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Abstract

Mobile sensing has created unprecedented opportunities to study human behaviors and

serve users in diverse applications. The foundation to mobile sensing is data collection

through both passive and active sensing. Successful mobile sensing applications require

e�ciently managing energy consumption in passive sensing using smartphone embedded

sensors, and compliance in active sensing such as mobile Ecological Momentary Assess-

ments (EMAs). To date, there is a lack of a unified framework that can enable adaptive

mobile sensing in a personalized and adaptive manner to address both of these challenges.

This dissertation leverages the most recognizable general purpose artificial intelligence

framework, reinforcement learning (RL), to model both passive and active sensing as se-

quential control problems, and adapt the sensing tasks to the users’ contexts. We design

both adaptive passive and active sensing strategies under the RL framework with di�erent

problem formulations to improve energy e�ciency in passive sensing, and user compliance

in active sensing. Performance of the proposed RL strategies are evaluated in simulations

using real data collected by continuous mobile sensing in mental health studies. Results

from simulations and predictive models show that our approaches, when compared to

various baseline methods, consistently achieve: 1) for passive sensing, more energy saving

with comparable data utility; and 2) for active sensing, higher overall compliance. We

implement and maintain a cross-OS mobile adaptive sensing platform, on which the pro-

posed RL strategies will be evaluated in future studies, and point out future directions to

advance mobile sensing technologies.
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Chapter 1

Introduction

1.1 Motivation

Cyber Human Systems (CHS) is a broad area of research and development that aims to

enhance human capabilities and foster well being by optimizing the human-technology

interface.1 Smartphone has become the most prominent CHS in the past decade due

to their increasing accessibility (e.g. a�ordability and mass production), and improved

hardware (e.g., computing power and rich embedded sensors), and the wider coverage of

wireless networks. These advancements create pervasive opportunities to both passively

and actively sense human contexts, understand users’ contextual states in real time, and

based on this understanding, provide timely, automatic, and relevant services to them.

For instance, the application of mobile sensing to improve public access to scarce health

care resources led to the development of mobile health [200]. Psychologists and behavior

scientists leverage mobile sensing to study individual and social behaviors [229, 208], while

environmentalists apply mobile sensing to understand large scale complex systems such

as air pollution, tra�c management, and energy consumption in smart city [70, 41].

Successes in mobile sensing applications rely heavily on both passive and active sensing

management. Passive sensing refers to continuous sensing using smartphone embedded

sensors to collect various data streams for construction and mining of user’s contextual

states, while requires no active user involvements during the data collection process. [200]

The major challenge in passive sensing lies in the limited energy in smartphones due to
1https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504958
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the small battery capacity. Continuous sensing without interruption will lead to quick

drainage of mobile device’s battery, interfering with user’s normal usage of the device for

other, potentially more important, daily purposes. [112, 144]

To complement passive sensing, active sensing (e.g., mobile ecological momentary as-

sessment or EMA) becomes a necessity when it is impossible to uncover key determinants

of human performance and well being through passively sensed data alone. [200] In con-

trast to passive sensing, active sensing requires users to expend resources (e.g., time,

energy, and cognitive e�orts) to satisfy sensing demands (e.g. taking surveys through

smartphones). Typical mobile sensing users and participants will have limited time and

mental resources to comply with active sensing tasks, especially when demands are placed

in inopportune moments such as during exercising, in meetings, or when being stressful.

This results in low compliance, and therefore absence of critical information required in

the targeted application. For instance, the authors in [201] reported an overall mean

compliance rate 68.2%(SD = 16.9%) in mobile EMAs for a one week study in 461 adoles-

cent smokers. In [217], a four week mobile EMA study reported a 30% overall compliance

rate from 17 college students.

To date, there is no unified framework that aims to systematically solve both energy

e�ciency challenge in passive sensing, and compliance challenge in active sensing. In

this dissertation, we leverage the reinforcement learning (RL) framework to address these

fundamental challenges in both passive and active sensing within mobile sensing applica-

tions. We aim to construct key state factors that can capture the underpinning di�erences

in each sensing task, and e�ective feedback signals that can shape the learned policies

towards improving the ultimate sensing outcomes (e.g., higher energy e�ciency in passive

sensing, and response compliance in active sensing).
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Problem Statement

Passive Sensing: Continuous operation of embedded sensors poses tremendous energy

stress on personal smartphones; however, reducing sampling time through simple tech-

niques such as duty cycling may lead to compromised data utility (i.e., missing data when

critical information is needed for mobile sensing applications). This dilemma in balancing

energy e�ciency and data utility leads to our first research question:

RQ1: How do we optimize the timing of sensor deployment in order to

maintain a practical balance between energy e�ciency and data utility?

Active Sensing: Active sensing provides critical information about mobile sensing

users that can not be passively sensed through smartphone embedded sensors (e.g., GPS,

accelerometer, and microphone) for a wide range of applications (e.g., Just-in-time Adap-

tive Interventions and environmental monitoring). Unfortunately, active sensing requires

frequent and oftentimes burdensome user responses that can lead to high perceived bur-

den and noncompliance. One source of low response compliance and poor user experience

comes from active sensing in the wrong moments of user’s routine lives when they are

unavailable because of engagement with other more prioritized tasks (e.g. during a class).

In particular, users may forget to follow up with these untimely active sensing triggers or

can be interrupted from their current tasks. In order to reduce the proportion of these

mistimed active sensing tasks and upkeep an acceptable level of response compliance as

well as providing a good user experience, trigger timing of active sensing needs to be

adaptive to the users’ changing contexts. This leads to our second research question:

RQ2: How do we optimize the timing and contexts of active sensing

triggers in order to maximize long term response compliance?

To address these two research questions, we propose to leverage the RL framework,

which can unify both passive and active sensing under the same adaptive sensing frame-

work.
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1.2 Applying Reinforcement Learning in Adaptive

Sensing

Benefits of Applying RL in Adaptive Sensing

Implementing adaptive sensing using the RL framework has numerous benefits. The most

prominent one roots in its underlying principle ’trial and error’. In many real world settings

such as the ones we are facing in mobile sensing, we do not have prior knowledge on how

to optimally manage both passive and active sensing with respect to energy e�ciency and

user compliance. Learning through balancing exploitation and exploration can lead to

best long term results.

Another important reason of selecting the RL framework as our approach is due to the

unpredictability in human behaviors. Although existing research has discovered a high

level routine pattern in human daily lives [77], people’s routine patterns evolve over time.

To capture these within subject variability, continuous learning is necessary to keep up

with the changes in human behaviors. In addition, between subject variability requires

learning individual models for di�erent subjects. The RL framework provides us both of

these conveniences to model human behavior dynamics in an adaptive and personalized

manner.

The RL framework is a natural fit to transform static mobile sensing into adaptive sens-

ing by converting the raw sensing data into critical contexts that can better inform sensing

decision. The Markov Decision Process (MDP) formulation enables this context-aware

through state characterization, treats sensing decision as action selection, and develops a

constantly updated policy via a carefully designed feedback (reward) signal. Under this

formulation, both adaptive passive and active sensing can be unified using the RL frame-

work. Hosts of mobile sensing applications need only to design the state characterization,

decide the action space, and define the reward signal. These decisions will then influence

what RL algorithms to choose for learning a policy.

The idea of RL can be dated back to the mid-19th century in animal behavior studies.



5

Since then, RL has undergone over a century of developments in several di�erent threads

including trial and error and optimal control [203]. Modern RL has become tightly inte-

grated with statistics, optimization, and other mathematical subjects. Many RL research

has focused on topics related to e�cient learning [241] and delayed rewards [57]. All these

more recent developments will provide a solid methodological foundation to our topics in

this dissertation, that is adaptive passive and active sensing.

Challenges of Applying RL in Adaptive Sensing

Applying RL in applications involved human behaviors and their situated contexts as the

interacted environment warrants several technical challenges. First and foremost, unlike

many physical (e.g., balancing an inverse pendulum) and virtual (e.g., adversarial games)

problems, learning e�ective state representation of human behaviors and its surrounding

environment is extremely challenging. There is no definitive models that are both su�-

ciently specialized and flexible to accommodate the between and within subject variability

in people’s behaviors. Regarding passive sensing, since our goal is to enhance energy e�-

ciency by reducing sensor deployments at moments that the users are not active, we can

characterize the state using features that capture signal variance in the collected raw data

stream. However, given the infinite many ways of measuring signal variance, we do not

yet know what the best practice is. Regarding active sensing, we need to characterize

users’ interruptibility and availability in the state representation. Numerous researches

in interruption management and human computer interaction [164, 146] find that some

contextual factors such as current task [165] and psychological traits [147] are significantly

correlated with users’ response compliance. These results provide initial guidance to our

design of state representation for understanding users’ active sensing response compliance.

However, no existing studies have applied them in the active sensing setting as we do in

this dissertation.

The second challenge arises from the unpredictability of human behaviors. It is easy

to understand the state of a chess game, but rather di�cult to understand the state of a
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human user. The changes of behaviors and thoughts in a person is not solely determined by

the applied action (e.g., active sensing demands) but also their exposure to the surrounded

social and physical environments, which is unpredictable and beyond our control. Because

of this unpredictability, human environment is dynamic and non-stationary. Although

environmental model is not a required component for solving a RL problem, as we do not

know how human user will behave, the learned policy do not have theoretical convergence

guarantee. Even worse is that if a user’s behaviors and environment have weaker routine

patterns or are changing faster than the agent can adapt to, the learned policy may result

in sub-optimal long term rewards.

Limited learning samples is another significant challenge in most human behavior

problems. Data collection in human studies are complicated and costly. Thus we have to

improve sample e�ciency using various RL techniques given our limited data. However,

it is not clear what the best way to achieve higher sample e�ciency is. Possible solutions

include resampling, and integrating planning with learning. Meanwhile, we have delayed

or unknown immediate rewards due to choosing the ’placebo’ action. In the context of

adaptive sensing, when we choose not to deploy a certain sensor or trigger an active

sensing task, we either do not have the required data to compute the reward for passive

sensing, or do not know the actual response if the sensing task is instead triggered for

active sensing.

Last but not least, unlike supervised learning, in which ground truth knowledge from

a supervisor is available for guiding learning, we have to design a reward signal to guide

our learning in a RL setting towards achieving the ultimate goal of the targeted applica-

tion. In the case of adaptive sensing, we want to improve energy e�ciency and response

compliance in passive and active sensing, respectively. What are the guidelines to design

proximal reward signals that can shape the policy towards long term improvements in

energy e�ciency and response compliance remains research question to be answered.
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1.3 Overview of the Dissertation

The rest of the dissertation is organized as the following: Chapter 2 provides a review of

embedded hardware sensors in today’s consumer smartphones, research in mobile sensing

applications, and a brief summary about existing challenges in mobile sensing. A brief

introduction to RL and technical details on several RL topics are then presented.

In Chapter 3, we propose a feature extraction framework based on reviews in existing

mobile sensing works. This proposed framework will guide state feature design in the RL

adaptive sensing strategies in the subsequent chapters.

Chapter 4 and 5 present our adaptive passive sensing framework. We develop adaptive

sensing algorithms using the RL framework, present our design methods on state repre-

sentation and reward, and how we handle the delayed reward challenge. We show two

di�erent problem formulations to turn continuous sensing into adaptive sensing. Simula-

tion results imply that energy e�ciency can be improved without adversely a�ecting the

data utility in predicting daily negative a�ect and social anxiety.

Chapter 6 discusses adaptive active sensing. We present our formulation to the adap-

tive active sensing problem, our design on the state representation and reward signal, and

how we handle the unknown (and delayed) reward challenge. In particular, we propose

a k-routine mining algorithm to discover frequent routine patterns, and present some

learned k-routines using real mobile sensing data. These learned k-routines are adopted

to represent a user’s high-level routine state. Simulation results show that adaptive active

sensing method can lead to improvements in various response compliance metrics (e.g.

response latency, and overall response rate).

