

Design and Construction of a Kinetic Art Weather Display

A Technical Report submitted to the Department of Mechanical and Aerospace Engineering

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jack Davis
Fall, 2020

Technical Project Team Members
Lisa Accolla

Katherine Ellis
Adam Lenox
Josh Rigby

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature __ Date __________

Jack Davis

Approved __ Date __________
Gavin Garner, Department of Mechanical and Aerospace Engineering

2

Table of Contents

PROBLEM DEFINITION 3

INITIAL DESIGNS AND CONSIDERATIONS - LINEAR MODELS 3

FINAL DESIGN - THE CIRCULAR MODEL 5

PROTOTYPING AND MODELING 8

SELECTING MOTORS 12

CUTTING ACRYLIC PIECES 16

3D PRINTING 17

CNC MILLING 20

WEATHER PATTERN DESIGNS 23

BACKGROUND DESIGN 25

ASSEMBLY 26

THE PROPELLER CHIP AND SPIN CODE 35

RASPBERRY PI CODE AND WEATHER API CONNECTION 40

FINAL PRODUCT 42

KEY TAKEAWAYS 43

FUTURE CONSIDERATIONS 44

References 46

Appendix A: Propeller Chip Spin Code as of 12/01/2020 47

Appendix B: Circuit Diagram of Kinetic Art Weather Clock 59

Appendix C: Python Code Run on Raspberry Pi as of 12/01/2020 61

Appendix D: LED Driver Spin Code (WS2812B_RGB_LED_Driver_v2.1) 63

Appendix E: FullDuplexSerial Spin Code 66

3

PROBLEM DEFINITION

 Working in secluded or underground workspaces often causes one to lose track of the

time or the weather outside. After working multiple hours on end, one can step outside to find

that the weather, temperature, or level of sunlight has changed dramatically from when they first

entered the work area or even worse, realize that they have missed an appointment. Especially in

the midst of a pandemic and wearing significant personal protective equipment, it is difficult to

check one’s phone to see how the conditions might have changed.

 The proposed solution to this problem is the creation of a kinetic weather display.

Through a combination of electronics and mechanical devices, the display will be designed as a

window capable of changing weather patterns, brightness, and sun position to match the real-

time conditions outside of the work space. The appearance is similar to a window to make it

aesthetically appealing to those working in the area while hiding the mechanisms that allow the

weather patterns to change. An LED display in the front also provides data on the current

temperature and time, thus providing important information in one easy-to-view location.

INITIAL DESIGNS AND CONSIDERATIONS - LINEAR MODELS

 Among the most important considerations for this project was the mechanism of

changing weather patterns easily and efficiently. Early models of the weather display were linear

in nature, meaning that the weather patterns would move in horizontal or vertical directions

across the face to indicate the change of weather. One design, shown in Figure 1, relied on the

use of two rollers with transparent foil that could move up and down tracks mounted to the side

of the display to show either rain or snow while conserving space and maximizing the viewing

area of the window. However, having a thin foil like this was deemed to be less durable than

4

many alternatives and difficult to change if it would become damaged for some reason during

use.

Figure 1: A rectangular design featuring rolling weather patterns and a side-mounted sun and moon

Another linear design, shown in Figure 2, resembled a fish tank with a large display on

the top and a bottom section where acrylic panes with weather pattern designs could be hidden

below the viewing area. Similar to the first design, this display would feature rolling tracks to

move the various sheets in and out of view with certain tracks set aside for each location. The

difficulty of this design resulted in its bulk when mounted to a wall.

5

Figure 2: A rectangular design with hidden acrylic sheets displaying weather patterns and an open top

The second major consideration is the movement of the sun and moon. The initial

problem definition stated that the desire was to have accurate sun and moon cycles that would

reflect the sunset and sunrise times of Charlottesville. With the linear designs shown above, this

is difficult to achieve. The first has levered beams that move in and out of view from the sides,

which could indicate the day or night time, but would not be accurate to the exact pattern across

the sky. The second has similar vertical movements that could move the sun and moon into view,

but not easily across the sky in an arc. It is possible to achieve a more two dimensional motion in

either case through the use of multiple motors and integrated beams that support the objects,

however this could have detracted from the overall aesthetic and artistic nature of the piece.

FINAL DESIGN - THE CIRCULAR MODEL

 The final design for the weather display shifted from a linear model to a circular one

similar to what is shown in Figure 3. The full product is a circular design, where the window

display is on the top semicircle while the mechanics and wires are hidden behind a solid face on

6

the bottom semicircle. The advantage to a circular design like this is twofold. Concerning the

weather patterns themselves, a large compartment on the bottom makes it possible to hide full

sheets of acrylic engraved with snow or rain designs that can rotate into view through the use of

hidden motors. These sheets would be similar in strength to the second design, but instead of

linear movement, it would be rotational. The second advantage is in the movement of the sun and

moon. Having a circular display makes it possible for the two pieces to rotate across the sky and

be synced with the sunrise and sunset times that are input into the system. It models the sky

much more accurately than the linear model shown in the first two designs. These two functions

combined also make the design more compact and prevent it from protruding from the wall too

much.

Figure 3: A preliminary sketch of the circular model, which was later adapted to the final model

The LED display is located on the face of the lower hemisphere of the circle, embedded

in the front face of the display to make the design more efficient in terms of empty space. LED

strips are also inside the display to illuminate weather patterns and simulate snow or rainfall

7

through programmed illumination patterns. A backlight serves as the final layer of the display,

just behind the scene of the window. Lights are connected to this in order to adjust the color and

brightness of the background, making it possible to form different settings such as the nighttime,

daylight, or overcast weather. A preliminary depiction of this is shown in Figure 4.

Figure 4: A rough model to conceptualize the final, circular design of the weather display

Information is fed to the display by a Raspberry Pi, a single-board controller capable of

extracting weather and time information from the internet using an open-source application

programming interface (API). This communicates directly with the Parallax Propeller

microcontroller chip. The Propeller chip is a parallel processor with eight “cogs” capable of

running simultaneous lines of code to control the movements and actions of the various motors,

LEDs and sensors positioned around the display.

8

PROTOTYPING AND MODELING

Prior to constructing the weather display, several prototypes and models were made to

understand the spacing of the various components as well as the size of the device given the

restraints imposed by the equipment available for use.

 The first model was a proof of concept made out of cardboard and is shown in Figure 5.

It was capable of rotating panes around a center pin by hand and it was sixteen inches in

diameter, which was deemed too small for optimizing visible window space, but it provided a

good estimate of how the device could be fitted together.

Figure 5: Cardboard model of the circular design with two rotating panels inside

 Following the creation of the cardboard model, dimensions were laid out using a

measuring tape on a whiteboard in order to better judge the potential size of the display as shown

in Figure 6. These dimensions assumed a window diameter of 24 inches and 30 inch overall

diameter to leave space for covering the mechanisms that would allow the acrylic weather sheets

9

to rotate about the center. Figure 7 is a sketched section view of how the two acrylic panes may

fit together and stagger in size in order to be able to stack motors more effectively.

Figure 6: Whiteboard drawing of dimensioned window front face and viewing area

Figure 7: Section view of display depicting how motors for the two weather sheets and the sun and moon
could fit together

 Following these initial designs, more advanced models were made in SolidWorks, a 3D

modeling software capable of forming complex assemblies to scale. It is also useful for exporting

10

laser cutting, 3D printing, and CNC milling models for construction at later stages in the build

process. At this stage, the group decided to use lazy susan bearings in order to mount the acrylic

sheets and the gears that would turn them. With an outer diameter of 23.63 inches, these bearings

became the limiting factor in the size of the model and reduced the diameter from the

preliminary drawings and estimates. The finalized window diameter was 20 inches and the outer

diameter was 26 inches. It was also decided that the time, date, and temperature displays would

be one large piece instead of three separate displays. This decision was made because of the

limited number of processors available on the Propeller Chip, as well as a desire to make the

display easier to read from farther distances. Finally, in the SolidWorks model, motors were

mounted from a center beam as opposed to the back panel. This can be seen in Figure 8. They

also utilized spur gears mated with internal gears to keep the design compact. Had regular gears

been used for the acrylic movement, more space would have been needed to fit the motors on the

outside of the bearings, thus resulting in a wide and unattractive frame.

