding

energy region (ω ∼ -0.1 eV) on any of the band diagram.
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• At the Fermi level, ω = 0 eV, both bare and renormalized dispersion curves pass

through the Fermi momentum kF . In other words, both band traces should share

the same Fermi crossing, as discussed in the section 4.3.2 above.

• In the intermediate energy range between above two extremes, renormalized dis-

persion deviates from the bare dispersion, giving rise to signature kinks.

As elaborated in the section 4.2, the real part of the self-energy, Σ′
(k, ω) can be found as

the difference between experimentally observed (line of green circles) and approximated

bare band (black dashed line) dispersions, using the equation 4.7. Accordingly, in the

Fig. 4.4(b), the plot of filled red circles associated with the right (red) vertical axis

shows the variation of Σ′
(k, ω) vs energy, ω.

Also, the imaginary part of the self-energy, Σ
′′
(k, ω) can be found via the equation

4.9 using fitted widths of MDC peaks, W (ω). These widths are plotted on the same

Fig. 4.4(b) as open blue circles in association with the left (blue) vertical axis. Two

kink locations are marked with two black horizontal arrows on the renormalized band

diagram on the Fig. 4.4(a). These locations fall in excellent agreement with vertical

black arrows on the Fig. 4.4(b) indicating,

• Clearly identifiable peaks on the real part of the self-energy (Σ′ data), given in red

filled circles.

• Locations of drastic slope changes of the width (W data), given as blue open circles

on the same diagram.

Conclusively, the renormalizations identified via observing the bands in the section 4.3.2,

are further confirmed via self-energy analysis, as expected[127].
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Figure 4.4: Renormalization signatures in self-energy.
(a) Experimental electronic band dispersion for the outer K–centric Fermi surface
barrel of 2H − TaS2. Two reorganizations are identified with black horizontal arrows
at energies ω ∼ 18 meV and ∼ 35 meV. (b) Self energy analysis of the band
dispersion in (a). The real part of the self-energy ,Σ′

(ω) is plotted as filled red circles
and should be read with respect to the right axis (colored in red). Widths of MDC
peaks (W (ω)) are given in open blue circles, with respect to the left axis (colored in
blue). Note that the imaginary part of the self energy, Σ′′

(ω) is directly proportional
to W (ω). Prominent peak locations of the Σ

′
(ω) coincide with significant changes in

the slope of W (ω) data, marked with black vertical arrows.

4.3.4 Renormalizations Due to the Unidentified Collective Modes

Two prominent kinks at energies ω ∼ 18 meV and ∼ 35 meV identified above can easily

be related to independently confirmed phonon modes as discussed in the section 4.3.2.

Apart from these two, several other renormalization signatures are also significant on

the experimental band trace as well as on both the real and imaginary plots of self-

energy. As per examples, on the real component of the self-energy Σ
′
(k, ω) plot on the

Fig. 4.4(b, red filled circles), observe the features in the energy range of -0.1 eV < ω <

-0.05 eV. The cutoff energy for phonon modes in 2H −TaS2 is 49.59 meV, as confirmed

from both calculations and experimental observations [183, 184]. Therefore, any kink

feature below this cutoff energy cannot be a consequence of phonon modes coupling to
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the electronic structure.

The feature closer to -0.1 eV might be due to any imperfections of the method of data

analysis, as the validity of the MDC based self-energy analysis procedure may fall apart

for energies further form the chemical potential, as discussed in the section 4.2.2. On

the other hand. the peak in the vicinity of -0.07 eV appears interesting. A signature

of an unresolved collective mode at a similar energy has been reported for 2H − TaSe2

as well[181, 182]. However, at this point, the origin of this feature is left as an open

question and requires further examination.

4.4 Momentum and Temperature Dependence of the Band

Renormalization

4.4.1 The Electron-Phonon Coupling Parameter, λ(k)

The parameter λ(k) is a measure of the electron-phonon coupling strength. It is also

known as the ‘mass enhancement parameter’[37]. Assuming that the entire mass renor-

malization is due to electron-phonon interactions, the following relationship can be uti-

lized to calculate λ(k) [37, 118, 158, 176]:

λ =
v0F
v∗F

− 1 (4.10)

where, v0F is the bare Fermi velocity which can be found as the slope of the bare band

dispersion, and v∗F is the renormalized Fermi velocity, which is the slope of the renor-

malized band dispersion, evaluated at the chemical potential, ω = 0.



Chapter 4. Electron–Phonon Coupling in 2H − TaS2 101

4.4.2 Momentum Dependence of the Band Renormalization

For 2H −TaS2, several representative dispersion plots were analyzed at the outer Fermi

surface barrel about the K–point using the method outlined in above section 4.3.1.

Locations of the respective Fermi crossings of each band are marked with green dots,

numbered from 1 to 4 on the Fig. 4.5(a). Renormalized dispersions corresponding to

these points are given in the Fig. 4.5(c) as plots of green circles. Similarly, Red dots from

5 to 10, marked on the inner Γ–centered Fermi surface barrel on Fig. 4.5(a) indicate

momentum locations corresponding to dispersion plots traced with red circles in the Fig.

4.5(b).

All the dispersion traces depicted in both Fig. 4.5(b) and (c), in the neighborhoods of

Γ and K high symmetry points, possess consistent multiple kink signatures discussed in

sections 4.3.2 and 4.3.3. corresponding kink energies are positioned within the range of

10 meV to 40 meV, and kink locations align with expected phonon energies.

In order to determine the electron–phonon coupling, λ(k), the following procedure was

carried out for each trace.

1 The bare band was fitted with a black solid line at higher binding energies, and was

forced to pass through the respective Fermi crossing. Slope of this line represented

the bare Fermi velocity, v0F .

2 A black dotted line was fitted to the front side of the kink, which is closest to the

chemical potential, and also was constrained to pass through the Fermi crossing.

The slope of this fit gave the renormalized Fermi velocity, v∗F .

3 Then, the λ(k) value for the dispersion trace was calculated using the equation

4.10.
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Figure 4.5: Momentum dependence of the electron-phonon coupling in
2H−TaS2.
(a) Fermi surface of 2H −TaS2 with momentum cuts used in finding band dispersions
shown in (b),(c) marked. Series of momentum density curves (MDC) for various
energies were taken at each location along the momentum cuts indicated and then,
peak locations of them were plotted to get respective electronic band dispersions.
Momentum locations of the Fermi crossings for each dispersion is marked as a colored
dot. (b) Band dispersions for the green cuts marked 1–4 on (a), corresponding to the
outer K–centric Fermi surface barrel. (c) Band dispersions for the red cuts marked
5–10 on (a), corresponding to the inner Γ–centric Fermi surface barrel. The chemical
potential is marked as a red dotted line. Corresponding value of the electron-phonon
coupling parameter (λ) is marked near each dispersion trace.

These λ(k) values are marked on the Fig. 4.5(b) and (c) accordingly. Variation of

these values reveals a gentle momentum dependence in a range from 0.30 to 1.11[47].

