
Providing Guaranteed Behaviors for Groups of
Low-Capability Mobile Agents

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Luther A. Tychonievich

July 2013

© 2013 Luther A. Tychonievich

Abstract

I consider the problem of designing algorithms for coordinated groups of low-capability, error-

prone mobile agents. It is my thesis that some important collective behaviors of groups of low-

capability mobile agents can be guaranteed by the application of provably-correct distributed al-

gorithms. This thesis is demonstrated by the provision of new algorithms that guarantee mobile

agent behavioral properties in the face of noise and agent error, as well as proofs that characterize

the requirements of particular tasks.

The contributions of this dissertation include both algorithms for solving classes of tasks that

are foundational to processes involving groups of mobile agents and proofs regarding the impact

limited capabilities have on the ability of agents to perform various tasks.

The capability proofs lie in two principle areas. The first set of proofs relate to the differences

between stigmergic and broadcast communication; these proofs bound the time and number of

additional agents required to emulate broadcast communication using stigmergy. The second set

of proofs bound the capabilities needed to ensure that agents are able to locate one another in an

unknown environment. In addition to these stand-alone proofs, there are also proofs accompa-

nying each algorithm presented.

The main classes of tasks solved relate to agents forming and maintaining a group. A family

i

Abstract ii

of algorithms is provided, each of which guarantees rendezvous in bounded time for some class of

agent capabilities. For agents with bounded-error knowledge of time and place these rendezvous

algorithms are within a logarithmic term of being asymptotically optimal. A technique is pre-

sented for generating pair-wise cohesion constraints for various agent types; these constraints

provide each agent with a set of allowable behaviors that provably keep the agents connected.

A set of related communication protocols achieve global cohesion using an underlying pair-wise

cohesion algorithm, allowing swarms of agents to move cohesively without being constrained by

connection topology. Finally, a set of protocols is presented for having agents form into groups

even when the agents do not trust one another.

Taken together, the algorithms and proofs in this dissertation contribute to the understanding

of how agent capability and behavior are related, significantly improve the scope of problems that

can be solved via provable algorithms, and improve several existing time bounds.

iii

This dissertation is dedicated to Markham.

iv

Acknowledgements

I cannot imagine a better dissertation advisor than James P. Cohoon. He accepted my scattered

interests and allowed me to pursue them while also helping to continually refocus me on the task

of completingmy degree. Hewas everwilling to find the leaks in incomplete proofs and to suggest

alternative viewpoints. Wherever a particularly sound argument appears in this dissertation,

James Cohoon’s handiwork is evident.

Themembers of my examining committee each provided helpful comments that improved the

quality of my writing. Worthy Martin provided encouragement early on that helped me define

my dissertation scope appropriately. John Knight enthusiastically encouraged me to consider

additional ways my research could be applied; though few of his suggestions made it into this

dissertation, they will likely steer the future of this work. abhi shelat was instrumental in helping

me see ways that my theorems and proofs could be clearer. And I am particularly indebted to

Ellen Bass for her extensive suggestions on wording and presentation; almost every page of this

dissertation has been improved by her suggestions.

It was my father, Louis P. Tychonievich, who first suggested to my mind the possibilities

of mobile agents and phenomenological artificial intelligence. Many are the evenings I stood

with him by the white board, talking about maze navigation, collision avoidance, and combining

v

Acknowledgements vi

multiple objectives and constraints into a single behavioral policy.

My time as a masters’ student at Brigham Young University was invaluable, being my first ex-

perience with research and a broad introduction in many projects. My advisor, Robert P. Burton,

gave me the freedom to begin exploring AI formally within the context of my thesis on simula-

tions for multidimensional time. Formal mentoring roles given me by Robert P. Burton and Sean

Warnick and research projects supervised by Robert P. Burton, Michael Jones, and Sean War-

nick in several topics were educational experiences and invaluable in helping me to develop the

maturity to stick to a single topic for the years required to attain a Ph.D.

Finally, I am deeply indebted to the members of my family, my local church congregation, my

fellow graduate students, and my Psandbox compatriots for their friendship and encouragement

throughout. I researched without them, but they kept me sane as I did so.

Contents

Contents vii
List of Figures . x

1 Introduction 1
1.1 Organization of this Document . 3
1.2 Terminology . 3
1.3 Related Work . 7

1.3.1 Stigmergy . 7
1.3.2 Rendezvous . 9
1.3.3 Cohesion . 12
1.3.4 Coalescence . 16

2 Stigmergy 17
2.1 Adjacent Communication . 20
2.2 Remote Communication . 23

2.2.1 Couriers . 24
2.2.2 Post Office . 25

2.3 Site Watching . 26
2.3.1 Revised Site-Watching Problem . 27
2.3.2 Stigmergic Site Watching is Possible . 28
2.3.3 𝑁 > 𝑀 Necessary . 31
2.3.4 Δ𝑇 ≥ 𝑡𝐶 Necessary . 31
2.3.5 Necessary and Sufficient . 32

2.4 Space and Time Synchronization . 33
2.4.1 Clock Synchronization . 34
2.4.2 Coordinate Frame Synchronization . 36

2.5 Conclusion . 39

3 Rendezvous 41
3.1 Definitions and Notation . 43
3.2 Necessary Capabilities . 47

3.2.1 Individuality . 47
3.2.2 Temporality . 48
3.2.3 Search . 50
3.2.4 Limited Drift . 53

vii

Contents viii

3.3 Parameterized Algorithm Families . 54
3.3.1 Without Uncertainty . 57
3.3.2 Skewed Clocks . 58
3.3.3 Noise or Nondeterministic Search . 60
3.3.4 Position Drift . 61
3.3.5 Variable Clocks . 64
3.3.6 Individual Clocks . 65

3.4 Cooperative Rendezvous . 67
3.5 Conclusion . 68

4 Cohesion Constraints 71
4.1 Terminology . 73
4.2 Cohesion Predicate . 74

4.2.1 Liveness, Composability, and the “null” behavior𝒩 76
4.2.2 The Induced Distance Function 𝑑𝐶 . 78
4.2.3 Cohesion Predicate . 79

4.3 Computation Strategy . 83
4.3.1 Polynomial Approximation . 84
4.3.2 Boolean Bernstein Branch-and-Bound . 86

4.4 Examples . 91
4.4.1 Holonomic agents . 91
4.4.2 Car-like Agents . 92

4.5 Conclusion . 95

5 Local and Global Cohesion 97
5.1 Local Cohesion Without Communication . 99

5.1.1 Distance-based Local Cohesion . 99
5.1.2 Problems with Local Cohesion . 100

5.2 Global Cohesion with Trust . 102
5.2.1 Limited Malice . 105

5.3 Conclusion . 108

6 Coalescence 111
6.1 Terminology . 112

6.1.1 Swarms and Hives . 112
6.1.2 Knowledge, Malice, and Identity . 113

6.2 Small Swarms . 115
6.2.1 Full Trust . 115
6.2.2 Noise-Free Malice . 115
6.2.3 Noise and Malice . 120

6.3 Large Swarms . 124
6.4 Trustworthy Hives . 125
6.5 Untrustworthy Hives . 130
6.6 Conclusion . 131

Contents ix

7 Conclusion 133

A Glossary 137

Bibliography 145

Contents x

List of Figures

1.1 Organization of document . 4

2.1 Communication types . 18
2.2 Message Combination . 19

3.1 Rendezvous . 42
3.2 Proof of Theorem 3.2 . 48
3.3 Basic rendezvous with ℛ1,1 . 58
3.4 Doubling proof . 59
3.5 Handling noise with ℛ2,1 and ℛ2,2 . 60
3.6 Handling drift with 𝒟1 and 𝒟2 . 62
3.7 Worst-case variable-speed clocks . 64

4.1 Kinds of cohesion-breaking scenarios . 74
4.2 Using 𝑋 and 𝑌 to define 𝒩 and 𝑑𝐶 . 77
4.3 Predicates (4.11), (4.12), and (4.13) in planes and graphs 80
4.4 Line-of-sight predicates (4.15) and (4.16) . 83

5.1 Relative neighborhood graphs . 99
5.2 Swarm topologies . 100
5.3 Swarm trapping around obstacles . 101
5.4 Messages sent by Algorithm 5.1 . 102
5.5 Break requests resolved according to Theorem 5.1 105
5.6 A four-cut of a four-connected graph . 106
5.7 Proof to Theorem 5.3 . 108

6.1 Failure of blacklisting . 116
6.2 Worst-case blacklisting . 119
6.3 Delaying Malice in Blacklist . 121
6.4 Hive coalescence algorithm . 129

xi

List of Figures xii

Chapter 1

Introduction

This dissertation deals with to algorithms that provably achieve various mobility-based objectives

in distributed groups of mobile agents with limited capabilities. The algorithms developed are of

two kinds: constraints and proscriptions. Constraints provably preclude all behaviors that would

result in agents violating their objectives; as such they may be used in conjunction with other

constraints and task-specific behavior selection routines. Proscriptive algorithms identify a single

behavior for each agent and are presented primarily to demonstrate that various objectives can

be achieved with limited resources. In addition to these two classes of algorithms, I also present

proofs demonstrating that particular sets of capabilities preclude achieving various objectives.

All of the algorithms I present are designed to provide bounds on what agents can do given

explicit assumptions about the environment and capabilities of the agents involved. Average-

or expected-case efficiency is not my primary concern; rather, I demonstrate efficient worst-case

bounds and algorithms that provably achieve their objectives. These results are often not as

efficient as the behavior of known probabilistic and heuristic algorithms, but in the worst case

they solve the problems they are presented within a bounded time.

1

Chapter 1 Introduction 2

The algorithms and proofs discussed in the following chapters solve various problems fac-

ing homogeneous decentralized groups of imprecise mobile agents. The reasons for considering

groups of homogeneous, decentralized, and imprecise agents are given below.

Groups of agents are attractive for many reasons. It can be cheaper to produce many simple

agents than one more complex agent. Distributing sensors and actuators across multiple agents

can result in smaller, more mobile agents. A group of agents can provide multiple perspectives

in sensation and cover more area in search than could a single agent. Collectives can be designed

that scale with the available resources and handle agent failures. Additionally, some tasks are

inherently parallel and require simultaneous sensation and actuation at distinct locations.

Although agents may be heterogeneous in practice, I address only homogeneous agents. The

least common denominator of a heterogeneous group of agent’s capabilities provides a homoge-

neous set of shared capabilities; algorithms that rely only on this homogeneous set allow worst-

case bounds to be developed. More efficient algorithms may be designed that utilize agent versa-

tility, but the kernel of shared capabilities is sufficient for the worst-case bounds I demonstrate.

Each agent in a homogeneous decentralized group is comparable to each other agent in terms

of capabilities and programming. Homogeneity is attractive because only a single agent design

is needed, simplifying algorithms and proofs as well as manufacturing. Decentralized behaviors

can be made robust to failures because no single agent is uniquely important to the behavior of

the group.

Real-world agents often face a variety of imprecision, uncertainty, and noise. Agents might

misidentify a non-agent as an agent; might fail to move exactly as intended; might suffer from

error in sensor measurements as to their location, orientation, surroundings, or timing; and so

forth. The majority of prior works either ignore this imprecision to arrive at proofs or present

1.1 Organization of this Document 3

algorithms that handle imprecision with heuristic or probabilistic algorithms that are not guaran-

teed to succeed every time they are executed. This dissertation considers algorithms with proofs

that handle imprecision, as well as bounds on how much imprecision can be handled by these

algorithms.

1.1 Organization of this Document

In this dissertation I consider several related problems, presenting proofs and algorithms for each.

Many of these problems relate to forming and maintaining swarms or hives of agents. I also

consider some of capabilities that can be provided through stigmergy, or depositing messages

in the environment.

The tasks associated with forming and maintaining a swarm or hive may be considered in

three parts. Rendezvous has agents discover the location of other agents. Coalescence has

(groups of) agents that are aware of one another decide if and how they will combine into a

single group. Cohesion is the constraint on a swarm of agents that requires they not separate

as they move.

These broad classes of problems, and their various sub-problems and results, are outlined

visually in Figure 1.1.

1.2 Terminology

The fields of artificial intelligence (AI) and robotics use various terms in different ways depending

on which topics and approaches are being discussed. Several of the terms I use throughout this

Chapter 1 Introduction 4

Figure
1.1:V

isualhierarchy
ofthe

contents
ofthis

docum
ent.

1.2 Terminology 5

document are defined in this section. Terms that apply to only one or two solutions are defined

in their respective chapters. Additionally, a glossary is found in Appendix A.

Many of the results in this dissertation apply to broad classes of agents, not just to those

operating in geometric spaces or in the nodes and edges of a graph. Several terms are defined

broadly; unspecified elements of these definitions are not constrained and not utilized in the

dissertation’s algorithms and proofs.

I refer to agents throughout this text. Agents are distinct computational entities with a well-

defined state at any given time. The states of agents are sufficient to compute a meaningful

distance metric, such that smaller distances correspond to greater likelihood of successful com-

munication, sensation, etc. The agents are mobile, meaning they are capable of adjusting their

states in ways that significantly impact inter-agent distance. One example of such an agent might

be an autonomous robot, with its state being position, orientation, and speed; another example

might be a job in a distributed computation with distance a function of communication costs

and interdependence of jobs. Although my focus and examples are principally robots and simi-

lar agents moving through a continuous geometric space, the algorithms I present work for any

agent that satisfies the below definitions.

Let𝑆 be the set of all possible agent states. Let there be a well-defined (though not necessarily

computable) distance function 𝑑 ∶ 𝑆 × 𝑆 → ℝ+
0 such that 𝑑(𝑠, 𝑠) = 0 for any state 𝑠 ∈ 𝑆 . Two

states 𝑠1 and 𝑠2 represent the same position if and only if 𝑑(𝑠1, 𝑠2) = 0; position itself need not

be otherwise defined. Some algorithms require that the distance function satisfy the triangle

inequality; that is, 𝑑(𝑠1, 𝑠2) + 𝑑(𝑠2, 𝑠3) ≥ 𝑑(𝑠1, 𝑠3).

The mobility of agents is formalized by their behavior over time.

Chapter 1 Introduction 6

Let time be represented by a possibly-discrete subset of real numbers. I assume that the en-

vironment behaves predictably such that absolute time is neither interesting nor distinguishable

except by appeal to a single global clock. I use the symbol 𝑡 to refer to both fixed points in time

(e.g., “the state of the agent at time 𝑡”) and time intervals or durations (e.g., “𝑡 time units after 𝑡0”).

Let the set of behaviors ℬ be all the ways an agent can choose to transition from one state to

another over time.1 Let the notation 𝐵𝑠(𝑡) mean the state an agent reaches when starting in state

𝑠 and executing behavior 𝐵 for 𝑡 time units. 𝐵𝑠(0) = 𝑠 if 𝐵 is defined at state 𝑠; not all behaviors

need to be applicable at all states. Let the domain of 𝐵, denoted dom(𝐵), be the set of states for

which 𝐵 is defined. A behavior 𝐵 is live if, for all 𝑠 in its domain and all 𝑡 ≥ 0, 𝐵𝑠(𝑡) ∈ dom(𝐵).

A behavior is universal if its domain is 𝑆 . All universal behaviors are live.

I assume that the distance between an agent’s current and future states is limited by the time

that passes. In particular, there is some fixed function 𝑓 satisfying the following properties

𝑓(0) = 0 ∧ 𝜕
𝜕𝑡

𝑓 ∶ ℝ+
0 → ℝ+

0 (1.1)

such that

∀𝑡 ≥ 0 ∀𝐵 ∈ ℬ ∀𝑠 ∈ dom(𝐵) 𝑑(𝑠, 𝐵𝑠(𝑡)) ≤ 𝑓(𝑡). (1.2)

This property generalizes the idea that motion is local, but still allows for discontinuities in time

and in agent state.

An agent is defined by a state 𝑠 ∈ 𝑆 and a set of achievable behaviors ℬ. Each agent is

assumed to be able to select its own behavior from the set ℬ, possibly with a time delay before

1This definition of “behavior” corresponds to the common English usage of “what something does” and is not the
same as the more limited usage in the discipline of behavior-based algorithms.

1.3 Related Work 7

the new selection becomes active.

This dissertation considers algorithms that take, as input, data about the environment local

to the agent and produces, as output, a behavior to follow. I use the term “algorithm” to refer

to both the bounded-time process of translating one set of inputs into one set of outputs and to

the potentially non-terminating evolution of agent states produced by repeatedly using the same

algorithm to select new behaviors as inputs change. Which meaning is intended will be clear

from context.

For physical agents, inputs would likely come from signal processing routines interpreting

low-level sensor data and outputs provided to dynamic controllers producing low-level actuator

commands. Many of the algorithms explicitly handle inaccuracies of various kinds to account for

the imprecision of these routines.

1.3 Related Work

1.3.1 Stigmergy

The Oxford English Dictionary defines “stigmergy” as “the process by which the results of an

insects’ activity act as a stimulus to further activity” [48]. It thus includes both passive stigmergy

where the functional results of an action also act as the communication (e.g., dig at the end of

tunnels) and active stigmergy where otherwise-nonfunctional stimuli are deposited for the pur-

pose of communication (e.g., ant pheromone trails). Although passive stigmergy has been used

in agent control publications [6, 26, 34] the bulk of explicitly stigmergic work (including this

dissertation) has investigated active stigmergy.

Chapter 1 Introduction 8

Algorithms have been presented that use active stigmergy to solve a variety of problems. In

Cazangi et al. [7], agents visit a sequence of cites in order while avoiding static obstacles. Menezes

et al. [41] use stigmergy to reduce the probability of repeat visitation in collaborative exploration

of an environment; Panait and Luke [49] use it for the related problem of collaboratively foraging

for resources. Potential fields can also be simulated using active stigmergy [57, 68].

Several researchers have investigated how to implement pheromone-like functionality in

physical robots without having the robots physically mark the environment. Mamei and Zam-

bonelli [39] and Mamei and Zambonelli [38] have suggested techniques for using RFID tags dis-

tributed throughout the environment to emulate active stigmergy. Van Dyke Parunak et al. [68]

instead have a subset of the agents stage themselves across the environment to mediate stig-

mergic communication, allowing the agents to operate in areas not explicitly prepared for them.

Garcia et al. [22], Howden and Hendtlass [27] and Shiloni et al. [60] have each agent store a map

of virtual pheromones and share their maps (using a common coordinate system) with any agents

within communication range. Communication-based approaches can result in lost updates if the

communication network becomes disconnected, but it is fully mobile and does not require large

numbers of stationary agents.

Shiloni et al. [60] present a set of proofs comparing the computing and mobility power of

“ants”—bounded-memory agents with only stigmergic communication—and “elephants”—agents

with unbounded computational resources and instant global communication. They prove that

elephants are capable of doing anything ants can do and also show that, since ants can simulate

Turing machines, they can also do most of what elephants can do, including group computation,

counting the number of agents available establishing a common coordinate frame, and meeting

at a single location.

1.3 Related Work 9

Shiloni et al. [60] also introduce the “site-watching” problem, which elephants can handle but

ants cannot. This problem requires the group of agents to react to the first (and only the first) of a

series of events which may occur at several scattered locations. They prove that 𝑛 elephants can

handle this problem with 𝑛 sites, but that 𝑛 ants cannot.

My Contributions

This dissertation continues the theoretic work begun by Shiloni et al. I demonstrate that the site

watching problem can be handled by 𝑛 agents if a delay in reaction is permissible, and that the

delay may be decreased by the addition of more agents. I also investigate other models of com-

munication and stigmergic agents not constrained to a grid. I discuss how agents can agree on

location and timing; how they can communicate while moving as a group; and how they can

emulate delayed global communication. These results both help refine the distinction between

“ant”-like agents and “elephant”-like agents and enable the direct conversion of a variety of non-

stigmergic algorithms into the stigmergic domain.

1.3.2 Rendezvous

Schelling [58] introduced the rendezvous problem, and it has been investigated in many settings

since then. Rendezvous algorithms may be separated into those that help agents find one another

and those that help mutually aware agents coordinate mobility to co-locate; I consider only the

finding problem. Algorithms within the finding class of rendezvous problems may be charac-

terized as either randomized or deterministic. Because I am interested in developing worst-case

performance bounds, I consider only deterministic algorithms herein. A survey of randomized

Chapter 1 Introduction 10

rendezvous algorithms is provided by Alpern and Gal [3]. Several asymptotic analyses of coales-

cence based on randomized rendezvous algorithms are also available [4, 18, 53, 54].

Rendezvous has been investigated inmany specialized environments, such as lines and graphs.

On a line or ring, tight bounds on runtime are known for pairs [1, 2, 4] and larger groups of agents

[40]; these bounds are in 𝑂(𝑇 log 𝑛) where 𝑇 is the time required to traverse the initial separation

between agents and 𝑛 is the number of agents involved. Fraigniaud and Pelc [19] demonstrated

a tight 𝑂(log 𝑁) space-bound for deterministic rendezvous in a tree, where 𝑁 is the number of

nodes in the tree. Dessmark et al. [13] showed time bounds for synchronous and asynchronous

agents on trees (𝑂(𝑁 + log 𝑛)) and rings (𝑂(𝑇 log 𝑛) if synchronous, 𝑂(𝑁 + 𝑇 log 𝑛) if asyn-

chronous).

Rendezvous in more general graphs and networks has been extensively studied and deter-

ministic algorithms developed for partial and full asynchrony, for indistinguishable agents in

visibly-distinct starting locations, and for agents with distinct identities [10, 11, 16, 32, 40]. In the

absence of timing errors, these algorithms fit the 𝑂(𝑇 log 𝑛) time bound demonstrated for lines

and rings, where 𝑇 is generalized to be the time required to search deep enough to reach the

other agent rather than simple distance.

In a geometric setting, deterministic rendezvous has been achieved using several approaches.

Rendezvous can be reduced to landmark identification and ranking algorithms if such landmarks

are available [35, 56]. Stigmergy allows agents to modify the environment to create their own

landmarks, as well as depositing other helpful environmental information [60]. In a noise-free

environment with a known orientation, rational coordinates in Euclidean space can be reduced

to a graph [11], giving access to a variety of graph rendezvous algorithms.

Several researchers have investigated rendezvous with errors in timing information [11, 40].

1.3 Related Work 11

I consider the multi-agent bounded-time rendezvous problem for agents with uncertainty in po-

sitioning (including orientation) and timing information. To my knowledge, I am the first to

consider bounded-time rendezvous algorithms for agents experiencing uncertainty in position-

ing.

My Contributions

This dissertation presents a family of algorithms that achieve tractable worst-case rendezvous.

My approach is based on agents alternating searching and waiting based on agent identifying

numbers. The patterns of searching and waiting are designed to handle agents with imprecise

positioning and timing and are applicable to geometric as well as graph settings. Marco et al.

[40] also used a version of alternating searching and waiting, but their technique is restricted to

synchronous noise-free agents in graphs. I achieve the same 𝑂(𝑇 log 𝑛) time bound that noiseless

line- and graph-based algorithms achieved, but do so in general environments. Czyzowicz et al.

[11] also considered the geometric settingwith a broader class of timing errors, but their approach

does not handle positioning error and has a super-exponential runtime.

In addition to presenting tractable algorithms for the rendezvous of geometric agents experi-

encing positioning error, I present novel bounds on the uncertainty that can be handled by any

such algorithm. I believe I am the first to present bounds on permissible error.

Portions of my work in rendezvous have appeared previously in Tychonieivch and Cohoon

[65].

Chapter 1 Introduction 12

1.3.3 Cohesion

Many algorithms assume that agents remain within contact of one another without providing

guarantees of cohesion. Others integrate cohesion into the design of tasks-specific algorithms, a

useful technique but one difficult to transfer to new problems. I review here previously-published

techniques that explicitly address cohesion.

Overly Constrained or Non-Verified.

Formations are a common approach for ensuring that a collection of agents remain in proximity

to one another. By specifying the relative location of each agent, formations ensure cohesion.

Broadly, formation algorithms can be broken down into three categories: those where each agent

is aware of the target formation [20, 23, 30, 37, 46], those where each agent knows its specific

position within the formation [29, 62], and those where the constituent agents are oblivious to

the formation beingmaintained [12, 14]. Unfortunately, formations do not allow individual agents

to pursue their own objectives.

One of the earliest and best-known cohesion algorithms is Reynold’s Boids [55]. Boids, like

the many flocking, herding, and swarming algorithms that have followed it, provides a holistic

model of agent behavior which guarantees a group remains connected in the absence of other

maneuvering objectives [9, 70]. Many approaches have augmented flocking algorithms with ad-

ditional objectives (see, e.g., Astengo-Noguez and Velzquez [5], Gurfil [25]); however, these aug-

mented algorithms do not satisfy the antecedents of existing proofs that flocks provide cohesion,

and revised guarantees of cohesion have not been presented.

Switching laws choose between two or more distinct behaviors depending on the some pred-

icate. Cohesion can be provided by switching between following mission objectives and mov-

1.3 Related Work 13

ing toward other agents based on an estimate of cohesion being in danger of being broken

[28, 42, 51, 69]. Unfortunately, switching laws can suffer from livelock. For non-holonomic agents

the predicates can also be overly conservative, significantly reducing agent mobility.

Potential fields can combine mission objectives and cohesion (e.g., Li et al. [36], Zavlanos

and Pappas [71, 73]); these provide smoother operation than switching laws but verifying the

behavior of agents under the influence of multiple fields is a difficult process in general [31].

Composable guarantees that can be developed for individual fields and still applied when that

field is combined with mission-specific objective have yet to be demonstrated.

Guarantees for Some Agents.

Ganguli et al. [21] present geometric constraints that prevent agents from entering areas that

might block line-of-sight to currently visible agents. Their method takes into account partial

occlusion, but it is restricted to 2D first-order holonomic agents in polygonal environments.

Cornejo and Lynch [8] provide a filter on agent behavior that ensures moving agents do not

separate. Their technique assumes synchronous first-order holonomic agents with explicit com-

munication. They utilize communication to attempt to agree on aggressive behaviors and use a

conservative fall-back behavior in case of disagreement. Their fall-back behavior is a particular

point on the edge of the midpoint predicate presented in Section 4.2.3 (assuming that the agents

use 𝑣 = 0⃗ as their 𝒩).

“Backward” Cohesion: Collision Avoidance.

Cohesion is related to collision avoidance: collision avoidance prevents agents getting too close

together while cohesion prevents agents getting too far apart. Many collision avoidance algo-

Chapter 1 Introduction 14

rithms apply heuristics with some additional padding; these approaches are unsuited for the more

constrained decision space of cohesion. Even non-heuristic collision avoidance algorithms gen-

erally consider only expected neighbor behaviors because universally-quantified collision avoid-

ance is over-constrained. Cohesion, being cooperative, can instead consider all permissible neigh-

bor behaviors.

Two collision avoidance techniques share noteworthy characteristics with how I guarantee

cohesion: reciprocal velocity obstacles and generalized reactive navigation. Reciprocal velocity

obstacles [61, 67] are cooperative, using the fact that each agent is executing the same algorithm

to streamline agent behavior. Generalized reactive navigation [66] has mechanisms for explicitly

considering all possible neighbor behaviors for any continuous geometric model of agent behav-

ior. Both of these works informed the cohesion algorithms in Chapter 4.

Global Cohesion

Local cohesion algorithms are often paired with a global technique for selecting which pairs of

agents may safely break connection with one another without jeopardizing the connectivity of

the group. Vazquez and Malcom [69] and Zavlanos and Pappas [72, 73] achieve global cohesions

by communicating the entire network connectivity to each agent and then selecting a set of

cuts to be made; Zavlanos and Pappas [73] also discusses market-based consensus algorithms for

selecting cuts.

My Contributions

Like Ganguli et al. [21] and Cornejo and Lynch [8], I present constraints that prevent agents from

breaking cohesion under well-defined conditions without requiring the agents to follow a partic-

1.3 Related Work 15

ular objective within the set of cohesion-maintaining behaviors. My techniques are more general

than theirs in that they apply to both holonomic and nonholonomic agents in any dimensionality;

to agents experiencing noise in their sensors and actuators; and to agents in graphs, non-uniform

geometries, and any other abstract environment with a well-behaved distance function.

Like van den Berg et al. [67], my cohesion approach embeds a notion of reciprocity; my model

of reciprocity is more general than theirs so that it may apply to a broader class of agents than

does their first-order geometric model.

My cohesion algorithm is similar to my earlier collision avoidance algorithm [66] in that

it uses polynomial approximations to make an explicit mathematical statement of its objective

computable. The approximations I use for cohesion are much more precise than they were for

collision avoidance, requiring me to base the computational aspect on Bernstein polynomials

instead of Sturm sequences. The resulting algorithm is far more general and more precise than

my previous work.

I also introduce a notion of liveness to cohesion to express the idea that not all currently-

connected groups are even capable of remaining connected. To my knowledge, I am the first to

consider liveness in cohesion.

My approach to global cohesion is based on comparable identities instead of market-based

decisions, and only requires each agent to recall a set of messages received in a finite time win-

dow: no agent needs to accumulate knowledge of the connectivity graph. It can also handle the

presence of malicious agents without violating guarantees of cohesion.

Portions of my work in cohesion have appeared previously in Tychonieivch and Cohoon [63]

and Tychonieivch and Cohoon [64].

Chapter 1 Introduction 16

1.3.4 Coalescence

Coalescence is rarely discussed as a problem in its own right. Many of the papers listed in Sec-

tion 1.3.2 suggest that coalescence can be achieved by an approach like the one I outline in Sec-

tion 6.2.1. As discussed in that section, this is true only if the agents are universally trustworthy

and able to agree on and follow a leader agent.

Coalescing trustworthy agents in a graph-like environment that also containsmalicious agents

has been investigated by Dieudonné et al. [16]. They provide algorithms for noiseless agents to

coalesce in the presence of a minority of malicious agents. Their algorithms allow the agents to

detect that they have completed coalescing by having a priori information about the number of

trustworthy and malicious agents.

My Contributions

Like Dieudonné et al., I investigate coalescence of agents that are not all trustworthy. I present

techniques that can handle arbitrary numbers of malicious agents, noisy geometric environments,

and swarms larger than the sensing radius of their agents. I gain these advances at the expense

of handling weakly Byzantine agents (i.e., ones that cannot lie about their own identities) where

Dieudonné et al. [16] could also handle strongly Byzantine agents (i.e., ones able to lie about their

own identities).

Portions of my work in coalescence have appeared previously in Tychonieivch and Cohoon

[63].

Chapter 2

Stigmergy

Active stigmergy is communication between agents that is deposited at a particular

location instead of being broadcast at a particular time. Agents with broadcast com-

munication are known to be able to perform some tasks that agents with stigmergic

communication cannot. In this chapter I explore that difference in more detail, provid-

ing algorithms and proofs that characterize the delays and additional agents needed to

perform various stigmergic tasks. I also characterize several classes of communication

based on their propagation through spacetime and discuss the localization information

contained in each.