Chapter 7 demonstrates our ongoing e�orts in the development of a comprehensive

adaptive sensing framework built on top of an existing mobile crowdsensing platform (Sen-

sus) [236]. Chapter 8 discusses future direction and challenges in mobile sensing system

implementation, while Chapter 9 concludes the current dissertation by summarizing all

the above works and laying out our future directions.
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Chapter 2

Background

In this chapter, we first review the existing hardware sensors in smartphones, state-of-

the-art mobile sensing applications, and several important challenges that hinder their

further progress. Then we briefly introduce reinforcement learning, and provide technical

details on several RL topics that will serve as the foundation for our proposed adaptive

sensing algorithms.

2.1 Mobile Sensors

Smartphones have become an integral part to our lives, serving us for many purposes

including but are not limited to communication, information needs, study and work, en-

tertainment, navigation, banking, and safety. All these smartphone applications are made

possible by several technological advancements including the high speed wireless network,

the access to hundreds of thousands of mobile apps distributed through app stores, and

hardware improvements (e.g., larger and higher resolution display, larger battery, smaller

form factor). [112] Among the many hardware improvements is the increasingly enriched

set of embedded sensors, which can be leveraged in a variety of mobile sensing applica-

tions. These sensors can be roughly classified as motion, positioning, ambient, device

usage, and physiological sensors based on their capabilities in measuring di�erent aspects

of human behavior, and can be selected and configured according to di�erent application

requirements [82].
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Motion Sensors

The main motion sensor applied in most existing mobile sensing applications and studies

is accelerometer, an eletromechanical instrument that measures acceleration along three

orthogonal axes relative to the center of the earth. [89] Another motion sensor is gy-

roscope, which measures the angular rotation rate along three axes of the device. The

integration of the gyroscope in smartphone has allowed for more accurate recognition

of movement within a 3D space than accelerometer alone. However, accelerometer is of-

tentimes su�cient for recognizing motion characteristics associated with various activities

(e.g., walking, running, sitting/being still), and is adopted widely alone without gyroscope

in activity recognition tasks [121, 180]. However, due to the uncontrolled position and

orientation of smartphones in users’ daily usage, combining the two may lead to improved

performance in activity recognition.

Positioning Sensors

Global Positioning System (GPS) leverages the delay times among broadcast signals from

a number (at least three) of satellites to measure the geographical position on earth using

the longitude and latitude coordinate system. [89] As long as the required satellite signals

are accessible, we can measure the position of the smartphone user anywhere on earth.

In contrast, Bluetooth, a wireless technology standard for exchanging data between fixed

and mobile devices over short distances using short-wavelength UHF radio waves, registers

users’ position by the known referenced position of the fixed Bluetooth device. Thus,

Bluetooth technology can only capture user’s position when his/her mobile device enters

the broadcasting range of the referenced fixed Bluetooth device (e.g., a static Bluetooth

enabled computer). In the same vein, WiFi-enabled devices (e.g., smartphones) can scan

surrounding Wireless local area networks with registered addresses, and log their media

access control addresses (MAC) or service set identifiers (SSID). The user’s position can

then be identified using this information. [89] A fourth positioning method utilizes cellular
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signal from the referenced cell tower to identify the smartphone user’s position at a cell

tower level.

Ambient Sensors

Ambient sensors, including but are not limited to microphone, light, and barometer sen-

sors, can capture the surrounding contexts of the smartphone users. Specifically, micro-

phone is an acoustic transducer that records the sound signals from both human speakers

and other sources of sounds; light sensor measures the intensity of illumination on the

front-facing surface of the mobile device; and barometer sensor collects the environmental

pressure, which can then be converted into estimates of variation in altitude. Due to

the unknown placement of the smartphone, the measurement accuracy of these sensors

can be compromised. For example, if the phone is placed within the pant pocket, the

recorded sound maybe mu�ed, and the light level may not reflect the true lighting condi-

tion. Plenty of existing works have leveraged these sensors in mobile sensing applications

for context-aware computing [133, 47, 189]. Other ambient sensors include temperature

sensor (thermometer) and humidity sensor etc.

Device Usage Sensors

Device usage sensors refer to software sensors that log the running and usage of di�erent

apps installed on the smartphone. Of important interests to us are battery levels, commu-

nication records (e.g., calls and text messages), screen on/o�, and social media logs (e.g.,

Facebook and Twitter messages). Battery levels can be used to control the deployment

of various other sensors, aiming to avoid interference of smartphone users’ normal usage

from mobile sensing applications. [55, 89] Communication records and social media app

usages reflect users’ remote and virtual social interactions with others, while face-to-face

social interactions can be approximated by Bluetooth encounters [233, 234]. Lastly, screen

on/o� directly signals the starts and endings of phone usage episodes, and can be used

to understand users’ phone usage patterns, which is very interesting by itself as many
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studies [59, 71, 31] have shown statistically significant connections between phone usage

patterns and various mental health conditions.

Physiological Sensors

Although our focus in this work is on mobile sensing using personal smartphones, wearable

devices such as smartwatches and wrist bands are increasingly used for health tracking

among smartphone users, and can be directly connected with mobile phones for moni-

toring various physiological signals such as heart rate, skin conductance, respiration, and

body temperature. [24] Typical wearable device embedded sensors include galvanic skin

response (GSR) sensor, photoplethysmography (PPG) sensor, accelerometer, and tem-

perature sensor etc. One advantage of these wearable devices over smartphones is their

fixed position on the wrist or other parts of the body, as compared to the uncontrolled

orientations and positions of smartphones. This may lead to better performance in con-

text recognition tasks. Also, when users are wearing them, they are e�ectively measuring

users’ physiological signals and other motion signals without interruption; while smart-

phones may be more likely left away from owners’ whereabouts, making the collected data

irrelevant to their real contexts. These wearable devices can be considered as extended

components to the associated personal smartphones, therefore when we talk about mobile

sensing, we do not make such di�erentiation unless necessary.

These sensors, although grouped by di�erent aspects of information they are capable

of collecting, generate longitudinal signals with di�erent formats (e.g., numeric and cate-

gorical sequences) and intensities (e.g., di�erent sensing rates). Certain combinations of

these information can be applied to form understanding of the complex contexts users

situate, but it requires building e�ective computational models.

2.2 Mobile Sensing Applications

Equipped with such a diverse set of sensors, smartphone has become the test bed for many

innovative sensing applications. In this section, we survey some of the relevant mobile
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sensing applications that leverage smartphone’s passive and active sensing capabilities.

Activity Recognition and Context-aware Computing

Activity recognition and context-aware computing refer to the usage of raw sensing data

collected by various sensors to understand users’ ambient and physical state. Table 2.1

summarizes some representative works in this domain using mobile sensing. The applied

sensors range from accelerometer, GPS, microphone, Bluetooth, barometer, gyroscope,

light sensor, WiFi, cell tower signal, to phone usage logs. The activities can be cate-

gorized as ambulatory activities (e.g., walking, running, and being still), transportation

mode (e.g., walking, biking, on a bus, and driving), mobility (e.g., next place prediction),

social activities (e.g., studying, dining, and partying), ambient environments (e.g., human

conversation, quiet and noisy environment, indoors vs. outdoors), sleeping (e.g., sleeping

duration and quality), and phone usage (e.g., app preference).
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Table 2.1: Physical contexts. Sensors: Accelerometer – acc, Microphone
– mic, Barometer – br, Bluetooth – bt, Gyroscope – gs, Phone usage – pu,
Communications (calls and sms) – comm, Compass – cp, cell tower – ct

Category Behavior Details Sensor(s) Ref(s)

Ambulatory 15 activities (e.g., walking, running, vacuuming). acc,br,mic [101]
activities 10 activities (e.g., sitting, walking, jogging). acc,mic,light,br,cp [117]

Static (e.g., standing, sitting, lying), and move-
ment (e.g., walking, running, ascending stairs).

acc [121]

6 activities (e.g., sitting, standing, walking). acc,gs [180]
11 activities (e.g., working, meeting, resting, home
and talking)

acc,GPS,mic [227]

Transportation walking, biking, taking a bus, and driving a car. GPS [126]
mode stationary, walking, running, biking, or in motor-

ized transport.
GPS,wifi,ct [182]

idle, walking, and vehicle. br [189]
walking, taking a bus, riding a bike, and driving. GPS [246]

Mobility predict next place GPS [127]
predict next place GPS [204]

Social/daily ac-
tivities

5 activities (e.g., meeting in the hall, working in-
doors, watching a movie in the cinema).

bt [46]

buying food and drink acc,wifi,mic [44]
activity changes in an academic term (e.g., levels
of activity and sociability)

acc,mic [80]

7 acitivities (e.g., Shopping, transportation, house-
keeping, work, sleeping, watching TV).

acc,mic [67]

Ambient voice, music, and ambient sound. mic [131]
environments 5 sounds (e.g., opening polymer packet, crushing

packet).
mic [209]

sleeping sleep duration, onset mic [2]
sleep duration mic,light,pu,acc [47]
sleep acc,mic,light, pu [150]

Phone usage app usage acc,mic,GPS,pu [237]

Mobile Crowd Sensing

Mobile crowd sensing (MCS) is a community sensing paradigm that leverages perva-

sive mobile devices owned by individual users to collect data for many urban scale ap-

plications. [70] Applications of MCS include but are not limited to air quality moni-

toring [83], tra�c monitoring [151, 60], emergency management [104, 63], road surface

monitoring [38], place of interest recommendation [94], urban wifi characterization [62].

Depending on the level of participant involvement, MCS can be opportunistic or participa-

tory. Opportunistic sensing requires minimal user involvement (e.g., automatic location
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sampling), while participatory sensing requires active user involvement (e.g., taking a

photo of a parking garage). Since participants in MCS expend resources (e.g., time,

money, e�orts) to complete the assigned tasks, most of the research problems in MCS

revolve around user participation. The major challenges in MCS include recruitment and

incentives [244], data quality (e.g., coverage, latency, and confidence) [128] and transmis-

sion [135], task assignment [220], power e�ciency [54], and privacy [70].

Mobile Ecological Momentary Assessment

Ecological Momentary Assessment (EMA) is an intensive surveying approach that allows

subjects to repeatedly report their experiences in real-time and in situ. Comparing to

retrospective self-reports, EMA has become the new norm of data collection for a wide

range of research areas (e.g., clinical assessment [78, 16], psychology/cognitive process

and their mechanisms [229, 208, 13], mobile health [99, 116]) focusing on gaining a better

understanding of the dynamics in human behavior and experience over time and across

situations [196]. Mobil EMA leverages the mobility of smartphone users and their closed

proximity to these mobile devices to ecologically collect data. With the passive sensing

capabilities, these active data can be further augmented by context, making the EMAs

context-aware.

Applying mobile EMA, many researchers have studied technology utility experiences

to inform better product/service design [93, 65, 43], clinical assessment and research (e.g.,

schizophrenia [78], suicide ideation [16], major depressive disorder [153, 206], HIV pro-

gression [61]), mental health [163, 214, 85, 160], health behaviors (e.g., alcohol use [232],

binge eating [5], behavioral medicine [186]), psychology/cognitive process and their mecha-

nisms [229, 208, 13], academic emotions [75], organizational research [33, 106, 14, 90, 192],

tourism and live event experiences [20, 138, 198, 230], and mobile health (mHealth) [99,

116, 159, 108].
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Mobile Health and Intervention

Mental state and health behaviors include various aspects of people’s mental well be-

ing (e.g., stress, depression, anxiety, mood/emotion, happiness), personal and relatively

enduring characteristics (e.g., personality, attributional style), health symptoms and dis-

eases (e.g., cancer symptoms, Parkinson’s disease), and health related behaviors (e.g.,

drinking, smoking). Table 2.2 summarizes some representative works in mental and

health behavior inference using mobile sensing. A similar set of sensors were applied

when compared to those in physical activity recognition in Table 2.1. Most of these re-

searches attempted to establish the links between passively sensed human contexts and

health outcomes (e.g., stress [3], schizophrenia [222], and psychotic relapse [18]). They

indicate that interventions and recommendations informed by passive sensing may e�ect

positive behavior changes in applications such as regulating anxiety [51] and suggesting

personalized physical activities [176].