Figure 8: An isometric view of the 3D model without the front face included

11

The SolidWorks model is particularly useful in studying the spacing of the various

components. Because one of the goals was to keep the display compact and as close to the wall

as possible to better simulate an actual window, the 3D model was able to layout the wooden

frame and all of the internal pieces. That includes the lazy susan bearings, the acrylic weather

sheets, the internal gears, the nuts, the bolts, the washers, and the spacers that held them together.

Figure 9 depicts a section view of the model which allowed the group to study how the various

pieces could fit together. Following initial placement of the major components, bolts and other

connectors were added using models pulled from McMaster Carr to ensure that proper sizes were

selected for the final model.

Figure 9: Section view of the weather display that shows spacing of major components in reference to the
frame

 The benefit of using SolidWorks, as mentioned above, is the ease of exporting

components for construction. The gear and half-sheet models for acrylic sheets were easily

exported as .dxf files that could be read by the laser cutter without having to adjust size

12

beforehand. It is also possible to modify a part and then update it in the assembly without

adjusting the assembly’s mates.

SELECTING MOTORS

 Among the most important components of the weather display are the motors used to

drive the motion of the two acrylic sheets, as well as control the movement of the sun and moon

piece. After experimenting with various motors, it was decided that worm gear motors could be

used for both.

 The first motor tested was a servo motor. The servo motor is a smaller motor that is

capable of moving to a precise position based on the duty cycle of an input signal. The duty

cycle, as shown in Figure 10, is a ratio of high voltage to low voltage over a set period. For

instance, a 100% duty cycle would be a constant output of the maximum voltage, while a 0%

duty cycle would be a constant 0V output.

Figure 10: Graphical representation of how duty cycle sets the speed of a motor.

While this type of motor is good at moving to a position and holding it, as well as

outputting significant torque, it is not particularly useful in this design. The drawback to the

13

servo motor used in testing was its limited range of motion. The servo used, shown in Figure 11,

was only capable of rotating 180° before it reached a mechanical stop. It would have been

possible to use this motor in moving the acrylic sheets, but the gears mounted to the motor itself

would have taken up considerable space in an already compact design. It would not have worked

for the sun and moon, as it was not capable of rotating continuously in a full circle.

Figure 11: RC servo motor model with a prototype sun arm attached

 The second motor tested was a bipolar stepper motor with a microstepper driver, as

shown in Figure 12. The stepper motor is a type of motor that runs off of internal magnets that

turn the motor’s head continuously and smoothly between poles, thus making one “step”. It is

capable of making very small adjustments in order to vary the speed and distance of motion, thus

making it ideal for controlling the sun and moon in the display. However, the drawback to this

motor was twofold. Firstly, it has some internal resistance to turning when not powered, but it

relies solely on the friction of the motor itself when holding a position. This makes it easy for the

motor to accidentally lose its set position, especially if the load it carries is not balanced. In other

words, the loads at either end of the sun and moon arm would need to be perfectly balanced to

14

ensure there would not be unwanted drift in the motor’s positioning. The second problem was

that constantly running the motor would cause components to heat up, ultimately resulting in

permanent damage to the circuitry. This could be avoided by having the motor make one “step”

and then powering itself off to eliminate the heat generation from the current it draws. However,

as described above, there are factors that could create error in this movement. It was decided by

the group to forego using the stepper motor in favor of one that could better hold position.

Figure 12: Bipolar stepper motor with microstepper driver with a prototype sun arm attached

 Ultimately worm gear motors, as shown in Figure 13, were selected for both the sun and

moon mechanics, as well as rotating the acrylic sheets. Worm gear motors are a type of DC

motor with a gearbox attached that significantly increases the torque output and have such a high

mechanical advantage that the output shaft will not rotate when there is no power applied. Like

regular DC motors, they run off of pulse width modulation, which allows control of the speed

and direction of the motor’s movement. The rigidity and strength of these motors is good for

ensuring minimal deviation from the programmed path of the sun and moon, as well as little

15

drifting of the acrylic sheets when being used to display a certain weather pattern. The worm

gears used in the final model were equipped with quadrature encoders, devices used to track the

movement of the motor by emitting a pair of pulses that can be counted to measure the direction

of a turn and the total distance traveled.

Figure 13: Worm gear motor with prototype sun arm attached

 One drawback of using worm gear motors with quadrature encoders is that they lack a

built in way to “home” themselves. This means that, should one component be moved by

something other than the programming or the power be cut to the display, there would be no way

for the motor, and subsequently the Propeller chip, to understand that the motor was no longer in

the correct position. In the event of such an error, additional code must be added in order to reset

the system before carrying on in its function. To do this, optical limit switches were used. These

sensors rely on a thin laser projected between two plates. When an object passes between the

plates and breaks the laser’s path, a signal is sent to the Propeller chip. Using this device and a

small attachment to the weather sheet mechanisms, it is possible to program a reset function that

homes all pieces of the display prior to their correct initial positions.

16

CUTTING ACRYLIC PIECES

 A large number of pieces, such as supports for motors, gears, covers for LED displays,

and the weather sheets themselves, were made of acrylic. These pieces were cut and designed

using a laser cutter. The laser cutter available was capable of performing three functions: through

cutting, rastering, and etching. Available for use in the laser cutter were 0.125” and 0.25”

continuous cast acrylic sheets. Through cutting was most useful for support pieces and gears.

The weather sheets themselves, however, used a combination of through cutting, rastering, and

etching in order to make aesthetically appealing weather patterns.

 Design of the parts made on the laser cutter was done first in SolidWorks by creating

parts with the exact dimensions required for the printed version. After exporting the SolidWorks

part as a .dxf file, the program CorelDraw was used to edit the outline that would be cut by the

laser cutter. Different colors were used to reference what type of cut to make with red indicating

a through cut, black indicating a raster, and blue indicating an etching. It was here that the snow

and rain patterns were created and added to the shape of the acrylic sheets in order to make the

required patterns. The benefit of the laser cutter is also in its ability to vary the intensity of its

beam to make deeper cuts, which were often cleaner and more apparent than a shallow cut.

These techniques of increasing the rastering intensity and slowing the speed made bolder

patterns as a result.

 The limitations of the laser cutter came in its size. The machine itself had a cutting

surface 32” by 17.5” in dimension, meaning that all parts required for the display needed to fit on

that plane. As such, full circles of weather sheets could not be cut to make the installation

process easier, and half sheets were used instead to save material and space in the display. The

acrylic sheets in stock were 1’ by 2’ in dimension, which were just wide enough to fit the

17

diameter of the lazy susan bearings. In some cases, to overcome these limitations, pieces were

cut in several segments to conserve acrylic sheets without wasting material. The internal spur

gears mounted to the inside of the lazy susans were one instance of this, where the gears

themselves were split into four pieces with connecting ends that could be fit and glued together

after printing. Smaller pieces, such as the mounts for motors did not have to be broken up in this

manner. The weather pattern sheets were cut in full, as breaking them up into smaller pieces

would have detracted from the window’s view during a rain or snowstorm.