Qualitatively similar observations have been reported for 2H − NbSe2 as well[37, 186],

and some results are shown in the Fig. 4.6.
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Figure 4.6: Momentum dependence of the electron-phonon coupling in
2H−NbSe2. [37]
(a,b) Fermi surface schematics of concentric barrels in 2H −NbSe2, in the Γ and K
neighborhoods, respectively. Momentum locations of the Fermi crossings
corresponding to band traces in (d) and (c) are marked and numbered. (c) Variation
of the electron-phonon coupling parameter (λ) for band traces 1 through 18, shown on
(c). (d) Series of 18 band dispersions on the outer K–centered Fermi surface barrel.
Corresponding momentum locations are marked on (b). Thick blue band with λ = 0.7
is the averaged dispersion. λ values for individual traces are plotted on (c). (e) Series
of band dispersions in the Γ– and K–neighborhoods, taken at the points indicated on
(a). Points 1 to 4 lie on the outer Γ–Fermi surface barrel and averaged disperson is
shown as a thick trace. Traces 5 to 7 correspond to points on and within the barrels,
and their average dispersion is shown as well. For each averaged disperson curve
shown as thick traces have the bare band approximation, indicated as a black dashed
line. Black solid lines indicate fits done for the kinks in order to extract renotmalized
Fermi velocity.
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Figure 4.7: Temperature dependence of the electron-phonon coupling.
(a) Fermi surface of 2H − TaS2 with the momentum cuts used in finding band
dispersions shown in (b) marked in light blue. Point C on the outer K–centered Fermi
surface barrel indicate the momentum location of the Fermi crossing of the band
traces. (b) Series of band dispersions on the cut marked on (a), taken at a range of
temperatures. solid black lines are the fits to the bare band and dashed black lines are
the fits done on the renormalization kink closed to the chemical potential. The
chemical potential is marked as a red dotted line. Slopes and thus the
electron-phonon coupling parameter λ, shows no significant temperature dependence.

In a future study, it would be interesting to explore whether this momentum-anisotropy

of λ(k) results in any momentum-dependence of the CDW and/or the superconducting

energy gap of 2H − TaS2.

4.4.3 Temperature Dependence of the Band Renormalization

Finally, the Fig. 4.7(d) shows a series of band dispersions taken at the location ‘C’,

marked with light blue on the outer K–barrel as indicated on the Fig. 4.7(a). These

MDCs correspond to the range of temperatures from 25 K to 100 K which spans across

the CDW transition temperature (TCDW ) for 2H − TaS2. The observed temperature

independent nature of the λ(k) also supports the idea of electron-phonon coupling being

the responsible for electronic band renormalization in 2H − TaS2.
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4.5 Summary

An elaborate analysis of the many-body renormalizations of electronic band dispersion

in 2H − TaS2 was conducted using ARPES. The observations were as follows:

i Renormalizations of the electronic dispersion were observed throughout the mo-

mentum space.

ii Many-body renormalizations were identified to be due to electron-phonon interac-

tions.

iii The electron-phonon coupling was slightly momentum dependent, and a similar

momentum-anisotropy has been detected in the case of related compound, namely

2H −NbSe2.

iv Temperature independence of the band-renormalizations corroborated the idea of

electron-phonon interactions driving the many-body renormalizations.

In the proceeding chapter 3, it was concluded that the ‘Fermi surface nesting’ mechanism

is unlikely to be the origin of the charge density wave transition in 2H −TaS2. Rather,

based on the findings of this chapter, one could argue that the momentum anisotropy

of the electron–phonon coupling in the system is important to stabilize the CDW wave

vector. Given the similarity between 2H−TaS2 and other related incommensurate CDW

materials with 2H poltypes, such as 2H − NbSe2 and 2H − TaSe2, it is likely that the

relevance of the momentum anisotropy of the electron-phonon coupling to the CDW

instability is generic to all these materials.



Chapter 5

Thermoelectric Performance of
Lead Chalcogenides

5.1 Background

The figure of merit, ZT of a thermoelectric material is intimately related to its electronic

structure. Therefore the understanding of the temperature dependence of the electronic

structure is crucial in predicting and fine-tuning the performance of a thermoelectric

material. Being able to simultaneously measure both energy and momentum of the

occupied electronic states in a solid, temperature dependent ARPES is a well-suited

probe for this task [69].

5.1.1 The Band Structure of PbQ

The valence band structure of Lead chalcogenides (PbQ, where Q stands for S, Se, or

Te) consists of two hole bands, known as upper valence band (UVB) and lower valence

band (LVB). Maxmum of the UVB occurs at the L symmetry point (see the Fig. 1.6 for

the Brillouin zone diagram of PbQ). Moreover, the UVB has extended electronic states,

106
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presumably due to a flat secondary valence band, which is the LVB. This lower valence

band lies along Γ–K line, with its maximum at lower energies compared to that of the

UVB [187–189]. Even though some elaborate investigations have been done on Lead

chalcogenides, the exact mechanism behind their high thermoelectric efficiency is yet

unresolved. In particular, the connection between temperature dependent thermopower

and the temperature evolution of the electronic structure is in controversy.

In a number of reports[77, 78, 188, 190–192], the temperature dependence of the ther-

mopower of PbQ has been interpreted in terms of a relative shift between upper and

lower valence bands. In particular, the enhancement of thermopower in PbTe and PbSe

at elevated temperatures has been attributed to the dominant contribution from the

highly degenerate LVBs, associated with a greater effective mass than that of the UVBs.

This shift leads to the eventual crossover of bands, upon the increase of temperature.

So far, this band convergence has been predominantly inferred indirectly from Hall ex-

periments, where the Hall coefficient exhibits a maximum at the convergence, with no

direct experimental evidence for such a temperature dependent change in valence band

structure.

Even though the salient features of the findings in these studies are similar, there is a

marked disagreement among the reported values for the crossover temperatures. For

example, early studies dating back to the 1960’s along with some recent work predicted

a crossover temperature ∼450K in PbTe. This extrapolation prevailed in the literature

until it was shown to happen at much higher temperatures (∼750K), via very recent

results from magnetic field dependent Hall coefficient measurements at elevated temper-

atures [190, 191]. More importantly, there are no direct experimental observations for

temperature dependent evolution of valence bands. Furthermore, recent reports based
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on first-principle calculations cast serious doubts on the very notion of this two-band

analysis of thermopower data [193, 194] and thus, the models based on temperature

dependent valence band shift. This void invites for an in-depth examination of the

temperature evolution of electronic structures of Lead chalcogenides using ARPES.

It should be noted that there are several important ARPES studies conducted on both

PbTe and PbSe[82–84, 195, 196]. However, their emphasis has been on entirely different

aspects of the electronic structure. Via temperature dependent ARPES measurements

on PbQ, we attempt to resolve the following lingering issues in the field:

• What is the valence band structure of these materials?

• How does the rising temperature impact their valence bands?

5.1.2 Samples

Temperature dependent ARPES experiments were carried out on several n- and p- doped

single crystal Lead chalcogenide samples. They are labeled as follows.