Mobile intervention aims to lower barriers to treatments for a wider range of popula-

tions and ultimately improve certain health outcomes, especially chronic diseases [200].

Researchers have investigated several engineering frameworks to implement e�cient and

e�ective mobile interventions. Timms et al. proposed to use control engineering frame-

work to model mobile interventions [111, 207], while Kelly et al. propose to use RL

to facilitate the delivery of intelligent real time treatment (iRTT) with continuous self-

reports through EMAs [100]. Both of these proposed methods are dynamic and leveraging

active sensing to obtain real-time understandings from the users, which in turn will serve

as the controlled variable in the control engineering framework or reward signal in the RL

framework, to determine intervention regime and timing of delivery.

A special type of behavior interventions, namely Just-in-time Adaptive Intervention

(JITAI), provides supports when the users are most in need through adaptation in the

delivery timing and intervention regime. Frameworks guiding the Design of JITAIs with

mobile technologies have been proposed by Nahum et al. [154]. However, implementation

of adaptive and interaction systems that deliver JITAI remains very challenging, and most
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existing works either involved only conceptual developments and/or proof-of-concept, or

were not truly adaptive in trigger timings (e.g., using recipient chosen timings, or when

help/support is requested through EMAs [84]).
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Table 2.2: Mental and health behaviors. Sensors: Accelerometer – acc,
Microphone – mic, Barometer – br, Bluetooth – bt, Gyroscope – gs, Phone
usage – pu, Communications (calls and sms) – comm, Compass – cp, cell

tower – ct.

Category Behavior Sensor(s) Ref(s)

Stress daily stress level (e.g., non-stressed vs. stressed). bt, comm [21]
stress (e.g., stressed speech, and neutral speech). mic [133]
stress (e.g., below and above median). GPS [149]
momentary stress (e.g., stressed vs. not-stressed). acc, GPS, mic, bt [233]
stress (e.g., momentary stress with two levels stressed
and non-stressed; daily stress on 7-point scale).

GPS, bt [234]

Depression daily depression level based on PHQ-8 using cut points
(e.g., mild, moderate, moderately severe and severe).

GPS [39]

depression behavior using CES-D survey instrument. mic, light, gps, acc,
pu, comm

[55]

daily depression using PHQ-8 (0 and 1 representing
absence and presence of depressive symptom).

GPS [143]

post-traumatic stress disorder (PTSD) and depression
using SCID (0 and 1).

GPS,mic,comm [169]

depression using PHQ-9 and 5 as cut point (0 and 1). GPS, pu [188]
depression using PHQ-9; anxiety using GAD-7 (both
with cut-o� point of 10 as binary classification task).

acc, mic, light, GPS,
comm, wifi, pu

[187]

depression using PHQ-8 (term, cut point 10) and PHQ-
4 (weekly,cut point 3)

acc, GPS, light, mic,
pu

[225]

Anxiety social anxiety using SIAS, depression using DASS-21,
daily posive and negative state a�ect (0-100).

GPS [48]

social anxiety using SIAs. acc,comm [76]

Mood/emotion emotion in two dimensions: pleasantness and arousal
(activation).

acc [69]

negative emotion in three dimensions using visual ana-
logue scales with 1/3 as cut points: depression, stress,
and anxiety

pu, comm [91]

mood in Circumplex pleasure and activeness dimen-
sions on 5-point scale.

pu, GPS, comm [123]

daily mood in three dimensions on 5-point scale: dis-
pleasure (overall), tiredness and tensity.

acc, mic, GPS,
comm

[136]

daily mood on a a�ect grid in two dimensions: valence
and arousal.

acc, mic, GPS,
comm

[195]

Diseases and
Symptoms

daily Schizophrenia symptom level using positive and
negative EMA question items.

acc, GPS, light, mic,
pu, comm

[221]

various health symptoms (e.g., Sad, Depressed,
Stressed; Sore-Throat, Cough, Runny-Nose, Conges-
tion, Sneezing; Flu and Fever Symptoms.)

bt, comm [7]

Others Happiness using a�ect grid with two dimensions: va-
lence and arousal.

acc [115]

Personality using Big Five personality trait question-
naire.

acc, mic, pu, GPS [226]

Trust bt,comm [197]
academic performance (i.e., predict GPA) acc, GPS, mic, light,

pu, wifi, bt
[223]
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2.3 Challenges in Mobile Sensing

There are many challenges in mobile sensing that are beyond the scope of this disserta-

tion. For example, in passive sensing, training activity recognition and behavior inference

models requires a large quantity of human labeled data, which is extremely expensive

(e.g., time, costs, and e�orts) to obtain. Much work has been done in these areas as

are shown in Table 2.1 and 2.2. However, the definitions of outcome metrics are not

consistent, making it hard to compare performances, and reuse existing results. In active

sensing, data quality may be compromised by careless and dishonest submissions from

participants, which necessitates certain format of data authentication. [145, 217, 184].

Privacy issue is another concern in handling the collected sensing data, which may breach

participants’ personal information.

This dissertation focuses on the energy e�ciency challenge in passive sensing, and the

user compliance challenge in active sensing. Using the RL framework, we are able to

unify these two disparate challenges under adaptive sensing by leveraging users’ sensed

contexts. With the understanding of users’ contexts, on one hand, we can optimize the

timing and contexts of sensor deployments to save energy while preserve su�cient data

utility; on the other hand, we can determine when the best moments are for task triggers

to obtain higher response compliance.

User compliance is a multifaceted challenge in active sensing. Although users’ contexts

play a critical role in their response behaviors (e.g., when they are unavailable or unat-

tended to the triggers), it is not the only cause for low compliance. One biggest challenge

mobile sensing research faces is the law of attrition [174]. Users usually lose their interest

and motivation over time, resulting in failure of maintaining long term compliance and

intervention e�cacy. In order to solve this challenge, adaptive sesing needs to be coupled

with other measures such as incentives [244], gamification [177, 218], and feedbacks (i.e.,

making participants’ e�orts rewarding and useful to them) [147, 108] to sustain long term

compliance. In this dissertation, we estimate user’s motivation using a moving window

response compliance, and apply it as a state feature in our adaptive sensing methods.
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2.4 Reinforcement Learning

What is the RL framework?

Reinforcement learning is a subdivision of machine learning that centers on the idea of

learning through interactions in a given environment [203]. In contrast to supervised

learning, in which learning is guided under knowledge of correct ’actions’, learning in

RL is based upon ’trial and error’. To characterize the interactions between a learning

agent and its environment, RL follows the formal framework of Markov decision processes

(MDP) using states, actions, and rewards. State refers to the representation that captures

the key characteristics of the environment at a given moment relevant to the learning

task. An action will be chosen in a state (of an environment) at each decision point,

and a reward signal, typically a proximal performance metric directly generated by the

environment in receipt of the selected action, will provide feedback to either strengthen

or weaken the connection between the state and the chosen action in that state. This

law of e�ect, as was derived by Edward Thorndike back in 1911 [203] in his observations

from animal experiments, can be regarded as a basic learning principle underlying many

human behaviors and artificial intelligence problems.

The main task in RL is to learn an optimal policy, a mapping between states and

actions that can guide any future action selection in any given state and maximize the

long term cumulative rewards. This is achieved through estimating a value function of the

states. While the reward signal indicates the immediate and intrinsic desirability of the

environmental states, the value of a state (as reflected by the value function) indicates

their long-term desirability by taking into account the states that are likely to follow.

In learning the optimal policy, we always seek actions that generate the highest values,

instead of highest rewards, in those states.

This dissertation considers the RL framework in a broad sense, that is learning through

interaction in a given environment, regardless of how the learning output is represented

(i.e., be it a policy resulted from classical RL formulations, a simple decision rule, or a

supervised model) to guide action decision. In this sense, many methods under control
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Figure 2.1: Reinforcement learning in adaptive sensing.

engineering that use a feedback mechanism can be considered as RL methods as well.

Methods that leverage supervised models for action decision in an online fashion can also

be considered as falling under the RL framework. Figure 2.1 illustrates the RL framework

in the context of adaptive sensing.

In the following sections, we provide basic technical details on RL that are applied in

the later expositions. We will only focus on the control problem rather than the prediction

problem in RL due to its relevancy and constraints in space. Specifically, the prediction

problem in RL is where a policy is supplied, and the goal is to measure the value of the

policy; and the control problem in RL is where the policy is not fixed, and the goal is to

find the optimal policy.

Markov Decision Process

Markov Decision Process (MDP) is a classical formalization of sequential decision making

problems, which simplify the problem of learning from interactions with the environment

into a sequence of discrete decision points. At each decision point, the agent understands

the environment through a state representation, and chooses an action based on this

knowledge. As a consequence of its action, the agent receives a numerical reward that

signals the immediate desirability of the chosen action given the current state.
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Traditional MDP is defined as a five-tuple M = ÈS, A, T, R, “Í, where S is the state

space, A is the action space, T œ (Ps)S◊A is a transition function, R œ RS◊A is a

reward function, and “ œ (0, 1) is a discount factor. Among these five elements, T

provides an environment model that designates the state transitions given the chosen

actions. Depending on whether S is continuous or discrete, T (sÕ|s, a) can be understood

as a probability density or mass function describing the probability of reaching state s
Õ

if action a is taken in state s. However, the environment model is not required to solve

a RL problem as in almost all practical problems, the true environment model will be

unknown and extremely challenging to accurately estimate.

We apply model-free RL methods, which requires no environment model, to solve

the mobile sensing problems in this dissertation. Although the MDP formulation is not

exactly followed, it does provide us useful abstractions for the mobile sensing problems,

and the basic terminologies that we will follow in the rest of this dissertation, including

the state and action space, and reward function.

Using the MDP formulation, a RL problem that characterizes the online interactions

between the agent and environment proceeds according to the following protocol. At

timestep t = 1, 2, 3, . . .,

1. The agent perceives the current state st œ S, and takes an action at œ A.

2. In response, the environment sends an immediate reward rt to the agent, and moves

to the next state st+1 œ S.

3. t Ω t + 1

Temporal Di�erence Methods and Q-Learning

The goal of RL is to search for an optimal policy that can result in maximal cumulative

long term rewards. To achieve this goal, it leverages action value functions q(s, a), which

represent the expected cumulative future discounted rewards of taking a certain action a

in a given state s. Let us denote qú as the optimal action value function. According to

the Bellman optimality equations, we have:
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qú(s, a) = E[Rt+1 + “ max
aÕ

qú(St+1, a
Õ)|St = s, At = a]

=
ÿ

sÕ,r

p(sÕ
, r|s, a)[r + “ max

aÕ
qú(sÕ

, a
Õ)]

(2.1)

where p(sÕ
, r|s, a) is the environment model that specifies state transitions and reward

generation. There are two major issues with Equation 2.1. First, we do not know the

environment model in almost all practical problems, and secondly it is not in an incre-

mental format that can be implemented for policy searching. Fortunately, both of these

problems become non-issues in the temporal di�erence (TD) learning methods.