3D PRINTING

 Smaller parts for the weather display were created using the 3D printer. Compared to the

laser cutter, the 3D printer is capable of making much more detailed parts with features

extending in three dimensions as opposed to solely two. This is done by layering strips of hot

ABS plastic on top of each other working from the bottom to the top to shape the part according

to its specifications. However, the tradeoff for this capability is time, as it usually takes

significantly longer for the 3D printer to make a part. Thus, the laser cutter was used as often as

possible to make basic parts, and the 3D printer was used for parts that required details in

multiple dimensions or parts that were thinner than the acrylic offered in the laboratory.

 Similarly to laser cutting, a part that needs to be 3D printed is first built in SolidWorks

and then exported as a .STL file. Then it can then be opened in a 3D printing software,

CatalystEX in our case, that communicates with the 3D printer. In CatalystEX, it is possible to

vary the layer resolution, the model’s interior density, and the density of the support material.

The denser and smaller the material is, the stronger the part will be as a whole. However, as it

also uses more material, the part will be more expensive. The software also has a function that

18

can change the orientation of the part and build layers, making it possible to orient the part such

that its strength is optimized. When these details are finalized, the part is added to a “pack”

which is the final group of parts that will be printed. Multiple parts can be added to one pack to

print them at the same time.

 As mentioned prior, the 3D printer is particularly useful for making pieces of unique

designs that could not otherwise be created using a laser cutter. Pieces like the mounts for the sun

and moon LEDs (Figure 14), the mount for the sun and moon motor (Figure 15), and fasteners

to keep the background LEDs in place (Figure 16) were all built in SolidWorks and printed using

the 3D printers. These designs are shown below for reference.

Figure 14: Mount for circular sun and moon LEDs designed for 3D printer

19

Figure 15: Mount for worm gear motor that controls the sun/moon beam, designed for 3D printer

Figure 16: Fastener for holding background and weather sheet LEDs in place designed for 3D printer

20

CNC MILLING

 Large parts for the assembly were cut out of wood using the Shopbot PRSalpha 96‐48

Computer Numerical Control (CNC) Router. For this machine in particular, the build area is

105” x 49” x 8”, which was capable of fitting the larger frame pieces for this project. Although

this machine is able to move in three dimensions, it is important to consider that the end mill bit

has thickness and is fixed vertically which prevents the machine from making certain cuts. For

example, inner corners within the part cannot have sharp edges: instead they will always have

fillets the same radius of the drill bit. Additionally, curves along the vertical axis can only be

created on one side--for example, in order to create a 180° rounded edge, the entire stock

material would have to be flipped over to round the other side.

In order to use this machine, each part and the stock material from which it would be cut

had to be modeled to scale in SolidWorks. The main purpose of using SolidWorks to prepare for

CNC milling is to arrange the part exactly how it will be cut and how it will look in real life. This

includes orienting the part exactly, adding tabs to the part which will hold it to the stock while

cutting, and using Computer Aided Manufacturing (CAM) and the HSMWorks Plugin within

SolidWorks to work out all of the toolpaths that will be used to cut out the part. The preparation

in SolidWorks is a tedious process, and it is important to note that it is easy to make a small

mistake which ruins the entire part. However, in taking the time to follow all of the preparation

steps correctly, CNC machining becomes an extremely powerful tool in successfully creating

large parts for an assembly.

21

Figure 17: Side-by-side images of the center frame piece cut out using the CNC mill. On the left is a
model of the part in SolidWorks, and on the right shows an image of the completed part

For this project, the center layer (shown in Figure 17), the eight outer frame layers, the

front face, and the back layer, were all cut using the CNC machine. Each layer was cut from

0.69” thick plywood. In order to conserve wood, the eight outer frame layers were split into

quadrants (shown in Figure 18) and later assembled into full rings using wood glue. The

quadrants were modeled specifically such that one piece would fit easily into another, sort of like

puzzle pieces, helping to align them as precisely as possible while gluing them together.

Figure 18: The image on the left is taken from SolidWorks of four quadrants to cut one outer frame layer
out using the CNC. The image on the right shows the pieces after cutting and before gluing

22

An important part of CNC machining is choosing the best end mill bit to use when

cutting out a part. The smaller the end mill bit, the longer it will take to cut. Furthermore,

switching out an end mill bit in the middle of cutting a part is inconvenient and may cause

problems, so it is recommended to try to avoid this if possible. Originally, the quadrant frame

pieces shown above were designed to have ⅛” inner holes, meaning that it would have to be cut

using a ⅛” end mill bit. This would have taken at least a few hours to cut all of the frame layers.

However, the design was altered to have ¼” inner holes instead to accommodate stronger bolts,

and this ultimately ended up saving a lot of time on the CNC since a ¼” end mill bit was then

able to be used.

 Another aspect of using the CNC is that the machine works blindly given the toolpath

instructions as soon as the process is started. The particular machine used did not have the

capability to stop itself if there were any problems in the milling. An example of this occurred

when cutting out the outer frame layer quadrants. In the first run of cutting out most of the frame

pieces, the end piece of one of the quadrants broke off completely. This was because the

plywood had inconsistencies within the material (it is non-isotropic), causing it to break under

the stress from the end mill bit. The CNC machine had no way of knowing that this occurred and

it continued cutting for the rest of the time as if the piece was still intact.

As stated earlier, it is important to create tabs on your part in SolidWorks which will hold

it to the stock material throughout the CNC process. Without these tabs, it would be easy for a

part to move or offset throughout the process, causing interference and incorrect cuts. To

reiterate, the CNC machine itself does not receive feedback if any parts or materials accidentally

offset, so this is why tabs are necessary. Therefore, a part cannot easily “pop out” of the stock

23

material like those created with the laser cutter or 3D printer. Any parts made on the CNC have

to be manually cut at the tab sites and then sanded down.

WEATHER PATTERN DESIGNS
When deciding the type of weather patterns to include in the final product, both the

typical weather in Charlottesville, Virginia along with the feasibility and team’s capability of

incorporating each design were considered. Charlottesville has seasonal weather, so it would be

necessary to have various weather patterns available for each season. The method of

incorporating weather patterns was through “weather sheets” made from laser-cut acrylic

working in conjunction with programmed LED strips to mimic the current weather conditions. It

was decided that snow and rain weather sheets would be included, as they are the mostly likely

weather conditions other than no precipitation. The raindrop and snowflake designs were drawn

in SolidWorks then exported as a .dxf file to be used with CorelDraw in conjunction with the

laser cutter. Also in SolidWorks, a semicircular shape was made for the weather patterns to be

printed on and would be moved by a gear-motor system to cover the display to match the

weather conditions outside when appropriate. Four holes large enough for 8-18 bolts were later

drilled into each semi-circular acrylic weather sheet after laser-cutting such that each sheet could

be mounted to a spur gear. LED strips also lined the inner clock walls parallel to the semi-

circular edge of the weather sheets, to add an extra effect and make the patterns more visible to

the viewer. The snow and rain weather sheets can be seen in Figure 19 and Figure 20.

24

Figure 19: Final acrylic snow sheet implemented into the final assembly, along with the smaller test strip
of acrylic used to test etching intensity and snowflake size.

Figure 20: Final acrylic rain sheet implemented into the final assembly, along with the smaller test strip
of acrylic used to test pattern, size, and etching intensity.

Other weather conditions such as cloudy weather, thunder storms, and foggy weather

could be represented through the use of LED strips along the edges of the clock. Both cloudy and

foggy weather conditions could be displayed by using more grayish LED colors. Three LED

strips surround the perimeter of the display window at the rain sheet, the snow sheet, and the

backlight, creating an opportunity for the colors to cover the display window entirely. For a

thunderstorm, one LED strip is programmed to flash white lights through the rain weather sheet

to mimic lightning. When these conditions are nonexistent, the backlight LED strip will project

blue to show a clear sky.