• two n-type PbS (referred to as PbS-#1, PbS-#2)

• two n-type PbSe samples (referred to as PbSe-#1, PbSe-#2)

• one n- and, two p- type PbTe samples (referred to as PbTe-#1, PbTe-#2)

PbQ samples were prepared by melting mixtures of Pb and Q (S, Se, and Te) at 100K to

150K above individual melting points of PbQ inside evacuated fused silica tubes. PbI2

was used for achieving n-type doping and Na was used for p-type doping. Typical carrier

concentrations of n- and p- type samples ranged from 2×1019 cm−3 to 5×1019 cm−3 and
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0.2×1019 cm−3 to 2×1019 cm−3, respectively. These samples were then cleaved in situ

to expose fresh surface (001) of the crystal for ARPES measurements.

5.2 Hole Pockets in the Momentum Space

Momentum space geometry of a generic Lead chalcogenide is explained in the section

1.2.2. Since all samples were preferentially cleaved along the (001) crystallographic

plane, the projection of the Brillouin zone onto the (001) plane, as shown in the Fig.

5.1(a), will be practically useful. This diagram will serve as a momentum space map for

the interpretation of subsequent data. Note that the Γ and L symmetry points in the

bulk Brillouin zone are projected on to the (Γ) and (X) points on the surface Brillouin

zone.

5.2.1 Analysis of Constant Energy Intensity Maps

Shown in Fig. 5.1(b – g) are some constant energy intensity maps (CEIMs). CEIMs

are, ARPES data as a function of in-plane momentum components kx and ky at fixed

ω, where ω stands for the electronic energy with respect to the chemical potential. The

method of constructing the CEIMs, starting from the raw ARPES data is as follows.

1. The constant signal at ω > 0, which occurs due to the second order light, was

subtracted from the raw data.

2. Each ARPES spectrum was normalized by the area enclosed by itself and the

energy axis, between measured values of ω.
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3. The raw data captured more than 50% of the surface Brillouin zone for each

sample. For a better visualization, the CEIMs for the entire Brillouin zone were

reconstructed by reflections, using interpolations to uniform grids.

4. Alternate normalization procedures have also been tried but, no qualitative differ-

ences either in the structure or the evolution of these intensity maps were found.

5.2.2 High and Low Energy Hole Pockets

For each doped PbQ sample, CEIMs at lower energies (i.e., near the chemical potential)

and higher energies (i.e., at deeper binding energies) were taken. Fig. 5.1(b) and (e)

correspond to the CEIMs at ω = -0.04 eV and -0.2 eV, respectively for a p-type PbTe

sample (PbTe-#1). In the lower energy CEIM given in the Fig. 5.1(b), the hole pockets

derived from the upper valence band centered at L points are clearly visible around

X. The topology of CEIMs at higher energies change noticeably via the appearance

of tubular regions connecting these isolated pockets as seen in the Fig. 5.1(e). This

happens due to the contribution from the electronic states of the secondary valence

bands (LVBs) lying deeper in binding energies.

Qualitatively similar evolution of the CEIMs with ω can be seen in the case of n-

type PbSe in Fig. 5.1(c) and (f), and for n-type PbS in Fig. 5.1(d) and (g), as well.

Appearance of these tubular regions in CEIMs at higher ω has been predicted in several

band structure calculations [194, 197, 198] and they have also been observed in recent

ARPES experiments on related material like Pb1−xSnxTe [82] and SnTe [199].
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Figure 5.1: Low and high energy hole pockets of doped PbTe, PbSe and
PbS.
Please see the next page for the details.
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Low and high energy hole pockets of doped PbTe, PbSe and PbS.
Continued from the previous page ...
(a) The bulk Brillouin zone of a Lead chalcogenide and its projection on to (001)
crystallographic plane (light blue square). High symmetry points and their projections
are as marked; Γ, L and X points in the bulk Brillouin zone are projected to Γ, X and
M points on the surface Brillouin zone. Black dotted square is the momentum space
reference for subsequent CEIMs (constant energy intensity maps). (b, c, d) Lower
energy CEIMs, taken closer to the Fermi energy level near the top of upper valence
bands (UVBs). Hole pockets near X points, on Γ – X lines are due to the UVBs
projected from the vicinity of the L symmetry point on the line Γ – K in the bulk
Brillouin zone. (e, f, g) Higher energy CEIMs, taken at deeper binding energies. Hole
pockets form UVBs grow and get connected via tubular regions due to the lower
valence bands (LVBs). Comparable features in n- type samples (c),(d),(f) and (g) lie
deep in energy than p- type samples (b) and (e). On (e),(f) and (g) higher energy
CEIMS, Momentum cuts indicated in light blue (Cut-1) and red (Cut-2) are marked
for further analysis of UVBs and LVBs accordingly. Blue and red dots on these cuts
correspond to the momentum locations of the top of the UVBs and LVBs respectively.

Another observation is, the CEIMs depicting comparable features, have more negative

energies for n-type samples than in the p-type sample. This means both the upper and

lower valence bands of n-type samples (Fig. 5.1(c), (d), (f) and g)) lie deeper in energy

compared to the valence bands of the p-type sample (Fig.5.1(b) and (e)), as expected

by the relevant doping.

5.3 Energy- Momentum Dispersion

For each PbQ sample, two momentum cuts are marked on Fig. 5.1(e), (f), and (g).

Cut-1, marked in light blue are selected to capture the upper valence bands (UVBs),

and light blue dots on these figures indicate the position of the maxima of each UVB.

Cut-2, chosen to capture the lower valence bands (LVBs) are indicated in red, with red

dots denoting the maxima locations of the LVBs. Energy momentum intensity plots

along these cuts can be used to determine band edges, as explained below.
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Note: Energy momentum intensity maps (EMIMs) are plots of intensity as a function of

energy (ω) and a selected momentum component, while other momentum components

are held fixed. Selected momentum components for UVBs and LVBs are denoted as k1

and k2, respectively in subsequent figures. Precise definitions of these variables k1 and

k2 will be given in the section 5.3.3.

5.3.1 Resolution of the Band Edges

1. A momentum cut was determined on an energy iso-surface (CEIM) ‘blueprint’ in

order to analyze desired features. Consider the n-type PbS sample, measured at

125K as an example. In this case, CEIM in the Fig. 5.1(g) was used as a blueprint

to mark cut-1 and cut-2 to probe UVBs and LVBs, respectively.

2. EMIMs were taken along these cuts. Fig. 5.2(a) and (e) show EMIMs for Cut-1

(UVB) and Cut-2 (LVB), respectively. Note that the EMIM in the Fig. 5.2(a) has

captured both UVB and the bottom of the conduction band (CB) as well.

3. Vertical cuts were taken for a series of momentum values on each EMIM. These

cuts are energy distribution curves (EDCs), which are the line graphs of intensity

vs. energy, ω for a fixed value of momentum. An EDC taken at the green dashed

line on the Fig. 5.2(a) is shown in solid green on the Fig. 5.2(c). Corresponding

momentum location, which marks the UVB maxima (and also the CB minima)

will be referred to as kU in the following discussion.