TD learning is considered the most central and novel technique in RL. [203] It combines

the dynamic programming (DP) ideas (e.g., learning a guess from a guess, or in another

word, bootstrapping) with the Monte Carlo ideas (e.g., requiring no environmental model).

Learning in Monte Carlo methods must wait until the end of an episode, while TD methods

learn in every time step, thus making it much more e�cient in continuing tasks or tasks

that have long episodes. At each time step, the TD update is given by

V (St) Ω≠ V (St) + –[Rt+1 + “V (St+1) ≠ V (St)] (2.2)

This TD method is called TD(0), or one-step TD, a special case of the TD(⁄) when using

eligibility-trace. We will defer eligibility-trace as a later topic below.

Of all the TD methods, we focus on an o�-policy TD control algorithm known as

Q-learning. Its per time step update is given by

Q(St, At) Ω≠ Q(St, At) + –[Rt+1 + “ max
a

Q(St+1, a) ≠ Q(St, At)] (2.3)

The Q-learning algorithm is o�-policy because its update policy and behavior policy are

di�erent. Algorithm 1 [203] shows the Q-learning algorithm for learning the optimal

policy. For proofs of policy improvements and value function convergence, please refer to

[203] for more details.
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Algorithm 1 Q-learning for estimating optimal policy fiú

Initialize Q(s, a), for all s œ S, a œ A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of an episode):
Choose A from S using policy derived from Q (e.g., ‘-greedy)
Take action A, observe R, S

Õ

Q(S, A) Ω Q(S, A) + –[R + “ maxAÕ Q(S Õ
, A

Õ) ≠ Q(S, A)]
S Ω S

Õ

until S is terminal

Linear Approximation

When the state space S is continuous, it is impossible to encounter all possible state values

in the learning process. Thus the learned policy needs to be able to generalize to unseen

state values. To achieve this goal, instead of the classical tabular RL methods, we apply

a technique called function approximation. Let us denote the parametric action value

function as q(s, a, w), where w œ Rd is a finite dimensional parameter vector. The action

value function can be either linear or non-linear. Non-linear functions include neural

networks and possibly other supervised methods such as Support Vector Machin (SVM).

We will only focus on linear approximation in this dissertation.

The update for the one-step Q-learning method with linear approximation is given by

wt+1 = wt + –[Rt+1 + “ max
At+1

q(St+1, At+1, wt) ≠ q(St, At, wt)]Òq(St, At, wt). (2.4)

With q(S, A, w) = �(S, A)wA, where �(S, A) œ Rd is a d-dimensional feature vector, and

wA is the parameter vector associated with action A, Equation 2.4 can be rewritten as

wAt
t+1 = wAt

t + –[Rt+1 + “ max
At+1

�(St+1, At+1)wAt+1
t ≠ �(St, At)wAt

t )]�(St, At). (2.5)

Eligibility-trace

Eligibility trace is a basic and general mechanism in RL that can be combined with most

TD methods such as Q-learning to improve learning e�ciency. There are two di�erent
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views on eligibility trace, the forward and backward views. The forward view provides

a clear understanding on how eligibility trace actually enhance learning e�ciency by

proportionally weighting all the n-step updates according to ⁄
n≠1. The resulting update

is called ⁄-return, and is given by

G
⁄
t = (1 ≠ ⁄)

T ≠t≠1ÿ

n=1
⁄

n≠1
Gt:t+n + ⁄

T ≠t≠1
Gt (2.6)

where Gt:t+n is the n-step update given by

Gt:t+n = Rt+1 + “Rt+2 + · · · + “
n≠1

Rt+n + “
n
q(St+n, At+n, wt+n≠1), 0 Æ t Æ T ≠ n.

However, the forward view of eligibility trace depends on future rewards that are not

available at the current moment, and is much more complex to implement. To address

this challenge, the backward view provides an online, real time, and more computationally

e�cient alternative that does not depend on future rewards, but look backward to recently

visited states using eligibility trace. The rough idea is to magnify the updating of the

corresponding parameters in the most recent state. The trace-decay parameter ⁄ œ [0, 1]

determines decaying rate of the trace. Let us denote the eligibility trace by zt, and the

TD error by ”t = Rt+1 + “q(St+1, At+1, wt) ≠ q(St, At, wt). Two key equations for the

TD(⁄) algorithm are given by

zt = “⁄zt≠1 + Òq(St, At, wt), 0 Æ t Æ T (2.7)

wt+1 = wt + –”tzt (2.8)

Equation 2.7 is the eligibility update formula, while Equation 2.8 is the parameter update

formula.
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Figure 2.2: Dyna-Q Framework from [203].

Dyna-Q

One of the biggest challenges we face in applying RL in solving practical problems such as

those in mobile sensing is the shortage of real learning experiences. One way to address

this challenge is to augment the limited real learning samples by integrating planing with

learning. Dyna-Q is a simple architecture that integrates planning with learning in an

online agent. Figure 2.2 shows this architecture in Dyna-Q and Algorithm 2 shows one

way of implementing it.

Algorithm 2 Tabular Dyna-Q [203]
Initialize Q(s, a) and Model(s, a) for all s œ S, a œ A(s)
Do forever:

(a) S Ω current (nonterminal) state
(b) A Ω ‘≠greedy(S,Q)
(c) Execute action A; observe resultant reward, R, and state, S

Õ

(d) Q(S, A) Ω Q(S, A) + –[R + “ maxa Q(S Õ
, a) ≠ Q(S, A)]

(e) Model(S, A) Ω R, S
Õ (assuming deterministic environment)

(f) Repeat n times:
S Ω random previously observed state
A Ω random action previously taken in S

R, S
Õ Ω Model(S, A)

Q(S, A) Ω Q(S, A) + –[R + “ maxa Q(S Õ
, a) ≠ Q(S, A)]
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The main issue in applying Dyna-Q in the adaptive active sensing problem in par-

ticular, and in other practical problems in general, with limited learning experiences, is

about creating the environment model for generating simulated experiences. In tabular

Dyna-Q, simulated experiences can be generated by randomly sampling past real experi-

ences in the format of St, At æ Rt+1, St+1. In this way, the model will never be queried

with state action pairs that it has no information from the past. However, the downside

of this approach is that the sample model can not generate new unseen samples for plan-

ning. In supervised learning, there is a technique called Synthetic Minority Oversampling

Technique (SMOTE) for oversampling imbalanced class. The idea of this technique is to

generate a new sample from those in the minority class using a random sample and its k

nearest neighbors. It is possible to adapt this approach to overcome this generalization

issue in bootstrapping.
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Chapter 3

Feature Extraction for Behavior

Modeling in Mobile Sensing Data

In this chapter, we propose a feature extraction framework for mobile sensing data to

guide the extraction of state features based on systematic reviews of existing works. We

close this chapter with a presentation of an online location mining algorithm that will be

used throughout this dissertation, and some summary statistics from applying it in real

GPS data.

3.1 Introduction

Recent advances in mobile and passive sensing technologies have provided a new avenue

for researchers to understand and model human behaviors. Passive sensing, unobtrusively

capturing fine-grained behavioral data via smartphone and wearable embedded sensors,

can provide fine-grained objective data about users’ contexts and behaviors with minimal

burden; while mobile EMAs provide subjective data with minimal recall and expectancy

biases, and maximal ecological validity. These multimodal data can be combined to un-

derstand more complex behaviors such as choice of transportation, sleep, social activities,

and mental health [18, 10, 182, 126].

In order to create valid models from mobile sensing data, researchers must go through

a process of transforming the raw sensor outputs into meaningful explanatory variables

that represent aspects of behavior (i.e. engineered features). These engineered features
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can be subsequently aggregated or mined for patterns that may be associated with more

complex behaviors, such as those found in the domain of mental health (e.g., depression

and anxiety) [27, 48, 39].

There are significant challenges in this feature extraction process. The relevance of

features should be informed by behavioral domain knowledge (e.g. behavior theories of

change [148], models of psychopathology [73]), which may not always be available. Even

when available, their impacts can be limited because many prominent behavior models

and theories do not account for the temporal aspect of behavior (e.g., duration of social

isolation [48]). [185, 202] Furthermore, sensing data can be processed in many ways by

statistical and mathematical functions, leading to poorly understood features. Finally,

automatic feature extraction methods, such as deep learning, have become more prevalent

in recent years. [24, 143] However, these methods require large quantity of training data,

which are not available in many human-centric problems.

In addition to the above challenges, an obstacle of successful behavior modeling, is the

absence of standards in feature extraction. There is a lack of systematic reviews targeting

feature extraction techniques in mobile sensing data [171]. To date, feature extraction has

been mostly conducted in a case by case, application-dependent basis. Although many

reviews in mobile sensing have provided perspectives on challenges and outlooks in this

field, none of these works propose a feature extraction framework. As a result, a method

that works well for one study can not be assumed to work well in a di�erent study. An

overarching framework is urgently needed to guide feature extraction for the development

of machine learning models from raw sensor data.

In this chapter, we survey representative works that leverage mobile sensing to under-

stand and model human behaviors, and summarize their techniques in feature extraction.

While prior works have focused on the general design of mobile sensing applications and

their accompanying challenges, this chapter mainly focuses on the feature extraction pro-

cess and emphasizes the methods that are used to encode and extract features from

preprocessed raw sensing data. Based on these reviews, we propose a computational

framework to guide the design and extraction of features from raw sensor outputs to
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support human behavior modeling.

3.2 Related Work

Lane et al. published a paper on mobile phone sensing in 2010, recognizing the emerging

sensing technologies at the time, along with their enormous potential for a wide range

of applications (e.g., transportation, social networking, environmental monitoring, and

health) at di�erent levels (e.g., individual, group, and community). [112] Their proposed

sensing architecture has been influential in more recent mobile sensing works. Specifically,

the ‘learning’ phase of their framework discussed challenges in interpreting di�erent sensor

data; however, they did not explained feature extraction methods in them for behavior

modeling using machine learning.

While [112] presented various opportunities and challenges within general purpose

mobile sensing, [50, 152, 231] focused on personal sensing in health and well-being. In

[50], the authors systematically reviewed works on smartphone sensing for health and

well-being, identifying 35 papers and summarizing them based on their health problem,

study goal, principal findings, adopted sensors, sample size, and study duration. Learn-

ing from these summaries, they provided a brief discussion on the various challenges and

limitations in mobile sensing. They emphasized the importance of choosing sensing strat-

egy and adopting personalized models, and proposed future research directions including

application domains, policy and privacy etc.

In [152], the authors proposed a hierarchical model for translating raw sensor data

into markers of mental health. Within this framework, raw sensing data are distilled into

information, which is further combined to form behavior markers for mental well-being

monitoring and detection. They surveyed existing works that leverage di�erent platforms

(e.g., mobile phones, wearable devices, social media, and computers), and grouped them

according to di�erent types of behavioral markers (e.g., sleep, social context, mood and

stress) and clinical disorders (e.g., depression, bipolar disorder, schizophrenia). They then
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discussed broadly general machine learning methodologies such as supervised and active

learning, existing challenges, and potential applications in personal sensing.

Woodward et al. provided an overview of traditional and newer sensing technologies

for clinical assessment, monitoring, and intervention. [231] Specifically, mHealth apps

and ’tangible interfaces’ (i.e., digital interfaces embedded in physical environments) in

various applications were reviewed to understand how they were leveraged in mental

health monitoring, and how virtual and augmented reality can be used to improve mental

well-being. Challenges in these newer technologies, such as data collection, privacy, and

battery life, were also discussed. The authors recognized the growing opportunities in

the applications of sensing and feedback technologies to develop robust clinical decision

support systems for the diagnosis and intervention of mental disorders.

These reviews did not cover feature extraction in depth, and therefore can not provide

practical guidance to feature extraction for behavior modeling in mobile sensing data.