The word “stigmergy” was introduced by Grassé [24] in 1959 to describe how insects are

stimulated to act based on the results of early actions by themselves or other insects. Since then

the term has been used to refer to two different kinds of communication. One of these, which

I refer to as passive stigmergy, is communication through the primary outcomes of an activity,

such as termites digging at the end of a tunnel or masons laying bricks on top of brick already

laid. The other, which I refer to as active stigmergy, is communication through modifications

17

Chapter 2 Stigmergy 18

Limitless Limited Fading Patchy

Stigmergy

Lagging

Broadcast

Figure 2.1: Communication types’ reach in space-time. Space is shown on the horizontal axis,
time on the vertical axis.

to the environment for the purpose of communication, such as ants communicating through

pheromones or Ariadne laying thread through the Minotaur’s labyrinth[52].

This chapter contains a variety of contributions in the area of active stigmergy in static en-

vironments. This type of stigmergy is a model of agents that broadcast their communication

through time instead of through space. Stigmergy and other forms of communication may be

characterized by how the signal propagates through spacetime and how the signal changes as

it gets farther from its origin. Broadcast communication travels spans space at a single time;

stigmergy spans time at a single location; and lagging broadcast travels in space over time. A

limitless signal never fades or dies, reaching all space and/or time; a limited signal reaches only

a fixed duration and/or distance; a fading signal reduces in strength as it propagates away from

its origin; and a patchy signal is sensed at close range but stops being sensed in an unpredictable

fashion. The twelve combinations of these properties are illustrated in Figure 2.1. This set could

be extended, but is general enough for the theoretic contributions of this chapter.

In addition to modeling the reach of stigmergic signals, the interaction of conflicting signals

deposited in the same environment is important in many algorithms. The simplest model is un-

bounded stigmergy, where any number of signals may be deposited at each location and each

Chapter 2 Stigmergy 19

Figure 2.2: Illustration of different models of combining messages. Time increases going up. In
each case, an agent first deposits a “wavy” message. From left to right, we have an indelible
message, an additive message, an erasable message being replaced by a “dotted” message, and an
unbounded region accepting a “dotted” message as well as the “wavy” one.

may be simultaneously detected and understood. Comparison to ant pheromones suggests an

additive model where the signal in each area is a set of real values and agents may choose to

increase any one of those values (by depositing more of that pheromone). Every additive model

of which I am aware also models fading stigmergy. Erasable signals are available in many digital

implementations of stigmergy: each agent has the ability to reset the signal in its location freely.

The most restrictive model is indelible stigmergy, where once a region is given a message that

region becomes unavailable for later signal deposition. These models are illustrated in Figure 2.2

I also use the term reusable to mean either erasable or unbounded and non-reusable to

mean either additive or indelible.

Except as otherwise noted, this chapter assumes the agents exist within a 𝑑-dimensional Eu-

clidean environment; with the exception of a few graph-based maze-solving algorithms, this as-

sumption predominates the literature on active stigmergy. I also assume that agents can make

use of previously-published techniques for laying and following trails [7, 41, 49] and for locating

other agents [60].

Chapter 2 Stigmergy 20

2.1 Adjacent Communication

This section is devoted to establishing the following theorem:

Theorem2.1 (Adjacent Communication). Without loss of generality, synchronized stigmergic agents

may be assumed to be able to communicate directly when adjacent to one another, with time spent

proportional to the bits of information exchanged. If stigmergy is not erasable, this communication

may require the agents to move a distance proportional to the number of bits of information they

exchange.

A proof ofTheorem 2.1 is presented at the end of this section. The rest of this section discusses

the four lemmas on which that proof is based.

In this section I use the following terms:

• 𝑘 is the bits of information that are conveyed through a single write action.

• 𝑡𝑟 is the time sufficient to read 𝑘 bits of information.

• 𝑡𝑤 is the time sufficient to write 𝑘 bits of information.

• 𝑑𝑘 is the distance needed between adjacent 𝑘-bit information packets in the environment.

• 𝑑𝑎 is the “diameter” of each agent. Agents need not be uniform or circular; 𝑑𝑎 merely

approximates the space an agent occupies. If 𝑑𝑘 is larger than a physical agent, let 𝑑𝑎 be 𝑑𝑘

instead of the diameter of an agent.

• 𝑡𝑘 is a time sufficient for an agent to move 𝑑𝑘.

• 𝑡𝑎 is a time sufficient for an agent to move 𝑑𝑎.

I consider two adjacent agents, 𝐴𝑙 and 𝐴𝑟. I define “leftward” to mean “the direction 𝐴𝑙 is relative

to 𝐴𝑟” with “rightward” being the opposite direction and “forward” being one of the directions

2.1 Adjacent Communication 21

perpendicular to “leftward” and “rightward,” chosen arbitrarily but consistently by both 𝐴𝑙 and

𝐴𝑟.

There are two main considerations in demonstrating adjacent agent communication. The first

is if agents can observe messages deposited beyond their physical location (the sensing radius is

at least 𝑑𝑎) or not (the sensing radius is less than 𝑑𝑎). The second is if stigmergy is reusable or

not. I next present algorithms allowing communication for each of the four cases, with lemmas

establishing each.

Lemma 2.1. Any pair of agents that can sense outside the area they occupy and can reuse space for

depositing messages can communicate 𝑏 bits in time ⌈
𝑏
𝑘⌉ (𝑡𝑤 + 𝑡𝑟) when adjacent, without moving.

Listing 2.1

1. Each agent writes 𝑘 bits
2. Each agent reads 𝑘 bits from the other’s space

Proof. Each application of the algorithm in Listing 2.1 causes adjacent agents to transfer 𝑘 bits in

time (𝑡𝑤 + 𝑡𝑟) without moving. Because space is reusable, the agents can repeat Listing 2.1 ⌈
𝑏
𝑘⌉

times to transfer 𝑏 bits. Because the agents are synchronized, each agent reads the other’s written

bits before those bits are re-written.

Lemma 2.2. Any pair of agents that can sense outside the area they occupy, even those that cannot

reuse space for depositing messages, can communicate 𝑏 bits in time ⌈
𝑏
𝑘⌉ (𝑡𝑤 +𝑡𝑟 +𝑡𝑘) when adjacent,

moving ⌈
𝑏
𝑘⌉ 𝑑𝑘 forward while doing so.

Chapter 2 Stigmergy 22

Listing 2.2

1. Each agent writes 𝑘 bits
2. Each agent reads 𝑘 bits from the other’s space
3. Each agent moves 𝑑𝑘 forward

Proof. Each application of the algorithm in Listing 2.2 causes adjacent agents to transfer 𝑘 bits in

time (𝑡𝑤 +𝑡𝑟 +𝑡𝑘) and end up 𝑑𝑘 forward of where they began. Because agents move after writing,

agents can repeat Listing 2.2 ⌈
𝑏
𝑘⌉ times to transfer 𝑏 bits.

Lemma 2.3. Any pair of agents that can reuse space for depositing messages, even those that cannot

sense outside the area they occupy, can communicate 𝑏 bits in time 2 ⌈
𝑏
𝑘⌉ (𝑡𝑤 +𝑡𝑟 +𝑡𝑎) when adjacent,

with only local motion.

Listing 2.3

1. 𝐴𝑙 reads then writes 𝑘 bits
2. Each agent moves 𝑑𝑎 leftward
3. 𝐴𝑟 reads then writes 𝑘 bits
4. Each agent moves 𝑑𝑎 rightward

Proof. Each application of the algorithm in Listing 2.3 causes adjacent agents to transfer 𝑘 bits in

time 2(𝑡𝑤 + 𝑡𝑟 + 𝑡𝑎) and end where they began. Because space is reusable, the agents can repeat

Listing 2.3 ⌈
𝑏
𝑘⌉ times to transfer 𝑏 bits.

Lemma 2.4. Any pair of agents, even those that can neither sense outside the area they occupy nor

reuse space for depositing messages, can communicate 𝑏 bits in time 2 ⌈
𝑏
𝑘⌉ (𝑡𝑤 + 𝑡𝑟 + 𝑡𝑎 + 𝑡𝑘) when

adjacent, moving ⌈
𝑏
𝑘⌉ 2𝑑𝑘 forward (with additional local motion) while doing so.

2.2 Remote Communication 23

Listing 2.4

1. 𝐴𝑙 writes 𝑘 bits
2. Each agent moves 𝑑𝑎 leftward
3. 𝐴𝑟 reads 𝑘 bits
4. Each agent moves 𝑑𝑘 forward
5. 𝐴𝑟 writes 𝑘 bits
6. Each agent moves 𝑑𝑎 rightward
7. 𝐴𝑙 reads 𝑘 bits
8. Each agent moves 𝑑𝑘 forward

Proof. Each application of the algorithm in Listing 2.4 causes adjacent agents tomove 2𝑑𝑘 forward

and transfer 𝑘 bits in time 2(𝑡𝑤 + 𝑡𝑟 + 𝑡𝑘 + 𝑡𝑎). Because agents move after writing, agents can

repeat Listing 2.4 ⌈
𝑏
𝑘⌉ times to transfer 𝑏 bits.

Given these four lemmas, the proof of Theorem 2.1 is straightforward.

Proof of Theorem 2.1. By Lemmas 2.1–4, adjacent agentswith any radius of sensation and any kind

of active stigmergy can communicate in time proportional to the bits of information transferred.

If stigmergy is not reusable, the agents alsomove a distance proportional to the bits of information

transferred.

In the remainder of this chapter I assume that, given Theorem 2.1, adjacent communication

is one of the abilities of stigmergic agents.

2.2 Remote Communication

It is typical to assume that agents with stigmergic communication do not possess any form of long

distance communication. In this section I discuss two ways that long distance communication

may be emulated if additional time and agents are available.

Chapter 2 Stigmergy 24

2.2.1 Couriers

Consider a group of agents at distinct locations who wish to communicate. Assume also that

additional agents are available to facilitate this communication. Then the agents can simulate

any communication network by having the additional agents act as information couriers.

Let 𝐴𝑠 = 𝑎1, 𝑎2, … , 𝑎𝑛 be the set of agents that wish to communicate and 𝐴𝑐 = 𝑐1, 𝑐2, … , 𝑐𝑚

be the set of additional agents available. Courier communication proceeds as follows:

1. A trail is placed between 𝑎𝑖 and 𝑎𝑗 if and only if 𝑎𝑖 and 𝑎𝑗 should have network connectivity.

2. Each additional agent 𝑐𝑖 is assigned a set of trails to navigate. This may be done by laying

a different signal or pattern of signals on each trail. If communication connections are

bidirectional, both directions of each trail are assigned. Multiple agents may be assigned to

the same trail.

3. Each agent 𝑐𝑖 establishes a cyclic order in which it walks the trails it is assigned. Additional

navigational trails may be added to facilitate moving between assigned trails.

4. Each agent repeatedly

4.1. Moves to the agent at the head of its next trail

4.2. Uses local communication to discover what message the agent wants to send

4.3. Follows the trail to the agent at the other end

4.4. Uses local communication to deliver the message

Courier communication is rarely practical to implement. The communication delay is propor-

tional to the total distance couriers need to travel. The network connectivity graph must either

lack intersecting edges or must have a high-enough information density for crossing edges to be

handled. If the communicating agents move, either because of their mission objective or because

2.2 Remote Communication 25

stigmergy is non-reusable, then the courier agents need to follow increasingly-lengthy paths from

the end of their established trails to the current position of the agent they are seeking. I present

courier communication here as part of an exploration of the functions that may be implemented

by stigmergic agents rather than as a practical solution to a real-world problem.

2.2.2 Post Office

A small modification of the courier design can avoid many of the caveats that make courier com-

munication undesirable.

Designate a single region of the environment to be the “post office.” Let each agent have a

path from its current location to the post office. Communication occurs when an agent follows

the trail from its current location to the post office, reads the messages there, writes its own

message, and then follows the trail back to its previous location.

Post office communication hasmany advantages. It does not rely on additional agents (though

additional agents could be used to parallelize the working, traveling, and communicating steps).

It does not use up space “in the field” for communication. Trails never need to overlap since they

form a tree structure with the post office as the root. It allows simulation of arbitrary communica-

tion topologies with the addition of “to” markings in the messages deposited. It allows individual

agents to prioritize between communication and work, and so on.

Many different implementations of post office communication may be envisioned, and many

existing protocols can be adapted to apply to stigmergic post offices. When stigmergy is non-

reusable, however, it is important to either (1) pre-allocate enough trail-free space for all the

Chapter 2 Stigmergy 26

messages that will arise during execution or (2) have a deterministic protocol for locating addi-

tional post office space when the existing region fills up.

2.3 Site Watching

Shiloni et al. [60] introduced the site-watching problem as an example of a task for which agents

with global broadcast communication can solve but stigmergic agents cannot. For completeness,

I quote their definition of the problem. Their definition depends on a notion of a call, defined

earlier in their paper as an event occurring in a particular grid cell at a particular moment in time.

Definition 2.1 (LimitedKServer). Let 𝑅 = 𝑟1, … , 𝑟𝑁 be a set of mobile robots with

sensing radiuses of 𝑀2

2𝑁
each, all are positioned on a finite 𝑀 × 𝑀 grid such that all

sensing radiuses are disjoint and their union covers the whole grid. Let 𝐶 = 𝑐1, … , 𝑐𝑥

be a set of calls and 𝑦 be a positive integer such that 𝑦 ≤ 𝑥 ≤ 2𝑦𝑀 where 𝑦 is known,

but neither 𝐶 nor 𝑥 is known. Assume that within a finite period of time 𝑡, 𝑥 calls are

made such that no two calls are made in parallel. Assume that every robot 𝑟𝑖 ∈ 𝑅 can

answer a call immediately only within its sensing radius and that each call lasts for one

time cycle only. We say that an algorithm 𝐴 succeeds if and only if for every sequence

of 𝑥 calls, 𝐴 answers exactly 𝑦; otherwise, 𝐴 fails.

—Shiloni et al. [60, p. 87]

Their proof that stigmergic agents cannot succeed at this task depends on the fact that there are

no additional agents available to facilitate communication [60, p. 87].

2.3 Site Watching 27

In this section I first re-pose the site-watching problem in a form that does not rely on dis-

crete time or on a two-dimensional grid. I then demonstrate that the addition of more agents

allows solution of the site-watching problem if and only if the immediacy of responses is also

relaxed. Finally, I combine this problem with the previous sections to explore the relative power

of stigmergic and broadcast communication.

2.3.1 Revised Site-Watching Problem

Definition 2.1 is posed within the discrete-time grid-based abstraction utilized by Shiloni et al.

[60]. I present below a slightly different problem definition that does not make either discretiza-

tion assumption.

Definition 2.2 (Site Watching). Let 𝑃 = 𝑝1, … , 𝑝𝑀 be a set of 𝑀 sites each of which may generate

one or more events; let 𝐴 = 𝑎1, … , 𝑎𝑁 be a set of 𝑁 stigmergic agents; let the sites be positioned

such that each agent can sense at most one site at a time. Let 𝐶 = 𝑐1, … , 𝑐𝑥 be a set of calls where

each 𝑐𝑖 happens at some site 𝑝𝑗 at some time 𝑡𝑖. Let 𝑦 be a positive integer such that 𝑦 < 𝑥 where

𝑦 is known but neither 𝑥 nor 𝐶 is known. Assume that within a finite period of time 𝑡, 𝑥 calls are

generated and that any call 𝑐𝑗 = (𝑝𝑖, 𝑡𝑗) can be observed immediately and answered by any agent

who has the generating site 𝑝𝑖 within it sensor radius. Assume that each call 𝑐𝑗 can only be answered

within a fixed Δ𝑇 of the time 𝑡𝑗 when it was generated. An algorithm 𝐴 succeeds if and only if for

every sequence of 𝑥 calls, 𝐴 answers exactly 𝑦; otherwise, 𝐴 fails.

This definition allows me to state the following theorem:

Theorem 2.2. Stigmergic agents can succeed at the Site Watching problem if and only if Δ𝑇 is large

enough and 𝑁 > 𝑀 .

Chapter 2 Stigmergy 28

The remainder of Section 2.3 presents the pieces needed to prove Theorem 2.2; the full proof

is given in Section 2.3.5.

2.3.2 Stigmergic Site Watching is Possible

The following algorithms succeed at the Site Watching problem with 𝑁 = 𝑀 + 1 and a large Δ𝑇 .

Listing 2.5

1. Place each agent 𝑎𝑖 at site 𝑝𝑖
2. Have agent 𝑎𝑀+1 follow a trail to walk a circuit of the sites
3. Agent 𝑎𝑀+1 has a counter, initially set to 0
4. Other agents each have an list capable of storing 𝑦 calls, initially empty
5. When 𝑎𝑖 observes call 𝑐𝑗
6. Add 𝑐𝑗 to 𝑎𝑖’s list (if that list has room)
7. When 𝑎𝑖 and 𝑎𝑀+1 meet
8. For each 𝑐𝑗 in 𝑎𝑖’s list,
9. If 𝑎𝑀+1’s counter is less than 𝑦
10. Answer 𝑐𝑗
11. Increment 𝑎𝑀+1’s counter
12. Remove 𝑐𝑗 from 𝑎𝑖’s list

Lemma 2.5. If the Site Watching problem is defined with a Δ𝑇 that is large enough for an agent to

make a complete circuits of the sites, then Listing 2.5 succeeds at Site Watching.

Proof. Let 𝑡𝐶 be the time needed to traverse a complete circuit of all sites. Each call 𝑐𝑗 issued at

site 𝑝𝑖 at 𝑡𝑗 will

1. Wait in 𝑎𝑖’s list until 𝑡𝑗1 < 𝑡𝑗 + 𝑡𝐶

2. Be answered if and only if fewer than 𝑦 calls have already been answered

Additionally, each call will be answered at most once because of line 12.

Thus, exactly 𝑦 calls will be answered, each within 𝑡𝑐 of being issued, for any sequence of 𝑥

calls.

2.3 Site Watching 29

Listing 2.6 Post-office Site Watching

1. Place each agent 𝑎𝑖 at site 𝑝(𝑖 mod 𝑀)
2. Each agent has a list capable of storing 𝑦 calls, initially empty
3. When call 𝑐𝑗 occurs at site 𝑝𝑖
4. If an agent 𝑎𝑘>𝑀 is at 𝑝𝑖,
5. One such 𝑎𝑘
6. adds 𝑐𝑗 to its list
7. follows the trail to the post office
8. Otherwise,
9. 𝑎𝑖 stores 𝑐𝑗 on in its list (if there is room)
10. When 𝑎𝑖 visits the post office
11. For each call 𝑐𝑗 in 𝑎𝑖’s list
12. If the post office’s count is less than 𝑦
13. Increment the post office’s count
14. Otherwise,
15. remove 𝑐𝑗 from 𝑎𝑖’s list
16. 𝑎𝑖 returns to 𝑝(𝑖 mod 𝑀)
17. When 𝑎𝑘 returns from the post office to site 𝑝𝑖
18. 𝑎𝑘 answers each call on its list
19. If there are calls on 𝑎𝑖’s list,
20. Copy 𝑎𝑖’s list to 𝑎𝑘’s list
21. Clear 𝑎𝑖’s list
22. 𝑎𝑘 follows the trail to the post office

Extensions to Listing 2.5 can make use of other communication paradigms to trade-off be-

tween 𝑁 and Δ𝑇 . In particular, post office communication is well suited to the Site Watching

problem.

Lemma 2.6. If the Site Watching problem is defined with a Δ𝑇 that is large enough for any agent to

make two round trips to the post office then for any 𝑁 ≥ 2𝑀 Listing 2.6 succeeds at Site Watching.

Proof. Let 𝑡𝑃 be sufficient time to make a round trip to the post office.

Given that 𝑁 = 2𝑀 , each call 𝑐𝑗 issued at site 𝑝𝑖 at 𝑡𝑗 will

1. Establish a post office within the convex hull of the sites

2. Possibly wait in 𝑎𝑖’s list until 𝑡𝑗1 < 𝑡𝑗 + 𝑡𝑃

Chapter 2 Stigmergy 30

3. Be in 𝑎𝑘>𝑀 ’s list until 𝑡𝑗2 < 𝑡𝑗 + 3
2
𝑡𝑃

4. Be discarded if 𝑦 calls have already been queued for answering

5. Otherwise, be in 𝑎𝑘>𝑀 ’s list until 𝑡𝑗3 < 𝑡𝑗 + 2𝑡𝑃 and then be answered.

Thus, exactly 𝑦 calls will be answered, each within 2𝑡𝑃of being issued, for any sequence of 𝑥

calls.

Lemma 2.7. If the Site Watching problem is defined with a Δ𝑇 that is large enough for any agent

to make a single round trip to the post office, then for any 𝑁 ≥ (𝑦 + 1)𝑀 Listing 2.6 succeeds at Site

Watching.

Proof. Let 𝑡𝑃 be sufficient time to make a round trip to the post office.

Given that 𝑁 = (𝑦 + 1)𝑀 , each call 𝑐𝑗 issued at site 𝑝𝑖 at 𝑡𝑗 will

1. Be in 𝑎𝑘>𝑀 ’s list until 𝑡𝑗1 < 𝑡𝑗 + 1
2
𝑡𝑃

2. Be discarded if 𝑦 calls have already been queued for answering

3. Otherwise, be in 𝑎𝑘’s list until 𝑡𝑗2 < 𝑡𝑗 + 𝑡𝑃 and then be answered.

Thus, exactly 𝑦 calls will be answered, each within 𝑡𝑃 of being issued for any sequence of 𝑥

calls.

Because the post office is within the convex hull of the sites, 𝑡𝑇 ≤ 𝑡𝑃 ≤ 2𝑡𝑇 where 𝑡𝑇 is the

time needed to travel one-way between the most distant pair of sites. Thus, the time used by

Listing 2.6 or Listing 2.6 is within a constant factor of the minimal time needed for coordinate

between the various sites.

2.3 Site Watching 31

2.3.3 𝑁 > 𝑀 Necessary

Shiloni et al. [60, pp. 87–88]’s Theorem 6 states “There is no ant algorithm which solves Limited-

KServer when running 𝑁 ants.” Their proof applies equally to Site Watching. For completeness,

and to have consistent internal theorem numbering, I re-pose their theorem and proof below.

Lemma 2.8. For any 𝑁 ≤ 𝑀 , there is no stigmergic algorithm that solves Site Watching. [60, pp.

87–88]

Proof. If any site is not observed at any time, that site might generate an event in that time which

cannot be answered. Since 𝑥 might equal 𝑦, that event might be essential for success. Thus, Site

Watching cannot be solved by any algorithm that leases any site unobserved at any time.

If 𝑁 < 𝑀 then at any given point in time some site is unobserved. Thus, no algorithm can

solve Site Watching if 𝑁 < 𝑀 .

If 𝑀 = 𝑁 then there is only one agent per site. If an agent leaves its site then that site is

unobserved for a period of time. If no agent leaves its site then the agents cannot communicate

and have no way to coordinate which calls should be answered. Thus, no algorithm can solve

Site Watching if 𝑁 = 𝑀 .

2.3.4 Δ𝑇 ≥ 𝑡𝐶 Necessary

Although not stated as a theorem, Shiloni et al. [60] suggests that the instantaneous nature of

answers also presents a difficulty for stigmergic agents. I formalize this suggestion below.

Let 𝑡𝐶 be the time needed to communicate one-way between the most distant pair of sites.

This is proportional to their separation: either the time needed for an agent to move between the

Chapter 2 Stigmergy 32

two, or, if agents can communicate without moving, it is the time needed to read and write times

the number of agents needed to form an unbroken chain between the two sites.

Lemma 2.9. If Site Watching is defined with a Δ𝑇 < 𝑡𝐶 then there is no stigmergic algorithm that

solves Site Watching.

Proof. Consider two sites, 𝑝1 and 𝑝2, such that communication between them takes 𝑡𝐶 . Consider

a time 𝑡 at which 𝑦 − 1 calls have been answered and after which no additional calls will occur.

Either 𝑝1 or 𝑝2 or both could generate a call at time 𝑡.

Consider an algorithm 𝐴 that will decide to answer calls in Δ𝑇 < 𝑡𝑐 . Then 𝐴 must decide to

answer the call at 𝑝1 before 𝑡 + 𝑡𝐶 , but 𝑡 + 𝑡𝐶 is the earliest that the presence or absence of a call at

𝑝2 could reach 𝑝1 (and vice versa). Thus 𝐴 must decide whether to answer each call independently

of the other. Consider the following cases:

• If 𝐴 answers neither call then it fails.

• If 𝐴 answers the call at 𝑝1 but not 𝑝2 then it fails if only 𝑝2 generates a call.

• If 𝐴 answers the call at 𝑝2 but not 𝑝1 then it fails if only 𝑝1 generates a call.

• If 𝐴 answers the call at 𝑝1 and 𝑝2 then it fails if both calls were generated.

Thus there is no 𝐴 that solves Site Watching with Δ𝑇 < 𝑡𝐶 .

2.3.5 Necessary and Sufficient

The lemmas in the preceding sections allow a proof of Theorem 2.2, re-stated below:

Theorem 2.2. Stigmergic agents can succeed at the Site Watching problem if and only if Δ𝑇 is large

enough and 𝑁 > 𝑀 .

2.4 Space and Time Synchronization 33

Proof. By Lemma 2.9, Δ𝑇 ≥ 𝑡𝐶 is necessary. By Lemma 2.6 and Lemma 2.7, Δ𝑇 ∝ 𝑡𝐶 is sufficient

if 𝑁 ≥ 2𝑀 .

By Lemma 2.8, 𝑁 > 𝑀 is necessary. By Lemma 2.5, 𝑁 = 𝑀+1 is sufficient ifΔ𝑇 ∝ 𝑀𝑡𝐶 .

Note that the bound is not tight. I have not shown that Δ𝑇 = 𝑡𝑃 is the smallest achievable nor

that Δ𝑇 = 𝑡𝐶 is achievable. I have also not shown if Δ𝑇 ∝ 𝑡𝐶 can be achieved for 𝑀 < 𝑁 < 2𝑀 .

However, I have established asymptotically tight bounds for both Δ𝑇 and 𝑁 ; tightening the

constants is left to future work.

2.4 Space and Time Synchronization

Many existing algorithms for groups of agents assume some form of shared coordinate frame in

time and space. This includes algorithms that assume GPS or other localization sensors as well

as algorithms posed in a grid-based discrete-time environment.

In this section I consider how agents that lack an a priori shared coordinate frame, epoch,

or landmark may develop a common sense of location and scale in space and time as well as

orientation in space. Different communication models will facilitate different elements of this

synchronization effort.

I consider communication-only based techniques in this section. Other approaches, such as

observing a common external landmark, reacting to a common globally-visible event, or reacting

to non-communication interactions such collisions, are beyond the scope of this chapter.

Chapter 2 Stigmergy 34

2.4.1 Clock Synchronization

Under global broadcast, clock synchronization is as simple as having one agent broadcast its

current time. This message is instantly received by all agents, resetting all clocks.

Under lagging broadcast, clock synchronization may be achieved by something like the Net-

work Time Protocol: a request is sent and returned with both agents timestamping it at both

ends. These methods are simple and reliable and well documented elsewhere [43].

Under stigmergy, consider a message 𝑖 left by agent 𝐵 at 𝐵’s time 𝑡𝑏𝑖 and observed by agent

𝐴 at 𝐴’s time 𝑡𝑎𝑖. This observation informs 𝐴 that

• 𝑡𝑏𝑖 < 𝑡𝑎𝑖; and

• 𝑡𝑎𝑘 < 𝑡𝑏𝑖 if 𝐴 had previously visited the area at time 𝑡𝑎𝑘 without seeing the message.

Depending on the duration of the signal, the observation may also convey

• 𝑡𝑎𝑖 < 𝑡𝑏𝑖 + Δ𝑡 if stigmergy is temporary with known duration Δ𝑇 ;

• 𝑡𝑎𝑖 ≈ 𝑡𝑏𝑖 + 𝑓 −1(𝑠) where 𝑠 is signal strength if stigmergy fades according to some known

function 𝑓 ∶ time → signal strength; or

• some probability function if stigmergy is patchy with a known distribution.

Theorem 2.3. Consider stigmergic agents with limitless stigmergy or with limited, fading, or patchy

stigmergy with unknown expiration patterns. Call two locations the “same” if a signal deposited in

one can be detected by an agent located in the other. Agents that never visit same locations less than

𝑇 time units from one another can never achieve clock synchronization tighter than ±𝑇 .

2.4 Space and Time Synchronization 35

Proof. Assume that agents 𝐴 and 𝐵 share full knowledge of a common coordinate system and

each know both agents’ full behavior functions such that at time 𝑡 agent 𝐴 is at location 𝑠𝐴(𝑡) and

agent 𝐵 is at location 𝑠𝐵(𝑡 + 𝑡𝐵) for some constant but unknown 𝑡𝐵 .

Suppose 𝑠𝐴(𝑡0) and 𝑠𝐵(𝑡1) are the same location. Then either

• 𝐴 left a message 𝐵 reads, meaning 𝑡𝐵 < 𝑡1 − 𝑡0;

• 𝐵 left a message 𝐴 reads, meaning 𝑡1 − 𝑡0 < 𝑡𝐵; or

• neither agent left a message, in which case nothing is learned.

No other relative time information is available to the agents.

Consider a constraint 𝑡1 − 𝑡0 ≷ 𝑡𝐵 . The actual time between the agents being in the same

location to create this constraint was 𝑇 ′ = |𝑡0 − (𝑡1 + 𝑡𝐵)|. If 𝑇 < 𝑇 ′ then it is also true that

𝑡1 − 𝑡0 ± 𝑇 ≷ 𝑡𝐵 .

Thus, if 𝐴 and 𝐵 never visit same locations less than 𝑇 time units from one another then they

can never achieve clock synchronization tighter than ±𝑇 .

If the rate of stigmergic fading is known, then clock synchronization is as simple as writing

the initial strength of a signal and then computing the delay when the signal is seen.

If the duration of temporary stigmergy is known then clock synchronization can be accom-

plished by being at the same location a signal is created or ceases to exist.

If the probability distribution of patchy stigmergy is known then a probabilistic model of

clock synchronization can be created by observing many signals in the period where they might

or might not be present.

The scale of clocks (i.e., the relative rate at which different agents’ counters increase) can be

determined via two or more distinct synchronizations.

Chapter 2 Stigmergy 36

2.4.2 Coordinate Frame Synchronization

Limitless broadcast contains no information about location and can only be used to establish

location if combined with some other location-providing information, such as GPS signals, land-

marks, seeing other agents, etc.

Stigmergy provides straightforward location synchronization: stigmergy only communicated

between agents with a common location. This is true no matter how the stigmergy lasts, even

fading and patchy stigmergy.

All other forms of communication I consider in this chapter (limited, fading, or patchy broad-

cast or any lagging communication) can be used to establish (approximate or probabilistic) bounds

on the distance between agents. Fading signals provide distance directly via signal strength. Lim-

ited signals provide distance at themoment they come into or out of range. Patchy signals provide

distance probabilistically provided that the distribution on signal reception is known. Lagging

signals provide it through the same send-and-receive timing that provides lagging clock synchro-

nization assuming that the speed of lagging signal propagation is known.