25

BACKGROUND DESIGN

Figure 21: Background with the Rotunda

The background is very similar in design to the weather pattern designs. It consisted of a

semi-circular, 1/8”, translucent, white acrylic sheet that was slightly smaller in radius than the

inner wall of the weather clock frame. Also used were a semi-circular, opaque, white sheet of

plastic, 1/4” spacers, and an 1/8” acrylic model of UVA’s Rotunda. The white sheet of plastic

was secured directly to the back of the frame and the 1/4” spacers were used to elevate the white

acrylic sheet from the white plastic sheet. Like the weather sheets, an LED strip was secured to

the inner wall of the clock such that it was parallel to edges of the acrylic and plastic sheets. The

LED strip was secured at a height that allowed the LEDS to shine into the 1/4” gap between the

white acrylic and white plastic. The idea is that the LEDs will bounce light off of the white

plastic to evenly diffuse through the white acrylic, effectively making the white acrylic sheet

26

similar in color to whatever is projected by the LED strip. The Rotunda will be secured on top of

the white acrylic sheet for artistic design as shown in Figure 21.

ASSEMBLY

 Assembly of the weather display begins with the central layer shown in Figure 22, which

is where all the moving parts are mounted. When the piece was created, inner beams were

included to use as mounting points for various motors and features. However, the design of many

of these pieces were made after the wood was cut from the CNC mill, and as such, holes for

mounting them were drilled in later. The hole in the middle is for the motor that controls the sun

and moon arm, which was enlarged to allow the worm gear motor to fit into the gap.

Figure 22: Central layer for mounting mechanisms

 The first pieces mounted to the center layer are the two lazy susan bearings. Four 1.75” 8-

18 bolts connect the inner ring of the lazy susans to the eight wooden tabs, with four bolts being

used on each bearing and alternating tabs selected around the ring. The bolt head touches the

wood itself with a 3/16” spacer separating the bearing and wood to allow for free rotation of the

27

bearing’s outer ring. A 7/32” tall nut caps the end of the bolt and is tightened to the surface of the

lazy susan bearing. Note that the bolts for both lazy susan bearings must be put through the

appropriate holes before the lazy susans are attached, as they will not fit through the holes after

one bearing has been bolted down.

 The next pieces to attach are the internal spur gears and weather panes, which must be

attached at the same time. The gears have been marked corresponding to their location on the

lazy susan bearing, as the holes on the bearing were not manufactured to be perfectly

symmetrical. The holes on the gears must line up with the holes of the bearing. The acrylic

weather sheet is placed on top of the gear, again lining up the markings to ensure the proper

placement of holes. 3/16” spacers separate the gears and bearings, but not the gear and weather

sheet. Four 1.75” 8-18 bolts are used to secure the gear where the weather sheet is stacked on

top, and four 1.5” 8-18 bolts for the four holes without the acrylic sheet. 7/32” 8-18 nuts are

placed between the outer ring of the lazy susan and the wooden tabs below. Washers are placed

on top of the acrylic pieces to prevent the bolt heads from cracking the acrylic. Using an

appropriately sized wrench and a phillips head screwdriver, the bolts are tightened into place to

secure the weather sheet assemblies. This process is repeated for both sides. Both sheets are

oriented so that the etching faces the front window of the display, meaning that the snow sheet

(which is the farther back of the pair) will be installed with the etching facing the wooden center

layer. This is all shown in Figure 23.

28

 Figure 23: Section view of lazy susan bearing and weather sheet assembly

Once the two weather pieces have been installed, the other smaller features can be

attached to the center layer. The first among them is the sun and moon assembly. The 3D printed

motor mount is the central piece of this assembly (shown above in Figure 15). Prior to attaching

it to the motor, the coupler and 8mm shaft must be attached to the end of the motor using set

screws. Then, four M3 x 30mm bolts attach the stepper motor to the 3D printed mount. The slip

ring sits on the other side, suspended by small supports and resting on the curved lip that

extrudes from the surface. Four M2 bolts are used to fix the slip ring to the mount from below.

The M3 set screws at the top of the slip ring are tightened to secure the rotating inner ring to the

worm gear’s extended shaft. The sun and moon shaft is assembled using a 1’ long and 3/8” wide

hollow rod. 3D printed mounts for the LED arrays are glued so the prongs are facing the mount

to the ends. Holes are drilled so that wires can run from the slip ring, through an opening in the

center of the rod, and connecting to the two circular light panels. Wires were fed through the

metal tube using a string that pulled them through. The central rod is attached to a modified

29

coupler that is capable of fitting over the 8mm rod and locking in place using set screws. The

entire sun and moon assembly is mounted in the central gap in the wood, oriented so the motor’s

shaft points toward the back section of the display as shown in Figure 24.

Figure 24: A view of the sun and moon system prior to attaching the weather sheets

 Other pieces included on the center sheet are the mounts for the power supply, fuses,

Raspberry Pi and circuit board as shown in Figure 25. Both of these mounts are acrylic sheets

designed with holes that fit into the wooden center layer. One mount holds the fuses on one side

and the external 5V, 18A power supply on the other, while the second mount has the Raspberry

Pi and Propeller chip on opposite sides. The mounts were fixed to the middle so that the fuses

(located on the right of the sun and moon when viewed from the back) and the Propeller chip and

circuit board (located on the left) were facing the back, making it easier for any modifications to

be made to the display in case they are needed.

30

Figure 25: A view from the back of the sun and moon motor and the mounts for the electronics; the
circuit board and Propeller chip are mounted on the left, and the fuses and power supply are on the right

The worm gears motors that moved the weather sheets were attached to the central layer

using acrylic bars and 3D printed spacers. The spacers were used to ensure that the worm gears

would be at the correct height to mate with the internal gears that were attached to the lazy susan

bearings. The acrylic bars are what connected to the worm gears to the spacers. The acrylic bars

had slots in one end to allow for lateral adjustment of the worm gear position to ensure that they

would mate properly to the internal gears.

31

Figure 26: SolidWorks model of the worm gear motor mounts for the acrylic weather sheets, shown from
the front side. The acrylic mounts are in blue, and the 3D printed spacers are in yellow. The small gears

would be attached to the shafts on the worm gear motors.

 Each worm gear motor in Figure 26 above is held to the ends of the acrylic mounts using

M3 x 16mm screws with one washer underneath the screw head. The holes inside the motors are

threaded, and in order to position the gears perfectly in place, a nut is used as a spacer between

the acrylic and the motor (not visible in the figure above). Without this spacer, the motors would

be positioned too far out from the center frame, and the small gears would interfere with the

acrylic weather sheets, so it would not be able to turn more than 180°. All four 3D printed

spacers and two acrylic mounts are held in place and sandwiching the wooden center beam using

four 3” 6-32 screws, with one washer under the screw head and one nut to hold it in place on the

back side. These 3” screws have just enough clearance for the acrylic snow sheet to continue to

rotate; however, the plan is to eventually replace these with 2.75” 6-32 screws in order to allow

for even more clearance. Unfortunately due to time constraints, this length of screw was unable

to be purchased and replaced in time.

32

One of the components of the final assembly which was not directly modeled in

SolidWorks prior to implementation was the mounting of the three LED strips, which were used

to light up the rain acrylic weather sheet, the snow acrylic weather sheet, and the background,

respectively. The LED strips were accounted for when coming up with the final assembly by

leaving a small gap between the wooden frame and where the internal components, such as the

weather sheets, would lie. Therefore, the plan was to mount the LED strips to the inside ring of

the wooden frame and align them correctly with the components that were to be lit up. In order

to mount these LED strips properly, the correct position of the LED strips was sketched out on

the wooden frame, measured from the distance from the center frame piece. Next, each LED

strip was initially fastened with a strip of double-sided tape: this added support to the fasteners

that would ultimately hold them in place as well as held the LED strips in place while the

fasteners were being screwed in. After each LED strip was taped, holes were marked on either

side of the LED strip where the screws would be fastened, and spaced out with 6 LEDs in

between each fastener for a total of around 11 fasteners used for each LED strip. A detailed

image of the fasteners 3D printed for this process is shown above in Figure 16. Then, the holes

were drilled about ½” deep in order to fasten the 3D printed pieces with 4-40 ½” machine

screws. The original plan was to drill in wood screws to mount the LEDs, but in testing this

beforehand the wood screws caused the frame to split and were therefore replaced with machine

screws. Finally, the fasteners were mounted by screwing each one by hand into the pre-drilled

holes. Below is an image of two of the mounted LED strips in Figure 27.