Shmueli et al. surveyed mobile sensing works based on the types of the targeted human

behaviors (e.g., personal vs. inter-personal, and short-term vs. long-term). [197] Personal

and short-term behaviors include emotional states and activities; personal and long-term

behaviors include personality, health and wellness; inter-personal and short-term behav-

iors include roles in meetings, and short-term group interactions; and inter-personal and

long-term behaviors include community structure and organizational e�ectiveness. How-

ever, They did not focus on low-level derived features via di�erent sensing modalities,

such as physical motion patterns using accelerometer data.

Harari et al. reviewed mobile sensing works in social interactions, daily activities, and

mobility patterns, and describe specific features extracted from each smartphone embed-

ded sensor. [82] However, they did not discuss the methods used to extract them. In

[81], the same authors summarized more concrete features extracted for similar groups of

behaviors including physical movement, social interactions, and daily activities. However,

neither feature extraction framework, nor summary of feature extraction techniques was

presented to guide behavior inference using mobile sensing data.

Hoseini et al. surveyed existing researches and approaches towards implementation of



31

systems in context recognition using mobile phones. [89] In data preprocessing, the authors

categorized features into heuristic, time and frequency domain features under di�erent

context recognition tasks (e.g., recognizing physical activity, detecting social interactions,

and sensing ambient environment). They considered the feature extraction process as a

computational process with preprocessed sensing data within a selected window as input,

and the distilled information (i.e., more computationally e�cient and lower-dimensional

forms called features) as output. We share the same view with this work on feature

extraction as an input-featurization-output computational process, and build on this

foundation to propose a feature extraction framework that can guide feature extraction

with various techniques.

3.3 A Feature Extraction Framework

Raw data from mobile sensing applications are messy and high dimensional, and contain

a large amount of noise that interferes with the behavior modeling process. Feature ex-

traction is the process of cleaning, organizing, and reducing the dimension of raw data for

behavior modeling. While some authors call it data preprocessing, and others feature en-

gineering or representation learning, no one really formalizes it in the contexts of behavior

modeling using mobile sensing data. In this section, we propose a computational frame-

work for feature extraction towards behavior modeling. Figure 3.1 shows the proposed

framework. The input component includes time series data collected from various embed-

ded sensors in mobile sensing; the feature extraction component includes preprocessing

(e.g., imputation, normalization, and transformation), encoding, and featurization; and

the output component includes the generated features for behavior modeling. For the rest

of this section, we review existing mobile sensing works based on this proposed framework.
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Figure 3.1: A Computational Framework for Feature Extraction.

3.3.1 The Input

The raw data collected from various smartphone embedded sensors can be grouped based

on their data formats, including continuous (e.g., accelerometer and GPS data) and cat-

egorical (e.g., app usage logs and screen on/o�). Due to their di�erent formats, feature

extraction is conducted using di�erent methods.

Continuous Time Series. Continuous time series can be aggregated using numeric-

based statistics such as mean and standard deviation [227, 126], or transformed using Fast

Fourier Transformation (FFT) [117, 171, 209] and Wavelet Transformation (WT)[110,

121]. Density-based methods have also been applied to estimate distribution of continuous

time series, and percentiles of these empirical distributions can be extracted as features

for behavior inference (e.g., recognizing physical activities [171]).

Categorical Time Series. Categorical time series apply a rather di�erent sets of

methods for feature extraction, including frequency-based and pattern mining meth-

ods [39, 82, 130, 92]. Counts of each category within a designated time window (e.g.,

number of visits to certain places [39, 82]) and patterns of categorical sequences (e.g.,

visiting a local elementary school before going home [130]) are among some of the most

popular features.
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Timestamped Data. The raw sensing stream is timestamped, and provides a rich

space for many di�erent techniques to extract feature. We can extract the duration of

certain events such as distribution of time spent at di�erent places, time intervals between

di�erent consecutive place visits, and proportion of time being active each day [48, 36].

Conversion between Data Formats. Raw sensing data can be converted from one

format into another one. For example, some researchers derived features (e.g. distance

traveled) directly from GPS coordinate sequences [39], other researchers convert the nu-

meric GPS coordinate time series into categorical place visit time series using clustering

algorithms to learn semantic places of users [97, 125].

It is important to understand what data format of a sensing stream is, what meta

data associated with the data stream are available, and whether they can be converted

into another data format to extract more important features for behavior modeling.

3.3.2 Feature Extraction

Data Preprocessing

Data preprocessing refers to various cleaning and preparation steps including imputing

missing data, normalizing data in di�erent scales, and transforming data from one format

to a di�erent format. There are no universal rules to follow in these steps. To illustrate,

we provide some typical examples in each of them.

Imputation. Missing data can result from various conditions (e.g., app failure,

drained battery, and interference from other apps) during the data collection process.

Imputation is required for certain subsequent steps in the preprocessing pipeline (e.g.,

transform the data from time domain to frequency domain using FFT). Depending on

the format of the time series data, we can apply di�erent imputation methods such as

moving average for continuous data, and last value carried forward for categorical data.

When temporal relation is weaker (e.g., hourly step counts on a given day), the average

value in the corresponding hour across di�erent days for continuous data, or the most

encountered value for categorical data, can be applied to impute missing values. Many
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imputation methods are available in the literature and on the web 1. It is important to

select an appropriate imputation strategy based on the context of the data, amount of

missingness, and their missing mechanism.

Scaling. Scaling data is required when multi-modal sensing data are applied in behav-

ior modeling. Typical scaling strategies include 0-1 scaling using minimum and maximum

values, and normalization using mean and standard deviation. The former strategy re-

sults in values ranging from 0 to 1, while the later strategy converts the original scale onto

number of standard deviations below or above the mean value without enforcing lower

and upper bounds.

Transformation. Transforming data is a preparation step for extracting certain

features. One example is to transform the data from time domain to frequency domain

for frequency domain features. Popular transformation algorithms include FFT [117, 171,

209] and Wavelet transform (WT) [110, 121].

A second example is to convert the GPS coordinate sequences into place visit trajec-

tories using various clustering algorithms [9, 247, 97, 240, 125, 40]. In [9], the authors

proposed to recognize significant places as any logged GPS coordinate with an interval of

10 minutes between the previous point and itself. These found significant places are clus-

tered by initially picking a point and a radius of half a mile, using the mean of all points

that fall within the radius to the initial point as a new center, and repeating this process

until the center does not change any more. This center is chosen as the learned location.

Subsequently, all these included points are removed from the list, and the process is re-

peated until the list is empty. In [247], a variation of DBSCAN clustering algorithm with

temporal filtering is applied to learn semantic locations. In [97], the authors proposed a

tempo-spatial clustering algorithms that takes the GPS coordinate trajectories and two

parameters (a distance threshold and a time threshold) as input, and learn significant

clusters as the places the user visited. In [240], the authors proposed a two level place

detection algorithm. In the first level, stay points are first detected given a distance and
1https://medium.com/@Cambridge_Spark/tutorial-introduction-to-missing-data-imputation-

4912b51c34eb
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a time threshold parameter. In the second level, these stay points, which are considered

visits to di�erent places, are clustered based on a DBSCAN algorithm called OPTICS

to form the final learned unique places. Cao et al. proposed a merging method that

combined DBSCAN learned clusters based on similarity scores derived from various visit

metrics from GPS data across all users before reverse geocoding them to obtain the se-

mantic labels of di�erent significant places. [40] Although these clustering algorithms can

learn significant places from GPS coordinate trajectories, we do not know semantic labels

such as home and o�ce to these places. Heuristics can be used to discover home and work

places for most people (e.g., the place that people spent most time everyday from 10pm to

6am can be considered as home with very high confidence). To obtain semantic labels for

other places, external database such as Four-square location service, Google Maps API,

and OpenStreetMap API can be leveraged.

There are several challenges in learning location clusters and obtaining semantic labels

for them. First, most of the experiments in these studies collect high frequency GPS data

with specialized device, which may not take into consideration battery drainage problem.

In reality, when the rate of GPS data has to be reduced to save battery consumption,

the parameters of these proposed methods can be completely di�erent, or worse, the

algorithms may not work due to the sparsity of the GPS coordinate trajectories. Second,

external database may not always be available, thus discovering semantic labels may not

be possible. Lastly, what semantic labels to choose is very application dependent, and

reliability of methods to associate labels to the location clusters can not be guaranteed

(e.g., choosing the semantic label of the nearest building as the label of the learned location

cluster), and thus it requires substantial experiments to fine tune the results. In any case,

the more complicated the method is, the more di�cult they are to be generalized across

real world applications.

Data Encoding

Data encoding (or data representation) is the process of representing the data stream in a

certain format to work with computational models. Data encoding is particularly needed
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for categorical data stream such as place visit trajectories because categorical sequence

can not be consumed by many feature extraction techniques directly. One example is

given in the work of Eagle and Pentland [58]. In order to study “eigenbehaviors” of users,

location trajectories were represented as a D by 24 two-dimensional array, where D is the

number of days in data, and 24 is the hours of a day. Each cell in the matrix contains

a location label (e.g., home, work, others, no signal). This data matrix is then binary

encoded to become a D by H two-dimensional array, where H is 24 times the number

of location labels (in this case, number of location labels is 5). This encoding scheme is

shown to be generalizable to other time series data including phone usage and number

of people in proximity. With such encoding, the data matrix can be transformed into

“eigenbehaviors” using principle component analysis (PCA) to identify most significant

behavior structure in smartphone users’ routine lives. A similar encoding procedure is

also applied in [212] to represent hourly activity level, step counts, and phone usage times

across di�erent days as data matrix, and a technique called robust PCA was used to

decomposed these data matrices into components that represent the underlying routine

patterns, and variations of these routines.

Another example is by Wu et al. who proposed a bag-of-word representation in blue-

tooth encounter data for feature extraction to recognize stress levels [234]. The same

authors also proposed to construct encounter networks in di�erent graphs for feature

extraction to recognize current stress level or predict future stress level [233].

A number of properties for good encoding have been identified: smoothness, temporal

and spatial coherence, sparsity, natural clustering, consistency (i.e., similarity in the repre-

sentation space should reflect the similarity of the corresponding concepts), independence

(i.e., easy to obtain in the absense of external information), imputable (i.e., possible to

fill-in when missing based on the observed ones). [19, 12] When consider which encoding

schemes to apply, the above criteria, especially temporal and spatial coherence, should be

taken into consideration, given that mobile sensing data stream are inherently temporal,

and can be placed into its spatial contexts if GPS data is available.

We have identified three di�erent popular encoding schemes: identity, one-hot, and
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label encoding. In identity encoding, the original sensing stream is kept as it is and fed into

any feature extractors. For example, in [24], the preprocessed PPG signals were applied

as the input to deep learning models for activities recognitions. In one-hot encoding,

categorical data stream such as place visits is converted into 0 and 1 representations [58] for

feature extraction. Label encoding is similar to one-hot encoding, but converts categorical

data into more than two numeric values. Numeric data sequence usually applies identity

encoding such as those in [24, 143], while categorical data sequence uses one-hot and

label encoding instead [58]. However, it is not always clear how to preprocess data before

encoding them. For example, in [24], the original PPG signal was first decomposed

into cardiac, respiration, and motion artifact signals, and the concatenation of the three

components in their identical form was used as the input for deep learning models; while

in [143], location displacements and time spent in significant places were used as input

for auto-encoder to learn compact feature representation.

Featurization

After preprocessing and encoding, the resulted data will undergo the featurization process

to generate the desired features for behavior modeling. There are two broad categories

of methods for featurization: 1) domain-based methods and 2) domain-free methods ac-

cording to whether domain knowledge is required during the feature extraction process.