Full coordinate frame synchronization can be derived from a set of distance or locationmatches.

Because this computation is not numerically stable, precise results require either many indepen-

dent samples or a few samples taken at large distances from one another.

In general, the coordinate frame synchronization problem seeks to find a matrix𝐴 and vector

𝑏⃗ such that, given a location 𝑥⃗ in one agent’s coordinate space𝐴𝑥⃗+𝑏⃗ is the corresponding location

in the other agent’s coordinate space.

Location matches provide the information 𝑦 = 𝐴𝑥⃗+𝑏⃗ for particular 𝑥⃗ and 𝑦. In 𝑛-dimensional

space, 𝑛 + 1 linearly independent matches determine a unique 𝐴 and 𝑏⃗. 𝐴 may be found by

2.4 Space and Time Synchronization 37

subtracting the first pair from every other pair (to remove the 𝑏⃗ term) and then concatenating

the vectors to form the matrix equation 𝑌 = 𝐴𝑋; column 𝑗 of 𝑌 is the (𝑗 + 1)th 𝑦 minus the

first 𝑦 and likewise for 𝑋. Since the matches were linearly independent, 𝑋 is invertible and this

equation may be solved via 𝐴 = 𝑌 𝑋−1. Given 𝐴, 𝑏⃗ can be found via 𝑏⃗ = 𝑦 −𝐴𝑥⃗ for any matched

pair 𝑥⃗ and 𝑦.

If measurements are not linearly-independent, or if they are approximate or noisy, least-

squares estimates of𝐴 and 𝑏⃗ may be found by taking many samples and using the Moore-Penrose

Pseudo-inverse[44, 50] instead of the standard matrix inverse.

Distances provide the information ‖𝑦 − 𝐴𝑥⃗ − 𝑏⃗‖2
2 = 𝑑2 for particular 𝑥⃗, 𝑦, and distance 𝑑.

Expanding the ℓ2 norm gives

(𝑦′𝑦) − 𝑑2 − 2(𝑦′(𝐴𝑥⃗) + 𝑦′𝑏⃗) + ((𝐴𝑥⃗)
′
(𝐴𝑥⃗) + 2𝑏⃗′(𝐴𝑥⃗) + 𝑏⃗′𝑏⃗) = 0, (2.1)

a quadratic equation in 𝑛2 + 𝑛 unknowns. With 𝑛2 + 𝑛 samples the resulting system of equations

cannot be solved directly, but can be efficiently solved using Newton’s method. For example,

consider the two-dimensional case. A single observation gives the equation

𝑦2
1 + 𝑦2

2 − 𝑑2 − 2 [𝑦1 𝑦2]

⎡
⎢
⎢
⎢
⎣

𝑎1 1 𝑎1 2

𝑎2 1 𝑎2 2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥1

𝑥2

⎤
⎥
⎥
⎥
⎦

− 2𝑦1𝑏1 + 𝑦2𝑏2

+ [𝑥1 𝑥2]

⎡
⎢
⎢
⎢
⎣

𝑎1 1 𝑎2 1

𝑎1 2 𝑎2 2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑎1 1 𝑎1 2

𝑎2 1 𝑎2 2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥1

𝑥2

⎤
⎥
⎥
⎥
⎦

+ 2 [𝑏1 𝑏2]

⎡
⎢
⎢
⎢
⎣

𝑎1 1 𝑎1 2

𝑎2 1 𝑎2 2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥1

𝑥2

⎤
⎥
⎥
⎥
⎦

+ 𝑏2
1 + 𝑏2

2 = 0 (2.2)

Chapter 2 Stigmergy 38

which may be expanded to the form

𝑦2
1 + 𝑦2

2 − 𝑑2 − 2𝑥1𝑦1𝑎1 1 − 2𝑥1𝑦2𝑎2 1 − 2𝑥2𝑦1𝑎1 2 − 2𝑥2𝑦2𝑎2 2

− 2𝑦1𝑏1 − 2𝑦2𝑏2 + 𝑥2
1𝑎2

1 1 + 𝑥2
1𝑎2

2 1 + 2𝑥1𝑥2𝑎1 1𝑎1 2 + 2𝑥1𝑥2𝑎2 1𝑎2 2 + 𝑥2
2𝑎2

1 2 + 𝑥2
2𝑎2

2 2

+ 𝑥1𝑎1 1𝑏1 + 𝑥1𝑎2 1𝑏2 + 𝑥2𝑎1 2𝑏1 + 𝑥2𝑎2 2𝑏2 + 𝑏2
1 + 𝑏2

2 = 0. (2.3)

If six samples are taken with linearly-independent 𝑥⃗, 𝑦, and 𝑑 the result is six vector-valued

equations in six unknowns: 𝑓(𝑎1 1, 𝑎1 2, 𝑎2 1, 𝑎2 2, 𝑏1, 𝑏2) = 0⃗. The Jacobian matrix 𝐽 for 𝑓 is the

six-by-six matrix with rows whose transpose are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2𝑥1𝑦1 + 2𝑥2
1𝑎1 1 + 2𝑥1𝑥2𝑎1 2 + 𝑥1𝑏1

−2𝑥2𝑦1 + 2𝑥1𝑥2𝑎1 1 + 2𝑥2
2𝑎1 2 + 𝑥2𝑏1

−2𝑥1𝑦2 + 2𝑥2
1𝑎2 1 + 2𝑥1𝑥2𝑎2 2 + 𝑥1𝑏2

−2𝑥2𝑦2 + 2𝑥1𝑥2𝑎2 1 + 2𝑥2
2𝑎2 2 + 𝑥2𝑏2

−2𝑦1 + 𝑥1𝑎1 1 + 𝑥2𝑎1 2 + 2𝑏1

−2𝑦2 + 𝑥1𝑎2 1 + 𝑥2𝑎2 2 + 2𝑏2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.4)

Given estimate 𝑎𝑏 = (𝑎1 1, 𝑎1 2, 𝑎2 1, 𝑎2 2, 𝑏1, 𝑏2) one iteration of Newton’s iteration[47] updates the

estimate to be 𝑎𝑏 − 𝐽 (𝑎𝑏)−1𝑓(𝑎𝑏).

If measurements are approximate or noisy andmore than six samples are available, theMoore-

Penrose Pseudo-inverse[44, 50] may be used instead to create a least-squares estimate of 𝑎𝑏.

2.5 Conclusion 39

2.5 Conclusion

Broadcast communication propagates messages through space; Stigmergy propagates messages

though time. This section explored several aspects of that distinction.

I have extended the work of Shiloni et al. [60]; they demonstrate that broadcast communica-

tion, if coupled with global location information, is capable of fully emulating stigmergic com-

munication but that for at least some problems stigmergic communication cannot accomplish the

same tasks as broadcast communication. I analyze the limitations more closely, demonstrating

how stigmergic agents may emulate local and global communication and using those tools to

show that the task identified by Shiloni et al. can be solved if and only if both additional agents

and additional time are available.

I also investigated how the propagation of communication through spacetime may be used by

agents to agree on a common coordinate frame in time and space. Limitless broadcast communi-

cation is the only form that does not contain explicit information about space, and that all contain

explicit information about time. Given any other model of communication, communication can

be used to synchronize clocks and coordinate frames. However, for stigmergy establishing a

common time frame requires agents to meet in spacetime.

There are more questions to be asked about the characteristics of different communication

propagation models. I have provided several models of communication that can be built out of

stigmergy, but there may be others that are more efficient in space used, in time required, or in

number of agents involved. I showed that Site Watching can be solved to within a factor of 2 of

the optimal time and agent count; it would be nice to extend this construction to techniques for

simulating arbitrary broadcast-based algorithms stigmergically with some approximation of op-

Chapter 2 Stigmergy 40

timality. Further investigation of how communication-based synchronization of time and space

can be achieved with patchy and/or non-uniform-fading signals might make the theoretic results

in this chapter more applicable to real-world robotics and other applications.

Chapter 3

Rendezvous

Rendezvous has mutually-oblivious agents locate one another in an unknown environ-

ment. In this chapter I show that agents experiencing uncertainty in timing and location

can be guaranteed to rendezvous in finite time without relying on environmental fea-

tures. I also demonstrate worst-case time bounds for rendezvous with various models

of imprecise timing and position, and I present algorithms achieving these bounds. In

addition to timing, I also bound the uncertainty agents in featureless environments can

handle while still guaranteeing finite-time rendezvous with theoretic upper bounds and

algorithmic realization of these bounds. Together, these bounds on runtime and uncer-

tainty help refine our understanding of the rendezvous problem.

Theobjective of rendezvous algorithms is to havemobile agents locate one another in an unknown

or featureless environment. Rendezvous is a foundational problem in cooperative artificial intel-

ligence: before agents can coordinate their actions, individual agents must come close enough

together to initiate contact.

41

Chapter 3 Rendezvous 42

Figure 3.1: Rendezvous as the space-time intersection of sensing volumes. Each circle’s diameter
is equal to the sensing radius of the agents.

Since its introduction fifty years ago [58], the rendezvous problem has received consider-

able attention from theoreticians and multi-agent artificial intelligence researchers. Several sub-

problems have been identified. I address the rendezvous search problem, where pairs of mutually-

oblivious agents seek proximity in space. Rendezvous can be viewed as the task of ensuring that

that the sensing areas of pairs of agents overlap in space-time, as illustrated in Figure 3.1. Ren-

dezvous is more involved than searching for a static objective because of the need to overlap in

space-time, not just in space.

Rendezvous is often posed in the context of the coalescence or gathering problem. Coales-

cence has initially-scattered agents seek to combine into a single a swarm or flock. For fully

trustworthy agents that are able to communicate at short range, coalescence is no more difficult

than rendezvous; rendezvous remains central to swarm creation and repair in other settings as

well The coalescence problem and its relationship to rendezvous is discussed in Chapter 6.

Prior work in rendezvous has focused on probabilistic algorithms, on landmark identification

and ranking, and on deterministic algorithms for noiseless line- and graph-like environments

3.1 Definitions and Notation 43

(see Section 1.3.2). This chapter extends prior work by investigating deterministic finite-time

rendezvous algorithms for agents experiencing noise in both timing and locating information in

environments without landmarks.

This chapter presents a collection of procedures that cause each agent in an arbitrarily-large

set to move within sensor range of each other agent. The procedures vary in complexity, effi-

ciency, and in the assumed capabilities of the agents. Each procedure is accompanied by a proof

that agents will rendezvous with one another in bounded time. I also present bounds on the

uncertainty that may be present in any agent participating in bounded-time rendezvous. These

minimal capabilities provide a lower bound on the rendezvous problem for agents facing uncer-

tainty.

3.1 Definitions and Notation

This chapter uses the notation introduced in Section 1.2, particularly the notion of state 𝑠 ∈ 𝑆 ,

behavior𝐵𝑠(𝑡), distance 𝑑, and the use of “algorithm” to refer to a deterministic behavior selection

process. This chapter does not require that the distance function satisfy the triangle inequality.

The capabilities of an agent are characterized by the sensors and actuators the agent may

access and by the uncertainty of each.

Consider the reference time 𝑡 and let the state of agent 𝑖 be 𝑠𝑖(𝑡). Let agent 𝑖’s clock generate

an estimate of the current time ̂𝑡𝑖(𝑡) and let its means ofmobility allow it to generate an estimate

of its state ̂𝑠𝑖(𝑡).

I consider the following classes of capabilities:

Chapter 3 Rendezvous 44

• Mobility: Agents have some knowledge of and control over their own location. I distin-

guish between three classes of mobility:

– Exact: No uncertainty in location:

∀𝑖, 𝑡 ∶ 𝑑(𝑠𝑖(𝑡), ̂𝑠𝑖(𝑡)) = 0. (3.1)

This class is commonly assumed in prior graph- and grid-based algorithms.

– Noisy: Location error within fixed bounds:

∀𝑖 ∶ ∃𝑐 ∶ ∀𝑡 ∶ 𝑑(𝑠𝑖(𝑡), ̂𝑠𝑖(𝑡)) ≤ 𝑐. (3.2)

This class includes GPS and similar imprecise location-sensing devices.

– Drifting: Location error increases over time:

∀𝑖 ∶ ∃𝜖 ∶ ∀𝑡 ∶ 𝑑(𝑠𝑖(𝑡), ̂𝑠𝑖(𝑡)) ≤ 𝜖(𝑡), (3.3)

where 𝜖(𝑡) is a monotonically non-decreasing function called the agent’s drift. Most

often, the drift increases with some function of distance traveled:

𝜖(𝑡) = 𝑓 (∫
𝑡

𝑡0

𝑑(𝑠𝑖(𝜏), 𝑠𝑖(𝜏 + 𝑑𝜏))) . (3.4)

Dead reckoning falls into this class.

• Detection: There is some distance 𝑟 such that any two agents whose separation is no more

3.1 Definitions and Notation 45

than 𝑟 are aware of one another. Although agents might be aware of one another at greater

distances, worst-case analysis of our algorithms do not rely on longer-distance detection.

Detection is technically a form of communication (see, e.g., Dieudonné et al. [15]), but is

not useful for establishing rendezvous because it does not occur until after rendezvous is

achieved.

• Clock: Each agent has some notion of the passage of time. I distinguish between four

classes of clocks:

– Synchronized: Clocks show the same time:

∀𝑖, 𝑗, 𝑡 ∶ ̂𝑡𝑖(𝑡) = ̂𝑡𝑗(𝑡). (3.5)

Synchronicity is implicitly assumed in most prior algorithms that do not explicitly

mention timing differences.

– Skewed: Clocks progress at a shared rate from distinct initial values:

∀𝑖, 𝑗 ∶ ∃𝑐 ∶ ∀𝑡 ∶ ̂𝑡𝑖(𝑡) − ̂𝑡𝑗(𝑡) = 𝑐. (3.6)

Algorithms that may start at different times often assume this timing model.

– Individual: Clocks progresses at different, but fixed, rates:

∀𝑖, 𝑗 ∶ ∃𝑎, 𝑏 ∶ ∀𝑡 ∶ ̂𝑡𝑖(𝑡) − 𝑎 ̂𝑡𝑗(𝑡) = 𝑏. (3.7)

This is true of, e.g., a clock that gains a few minutes a day.

Chapter 3 Rendezvous 46

– Variable: The rate of each clock varies over time with some limited amount of vari-

ability:

∀𝑖, 𝑗 ∶ ∃𝑐 ∶ ∀𝑡 ∶ |
𝜕
𝜕𝑡

̂𝑡𝑖(𝑡) − 𝜕
𝜕𝑡

̂𝑡𝑗(𝑡)| ≤ 𝑐. (3.8)

While agents may not be able to measure it, I do assume the existence of a single global time 𝑡.

Agents moving at relativistic speeds and other scenarios where a global time cannot be defined

are not explicitly considered in the algorithms and proofs presented in this chapter.

This chapter investigates the rendezvous problem, which may be defined mathematically as

follows:

Definition 3.1 (Rendezvous). Let 𝑠𝑖(𝑡) be the state of an agent following algorithm 𝐴𝑖 for 𝑡 time

units after starting in state 𝑠𝑖(0).

Two algorithms, 𝐴𝑖 and 𝐴𝑗 , rendezvouswith one another for a given 𝑟 if, for every arbitrary pair

of starting states 𝑠𝑖(0) and 𝑠𝑗(0), there exists a non-negative time 𝑡⋆ such that 𝑑(𝑠𝑖(𝑡⋆), 𝑠𝑗(𝑡⋆)) ≤ 𝑟,

where 𝑡⋆ is bounded by some fixed finite function of 𝑑(𝑠𝑖(0), 𝑠𝑗(0)) and 𝑟 is a distance at which

detection is guaranteed.

The set of algorithms 𝐴 is said to be a family of rendezvous algorithms or to have the ren-

dezvous property for a given 𝑟 if, for any arbitrary pair 𝑖 ≠ 𝑗, 𝐴𝑖 and 𝐴𝑗 rendezvous with one

another for that 𝑟.

Where no confusion will result, 𝑟 is not explicitly mentioned in the discussions that follow.

To facilitate discussion of worst-case bounds on rendezvous time, the definition of rendezvous

incorporates a worst-case time bound by requiring a bounding function on 𝑡⋆. Every reference to

rendezvous in the remainder of this chapter refers to this bounded-time definition of rendezvous.

3.2 Necessary Capabilities 47

3.2 Necessary Capabilities

It is clearly not the case that every arbitrary set of agents may be made to rendezvous in finite

time. This section contains a set of proofs describing particular capabilities that must be present

in any agent able to achieve deterministic rendezvous in general environments. In particular, for

some environments,

• Rendezvous requires each agent’s algorithm be unique, either through unique computation

or via the presence of unique inputs or parameterization.

• If |𝐴| > 2, rendezvous requires either some kind of clock or a global coordinate system.

• Rendezvous is at least as difficult as finding static targets in bounded time.

• Bounds on mobility drift are required to be able to find static targets in bounded time, and

thus also required for rendezvous.

Each of these requirements is addressed in its own section below.

3.2.1 Individuality

Theorem 3.1. For any bounded-time rendezvous algorithm, the algorithm relies on one of the fol-

lowing assumptions:

• agents have prior knowledge of other agent’s state;

• agents execute distinct algorithms;

• agents are guaranteed to receive distinct sensations; or

• agents are guaranteed to traverse distinguishable environments.

Chapter 3 Rendezvous 48

(a) (b) (c)

Figure 3.2: Illustration of the proof to Theorem 3.2, with time on the vertical axis and space on
the horizontal. The thin line is 𝑝𝑖, shaded area is 𝑉𝑗 . In (a) and (c) the thicker line is 𝑝𝑖 ∩ 𝑉𝑗 . The
rendezvous in (a) is prevented in (b) by clock error. In (c) the agents travel the reverse of one
another’s paths through space, meaning clock error can prevent rendezvous.

This theorem follows trivially from the observation that agents moving in lock-step never

rendezvous. Agents executing the same algorithm at the same time with the same sensations and

indistinguishable environments will move in lock-step if their initial orientations are equivalent.

Theorem 3.1 is elementary, but it does highlight the fact that individuality must come from

somewhere. For rendezvous to work in featureless environments, this individuality must be built

into the agents. Rather than rely on particular environmental features, the solutions to the ren-

dezvous problem in this chapter utilize a unique identifier for each agent to parameterize the

rendezvous algorithms the agents execute, ensuring that each agent behaves individually.

3.2.2 Temporality

Theorem 3.2. For any bounded-time rendezvous algorithm applicable to three or more agents, at

least one of the following must be true:

• The algorithm only works in single-dimensional environments;

• The algorithm relies on some estimate of the passage of time; or

• The algorithm relies on some enumeration of possible coordinate systems.

3.2 Necessary Capabilities 49

Proof. If each pair of agents in a set of three or more are guaranteed to rendezvous, then at least

two agents are mobile. Consider two such mobile agents, 𝑖 and 𝑗. Let 𝑝𝑖 = {(𝑠𝑖(𝑡), 𝑡)} be the

path through spacetime traveled by agent 𝑖 and 𝑉𝑗 = {(𝑥, 𝑡) ∶ 𝑑(𝑥, 𝑠𝑗(𝑡)) ≤ 𝑟} be the volume of

spacetime guaranteed to be observed by agent 𝑗. For rendezvous to be guaranteed, the path must

intersect the volume; that is 𝑝𝑖 ∩ 𝑉𝑗 ≠ ∅, as illustrated in Figure 3.2. Note the choice of labels 𝑖

and 𝑗 is arbitrary; 𝑝𝑖 ∩ 𝑉𝑗 ≠ ∅ ⇔ 𝑝𝑗 ∩ 𝑉𝑖 ≠ ∅ because 𝑟 is constant and 𝑑 is commutative.

If agents do not have any estimate of the passage of time then the 𝑡 coordinate of each agent’s

motion cannot be controlled. In particular, 𝑝𝑖 might be {(𝑠𝑖(𝑡), 𝑓 (𝑡))} for any monotonically non-

decreasing function 𝑓 . Thus, in the absence of clocks rendezvous is guaranteed only if it is guaran-

teed for every 𝑓 ; mathematically, clockless rendezvous is guaranteed if and only if the following

implication holds:

(𝑓(𝑥) > 𝑓(𝑦) ⇒ 𝑥 > 𝑦) ⇒ (∃𝑡 ∶ 𝑑(𝑠𝑖(𝑡), 𝑠𝑗(𝑓(𝑡))) ≤ 𝑟) (3.9)

Czyzowicz et al. [11] demonstrated that (3.9) is satisfied only if each state in a prefix of each

agent’s trajectory is within 𝑟 some state in the prefix of the other agent’s trajectory, a property of

paths which they call “tunnels.” Tunnels of this sort can be guaranteed only if each agent knows,

or can guess, the others’ coordinate system.

Hence, rendezvous requires either an estimate of time or a finitely-enumerable set of possible

coordinate systems.

Many prior rendezvous algorithms assume both a single global coordinate system (typically

via graph nodes or grid cells) and knowledge of the passage of time (often in discrete global clock

cycles). However, only one of the two conditions in Theorem 3.2 are required for deterministic

Chapter 3 Rendezvous 50

rendezvous. Czyzowicz et al. [11] demonstrated that a clock is not needed if the other agent’s

coordinate system comes from an enumerable set by presenting an algorithm that repeatedly

guesses all possible coordinate systems of other agents. Their approach suffers from runtime

polynomial in the cardinality of the set of possible coordinate systems; it is not tractable for open

geometric environments. I demonstrate in this chapter that knowledge of other agents’ possible

coordinate systems is not needed if a clock is present through a set of algorithms that guarantee

rendezvous even if mobility is noisy or drifting.

Theorem 3.2 does not specify the accuracy of clocks, but does imply that a clock must ex-

ist in some form. As my solutions handle some limited clock inaccuracy (see Section 3.3.5 and

Section 3.3.6) they provide a sufficient bound. I am unaware of any necessary bound on clock

accuracy.

3.2.3 Search

Before presenting a proof that search is required I first define what I mean by search.

Definition 3.2 (Search). An algorithm 𝑆 is a search algorithm if, for every arbitrary starting

state 𝑠(0) and target location 𝑝, there exists a non-negative finite time 𝑡⋆ such that 𝑑(𝑠(𝑡⋆), 𝑝) ≤ 𝑟,

where 𝑡⋆ is upper bounded by some fixed finite function of 𝑑(𝑠(0), 𝑝).

Search algorithms can equivalently be characterized as algorithms that rendezvous with sta-

tionary agents (see Definition 3.1).

Theorem 3.3. There exist environments such that for any family of rendezvous algorithms 𝐴 there

exists a search algorithm 𝑆 that can be executed by any agent with sufficient capabilities to execute

algorithms in 𝐴; 𝑆 requires asymptotically no more space or time than the most expensive 𝐴𝑖 ∈ 𝐴.

3.2 Necessary Capabilities 51

Proof. Theexistence of𝑆 for three classes of environments is demonstrated in Lemma 3.1, Lemma 3.2,

and Lemma 3.3 below.

Theorem 3.3 implies that search is generally no harder than rendezvous. I use this to build

rendezvous algorithms that use search algorithms as a subroutine. This allows me to ignore the

details of the environment that a search algorithm must consider and focus instead on the extra

complications that arise during rendezvous.

There are environments where search cannot be reduced to rendezvous: for example, if the

entire environment is a single smoothly-sloping hill then climbing to the top of the hill guar-

antees rendezvous with time proportional to the radius of the hill, while search requires time

proportional to the area of the hill.

The environments where rendezvous is at least as hard as search include the three most com-

mon classes of environments in mobile agent research, as demonstrated by the following lemmas.

Lemma 3.1 (Featureless vector spaces). Assume that the set of agent behaviors is closed under

vector addition and subtraction of agent location; that 𝑑 is an induced norm over that vector space;

and that agents do not receive location-dependent inputs such as GPS signals. Then for any any

family of rendezvous algorithms 𝐴, for any arbitrary 𝐴𝑖, 𝐴𝑗 ∈ 𝐴, 𝑠(𝑡) = 𝑠𝑖(𝑡) − 𝑠𝑗(𝑡) + 𝑠𝑗(0) is a

search algorithm.

Proof. The definition of 𝐴𝑖 and 𝐴𝑗 rendezvousing is:

∀𝑠𝑖(0), 𝑠𝑗(0) ∃𝑡⋆ 𝑑(𝑠𝑖(𝑡⋆), 𝑠𝑗(𝑡⋆)) ≤ 𝑟. (3.10)

Chapter 3 Rendezvous 52

Because 𝑑 is an induced norm, subtracting 𝑠𝑗(𝑡) − 𝑠𝑗(0) from both paths does not change the

distance:

∀𝑠𝑖(0), 𝑠𝑗(0) ∃𝑡⋆ 𝑑(𝑠𝑖(𝑡⋆) − (𝑠𝑗(𝑡⋆) − 𝑠𝑗(0)), 𝑠𝑗(0)) ≤ 𝑟 (3.11)

which is the definition of 𝑠(𝑡) = 𝑠𝑖(𝑡) − 𝑠𝑗(𝑡) + 𝑠𝑗(0) being a search algorithm.

Lemma 3.2 (Unconstrained graphs). Assume agents move along edges of a connected graph and

can determine its structure only locally. Then for any any family of rendezvous algorithms 𝐴, for

any two algorithms in a set 𝐴 achieving rendezvous, at least one is a search algorithm.

Proof. Assume two agents are executing a pair of rendezvous algorithms but that neither is exe-

cuting a search algorithm. Since neither is searching, there exists some graph where each agent

has some node it never visits. Because the graph structure is known only locally, neither agent

can know how much of the graph is inaccessible without traversing its excluded node(s). In par-

ticular, every path between the two agents might include a subpath of length at least 𝑟 accessible

only through nodes each agent will not traverse. But this situation contradicts our assumption

of rendezvous. Thus, at least one of agent is executing a search algorithm.

Lemma 3.3 (Cluttered Environments). Assume agents navigate an environment that may be mod-

eled as the union of a set of convex polytopes, but is otherwise unconstrained. Then for any any

family of rendezvous algorithms 𝐴, there exists a search algorithm 𝑆 that requires asymptotically

no more space or time than the most expensive 𝐴𝑖 ∈ 𝐴.

Proof. Both featureless vector spaces and undirected embeddable graphs can be modeled as the

union of a set of convex polytopes. Thus, by both Lemma 3.1 and Lemma 3.2, search is reducible

to rendezvous.

3.2 Necessary Capabilities 53

3.2.4 Limited Drift

Theorem3.4. For any finite sensing radius 𝑟, searching a sufficiently-large area in an 𝑛-dimensional

Euclidean environment requires drift to accumulate no more quickly than Θ (
𝑛√𝑥), where 𝑥 is the

distance the agent travels.

Proof. We show that if error is in 𝜔 (
𝑛√𝑥) then at some point the agent will no longer be able to

make progress in expanding the area it knows it has searched.

Observe that the surface area 𝑎 of area 𝐴 is in 𝑂 (
𝑛√𝐴𝑛−1

). Observe also that the distance 𝑥

the agent must travel to be guaranteed to sense area 𝐴 is in 𝑂(𝐴) (because 𝑟 is finite).

Consider the lastΔ𝑥 traveled by an agent. Although thatmotionwill addΩ(Δ𝑥) newly viewed

area to the searched region, it will also result in Δ𝜖 = 𝜖(𝑥) − 𝜖(𝑥 − Δ𝑥) more uncertainty in the

agent’s position. This uncertainty shrinks the area the agent knows it has viewed by Δ𝜖 times

the surface area 𝑎 of the known-visited area.

For sufficiently large 𝐴, Ω(Δ𝑥) < (𝑎)(𝜖(𝑥) − 𝜖(𝑥 − Δ𝑥)). This may be shown by re-writing:

Ω(Δ𝑥) < (𝑎)(𝜖(𝑥) − 𝜖(𝑥 − Δ𝑥))

Ω(Δ𝑥) < 𝑂 (
𝑛√𝑂(𝑥)𝑛−1

) (𝜔 (
𝑛√𝑥) − 𝜔 (

𝑛√𝑥 − Δ𝑥))

(3.12)

Since 𝑛 ≥ 1, we can consolidate the asymptotic classes by introducing a new variable 𝑘 ∈ 𝜔(1)

to obtain

Δ𝑥 <
𝑛√𝑥𝑛−1

(
𝑛√𝑥 −

𝑛√𝑥 − Δ𝑥) 𝑘 (3.13)

Chapter 3 Rendezvous 54

which can be further rewritten as

Δ𝑥 < 𝑘𝑥 − 𝑘
𝑛√𝑥𝑛 − 𝑥𝑛−1Δ𝑥

𝑘𝑥 − Δ𝑥 > 𝑘
𝑛√𝑥𝑛 − 𝑥𝑛−1Δ𝑥

(𝑘𝑥 − Δ𝑥)𝑛 > 𝑘𝑛𝑥𝑛 − 𝑘𝑛𝑥𝑛−1Δ𝑥

𝑘𝑛𝑥𝑛 − Θ(𝑘𝑛−1𝑥𝑛−1Δ𝑥) > 𝑘𝑛𝑥𝑛 − 𝑘𝑛𝑥𝑛−1Δ𝑥

−Θ(𝑘𝑛−1𝑥𝑛−1Δ𝑥) > −𝑘𝑛𝑥𝑛−1Δ𝑥,

(3.14)

the final form of which is true by the definition of 𝑘 being in asymptotic class 𝜔(1).

Since the last Δ𝑥 traveled by the agent did not increase the area it knows it has seen, it

must have already known it had seen 𝐴 before traveling the final Δ𝑥. But that means the same

argument holds for the previous Δ𝑥. By induction the agent can never have become confident it

had searched area 𝐴. Hence, for sufficiently large 𝐴, 𝜖 cannot be in 𝜔 (
𝑛√𝑥).

Because drift must be limited for deterministic search, by Theorem 3.3 it must also be limited

for rendezvous.

3.3 Parameterized Algorithm Families

This section contains techniques that achieve rendezvous for several different classes of agents.

Each of these techniques achieves rendezvous for a different class of positioning and timing in-

accuracy, demonstrating a set of sufficient capabilities to match the necessary capabilities proven

in the previous section. The techniques also provide achievable bounds on the runtime of ren-

3.3 Parameterized Algorithm Families 55

Listing 3.1 ℛ𝑝,𝑞: Rendezvous without drift

1. Repeat until rendezvous achieved:
2. Repeat 𝑝 times:
3. For each bit 𝑥 in the key:
4. If 𝑥 = 1: search and return 𝑞 times
5. Otherwise: wait for 𝑞 time steps
6. Double the time step

Listing 3.2 𝒟𝑞: Rendezvous with drift

1. Repeat until rendezvous achieved:
2. For each bit 𝑥 in the key:
3. If 𝑥 = 1: search and return 𝑞 times
4. Otherwise: wait for 𝑞 time steps
5. Increase the time step to double the search radius

dezvous algorithms. Because my objective is to minimize worst-case performance, I intentionally

ignore various valid but unrelated average-case optimizations.