33

Figure 27: Two of the three mounted LED strips: these were used for the acrylic weather sheets

It is important to note that the background LED strip required the design of a different

kind of fastener because it did not have enough room between the LED strip and the back frame

piece to fasten with two screws. This new fastener only used one screw to hold in place, and it

was also designed with a tab to hold the LED strip in place with friction when screwed in. Other

than the new fastener design, the background LED strip was mounted the same way as those

used for the weather sheets. A detailed image of this modeled in SolidWorks is provided below

in Figure 28.

Figure 28: SolidWorks design of the background LED fasteners

34

 The final assembly is composed of four distinct parts that are fastened together. The front

piece is comprised of the viewing face, a full circle with an clear acrylic viewing window and an

LED display for time and temperature, as well as three hollow wooden rings that are glued to the

back of it. In the middle of the glued rings are eight ¼” 8-18 Tee Nuts that were hammered into

the wood. This is connected to the center layer such that the rain layer is the closest to the front

face. The third section is a stack of five wooden rings that have been glued together and aligned

so that the eight holes line up with the other two sections. These fit to the back side of the center

layer so that the snow layer lines up with the LED strip bolted to the inside ring. The power cord

of the external power supply fits into the divot cut away from the side of the hoop. The backplate

is the final layer: a half sheet of wood for the top semicircle and a hollow ring for the bottom.

Holes are countersunk into the backplate for the bolt heads to fit in without sticking out from the

back. This ensures that the weather display sits flat against the wall. Also on the backplate is a

hollowed space where french cleats were attached. These slip over one another on the wall to

hold the display in place. A pair of black lines on the bottom of these components line up

together to show the proper orientation of the full assembly. When all the holes have lined up,

eight 6” 8-18 bolts screw through the full assembly to fasten all four pieces together by locking

into the Tee Nuts in the frontmost section. Figure 29 and Figure 30 show completed views of the

final assembly with and without the front face attached.

35

Figure 29: A view from the front showing the full assembly prior to gluing the front face to the front three
rings

Figure 30: SolidWorks 3D Model (Left) and CNC cut (Right) images of the front face of the display

THE PROPELLER CHIP AND SPIN CODE

At the heart of the weather clock assembly is a Parallax Propeller chip. This

microcontroller contains 8 parallel processors (COGs) capable of running methods

36

simultaneously, independent of one another to manage and control 32 input and output pins. This

chip was chosen for its simplicity, speed, precision, and familiarity. The Propeller chip controls

all processes that occur within the weather clock except for the retrieval of time and weather

data, which is completed by the Raspberry Pi and detailed in the following section. The methods

described in this section and all line references correspond to the spin code in Appendix A.

The Setup method is the first method run on the Propeller chip (79-89). First, it sets the

input/output state of each pin being used. It then sets the LED data pins low on COG 0 to prevent

any ambiguity in the output of LED data pins when a COG controlling LEDs is stopped. Next,

methods are run to position the acrylic rain and snow weather sheets to their down (not visible)

position. Lastly, certain variables are initialized at values that will make every method that

updates components run on the first iteration through the main loop.

The main method (90-175) is an infinite loop in charge of calling all necessary methods

at appropriate times and retrieving data as needed. At the beginning of each iteration, the main

method retrieves the current time from the Raspberry Pi using the GetTime method then updates

the LEDs on the LED array to either display the current time or temperature, alternating between

the two. Next, the timeTempFlag is flipped between 0 and 1 to indicate if the time or temperature

will be shown on the LED array the following time through the loop. An if statement follows this

to check if the time has reached a new minute mark, ensuring that all methods within the if

statement are only run once per minute. If the minute has not changed, the loop waits 15 seconds

and starts over. Every minute, the weather data is retrieved from the Raspberry Pi. Next, a series

of if statements check if it is 12:01am, the time of sunrise, or the time of sunset to run methods

specific to those times. The following if statements (121 & 123) check if the sun/moon should be

rotated. If the variable indicating the current weather (weatherID) has changed, the appropriate

37

LEDs are set and acrylic weather sheets are positioned according to the type of weather. If the

weatherID differs from any of the cases following line 131, the Raspberry Pi is either not

powered on or not connected to the internet and the setup method is run, restarting the Propeller

chip’s code. Lastly, the background LEDs are set to special states for night or twilight if the time

is appropriate for these states and the background LEDs are updated if the background has

changed.

There are four different methods called within the main loop to rotate the gears that set

the positions of the acrylic rain and snow sheets: RainGearUp (196), SnowGearUp (200),

RainGearDown (204), and SnowGearDown (208). The RainGearUp method checks if the acrylic

rain sheet is in the down position, and—if it is in fact down—runs the moveGear method with

the appropriate pins input as parameters. This method simply rotates the rain sheet’s worm gear

motor 1530°, which corresponds to 180° of rotation for the hollow gear bolted to the rain sheet

(see Go method, line 708). The SnowGearUp method is exactly the same as the RainGearUp

method, but corresponds to the snow sheet worm gear’s pins. The RainGearDown method

checks if the acrylic rain sheet is in the up position, and—if it is up—runs the motorUntilSwitch

method with the appropriate pins input as parameters. Rather than rotating to a specified angle,

this method applies power to the worm gear motor until an infrared sensor switch is activated by

a thin piece of metal glued to the acrylic sheet (see GoUntil method, line 701). The

SnowGearDown method is the same as the RainGearDown method, but corresponds to the snow

sheet worm gear’s pins and a separate infrared sensor for the snow sheet.

The sun and moon rotate 20 times per day: 10 times during the day and 10 times during

the night. The frequency of rotation is dictated by the sunrise and sunset time so that the sun

enters the visible frame at sunrise and exits at sunset. Within the main loop, two if statements

38

check if the current time is between the time of sunrise and sunset (daytime) and if the current

time is a multiple of the daytime rotation frequency (123). If so, the moveSunMoon method is

run to rotate the worm gear controlling the sun and moon 18°. A separate if statement does the

same process for night and the nighttime rotation frequency (121). Once per day, at sunrise, the

runMotorUntilSwitch is run on the sun/moon worm gear motor with an optical limit switch to

home the sun and moon to a position where the bar to which the sun and moon are attached is

horizontal.

All LEDs within the weather clock receive data through WS2812B protocol and are thus

controlled using a driver file written by Professor Gavin Garner (object added in line 63, full

driver code in Appendix D). This driver requires a new COG to control LEDs. However, because

the rain and snow LED strips are the only LEDs that are run and changed at the same time as

other processes occurring in the main loop, and because these two LED strips will never run at

the same time as each other, they may share one driver and all other LEDs may share another

driver. The use of two separate drivers is indicated by the fact that rgb object in line 63 is

actually an array of two LED driver objects. If it is raining or snowing, the RainLEDs method

(212) or the SnowLEDs method (447) is started on a new COG. This allows the quick changes to

different LED patterns and colors to simulate rainfall or snowfall. The RainLEDs method

contains 15 different LED pattern sequences depending on the type of rain (light rain, heavy

thunderstorm, etc.), and the SnowLEDs method contains eight LED pattern sequences depending

on the type of snowfall. The background LED strip, which is changed on COG 0 when the main

loop calls the backgroundLEDs method (629) contains LED patterns for 6 different cases: night,

twilight, clear/sunny, overcast, partly cloudy, and mostly cloudy.