Domain-based Methods. Domain-based methods usually require specific domain

knowledge (e.g., health and behavior theories, and mathematics) on the targeted be-

haviors (e.g., understanding the impacts of physical activity on stress, or the motion

characteristics of ambulatory activities) being modeled to guide the design and extraction

of features. We group domain-based methods into theorized and heuristic methods, sta-

tistical methods, frequency-domain methods, and pattern mining methods based on the

analytical techniques involved in the feature extraction process.

Theorized and Heuristic Methods. One set of features can be time of day, day of week,

and month of year. Intuitively, these temporal features definitely have certain impacts

on our behaviors as our biological/circadian rhythm governs our daily behaviors (e.g.,
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waking up and sleeping at certain times of a day) [1], and our social rhythm determines

our broader behaviors in weekly and even monthly/yearly cycles (e.g., work during week

days and o� work on weekends, study during the semester and on breaks in between

semesters). [224] However, There are more than one way to represent these features, and

choosing among the options can depend on the behaviors one is modeling. For example,

time of day can be represented as the hour of day (0-23) or as several time buckets

(morning/noon/afternoon/evening/night). Another example is from the work of Canzian

et al. [39]. They proposed eight di�erent features based on GPS coordinate sequences from

participants, including total distance, maximum distance between two locations, radius of

gyration, standard deviations of displacements, maximum distance from home, number of

di�erent places visited, number of di�erent significant places visited, and routine index. In

[223], basic contextual information are combined to form heuristic features that represent

more social behaviors. For example, being in study areas or classrooms and static with

no phone usage can be considered as being concentrated on studying or paying attention

in class.

Some features are extracted based on existing human behavior theories, including those

related to social and health behaviors. [155] A few examples include social cognitive theory,

planned behavior theory, and health belief model [73]. In mental health, manifestations of

disease symptoms such as depression, social anxiety, bipolar disorder, and schizophrenia

have been extensively studied. This knowledge can guide feature extraction. For example,

researchers in [225] mapped their feature extraction to the major depressive disorder

symptoms defined in the standard mental disorders diagnostic manual (DSM-5), and

proposed a set of features that approximate the depression symptoms for college students

using mobile sensing data. These features include sleep, phone usage, place visits, physical

activities, and sociability.

Statistical Methods. Statistical methods extract features from segmented time series

by applying various statistical functions directly on the data. For example, mean and

standard deviations are computed for continuous data to describe the centrality and

disperse of the segmented data. Other popular statistics for continuous data include but
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are not limited to percentiles, minimum, maximum, skewness, kurtosis, auto-correlation,

correlation and regression coe�cients. [56] When the input data segments are categorical

(including binary), frequency of each category is the usual choice of method (e.g., [123,

187]).

Frequency-domain Methods. Frequency-domain methods transform segmented contin-

uous time series into their frequency domain using FFT or WT, and extract features

related to the various frequency components. For example, in [121], the authors applied

WT to extract features from acceleration sequence to predict ambulatory activities (e.g.,

being static, walking, running, ascending stairs, descending stairs, cycling, jumping). In

[187], FFT was applied to extract frequency components that maximized the amplitude as

features from audio data to infer the semantic label of location. FFT and WT are math-

ematical transforms that are powerful to interpret numeric time series data, in which the

frequency content is more informative than the original signal. It is applicable to sens-

ing data from several popular smartphone embedded sensors including accelerometer and

microphone. Note that both FFT and WT are computationally expensive, and thus may

not be practical for real time or resource constrained applications. [66] provides some

detailed formulas of frequency domain features for accelerometer data, and most of these

features can be generalized to other numeric sensing sequences.

Pattern Mining Methods. Most behavior inference works apply supervised learning

algorithms to infer physical activities or mental states, and then use these inferred ac-

tivities and mental states as features to understand and infer more complex behavioral

constructs. In contrast, pattern mining methods apply unsupervised learning techniques

to understand and infer significant behavior patterns, which can also serve as features

for inference of more complex behaviors. In [92], the authors proposed to apply Latent

Dirichlet Allocation (LDA), a topic modeling technique, to infer activity patterns in peo-

ple’s daily life. Specifically, the LDA algorithm takes as input discrete labels that are

generated by K-means clustering on the feature vectors extracted from continuous sensor

data, and outputs the topic models that are able to provide the activation of a given

learned topic at a certain time of day. In this way, high-level routines such as commuting,
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working in the o�ce, having lunch or dinner etc. can be inferred throughout the time

of a day. Ye et al. proposed an individual life pattern mining framework that can learn

frequent life patterns using daily place visitation sequences. [240] Liu et al. applied asso-

ciation rule mining technique to learn complex high-level activities (e.g., relaxing, co�ee

time, cleaning) from low-level actions. [130]

Domain-free Methods. In contrast to domain-based methods, domain-free meth-

ods require no feature design using domain knowledge. Instead, engineers only need to

choose a data representation to encode the data, and feed them into some automatic fea-

ture extractors (e.g., PCA and auto-encoder) to learn certain informative features. This

process entails two steps, an encoding step, and a feature extracting step. The encoding

step follows the data encoding section.

In the feature extracting step, automatic feature extractors such as PCA and auto-

encoder can be applied to obtain a more compact representation of the data as features

for behavior modeling. These automatic feature extractors are indeed dimension reduc-

tion techniques that can both reduce the size of the data representation and discover

features (i.e., latent factors) that can be both predictive and interpretable of the tar-

geted behaviors. Existing works applied various dimensional reduction techniques such

as PCA [58, 171], linear dynamical system [76], and auto-encoder [143, 171]. In [58], the

authors applied PCA on the tempo-spatial binary encoded location data to learn “eigen-

behaviors” that reveal repeating routine structures in daily lives. These eigen-behaviors

can be applied as features to both understand and infer other higher level constructs

such as personality and lifestyle. In [171], the ECDF representations of frame-based

accelerometer time series were provided to the PCA algorithm to obtain the top 30 eigen-

vectors as features. The authors also evaluated using auto-encoder method to learn a

low-dimensional feature representation from the same data for activity recognition. They

showed that the ECDF+PCA method outperformed all other methods. Mehrotra et al.

provided as input three di�erent representations of GPS coordinate trajectories includ-

ing displacement, change in displacement, and significant place, to train an encoder and

decoder for each of these three representations, and extract features using the trained
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encoders to predict depressive state in study participants. [143] A more recent work from

Gong et al. proposed to use Linear Dynamical System to extract features from frame-

based raw accelerometer time series to study social anxiety symptoms during phone calls

and text messaging. [76]

For accelerometer data, a class of distribution-based feature extraction methods were

proposed to represent accelerometer time series in the traditional sliding window proce-

dure for human activity recognition (HAR) tasks [243, 79, 110]. These methods can also

be viewed as dimension reduction methods as they choose a set of percentiles to represent

the encoded data sequences. Specifically, the authors in [243] discretized the preprocessed

time series into a selected number (B) of bins, converted the original time series values

into the discrete values for normalization, and use the B frequency counts from the re-

sulted histogram as features to represent the original signal. This approach was proved

to be e�ective in reducing the dimensionality and improving the generalizability of the

feature vector. Plotz and Kwon et al. proposed a method called empirical cumulative

distribution function to extract structure-based features to infer human activities. [79]

Specifically, the cumulative density function is calculated for each frame of raw sensing

data, and the N quantiles are calculated as an approximation for the distribution. The

inverse mapping of these quantiles are then extracted as the final predictive features. To

further preserve the temporal structure information within each frame of sensing data,

the authors proposed several structure embedded techniques for the ECDF representation,

and showed additional improvements in predicting various human activities. [110]

In recent years, artificial neural networks (ANN) or deep learning (DL) models have

been successfully applied in many domains such as vision and image recognition, natural

language processing (NLP), robotics, and adversarial games. [119] However, these domains

often provide large amount of labeled data for training. In behavior modeling, labels are

extremely expensive to obtain and error-prone. Some activity recognition works such

as [170, 24] have applied deep learning techniques to recognize ambulatory activities. In

[180], a multimodal deep learning model was proposed as a domain-free method. However,

the e�ectiveness of these techniques requires verification in tasks beyond HAR. The unified
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deep learning framework proposed in [239] have shown some e�ectiveness in mobile sensing

tasks and its feasibility in implementation on mobile devices.

3.3.3 The Output

The generated features are usually low-level, and can be combined to represent high-level

characteristics in human behaviors. When ground truth labels are available, machine

learning algorithms are often adopted to develop supervised models for activity and con-

text recognition [101, 126] or mental health prediction (e.g., stress and social anxiety) [226,

48, 187].

The target behaviors we attempt to model have several implications on feature ex-

traction. First, we need to choose the most e�ective sensing modality, and collect data

from it to model the target behavior. Data from di�erent sensors will require di�erent

feature extraction techniques. Second, the target behavior determines what features from

a sensing stream are most e�ective. For example, di�erent feature sets from GPS would be

extracted for transportation mode inference and for depression prediction. Last and most

importantly, di�erent behaviors have di�erent temporalities, and thus require di�erent

segmentation and aggregation methods in feature extraction. For example, ambulatory

activities such as walking and being still, and transportation modes such as driving a car

and biking are both heavily dependent on momentary features that characterize physical

states of the user (e.g., mean and standard deviation of acceleration, speed). In modeling

these behaviors, how many places you visit yesterday or a week ago may not add much

predictive power to the model. In contrast, how much time one spent at home on the day

or in the past week has been proven significant in predicting daily mood [48] or social

anxiety [28].

In summary, the target behavior determines the selection of sensing modality, the

features , the segmentation and aggregation methods in the feature extraction process. We

propose to follow the below steps using our feature extraction framework while considering

the target behavior to model: 1) choose segmentation methods; 2) follow the proposed
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Figure 3.2: Behavior Modeling.

Figure 3.3: Distributions of (a) number of places, (b) average number of
daily place visits, and (c) average number of daily visited unique places.

feature extraction framework; 3) determine aggregation method; and 4) build behavior

models. Figure 3.2 illustrates this process.

3.4 Online Algorithms for Location Learning

Extracting location information from raw GPS data provides spatial contexts to model

user’s behaviors. We conduct a comprehensive review on various location clustering al-

gorithms in this chapter. Among them, we choose Kang’s temporal spatial clustering

algorithm [97] for our works in this dissertation, and adapt it into an online version for

simulations. Algorithm 3 describes this algorithm. GP S are the set of newly available

raw GPS data, P laces contains all the learned unique places that are being continuously

updated over time. When a new place visit (i.e., a new cluster that meets both the time

and distance thresholds) has been detected, P laces will be scanned and updated. Either

a new place that has never been visited before will be added to P laces or a new visit

will be added to an existing place in P laces. We apply it to a real GPS dataset from

200 college students in 10 minutes increments. Figure 3.3 visualizes the distributions
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on number of places, average number of daily place visits, and average number of daily

visited unique places.

Algorithm 3 Online Temporal-spatial Clustering Algorithm adapted from [97]
Input: P laces, cluster, pgps, GP S, tthreshold dthreshold.
Output: P laces, cluster, pgps.

1: for gps œ GP S do
2: if cluster ”= None or dist(cluster, gps) Æ dthreshold then
3: cluster.update(gps)
4: pgps = None
5: else
6: if pgps ”= None then
7: if cluster.duration Ø tthreshold then
8: P laces.update(cluster)
9: end if

10: cluster = None
11: cluster.update(pgps)
12: if dist(cluster, gps) Æ dthreshold then
13: cluster.update(gps)
14: pgps = None
15: else
16: pgps = gps

17: end if
18: else
19: pgps = gps

20: end if
21: end if
22: end for
23: return P laces, cluster, pgps.