Another EDC, taken along the pink dashed line on the Fig. 5.2(d) is shown in solid

pink on the Fig. 5.2(f). This momentum location which marks the momentum at

which the LVB maxima occur, will be labeled as kL.
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Figure 5.2: 2nd derivative analysis of band edges.
Please see the next page for the details.
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2nd derivative analysis of band edges.
Continued from the previous page ...
An n-type PbS sample, analyzed at 125K is used. (a) The energy momentum
intensity map (EMIM) taken at the cut-1 marked on Fig.5.1(d). This EMIM captures
the upper valence band (UVB) edge as well as the conduction band edge near the
Fermi level. (b) 2nd derivative of the EMIM shown on (a), with respect to energy (ω).
Black circles indicate band edges determined by individual energy distribution curves
(EDCs) while the red curve is the fitted band across black circles. (c) EDC taken at
the green dashed line on (a) is plotted in solid green. 2nd derivative of this EDC
(w.r.t ω), which is the line profile indicated as an orange dotted line on (b) is plotted
in solid orange. Edge of the UVB and the conduction band (CB) are denoted as ΩU

and ΩC respectively. These edges can be identified on EDCs by extrapolations of the
slopes (blue and green arrows) -or- as peaks of the EDC 2nd derivative, which are in
agreement. Location of this EDC (green dashed line on (a)) and its derivative (orange
dashed line on (b)) corresponds to momentum position kU . (d) The EMIM taken at
the cut-2 marked on Fig.5.1(g). This EMIM captures the lower valence band (LVB)
edge. (e) 2nd energy derivative of the EMIM shown on (d), Black circles denote band
edges from individual EDCS and the fit to the LVB is given in Red. (f) EDC taken at
the pink dashed line on (d) is plotted in solid pink. 2nd energy derivative of this EDC
or the line profile indicated as a light blue dotted line on (e) is plotted in light blue.
Edge of the LVB, denoted as ΩL, can be consistently identified by EDC slope
extrapolation (red arrow) or as the peak of the 2nd energy derivative if EDC. Location
of this EDC (pink dashed line on (d)) and its derivative (light blue dashed line on (e))
corresponds to momentum position marked by kL.

4. These EDCs have abrupt slope changes which can be pinpointed by, first, fitting

tangents to regions of different slopes on the EDC, then extrapolating those fitted

lines, and finally finding their intersecting points. Such constructions for upper

valence band and conduction band edges have been performed on the Fig. 5.2(c)

and are shown in blue and green arrows, respectively. Energy corresponding to

UVB maximum is denoted as ΩU, while ΩC is the CB minimum. Similarly, using

the pink EDC on the Fig. 5.2(f), the LVB maximum was found and denoted by

ΩL.

5. As an alternative method, The second derivative of EDCs with respect to energy,

ω were also used to find band edges where distinct peaks were observed at band

edges. In both Fig. 5.2(c) and (f), such EDC derivative plots are shown with
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peaks which correspond to the band edges. Energy locations for band edges (ΩU,

ΩC and ΩL), found by means of both methods (EDC slope changes -and- peaks on

EDC 2nd energy derivatives) are in very good agreement, as seen in the Fig. 5.2.

6. By taking the 2nd energy derivative of the entire EMIM in the Fig. 5.2(a), a ‘2nd

derivative intensity plot’ was created as given in the Fig. 5.2(b). This graphically

shows band edges as ‘ridges’ for both UVB and CB. Similar 2nd derivative intensity

plot for the EMIM in the Fig. 5.2(d) is given in the Fig. 5.2(e), with clearly

identifiable LVB band edge signatures.

7. This edge resolving procedure was repeated for a series of other EDCs taken at

different momentum locations near band maxima/minima. Resolved band edges

(energy locations vs. EDC momenta) for each EDC were plotted as black circles

on 2nd derivative intensity plots in Fig. 5.2(b) and (e).

8. Parabolic curves were fitted for band edge locations found via above EDC analysis.

These curves, indicated in red on Fig. 5.2(b) and (e) are the reconstructed bands.

9. These parabolic band fits were used for further analysis like finding the effective

particle mass, using the curvature and will be discussed separately in the section

5.3.4.

5.3.2 Band Edges of PbQ

EDCs and relevant EDC 2nd energy derivatives for three samples: p-type PbTe at 100

K, n-type PbSe at 100 K and n-type PbS at 125 K are shown in the Fig. 5.3. EDCs and

their derivatives, taken along the momentum kU are depicted in Fig. 5.3(a), (b) and (c),

respectively as light green and orange traces. On these figures, a solid blue line is fitted
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to the forward slope of the upper valence band on each EDC. The extrapolated slopes

of these EDCs and the related peaks on 2nd derivative traces were used to determine the

energy position of UVB maxima, ΩU which are denoted by blue vertical dashed lines.

To find the energy position of the CB minima, ΩC, corresponding backward slopes were

extrapolated as indicated in green solid lines. Using these extrapolations and the peaks

in 2nd derivative traces, ΩC locations were found and are marked with green vertical

dashed lines on Fig. 5.3(b) and (c). Additionally, in n-type samples, the topmost

filled level of each conduction band were also observed. Purple solid lines indicate fits

associated with the forward slopes of EDCs. Such extrapolated fits and relevant peaks

on 2nd derivatives were used to locate associated energy values (Ω′
C), marked with purple

vertical dashed lines. Note that, for the p-type PbTe sample, conduction band signatures

were not detected. The reason for this is because, the p-doping has shifted the band

structure up in energy, and as a result, more energetic CB states were not occupied at

the measured sample temperature of 100 K. ARPES can only detect occupied electronic

states.

Similarly, on Fig.5.3(d), (e) and (f), pink traces are the EDCs taken along the momentum

kL, and respective 2nd derivatives are shown in light blue. In order to find the energy

position corresponding to maxima of the lower valence bands(ΩL) extrapolated fits on

forward LVB slopes were used as indicated with red solid lines. These, along with peaks

in the 2nd derivatives were used to locate ΩL. These energies are marked as red vertical

dashed lines on Fig. 5.3(d), (e) and (f).
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Figure 5.3: Locating the band edges of PbQ
(a, b, c) Energy distribution curves (EDCs) and their 2nd derivatives, taken at the
momentum kU. EDCs are shown in light green while 2nd derivatives are orange.
Relevant slopes for the maxima of the upper valence band (UVB), minima of the
conduction band (CB) and topmost filed level of the CB are fitted and extrapolated
with blue, green and purple solid lines, respectively. Energy locations for band edges
corresponding to UVB maxima (ΩU), CB minima (ΩC), CB top filled level (Ω′

C) shows
clear agreement with corresponding peaks on associated 2nd derivatives. These energy
positions are marked with blue, green and purple dashed vertical lines, respectively.
Note that, on (a), the band structure has been up-sifted in energy due to p-doping and
so, the CB features were unoccupied at 100 K, hence undetectable via ARPES. (d, e,
f) EDCs (pink), along with their 2nd derivatives (light blue) taken at momentum kL .
Energy locations of lower valence band (LVB) maxima (ΩL) were found using the
extrapolation of fitted slopes ( red solid lines). They show good agreement to the
relevant peaks of 2nd derivatives, as guided by red dashed vertical lines.
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5.3.3 Reconstructed Band Dispersions of PbQ