39

The LEDs on the Adafruit Triple-Ring boards light up to indicate the sun or moon. At

sunrise and sunset, flags indicating the current state of the sun and moon LEDs are set

accordingly and the SunLEDs and MoonLEDs methods (176, 186) are run to update the LEDs.

These methods either turn all LEDs off, turn the sun LEDs yellow, or turn the moon LEDs white

depending on the status of the LED state flag. At sunrise, the moonLEDs method is run first to

turn off the moon LEDs before turning on the sun LEDS to prevent both LED boards from being

on at the same time. Likewise, the sunLEDs method is run before the moonLEDs method at

sunset.

Lines 760 to 928 of the spin code are all methods for the LED array on the front display.

These methods draw numbers, colons, and degree symbols based on specified x- and y-

coordinates and colors. These methods were purposefully made general so that future work can

utilize these methods to potentially make a more animated front display. The LEDArray method

(607) starts an LED driver and calls the drawTime or drawTemp methods depending on the

aforementioned timeTempFlag before stopping the LED driver. One important challenge in

coding the LED array is that, because the LEDs were being updated so often when drawing

numbers, the driver sometimes could not keep up and LEDs would not light up as they were

supposed to. For this reason, the LED driver was modified to have a separate method to update

the LEDs so that all information on which LEDs would light up could be sent to the LEDs less

often.

The process of getting data from the Raspberry Pi is detailed in the following section, but

one important aspect of the spin code is the way of translating bytes of ASCII characters to

integer data. Because all data received is numerical, and the number of digits is always known,

the information is first stored byte by byte in an array. This process can be seen in lines 574 and

40

575. Next, each byte has 48 subtracted from it (numbers start at 48 in ASCII), then each digit is

multiplied by a power of 10 corresponding to its location in the array and added to the variable

the data should be set to. An example of this process can be seen in lines 578 to 583

Although the eight parallel processors in the Propeller chip is a lot to work with, it is very

important that the code does not attempt to use more COGs than are available. For this reason,

COGs 5 to 7 are reserved for specific processes and a maximum of two other COGs (LED

drivers or the serial reader) will ever be used at once (in addition to COG 0 running the main

code). This maximum of 6 COGs being used at once also allows for two more processors to be

used should future additions be introduced to the weather clock.

Future work regarding the coding of the weather clock will be taking place over the

following months to ensure the code works as it should and all components are able to function

together. Code has been and will continue to be commented heavily to ensure future

modifications and improvements can be made as effortless as possible.

RASPBERRY PI CODE AND WEATHER API CONNECTION

 The Propeller chip used to dictate the mechanical and electrical aspects of the weather

clock is very powerful, but lacks the ability to access the internet. However, the weather clock

needs a way to access a weather API to retrieve accurate, real time weather data. This need led to

the implementation of a Raspberry Pi 3 Model B. Additionally, because the Raspberry Pi will be

connected to the internet, it will also be responsible for giving time information to the Propeller

chip.

The Raspberry Pi runs Python code that utilizes the built-in “datetime” library for time

data and the “requests” library to request and receive a JSON file containing weather data from

41

OpenWeather’s “Current Weather Data” API (OpenWeatherMap, 2020). Once this data is

received on the Raspberry Pi, it is transmitted to the Propeller chip using UART protocol, which

requires only three pins: TX (data transmission, Raspberry Pi pin 8), RX (data reception,

Raspberry Pi pin 10), and a common ground. The Raspberry Pi sends serial data to the Propeller

chip using the “write” method which is part of the built-in “serial” library (Appendix E). The

Propeller chip uses the “FullDuplexSerial” built-in file as an object to receive and interpret the

weather and time data. Rather than using the standard “Rx” method, which waits for data to

appear in the queue and returns that data, the “RxTime” method was used. The “RxTime”

method differs from the “Rx” method in that it takes in a parameter for the specified amount of

time (in milliseconds) that the method should wait for data to appear in the queue. If no data

appears in the queue within the allotted time, the method returns -1 and the code moves on. This

way, if communication between the Propeller chip and the Raspberry Pi was cut for some reason

(such as a power outage), the Propeller’s spin code would not get stuck waiting for data to be

received.

The Propeller sends data requests to the Raspberry Pi from its TX pin to the RX pin of

the Raspberry Pi. These data requests are sent as strings such as “GetTime,” “GetSunset,” and

“GetWeatherData.” When the Raspberry Pi receives these requests, it either uses the “datetime”

library to get the time or sends a request to the API for weather data and sends this data from the

Raspberry Pi TX pin to the Propeller chip RX pin. For the sake of simplicity and so that the

number of bytes of data sent to the Propeller is known, all data used is numerical. For example,

the weather description is sent as a three digit number (800 is clear, 230 is thunderstorm with

light drizzle, etc.).

42

 The OpenWeather API was chosen for two primary reasons: it’s expansive and accurate

weather database and the fact that it will be free. However, in order to use the API for free, it

may only be called 60 times per minute. This frequency of weather data collection is no problem

for the weather clock project as long as the API is not overused. To balance the frequency of data

requests with the need for the Propeller chip to quickly retrieve up-to-date data, the Python code

only sends requests to the API when the Propeller chip requests data from the Raspberry Pi. The

communication of requests and data transmission is shown in Figure 31 below.

Figure 31: The path of weather data and requests for real time weather data

 One of the important elements to implement in the weather communication setup was to

make sure that the Raspberry Pi would automatically run the Python code to get the weather data

upon starting up. This way, if power ever cut out, the Raspberry Pi would only need to be

powered on to restart the code rather than connecting a keyboard, monitor, and mouse to run the

script. This was accomplished by editing the rc.local file on the Raspberry Pi and adding a

command to run the Python code (Hawkins, 2015).

FINAL PRODUCT

The weather clock, in its entirety, hangs approximately 7.6 inches off a wall, with a

diameter of 26 inches. The weather clock is capable of showcasing multiple weather patterns.

The Raspberry Pi allows for an API to constantly be referenced and update the clock display

Propeller
Chip

OpenWeathe
r API

Raspberry Pi

43

according to the input received from OpenWeather. In the center of the display is the sun and

moon system. Based on the sunrise and sunset times received from the API, the sun will move

across the display accordingly. The moon is on the opposite side of the rod that the sun is on, and

will move into the display when the sun is out. Both the sun and moon have LED panels for

added effect. If it is raining or snowing, the Propeller will tell the worm gears to move the rain or

snow sheet up into the display of the clock. Optical limit switches ensure that the acrylic pieces

stop at the correct positions. For thunder, the LED on the edge of the clock will flash lights to

mimic a thunderstorm. The LEDs also serve to show what the sky would look like,

differentiating between day and night, and also showing if it’s cloudy or foggy. Additionally,

there is an LED display on the bottom of the clock that shows the current time and temperature

using the same API. Lastly, if the power to the clock were to ever go out, there is automatic reset

and reboot built into the Propeller.

The current state of the weather clock is the final stages of completion. All the parts and

mounts are installed along with the circuit board, power supply, and wiring. Further debugging

of the programming running the weather clock needs to occur to ensure that it can operate

independently for display in the Mechanical & Aerospace building.

KEY TAKEAWAYS

 Throughout the design and implementation process, one of the most important tools was

the SolidWorks program. By building the clock first in SolidWorks, the various pieces could be

placed in an assembly of the clock to ensure that they would be able to fit or be able to perform

any actions required. Many of the issues that came up during the building process stemmed from

not having the part in the SolidWorks model. For one, the length of the sun and moon assembly

44

once created outside of the model proved to be too long for the CNC layers that were made to

house the mechanics. As a result, another layer had to be cut at the last minute to give enough

space for it to fit. Had the assembly been properly modeled originally, this last minute

adjustment would not have been necessary. Another important takeaway was to avoid the use of

glue if possible, as glue can hinder any necessary re-design, versus using screws which can be

easily removed.