3.5 Conclusion

Feature extraction in mobile sensing is a critical step towards modeling users’ contexts and

behaviors. In this chapter, we review existing works, and based on their methodologies

distill a feature extraction framework that helps the mobile sensing community standard-

ize this pre-modeling process and better understand what they should be considering in

each step along the behavior modeling pipeline.
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Chapter 4

Energy E�cient Adaptive Mobile

Sensing Using Q-learning with

Linear Approximation and Decaying

Exploration (QLADE)

Smartphone embedded sensors have created unprecedented opportunities to study human

behavior in natural conditions through continuous mobile sensing. However, continuous

mobile sensing poses critical energy challenge to smartphone’s daily usage. There is an

urgent need to enhance energy e�ciency of mobile sensing applications while capture

su�cient data to accurately predict user state. In this work, we propose an adaptive

passive sensing framework to control low-level sensing cycles using an o�-policy rein-

forcement learning algorithm called Q-learning with Linear Approximation and Decaying

Exploration (QLADE). We formulate the adaptive sensing problem as a middle ground

between continuous sensing and duty cycle, and investigate the trade-o� between energy

e�ciency and activity coverage. Our simulations using real continuous mobile sensing

data from 220 participants for more than 2 weeks show consistently better performances

for the proposed QLADE algorithm when compared to the random and learning automata

baselines for both accelerometer and GPS. We also investigate whether the adaptive sens-

ing strategies have significant impacts on the utility of data. Given the original data
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Figure 4.1: Mobile sensing pipeline for energy e�ciency.

were collected to understand and predict mental health states from passive sensing data,

results suggest that the proposed approach do not compromise the performance of our

predictive models.

4.1 Introduction

Smartphones have become an integral part of our routine lives. According to the Pew

Research Center [205], 81% of North American adults owned a smartphone in 2019. With

increasing access to wireless networks, better display technology, and improved computa-

tion power, smartphones are used to surf the internet, navigate during driving, pay bills,

and socialize with friends etc. The addition of embedded sensors, such as accelerometers,

light sensors, GPS, cameras, microphones, and gyroscopes, enables them to capture fine-

grained digital footprints of users, making them a popular tool to study human behaviors

and well-being [29, 28]. The context-awareness created by performing machine learning

algorithms on the sensor data can be leveraged in a variety of intelligent applications,

including location services (e.g., booking a taxi at the user’s location), healthcare (e.g.,

monitoring physical exercises), safety (e.g., checking young kid’s whereabouts for parents),

and mobile crowd sensing (e.g., monitoring tra�c congestion and air quality) [137].

Many of the aforementioned applications require continuous sensing, which quickly

drain the smartphone battery, and interrupt other services on the device. [235, 112, 181]

Given the competing demands for energy among an increasing number of services, and

the power intensive nature of mobile sensing applications [144], it is critical to enhance

energy e�ciency in these mobile sensing applications.
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Many approaches have been proposed to address the energy challenge posed by mobile

sensing. These methods target energy expenditure arising from various stages during the

mobile sensing application pipeline, which consists of a hardware and architecture design

stage, a sensor selection stage, a data collection stage, and a modeling stage, as is shown

in Figure 4.1.

• Stage 1: Hardware and Architecture Design. The authors in [173, 132, 175]

designed dedicated hardware and system architecture that are energy e�cient for

continuous mobile sensing applications. Without using these dedicated hardware,

the smartphone main processor and its associated components will remain active

for an excessive period of time, leading to significant energy overhead. Dedicated

low power processor for sensing and data processing with novel sensing architecture

can significantly reduce the energy overhead, and prolong the battery life.

• Stage 2: Sensor Selection. Many smartphone embedded sensors with di�erent

energy rate can be leveraged to achieve a common task with di�erent accuracy and

under certain conditions latency trade-o�s. For example, GPS and WiFi sensor

can both be leveraged to recognize user location, but are best for localization in

di�erent environments. [124, 249, 189] Accelerometer and GPS can be combined or

independently applied to recognize transportation mode (e.g., walking, in a Vehicle,

biking). The right combination of sensors that are most energy e�cient can be

selected to meet the application requirements in accuracy and latency.

• Stage 3: Data Collection. Prior to collecting sensor data, we need to specify

the sensing rate and sensing cycle for each chosen sensor. Higher sensing rate and

longer sensing time result in denser data but consume more energy. Existing works

such as those in [238, 102, 227, 29] propose methods to identify optimal sensing

rate and reduce sensing time in an attempt to reduce energy consumption.

• Stage 4: Modeling. Once collected, sensor data are used to create predictive

models for context recognition. Di�erent algorithms can achieve di�erent accuracy,
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latency, and energy consumption levels. Existing works aim to select the optimal al-

gorithm that is most energy e�cient [49, 113]. When data transmission is necessary

prior to modeling, it is also critical to design an energy e�cient data transmission

protocol to minimize battery drain [137, 144]. For example, the authors in [219,

167, 144] proposed e�cient data transmission frameworks for mobile crowd sensing

(MCS) and personal sensing tasks.

Methods targeting di�erent stages in the mobile sensing application pipeline have

attained various levels of success, but often require o�ine tuning and training, and using

external database in a well defined sensing task, making them hard to generalize across

mobile sensing applications [11]. It has also been shown that hardware sensing consumes

the majority of energy, with the only exception for applications that require transmission

of large amount of data from local device to central server [144]. In view of these, an

energy e�cient sensing approach that is free of prior tuning and external dependency,

easily generalizable, and e�cient in hardware sensing is desired.

To meet these requirements, we propose an adaptive passive sensing framework, in

which information obtained from small sensing window is leveraged to determine deploy-

ment of sensors in the following preset time window. In fact, existing works have also

proposed to leverage certain sensed contexts (e.g., movement, current battery level, and

being indoors) to activate power-consuming sensors (e.g., GPS) [15, 150, 30]. Unlike

these works, we do not rely on a predefined state, upon which the decision on sensor de-

ployment is made. Instead, we generalize the state into a state feature vector, and design

a reinforcement signal to guide the action decision (i.e., turning the sensor on/o�). This

framework is known as reinforcement learning (RL) [203].

Our proposed reinforcement learning approach has several advantages. First, it can be

combined with most existing approaches targeting energy challenges in di�erent stages of

the mobile sensing application pipeline to further mitigate the battery drainage problem

in mobile sensing applications. For example, an energy e�cient mobile sensing applica-

tion could apply dedicated low power processor in a more e�cient sensing architecture,

select the most suitable sensing modalities, configure the sensing rates based on the needs
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of the applications, design an optimal data transmission framework, and deploy sensors

adaptively using our proposed method. Second, the learned sensing strategies are per-

sonalized for each user. Under the RL framework, the sensing agent will learn a unique

sensing protocol for each user using their own data. Third, the learned sensing strategies

are adaptive over time. The RL agent continues to update each individual protocol as

more data are being collected and made available for learning. Lastly, RL is a natural fit

for adaptive sensing due to its learning through interaction with the environment. Static

sensing protocol may be compromised due to changes in human behaviors. Adaptation to

both within and between individual variability can potentially lead to long term energy

e�ciency in mobile sensing applications.

We formulate the adaptive sensing problem as a middle ground between continuous

sensing and duty cycle, and propose an o�-policy reinforcement learning algorithm called

Q-learning with Linear Approximation and Decaying Exploration (QLADE) to investi-

gate the trade-o� between energy e�ciency and activity coverage. Accelerometer and

GPS are two highly representative smartphone embedded sensors, and have been applied

in many existing mobile sensing applications. Continuous deployment of these sensors

are both energy demanding and unnecessary, especially when the user is away from the

phone or being static. Using accelerometer and GPS as examples, we implement two

adaptive sensing schemes single and multi-modality QLADE, and compare them with

two baseline strategies, including a random strategy and a strategy using learning au-

tomata technique [179]. The strategies are evaluated using four metrics: 1) energy saving

(i.e., the percentage of time when there is no movement or displacement, and the sensors

are turned o�); 2) accuracy (i.e., the percentage of time when our proposed approach cor-

rectly predicted existence or absence of movement or displacement); 3) activity coverage

(i.e., the percentage of time when movement or displacement is correctly predicted by

our proposed approach); and 4) F-score (i.e. a comprehensive score reflecting the balance

between prediction precision and recall). We also investigate whether the di�erent sens-

ing strategies (e.g., continuous sensing, duty cycle, and adaptive sensing) have significant

impacts on the data utility (e.g., classification and regression accuracy), given the original
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data were collected for the purpose of understanding and predicting negative a�ect and

social anxiety of college students [28, 52, 53].

The remainder of the chapter has the following structure. Section 4.2 reviews re-

lated work in energy-e�cient mobile sensing. Section 4.3 formulates adaptive sensing.

Section 4.4 explains the details of the proposed methodology. Section 4.5 provides the

experimental setup while Section 4.6 presents performance evaluation of our proposed

adaptive sensing algorithm QLADE. We discuss the limitations of our current work and

lay out future work in Section 4.7, and make our conclusion marks in Section 4.8.

4.2 Related Works

Many strategies have been proposed to address energy challenges in various stages through-

out the mobile sensing application pipeline illustrated in Figure 4.1. In this section, we

focus mainly on works that are highly relevant to our proposed method. These works

can be grouped into three categories based on their methodologies: 1) methods with

pre-calibration in defined conditions; 2) static context-based methods; and 3) adaptive

sensing methods.

4.2.1 Methods with Pre-calibration in Defined Conditions

Yan et al. obtained a set of optimal configurations in sensing rate and classification

features (e.g., time and frequency domain features) with respect to classification per-

formance, and proposed an algorithm called A3R that works by transitioning between

activity states based on the predicted confidence, while adopting the pre-calibrated op-

timal configuration in the corresponding predicted state [238]. Wang et al. proposed

a framework called EEMSS that applied a state descriptor, which specified predefined

states and state transitions, to deploy only the minimally required set of sensors in the

corresponding user state. [227] They also used pre-tuned duty cycling intervals to further

improve energy e�ciency.
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Kansal et al. proposed the LAB (latency, accuracy, and battery) abstraction that aims

to provide a generalized framework for energy e�cient mobile sensing application devel-

opment [98]. Specifically, they implemented a set of context recognition algorithms, and

evaluated their corresponding accuracy, latency and energy consumption performance.

Algorithms that have no merits in all three measurements will be discarded. With the

remaining algorithms, application developers just need to choose priorities in latency, bat-

tery, and accuracy, while the LAB framework will choose the optimal algorithm that meets

these priority constraints for the developers. Another work by Cardone et al. designed

the Mobile Sensing Framework (MSF) for adaptive duty cycling [42]. The adaptation

is embedded inside the interaction layer, which acts on a strict event-action basis and

supports arbitrary events. Users can leverage simple duty-cycle policy or design more

complex policies that controls the sensing cycles of di�erent sensors.

The above works share the same major drawback of being application dependent, and

thus can not be easily generalized across di�erent mobile sensing applications. In [238],

the optimality of the sampling rate and classification features may not hold in a di�er-

ent classification task. In [227], the state descriptor will need to be redefined, while the

pre-tuned duty cycling intervals do not warrant improvements in energy performance in a

di�erent application scenario. Similarly, Kansal’s LAB abstraction [98] is entirely depen-

dent on the context recognition tasks to obtain a set of strategies that trade-o� among

latency, accuracy, and energy e�ciency; and the MSF framework [42] requires the design

of events as triggers to control sensing cycles. In contrast, our proposed adaptive sensing

scheme does not require pre-calibrations of energy performance in defined conditions that

are application dependent.