While the correctness and runtime of each technique are separately addressed for each class of

agents, all the techniques belong to one of the two parameterized families of algorithms presented

in Listing 3.1 and Listing 3.2 as ℛ𝑝,𝑞 (ℛ for “rendezvous” as it is the main family of rendezvous

algorithms) and 𝒟𝑞 (𝒟 for “drift” as it is designed to handle agents with limited mobility drift).

Both families of algorithms are based on ideas of keys, bits, time steps, and searching. Each

agent’s behavior is broken into time steps. In each time step an agent either remains stationary

or it executes a search subroutine to explore as large an area as possible while still returning to

its starting point before the time step ends (or as close thereto as mobility error allows). Which

action it takes is based on the bits of a binary key. On a 1 bit the agent executes 𝑞 distinct

searches; on a 0 bit the agent remains stationary for 𝑞 times steps. The agent also periodically

increases its time step; the length of time that an agent’s time steps remain a single duration is

Chapter 3 Rendezvous 56

called a cycle. In ℛ𝑝,𝑞 a cycle lasts for 𝑝 complete runs through the bits of the key—i.e., for a 𝑏′ bit

key a cycle is 𝑏′𝑝𝑞 time steps long. In 𝒟𝑞 a cycle lasts only for a single bit. ℛ and 𝒟 also differ in

how much the time step is increased between cycles, as noted in the listings and explored more

in Section 3.3.4.

Rendezvous between two agents may occur at any time. Agents that start or drift close to-

gether may rendezvous when both are waiting; two agents may also rendezvous while both are

searching. Rather than attempting to characterize the likelihood of these possibilities for a par-

ticular environment and set of agent capabilities, I establish worst-case bounds based only on

rendezvous that occur when one agent is waiting and the other agent searches its waiting loca-

tion.

As justified by Theorem 3.1, I assume that each agent has access to a unique 𝑏-bit identifier,

where 2𝑏 is an upper bound on the number of agents that might want to rendezvous with one

another. From that 𝑏-bit identifier I derive a 𝑏′-bit key, the bits of which are used in ℛ and 𝒟 .

The properties that must be satisfied by these keys are specified for each set of agent capabili-

ties separately in the following sections. Letting 𝑖 be the identifier and 𝑘 the key, the required

properties may be achieved as follows

• The keys are distinct. Using 𝑘 = 𝑖 and 𝑏′ = 𝑏 suffices.

• If a key is not zero, its low-order bit is set. This may be achieved by 𝑘 = 2𝑖+1 and 𝑏′ = 𝑏+1.

• Each key begins and/or ends with a common 𝑛-bit sequence. This may be achieved by

concatenating bits onto 𝑖, giving 𝑏′ = 𝑏 + 𝑛.

• The keys are taken from a shift-free set.

3.3 Parameterized Algorithm Families 57

This last property requires some explanation.

Definition 3.3 (Shift-free). Let 𝑥, 𝑦, 𝑘, and 𝑏 be non-negative integers, 𝑥 and 𝑦 be less than 2𝑏, and

𝑘 be less than 𝑏. The following are all defined with respect to 𝑏:

• 𝑥 rotl𝑏 𝑘 is the 𝑘-bit circular shift of 𝑥 w.r.t. 𝑏, defined as (2𝑘𝑥 mod 𝑏) + ⌊2𝑘−𝑏𝑥⌋.

• 𝑥 and 𝑦 are shift-similar w.r.t. 𝑏 if ∃𝑘 ∶ 𝑥 rotl𝑏 𝑘 = 𝑦.

• 𝑥 is shift-minimal w.r.t. 𝑏 if ∀𝑘 ∶ 𝑥 rotl𝑏 𝑘 ≥ 𝑥

• A set of 𝑏-bit numbers is shift-free if no two elements of the set are shift-similar w.r.t. 𝑏.

A set of keys taken from a shift-free set are called shift-free keys. Without loss of generality,

I assume all shift-free keys are shift-minimal.

The largest shift-free set with respect to 𝑏 contains more than 2𝑏

𝑏
elements. Thus, there are

mappings from 𝑏-bit identifiers to ⌈𝑏 + log2(𝑏) + 1⌉-bit shift-free keys. Such mappings are not

trivial to describe; a simpler mapping takes a 𝑏-bit identifier 𝑥 and uses 2𝑥 + 1 as a (2𝑏 + 1)-bit

shift-free key.

3.3.1 Without Uncertainty

The simplest rendezvous approach works for synchronized agents with exact mobility. This situ-

ation establishes a baseline from which the other algorithms in this chapter may be understood.

Theorem 3.5. Any two agents with distinct keys executing ℛ1,1 at the same time with the same

time step will rendezvous with each other in less than 4𝑏′ times the time required for one agent to

search the location of the other, or within 𝑏′ times the initial time step.

Chapter 3 Rendezvous 58

Figure 3.3: Rendezvous of agents without uncertainty with keys 101 and 100 using ℛ1,1. The
initial time step is too small; after doubling the timestep the agents rendezvous in the first distinct
bit of their keys.

Proof. Let 𝑡0 be the initial time step and 𝑇 be the time step required for a search by one agent to

find the initial location of the other agent. If the time step is initially 𝑡0 < 𝑇 , the time step will

be in [𝑇 , 2𝑇) after completing the last cycle with a timestep 𝑆 < 𝑇 , which happens no later than

(𝑡0 + 2𝑡0 + 4𝑡0 + ⋯ + 𝑆)𝑏′ < 2𝑏′𝑆 < 2𝑏′𝑇 .

Once the time step is at least 𝑇 , rendezvous will occur within 𝑏′𝑇 . This follows because

distinct keys must differ in some bit. Thus, there must be some time during which one agent is

searching (the active bit of its key is 1) while the other agent is waiting (its active bit is 0). During

that bit, the agent searching will pass within 𝑟 of the agent waiting, resulting in rendezvous.

Final runtime is bounded by 2𝑏′𝑇 to achieve 𝑡 ∈ [𝑇 , 2𝑇) and another 2𝑏′𝑇 to perform 𝑏′

searches at that timestep, for a total worst-case runtime of max{4𝑏′𝑇 , 𝑏′𝑡0}.

3.3.2 Skewed Clocks

Consider agents that have exact mobility and whose search subroutines are deterministic in the

order in which they search the environment, but that have skewed clocks. Because some distinct

numbers are not distinguishable if not synchronized (e.g., 01 and 10), these agents will need to use

shift-free keys. To demonstrate that ℛ2,1 will guarantee rendezvous, first consider the following

lemma.

3.3 Parameterized Algorithm Families 59

Figure 3.4: Illustration of doubling proof. A rounded box is drawn around each cycle, divided at
the point where the key repeats; 𝐴’s 𝑇𝑎 cycle and both 2𝑇𝑏 cycles are shaded.

Lemma 3.4 (Doubling). For any two agents 𝐴 and 𝐵 with cycle durations 𝑇𝑎 ≤ 𝑇𝑏, if 𝑇𝑎 and 𝑇𝑏

differ by a power of two at the beginning of 𝐵’s cycle then at least half of their 2𝑇𝑏 cycles overlap.

Proof. Call the start of 𝐵’s cycle 𝑡 = 0. Let 𝛼 ∈ [0, 1) be the portion of 𝐴’s 𝑇𝑎-duration cycle that

is completed prior to 𝑡 = 0. 𝐴’s cycle reaches 2𝑇𝑏 at ̂𝑡 = (1 − 𝛼)𝑇𝑎 + 2𝑇𝑎 + 4𝑇𝑎 + ⋯ + 𝑇𝑏. Observe

that 𝑇𝑏 < ̂𝑡 < 2𝑇𝑏, so ̂𝑡 must fall within the first half of 𝐵’s 2𝑇𝑏 cycle [𝑇𝑏, 3𝑇𝑏].

This proof is illustrated in Figure 3.4.

Theorem 3.6. For any two agents with skewed clocks and a repeatable search algorithm, ℛ2,1

achieves rendezvous within two doublings of the initially-longer time step or the end of the first

cycle where the search areas are sufficiently large.

Proof. Because the keys are shift-free and because each agent searches the same location at the

same time within each 1 bit, rendezvous is guaranteed if they share a time step that is large

enough for them to find one another’s resting locations for one full iteration through the bits

of their keys. Because ℛ2,1 repeats the key twice per cycle, it is sufficient to show that they

eventually share a time step for half a cycle.

By Lemma 3.4, both agents will have overlapped for at least half a cycle by the end of the

second doubling of the longer time step. Because they will continue to overlap for at least half

Chapter 3 Rendezvous 60

Figure 3.5: Comparison of ℛ2,1 and ℛ2,2. Dots represent the moment within a 1 bit when a
searching agent passes the resting location of the other agent. Grey bands are times when search,
if performed, guarantees rendezvous. Arrows are times when rendezvous occurs.

a cycle every cycle thereafter, if that first time-step overlap does not have large enough searches

to generate rendezvous then the first search that is large enough will result in rendezvous.

ℛ2,1 with shift-free keys results in rendezvous in twice the time that ℛ1,1 did (or more if the

initial timestep is large): max{8𝑏′𝑇 , 6𝑏′𝑡0}, where 𝑇 is the time required for one agent to search

the location of the other and 𝑡0 is the larger of the two initial timesteps.

3.3.3 Noise or Nondeterministic Search

If the search subroutine is non-deterministic and/or the mobility suffers from noise then we can-

not rely on passing a target’s waiting location at the same time within each bit. Timing uncer-

tainty within a search can prevent rendezvous unless an entire search occurs while the other

agent is waiting. For agents with skewed clocks and mobility noise, ℛ2,2 with shift-free keys

3.3 Parameterized Algorithm Families 61

searches twice per bit, ensuring that at least one entire search occurs within the other agent’s

waiting period.

Theorem 3.7. For any two agents with shift-free keys, accurate asynchronous clocks, and either

experiencing bounded positioning error or unrepeatable search algorithms, ℛ2,2 achieves rendezvous

within four doublings of the initially-longer time step or the end of the first cycle where the search

areas are sufficiently large.

Proof. By searching twice per bit, ℛ2,2 ensures that at least one entire search occurs within the

other agent’s waiting period. Full-search overlap means variations in the details of individual

positioning or search pattern will not prevent rendezvous.

The rest of the proof mirrors that of Theorem 3.6.

ℛ2,2 takes twice as long as ℛ2,1, discussed in the previous section: rendezvous is achieved

within max{16𝑏′𝑇 , 12𝑏′𝑡0}.

3.3.4 Position Drift

When an agent’s sense of location becomes less accurate as the agentmoves, it becomes necessary

to increase the search area more quickly than drift can accumulate. This means increasing the

search radius after every bit, as is done in the 𝒟 family of algorithms. The 𝒟 algorithms differ

from the ℛ algorithms by doubling the search radius after every bit instead of doubling the time

step after every cycle. In 𝑛-dimensional Euclidean environments, doubling the radius means

multiplying the time step by 2𝑛.

Theorem 3.8. For any agents who, after searching radius 𝑅 in all directions, accumulate mobility

error not exceeding 𝑚𝑅 for some constant 𝑚,

Chapter 3 Rendezvous 62

Figure 3.6: Example of 1D agents rendezvous with drift and keys 1100 and 1101. On the left are
synchronized agents using 𝒟1; on the right are skewed agents using 𝒟2.

• 𝒟1 and unique keys guarantee rendezvous if the agents have synchronized clocks and 𝑚 < 1
2
.

• 𝒟2 and unique keys guarantee rendezvous if the agents have skewed clocks and 𝑚 < 1
4
.

Proof. Consider two arbitrary synchronized agents with initial separation 𝑑0 and an initial search

that explores 𝑥 in every direction. The first bit can cause each agent to drift 𝑚𝑥, meaning 𝑑1 ≤

𝑑0 + 2𝑚𝑥. The second bit explores 2𝑥 and might lead to 𝑑2 ≤ 𝑑0 + 2𝑚𝑥 + 4𝑚𝑥. The 𝑖th bit explores

2𝑖𝑥 and might lead to separations of 𝑑𝑖 ≤ 𝑑0 + 2𝑚𝑥(1 + 2 + 4 + ⋯ + 2𝑖−1) = 𝑑0 + 2𝑚𝑥2𝑖 − 2𝑚𝑥.

Rendezvous will occur no later than the first differing bit (which must exist since the keys are

unique) once 2𝑖𝑥 ≥ 𝑑0 + 2𝑚𝑥2𝑖 − 2𝑚𝑥.

If agents have skewed clocks, by Lemma 3.4 at least half of their cycles will overlap within

a single doubling of the initially-longer time step. Because two searches are executed per bit,

drift accumulates twice as quickly as it does for synchronized agents: the 𝑖th bit explores 2𝑖𝑥 and

might lead to separations of 𝑑𝑖 ≤ 𝑑0 +4𝑚𝑥(1+2+4+⋯+2𝑖−1) = 𝑑0 +4𝑚𝑥2𝑖 −4𝑚𝑥. Rendezvous

will occur no later than the first differing bit (which must occur since the keys are shift-free) once

2𝑖𝑥 ≥ 𝑑0 + 4𝑚𝑥2𝑖 − 4𝑚𝑥.

3.3 Parameterized Algorithm Families 63

Combining the above two statements, rendezvous is guaranteed for 𝒟𝑞 once 2𝑖𝑥 > 𝑑0 +

2𝑞𝑚𝑥2𝑖 − 2𝑞𝑚𝑥. Solving for 𝑖 gives

2𝑖𝑥 > 𝑑0 + 2𝑞𝑚𝑥2𝑖 − 2𝑞𝑚𝑥

2𝑖(𝑥 − 2𝑞𝑚𝑥) > 𝑑0 − 2𝑞𝑚𝑥
(3.15)

If 2𝑞𝑚𝑥 > 𝑑0 then rendezvous will occur no later than the first non-equal bit. Otherwise,

2𝑖 >
𝑑0 − 2𝑞𝑚𝑥
𝑥 − 2𝑞𝑚𝑥

𝑖 > log2 (
𝑑0 − 2𝑞𝑚𝑥
𝑥 − 2𝑞𝑚𝑥)

(3.16)

Themaximum number of cycles before rendezvous is thus 𝑖+𝑏′, which is a finite number because

𝑚 < 1
2𝑞

and both 𝑑0 and 𝑥 are finite.

This proof is overly conservative in assuming all bits are 1, or equivalently that error grows

with time rather than distance, accumulating even while the agent is at rest on a 0 bit. In practice

somewhat larger drifts should be permissible if drift does not accumulate during 0 bits since at

least one key has at least one 0 bit.

The time required for rendezvous with drift is not simply expressed. For 𝑛-dimensional Eu-

clidean environments doubling the search radius increases the time by a factor of 2𝑛, giving a

runtime in 𝑂 (2𝑛𝑏′𝑖
) = 𝑂 ((

𝑑0−2𝑞𝑚𝑥
𝑥−2𝑞𝑚𝑥)

𝑛𝑏′

): hyperbolic in drift, polynomial in the number and

initial separation of agents. In other environments the relationship between search radius and

time may result in a different bound.

Chapter 3 Rendezvous 64

Figure 3.7: Worst-case behavior of variable-speed clocks can cause no search/wait pairings to
ever occur.

3.3.5 Variable Clocks

When agents have variable clocks, some time steps might be briefer than others. This variability

can cause the previous algorithms to never result in rendezvous. Consider, for example, an agent

with key 00111 and another with key 00011. If the first agent’s clock runs more quickly on

its 1 bits and the other agent’s more quickly on its 0 bits, rendezvous might not happen; this

worst-case scenario is illustrated in Figure 3.7. The worst-case pair of keys is generally 2𝑎 − 1 and

2𝑎+1 − 1, where 𝑎 = ⌊
1
2
𝑏′

⌋.

Lemma 3.5. Given each agent has a clock with a unit of time varying within [𝑥, 𝑦], there exists a

pair of shift-free keys such that then the minimal 1/0 overlap’s duration is 𝑥 + ⌊
1
2
𝑏′

⌋ (𝑥 − 𝑦).

This lemma follows the squeeze-and-stretch argument above.

Theorem 3.9. Consider any pair of agents, each having a clock with a unit of time that varies within

[𝑥, 𝑦]. Let 𝑎 = ⌊
1
2
𝑏′

⌋ and 𝑞 = ⌊
𝑦

𝑥−𝑎(𝑦−𝑥)⌋. Then rendezvous is guaranteed by

• ℛ2,𝑞 if the pair of agents have precise mobility;

• ℛ2,2𝑞 if the pair of agents have mobility noise; and

• 𝒟𝑞 if the pair of agents have mobility drift no greater than 1
2𝑞

𝑅.

3.3 Parameterized Algorithm Families 65

Proof. By Lemma 3.5, searching 𝑞 (or 2𝑞) times per bit ensures one (or two) search/wait overlaps

in the same cycle that searching once (or twice) per bit would for skewed clocks. The rest of the

proof parallels those of Theorem 3.6, Theorem 3.7, and Theorem 3.8 above.

Worst-case runtime is 𝑞 times the runtimes for skewed, noisy, and/or drifting rendezvous,

respectively.

Larger clock variability could be handled by additional restrictions on keys or by using a

pattern of searches and waits within each bit. I do not investigate particulars of these approaches

in this dissertation.

3.3.6 Individual Clocks

When each agent’s clock runs at a consistent but individual pace, potentially different from each

other agents’ clock, rendezvous can be assured by using keys with guaranteed placement of some

0 and 1 bits.

Theorem 3.10. Assume that each agent has a unique 𝑏-bit identifier, and that it’s (2𝑏 + 2)-bit

key is, in order, a 1 bit, 𝑏 0 bits, another 1 bit, and the identifier. Using this key, ℛ1,2 guarantees

rendezvous.

Proof. Call the agent with the initially longer-period clock 𝑠 (for “slow”) and the other 𝑓 (for

“fast”). Call the first 1 bit in 𝑓 ’s key 𝑓1, the second 1 bit 𝑓2, the 𝑏 zeros 𝑓0 and the 𝑏-bit unique

number 𝑓𝑛. Let 𝑓 ′
1 refer to the first one bit of 𝑓 ’s second pass through its key. Define 𝑠1, 𝑠2, etc.,

similarly.

Chapter 3 Rendezvous 66

Consider the first cycle of 𝑓 beginningwhen 𝑓 ∶ 𝑠 differ by nomore than 1 ∶ 2. I demonstrate

rendezvous by a large set of trivial cases. For succinctness, I use the phrase “𝑓𝑥 in 𝑠𝑦” to mean

that more than half of the 𝑓𝑥 bit falls within 𝑠𝑦.

The proof now proceeds by an exhaustive enumeration of cases, each of which is fairly trivial.

1. 𝑓1 in 𝑠1 is divided into sub-cases based on 𝑓2:

1.1. 𝑓2 in 𝑠0 results in rendezvous during 𝑓2.

1.2. 𝑓2 in 𝑠2 means 𝑓∶𝑠 is no less than 𝑏∶𝑏 + 1. Consider two additional sub-sub-cases:

1.2.1. 𝑓 ′
1 in 𝑠𝑛 means 𝑠′

1 will be in 𝑓 ′
0 , resulting in rendezvous.

1.2.2. 𝑓 ′
1 in 𝑠′

1 means each bit of 𝑓𝑛 is in the corresponding bit of 𝑠𝑛, resulting in ren-

dezvous because 𝑓𝑛 ≠ 𝑠𝑛.

2. 𝑓1 in 𝑠0 results in rendezvous during 𝑓1.

3. 𝑓1 in 𝑠2 is divided into three sub-cases based on 𝑓2:

3.1. 𝑓2 in 𝑠𝑛 is divided into sub-cases based on 𝑓 ′
1 .

3.1.1. 𝑓 ′
1 in 𝑠′

1 results in rendezvous during the next cycle by the first case above.

3.1.2. 𝑓 ′
1 in 𝑠′

0 results in rendezvous during 𝑓 ′
1 .

3.2. 𝑓2 in 𝑠′
1 means each bit of 𝑠𝑛 is in 𝑓0, resulting in rendezvous because 𝑠𝑛 ≠ 0.

4. 𝑓1 in 𝑠𝑛 is divided into sub-cases based on 𝑓2:

4.1. 𝑓2 in 𝑠𝑛 Since 𝑓∶𝑠 differ by no more than 1∶2, 𝑓 ′
1 must lie within 𝑠′

0, resulting in

rendezvous.

4.2. 𝑓2 in 𝑠′
1 is divided into sub-sub-cases based on 𝑓 ′

1 .

3.4 Cooperative Rendezvous 67

4.2.1. 𝑓 ′
1 in 𝑠′

0 results in rendezvous during 𝑓 ′
1 .

4.2.2. 𝑓 ′
1 in 𝑠′

2 means each bit of 𝑓𝑛 is in 𝑠′
0, resulting in rendezvous because 𝑓𝑛 ≠ 0.

4.3. 𝑓2 in 𝑠′
0 results in rendezvous during 𝑓2.

Each level of the case enumeration above is complete; other cases are all precluded either by

𝑓 being faster than 𝑠 or by 𝑓 being no more than twice as fast as 𝑠. The longest delay before

rendezvous is 𝑠″
1 in 𝑓 ″

0 for case 3.1.1 followed by case 1.2.1.

Final runtime is bounded by 24𝑏′𝑇 : 4𝑏′𝑇 to achieve 1∶2 timing, 4𝑏′𝑇 to reach 𝑓 ′, 8𝑏′𝑇 to

reach 𝑓 ″, and 8𝑏′𝑇 to reach to reach the end of 𝑓 ″
0 .

3.4 Cooperative Rendezvous

This chapter has addressed the issue of individual rendezvous. If hives of agents can cooperate

to rendezvous with other hives the task becomes much easier: one or more agents can wait

to be found while the others search for other hives. Thus rendezvous for hives reduces to the

underlying search algorithm plus some technique for division of labor. Such division of labor can

be performed without communication utilizing emergent formation algorithms [12, 14, 45].

Groups of agents organized as in a swarm rather than a hive (that is, agents that need to

remain close to one another as they move) can use the rendezvous algorithm presented in this

chapter. The only coordination needed is to select a common key or, equivalently, follow a single

leader. Besides a possible increase of 𝑟 with multiple agents involved, no additional efficiency is

created by rendezvousing swarms instead of single agents.

Chapter 3 Rendezvous 68

3.5 Conclusion

This chapter has investigated the rendezvous problem. I have demonstrated that it is possible for

agents to find one another in an unknown, unbounded environment in finite time. I have charac-

terized capabilities required of any agents that execute bounded-time rendezvous algorithms and

have presented algorithms ensuring rendezvous for agents with slightly more generous capabili-

ties. For agents with consistent clocks and no positioning drift, these algorithms are tractable and

achieve the known asymptotically-optimal time bounds from line- and graph-like environments.

The algorithms I have presented work in any environment by relying on an environment-

specific search function I did not define. While I proved that such a search function must exist

for any agents that are capable of achieving bounded-time rendezvous, I did not prove that using

such a function is optimal. Development of environment-specific rendezvous algorithms that are

more efficient than my general approaches is an area for future investigation.

I also did not demonstrate a lower bound on the quality of clocks needed for rendezvous. Czy-

zowicz et al. [11] demonstrated that there is no such lower bound if super-exponential runtimes

and shared orientation are considered. I added a few more data points showing the interplay

of runtime and clock accuracy in Section 3.3.5 and Section 3.3.6; continuing to characterize this

trade-off is an area for future investigation.

Many earlier algorithms assume some shared global orientation or global position. The al-

gorithms and proofs I present do not assume or make use of this kind of information. Potential

speedups that such information might enable is an area for future investigation. Given knowl-

edge of a global space-time location, some variation of landmark search might offer more efficient

rendezvous than the search-based approaches I have presented.

3.5 Conclusion 69

Rendezvous is a key sub-problem in achieving agent aggregation. That use is discussed in

more detail in Chapter 6.

Chapter 3 Rendezvous 70

Chapter 4

Cohesion Constraints

Cohesion requires that a group of moving agents remain a single group as they move.

Cohesion is generally achieved by selective application of a cohesion constraint which

prevents pairs of agents becoming separated. In this chapter I develop a technique for

creating computationally-tractable distance-based cohesion constraints for broad classes

of agents. The constraints are provably both safe (do not break cohesion) and live (lead

to states where the same constraints continue to apply). They also do not depend on

explicit communication, nor do they specify which cohesion-maintaining behavior an

agent may select.

The objective of cohesion algorithms is to have mobile computational agents already in proxim-

ity of one another remain proximal as they move. Cohesion is assumed in many decentralized

artificial intelligence (AI) tasks, as it allows the group to communicate and react together. As a

piece of other tasks, cohesion algorithms should not fully dictate agent mobility, instead letting

the other tasks take as much control as possible.

71

Chapter 4 Cohesion Constraints 72

Many decentralized AI algorithms assume cohesion without providing mechanisms to main-

tain it; others provide cohesion in either an overly-restrictive or non-general way. Flocking and

formation algorithms maintain connectivity by dictating significant portions of each agent’s ac-

tions. Potential fields are verifiable and are extensible with additional objectives, but the exten-

sions are often not verifiable. Some algorithms combine cohesion with other agent objectives,

but such approaches are not readily transferable to new agents or objectives.

There are two basic approaches to providing separable, transferable guarantees of cohesion.

Switching laws alternate between cohesion-maintaining behaviors and task-specific behaviors.

Cohesion constraints reduce the set of behaviors from which a task-specific objective may select

to those which are known to maintain cohesion. This chapter presents a new technique for

designing cohesion constraints that has significantly more versatility than previous techniques.

Cohesion constraints apply between pairs of agents and restrict their set of available behaviors

to a set that guarantees the pair remains connected. Ideally a cohesion constraint should be

safe (guarantees cohesion in the short term), live (leads to states where the constraint remains

applicable), composable (multiple constraints on the same agent have a non-empty intersection),

tractable (computable in limited time), and loose (leaves a large set of behaviors to choose from).

I prove that the technique in this chapter generates constraints satisfying the first four of these

properties for agents with distance-based connectivity requirements. I also demonstrate that

looseness can depend on details of agent design and can negatively impact tractability.

This chapter discusses cohesion constraints. Building full cohesion algorithms using cohesion

constraints is discussed in Chapter 5.

4.1 Terminology 73

4.1 Terminology

In addition to the general definitions presented in Section 1.2, this chapter makes frequent use of

additional notation and terminology.

Piecewise-defined behaviors figure prominently in this section. For conciseness, I introduce

the notation 𝑡0[𝐴
𝐵], where 𝐴 and 𝐵 are behaviors, to mean the behavior where the agent follows

𝐴 until time 𝑡0 and then switches to 𝐵:

𝑡0[𝐴
𝐵]𝑠

(𝑡) ≜
⎧
⎪
⎨
⎪
⎩

𝐴𝑠(𝑡) 0 ≤ 𝑡 ≤ 𝑡0

𝐵𝐴𝑠(𝑡0)(𝑡 − 𝑡0) 𝑡0 < 𝑡.
(4.1)

Observe that 𝑠 is in the domain of 𝑡0[𝐴
𝐵] if and only if 𝑠 is in the domain of 𝐴 and 𝐴𝑠(𝑡0) is in the

domain of 𝐵.

A state 𝑚 is amidpoint between two other states 𝑠1 and 𝑠2 if 𝑑(𝑠1, 𝑚) = 𝑑(𝑠2, 𝑚) = 1
2
𝑑(𝑠1, 𝑠2).

Most geometry-based distance functions have midpoints; graph-based distance functions often

do not.

Two agents with states 𝑠1 and 𝑠2 are 𝑟-connected if 𝑑(𝑠1, 𝑠1) ≤ 𝑟. Where confusion will not

result, the term connected is shorthand for 𝑟-connected where 𝑟 is a fixed constant small enough

that any pair of agents no more than 𝑟 apart can sense one another.

A cohesion constraint requires that a pair of neighbors remain connected. In particular,

pairs of agents satisfying a cohesion constraint which are connected at time 𝑡 will also be con-

nected at time 𝑡 + 𝜖 for all sufficiently-small positive 𝜖.

Chapter 4 Cohesion Constraints 74

Figure 4.1: Agents can be disconnected by distance (left-most agent) or by entering a state where
future distance disconnection is inevitable (right-most agent). Cohesion constraints prevent
agents from entering these situations.

4.2 Cohesion Predicate

This section presents a technique for creating computable predicates 𝐶 ∶ 𝑆2 ×ℬ → {true, false}.

The purpose of 𝐶 is to identify a subset of behaviors that guarantee cohesion is maintained. A

particular 𝐶 may be constructed for a given definition of 𝑆 , ℬ, and 𝑟.

For the predicates in this chapter to function, there must be a known fixed time interval Δ𝑡

that is the largest possible delay between consecutive decisions of a single agent. Without such

a bound, only trivial cohesion constraints can be shown to be live.

Defining a cohesion predicate is complicated by the fact that not all agents currently close

together might even be able to remain close. In particular, it is not possible to provide behaviors

that guarantee connected agents remain connected without restricting the definition of 𝑆 , 𝑑, 𝑟,

and/or ℬ. This may be demonstrated by agents that are currently close together but who are

traveling in opposite directions with momentum that will carry them far apart (see Figure 4.1).

To handle less-maneuverable agents I discuss a restricted sense of connection that considers

guaranteed-future-separation to be disconnected. This is done by defining a default behavior 𝒩

which will cause agents to enter a state where they stop moving away from one another and a

special distance function 𝑑𝐶 that encodes the idea “how far the agents might get if they follow

𝒩 .” The remainder of this section then used 𝑑𝐶 instead of 𝑑 when discussing distance. Terms

4.2 Cohesion Predicate 75

𝑟, 𝑑𝐶-connected, 𝑑𝐶-connected, and 𝑑𝐶-cohesion constraint are defined to be the same as the

corresponding terms without 𝑑𝐶 (see Section 4.1), except that they use 𝑑𝐶 instead of 𝑑 to measure

distance.

Although conceptually and practically 𝑑𝐶 is defined in terms of 𝒩 , the properties that each

predicate 𝐶 must satisfy to ensure cohesion are existence proofs and thus work backward, defin-

ing 𝒩 as a witness to the success of 𝐶 in maintaining 𝑑𝐶-connectivity. These mathematical

properties are:

1. 𝑑𝐶-based connectivity must imply 𝑑-based connectivity. Formally,

∀𝑠1, 𝑠1 ∈ 𝑆 𝑑𝐶(𝑠1, 𝑠2) ≥ 𝑑(𝑠1, 𝑠2). (4.2)

The distance function 𝑑𝐶 defines the notion of𝐶-connectivity. The set of agents𝐶-connected

to 𝐴 is a subset of the set of agents connected to 𝐴.