Additionally, it was difficult to foresee how heavy the assembly would be through the

SolidWorks model. This became an issue in implementing the worm gear motors to move the

acrylic weather sheets because the original motors used did not have enough torque to rotate the

spur gear. The first attempt to fix this problem was to decrease the size of the smaller gear in

order to increase the torque--and in doing so, the mounts for the worm gear motors had to be

redesigned in order to move the motors closer to the spur gear. However, this still wasn’t enough

torque to move the spur gear, so ultimately in order to fix this problem the transmissions on the

motors had to be switched. This could have been accounted for by taking a closer look at the

SolidWorks model and estimating the potential weight of specific parts of the assembly.

FUTURE CONSIDERATIONS

The creation of this weather clock dives into the custom-design business sector of

craftsmanship and interior design. Many company offices as well as homeowners look for

custom-made pieces to display in their space. If consumers wanted a similar product with or

without their own personalizations, significant internal changes would need to be made to the

weather clock design and build for it to be marketable. First, the materials should be

reconsidered to minimize cost as well as weight. Bulk ordering of parts would most likely help

45

with cost reductions. The weight of the current design could potentially be addressed by using a

less dense wood for the frame and the thickness could be reduced by machining the internal spur

gears out of aluminum and then building tracks into the frame for them to rotate on, thus

eliminating the need for the lazy susan bearings. More time should also be spent on the build

process to make assembling and disassembling easier.

46

References

Hawkins, M. (2015). How To Autorun A Python Script On Raspberry Pi Boot. RaspberryPiSpy.

https://www.raspberrypi-spy.co.uk/2015/02/how-to-autorun-a-python-script-on-

raspberry-pi-boot/

Garner, G. (2020). Exploring Mechatronics: Spring 2020. University of Virginia.

Garner, G. (2020). Garner’s Guide to 3D Printing Parts on the Student UPrints. University of

Virginia.

Garner, G. (2020). How to Use HSMworks and the Shopbot PRSalpha 96‐48 CNC Router.

University of Virginia.

Garner, G. (2020). The MILL’s Laser Cutter Tutorial. University of Virginia.

Martin, J. (2011). Propeller Manual Version 1.2. Parallax Inc.

OpenWeatherMap (2020). Current weather data. https://openweathermap.org/current

Raspberry Pi Documentation. (2020). Retrieved December 01, 2020, from

https://www.raspberrypi.org/documentation/

47

Appendix A: Propeller Chip Spin Code as of 12/01/2020

48

49

50

51

52

53

54

55

56

57

58

59

Appendix B: Circuit Diagram of Kinetic Art Weather Clock

60

61

Appendix C: Python Code Run on Raspberry Pi as of 12/01/2020

62

63

Appendix D: LED Driver Spin Code (WS2812B_RGB_LED_Driver_v2.1)

64

65

66

Appendix E: FullDuplexSerial Spin Code
{{
Object file: FullDuplexSerial.spin
Version: 1.2.1
Date: 2006 - 2011
Author: Chip Gracey, Jeff Martin, Daniel Harris
Company: Parallax Semiconductor
Email: dharris@parallaxsemiconductor.com
Licensing: MIT License - see end of file for terms of use.

Description:
This driver, once started, implements a serial port in one cog.

Revision History:
v1.2.1 - 5/1/2011 Added extra comments and demonstration code to bring up
 to gold standard.
v1.2 - 5/7/2009 Fixed bug in dec method causing largest negative value
 (-2,147,483,648) to be output as -0.
v1.1 - 3/1/2006 First official release.

===
 Connection Diagram
===

 â”Œâ”€â”€â”€â”€â”€â”€â”€â”€â”€â”
 â”‚ â”‚
 â”‚ rxPinâ”œâ”€â”€â”€ï‚ª TTL level RX line
 â”‚ txPinâ”œâ”€â”€â”€ï‚» TTL level TX line
 â”‚ â”‚
 â””â”€â”€â”€â”€â”€â”€â”€â”€â”€â”˜
 Propeller
 MCU
 (P8X32A)

Components:
N/A

===
}}

VAR

 'Global variable declarations

 long cog 'cog flag/id

 '9 longs, MUST be contiguous
 long rx_head
 long rx_tail
 long tx_head
 long tx_tail
 long rx_pin
 long tx_pin
 long rxtx_mode
 long bit_ticks
 long buffer_ptr

 byte rx_buffer[16] 'transmit and receive buffers
 byte tx_buffer[16] '16 bytes each

PUB Start(rxPin, txPin, mode, baudrate) : okay
{{
 Start serial driver - starts a cog

 Parameters: rxPin = Propeller pin to set up as RX-ing pin. Range = 0 - 31
 txPin = Propeller pin to set up as TX-ing pin. Range = 0 - 31
 mode = bitwise mode configuration variable, see mode bit description below.
 baudrate = baud rate to transmit bits at.

 mode bit 0 = invert rx
 mode bit 1 = invert tx
 mode bit 2 = open-drain/source tx
 mode bit 3 = ignore tx echo on rx

 return: Numeric value of the cog(1-8) that was started, false(0) if no cog is available.

 example usage: serial.start(31, 30, %0000, 9_600)

 expected outcome of example usage call: Starts a serial port on Propller pins 30 and 31.
 The serial port does not invert the RX and TX data,
 no open-drain/source on the TX pin, does not ignore
 data echoed on RX pin, at 9,600 baud.
}}

 Stop 'make sure the driver isnt already running
 longfill(@rx_head, 0, 4) 'zero out the buffer pointers
 longmove(@rx_pin, @rxpin, 3) 'copy the start parameters to this objects pin variables
 bit_ticks := clkfreq / baudrate 'number of clock ticks per bit for the desired baudrate
 buffer_ptr := @rx_buffer 'save the address of the receive buffer

67

 okay := cog := cognew(@entry, @rx_head) + 1 'start the new cog now, assembly cog at "entry" label.

PUB Stop
{{
 Stop serial driver if it has already been started - frees the cog

 Parameters: none
 return: none

 example usage: serial.stop

 expected outcome of example usage call: Stops an already started serial port.
}}

 if cog
 cogstop(cog~ - 1) 'if the driver is already running, stop the cog
 longfill(@rx_head, 0, 9) 'zero out configuration variables

PUB RxFlush
{{
 Continuously pops the head of the receive buffer until no bytes remain.

 Parameters: none
 return: none

 example usage: serial.RxFlush

 expected outcome of example usage call: Receive bffer will be cleared.
}}

 repeat while RxCheck => 0 'Call RxCheck until buffer is empty

PUB RxCheck : rxByte
{{
 Check if a byte is waiting in the receive buffer and return the byte if one is there,
 does NOT block (never waits).

 Parameters: none
 return: If no byte, then return(-1). If byte, then return(byte).

 example usage: serial.RxCheck

 expected outcome of example usage call: Return a byte if one is available, but dont wait
 for a byte to come in.
}}

 rxByte-- 'make rxbyte = -1
 if rx_tail <> rx_head 'if a byte is in the buffer, then
 rxByte := rx_buffer[rx_tail] ' grab it and store in rxByte
 rx_tail := (rx_tail + 1) & $F ' advance the buffer pointer

PUB RxTime(ms) : rxByte | t
{{
 Wait ms milliseconds for a byte to be received

 Parameters: ms = number of milliseconds to wait for a byte to be received.
 return: If no byte, then return(-1). If byte, then return(byte).

 example usage: serial.RxTime(500)

 expected outcome of example usage call: Wait half a second (500 ms) for a byte to be received.
}}

 t := cnt 'take note of the current time
 repeat until (rxByte := RxCheck) => 0 or (cnt - t) / (clkfreq / 1000) > ms

PUB Rx : rxByte
{{
 Receive byte (may wait for byte)
 returns $00..$FF

 Parameters: none
 return: received byte

 example usage: serial.Rx

 expected outcome of example usage call: Wait until a byte has been received, then return that byte.
}}

 repeat while (rxByte := RxCheck) < 0 'return the byte, wait while the buffer is empty

PUB Tx(txByte)
{{
 Places a byte into the transmit buffer for transmission (may wait for room in buffer).