To further investigate the band structure of Lead chalcogenides, EMIMs, taken along the

momentum cut-1 and cut-2, indicated on the Fig. 5.1(e), (f), and (g) were used. Cut-1

captured the upper valence band (UVB), and a momentum variable k1 was defined with

respect to the UVB maxima (i.e., kU). As seen on the Fig. 5.1, this cut is parallel to the

kx, or in other words, perpendicular to the Γ – X line on the Brillouin zone as marked

on the Fig. 5.1(a).

k1 = kx − (kU)x (5.1)

Here, the k1 is the relative momentum variable used for the horizontal axis on subsequent

figures (Fig. 5.4 and Fig. 5.5) wherever the UVBs are involved. The kx is the absolute

x-momentum component in the Brillouin zone. The parameter (kU)x represents the

x-component of the momentum coordinate of kU , which is the location of the UVB

maxima (and also the CB minima). Similarly, another momentum variable k2 was

defined relative to the LVB maxima (i.e., kL). As in Fig. 5.1, the unit vector along this

cut was defined as ê, and k2 was measured along this ê direction.

k2 = k · ê− kL · ê (5.2)

This k2 was used as the relative momentum variable for the horizontal axis on subsequent

figures whenever an LVB is depicted. The k is a general momentum variable with respect

to the Brillouin zone and kL represents the absolute momentum coordinate of the LVB

maxima.
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Figure 5.4: 2nd derivatives of energy momentum intensity maps.
(a, b, c) 2nd derivatives with respect to energy, ω for energy momentum intensity
maps(EMIMs) taken at momentum cut-1 as marked on Fig. 5.1(e), (f), and (g).
These depict the upper valence band (UVB) near its maxima. on (b) and (c),
conduction band (CB), near its minima is also shown. Light green dashed lines
indicare the momentum location kU, corresponding to UVB maxima and CB minima.
(d, e, f) 2nd energy derivatives of EMIMs taken at momentum cut-2, marked on Fig.
5.1(e), (f), and (g). These depict the lower valence band (LVB) near its maxima. Pink
dashed lines mark the momentum location kL, corresponding to LVB maxima.
Energy values of the vertical axis, ω, are given with respect to the chemical potential
and, horizontal (momentum) axis values k1 (for UVBs) and k2 (for LVBs) are shown
the momenta relative to the respective band maxima, as defined in the section 5.3.3.
On all the figures, black circles denote band edges found with EDC analysis, and red
curves are the parabolic fits to these band edge locations.
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The EMIMs capturing lower and upper valence band maxima are shown in the Fig.

5.5. The 2nd derivatives of these EMIMs for the three samples in the discussion so far,

(i.e., derivatives of Fig. 5.5(a)-through-(f)), are shown in the Fig.5.4. On these diagrams,

band dispersions, ω(k) extracted for individual momentum, k, are superimposed as black

open circles. These locations can be visualized as band edges found on individual energy

distribution curves for each momentum, k, as discussed in the section 5.3.2. Red solid

curves shown are the parabolic fits to these dispersions.

The Fig. 5.5 shows EMIMs of UVBs (on the left), and EMIMs for LVBs (on the right),

for all three samples discussed so far: p-type PbTe, n-type PbSe, and n-type PbS. Ad-

ditionally, EMIM data for another n-type PbTe sample is also shown in Fig. 5.5(g) and

(h). Alongside these EMIMs, band dispersions (marked in open circles) and parabolic

fits to those dispersions (solid curves) are shown for the first three samples. Fig. 5.5(a),

(c), (e), and (g) clearly show how the upper hole valence band dispersion behaves. Also,

an electron band, separated in energy and momentum from this hole band is observed

as in Fig. 5.5(c), (e), and (g). This is the conduction band(CB). The minima of the CB

lies directly above the UVB, along the green dashed line denoting the momentum kU,

thus opening a direct band gap. (This CB is not detectable on p-type samples as it is

unoccupied at the probed temperature, as discussed above.)

Furthermore, in Fig.5.5(b), (d), (f), and (h), another hole band is detected along cut-2,

centered at a different location in the momentum space. This band was identified as

the so-called ‘lower valence band’ which was so far undetected. The LVB maximum is

located at the momentum kL, which lies away from the Γ−X (i.e., away in momentum

from the UVB maximum and CB minimum).
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Figure 5.5: Energy momentum intensity maps, and upper and lower band
dispersons of PbQ.
Please see the next page for the details.
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Energy momentum intensity maps, and upper and lower band dispersons
of PbQ.
Continued from the previous page ...
Energy momentum intensity maps (EMIMs), and fitted band dispersons for upper
valence bands (UVBs) are shown on left, and similar EMIMs and dispersons for upper
valence bands (UVBs) are given on the right. (a) EMIM along the cut-1 on the
Fig.5.1(e) and the fitted UVB disperson for p-type PbTe at 100K. (b) EMIM along
the cut-2 on the Fig.5.1(e) and the fitted LVB disperson.for p-type PbTe at 100K. (c,
d) EMIMs along the cut-1 and cut-2 on the Fig.5.1(f) and the fitted conduction band
(CB) UVB and LVB dispersons, respectively for n-type PbSe at 100K. (e, f) EMIMs
along the cut-1 and cut-2 on the Fig.5.1(g) and the fitted band dispersons of CB,
UVB and LVB, respectively for n-type PbS at 125K. (g, h) EMIMs capturing UVB
and LVB of a n- type PbTe sample at 100K. Vertical axis energy values, ω, are given
with respect to the chemical potential and, horizontal (momentum) axis values k1 (for
UVBs) and k2 (for LVBs) are shown as relative momenta, as defined in the section
5.3.3. Band dispersions are shown by open circles and parabolic fittings of the
dispersions are shown by solid curves. On the EMIMS capturing UVBs and CBs
(shown on the left), the vertival green dashed lines corresponds to the momentum kU
where as, on the EMIMS capturing LVBs (shown on the right), the vertival pink
dashed lines corresponds to the momentum kL.

It is useful to point out that, several high symmetry lines from the three-dimensional

Brillouin zone, including Γ−X, Γ−K, K−W and W−X get projected onto the Γ−M

in the (001) surface Brillouin zone. Because of this overlap, association of this second

valence band to a specific bulk electronic state would require a detailed study of the

electronic structure in three-dimension, beyond the scope of this ARPES study.

Nevertheless, the discussion so far, together with the Fig. 5.5, leads to a clear visualiza-

tion of the two-band picture of the valence band structure of Lead chalcogenides.

5.3.4 Effective Masses

Effective particle masses corresponding to each band can be approximated using parabolic

fitting of dispersion curves in the vicinity of its band maximum. Table 5.1 lists such ef-

fective masses, m∗, as fractions of the bare electron mass, me, for PbTe, PbSe and PbS.

These values consistently show that the holes in the lower valence bands are heavier than
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Table 5.1: Values of effective mass of the UVB (m∗
UV B), and that of the LVB

(m∗
LV B) in units of electronic mass me

Material m∗
UV B
me

m∗
LV B
me

PbTe 0.045 0.121
PbSe 0.087 0.141
PbS 0.093 0.349

the holes of the upper valence bands in Lead chalcogenides. This can be qualitatively in-

ferred by visual comparisons of EMIMs corresponding to upper and lower valence bands

in Fig.5.4 (top row vs bottom row) or 5.5 (left column vs right column) as well.