2. 𝐶 must be safe; that is, behaviors that satisfy 𝐶 must not break 𝐶-connectivity. Formally,

(𝑑𝐶(𝑠1, 𝑠2) ≤ 𝑟 ∧ 𝐶(𝑠1, 𝑠2, 𝐵) ∧ 𝐶(𝑠2, 𝑠1, 𝐵′)) ⟹

∀𝑡 ∈ [0, Δ𝑡] 𝑑𝐶(𝐵𝑠1
(𝑡), 𝐵′

𝑠2
(𝑡)) ≤ 𝑟. (4.3)

3. 𝐶 must be live and composable; that is, any agent must always be able to select a behavior

that satisfies 𝐶 for all of its 𝐶-connected neighbors. Formally,

∃𝒩 ∈ ℬ ∀𝑠1, 𝑠2 ∈ 𝑆 𝑑𝐶(𝑠1, 𝑠2) ≤ 𝑟 ⇒ 𝐶(𝑠1, 𝑠2, 𝒩). (4.4)

Chapter 4 Cohesion Constraints 76

The existence of behavior 𝒩 is used to guarantee that agents do not enter a state from

which cohesion cannot be maintained. In practice, 𝑑𝐶 is constructed based on a particular

𝒩 as discussed in given in Section 4.2.1 and Section 4.2.2 below.

If tractability is relaxed, greater looseness can be gained by using

∀𝑠1 ∈ 𝑆 ∃𝒩 ∈ ℬ ∀𝑠2 ∈ 𝑆 𝑑𝐶(𝑠1, 𝑠2) ≤ 𝑟 ⇒ 𝐶(𝑠1, 𝑠2, 𝒩) (4.5)

but the alternating quantifiers and contextually-defined 𝒩 make that looser property diffi-

cult to compute.

These three properties ensure that a subset of initially-connected agents (defined by a special

distance function 𝑑𝐶) will maintain connectivity for as long as they continue to select behaviors

satisfying 𝐶 at least every Δ𝑡 time units, and also guarantee that a selection is always possible.

The remainder of this section describes how to achieve each property.

4.2.1 Liveness, Composability, and the “null” behavior 𝒩

Guaranteeing that agents maintain cohesion throughout future times requires ensuring that each

agent can select a cohesion-maintaining behavior no matter how long it has been operating or

how many neighbors it has. This assurance can be provided through the definition of a “null”

behavior 𝒩 , a safe default that any agent can adopt at any time without sacrificing cohesion.

In pathological cases there may not be any suitable 𝒩 ; an example might be if every distinct

pair of trajectories diverges. I consider only agents and environments for which some 𝒩 exists

such that agents following 𝒩 do not increase in distance from one another.

4.2 Cohesion Predicate 77

Figure 4.2: Example definitions of 𝒩 and 𝑑𝐶 . 𝑋 is “move east”; 𝑌 is “turn toward the east”.
Together they define 𝒩 = 𝑡[𝑌

𝑋]. The maximum separation while following 𝒩 occurs in [0, 𝑡⋆]
and defines 𝑑𝐶 .

Many 𝑑𝐶 and 𝒩 exist such that (4.4) is satisfied. I present below one particular approach

for defining a 𝒩 given the existence of some behavior that does not increase separation. The ap-

proach discussed ensures that agents following the𝒩 s it produces reach amaximum 𝑑-separation

in a bounded time. This bound is utilized in the computational approach in Section 4.3.

1. Define a live (but not necessarily universal) behavior 𝑋 that satisfies the property

∀𝑡 ≥ 0 𝑑(𝑠1, 𝑠2) ≥ 𝑑(𝑋𝑠1
(𝑡), 𝑋𝑠2

(𝑡)). (4.6)

Examples of 𝑋 might be staying in place, moving in lockstep, or moving along convergent

trajectories.

2. Define a universal behavior 𝑌 that moves an agent from any state to a state that is in the

domain of 𝑋. For example, if 𝑋 was “remain stationary” then 𝑌 might be “decelerate.”

3. Let 𝒩 be the universal behavior 𝑡⋆[𝑌
𝑋] where 𝑡⋆ is the time an agent must follow behavior

𝑌 before reaching a state in the domain of 𝑋.

Chapter 4 Cohesion Constraints 78

Figure 4.2 illustrates how 𝑋 and 𝑌 combine to create 𝒩 and how 𝒩 defines 𝑑𝐶 . Note that for

a particular set of agents, some 𝒩 result in smaller 𝑑𝐶 than do others (e.g., in Figure 4.2 “north”

would give a smaller 𝑑𝐶 than does “east”). The optimal 𝒩 is a global property of the entire group,

depends on the details of ℬ, and is beyond the scope of this dissertation.

4.2.2 The Induced Distance Function 𝑑𝐶

In this section I define 𝑑𝐶 in terms of the behavior 𝒩 , whose existence is required in (4.4). How

to select a 𝒩 is discussed in Section 4.2.1.

Let 𝑑𝐶 be themaximumdistance agentswould separate fromone anotherwhile both following

𝒩 :

𝑑𝐶(𝑠1, 𝑠2) ≜ sup
𝑡≥0 {𝑑(𝒩𝑠1

(𝑡), 𝒩𝑠2
(𝑡))}. (4.7)

Because𝒩𝑠(0) = 𝑠 (true of all behaviors; see Section 1.2), 𝑑(𝑠1, 𝑠2) = 𝑑(𝒩𝑠1
(0), 𝒩𝑠2

(0)) ≤ 𝑑𝐶(𝑠1, 𝑠2);

thus, the 𝑑𝐶 defined in (4.7) satisfies (4.2).

Using the particular 𝑑𝐶 defined in (4.7) to expand (4.4) yields

sup
𝑡≥0 {𝑑(𝒩𝑠1

(𝑡), 𝒩𝑠2
(𝑡))} ≤ 𝑟 ⇒ 𝐶(𝑠1, 𝑠2, 𝒩). (4.8)

I use (4.8) in place of (4.4) in the remainder of this chapter.

The following lemma will be useful in establishing properties of predicates.

Lemma 4.1. For any 𝑑 that satisfies the triangle inequality, 𝑑𝐶 also satisfies the triangle inequality;

that is,

𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) ≥ 𝑑(𝑎, 𝑐) ⟹ 𝑑𝐶(𝑎, 𝑏) + 𝑑𝐶(𝑏, 𝑐) ≥ 𝑑𝐶(𝑎, 𝑐). (4.9)

4.2 Cohesion Predicate 79

Proof. Consider a time1 𝑡′ at which 𝑑𝐶(𝑎, 𝑐) = 𝑑(𝒩𝑎(𝑡′), 𝒩𝑐(𝑡′)). By (4.7), we know that 𝑑𝐶(𝑥, 𝑦) ≥

𝑑(𝒩𝑥(𝑡′), 𝒩𝑦(𝑡′)) for all 𝑥, 𝑦. Thus,

𝑑𝐶(𝑎, 𝑏) + 𝑑𝐶(𝑏, 𝑐) ≥ 𝑑(𝒩𝑎(𝑡′), 𝒩𝑏(𝑡′)) + 𝑑(𝒩𝑏(𝑡′), 𝒩𝑐(𝑡′))

≥ 𝑑(𝒩𝑎(𝑡′), 𝒩𝑐(𝑡′)) = 𝑑𝐶(𝑎, 𝑐).
(4.10)

4.2.3 Cohesion Predicate

This section presents several predicates on behaviors with the property that any two connected

agents, each following a behavior that satisfies one of the predicates, will remain connected until

one or both selects another behavior.

In describing the predicates, 𝑎 represents the initial state of the agent selecting behavior 𝐴,

while 𝑛 is the initial state of its neighboring agent.

Adversarial: An agent whose behavior satisfies the “adversarial” predicate cannot be sepa-

rated from the other agent within Δ𝑡 even if the other agent actively works to achieve separation.

∀𝑡 ∈ [0, Δ𝑡], 𝐵 ∈ ℬ 𝑑𝐶(𝐴𝑎(𝑡), 𝐵𝑛(𝑡)) ≤ 𝑟. (4.11)

If either agent’s behavior satisfies (4.11) then both agents remain connected until they have time

to select a new action.

1Technically I should use lim
𝑡→𝑡′

for asymptotically defined 𝑑𝐶 ; I use the looser notation here to simplify the pre-

sentation.

Chapter 4 Cohesion Constraints 80

Figure 4.3: Illustration of cohesion predicates for agent 𝐴 with 𝒩 being “remain in place”. The
outlined regions satisfy (4.11) (dotted), (4.12) (solid), and (4.13) (dashed). On the left is a geometric
version; the shaded region represents where neighbor 𝑁 can reach in Δ𝑡 and the cluster of dots
being the set of midpoints between 𝐴 and 𝑁 . On the right is a graph version; graph-based agents
often lack midpoints, but one is displayed for completeness.

Triangle: The “triangle” predicate is so named because it utilizes the triangle inequality.

∀𝑡 ∈ [0, Δ𝑡] 𝑑𝐶(𝐴𝑎(𝑡), 𝒩𝑎(𝑡)) + 𝑑𝐶(𝐴𝑎(𝑡), 𝒩𝑛(𝑡)) ≤ 𝑟. (4.12)

On the Euclidean plane, (4.12) forms an ellipse. If both agent’s behaviors satisfy (4.12) then both

agents remain connected until they have time to select a new action.

Midpoint: The “midpoint” predicate is defined only if every pair of states has at least one

midpoint. Let 𝑚 ∶ 𝑆2 → 𝒫 (𝑆) be a function returning the set of midpoints of two states.

∀𝑡 ∈ [0, Δ𝑡] ∀𝑚𝑡 ∈ 𝑚(𝒩𝑎(𝑡), 𝒩𝑏(𝑡)) 𝑑𝐶(𝐴𝑎(𝑡), 𝑚𝑡) ≤ 𝑟
2

. (4.13)

On the Euclidean plane, (4.13) forms a circle. If both agent’s behaviors satisfy (4.13) then both

agents remain connected until they have time to select a new action.

These three predicates are illustrated in Figure 4.3. In noise-free Euclidean geometries the

4.2 Cohesion Predicate 81

midpoint is unique and (4.13) subsumes (4.12); in other settings the two may be independent (see

Figure 4.3).

Theorem 4.1. Given the properties of 𝑟 and 𝒩 , any set of agents satisfying the following properties

will remain 𝑑𝐶 connected.

• Each agent selects a behavior at least every Δ𝑡 time units.

• An agent selects a particular behavior only if at the time it is selected, for each neighbor of the

agent, that behavior satisfies either (4.11) or (4.12).

Furthermore, there is always some behavior that each agent may select.

The same holds if all of the agents use (4.13) instead of (4.12).

Proof. A group of connected agents remain connected as long as each pair of neighboring agents

remain connected until they lose their neighborhood status by another agent coming between

them. It is thus sufficient to demonstrate that pairs of agents remain 𝑑𝐶 connected for at least Δ𝑡.

By definition of 𝑑𝐶-connectivity, (4.11) guarantees connectionwith any agent (including those

satisfying (4.12) or (4.13)).

Two agents both satisfying (4.12) remain within 𝑟 of one another by the triangle inequality

with either 𝒩𝑎(𝑡) or 𝒩𝑛(𝑡) as the third state.

Two agents both satisfying (4.13) remain within 𝑟 of one another by the triangle inequality

with any 𝑚𝑡 as the third state.

Such a selection is always possible because 𝒩 is universal and satisfies both (4.12) and (4.13).

Chapter 4 Cohesion Constraints 82

Define 𝐶 as either 𝐶(𝑎, 𝑛, 𝐴) = (4.11)∨ (4.12) or 𝐶(𝑎, 𝑛, 𝐴) = (4.11)∨ (4.13). Given an agent in

state 𝑎 with 𝑚 neighbors with states {𝑛1, 𝑛2, … , 𝑛𝑚}, then byTheorem 4.1 the subset of behaviors

{𝐴 ∈ ℬ |

𝑚

⋀
𝑖=1

𝐶(𝑎, 𝑛𝑖, 𝐴)} (4.14)

is nonempty (it contains at least 𝒩) and maintains cohesion with all 𝑚 neighbors.

A note about line-of-sight

This chapter discusses distance-based cohesion. Line-of-sight is not awell-behaved distance func-

tion because it does not satisfy the triangle inequality. However, if a line-of-sight-maintaining

𝒩 is available then a line of sight cohesion predicate can be defined.

Let 𝑂(𝑡) be a set of all obstacle points at time 𝑡. Let 𝑥, 𝑦 be the line segment connecting points

𝑥 and 𝑦; ℓ (𝑥, 𝑦, 𝑧) be the point on the line segment that is closest to point 𝑧; and ⟨𝑥⃗, 𝑦⟩ be an

inner- or dot-product.

The adversarial constraint for line-of-sight is straightforward:

∀𝑡 ∈ [0, Δ𝑡] ∀𝐵 ∈ ℬ 𝐴𝑎(𝑡), 𝐵𝑛(𝑡) ∩ 𝑂 = ∅. (4.15)

The other suitable constraint defines a line-of-sight maintaining region based on 𝒩 in a manner

similar to (4.13) and (4.12):

∀𝑡 ∈ [0, Δ𝑡] ∀𝑜 ∈ 𝑂(𝑡 + 𝑡2) ⟨𝐴𝑎(𝑡) − 𝑜, ℓ (𝒩𝑎(𝑡), 𝒩𝑛(𝑡),𝑜) − 𝑜⟩ ≤ 𝑟. (4.16)

These predicates are illustrated in Figure 4.4. They satisfy the same general structure as (4.11),

4.3 Computation Strategy 83

Figure 4.4: Illustrations of (4.15) (left) and (4.16) (right). For (4.15) the set of possible positions of
the other agent (gray) define a region (dotted outline) that must not intersect any obstacle. For
(4.16), the points 𝒩𝑎(𝑡), 𝒩𝑏(𝑡), and 𝑜 define a region where line of sight might not be maintained
(gray) and thus should not contain 𝐴𝑎(𝑡).

(4.13), and (4.12) and may be used in their place or as additional predicates on top of a distance-

based cohesion predicate.

An alternative approach to line-of-sight cohesion is to create a graph-based approximation of

the environment such that locations that do not have line of sight to one another have a graph

distance in excess of 𝑟. Ideally, such a graph would have have some edges of length less than 𝑟;

techniques for designing such graphs are beyond the scope of this dissertation.

The details of line-of-sight cohesion are beyond the scope of this dissertation. I mention

(4.15), (4.16), and line-of-sight graphs more to indicate directions for future investigation than as

a completed element of this dissertation.

4.3 Computation Strategy

In general, the various components of the predicates used in Theorem 4.1 need not be compu-

tationally tractable. This section contains a technique for forming tractable, arbitrarily-precise

approximation functions under the following assumptions:

Chapter 4 Cohesion Constraints 84

• ℬ can be represented as a bounded region of ℝ𝑛 for some finite 𝑛.

• The 𝑑-distance between two agents following behavior 𝒩 reaches a maximum within a

known time bound.

• (4.11), (4.12), and (4.13) are inequalities of piecewise-smooth functions of 𝐵 and 𝑡.

• Errors in sensors and mobility are bounded by piecewise-smooth functions of 𝐵 and 𝑡.

These conditions are satisfied by every geometric-, grid-, and graph-based model of agent behav-

ior of which I am aware. They are sufficient to allow the use of polynomial approximation and

the Bernstein branch-and-bound method to conservatively determine the truth of each predicate

to within arbitrary precision.

The results in this section rely on extensive research on functional approximation and polyno-

mial computation. Sederberg [59] and Dorato et al. [17] provide overviews for interested readers.

4.3.1 Polynomial Approximation

The computational approach I present takes as input a quantified Boolean expression of bounded-

domain polynomial inequalities. It is known that any inequality of piecewise-smooth functions

can be approximated as polynomial inequalities to any given precision; a brief review of relevant

techniques follows.

Closed-form conversion

Piecewise expressions including addition, scaling, and rational exponents of real-valued variables

can be converted to polynomial inequalities in closed form.

4.3 Computation Strategy 85

Rational exponents can sometimes be replaced by integer powers in simple inequalities, with

the possible addition of new terms; for example 𝑎 ≤ √𝑏 becomes 𝑎2 ≤ 𝑏 ∨ 𝑎 < 0. For more

involved expressions like 𝑎3/7 + 𝑏 ≤ 𝑐1/3 approximations may be more appropriate than integer

power expansion.

Piecewise expressions can always be re-written as disjunctions and expanded; for example,

⎧
⎪
⎨
⎪
⎩

𝑓1 𝑔1

𝑓2 ¬𝑔1

≤
⎧
⎪
⎨
⎪
⎩

𝑝1 𝑞1

𝑝2 ¬𝑞1

(4.17)

is equivalent to

(¬𝑔1 ∨ ¬𝑞1 ∨ 𝑓1 ≤ 𝑝1) ∧ (𝑔1 ∨ ¬𝑞1 ∨ 𝑓2 ≤ 𝑝1) ∧ (¬𝑔1 ∨ 𝑞1 ∨ 𝑓1 ≤ 𝑝2) ∧ (𝑔1 ∨ 𝑞1 ∨ 𝑓2 ≤ 𝑝2). (4.18)

Absolute values, sign functions, and other piecewise expressions can be handled similarly.

Approximations & Error

For functions that include non-algebraic operations, such as trigonometric functions, utilize poly-

nomial approximation. Polynomials can be used to approximate any smooth function to any ar-

bitrary level of precision over any finite interval; the error of such an approximation is no more

than 𝑐𝑛

(𝑛+1)!
, where 𝑛 is the order of the polynomial and 𝑐 is proportional to the “roughness” of the

approximated function. Creating such an approximation generally requires only the evaluation

of the function at 𝑛 + 1 points, with no symbolic analysis required. A more detailed discussion,

including a formal definition of “roughness”, example algorithms, and convergence analysis can

be found in most approximation texts (e.g., [59, pp. 111-114]).

Chapter 4 Cohesion Constraints 86

Errors can enter computations through sensor noise, through inexact agent mobility, and

through the error in functional approximations. Any bounded uncertainty in any constant, vari-

able, or function can be handled in my computational model by introducing a new variable with

the appropriate domain. Non-constant errors on sensor data might itself require approximation,

but approximation error has polynomial (and often constant) bounds so the process of adding

error terms does terminate.

In some cases it may be clear which value of a domain matters for conservative approximation

and no new variable need be created; for example, if 𝑑𝐶 is subject to error in [−𝜖𝑡, 𝜖𝑡] then (4.11)

can be written as

∀𝑡 ∈ [0, Δ𝑡], 𝐵 ∈ ℬ 𝑑𝐶(𝐴𝑎(𝑡), 𝐵𝑛(𝑡)) + 𝜖𝑡 ≤ 𝑟 (4.19)

instead of the more computationally-involved

∀𝑡 ∈ [0, Δ𝑡], 𝐵 ∈ ℬ, 𝑥 ∈ [−𝜖, 𝜖] 𝑑𝐶(𝐴𝑎(𝑡), 𝐵𝑛(𝑡)) + 𝑥𝑡 ≤ 𝑟 (4.20)

4.3.2 Boolean Bernstein Branch-and-Bound

Inequalities of multivariate polynomials have been investigated at length by feedback control re-

searchers and several computational approaches have been proposed; see Dorato et al. [17] for

an overview. When the domain is known, Dorato et al. [17] recommend the Bernstein branch-

and-bound (BBB) technique. This approach has the added advantage of being easy to modify to

handle Boolean expressions of inequalities. The reminder of this section briefly reviews the BBB

method and my extension of it to handle Boolean expressions.

4.3 Computation Strategy 87

Listing 4.1 Convert power- to Bernstein-basis

1. Given power-basis polynomial
2. For each variable 𝑥𝑖 with order 𝑛𝑖 and target domain [𝑎𝑖, 𝑏𝑖]
3. Let 𝑥𝑖 = (𝑏𝑖 − 𝑎𝑖)𝑦𝑖 + 𝑎𝑖
4. Re-write 𝑃 as ∑𝑛𝑖

𝑗=0 𝑐𝑗𝑦
𝑗
𝑖

5. Let 𝑑𝑗 = (
𝑛𝑖
𝑗) 𝑐𝑗

6. For 𝑘 from 1 up to 𝑛𝑗
7. For 𝑙 from 𝑛𝑗 down to 𝑘
8. Add 𝑑𝑙−1 to 𝑑𝑙

Recall that any order-𝑛 polynomial can be written in Bernstein basis as

𝑃 (𝑥) =
𝑛

∑
𝑖=1

𝑐𝑖(
𝑛
𝑖)

(𝑏 − 𝑥)𝑛−𝑖(𝑥 − 𝑎)𝑖

(𝑏 − 𝑎)𝑛 (4.21)

where the 𝑐0, 𝑐1, … , 𝑐𝑛 are the Bernstein coefficients over the interval [𝑎, 𝑏]. Formultivariate poly-

nomials with variables 𝑥1, 𝑥2, … 𝑥𝑚, where the order of the polynomial in 𝑥𝑗 is 𝑛𝑗 , the Bernstein

basis is similarly defined:

∑
𝑖𝑘∈[0,1,…,𝑛𝑘]
𝑘∈[0,1,…,𝑚]

𝑐𝑖1,𝑖2,…,𝑖𝑚

𝑚

∏
𝑗=1

(
𝑛𝑗

𝑖𝑗
)

(𝑏𝑗 − 𝑥𝑗)𝑛𝑗−𝑖𝑗 (𝑥𝑗 − 𝑎𝑗)𝑖𝑗

(𝑏𝑗 − 𝑎𝑗)𝑛𝑗
(4.22)

where each 𝑐𝑖1,𝑖2,…,𝑖𝑚
is a Bernstein coefficient over the 𝑚-dimensional interval 𝑥𝑗 ∈ [𝑎𝑗 , 𝑏𝑗].

Bernstein bases have several useful properties computationally:

• 𝑃 interpolates the “corner” coefficient 𝑐𝑖1,𝑖2,…𝑖𝑚
where each 𝑖𝑘 is either 0 or 𝑛𝑘.

• min 𝑐 ≤ min
𝑥𝑗∈[𝑎𝑗 ,𝑏𝑗]

𝑃 and max𝑥𝑗∈[𝑎𝑗 ,𝑏𝑗] 𝑃 ≤ max 𝑐.

• The de Casteljau algorithm (see [59, §15.2] and Listing 4.2) can split the domain of any

variable at any point with linear accuracy, giving two new Bernstein polynomials over the

Chapter 4 Cohesion Constraints 88

two new domains.

These three properties are sufficient to define the Boolean BBB method.

The Boolean Bernstein branch-and-bound algorithm requires each polynomial inequality to

be in the form 𝑃 (𝑥1, 𝑥2, … , 𝑥𝑚) ≤ 0 with 𝑃 in the Bernstein basis. Because addition, subtraction,

and multiplication of Bernstein basis polynomials are computationally straight-forward and nu-

merically more stable than converting from power to Bernstein basis, I suggest using Bernstein

polynomials throughout. Conversion from power- to Bernstein-basis is also possible (though

less numerically stable) using the algorithm in Listing 4.1. This algorithm is based on inverting a

hierarchy of hodographs, as is discussed in more detail in Sederberg [59, §3.3].

Given a set of Boolean expressions of quantified Bernstein-basis polynomial inequalities, the

Boolean BBB proceeds as follows:

1. Evaluate each quantified polynomial inequality as true or false if possible.

• Replace universally quantified inequalities with true if they are true for all coefficients.

• Replace universally quantified inequalities with false if they are false for any corner

coefficient.

• Replace existentially quantified inequalities with true if they are true for any corner

coefficient.

• Replace existentially quantified inequalities with false if they are false for all coeffi-

cients.

2. Evaluate Boolean operators with at least one Boolean literal as an operand (e.g., “𝑋 ⟹

false” becomes “¬𝑋”).

4.3 Computation Strategy 89

Listing 4.2 Multivariate de Casteljau algorithm

1. Given Bernstein-basis polynomial 𝑃 with coefficients 𝑝𝑖1,𝑖2,…,𝑖𝑚
, a variable 𝑥𝑗 , and a 𝑡 ∈ (0, 1)

2. Create two copies of 𝑃 , 𝐴 and 𝐵.
3. For each 𝑘1 from 1 up to 𝑛𝑗
4. For each 𝑘2 from 𝑛𝑗 down to 𝑘1
5. For each multi-index 𝐼 with 𝑖𝑗 = 𝑘2
6. Let 𝐽 be 𝐼 with 𝑖𝑗 = 𝑘2 − 1
7. Replace 𝑎𝐼 with (1 − 𝑡)𝑎𝐼 + 𝑡𝑎𝐽
8. For each multi-index 𝐼 with 𝑖𝑗 = 𝑛𝑗 − 𝑘1
9. Replace 𝑏𝐼 with 𝑎𝐼
10. 𝐴 and 𝐵 are 𝑃 with the domain of 𝑥𝑗 split at 𝑡.

3. If any polynomials remain, use the de Casteljau algorithm to split the range of one variable

in half and recur.

The last step above makes use of the following two identities

(∀𝑥 ∈ [𝑎, 𝑏] 𝑍) ≡ (∀𝑥 ∈ [𝑎, 𝑐] 𝑍) ∧ (∀𝑥 ∈ [𝑐, 𝑏] 𝑍)

(∃𝑥 ∈ [𝑎, 𝑏] 𝑍) ≡ (∃𝑥 ∈ [𝑎, 𝑐] 𝑍) ∨ (∃𝑥 ∈ [𝑐, 𝑏] 𝑍)

(4.23)

to double the number of terms and force the Bernstein coefficients to converge toward the poly-

nomials they define.

The only case where the Boolean BBB method splits an interval is when all the corner coeffi-

cients have the same sign but some other coefficient has a different sign. Listing 4.2 describes the

de Casteljau algorithm for splitting the interval of one variable of a Bernstein-basis polynomial.

In general, the best 𝑥𝑗 is the variable along which the most coefficient chains have a sign change

and a good 𝑡 to pick is where the maximal sign change in the coefficients occurs (e.g., for coeffi-

cients [−1, 3, 4, −1] a good choice for 𝑡 is 2
3
because that corresponds to the highest coefficient

(4)).

Chapter 4 Cohesion Constraints 90

Listing 4.3 The Boolean Bernstein Branch-and-Bound algorithm

1. Given a Boolean expression of quantified Bernstein-basis polynomial inequalities
2. Let 𝑍 be the multi-index 0, 0, … , 0
3. Repeat up to 𝑁 times:
4. Replace quantified inequalities that are true or false with “true” or “false”, respectively.
5. Evaluate as much of the Boolean expression as possible.
6. For each remaining polynomial 𝑃
7. For each 𝑗 ∈ {1, 2, … , 𝑚}
8. Initialize 𝑐𝑗 to 0
9. For each multi-index 𝐼 with 𝑖𝑗 = 0
10. Let 𝐽 by 𝐼 with 𝑖𝑗 = 𝑛𝑗
11. If 𝑝𝐼𝑝𝑍 > 0 and 𝑝𝐽 𝑝𝑍 > 0
12. For each 𝑘 ∈ {1, … , 𝑛𝑗 − 1}
13. Let 𝐽 be 𝐼 with 𝑖𝑗 = 𝑘
14. If 𝑝𝐼𝑝𝑍 < 0
15. Increment 𝑐𝑗 by 𝑛𝑗
16. break
17. Pick a 𝑗 for which 𝑐𝑗 is maximal
18. Pick a 𝑘 maximizing the 𝑝𝐼 with 𝑖𝑗 = 𝑘 that differ in sign from 𝑝𝑍 .
19. Get 𝐴 and 𝐵 from the Multivariate de Casteljau algorithm with 𝑃 , 𝑥𝑗 , and 𝑡 = 𝑘

𝑛𝑗−1
20. Use (4.23) to replace 𝑃 with 𝐴 and 𝐵
21. If any polynomials remain, return “false”; otherwise return the remaining Boolean value

Although the BBB method is numerically stable and requires few applications of de Castel-

jau’s algorithm for well-conditioned polynomials, there are polynomials for which it converges

poorly. All of these poorly-convergent polynomials are “close to” unsatisfied, in that some small

perturbation will yield an unsatisfied expression. If the BBB method does not converge quickly

enough, the expression can be considered unsatisfied with minimal error.

A complete version of the Boolean BBB method is presented in Listing 4.3.

4.4 Examples 91

4.4 Examples

Two examples illustrate how the technique in this chapter can be used to create cohesion-

maintenance algorithms. The first is selected for its simplicity and can be seen as a generalization

of the technique of Cornejo and Lynch [8]. The second is selected as a simple nonholonomic

example applicable to many car-like vehicles and robots. The two examples are intended to be

informative, not exhaustive; the technique can also work on, e.g., directed and undirected graphs,

uniform and nonuniform manifolds of any finite dimension, and other domains with finite state

and well-defined distance functions.

4.4.1 Holonomic agents

Consider an agent that can move in any direction in an 𝑛-dimensional Euclidean environment.

Let 𝑆 be agent position, 𝑥⃗ ∈ ℝ𝑛. Let ℬ be bounded-speed velocities, 𝑣 ∈ ℝ𝑛 where ‖𝑣‖ ≤ 𝑠′.

“Do not move” is a sensible null behavior, it being the centroid of the behavior space: 𝒩 is

𝑣 = 0⃗. This 𝒩 provides a straightforward Euclidean distance: 𝑑𝐶(𝑠1, 𝑠2) = 𝑑(𝑥⃗1, 𝑥⃗2) = ‖𝑥⃗1 −𝑥⃗2‖2.

Because the distance function is geometrically defined, (4.13) subsumes (4.12). It is thus suffi-

cient to convert (4.11) and (4.13) into polynomial inequalities. In this example, the predicates can

be converted into polynomials without approximation. (4.11) becomes

∀𝑡 ∈ [0, Δ𝑡], ‖𝑣𝑛‖2 ≤ 𝑠′
‖𝑥⃗𝑎 − 𝑥⃗𝑛 + (𝑣𝑎 − 𝑣𝑛)𝑡‖

2

2
− 𝑟2 ≤ 0 (4.24)

and (4.13) becomes

∀𝑡 ∈ [0, Δ𝑡] ‖𝑥⃗𝑎 + 𝑣𝑎𝑡 −
𝑥⃗𝑎 + 𝑥⃗𝑛

2 ‖
2

2
− 𝑟2

4
≤ 0. (4.25)

Chapter 4 Cohesion Constraints 92

These inequalities can be used directly with the BBB method to evaluate if a particular behavior

is guaranteed to ensure cohesion.

Holonomic agents are unusual in that the BBB method is not required. The inequalities are

quadratic and admit direct solution; they also define spheres which can be handled via geometric

techniques. In more involved cases closed-form solutions are not available and the BBB method

is more important.

4.4.2 Car-like Agents

Car-like agents are traditionally modeled as non-holonomic, being unable to move sideways. A

car-like agent’s state is speed, heading, and position (𝑠, 𝜃, 𝑥⃗); its behavior is a forward acceleration

𝑎 bounded by |𝑎| ≤ 𝑎′ and a signed curvature 𝑐 bounded by |𝑐| ≤ 𝑐′.

The basic distance function 𝑑 is Euclidean distance ‖𝑥⃗1 − 𝑥⃗2‖2.