 Parameters: txByte = the byte to be transmitted
 return: none

68

 example usage: serial.Tx($0D)

 expected outcome of example usage call: Transmits the byte $0D serially on the txPin
}}

 repeat until (tx_tail <> (tx_head + 1) & $F) 'wait until the buffer has room
 tx_buffer[tx_head] := txByte 'place the byte into the buffer
 tx_head := (tx_head + 1) & $F 'advance the buffer's pointer

 if rxtx_mode & %1000 'if ignoring rx echo
 Rx ' receive the echoed byte and discard

PUB Str(stringPtr)
{{
 Transmit a string of bytes

 Parameters: stringPtr = the pointer address of the null-terminated string to be sent
 return: none

 example usage: serial.Str(@test_string)

 expected outcome of example usage call: Transmits each byte of a string at the address some_string.
}}

 repeat strsize(stringPtr)
 Tx(byte[stringPtr++]) 'Transmit each byte in the string

PUB Dec(value) | i, x
{{
 Transmit the ASCII string equivalent of a decimal value

 Parameters: dec = the numeric value to be transmitted
 return: none

 example usage: serial.Dec(-1_234_567_890)

 expected outcome of example usage call: Will print the string "-1234567890" to a listening terminal.
}}

 x := value == NEGX 'Check for max negative
 if value < 0
 value := ||(value+x) 'If negative, make positive; adjust for max negative
 Tx("-") 'and output sign

 i := 1_000_000_000 'Initialize divisor

 repeat 10 'Loop for 10 digits
 if value => i
 Tx(value / i + "0" + x*(i == 1)) 'If non-zero digit, output digit; adjust for max negative
 value //= i 'and digit from value
 result~~ 'flag non-zero found
 elseif result or i == 1
 Tx("0") 'If zero digit (or only digit) output it
 i /= 10 'Update divisor

PUB Hex(value, digits)
{{
 Transmit the ASCII string equivalent of a hexadecimal number

 Parameters: value = the numeric hex value to be transmitted
 digits = the number of hex digits to print
 return: none

 example usage: serial.Hex($AA_FF_43_21, 8)

 expected outcome of example usage call: Will print the string "AAFF4321" to a listening terminal.
}}

 value <<= (8 - digits) << 2
 repeat digits 'do it for the number of hex digits being transmitted
 Tx(lookupz((value <-= 4) & $F : "0".."9", "A".."F"))' Transmit the ASCII value of the hex characters

PUB Bin(value, digits)
{{
 Transmit the ASCII string equivalent of a binary number

 Parameters: value = the numeric binary value to be transmitted
 digits = the number of binary digits to print
 return: none

 example usage: serial.Bin(%1110_0011_0000_1100_1111_1010_0101_1111, 32)

 expected outcome of example usage call: Will print the string "11100011000011001111101001011111" to a listening terminal.
}}

 value <<= 32 - digits
 repeat digits
 Tx((value <-= 1) & 1 + "0") 'Transmit the ASCII value of each binary digit

DAT

69

'***********************************
'* Assembly language serial driver *
'***********************************

 org
'
'
' Entry
'
entry mov t1,par 'get structure address
 add t1,#4 << 2 'skip past heads and tails

 rdlong t2,t1 'get rx_pin
 mov rxmask,#1
 shl rxmask,t2

 add t1,#4 'get tx_pin
 rdlong t2,t1
 mov txmask,#1
 shl txmask,t2

 add t1,#4 'get rxtx_mode
 rdlong rxtxmode,t1

 add t1,#4 'get bit_ticks
 rdlong bitticks,t1

 add t1,#4 'get buffer_ptr
 rdlong rxbuff,t1
 mov txbuff,rxbuff
 add txbuff,#16

 test rxtxmode,#%100 wz 'init tx pin according to mode
 test rxtxmode,#%010 wc
 if_z_ne_c or outa,txmask
 if_z or dira,txmask

 mov txcode,#transmit 'initialize ping-pong multitasking
'
'
' Receive
'
receive jmpret rxcode,txcode 'run a chunk of transmit code, then return

 test rxtxmode,#%001 wz 'wait for start bit on rx pin
 test rxmask,ina wc
 if_z_eq_c jmp #receive

 mov rxbits,#9 'ready to receive byte
 mov rxcnt,bitticks
 shr rxcnt,#1
 add rxcnt,cnt

:bit add rxcnt,bitticks 'ready next bit period

:wait jmpret rxcode,txcode 'run a chuck of transmit code, then return

 mov t1,rxcnt 'check if bit receive period done
 sub t1,cnt
 cmps t1,#0 wc
 if_nc jmp #:wait

 test rxmask,ina wc 'receive bit on rx pin
 rcr rxdata,#1
 djnz rxbits,#:bit

 shr rxdata,#32-9 'justify and trim received byte
 and rxdata,#$FF
 test rxtxmode,#%001 wz 'if rx inverted, invert byte
 if_nz xor rxdata,#$FF

 rdlong t2,par 'save received byte and inc head
 add t2,rxbuff
 wrbyte rxdata,t2
 sub t2,rxbuff
 add t2,#1
 and t2,#$0F
 wrlong t2,par

 jmp #receive 'byte done, receive next byte
'
'
' Transmit
'
transmit jmpret txcode,rxcode 'run a chunk of receive code, then return

 mov t1,par 'check for head <> tail
 add t1,#2 << 2
 rdlong t2,t1
 add t1,#1 << 2
 rdlong t3,t1
 cmp t2,t3 wz
 if_z jmp #transmit

70

 add t3,txbuff 'get byte and inc tail
 rdbyte txdata,t3
 sub t3,txbuff
 add t3,#1
 and t3,#$0F
 wrlong t3,t1

 or txdata,#$100 'ready byte to transmit
 shl txdata,#2
 or txdata,#1
 mov txbits,#11
 mov txcnt,cnt

:bit test rxtxmode,#%100 wz 'output bit on tx pin according to mode
 test rxtxmode,#%010 wc
 if_z_and_c xor txdata,#1
 shr txdata,#1 wc
 if_z muxc outa,txmask
 if_nz muxnc dira,txmask
 add txcnt,bitticks 'ready next cnt

:wait jmpret txcode,rxcode 'run a chunk of receive code, then return

 mov t1,txcnt 'check if bit transmit period done
 sub t1,cnt
 cmps t1,#0 wc
 if_nc jmp #:wait

 djnz txbits,#:bit 'another bit to transmit?

 jmp #transmit 'byte done, transmit next byte
'
'
' Uninitialized data
'
t1 res 1
t2 res 1
t3 res 1

rxtxmode res 1
bitticks res 1

rxmask res 1
rxbuff res 1
rxdata res 1
rxbits res 1
rxcnt res 1
rxcode res 1

txmask res 1
txbuff res 1
txdata res 1
txbits res 1
txcnt res 1
txcode res 1

DAT
{{
â”Œâ”€â
â”‚ TERMS OF USE: MIT License â”‚
â”œâ”€â”
â”‚Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation â”‚
â”‚files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, â”‚
â”‚modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Softwareâ”‚
â”‚is furnished to do so, subject to the following conditions: â”‚
â”‚ â”‚
â”‚The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.â”‚
â”‚ â”‚
â”‚THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE â”‚
â”‚WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR â”‚
â”‚COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, â”‚
â”‚ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. â”‚
â””â”€â