5.3.5 Identification of the Band Gaps

A generalized two-dimensional sketch of the above inferred band stricture is presented in

the Fig. 5.6. Maximum of the upper valence band and the minimum of the conduction

band occur at the momentum location kU. According to the Fig. 5.1(a), this position

lies on the Γ–X, in close proximity to the point X, which is the projection of the L point

from the bulk Brillouin zone. The energy gap between the conduction band minimum,

ΩC, and the upper valence band maximum,ΩU, is denoted as ∆U. This is a direct band

gap (at kU).

∆U = ΩC − ΩU (5.3)

Maximum of the lower valence band occurs at a different momentum location, kL. The

energy gap between the conduction band minimum, ΩC, and the upper valence band
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maximum, ΩU, is denoted as ∆L. Since these points are located at different momenta,

kU and kL, respectively, ∆L is an indirect band gap.

∆L = ΩC − ΩL (5.4)

The energy separation between upper and lower valence bands would then be,

∆ = ∆L −∆U (5.5)

In cases where the conduction band is not detected, (e.g., as in p-type samples) the

following equation is applicable.

∆ = ΩU − ΩL (5.6)

5.3.6 Variation of the Band Gap Among PbQ

The table 5.2 contains ∆U and ∆L for various n-type PbQ samples for temperatures

∼ 100 K. Data for the PbSe sample listed here are shown in Fig. 5.5(c) and (d), or in

Fig. 5.5(b) and (e), while PbS sample data are shown in Fig. 5.5(e) and (f), or in Fig.

5.5(b) and (f). The n- type PbTe sample EMIMs can be found in Fig. 5.5(g) and (h).

The samples under this study did not have the exact same carrier concentration, and

thus, the useful quantity to be compared among PbQs is the difference between energy
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Figure 5.6: Schematic band structure of PbQ.
The general band structure of Lead chalcogenides with significant energy, momentum
values and band gaps. Conduction band (CB) which is an electron band, is centered
at the momentum kU and drawn in green. The upper hole valence band (UVB),
drawn in blue is also centered at the same momentum kU. The minimum of the CB is
ΩC and the maximum of the UVB is ΩU. The direct band gap between CB and UVB
is denoted by ∆U. The lower hole valence band (LVB), drawn in red is centered at the
momentum kL and the maximum of the LVB is ΩL. The indirect band gap between
CB and LVB is denoted as ∆L. The difference between ∆L and ∆U is marked as ∆,
and it is the energy separation between UVB and LVB. Note: the curvature of the
LVB is less than that of the LVB; hence the holes in the LVB are heavier compared to
the holes in UVB.

gaps of lower and upper bands which is the parameter ∆. Table 5.2 shows that the ∆

is largest for PbS and smallest for PbTe, while in between for PbSe.

Table 5.2: Values of ∆L, ∆U, and ∆ obtained from n-type PbTe, PbSe, and PbS
samples at T∼100K

Material ∆U (meV) ∆L (meV) ∆ (meV)

PbTe 190 320 130
PbSe 204 594 390
PbS 309 838 529
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5.4 Temperature Evolution of the Bands

In order to investigate the relationship between the temperature dependent thermopower,

and the temperature evolution of the band structure, the above procedure for determin-

ing band gaps (∆U, ∆L) and relative positions (∆) was repeated for a range of temper-

atures, for each Lead chalcogenide (PbQ) sample. Subsequent temperature dependent

energy density curves (EDCs) are summarized in Fig. 5.7. Samples used in obtaining

these EDCs are as follows.

For Fig. 5.7(a) and (b), PbTe-#1 was used while for (c) and (d), another PbTe sample

(#2) was analyzed. All PbTe samples depicted here are of p-type. In terms of n-type

data, respectively for Fig. 5.7(e) and (f), samples labeled PbTe-#1 and PbTe-#2 were

used. Similarly, in Fig. 5.7(g) and (h) PbS samples labeled #1 and #2 were considered.

According to the procedures explained in the section 5.3.1 and the section 5.3.2, band

edges of UVBs, ΩU were determined using EDCs shown on the left side of the Fig. 5.7.

Related constructions are marked in blue lines and arrows. For the case of n-type PbSe

and PbS samples on Fig. 5.7(e) and (g), CB edges, ΩC were also detectable, as shown

in green slope fits. As shown with the aid of black lines and arrows on the EDCs on the

right side of the Fig. 5.7, band edges of LVBs, ΩL were determined as well.

With temperature dependent energies corresponding to the band edges, ΩU(T ), ΩL(T ),

and ΩC(T ) in hand, equation 5.3 and equation 5.4 were used to obtain temperature

dependent band gaps, ∆U(T ) and ∆L(T ) for both n- type PbSe and PbS. These results

are presented in the Fig. 5.8(a) and (b), respectively.
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Figure 5.7: Temperature evolution of the band edges in Lead
Chalcogenides.
Please see the next page for the details.
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Temperature evolution of the band edges in Lead chalcogenides.
Continued from the previous page ...
Energy distribution curves (EDCs) as a function of temperature are shown. EDCs on
the Left are taken at the momentum location kU, and contain band edges of upper
valance band (UVB). for n- type samples, the conduction band (CB) edges are also
captured. EDCs on the right are taken at the momentum location kL , and contain
band edges of lower valance band (LVB). (a, b) The p-type PbTe#1 sample was used
to determine UVB (a) and LVB (b) edges. (c, d) The p-type PbTe#2 sample was
used to determine UVB (c) and LVB (d) edges. (d) The n-type PbSe#1 sample was
used in determining UVB an CB edges. (e) The n-type PbSe#2 sample was used in
determining LVB edge. (f) The n-type PbS#1 sample was used in determining UVB
an CB edges. (g) The n-type PbS#2 sample was used in determining LVB edge. On
(a), (c), (e) and (g), fits (blue lines) through foward slopes and flat background are
used to extrpolate UVB maxima at ω ∼ ΩU. Similarly on (e) and (g), green lines were
fitted to identify CB minima at ω ∼ ΩC. On (b), (d), (f) and (h), similar abrupt
changes in slope of the EDCs at ω ∼ ΩL were identified as LVB maxima. on (a), (c),
(b) and (d), blue and black arrows point ΩU’s and ΩL’s, respectively.

From these data, or via the qualitative observation of EDCs in Fig. 5.7, it is clear that

the lower valence band gap ∆L depends rather weakly on temperature compared to

the upper valence band gap, ∆U which grows significantly with the rising temperature.

These band gap values were then used to plot the temperature evolution of the upper

and lower valence band separation ∆, for n-type PbSe and PbS using the equation 5.5.

The temperature dependent behavior of ∆ values are as shown in Fig.5.8(c).