To find 𝑑𝐶 , I first construct 𝒩 from 𝑋 and 𝑌 as outlined in Section 4.2.1. Let 𝑋 be a fixed

heading 𝜃∅ and speed 𝑠∅ > 0; let 𝑌 independently turn to that heading and accelerate to that

speed. This 𝑌 is not optimal since orientation can change more rapidly at higher speeds, but it

simplifies the presentation and, since 𝑠∅ > 0, it does move any agent into a state in the domain

of 𝑋. I also assume the agents can distinguish between orientations 𝜃 and 𝜃 + 2𝜋 to reduce the

number of terms presented below.

I again use (4.13) instead of (4.12) because the distance function is geometric. What remains

is deriving piecewise polynomials for 𝐵𝑠(𝑡), 𝒩𝑠(𝑡), and 𝑑𝐶 .

4.4 Examples 93

For a general 𝐵 = (𝑎(𝑡), 𝑐(𝑡)) and 𝑠 = (𝑠0, 𝜃0, 𝑥⃗0), the following definite integrals define 𝐵𝑠(𝑡):

𝑠(𝑡) = 𝑠0 + ∫
𝑡

0
𝑎(𝜏)𝑑𝜏 (4.26)

𝜃(𝑡) = 𝜃0 + ∫
𝑡

0
𝑐(𝜏)𝑠(𝜏)𝑑𝜏 (4.27)

𝑥⃗(𝑡) = 𝑥⃗0 + ∫
𝑡

0
𝑠(𝜏)𝑓(𝜃(𝜏))𝑑𝜏, (4.28)

where the “forward” vector 𝑓(𝜃) ≜ (cos(𝜃), sin(𝜃)).

Observe that 𝑑𝐶(𝐴𝑎(𝑡), 𝐵𝑏(𝑡)) over [0, 𝑡0] is the same as 𝑑(𝑡0[𝐴
𝒩], 𝑡0[

𝐵
𝒩]) over [0, 𝑡0 +𝑡⋆], where

𝒩 = 𝑡[𝑌
𝑋]. It is thus sufficient to handle the general expression 𝑡0[

𝑎,𝑐
𝒩]𝑠0,𝜃0,𝑥⃗0

, where 𝑡0 is 0 for 𝒩

and Δ𝑡 for 𝐴 and 𝐵 in (4.11) and (4.13).

𝑎𝑌 = sign(𝑠∅ − 𝑠0 − 𝑎𝑡0)𝑎′ (4.29)

𝑡𝑎 = 1
𝑎′ |𝑠∅ − 𝑠0 − 𝑎𝑡0| + 𝑡0 (4.30)

𝑎(𝑡) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑎 𝑡 ≤ 𝑡0

𝑎𝑌 𝑡0 < 𝑡 ≤ 𝑡𝑎

0 𝑡𝑎 < 𝑡

(4.31)

𝑠(𝑡) =

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝑠0 + 𝑎𝑡 𝑡 ≤ 𝑡0

𝑠0 + 𝑎𝑡0 − 𝑎𝑌 𝑡0 + 𝑎𝑌 𝑡 𝑡0 < 𝑡 ≤ 𝑡𝑎

𝑠(𝑡0) + (𝑡 − 𝑡0)𝑎𝑌 𝑡0 < 𝑡 ≤ 𝑡𝑎

𝑠∅ 𝑡𝑎 < 𝑡

(4.32)

The above speeds formalize the notion of accelerating or decelerating to 𝑠∅ as quickly as possible

after 𝑡0. The following heading information formalizes turning toward 𝜃∅ as quickly as possible

Chapter 4 Cohesion Constraints 94

after 𝑡0, as illustrated in Figure 4.2 and is complicated by the fact that speed impacts the rate of

heading change. Thus even the heading before 𝒩 kicks in (i.e., 𝜃(𝑡0)) has several terms.

𝜃(𝑡0) = 𝜃0 + 𝑐𝑠0𝑡0 + 1
2

𝑐𝑎𝑡2
0 (4.33)

𝑐𝑌 = sign(𝜃∅ − 𝜃(𝑡0))𝑐′ (4.34)

𝜃𝑎𝑌
(𝑡) = 𝜃(𝑡0) + 𝑐𝑌 𝑠(𝑡0)(𝑡 − 𝑡0) + 1

2
𝑎𝑌 𝑐𝑌 (𝑡 − 𝑡0)2 (4.35)

𝑡1 = −𝑐𝑌 𝑠(𝑡0)+√𝑐2
𝑌 𝑠(𝑡0)2−2𝑎𝑌 𝑐𝑌 (𝜃(𝑡0)−𝜃∅)

𝑐𝑌 𝑎𝑌

+ 𝑡0 (4.36)

𝑡2 = 𝑡1 +
𝜃∅ − 𝜃𝑎𝑌

(𝑡𝑎)
𝑠∅𝑐𝑌

(4.37)

𝑡𝑐 = max(𝑡1, 𝑡2) (4.38)

𝑐(𝑡) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑐 𝑡 < 𝑡0

𝑐𝑌 𝑡0 ≤ 𝑡 < 𝑡𝑐

0 𝑡𝑐 ≤ 𝑡

(4.39)

In the above, the orientation of the agent while it is both accelerating and turning is 𝜃𝑎𝑌 . It stops

turning at time 𝑡1 if it stops turning before it stops accelerating; otherwise it stops turning at

time 𝑡2. There are two cases for 𝜃 depending on the relative order of 𝑡𝑐 and 𝑡𝑎, but both may be

expressed in the same piecewise equation because the third piece only applies when 𝑡𝑎 < 𝑡𝑐 .

𝜃(𝑡) =

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝜃0 + 𝑐𝑠0𝑡 + 1
2
𝑐𝑎𝑡2 𝑡 ≤ 𝑡0

𝜃(𝑡0) + 𝑐𝐻𝑠0𝑡 + 𝑐𝐻𝑎𝑡0 𝑡 − 𝑐𝐻𝑎ℎ𝑡0 𝑡 + 1
2
𝑐𝐻𝑎ℎ𝑡2 𝑡0 < 𝑡 ≤ min(𝑡𝑎, 𝑡𝑐)

𝜃∅ + 𝑠∅𝑐𝐻 (𝑡 − 𝑡𝑐) 𝑡𝑎 < 𝑡 ≤ 𝑡𝑐

𝜃∅ otherwise

(4.40)

4.5 Conclusion 95

These expressions for 𝑎, 𝑐, and 𝜃 can be plugged into (4.28) to obtain the following expression for

𝑥⃗:

𝑥⃗(𝑡) = 𝑥⃗0 +

𝑡

∫
0

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

(𝑠0 + 𝑎𝜏)𝑓 (𝜃0 + 𝑐𝑠0𝜏 + 1
2
𝑐𝑎𝜏2

) 𝑑𝜏 𝑡 ≤ 𝑡0

(𝑠(𝑡0) + (𝜏 − 𝑡0)𝑎ℎ)𝑓(𝜃𝑎ℎ
(𝜏))𝑑𝜏 𝑡0 < 𝑡 ≤ min(𝑡𝑎, 𝑡𝑐)

(𝑠∅)𝑓(𝜃∅ + 𝑠∅𝑐𝐻 (𝜏 − 𝑡𝑐))𝑑𝜏 𝑡𝑎 < 𝑡 ≤ 𝑡𝑐

(𝑠(𝑡0) + (𝜏 − 𝑡0)𝑎ℎ)𝑓(𝜃∅)𝑑𝜏 𝑡𝑐 < 𝑡 ≤ 𝑡𝑎

(𝑠∅)𝑓 (𝜃∅)𝑑𝜏 max(𝑡𝑎, 𝑡𝑐) < 𝑡

(4.41)

The distance function 𝑑𝐶 is thus max
𝑡∈[0,Δ𝑡]

‖𝑥⃗1(𝑡) − 𝑥⃗2(𝑡)‖2.

Because the integration in the expression for 𝑥⃗ cannot be solved in closed form, a polynomial

approximation of 𝑓 can be used to obtain a piecewise-polynomial integral instead. The error

terms resulting from this approximation are also polynomial; for example, the error in the first

piece is (𝑠0𝜀𝑡 + 1
2
𝜀𝑎𝑡2), where 𝜀 is the (constant) error of the polynomial approximation. These

errors can be added into the inequalities (4.11) and (4.13) as discussed in Section 4.3.1 to obtain

conservative approximations.

All that remains is to split the piecewise functions, square roots (in 𝑡1 and 𝑑), and sign depen-

dence (in 𝑎𝐻 , 𝑡𝑎, and 𝑐𝐻) to obtain a Boolean expression of polynomial inequalities suitable for

the BBB method.

4.5 Conclusion

This chapter has presented a technique for generating computable predicates ensuring cohesion

for wide varieties of mobile agents. The technique replies on

• a distance function satisfying the triangle inequality,

Chapter 4 Cohesion Constraints 96

• the ability to sense other agents within a fixed distance,

• known error bounds on sensor and actuator behavior,

• known upper bound on the time between consecutive behavior selections, and

• the ability to evaluate polynomials and Boolean expressions.

The technique thus works for both geometric and graph-based environments with or without

uncertainty and does not require any form of explicit communication.

The most obvious extension of this work is to develop additional constraints for distance

functions where the triangle inequality does not hold. A classic example of such an environment

is line-of-sight in environments with static obstacles. Some preliminary work in this direction

is provided in Section 4.2.3; however, additional investigation into line-of-sight versions of 𝒩 ,

line-of-sight given uncertainty, and related issues are needed.

Another extension would be to handle other maneuverability constraints, such as collision

avoidance. Such an extensionwould likely resemble the reciprocal velocity obstacle technique [67]

extended to arbitrary maneuvers and uncertainty in a manner similar to the generalized reactive

navigation method [66]. Conceptually all that is required is to insert these constraints into the

Boolean expressions of polynomial inequalities; however, the assurance that some satisfying be-

havior exists will require additional investigation.

Cohesion constraints are an important part of local and global cohesion algorithms. These

algorithms are discussed in greater detail in Chapter 5.

Chapter 5

Local and Global Cohesion

Cohesion requires that a group of moving agents remain a single group as they move.

Local cohesion ensures cohesion by requiring that pairs of agents maintain connection

until the interposition of a third agent connected to each. Global cohesion ensures co-

hesion by requiring that pairs of agents maintain connection if failing to do so would

split the group in two. In this chapter I develop techniques for ensuring local and global

cohesion using an underlying cohesion predicate, local communication, and bounded

memory. I also explore notions of global cohesion in the face of malicious agents.

Cohesion is the property of a swarm of agents remaining a single swarm as it moves. Cohesion

depends on a notion of connectivity; typically connection means that agents are within sensor

distance of one another, sometimes also suggesting line-of-sight. Each agent of a cohesive group

must not become disconnected from the other agents in that group.

Local cohesion algorithms ensure cohesion of a swarm in a decentralizedmanner: each agent’s

cohesion-maintaining behaviors are informed only by its own local observations. Global co-

hesion involves coordination across an entire group of agents to allow for non-local cohesion-

97

Chapter 5 Local and Global Cohesion 98

maintaining behaviors such as the breaking of rings into lines. Both may be constructed using

cohesion constraints that keep a pair of connected agents connected. A discussion of one possible

family of cohesion constraints is given in Chapter 4.

These terms may be formally defined as follows.

Definition 5.1 (Cohesion). Given a notion of two agents being connected, define the following:

Let 𝐺 be a graph with a node for each agent and an edge between each pair of connected agents.

Two agents belong to the same swarm if they are in the same connected subgraph of 𝐺.

A cohesion constraint between two connected agents, if observed by both agents, ensures that

the agents remain connected as they move.

A swarm exhibits local cohesion if no agent 𝐴 will break connection with an agent 𝐵 unless 𝐴

can see a connected path to 𝐵 that is not breaking.

A swarm exhibits global cohesion if no agent 𝐴 will break connection with an agent 𝐵 unless

there exists a connected path to 𝐵 that is not breaking.

A variety of cohesion algorithms have been published and are reviewed in Section 1.3.3. My

approach to local cohesion is similar to many previously-published approaches and is included

herein primarily for completeness. My approach to global cohesion does not require agents to

learn the full connectivity graph of the swarm, requiring less memory than previous approaches.

My technique for guaranteeing cohesion with malicious agents present is, to my knowledge, the

first to solve this problem.

5.1 Local Cohesion Without Communication 99

Figure 5.1: Heavy lines show neighbor relationships; dashed lines are connections that are not
neighbors; the large circle is the area connected to agent 1. On the left, agents 1 and 3 are
not neighbors because agent 2 is between them. On the right, noise causes agents to appear to
be anywhere within the shaded circles. Agent 1 thinks it might be connected to agent 4 and
neighbors with agent 3, but agents 4 and 3 disagree.

5.1 Local Cohesion Without Communication

Local cohesion requires that an agent stay connected with each of the agents to which it is cur-

rently connected unless it can observe another connected path to that agent and knows that that

other path is not breaking. When agents do not explicitly communicate their plans (or do not

trust others’ communications), knowing that another path is not breaking is challenging. If a

distance function is available, however, local cohesion may be readily achieved through neighbor

computations.

5.1.1 Distance-based Local Cohesion

Given three states 𝑠1, 𝑠2, and 𝑏, state 𝑏 is said to be between 𝑠1 and 𝑠2 if 𝑑(𝑠1, 𝑏) < 𝑑(𝑠1, 𝑠2) ∧

𝑑(𝑠1, 𝑠2) < 𝑑(𝑏, 𝑠2). Two agents areneighbors if they are connected and no third agent is between

them.

For agents experiencing sensor uncertainties, let neighbor status be conservatively inter-

preted: agent 𝐴 treats agent 𝑁 as a neighbor if 𝐴 believes 𝑁 might be connected to it and 𝐴

Chapter 5 Local and Global Cohesion 100

(a) Open (b) Ring (c) General

Figure 5.2: Several swarms; neighbors are displayed in bold solid lines, connections in dashed
lines. While open configurations (a) can change into rings (b) freely, and both may change to and
from general swarms (c), rings cannot readily change into open configurations.

cannot identify a third agent that is definitely between 𝐴 and 𝑁 (see Figure 5.1).

Local cohesion is maintainedwhen each agent uses a cohesion constraint to remain connected

to each neighbor. Since the graph of (mutually-suspected) neighbors is always a connected sub-

graph of the graph of the graph of connected agents, this form of local cohesion guarantees swarm

remains cohesive.

Local cohesion can be trivially extended to handle multiple intermediate agents instead of

just one in the definition of “between.” The single-intermediate-agent version above is used for

clarity of presentation.

5.1.2 Problems with Local Cohesion

Local cohesion maintains some connections that could be safely broken without separating the

swarm. While locally cohesive swarms can reconfigure themselves, they cannot break redundant

connections in non-local loops (see Figure 5.2). Since swarms can create non-local loops, the

inability to break them leads to irreversible behavior that can cause locally-cohesive swarms to

be trapped, as illustrated in Figure 5.3.

5.1 Local Cohesion Without Communication 101

(a) one swarm before trap (b) trapped (c) two swarms before trap

Figure 5.3: A swarm becoming trapped around an obstacle. Local cohesion prevents the the
swarm from leaving the obstacle.

The simplest technique for preventing trapping behaviors is to forbid irreversible events

within a swarm: only already-connected agents may move into a neighboring configuration.

However, this technique is overly restrictive, preventing swarms frommerging and broken swarms

from reforming.

Communicationwithin the swarm can be used to detect the difference between swarmmerges

and non-local joins, but such communication does not prevent trapping when two swarms meet

in multiple locations (see Figure 5.3(c)). Multiple potential join points could be arbitrated using

distributed mutual exclusion (see, e.g., [33]), but such an approach is more involved than full

global cohesion.

Even if inter-swarm merges are ignored or handled appropriately, preventing intra-swarm

merges reduces swarm mobility: for example, a merge-free swarms must snake through a forest

single-file instead of moving through it like a crowd. When no small obstacles exist, local cohe-

sion works well, but for swarms in more cluttered environments global cohesion, which does not

have difficulty with non-local breaks, is a better solution.

Chapter 5 Local and Global Cohesion 102

Figure 5.4: Illustration of Algorithm 5.1. Black arrow heads indicate messages (∗, 𝑠, 𝑑, 𝑡) sent
during protocol. Red arrows are a sample of messages heard but ignored, with the reason noted
next to the arrow. We assume that 𝑠′ > 𝑠 and 𝑠′ sent (𝑠′, 𝑠′, 𝑑′, 𝑡′) before receiving (∗, 𝑠, 𝑑, 𝑡). The
outlined arrowhead represents the break approval message.

5.2 Global Cohesion with Trust

Global cohesion allows agents to break connection as long as such a breakwill not split the swarm

in two. Detectingwhich neighborsmay be safely broken requires communication between agents

to ensure that both (1) there is another path between the agents in question and (2) that the other

path is not breaking.

Global cohesion can be achieved by having each agent discover the entire connectivity of the

swarm, but such an approach requires memory at least proportional to the size of the swarm. If

each agent has a unique communicable identity and if all identities are subject to a total order, a

constant-memory approach can be used to determine if a proposed break is permissible.

The basic idea of this approach is to send break requests through the neighbor graph. Each

request is sorted based on the identity of its participating agents; requests are only forward across

edges in the neighborhood graph if the corresponding edge is either not participating in a break

request or has a lower identity than the current request. This idea is achieved by the protocol

presented in Algorithm 5.1 and illustrated in Figure 5.4.

5.2 Global Cohesion with Trust 103

Algorithm 5.1 Global Cohesion

Each agent may move freely provided it does not break connection with any neighbor.
If an agent desires to break with a neighbor, it broadcasts a message seeking an alternate con-

nection to that neighbor within the swarm. This takes the form (from, source, destination, times-
tamp). When 𝐴 wishes to separate from neighbor 𝐵 it broadcasts (𝑖𝐴, 𝑖𝐴, 𝑖𝐵, 𝑛𝑜𝑤 + Δ𝑡). If 𝐴
receives (𝑖𝐵, 𝑖𝐴, 𝑖𝐵, 𝑡) or broadcasts (𝑖𝐴, 𝑖𝐵, 𝑖𝐴, 𝑡) then 𝐴 and 𝐵 have permission to break connec-
tion.

When agent 𝐴 receives message (𝑖𝑓 , 𝑖𝑠, 𝑖𝑑 , 𝑡) it sends message (𝑖𝐴, 𝑖𝑠, 𝑖𝑑 , 𝑡) unless any of the
following are true:

1. 𝐴 and 𝑓 are not neighbors or have already agreed to break;

2. 𝑖𝑓 = 𝑖𝑠 and 𝑖𝑑 = 𝑖𝐴 (edges can not approve themselves);

3. 𝐴 has received (𝑖𝑓 , 𝑖𝑓 , 𝑖𝐴, 𝑡1 ≥ 𝑛𝑜𝑤) and 𝑖𝑓 > 𝑖𝑠 (ignore messages from across an edge that
a higher-priority neighbor is trying to break);

4. 𝐴 has sent (𝑖𝐴, 𝑖𝐴, 𝑖𝑓 , 𝑡1 ≥ 𝑛𝑜𝑤) and 𝑖𝐴 > 𝑖𝑠 (ignore lower-priority messages from across an
edge you are trying to break); or

5. 𝑡 < 𝑛𝑜𝑤 (messages expire)

To reduce duplicate communication, we can also add

6. 𝐴 already sent (𝑖𝐴, 𝑖𝑠, 𝑖𝑑 , 𝑡) (messages do not cycle);

but that condition is not required for correctness.
When an agent sends a message with timestamp 𝑡, it is not permitted to initiate a new message

until after 𝑡 expires.

Chapter 5 Local and Global Cohesion 104

Items 1, 2, 4, and 5 of Algorithm 5.1 require only finite memory. Item 6 in Algorithm 5.1

involves potentially 𝑛2 memory, where 𝑛 is the number of agents in the swarm, but is not required

for correct functionality. Item 3 might involve memory proportional to the number of neighbors,

which is small in practice but can be unbounded in general. However, recalling only a finite set

of break requests and ignoring new messages once that set is filled will still maintain cohesion.

Algorithm 5.1 makes explicit reference to a timestamp, implying a globally-synchronized

clock. This assumption is generally supported by the existence of good clock synchronization

algorithms. However, asynchronous clocks may be used instead if communication across the

entire network of agents has an known upper time bound 𝑇 . In that case, timestamps may be

omitted and agent should not initiate any messages until 𝑇 after sending a message.

Theorem 5.1. For any fully connected connectivity graph, Algorithm 5.1 allows only breaks that

leave the connectivity graph fully connected. If messages do not time out, Algorithm 5.1 forbids only

one break for each set of requests that would split the swarm in two.

Proof. Let 𝑁 = (𝑉 , 𝐸) be the graph with edges between neighboring agents. It is never the case

that, for 𝑒𝑖, 𝑒𝑗 ∈ 𝐸, both break request 𝑖 crosses edge 𝑒𝑗 and break request 𝑗 crosses edge 𝑒𝑖 unless

either 𝑖 or 𝑗 has expired.

Consider break request 𝑒𝑖. Let 𝑁𝑖 = (𝑉 , {𝑒𝑗 ∈ 𝐸 ∶ 𝑗 < 𝑖}) be the graph containing only

edges that will forward break request 𝑒𝑖. If 𝑒𝑖 is a bridge on 𝑁𝑖, the break request will be denied

and 𝑒𝑖 will be a bridge after all break requests are resolved. Otherwise, the break request will be

approved and not break the graph.

Undiscussed byAlgorithm 5.1 is how to determine when to send a message and with what

initial timestamp. Timestamp doubling can be used to ensure that eventually messages last long

5.2 Global Cohesion with Trust 105

Figure 5.5: Theorem 5.1. On the left is 𝑁 with break requests in red dashed lines. In the center,
𝑒1 is a bridge on 𝑁1 so it cannot break. On the right 𝑒3 is not a bridge in 𝑁3 so it can break. The
forbidden breaks are precisely those required to connect the graph.

enough to reach their destinations; alternatively, expiredmessages can be forwarded so that edges

discover that their message expired rather than being blocked. The frequency with which mes-

sages are initiated is limited only by the communication medium utilized; heuristics for selecting

message initiations and durations are beyond the scope of this dissertation.

5.2.1 Limited Malice

When some agents cannot observe other agents directly, they are dependent on intermediaries to

convey information about the swarm status. Thus, global cohesion is depends on some significant

portion of each swarm being trustworthy.

Communication within a swarm is interrupted if a vertex cut of the swarm is malicious.

Swarms with malicious vertex cuts of can be constructed for 𝑘-connected graphs with arbitrary

𝑘, and may be created with only 𝑘 malicious agents and with an arbitrary minimum path length

between malicious agents; one such construction is illustrated in Figure 5.6. I thus require the

distribution of malicious agents to be such that in any vertex cut of the graph there must be at

least 𝑚 + 1 trustworthy agents and each trustworthy agent is connected to no more than 𝑚 mali-

cious agents. These requirements mean that if an agent forwards messages it hears from at least

Chapter 5 Local and Global Cohesion 106

Figure 5.6: Example construction of a four-vertex cut using four widely separated agents in a four-
connected graph. Wide gray curves represent arbitrarily long four-connected paths of agents.

𝑚 + 1 distinct agents, then messages set by trustworthy agents will reach all other trustworthy

agents in the graph.

Let 𝑘-neighbors refer to connected agents that have fewer than 𝑘 agents between them.

Theorem 5.2 (Local Cohesion Despite Malice). If there are no more than 𝑚 malicious agents con-

nected to each trustworthy agent then applying a cohesion constraint between each pair of (2𝑚 +

1)-neighbors ensures there are 𝑚 + 1 trustworthy agents per vertex cut in the connectivity graph.

Proof. Consider any vertex cut in the graph. Consider two agents, one on each side of the cut,

who are connected to the same agent in the cut. All of the agents between those two agents are

in the cut. The agents would never have allowed fewer than 2𝑚+1 agents between them. Since a

malicious agent cannot impact the neighbor relationship of agents with which it is not connected,

one malicious agent is required per missing intermediary. Thus, at most 𝑚 of those 2𝑚 + 1 agents

could be missing or malicious, leaving at least 𝑚 + 1 that must be trustworthy.

The following modification of Algorithm 5.1 also maintains 𝑚 + 1 trustworthy agents per cut

provided no more than 𝑚 malicious agents are connected to any given agent. Algorithm 5.2

requires agents remember all non-expired messages they have received, implying that memory

will scale with communication bandwidth andwithmaximum timestamp duration. Algorithm 5.2

5.2 Global Cohesion with Trust 107

Algorithm 5.2 Non-local Trustworthy Cuts

Each agent may move freely provided it does not break connection with any (2𝑚 + 1)-neighbor.
Agents seeking to break with a neighbor broadcast a message as in Algorithm 5.1.

When agent 𝐴 receives message (𝑖𝑓 , 𝑖𝑠, 𝑖𝑑 , 𝑡) it ignores messages per items 1–6 in Algorithm 5.1;
non-ignored messages are added to an internal set of non-expired messages. If the set now con-
tains either (2𝑚 + 1) entries (𝑖𝑋 , 𝑖𝑠, 𝑖𝑑 , 𝑡) with distinct 𝑖𝑋 or a single entry (𝑖𝑠, 𝑖𝑠, 𝑖𝑑 , 𝑡) then 𝐴
broadcasts (𝑖𝐴, 𝑖𝑠, 𝑖𝑑 , 𝑡).

Agents 𝐴 and 𝐵 may break when 𝐵 sends message (𝑖𝐵, 𝑖𝐴, 𝑖𝐵, 𝑡) provided 𝐴 had earlier sent
message (𝑖𝐴, 𝑖𝐴, 𝑖𝐵, 𝑡).

When an agent sends a message with timestamp 𝑡, it is not permitted to initiate a new message
until after 𝑡 expires.

also assumes agents are at most weakly byzantine—that is, agents are not able to deceive others

as to their own identity when sending messages.

Theorem 5.3. Breaks permitted by Algorithm 5.2 will never introduce cuts with fewer than 𝑚 + 1

trustworthy agents.

The following proof is illustrated in Figure 5.7.

Proof. Consider each cut 𝒞 introduce when Algorithm 5.2 approved a break between agents 𝐴

and 𝐵; assume the break request was initiated by 𝐴.

Suppose 𝐴 and/or 𝐵 is malicious. Since both 𝒞 ∪ {𝐴} and 𝒞 ∪ {𝐵} were cuts before the

break, each had 𝑚 + 1 trustworthy agents; since either 𝐴 or 𝐵 is malicious, 𝒞 must contain 𝑚 + 1

trustworthy agents.

Suppose both 𝐴 and 𝐵 are trustworthy. An agent will only have approved the break if it

received the request from 2𝑚 + 1 connected agents. Since each agent is connected to at most

𝑚 malicious agents, each agent that approved the break must have received the request from at

least 𝑚 + 1 trustworthy agents. Since neither 𝐴 nor 𝐵 would have transferred the message across

𝒞 , for 𝐵 to have approved the message some agent 𝑋 on 𝐵s side of 𝒞 must have received the

Chapter 5 Local and Global Cohesion 108

Figure 5.7: Illustration of proof to Theorem 5.3. A break request is sent by 𝐴 and propagates
through 𝐴’s side of vertex cut 𝒞 . If the request is to make it to 𝐵, it must reach some arbitrary
first node 𝑋 on 𝐵’s side of 𝒞 , requiring 𝑚 + 1 trustworthy requests from agents in 𝒞 .

message from at least 𝑚 + 1 trustworthy agents in 𝒞 . Thus, 𝒞 must contain 𝑚 + 1 trustworthy

agents and breaking the connection between 𝐴 and 𝐵 will leave at least 𝑚+1 trustworthy agents

in each cut.

5.3 Conclusion

Both local and global cohesion can be built relatively simply off of any cohesion constraint. I

introduced in particular a finite-memory approach to global cohesion and methods of providing

both local and global cohesion for swarms containing a limited group of malicious agents.

I used malice in this chapter as the worst-case behavior of a malfunctioning agent. If some

agents are actively working against swarm objectives, cohesion itself might not be the right ob-

jective. A single malicious agent can control the behavior of the entire cohesive swarm if the rest

of the swarm is unwilling to abandon it.

Additional research could explore algorithms that allow malicious agents to be ignored. As

a simple example, if each agent in a flock tracks the median instead of mean behavior of its

neighbors then a small number of malicious agents are ignored. Developing similar techniques

5.3 Conclusion 109

for algorithms that (unlike flocking) are composable with other objectives is an area for future

investigation.

Additionally, much of the chapter can be streamlined if malicious agents can be identified

and ignored explicitly. Techniques for recognizing and ignoring malicious intent are discussed

in Chapter 6.

Chapter 5 Local and Global Cohesion 110

Chapter 6

Coalescence

Coordinated groups of agents may be characterized as either swarms (continuously con-

nected) or hives (intermittently connected). Agents coalesce when they create or join such

a coordinated group. Swarm coalescence for correctly-behaving agents is just a combi-

nation of rendezvous and cohesion. For agents that are not fully trustworthy and/or for

agents forming a hive, the process of coalescing can be more involved. In this chapter

I develop a set of coalescence algorithms creating both swarms and hives with varying

levels of trust in other agents’ correct behavior.

Agents coalesce when they change from a state of acting independently to a state of acting as a

group. Coalescence algorithms are of two kinds: those that form a cohesive swarm, meaning that

agents maintain continuous interconnectivity; and those that form a hive, meaning that agents

only periodically connect with other members of the hive.

Swarm and hive coalescence both involve at least two steps. First, agents must locate one

another, either through rendezvous (see Chapter 3) or through simple search, depending on the

nature of the groups in question. Second, agents that have found one another must agree on a

111

Chapter 6 Coalescence 112

coordinated behavior, including how to communicate future changes to other members of the

group. If there is a potential for some agents to be malicious or malfunctioning, a third step

requires agents to recognize and react to such untrustworthy agents in a way that the whole

collective can agree with.

In this chapter I provide approaches to each of these tasks for both hives and swarms, with

proofs accompanying each approach.

6.1 Terminology

6.1.1 Swarms and Hives

Assume that there is a notion of two agents being connected, meaning they can sense one an-

other and, if they have access to inter-agent communication, also communicate with one another.

Let the connectivity graph have a node for each agent and an edge between each pair of con-

nected agents. Let a cluster of agents be the nodes of a connected component of the connectivity

graph. Let a clique of agents be the nodes of a clique in the connectivity graph—that is, every

pair of agents within the clique are connected.

A group of agents belong to the same swarm if they are currently and will remain part of a

single cluster. A group of agents belong to the same small swarm if they are currently and will

remain part of a single clique.

Defining a hive is more involved.

Definition 6.1 (Hive). Define a predicate 𝑐(𝐴1, 𝐴2, 𝑡) which is true if and only if agents 𝐴1 and 𝐴2

are connected at time 𝑡.

6.1 Terminology 113

Define 𝐻 recursively as follows:

𝐻0(𝐴, 𝑡0, 𝑡) = {(𝐴, 𝑡1) | 𝑡0 ≤ 𝑡1 ≤ 𝑡}

𝐻𝑖>0(𝐴, 𝑡0, 𝑡) = {(𝐴1, 𝑡2) | ∃𝐴2 s.t. (𝐴2, 𝑡1) ∈ 𝐻0(𝐴, 𝑡0, 𝑡) ∧ ∃𝑡2 ∈ [𝑡1, 𝑡] s.t. 𝑐(𝐴1, 𝐴2, 𝑡2)}

𝐻(𝐴, 𝑡0, 𝑡) =
∞

⋃
𝑖=0

𝐻𝑖(𝐴, 𝑡0, 𝑡).

(6.1)

𝐻𝑖 is the set of agents who can receive a message from 𝐴 in 𝑖 hops in the specified time window; 𝐻

is the set of all agents that can receive a message from 𝐴 in the specified time window.

A hive has the property that every agent can get a message to every other agent in finite time.

A set of agents 𝒜 is a hive at time 𝑡0 with time-varying lag 𝑇 (𝑡) if

∀𝐴 ∈ 𝒜 ∀𝑡 ≥ 𝑡0 𝒜 ⊆ 𝐻(𝐴, 𝑡, 𝑡 + 𝑇 (𝑡)). (6.2)

6.1.2 Knowledge, Malice, and Identity

In general, two agents observing the same event may disagree on what they observed and may

not be able to determine the exact truth of every predicate they desire. Let noise-freemean that

any agents observing the same events will agree on what those events imply; noisy means that

agents observing the same eventsmay disagree. An agent𝐴 is sure or 1-sure of a predicate 𝑥 if its

observations are sufficient to establish 𝑥 is true. For noisy situations, define 𝑘-surety inductively:

an agent 𝐴 is 𝑘-sure of predicate 𝑥 if it is sure of the predicate “any agent observing the same

events as I would be at least (𝑘 − 1)-sure of 𝑥.” 0-sure means not sure.

An agent is malicious in 𝑇 if, during time window 𝑇 , it acts in a way not permitted by the

algorithm it is supposed to be following. An agent is malicious if it is malicious in some future

Chapter 6 Coalescence 114

time window. An agent is trustworthy if it is not malicious.

A finite observation can at most verify that an agent is not malicious in some time window 𝑇 ;

this provides no guarantee it will not be malicious after 𝑇 . Thus, there is no way to deduce that

an unknown agent or swarm is trustworthy without some type of oracle or a priori knowledge

about trustworth. This leads to the following theorem.

Theorem 6.1 (Identifiability). Coalescence in the presence of an unbounded but finite number of

malicious agents requires that each agent can identify each other encountered agent and have suffi-

cient storage to remember the identity of all malicious agents it has encountered.

Proof. At least one agent must adjust its behavior when agents rendezvous or they cannot coa-

lesce. By the pigeonhole principle, any change in behavior will delay the time to rendezvous with

some other agents. If the same malicious agent can repeatedly rendezvous with an agent, it can

repeatedly delay that agent rendezvousing with other, non-malicious agents.

Preventing repeatedly reacting to encounters with the same malicious agent requires that

each agent be both able to identify the agents with which it rendezvous and to remember the

malicious subset of the agents it encounters.

I assume that every agent has a unique identity that is visible to all other agents; this means

malicious agents are at most weakly Byzantine. An identity is communicable if it can be seri-

alized into the same form by every observer, including the agent possessing the identity. Agent

identities are comparable if all agents agree on a total ordering of identities. All of my algorithms

assume comparable identities; all except those for small swarms also assume communicable iden-

tities.

6.2 Small Swarms 115

6.2 Small Swarms

In a small swarm the entire connectivity graph is a single clique; that is, every agent is connected

to, and can thus observe, every other agent. For coalescence, small swarm means that if all

of the agents were to coalesce, they could form a small swarm and remain a small swarm as

they move through the environment. I demonstrate that this potential for mutual-observation

allows the development of algorithms that guarantee coalescence of all correctly-behaving agents

without requiring any explicit communication, even if there an arbitrary number of the agents

are malicious.

6.2.1 Full Trust

The simplest coalescence algorithm works for small swarms with no noise or malice. When 𝑛

agents rendezvous, the one with the maximum identity becomes the leader. The leader continues

its rendezvous search uninterrupted, while the other agents follow it. This general approach has

been discussed by several authors, often in the context of motivating the rendezvous problem

(see Section 1.3.2).

6.2.2 Noise-Free Malice

When observations of agents are noise-free, each agent in a swarm will agree upon the malice of

the leader provided they have all observed a sufficient quantity of the leader’s actions. The sim-

plest extension of the full-trust rendezvous in this case is to have each agent maintain a blacklist

of agents it has observed acting maliciously. Individual blacklists, such as those illustrated in

Figure 6.1, fail because a malicious agent can manipulate different agents’ blacklists separately.

Chapter 6 Coalescence 116

(a) Leader blacklisting. (b) Follower blacklisting.

Figure 6.1: Failure of two example approaches to individual blacklisting where 𝐴 > 𝐵 > 𝐶 and 𝐴
is malicious. If agents do not join swarms with blacklisted leaders (a) then 𝐴 can play nice with
𝐶 to ensure 𝐵 and 𝐶 do not coalesce. If agents join swarms with any non-blacklisted members
(b) then 𝐴 can follow 𝐵 until 𝐶 comes along; then, when 𝐴 and 𝐵’s rendezvous searches differ,
𝐶 follows 𝐴 while 𝐵 follows itself.

Individual blacklists that track entire swarms instead of individual agents do work, but require

exponential space (there are 𝑛! possible swarms of 𝑛 agents).

I propose instead a shared-blacklist approach thatmakes three guarantees: trustworthy agents

never leave a swarm, sufficiently malicious agents never lead a swarm for too long, and each

swarm increases in size between times a malicious agent leads it.

The core of this approach is a specialized blacklist that stores two kinds of elements: “arrivals”

and “bans.” The API of this blacklist is given in Listing 6.1.

Lemma 6.1 (Blacklist Properties). The blacklist described in Listing 6.1 satisfies the following prop-

erties:

1. There is at most one (ban, 𝐴) and one (arrive, 𝐴) in the list for each agent 𝐴.

2. An element (ban, 𝐴) never appears above an element (arrive, 𝐴) for a single agent 𝐴.

3. If (ban, 𝐴) and (arrive, 𝐴) are both in the list, there is an element (arrive, 𝐵) between them.

Proof. All three properties are trivially satisfied by an empty list. By induction, if each API pro-

cedures maintains each property then the properties are maintained for all blacklists.

6.2 Small Swarms 117

Listing 6.1 Blacklist

Initialize with an empty list.

Procedure “ban(𝐴)”:
1. If (ban, 𝐴) is in the list, remove it.
2. If there is an (arrive, 𝐴) element in the list,
3. Let 𝐵 be the set of bans below (arrive, 𝐴) and above any other arrival.
4. For each element (𝑥, 𝐴′) above (arrive, 𝐴) from bottom to top,
5. If 𝑥 is “ban”, add 𝐴′ to 𝐵;
6. Otherwise if 𝐴′ ∈ 𝐵, remove element (𝑥, 𝐴′) from the list;
7. Otherwise break out of this loop early.
8. Remove (arrive, 𝐴) from list.
9. Push (ban, 𝐴) on top of list.

Predicate “isBanned(𝐴)”:
1. For each element (𝑡, 𝐵) in list starting at the top,
2. If 𝑡 is “arrive”, return false.
3. If 𝑡 is “ban” and 𝐴 = 𝐵, return true.
4. Return false.

Procedure “see(𝐴1, 𝐴2, …)”:
1. Initialize 𝑄 to be an empty container.
2. Initialize 𝑏 to false.
3. For each 𝐴𝑖,
4. If (arrive, 𝐴𝑖) is in the list, ← never true as used by Algorithm 6.1
5. ignore 𝐴𝑖.
6. If isBanned(𝐴𝑖), add 𝐴𝑖 to 𝑄;
7. Otherwise,
8. Push (arrive, 𝐴𝑖) on top of list
9. Set 𝑏 to true.
10. If 𝑏 is true,
11. Push (arrive, 𝑄𝑖) on the top of list for each 𝑄𝑖 in 𝑄.

Chapter 6 Coalescence 118

Algorithm 6.1 Noise-free Small Swarms

Each agent maintains a blacklist as described in Listing 6.1. Each agent identifies as the “leader”
the visible agent (including itself) with the greatest identity which is not currently banned by the
blacklist.

If an agent considers itself to be the leader, it follows its individual rendezvous search (see, e.g.,
Section 3.3.1). Otherwise it follows the leader, verifying that the leader is following its prescribed
rendezvous search.

Each agent handles the following events:

Agent 𝐴 leaves swarm: Invoke the “ban(𝐴)” method of the blacklist.
Encounter swarm 𝐴1, 𝐴2, …: Invoke the “see(𝐴1, 𝐴2, …)” method of the blacklist. If that

invocation changed the blacklist, clear estimation information1 used to verify the leader’s
behavior.

Line 5 of procedure “see” is never exercised in this step because the agents in a new swarm
are either new or were banned when they left to join the new swarm.

Leader 𝐴 fails to follow its prescribed search: Invoke “ban(𝐴)” and identify a new leader.

The predicate “isBanned” does not modify the blacklist, and hence maintains each property.

Both “ban(𝐴)” and “see(𝐴1, 𝐴2, …)” remove old elements before adding new ones, maintaining

property 1.

Both “ban(𝐴)” and “see(𝐴1, 𝐴2, …)”remove any elements (arrive, 𝐴) from beneath a new ele-

ment (ban, 𝐴), maintaining property 2.

The loop on line 4 of “ban(𝐴)” removes arrivals that were separated from a ban by an arrival

that is being removed, maintaining property 3.

“see(𝐴1, 𝐴2, …)” first pushes all (arrive, 𝐴𝑖) nodes that are either not matched by a (ban, 𝐴𝑖)

or are separated from their (ban, 𝐴𝑖) by an existing arrival element, which maintains property 3.

After adding such an (arrive, 𝐴𝑖) the procedure may add some additional (arrive, 𝐴𝑗); these are

separated from their (ban, 𝐴𝑗) by the just-added (arrive, 𝐴𝑖), maintaining property 3.

1For 𝑘-surety to change, each agent must have some type of estimator or filter that converts observations into
bounds on an observed agent’s state (see Section 6.1.2). The details of such an estimator will depend on the particular
sensors and set of possible behaviors of the agents in question; however, any estimator can be reset to the state it
had before processing its first observation.

6.2 Small Swarms 119

see(1): À

ban(1): Ê

see(2): ÊÁ

see(1): ÊÁÀ

ban(1): ÁÊ

ban(2): ÊË

see(3): ÊËÂ

see(1): ÊËÂÀ

ban(1): ËÂÊ

see(2): ËÂÊÁ

see(1): ËÂÊÁÀ

ban(1): ËÂÁÊ

ban(2): ÂÊË

ban(3): ÊËÌ

see(4): ÊËÌÃ

see(1): ÊËÌÃÀ

ban(1): ËÌÃÊ

see(2): ËÌÃÊÁ

see(1): ËÌÃÊÁÀ

ban(1): ËÌÃÁÊ

ban(2): ÌÃÊË

see(3): ÌÃÊËÂ

see(1): ÌÃÊËÂÀ

ban(1): ÌÃËÂÊ

see(2): ÌÃËÂÊÁ

see(1): ÌÃËÂÊÁÀ

ban(1): ÌÃËÂÁÊ

ban(2): ÌÃÂÊË

ban(3): ÃÊËÌ

see(5): ÃÊËÌÄ

see(1): ÃÊËÌÄÀ

ban(1): ÃËÌÄÊ

see(2): ÃËÌÄÊÁ

see(1): ÃËÌÄÊÁÀ

ban(1): ÃËÌÄÁÊ

ban(2): ÃÌÄÊË

see(3): ÃÌÄÊËÂ

see(1): ÃÌÄÊËÂÀ

ban(1): ÃÌÄËÂÊ

see(2): ÃÌÄËÂÊÁ

see(1): ÃÌÄËÂÊÁÀ

ban(1): ÃÌÄËÂÁÊ

ban(2): ÃÌÄÂÊË

ban(3): ÃÄÊËÌ

Figure 6.2: A single example blacklisting sequence achieving worst-case performance: (2𝑚+1 − 𝑡)𝑡
time and 𝑡 + 2𝑚 − 1 space, where 𝑡 is the number of trustworthy agents and 𝑚 is the number
of malicious agents. In this example, agents 1, 2, and 3 are malicious; agents 4 and 5 are not.
Observe that after the arrival of each new agent all of the changes effected by malicious agents
prior to that point may be repeated.

.

Theorem 6.2. Any set of agents, 𝑆 , following Algorithm 6.1, are guaranteed to coalesce into a small

swarm despite any number of malicious agents 𝑀 provided that

• all observations made by agents in 𝑆 are noise-free,

• all identities of agents in 𝑆 ∪ 𝑀 are comparable,

• the underling rendezvous algorithms used by each agent in 𝑆 is repeating, and

• any agent in 𝑆 observing a behavior of another agent that would prevent rendezvous eventu-

ally becomes 1-sure it has done so.

Proof. Because Algorithm 6.1 clears estimation information when each new agents arrives, and

since perceptions are noise-free, all agents in the swarm agree on when other agents should be

banned.

Chapter 6 Coalescence 120

Because bans happen synchronously and because “isBanned” only considers bans that have

happened after the last non-banned agent arrived, Algorithm 6.1 ensures that each pair of non-

banned agents agree on the value of “isBanned(𝐴)” for every agent 𝐴 in the swarm. Each pair

thus also agrees on which agent is the leader.

All trustworthy agents follow the same leader correctly and are thus never banned by other

trustworthy agents following Algorithm 6.1.

A malicious agent can impede a rendezvous only by (1) failing to execute its prescribed search

as the leader or (2) joining the swarm as a new leader. In Algorithm 6.1, both of these types of im-

peding behaviors change the configuration of the blacklist. Given 𝑚 malicious and 𝑛 trustworthy

agents, a single blacklist may go through at most (2𝑚+1 − 1)𝑛 configurations, so malicious agents

can only prevent a finite number of rendezvous opportunities. Since rendezvous is repeating,

preventing a finite number of rendezvous is insufficient to prevent swarm coalescence.

Therefore, Algorithm 6.1 guarantees coalescence of all trustworthy agents.

Although the runtime of Theorem 6.2 is exponential in the number of malicious agents, it can

guarantee rendezvous even if only two trustworthy agents are present within a large population.

This ability to handle majority-malicious swarms can also be extended to agents experiencing

noise, as is outlined in the next section.

6.2.3 Noise and Malice

Algorithm 6.1 does not work when agents may disagree on when to ban a leader. Agreeing on

banning decisions in a noisy environment requires agents that can unambiguously share some

6.2 Small Swarms 121

see(3): ÊËÂ

see(1): ÊËÂÀ

ban(1): ËÂÊ

see(2): ËÂÊÁ

see(1): ËÂÊÁÀ

ban(1): ËÂÁÊ

ban(2): ÂÊË

ban(3): ÊËÌ

see(3): ÊËÂ

see(1): ÊËÂÀ

ban(1): ËÂÊ

see(2): ËÂÊÁ

see(1): ËÂÊÁÀ

ban(1): ËÂÁÊ

ban(3): ËÊÌ

see(3): ÊËÂ

see(1): ÊËÂÀ

ban(1): ËÂÊ

see(2): ËÂÊÁ

see(1): ËÂÊÁÀ

ban(3): ËÊÌ

see(3): ÊËÂ

see(1): ÊËÂÀ

ban(1): ËÂÊ

see(2): ËÂÊÁ

ban(3): ËÊÌ

see(3): ÊËÂ

see(1): ÊËÂÀ

ban(1): ËÂÊ

ban(3): ËÊÌ

see(3): ÊËÂ

see(1): ÊËÂÀ

ban(3): ÊËÌ

see(3): ÊËÂ

ban(3): ÊËÌ

Figure 6.3: A newly-arrived agent can allow malicious agents to repeat their earlier difficulties,
but only as long as the new agent has not acted maliciously. This figure demonstrates that the
sooner an agent acts maliciously the less impact the set of malicious agents can have.

.

information. In particular, I consider agents that can broadcast the 𝑘 by which they are 𝑘-sure

that the leader of the swarm is malicious.

If every agent is at least 1-sure that the leader is malicious then the leader may be banned by

the entire swarm and a new leader selected.

An agent that is 𝑘-sure that the leader is malicious should not desert an agent that is (𝑘 −

1)-sure; but that agent will not desert an agent who is (𝑘 − 2)-sure, etc. I refer to this set of

agents as a surety-chain. The blacklist data structure can be easily extended to handle surety

chains. In addition to the (arrive, 𝐴) and (ban, 𝐴) elements it now also also stores (sure, (𝐴, 𝑘, 𝐵))

elements meaning “agent 𝐴 is 𝑘-sure agent 𝐵 acted maliciously.” The additional functionality of

the augmented blacklist are outlined in Listing 6.2.

Algorithm 6.2 implicitly assumes that agents store estimation information for every other

agent in the swarm. This assumption is manifest in including 𝐵 in the messages sent. It is pos-

sible that the computational or storage costs of the estimator used will not allow this level of

storage. If agents store only estimation information for the current swarm leader, Algorithm 6.2

Chapter 6 Coalescence 122

Listing 6.2 Noisy Blacklist

Include “see,” “ban,” and “isBanned” from Listing 6.1, with the following modifications:
• Removing (arrive, 𝐴) also removes all (sure, (𝐴, *, *)) and (sure, (*, *, 𝐴)).
• If two or more surety elements differing only in 𝑘 are in the list with no arrivals between
them, remove all but one having the largest 𝑘.

Procedure “message(𝐴, 𝑘, 𝐵)”:
1. If (sure, (𝐴, 𝑘 − 1, 𝐵)) is in the list, remove it.
2. Push (sure, (𝐴, 𝑘, 𝐵)) on top of list.

Determine 𝑅, the set of agents no longer part of this agent’s surety chain.
3. Initialize 𝑅 be to the set of all non-banned agents referenced in the list.
4. Initialize 𝑄 to {self}. ←queue of agents to remove from 𝑅
5. As long both 𝑅 and 𝑄 are not empty,
6. Remove an element 𝐴1 from 𝑄;
7. Remove element 𝐴1 from 𝑅;
8. For each element 𝐴2 in 𝑅 ⧵ 𝑄,
9. If trust(𝐴1, 𝐴2), add 𝐴2 to 𝑄.
10. For each agent 𝐴𝑖 in 𝑅, invoke ban(𝐴𝑖).

Function “trust(𝐴, 𝐵)”: ← does 𝐴 trust 𝐵?
𝑘-surety(𝐴, 𝐵) = 0 ∧ 𝑘-surety(𝐵, 𝐴) = 0 ∧ ∀𝐶 |𝑘-surety(𝐴, 𝐶) − 𝑘-surety(𝐵, 𝐶)| ≤ 1

Function “𝑘-surety(𝐴, 𝐵)”: ← for what 𝑘 is 𝐴 𝑘-sure that 𝐵 is malicious?
1. For each element (𝑡, 𝑋) in list starting at the top,
2. If 𝑡 is “arrive”, return 0.
3. If 𝑡 is “sure”,
4. Let (𝐴1, 𝑘, 𝐴2) = 𝑋;
5. If 𝐴1 = 𝐴 and 𝐴2 = 𝐵, return 𝑘.
6. If 𝑡 is “ban”, return ∞.
7. Return 0.

6.2 Small Swarms 123

Algorithm 6.2 Noisy Small Swarms

Each agent maintains a blacklist as described in Listing 6.2. Each agent identifies as the “leader”
the visible agent (including itself) that is not currently banned by the blacklist having the greatest
identity.

If an agent considers itself to be the leader, it follows its individual rendezvous search. Other-
wise it follows the leader, verifying that the leader is following its prescribed rendezvous search.

Agent 𝐴 should handle the following events:

Agent 𝐵 leaves swarm: Do nothing (subsequent arrivals will also be ignored by line 5 in
Listing 6.1’s “see” procedure).

Encounter swarm 𝐴1, 𝐴2, …: Invoke the “see(𝐴1, 𝐴2, …)” method of the blacklist. If that
invocation changed the blacklist, clear estimation information used to verify other agents’
behavior.

𝐴 becomes 𝑘-sure that 𝐵 is not behaving correctly: Broadcast (𝐴, 𝑘, 𝐵) to all agents
(including self).

Receive (𝐴1, 𝑘, 𝐴2): Invoke the “message(𝐴1, 𝑘, 𝐴2)” method of the blacklist.

still works without modification, as the proof of Theorem 6.3 below does not depend on non-

leader estimation. If only leader state is estimated then the messages can be simplified to (𝐴, 𝑘)

instead of (𝐴, 𝑘, 𝐵).

Theorem 6.3. Any agents following Algorithm 6.1, are guaranteed to coalesce into a small swarm

despite any number of malicious agents provided that

• all identities are comparable

• identities are communicable,

• rendezvous is repeating,

• agents agree on when other agents arrive, and

• any agent observing a behavior that would prevent rendezvous eventually becomes 𝑘-sure it

has done so, for every 𝑘 ≥ 1.

Chapter 6 Coalescence 124

Proof. An agent does not ban another agent until it is sure that all the agents it trusts are also

going to ban it.

For an agent to be 𝑘-sure the leader is malicious but not ban it requires there be a chain of

agents that are 𝑘 − 1-sure, 𝑘 − 2-sure, etc, down to 0-sure. Since all trustworthy agents will be at

least 𝑘 − 1-sure, such a chain must contain at least 𝑘 − 1 malicious agents. Eventually an agent

in a swarm of 𝑚 malicious agents will become 𝑚 + 2-sure that the leader is malicious, by which

point the leader will be banned.

Agents might not agree on the definition of “leave the swarm;” hence, agents that leave cannot

be banned directly; however, such departures will be handled through the usual surety mecha-

nism. Ignoring departures and re-arrivals beyond broadcasting surety causes both those who see

departures and those who do not to have compatible blacklists.

The rest of the proof mirrors the proof of Theorem 6.2.

One antecedent to Theorem 6.3 is that any agent observing a behavior that would prevent

rendezvous eventually becomes 𝑘-sure it has done so for arbitrary 𝑘. Most rendezvous algorithms

can be made to handle bounded errors by decreasing the used perception radius to a value below

the actual radius available to the agent. For any asymptotically-accurate estimation filter, this

finite buffer will provide the requisite 𝑘-surety.

6.3 Large Swarms

When swarms are large enough that they do not form a single clique, coalescence is a combination

of rendezvous and cohesion rather than rendezvous and leader-following. Cohesion contains an

6.4 Trustworthy Hives 125

implicit level of trust as there is no immediate way to verify whether agents are reacting to other

agents outside of sensor range or are feigning such interactions.

All components of large swarm coalescence have been solved elsewhere in this dissertation,

as outlined below.

When agents all trust one another, coalescence is a simple combination of three subproblems:

rendezvous search (see Section 3.3), global cohesion (see Section 5.2), and consensus building to

select which agent’s rendezvous search algorithm should direct the swarm. Because rendezvous

presupposes agents have known unique identities (see Theorem 3.1), consensus building is as

simple as deferring to the agent with the greatest identity.

When some agents in a swarm are malicious, coalescence is achieved by the combination of

a malice-tolerant cohesion algorithm and communication policy (see Section 5.2.1) and a leader

malice identification algorithm (see Section 6.2.2 and Section 6.2.3).

6.4 Trustworthy Hives

According to Definition 6.1, a hive is groups of agents that are able to share messages with all

other agents in the hive. One way to achieve this kind of hive is by having every agent be aware

of a “home location,” a central place where agents go to communicate. The hive algorithms I

present below assume such a home location.

Assuming that agents are capable of communicating locations to other agents, coalescence

of trustworthy hives of agents can be performed quite efficiently. By having an agent remain at

the home location, rendezvous can be reduced to the simpler problem of static search. By having

Chapter 6 Coalescence 126

that home agent coordinate inter-agent communication and task allocation, duplication of effort

can be almost totally avoided.

Hive coalescence is more efficient if every meeting of agents from distinct hives results in the

two hives combining into a single hive. This level of efficiency is made difficult because agents

from a single hive might encounter many other hives before the message of their mutual meeting

can be communicated to the rest of the hive. In particular, hive 𝑋 might have decided to join hive

𝑌 but hive 𝑌 might depart to join hive𝑍 before hive𝑋 can reach 𝑌 ’s previous home location. This

situation does not prevent coalescence—𝑋 and 𝑍 will eventually locate one another as well—but

it is an avoidable inefficiency.

Algorithm 6.3 is a technique for hive coalescence that can avoid all double discoveries using

linear memory or can avoid most, but not all, double discoveries using only finite memory. In

both cases, memory is also needed to execute a search of the environment. In vector spaces,

remembering a single coordinate (which requires logarithmic space in the size of the environment

to be searched) is sufficient to execute a search (as a Searcher in Algorithm 6.3) and to keep track

of what region of the environment needs to be searched next (as a Director in Algorithm 6.3).

The space required for the search portion of Algorithm 6.3 may vary in other environments.

Conceptually, Algorithm 6.3 has hives with directors that stay put and coordinate searchers

to locate other hives. When hives encounter one another, one hive directs all its agents to join

the other.

Several of the interactions in Algorithm 6.3 are illustrated in Figure 6.4.

6.4 Trustworthy Hives 127

Algorithm 6.3 Hive Coalescence (part 1 of 2)

Assume that each agent is able to track the passage of time (to within bounded error) and its
position in the environment. Each agents also remembers (𝑅, 𝐼, 𝐿, 𝑡1, 𝑡2, 𝑆), where

• 𝑅 is its current role, which is one of the following:

– Director: Remains at its home. The purpose of a director is to coordinate searchers.

– Searcher: Travels to and executes a search. If the search is completed, travels to its
home.

– Redirector: Waits in place. When 𝑛𝑜𝑤 = 𝑡2, becomes a searcher instead.

• 𝐼 is its hive identity, which is the maximal identity of any agent in the hive.
• 𝐿 is its hive’s home location.
• 𝑡1 and 𝑡2 are points in time.
• 𝑆 is the state of an in-progress search, either an individual agent’s search (for agents with
the Searcher role) or the combined search efforts of the hive (for agents with the Director
role).

Except as defined below, an agent changes state and role when it encounters another agent.
How they change depends on the relative order of the two agents’ hive identities. In the following
list, each entry “𝑋 ⋚ 𝑌 ” defines what happens when an agent 𝐴 = (𝑅, 𝐼, 𝐿, 𝑡1, 𝑡2, 𝑆) encounters
an agent 𝐴′ = (𝑅′, 𝐼 ′, 𝐿′, 𝑡′

1, 𝑡′
2, 𝑆′) where 𝑅 = 𝑋, 𝑅′ = 𝑌 , and 𝐼 ⋚ 𝐼 ′.

Searcher = Director: Updates the director’s wait time and assigns a new search.
1. Replace 𝑡′

2 with max{𝑡1, 𝑡′
2}.

2. Replace 𝑆′ with the next area that needs searching.
3. Update 𝑆 to reflect the work that will be done by 𝑆′.
4. Replace 𝑡′

1 with the time needed for 𝐴′ to complete 𝑆′ and return home.
5. Replace 𝑡′

2 with max{𝑡1, 𝑡′
2}.

Searcher > Director: The director becomes a redirector and the searcher remembers how
long its hive needs to wait.

1. Replace 𝑡′
1 with 𝑡′

2 plus the time needed to reach 𝐿 from 𝐿′.
2. Replace 𝑡1 with max{𝑡1, 𝑡′

1}.
3. Replace 𝑅′ with Redirector, 𝐼 ′ with 𝐼 , and 𝐿′ with 𝐿.

Searcher < Director: The searcher converts to the new hive and immediately searches out
its old hive’s director.

1. Replace 𝑡1 with the time needed to travel to 𝐿′ and back again.
2. Replace 𝑆 with an unfinished search that will visit just 𝐿.
3. Replace 𝐼 ′ with 𝐼 and 𝐿′ with 𝐿.
4. Replace 𝑡′

2 with max{𝑡′
2, 𝑡1}.

Searcher = Redirector: Searchers from and redirectors to the same hive ignore one another.

(continued…)

Chapter 6 Coalescence 128

Algorithm 6.3 Hive Coalescence (part 2 of 2)

(…continued)

Searcher < Redirector: If the redirector is at the searcher’s home location, the searcher sim-
ply converts to the new hive.

1. Replace 𝐼 with 𝐼 ′ and 𝐿 with 𝐿′.
Otherwise, the searcher converts to the new hive and immediately searches out its old hive’s

director.
1. Replace 𝑡1 with the time needed to travel to 𝐿 and then to 𝐿′.
2. Replace 𝑆 with an unfinished search that will visit just 𝐿.
3. Replace 𝐼 ′ with 𝐼 and 𝐿′ with 𝐿.
4. Replace 𝑡′

1 with max{𝑡′
1, 𝑡1}.

Searcher > Redirector: This is the case that needs linear memory or is lossy. The two agents
know of three hives, each three of which may require an agent’s presence before all may
be visited. Since this case may arise an arbitrary number of times for each agent, the third
hive cannot be remembered with boundedmemory. Thus, I simply have the redirector forget
about its old hive:

1. Replace 𝑡′
1 with 𝑡′

2 plus plus the time needed to reach 𝐿 from here.
2. Replace 𝑡1 with max{𝑡1, 𝑡′

1}.
3. Replace 𝐼 ′ with 𝐼 and 𝐿′ with 𝐿.

As a lossless but unbounded-memory alternative, the searcher could maintain a list of the
old home locations of all redirectors it encounters which could be used to create specially-
targeted searches by its director.

Searcher = Searcher: Searchers from the same hive ignore each other.
Searcher < Searcher: Meeting a searcher from another hive is treated similarly to meeting a

director from another hive.
1. Replace 𝑡1 with the time needed to travel to 𝐿 and then to 𝐿′.
2. Replace 𝑆 with an unfinished search that will visit just 𝐿.
3. Replace 𝐼 with 𝐼 ′ and 𝐿 with 𝐿′.
4. Replace 𝑡′

1 with max{𝑡1, 𝑡′
1}.

6.4 Trustworthy Hives 129

Figure 6.4: Illustration of several of the interactions in Algorithm 6.3. Searchers sent on new
searches by directors are not shown to avoid cluttering the images. Frames 5 and 6 happen
immediately in the linear-memory version but since search is exhaustive happen eventually in
the bounded-memory version too.

Theorem 6.4. For any two hives 𝑖 < 𝑗 of agents following Algorithm 6.3, if any agent in hive 𝑖

encounters and agent in hive 𝑗 then each agents in hive 𝑖 will join some hive ≥ 𝑗 within bounded

time.

A full proof of Theorem 6.4 involves a tedious case analysis. An outline of the proof’s signifi-

cant elements follows.