Since ΩC of the p-type PbTe samples can’t be determined as its conduction band lies

in the un-occupied side of its band structure, ∆U(T ) and ∆L(T ) values for these p-type

samples can not be directly evaluated. However, The upper and lower valence band

separation, ∆ can still be determined by means of ΩU(T ) and ΩU(T ), using the equation

5.6 and ∆(T ) evolution for all three Lead chalcogenides were found as in Fig.5.8(c).
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Figure 5.8: Temperature evolution of band gaps in Lead Chalcogenides.
(a, b)Temperature dependence of the upper band gap,∆U(=ΩC-ΩU) and the lower
band gap, ∆L(=ΩC-ΩL) for (a) PbSe and (b) PbS. (c) Gap separation ∆(=ΩU-ΩL) as
a function of temperature, T for PbSe, PbS and PbTe. ∆ shows a linear monotonic
decrease over temperature for all the Lead chalcogenides.

5.5 Explanation of the Thermoelectric Efficiency of Lead

Chalcogenides

The observation of the temperature dependent increase of the upper valence band gap,

∆U is consistent with the positive temperature coefficients of the fundamental band gap

found by optical experiments of Lead chalcogenides [191, 200–202]. It should be noted

that such a positive rate of change in the band gap with temperature in Lead chalco-

genides (PbQ) is opposite to the behavior of most other semiconductors. This anomaly

is what helps PbQ in achieving high thermoelectric efficiency at elevated temperatures,

as explained below.

From the Fig. 5.8(c), it is evident that the valence band separation, ∆ of each PbQ

sample decreases monotonically with increasing temperature in the temperature range of

the presented measurements. This downward trend of ∆(T ) can be well represented by
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straight lines. A characteristic band crossover temperature, T ∗, at which the maximum

of the LVB is expected to level with the UVB maximum, can be defined. This T ∗ can be

estimated via linear extrapolation of ∆(T ) to zero, and such estimated values for PbQ

were found to be;

• PbTe: T ∗ ∼ 813 K

• PbSe: T ∗ ∼ 1148 K

• PbS : T ∗ ∼ 1296 K

Although such an estimation of T ∗ involves an extrapolation over a broad temperature

range, the values of T ∗ obtained from this ARPES study agree reasonably well with

recent magnetic and optical measurements [190, 191]. Further details on the connection

between various attributes of above presented temperature dependent ARPES measure-

ments and those from the proceeding literature are summarized in the table 5.3.

The monotonic temperature dependence of ∆ discussed above suggests that the PbQs

should become semiconductors with indirect band gap for T > T ∗, where the heavy

hole LVB maximum rises in energy above the maximum of the light hole UVB. This

is illustrated in the Fig. 5.9(b). As the temperature approaches T ∗ and the valence

band separation becomes ∆(T = T ∗) ∼ kBT
∗, the charge transport in PbQ should be

dominated by the heavy holes from the LVB, created due to the thermal excitations.

This band convergence increases the density of states of heavier holes, as within the same

energy window of kBT , more carriers are accessible on a flat band like LVB, compared

to a band of higher curvature like UVB, As illustrated in the Fig. 5.9. This number

enhancement of carriers results in an enhanced Seebeck coefficient and thermoelectric

power factor at higher temperatures.
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Figure 5.9: Temperature evolution of the band structure of Lead
Chalcogenides.
Conduction electron band (CB) in green, and the upper hole valence band (UVB) in
blue are centered at the momentum, kU and are separated in energy with a direct
band gap of ∆U. The lower hole valence band (LVB) in red is centered at a different
momentum, kL and is separated from the CB with an indirect band gap of ∆L. The
diagram illustrates how these bands in a generic Lead chalcogenide (PbQ) evolve with
temperature, T compared to the characteristic band crossover temperature, T ∗. (a)
At lower temperatures, T < T ∗,the LVB lies below the UVB and PbQ is a direct
bandgap semiconductor. (b) At the crossover temperature, T = T ∗,both LVB and
UVB maxima align to the same energy(ΩU = ΩL). (c) At higher temperatures,
T > T ∗, the LVB rises above the UVB and PbQ becomes an indirect bandgap
semiconductor. The LVB has less curvature and thus heavy holes compared to that of
the UVB, and such a flat band can accommodate more holes for a given kBT energy
window.
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Also, in another perspective, bipolar effects arising from the intrinsic carrier activation

is usually a factor that negatively affects the thermoelectric figure of merit, ZT at high

temperatures. The indirect nature of the bandgap for high temperature T > T ∗ will

mitigate these bipolar effects by reducing the probability of exciting electron–hole pairs

with equal momenta, by de-tuning susceptible holes states in the upper valence band,

from the electronic states with similar momentum in the conduction band.

All these mechanisms are responsible for the superior thermoelectric performance of Lead

chalcogenides at elevated temperatures, and are rooted in the temperature influenced

convergence of light (upper) and heavy (lower) hole valence bands.

5.6 Summary

A temperature dependent Angle Resolved Photoemission Spectroscopy (ARPES) inves-

tigation was conducted in order to probe electronic structures of Lead chalcogenides;

PbTe, PbSe, and PbS. Several n- and p- type samples of these narrow bandgap semi-

conductors were analyzed toward an objective of explaining their extraordinary thermo-

electric performances at elevated temperatures, by understanding the general electronic

band structure. First, the valence band structure was probed, and then, the temperature

evolution of this structure was investigated. The main observations are as follows.

• The band structure of Lead chalcogenides:

i. An upper hole valence band (UVB) was detected which lies directly below the

conduction electron band (CB), establishing a direct bandgap.
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ii. A previously undetected lower hole valence band (LVB) was experimentally ob-

served for the first time. Due to its location on the momentum space being different

from the UVB, this band has an indirect gap with the CB.

iii. The curvature of the LVB was smaller than that of the UVB, making holes in the

LVB heavier than the holes in the UVB.

iv. The energy separation between band maxima of the LVBs and the UVBs at

T ∼100K was largest in PbS and smallest in PbTe.

• The temperature evolution of the band structure:

i. For T < T ∗ : The upper valence band (UVB) was located above the lower valence

band (LVB) in energy. Thus, Lead chalcogenides for lower energies are direct

bandgap semiconductors.

ii. With the rise of the temperature, the UVB moved down in energy while any shift

in LVB was insignificant. The UVB−CB (direct) gap increased with tempera-

ture while the LVB−CB (indirect) gap was practically stationary. The difference

between UVB and LVB maxima decreased monotonically with the increase of tem-

perature, which is referred to as valence band convergence. This is an anomalous

phenomenon compared to the usual behavior of semiconductors.

iii. For T = T ∗ : Band maxima of both upper and lower hole valence bands aligned

in energy. The characteristic band crossover temperature, T ∗, is defined as the

temperature which this phenomenon occurs.
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iv. For T > T ∗ : The LVB shifts above UVB maximum, moving closer to the CB.

As a result, in such elevated temperatures, Lead chalcogenides behave as indirect

bandgap semiconductors.