Proof. When an agent visits its home location, it finds a director or redirector there. This is

enforced by directors’ and redirectors’ 𝑡2, which causes them to wait for all agents of which they

are aware; and searchers’ and redirectors’ 𝑡1, which are used to update directors’ and redirectors’

𝑡2 to ensure they wait for all agents of newly arriving hives.

When agents from different hives meet, at least one hive thereafter merges with another. This

is enforced by each “<” interaction in Algorithm 6.3.

Directors remain in place and will be found by a search unless their hive joins another first.

Chapter 6 Coalescence 130

Thus, no agent is deserted by the rest of its hive and every hive eventually encounters each

other hive, so all agents eventually coalesce.

6.5 Untrustworthy Hives

Within a hive with limited trust, agents must verify the behavior of other agents. Verification

may be accomplished by having groups of agents perform each role in concert, where the group

is large enough to trust a majority of the agents involved.

However, if even a single agent in each hive may be untrustworthy then it is possible that

any other hive located is made of entirely malicious agents that have left their original hives

and congregated elsewhere. Hence, all hives in a limited-trust environment are suspect of being

purely malicious.

Coalescence of hives that do not trust one another must proceed in the same full-verification-

and-blacklist pattern as swarm coalescence: a following hive must shadow every action of a

leading hive and blacklist it when it behaves incorrectly. If each hive operates with few enough

groups that every hive may have the same number of groups, then the same blacklist techniques

outlined in Listing 6.1 and Listing 6.2 may provide for coalescence of untrustworthy hives.

The only efficiency gained by untrustworthy hives over untrustworthy swarms is the more

efficient rendezvous available when some agents can remain in place and when search can be

parallelized.

6.6 Conclusion 131

6.6 Conclusion

I demonstrated that coalescence is more involved than rendezvous and cohesion when agents

are untrustworthy or when the efficiency of hives searching in parallel is desired. I presented

algorithms for small swarm coalescence in the face of an arbitrary number of malicious agents,

with or without precise information. I also presented an algorithm for the efficient coalescence

of hives without malicious agents, one which allows every agent to act in parallel and ensures

that no information learned by any agent is lost to the hive.

For hives with malice and large swarms I observed that coalescence is essentially just a com-

bination of rendezvous and cohesion, and outlined how that combination can be used.

Other work has investigated a stronger notion of malice in noise-free graphs with known

numbers of agents [16]. It would be interesting to see if that model of strongly-Byzantine agents

can be adapted to noisy geometric environments and/or swarms too large to be simultaneously

observed.

While the theory of rendezvous, cohesion, and coalescence improve, there remains significant

work to be done before these algorithms become practical for real robots. Among the issues to

be investigated before such tests can be made are details of message passing frequency, models

of agent state estimation, and budgeting of physical resources.

This chapter is the first to address provable coalescence of geometric agents with malice and

the first to investigate the interplay of noise and malice on coalescence.

Chapter 6 Coalescence 132

Chapter 7

Conclusion

In this dissertation I have investigated several important theoretic problems regarding the behav-

ior and capabilities of groups of mobile computing agents that are individually limited in what

they can accomplish. The contributions of this dissertation together create a clearer picture of

what groups of agents can accomplish.

In Chapter 2 I investigated the impact of stigmergic vs. broadcast communication. I im-

proved previous bounds on the ability of stigmergic agents to simulate broadcast-based algo-

rithms, demonstrating that, allowing for some delays and additional agents, the capabilities of

both types of agents are equivalent. I also investigated the space- and time-localization infor-

mation contained in different kinds of communication and discussed how communication itself

could be used to synchronize agents’ clocks and coordinate frames.

In Chapter 3 I explored the problem of having noisy mutually-oblivious agents with only

local sensations locate one another in unknown environments, be they geometric or graph-

based. I demonstrated a set of necessary capabilities that any agents achieving worst-case time-

bounded rendezvous must have and showed algorithms that achieved worst-case time-bounded

133

Chapter 7 Conclusion 134

rendezvous for those capabilities. When agents did not accumulate positional error as theymoved

and had access to an accurate clock, these algorithms achieved optimal time bounds that had been

proven for much more limited environments. Together, these contributions demonstrated that

rendezvous is not only tractable but efficient when limited-noise localization is available.

In Chapters 4, 5, and 6 I built a series of algorithms and proofs that together demonstrate

that agents with limited local sensation can provably form and remain in a single cohesive group.

I demonstrated how pairs of agents could provably maintain interconnectivity, how groups of

agents could select pairs to remain connected in a way that kept the group connected without

getting stuck, and how groups could recognize and/or cope with malfunctioning or malicious

agents that might try to keep a group from coalescing or remaining cohesive. These algorithms

and proofs rely only on simple notions of distance that apply to Euclidean and non-Euclidean ge-

ometries as well as graphs and other environments where motion is local and a distance function

can be defined.

The various elements of this dissertation have advanced the theoretic understanding of mobile

agents on several fronts and provided the first provably-correct algorithms for many common

mobile agent tasks. However, there is much that remains to be done. Lower- and upper-bounds I

have developed provide the first bounds on the worst-case complexity of several tasks, but most

are not tight. Proofs of correctness rely on far more general definitions of motion and sensation

than previously attempted in theoretic work, including ideas of noise and error, but are not yet

as general as the models used in physical robot design. Most of my work is explicitly designed

to be environment-agnostic and function in graphs as well as geometric environments, leaving

open extensions into particular restrictions of environments such as planar graphs or cluttered

maps. Other ideas for future work are contained at the end of each chapter of this dissertation.

Chapter 7 Conclusion 135

The proofs and algorithms I have developed have pushed the theoretic boundaries of mobile

agent design closer to practice than they were previously.

Chapter 7 Conclusion 136

Appendix A

Glossary

Active (stigmergy) Communication through environmental changes effected by actions with

no other objective besides stigmergy. Ant pheromones are an example of active stigmergy.

Additive (stigmergic communication) A finite space may hold only a finite set of signals, but

the strength of those signals may be increased by later agents.

Algorithm Any deterministic behavior selection process. The phrase “algorithm” is used to

refer to both the finite steps that map a given set of sensations to short-term actions and

the overall process of applying the same algorithm to each successive set of sensations to

create ongoing behavior.

Agent An agent is a mathematical abstraction of a robot, avatar, or other entity with the ability

to sense other agents and its environment and to select its own behavior.

Each agent is defined by a state 𝑠 ∈ 𝑆 and a set of allowable behaviors ℬ.

ℬ The set of behaviors an agent can achieve.

137

Chapter A Glossary 138

Behavior The behavior of an agent is how its states evolve over time. Each behavior is contin-

gent on the initial state of the agent as well as environmental inputs. If 𝐵 ∈ ℬ is a behavior

then 𝐵𝑠(𝑡) is the state an agent initially in state 𝑠 would enter after following behavior 𝐵

for 𝑡 seconds.

Behaviors may have various domains and may or may not be live and/or universal.

This definition is based on the common usage “what something does” and not the technical

definition used in behavior-based artificial intelligence algorithms.

Between 𝑥 is between of 𝑦 and 𝑧 if and only if and 𝑑(𝑥, 𝑦) < 𝑑(𝑦, 𝑧) and 𝑑(𝑥, 𝑧) < 𝑑(𝑦, 𝑧).

Broadcast (communication) Propagating through space without appreciable delay in time.

Connected Two agents are connected if they sense one another. A set of agents are connected

if the graph of pair-wise agent connections within the set is a connected graph.

In some cases, “connected” suggests a distance less than 𝑟 for a fixed 𝑟 rather than any form

of sensation.

𝑑 A distance function defined on agent states 𝑑 ∶ 𝑆 × 𝑆 → ℝ+
0 . For all distance functions,

𝑑(𝑠, 𝑠) = 0. Some distance functions also satisfy the triangle inequality.

Where appropriate, 𝑑 is assumed to work on agents and positions as well as states.

Distance see 𝑑.

Detect see Sense.

Domain (of behavior) The domain of a behavior is the set of initial states over which it is de-

fined.

Chapter A Glossary 139

Drifting (mobility) The uncertainty of an agent in its own location increases the as the agent

travels.

Erasable (stigmergic communication) A finite space may hold only a finite amount of infor-

mation, but the information stored may be changed freely.

Exact (mobility) An agent with exact mobility can move to any specified location without ap-

preciable error.

Fading (communication) Reducing in strength as it propagates through space-time.

Hive A hive is a group of agents who share knowledge of a common base location.

Holonomic The allowable behaviors of a holonomic agent do not depend on its orientation. This

can either be because the agent can move sideways or because it can turn quickly enough

that orientation can be ignored in practice.

Indelible (stigmergic communication) A finite space may hold only a finite amount of infor-

mation, and once written that information cannot be changed or added to.

Individual (clock) Agents have individual clocks if each agent’s clock rate is fixed but not nec-

essarily the same as that of other agents.

Lagging (communication) Propagating through space with an appreciable delay in time.

Limited (communication) Reaching only space-time near the originating agent.

Limitless (communication) Reaching all space (broadcast) or all future time (stigmergy) with-

out appreciable variation.

Chapter A Glossary 140

Live (behavior) Let dom(𝐵) be the domain of behavior 𝐵. 𝐵 is said to be live if and only if

𝐵𝑠(𝑡) ∈ dom(𝐵) for all 𝑠 ∈ dom(𝐵) and 𝑡 ≥ 0.

Malicious A theoretic abstraction of “not behaving according to the designed algorithm(s).”

Midpoint 𝑥 is a midpoint of 𝑦 and 𝑧 if and only if 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 𝑑(𝑥, 𝑧) = 𝑑(𝑧, 𝑥), 𝑑(𝑦, 𝑧) =

𝑑(𝑧, 𝑦), and 𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑧) = 1
2
𝑑(𝑦, 𝑧).

Noisy (mobility) An agent with noisy mobility can move to within a fixed distance of any spec-

ified location.

Noise-free (sensation) Agent 𝑋 has noise-free sensation if and only if 𝑋⌈𝑥⌉ = 𝑥.

Order (of agent) An 𝑛th-order agent can directly control the 𝑛th derivative of its position. A

0th order agent teleports. Humans are approximately 1st-order, able to change direction

and speed of motion almost instantly. Cars and airplanes are 2nd order, able to control

acceleration.

Passive (stigmergy) Communication through environmental change resulting as the side-effect

of independently desirable activities. For example, determining how the other tugboats are

moving based on the motion of the freighter is passive stigmergy.

Patchy (communication) Detectable at some locations/times and not others according to some

unknown function of space, time, and/or stochasticity.

Position Formally, two agents share the same position if the distance between their states is

0. Conceptually, position is the portion of the state of an agent that specifies “where” it

Chapter A Glossary 141

is. Practically, the position of an agent is either a point in ℝ𝑛 for agents operating in a

Euclidean environment, or an edge or node for agents operating in graphs.

ℝ The set of real numbers. ℝ+ is the set of real numbers greater than 0; ℝ+
0 is the set of real

numbers greater than or equal to 0.

𝑟 The distance at which sensation becomes assured. That is, for agents with states 𝑠𝑎 and 𝑠𝑏,

𝑑(𝑠𝑎, 𝑠𝑏) ≤ 𝑟 implies the agents sense one another.

Rendezvous Two agents rendezvous when they move so as to be able to sense one another. Two

algorithms rendezvous if agents following them from any starting states are guaranteed to

rendezvous.

Reusable (stigmergic communication) Either erasable or unbounded.

𝑠 A particular state of a particular agent.

𝑆 The set of all agent states (for a particular type of agent).

Search (algorithm) A search algorithm will cause an agent following it to sense every location

within a time relative to the distance between the location and the initial location.

Sense An agent senses another if it has sufficient information to determine the existence of

approximate location of the other agent. The particular sensors and processing used to

develop this information is not specified in this document.

Skewed (clock) Agents have skewed clocks if they progress at the same rate from different ini-

tial values.

Chapter A Glossary 142

Small Swarm A group of agents where each agent is able to observe every other agent. The

connectivity graph of a small swarm is a single clique. Also refers to coalescence algorithms

that work provided the agents, once coalesced, could form a small swarm.

State The state of an agent are the pieces of information that define it at a particular point in

time. State may include position, heading, computational memory, etc.

Stigmergy Stigmergy is communication between agents, or between the same agent at different

times, facilitated by the environment. See also Active (stigmergy) and Passive (stigmergy).

Stigmergy (communication) Propagating through time without moving through space.

Swarm A swarm is a group of agents that are now connected and will behave so as to remain

connected in the future.

Synchronized (clock) Agents have synchronized clocks if they always agree on the current

time.

𝑡 A point in time or a time delta, depending on context.

Time May be either continuous or discrete, but is causal (past events do not depend on the future)

and predictable (the same sequence and pacing of stimuli result in the same outcome no

matter the absolute time at which they occur).

See also the discussion of time-locality of behavior in Section 1.2 on page 6

Triangle Inequality Anoptional property of distance functionswhere∀𝑠1, 𝑠2, 𝑠3 ∈ 𝑆 𝑑(𝑠1, 𝑠2)+

𝑑(𝑠2, 𝑠3) ≥ 𝑑(𝑠1, 𝑠3).

Chapter A Glossary 143

Unbounded (stigmergic communication) A finite space may hold only an unlimited amount

of information; new information may be added to existing information freely.

Universal (behavior) A behavior is universal if its domain is 𝑆 . All universal behaviors are

also live.

Variable (clock) Agents have variable clocks if their relative rate of progression varies over

time.

Chapter A Glossary 144

Bibliography

[1] S. Alpern. The rendezvous search problem. SIAM Journal of Control and Optimization, 33
(3):673–683, 1995.

[2] S. Alpern and S. Gal. Rendezvous search on the line with distinguishable players. SIAM
Journal on Control and Optimization, 33:1270–1276, 1995.

[3] S. Alpern and S. Gal. The theory of search games and rendezvous. International Series in
Operations Research and Management Science. Kulwer Academic Publisher, 2002.

[4] E. J. Anderson and S. Essegaier. Rendezvous search on the line with indistinguishable
players. SIAM Journal on Control and Optimization, 33:1637–1642, 1995.

[5] C. Astengo-Noguez and L. Velzquez. A vectorial approach on flock traffic navigation. In
Artificial Intelligence, 2008. MICAI ’08. Seventh Mexican International Conference on, pages
300 –304, oct. 2008.

[6] R. Beckers, O. E. Holland, and J.-L. Deneubourg. From local actions to global tasks: Stig-
mergy and collective robotics. In R. Brooks and P. Maes, editors, Fourth International
Workshop on the Synthesis and Simulation of Living Systems, pages 181–189, Cambridge,
MA, 1994. MIT Press.

[7] R. R. Cazangi, F. J. Von Zuben, and M. F. Figueiredo. Autonomous navigation system
applied to collective robotics with ant-inspired communication. In GECCO ’05: Proceed-
ings of the 2005 conference on Genetic and evolutionary computation, pages 121–128, New
York, NY, USA, 2005. ACM. ISBN 1-59593-010-8. doi: http://doi.acm.org/10.1145/1068009.
1068026.

[8] A. Cornejo and N. Lynch. Connectivity service for mobile ad-hoc networks. Self-Adaptive
and Self-Organizing Systems Workshops, IEEE International Conference on, 0:292–297, 2008.
doi: http://doi.ieeecomputersociety.org/10.1109/SASOW.2008.62.

[9] F. Cucker and S. Smale. Emergent behavior in flocks. Automatic Control, IEEE Transactions
on, 52(5):852 –862, may 2007. ISSN 0018-9286.

[10] J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet when you forget: Log-space ren-
dezvous in arbitrary graphs. In Proceedings of the 29th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC 2010), pages 450–459, 2010.

145

Bibliography 146

[11] J. Czyzowicz, A. Labourel, and A. Pelc. How to meet asynchronously (almost) everywhere.
In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), pages 22–30, 2010.

[12] X. Défago and A. Konagaya. Circle formation for oblivious anonymous mobile robots with
no common sense of orientation. In POMC ’02: Proceedings of the second ACM interna-
tional workshop on Principles of mobile computing, pages 97–104, New York, NY, USA, 2002.
ACM.

[13] A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in graphs. In Proceed-
ings of the 11th European Symposium on Algorithms (ESA 2003), pages 184–195, 2003.

[14] Y. Dieudonné, O. Labbani-Igbida, and F. Petit. Circle formation of weak mobile robots.
ACM Trans. Auton. Adapt. Syst., 3(4):1–20, 2008.

[15] Y. Dieudonné, S. Dolev, F. Petit, and M. Segal. Deaf, dumb, and chatting asynchronous
robots. In T. Abdelzaher, M. Raynal, and N. Santoro, editors, Principles of Distributed Sys-
tems, volume 5923 of Lecture Notes in Computer Science, pages 71–85. Springer Berlin /
Heidelberg, 2009. doi: 10.1007/978-3-642-10877-8_8.

[16] Y. Dieudonné, A. Pelc, and D. Peleg. Gathering despite mischief. In Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pages 527–534, 2012.

[17] P. Dorato, K. Li, E. Kosmatopoulos, P. Ioannou, and H. Ryaciotaki-Boussalis. Quantified
multivariate polynomial inequalities. The mathematics of practical control design prob-
lems. Control Systems, IEEE, 20(5):48–58, Oct 2000. ISSN 1066-033X.

[18] P. Dykiel. Asymptotic properties of coalescing random walks. Technical Report 2005:15,
Uppasala University, December 2005.

[19] P. Fraigniaud and A. Pelc. Deterministic rendezvous in trees with little memory. In Pro-
ceedings of the 22nd International Symposium on Distributed Computing (DISC 2008), vol-
ume 5218 of Springer Lecture Notes in Computer Science, pages 242–256, 2008.

[20] C.-H. Fua, S. Ge, K. D. Do, and K.-W. Lim. Multirobot formations based on the queue-
formation scheme with limited communication. Robotics, IEEE Transactions on, 23(6):1160
–1169, dec. 2007. ISSN 1552-3098.

[21] A. Ganguli, J. Cortes, and F. Bullo. Multirobot rendezvous with visibility sensors in non-
convex environments. Robotics, IEEE Transactions on, 25(2):340 –352, april 2009. ISSN
1552-3098.

[22] A. Garcia, C. Li, and F. Pedraza. Rational swarms for distributed on-line bayesian
search. In RoboComm ’07: Proceedings of the 1st international conference on Robot com-
munication and coordination, pages 1–8, Piscataway, NJ, USA, 2007. IEEE Press. ISBN
978-963-9799-08-0.

[23] S. Ge and C.-H. Fua. Queues and artificial potential trenches for multirobot formations.
Robotics, IEEE Transactions on, 21(4):646 – 656, August 2005. ISSN 1552-3098.

Bibliography 147

[24] P.-P. Grassé. La construction du nid et les interactions inter-individuelles chez les belli-
cositermes natalenis et cubitermes sp. la théorie de la stigmergie: essai d’interprétation
des termites constructeurs. Insectes Sociaux, 6:41–83, 1959.

[25] P. Gurfil. Evaluating uav flock mission performance using dudek’s taxonomy. In American
Control Conference, 2005. Proceedings of the 2005, pages 4679 – 4684 vol. 7, june 2005.

[26] O. Holland and C. Melhuish. Stigmergy, self-organization, and sorting in collective
robotics. Artificial Life, 5(2):173–202, String 1999.

[27] D. Howden and T. Hendtlass. Collective intelligence and bush fire spotting. In GECCO ’08:
Proceedings of the 10th annual conference on Genetic and evolutionary computation, pages
41–48, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-130-9. doi: http://doi.acm.org/
10.1145/1389095.1389102.

[28] M. A. Hsieh, A. Cowley, V. Kumar, and C. J. Taylor. Maintaining network connectivity and
performance in robot teams. Journal of Field Robotics, 25(1-2):111–131, 2008.

[29] G. Kaminka, R. Schechter-Glick, and V. Sadov. Using sensor morphology for multirobot
formations. Robotics, IEEE Transactions on, 24(2):271 –282, april 2008. ISSN 1552-3098.

[30] S. Kloder and S. Hutchinson. Path planning for permutation-invariant multirobot forma-
tions. Robotics, IEEE Transactions on, 22(4):650 –665, aug. 2006. ISSN 1552-3098.

[31] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for mo-
bile robot navigation. In IEEE Conference on Robotics and Automation, pages 1398–1404,
April 1991.

[32] D. Kowalski and A. Malinowski. How to meet in anonymous network. In 13th Interna-
tional Colloquium on Structural Information and Communication Complexity (SIROCCO
2006), volume 4056 of Springer Lecture Notes in Computer Science, pages 44–58, 2006.

[33] A. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Algorithms, and Sys-
tems. Cambridge University Press, March 2011.

[34] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of labor in a group of robots in-
spired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst., 1(1):4–25, 2006. ISSN
1556-4665. doi: http://doi.acm.org/10.1145/1152934.1152936.

[35] A. Lazanas and J.-C. Latombe. Landmark-based robot navigation. In Proceedings of Tenth
National Conference on Artificial Intelligence (AAAI-92), pages 816–822, july 1992.

[36] X. Li, D. Su, J. Yang, and S. Liu. Connectivity constrained multirobot navigation with con-
sidering physical size of robots. In Proceedings of the International Conference on Automa-
tion and Logistics, pages 24–29, Chongquing, China, August 2011.

[37] Y. Li, K. Yuan, and W. Zou. Nonholonomic mobile robot formation control with kinody-
namic constraints. In PCAR ’06: Proceedings of the 2006 international symposium on Practi-
cal cognitive agents and robots, pages 200–211, New York, NY, USA, 2006. ACM.

Bibliography 148

[38] M. Mamei and F. Zambonelli. Physical deployment of digital pheromones through rfid
technology. In AAMAS ’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pages 1353–1354, New York, NY, USA, 2005.
ACM. ISBN 1-59593-093-0. doi: http://doi.acm.org/10.1145/1082473.1082769.

[39] M. Mamei and F. Zambonelli. Pervasive pheromone-based interaction with rfid tags. ACM
Transactions on Autonomous and Adaptive Systems, 2(2):4, 2007. ISSN 1556-4665. doi:
http://doi.acm.org/10.1145/1242060.1242061.

[40] G. D. Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro. Asynchronous
deterministic rendezvous in graphs. Theoretical Computer Science, 335(3):315–326, 2006.

[41] R. Menezes, F. Martins, F. E. Vieira, R. Silva, and M. Braga. A model for terrain cover-
age inspired by ant’s alarm pheromones. In SAC ’07: Proceedings of the 2007 ACM sym-
posium on Applied computing, pages 728–732, New York, NY, USA, 2007. ACM. ISBN
1-59593-480-4. doi: http://doi.acm.org/10.1145/1244002.1244164.

[42] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas. Maintaining connectivity in mo-
bile robot networks. In Proceeidngs of the 11th International Symposium on Experimental
Robotics, pages 117–126, 2009.

[43] D. L. Mills, J. Martin, J. Burbank, and W. Kasch. Network time protocol version 4: Protocol
and algorithms specification. IETF RFC 5905, June 2010. URL https://tools.ietf.org/
html/rfc5905.

[44] E. H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the
American Mathematical Society, 26(9):394–395, 1920. doi: http://dx.doi.org/10.1090/
S0002-9904-1920-03322-7.

[45] N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis. Vision-based, distributed control
laws for motion coordination of nonholonomic robots. Robotics, IEEE Transactions on, 25
(4):851 –860, aug. 2009. ISSN 1552-3098.

[46] M. Namvar and F. Aghili. Adaptive force-motion control of coordinated robots interacting
with geometrically unknown environments. Robotics, IEEE Transactions on, 21(4):678 –
694, August 2005. ISSN 1552-3098.

[47] I. Newton. Methodus fluxionum et serierum infinitarum. 1664–1671.

[48] Oxford English Dictionary. Oxford English Dictionary, entry “stigmergy, n.”. Oxford Press,
second edition, 1989.

[49] L. Panait and S. Luke. A pheromone-based utility model for collaborative foraging. In AA-
MAS ’04: Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 36–43, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 1-58113-864-4. doi: http://dx.doi.org/10.1109/AAMAS.2004.25.

[50] R. Penrose. A generalized inverse for matrices. In Proceedings of the Cambridge Philosophi-
cal Society, volume 51, pages 406–413, 1955.

https://tools.ietf.org/html/rfc5905
https://tools.ietf.org/html/rfc5905

Bibliography 149

[51] G. A. S. Pereira, A. K. Das, and V. Kumar. Decentralized motion planning for multiple
robots subject to sensing and communication constraints. In Proceedings of the 2003 Inter-
national Workshop on Multi-Robot Systems, pages 267–278, 2003.

[52] Plutarch. Theseus, pages 15–19.

[53] S. Poduri and G. S. Sukhatme. Achieving connectivity through coalescence in mobile robot
networks. In RoboComm ’07: Proceedings of the 1st international conference on Robot com-
munication and coordination, pages 1–6, Piscataway, NJ, USA, 2007. IEEE Press.

[54] S. Poduri and G. S. Sukhatme. Latency analysis of coalescence in robot groups. In IEEE
International Conference on Robotics and Automation, pages 3295–3300, 2007.

[55] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In SIG-
GRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and interac-
tive techniques, pages 25–34, New York, NY, USA, 1987. ACM. ISBN 0-89791-227-6. doi:
http://doi.acm.org/10.1145/37401.37406.

[56] N. Roy and G. Dudek. Collaborative exploration and rendezvous: Algorithms, perfor-
mance bounds and observations. Autonomous Robots, 11(2):117–136, September 2001.

[57] J. A. Sauter, R. Matthews, H. Van Dyke Parunak, and S. A. Brueckner. Performance of dig-
ital pheromones for swarming vehicle control. In AAMAS ’05: Proceedings of the fourth in-
ternational joint conference on Autonomous agents and multiagent systems, pages 903–910,
New York, NY, USA, 2005. ACM. ISBN 1-59593-093-0. doi: http://doi.acm.org/10.1145/
1082473.1082610.

[58] T. Schelling. The strategy of conflict. Oxford University Press, Oxford, England, UK, 1960.

[59] T. W. Sederberg. Computer Aided Geometric Design. Brigham Young University, 2012.
http://hdl.lib.byu.edu/1877/2822.

[60] A. Shiloni, N. Agmon, and G. A. Kaminka. Of robot ants and elephants. In AAMAS ’09:
Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Sys-
tems, pages 81–88, Richland, SC, 2009. International Foundation for Autonomous Agents
and Multiagent Systems.

[61] J. Snape, J. van den Berg, S. Guy, and D. Manocha. The hybrid reciprocal velocity obstacle.
Robotics, IEEE Transactions on, 27(4):696 –706, aug. 2011. ISSN 1552-3098.

[62] P. Tabuada, G. Pappas, and P. Lima. Motion feasibility of multi-agent formations. Robotics,
IEEE Transactions on, 21(3):387 – 392, June 2005. ISSN 1552-3098.

[63] L. A. Tychonieivch and J. P. Cohoon. Coalescing swarms of limited capacity agents: Meet-
ing and staying together (without trust). IAENG International Journal of Computer Science
(IJCS), 39(3):254–260, 2012.

[64] L. A. Tychonieivch and J. P. Cohoon. Cohesion: Keeping independently-moving agents
close together. Technical Report CS-2012-03, University of Virginia, 2012.

http://hdl.lib.byu.edu/1877/2822

Bibliography 150

[65] L. A. Tychonieivch and J. P. Cohoon. Guaranteeing rendezvous of oblivious limited-
capability mobile agents. Technical Report CS-2012-04, University of Virginia, 2012.

[66] L. A. Tychonievich, R. P. Burton, and L. P. Tychonievich. Versatile reactive navigation. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009 (IROS 2009), pages
2966–2972, St. Louis, MO, October 2009. IEEE.

[67] J. van den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for real-time multi-
agent navigation. In Robotics and Automation, 2008. ICRA 2008. IEEE International Confer-
ence on, pages 1928 –1935, may 2008.

[68] H. Van Dyke Parunak, S. Brueckner, and J. Sauter. Digital pheromone mechanisms for
coordination of unmanned vehicles. In AAMAS ’02: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pages 449–450, New York,
NY, USA, 2002. ACM. ISBN 1-58113-480-0. doi: http://doi.acm.org/10.1145/544741.544843.

[69] J. Vazquez and C. Malcom. Distributed multirobot exploration maintaining a mobile net-
work. In Proceedings of the 2nd International IEEE Conference on Intelligent Systems, vol-
ume 3, pages 113–118, 2004.

[70] D. Yamins. Towards a theory of “local to global” in distributed multi-agent systems (ii).
In AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pages 191–198, New York, NY, USA, 2005. ACM. ISBN
1-59593-093-0. doi: http://doi.acm.org/10.1145/1082473.1082502.

[71] M. Zavlanos and G. Pappas. Dynamic assignment in distributed motion planning with lo-
cal coordination. Robotics, IEEE Transactions on, 24(1):232 –242, feb. 2008. ISSN 1552-3098.

[72] M. Zavlanos and G. Pappas. Distributed connectivity control of mobile networks. Robotics,
IEEE Transactions on, 24(6):1416 –1428, dec. 2008. ISSN 1552-3098.

[73] M. M. Zavlanos and G. J. Pappas. Distributed connectivity control of mobile networks. In
Proceedings of the IEEE Conference on Decision and Control, pages 3591–3596, New Orleans,
LA, USA, December 2007.

	Contents
	List of Figures

	Introduction
	Organization of this Document
	Terminology
	Related Work
	Stigmergy
	Rendezvous
	Cohesion
	Coalescence

	Stigmergy
	Adjacent Communication
	Remote Communication
	Couriers
	Post Office

	Site Watching
	Revised Site-Watching Problem
	Stigmergic Site Watching is Possible
	N > M Necessary
	mitDelta T geq tC Necessary
	Necessary and Sufficient

	Space and Time Synchronization
	Clock Synchronization
	Coordinate Frame Synchronization

	Conclusion

	Rendezvous
	Definitions and Notation
	Necessary Capabilities
	Individuality
	Temporality
	Search
	Limited Drift

	Parameterized Algorithm Families
	Without Uncertainty
	Skewed Clocks
	Noise or Nondeterministic Search
	Position Drift
	Variable Clocks
	Individual Clocks

	Cooperative Rendezvous
	Conclusion

	Cohesion Constraints
	Terminology
	Cohesion Predicate
	Liveness, Composability, and the ``null'' behavior N
	The Induced Distance Function dC
	Cohesion Predicate

	Computation Strategy
	Polynomial Approximation
	Boolean Bernstein Branch-and-Bound

	Examples
	Holonomic agents
	Car-like Agents

	Conclusion

	Local and Global Cohesion
	Local Cohesion Without Communication
	Distance-based Local Cohesion
	Problems with Local Cohesion

	Global Cohesion with Trust
	Limited Malice

	Conclusion

	Coalescence
	Terminology
	Swarms and Hives
	Knowledge, Malice, and Identity

	Small Swarms
	Full Trust
	Noise-Free Malice
	Noise and Malice

	Large Swarms
	Trustworthy Hives
	Untrustworthy Hives
	Conclusion

	Conclusion
	Glossary
	Bibliography