The phenomena of band convergence has long been debated to be the driving factor be-

hind extraordinary thermoelectric performances of these Lead chalcogenide compounds

at elevated temperatures. Above reported study confirms this mechanism by means of

the direct experimental observation of the LVB, and the temperature dependent valence

band shifts leading to their convergence and subsequent crossover. This has two main

implications on the enhancement of the thermometric efficiency.

i. The relative flatness of the LVB, compared to the UVB, enables the excitation of

more carriers per same kBT energy window. Therefore, for T ≥ T ∗, where this

flatter LVB lies close to the CB, the carrier (hole) density of states is enhanced.

ii. Bipolar effects arising from intrinsic carrier activation reduces thermometric per-

formance. In general, these effects become more pronounced with the increase

of temperature. Contrary to this general tendency, in this special case of Lead

chalcogenides, the primary bandgap for T > T ∗ (i.e., the LVB−CB gap) becomes

indirect, reducing the probability of electron-hole excitations occurring at the same

momentum.

The outstanding thermoelectric efficiency of Lead chalcogenides is thus explained with

the aid of temperature dependent ARPES band structure analysis.

It should be noted that the ARPES in this study was used as a probe sensitive to a two-

dimensional surface Brillouin zone, which was the projection on the crystallographic



Chapter 5. Thermoelectric Performance of Lead Chalcogenides 137

(001) plane in this particular case. There were several high symmetry points and lines

from the bulk Brillouin zone corresponding to the region on the surface Brillouin zone

projection, where the LVB was observed. This prevented the mapping of a one-to-one

correspondence of surface-to-bulk Brillouin zones in the case of LVB. More experiments

sensitive to three dimensional band structure are necessary to relate the LVB to a unique

momentum coordinate in the bulk Brillouin zone of Lead chalcogenides.
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Conclusions

6.1 Charge Density Wave Phase of Transition Metal Dichalco-

genides

Properties of the incommensurate charge density wave (CDW) order in the quasi-two-

dimensional transition metal dichalcogenide (TMD) compound 2H − TaS2 were inves-

tigated in comparison to 2H − NbSe2, and 2H − TaSe2. Angle resolved photoemission

spectroscopy (ARPES) was primarily used as the experimental technique in the reported

band structure studies. Analysis was carried out in energy, momentum and tempera-

ture domains and the majority of the observations are qualitatively generalizable over

the whole family of layered 2H− TMDs. In these materials, electron and hole Fermi

pockets in the momentum space are in the shape of concentric double-walled barrels

about both K and Γ high symmetry points.

The first study was focused on the CDW energy gap which is observed to be momentum

specific. Γ–centric Fermi surface barrels exhibit no gap, while K–centric Fermi surface

138
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barrels are entirely or at least partially gapped depending on the TMD material. More-

over, this energy gap is particle-hole asymmetric with respect to the chemical potential.

A peculiar observation regarding this energy gap is its existence at temperatures higher

than the CDW transition temperature. This phenomena, known as pseudogap, can be

explained using the behaviors of the amplitude and phase components of the CDW order

parameter. In elevated temperatures, even though the long-range CDW phase coherence

goes extinct, a short-range ordering of charge could persist in certain regions of the

sample. This non-zero local amplitude of the CDW order parameter would manifest as

a pseudogap.

Some systematic differences between several properties of comparable TMD compounds

are observed as well. When considering the momentum specificity of the CDW energy

gap, in 2H−TaS2, the gap is observed at all the momentum locations on both K– centric

inner and outer Fermi surface barrels whereas in 2H − NbSe2, the gap opens up only

in specific locations on K–centric Fermi barrels. The size of the Γ–centric Fermi surface

barrels, relative to the lattice dimensions of each compound, are almost the same among

both compounds. In contrast, the size of K–centric Fermi surface barrels in 2H − TaS2

is smaller compared to that of 2H −NbSe2.

The universal features of the incommensurate charge density wave (CDW) phase in 2H−

TMD family, as well as the differences among members, can be explained with a tight

binding model with strong electron-quasiparticle coupling which takes the differences of

orbital orientations between these materials into account. These differences in orbital

arrangements and its consequences on the momentum space might be the determining

factor of the CDW transition temperature as well.
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The traditional explanation of the formation of CDWs, namely, the Fermi surface nesting

due to Peierls instability, can be ruled out as the CDW mechanism of 2H− TMDs

since the observed CDW wave vectors in these TMD compounds were not compatible

with the predicted nesting vectors. This opened up an investigation to other potential

mechanisms.

An extended ARPES study on the renormalization signatures in the electronic band

dispersion of 2H − TaS2 was conducted with the objective of identifying the nature of

underlying collective modes. These renormalizations are observed throughout the mo-

mentum space, and the energies of several such signatures agree with published phonon

frequencies. The magnitude of this electron-phonon coupling is slightly momentum

dependent and is in qualitative agreement with similar studies on 2H − NbSe2. The

temperature independent nature of these renormalization signatures corroborates the

phononic origin as well. Therefore, the work presented in this thesis suggests that the

mechanism behind the incommensurate charge density wave phase of the 2H− poly-

type of transition metal dichalcogenides is the momentum-anisotropic electron-phonon

coupling, rather than the Fermi surface nesting.
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6.2 Thermoelectric Performance of Lead Chalcogenides

Angle resolved photoemission spectroscopy (ARPES) was utilized in order to study

the temperature evolution of the valence band structure of lead chalcogenides (PbQ).

The objective of the experiment was to investigate the reason behind the remarkable

improvement of the thermoelectric performance of these narrow bandgap semiconductors

at elevated temperatures. Several n and p doped samples of PbTe, PbSe, and PbS were

analyzed.

The valence band structure of PbQ consists of an upper valence band (UVB) and a lower

valence band (LVB). These hole bands are centered at different momentum locations

in such a way that the UVB establishes a direct bandgap with the conduction band

(CB), while the LVB-CB bandgap is indirect. This is the first reported experimental

observation of the LVB in PbQ. The curvatures of the valence bands are different and

therefore imply that the holes in the LVB are heavier than the holes in the UVB. Also, the

LVB lies deeper in energy with respect to the UVB at normal (room) temperatures. The

separation between the maxima of LVB and UVB, measured at ∼100 K, is the largest

in PbS and the smallest in PbTe, following the converse of the size of the chalcogen.

At room temperature, the UVB maximum is above the LVB maximum in energy. There-

fore, PbQ are direct bandgap semiconductors in normal temperatures. When the tem-

perature is raised, the UVB sinks in energy, but any significant shift of the LVB is not

observed. This led to the convergence of valance hole bands, as the difference between

UVB and LVB maxima decreased monotonically with the increase of temperature. This

band convergence is anomalous with respect to usual semiconductors. At a certain

crossover temperature, characteristic to each compound, the maxima of both the UVB
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and the LVB will align. Beyond this crossover temperature, the LVB will rise above the

UVB, effectively transforming the PbQ sample to an indirect bandgap semiconductor

comprising of a valence band with heavier holes.

At elevated temperatures, more carriers per given kBT energy window can be excited

from the LVB which is flatter compared to the UVB. This enhancement of carrier den-

sity is the primary effect toward improved thermoelectric efficiency. Also, the indirect

nature of the bandgap at higher temperatures is unfavorable for intrinsic carrier activa-

tion, which would otherwise reduce the thermoelectric performance. Thus, the superior

thermoelectric efficiency of lead chalcogenides can be explained by the temperature de-

pendent convergence of light and heavy hole valence bands.
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