4.2.2 Static Context-based Methods

Ben et al. presented the SenseLess system, in which they leveraged accelerometer to

continuously provide contexts for the decision of activating GPS, thereby reducing energy

consumption by more than 58% as compared to when GPS are continuously activated. [15]
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Specifically, they chose a threshold for acceleration to indicate user movement, and fol-

lowed the following rule: when the user’s acceleration is beyond the chosen threshold,

location sensing is turned on; when the user’s acceleration is below the chosen threshold

for three consecutive readings, the location sensing will be turned o�. Similarly, Oshin et

al. predicted users’ mobility state using accelerometer to ensure activation of GPS only

when the user is moving [161]. Their rules stated that 1) when the sum of the total peaks

and troughs is greater than 3, and the di�erence of the max and min values is greater

than 1.4, enable GPS; 2) else keep GPS sensor idle. They found a 27% energy saving in

typical circumstances.

Li et al. proposed to leverage machine learning to predict the state of energy de-

manding sensors such as GPS [118] using light-weight sensors. The intuition is that data

collected at the same moment from di�erent sensors can be highly correlated. If the in-

ference indicates that the energy demanding sensor is in a stable status, then the latest

value can be carried forward without actually activating them, leading to reduction in

energy consumption. Kim et al. proposed an adaptive WiFi scanning algorithms to con-

serve energy consumption through replacing mobile network usage with WiFi usage [103].

Specifically, accelerometer data are applied in a window of few seconds to classify move-

ment activity (e.g., standing, walking, and running), and calculate movement distance.

If distance is above a chosen threshold, then WiFi scanning will be triggered. This will

improve WiFi usage while optimizing scanning rate.

Zhuang et al. built an adaptive location-sensing framework to improve the energy

e�ciency in location-based applications. [249] The proposed framework included four de-

sign principles, namely Substitution, Suppression, Piggybacking, and Adaptation, each of

which aims to optimize sensing mechanism, sensing timing, sensing rate, and duty cycling

intervals, respectively. In particular, the Suppression principle utilizes accelerometer sen-

sor to provide contexts for invocation of location sensing. Paek et al. proposed RAPS,

a rate-adaptive positioning system to reduce power consumption of location sensing by

determining the GPS activation timing using: 1) duty-cycled accelerometer; 2) space-

time history of velocity and its associated uncertainty from GPS data; 3) cell tower RSS
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blacklisting ; and lastly 4) position uncertainty reduction inferred by Bluetooth data. [162]

All works in this section proposed static rules in di�erent formats using sensed con-

texts from certain smartphone sensors towards energy management in mobile personal

sensing. In particular, [15, 161, 118, 103] leveraged a less power demanding sensor (e.g.

accelerometer) to control activation of a power hungry sensor (e.g., GPS and WiFi). These

static rules leverage predetermined acceleration thresholds or machine learning models,

and can not account for between and within individual variability. The authors in [249,

162] proposed a suite of strategies that are designed only for location sensors such as GPS

and WiFi sensor. In addition, some components in these approaches are also based on

static rules. Compared with these works, our proposed RL approach is both personalized

and adaptive.

4.2.3 Adaptive Sensing Methods

Lu et al. designed the Jigsaw engine, which consists of three sensor-specific pipelines for

accelerometer, microphone, and GPS. [134] Of particular interests are the microphone

and GPS pipelines, which adapt their duty cycling intervals based on various techniques.

In addition, the GPS pipeline adjusts the sensing rate by treating it as a Markov Decision

Process (MDP) using sensing duration, hardware status (e.g., remaining battery budget),

and mobility as its state features. Similarly, Krause et al. proposed an entropy-based

strategy that models the sensing problem as a MDP using the predicted activity as state

to determine the next sensing timing [109]. Wang et al. investigated a deterministic

sensing policy, which chooses di�erent duty cycles based on di�erent user states to conserve

energy [228]. Specifically, they modeled the context recognition problem as a discrete

time hidden Markov chain. At each time step, a sensor activation decision based on the

recognized context is made, followed by a deactivation duration decision when the sensor

is deactivated. In this case, the contextual state is estimated with uncertainty levels.

These works applied model-based RL approaches, in which the transition model have

to be estimated using annotated or predicted state labels. Since these approaches are
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Figure 4.2: Continuous, duty cycle, and adaptive sensing.

dependent on availability of activity labels and/or sensing rates, we do not include them

as our baseline comparisons.

Rachuri et al. proposed an adaptive sensing scheme based on a set of advance and

back-o� functions in controlling the sensing rate. [178] At each time step, data generated

by the targeted sensor will be used to determine whether a ’missable’ or ’unmissable’

event is detected. When a missable event is detected, the selected advance function is

applied to expand the sleep interval; when an unmissable event is detected, the back-o�

function is applied to shrink the sleep interval. Due to the di�erent types of sensors,

this method may not be applicable to sensors such as accelerometer and microphone.

However, it can be generalized to controlling sensing cycles in a di�erent adaptive sensing

formulation. The authors investigated linear, quadratic, and exponential functions, and

various combinations of them as both advance and back-o� functions. The same authors

also proposed an adaptive sensing strategy using learning automata to adaptively increase

or decrease sensing probability at each time step [179]. More details about this algorithm

will be provided in Section 4.5 as it is chosen as our baseline comparison. Comparing to

our proposed approach, the learning automata algorithm does not leverage the knowledge

about contextual state extracted from the collected sensor data.

4.3 Adaptive Sensing

Duty cycling is a widely adopted strategy to reduce energy consumption in mobile sens-

ing applications by making the desired sensors operate and rest alternatively within the
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designated sensing and sleeping intervals. Figure 4.2 illustrates the duty cycle strategy

and the continuous sensing strategy. By reducing the sensor operation time, duty cycle

can save a significant amount of energy. However, important contexts may be missed

when the sensors are "turned o�" during the sleeping interval. For some applications, this

critical information may lead to failure in providing necessary responses (e.g., triggering a

recommendation to restaurants) to those contexts (e.g., walking in a business area around

lunch time), rendering the applications less useful in serving their users. In some extreme

cases, such as elderly and patient monitoring, the lack of responses due to the absence of

data can not be tolerated. Therefore, we need to balance energy e�ciency and application

requirements by using less aggressive sensing strategies.

Adaptive sensing is the middle ground between continuous sensing and duty cycle as

illustrated by Figure 4.2. It leverages the data collected during the sensing window to

make sensor deployment decision in the adaptive sensing window. The intuition is that

human activities oftentimes come in bouts and last for a certain duration. The signal

from earlier times can provide information about the activities in the next few moments,

therefore helping us determine sensor deployments. An ’o�’ decision will help us save

energy, while an ’on’ decision will help us capture the activities of interest, balancing

energy consumption and application requirements.

Adaptive sensing can be treated as a sequential decision problem, and simplified using

Markov decision process (MDP). Time is first discretized into steps, within which the

sensor(s) operates for a configured window (e.g., sensing window), and a decision regarding

sensor deployment is made for the remaining window (e.g., adaptive sensing window). The

sensors will operate based on this decision during the adaptive sensing window, and the

cycle repeats indefinitely. Within each time step, the action decision is made based on the

state that is constructed using the sensed data collected within and prior to the current

time step.

Based on the above problem formulation, a wide range of algorithms can be applied to

implement adaptive sensing. In Section 4.2, we have surveyed numerous existing methods

that fall into the adaptive sensing literature. In this work, we build upon our previous
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work [35], and show that our proposed adaptive sensing method using reinforcement

learning has the potential to advance mobile sensing by reducing the operation time of

various sensors, thereby saving energy, while maintaining equivalent application utility.

In general, our proposed adaptive sensing framework using reinforcement learning has

the following contributions: 1) It can be generalized across di�erent sensing modalities and

applications; 2) it is complementary to most existing approaches (e.g., it can be easily

combined with hardware-based or computationally e�cient approaches); and 3) using

reinforcement learning framework as the basis, the learned strategies are personalized

and adaptive.

It is worth noting that although the current formulation posits our method as the

middle ground between continuous sensing and duty cycle, it is possible to design a

reinforcement learning adaptive sensing approach that can minimize the probability of

not covering important contexts, while also become more energy e�cient than duty cycle

strategy. We will discuss more on this in Section 4.7. In the next section, we will provide

the technical details about the implementation of our proposed reinforcement learning

adaptive sensing algorithm, and the performance metrics for evaluation.

4.4 Methodology

In this section, we first describe how we apply reinforcement learning to adaptive sens-

ing in two most representative smartphone embedded sensors accelerometer and GPS;

then we present the RL algorithm, namely Q-learning with linear approximation and

decaying exploration (QLADE) in two sensing schemes – single and multiple modality

adaptive sensing; and lastly, we define the three RL components for adaptive sensing in

both accelerometer and GPS, and the performance metrics that we apply to evaluate our

proposed adaptive sensing strategy in the experiments.
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Figure 4.3: Single and Multiple Modality Adaptive Sensing Using Rein-
forcement Learning

4.4.1 Adaptive Sensing Using Reinforcement Learning

Figure 4.3 illustrates the workflow of our proposed adaptive sensing strategy. For each

time step, the time window is divided into two sub-windows, a sensing window, and an

adaptive sensing window, as shown in Figure 4.2. During the sensing window, the selected

sensors are activated to provide raw sensor data for the state constructors to extract state

features for sensing decision in the adaptive sensing window. There are two designs in

the configuration of state constructors, single modality and multi-modality methods. In

the single modality method, each sensor has its own state constructor, which leverages

only data from the corresponding sensor to construct the state features. In contrast, the

multiple modality method shares one state constructor for all sensors, and combines data

from all the sensors to construct the state features. These state features are then sent to

the various agents to inform sensing decision based on the most up to date policy. Once

the sensing decision is made, the sensors will be deployed based on it, and a reward signal

about the desirability of the sensing decision will be provided to the agents. At that point,

the agents will leverage the state st, action at, and reward rt information to update the

policy. This cycle repeats for each time step. In the next section, we provide the technical

details on our proposed RL algorithm, namely Q-Learning with Linear Approximation
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and Decaying Exploration (QLADE), which is applied to update the sensing policy in

each time step.

4.4.2 Q-Learning with Linear Approximation and Decaying Ex-

ploration

There are two types of learning methods in RL, on-policy and o�-policy methods. On-

policy methods refer to learning algorithms that share the same policy for sample genera-

tion and learning, as compared to o�-policy methods, in which the sample policy and the

learning policy are di�erent [203]. Q-Learning is an o�-policy temporal di�erence (TD)

control algorithm, defined by

Q(St, At) = Q(St, At) + –[Rt+1 + “ max
a

Q(St+1, a) ≠ Q(St, At)],

where Q(St, At) is the action value function that represents the policy. When all state

features are discrete, Q(St, At) is a high dimensional table that contains values for all

state-action combinations. When some state features are continuous, the tabular format

can not represent all possible state-action combinations. In this case, we apply function

approximation to represent the action value function and enable generalization across

di�erent states. Specifically, we apply linear approximation to represent Q(St, At) as a

linear function given by

Q(St, At) = �(St, At)wt,

where �(St, At) is a feature vector, and wt is the learned coe�cients that encode the

learned policy. [203]

In evaluation, continuous sensing stream is sliced into windows indexed by t. Each

window will be further broken down into two sub-windows – the state feature window

and the evaluation window. The state feature window corresponds to the sensing interval,

while the evaluation window corresponds to the adaptive sensing interval plus the sensing

interval in the next time step, which is necessary for estimating the reward when the
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sensor is turned o� within the adaptive sensing interval. At each time step, st will be

computed based on the raw sensing data from the state feature window.

Algorithm 4 shows our proposed ‘-greedy Q-learning algorithm using linear approxi-

mation and decaying exploration ‘t with a decaying rate d œ (0, 1) for adaptive sensing.

At each time step, the Q-learning strategy will either randomly select one of the two

sensing actions (switching sensor on and o�) with a probability of ‘t (e.g., exploration) or

choose the action that returns a higher Q-value based on the learned action value function

�(St, At)wt (e.g., exploitation) with a probability of 1 ≠ ‘t. Specifically, ‘0 is the initial

exploration rate, –, “, ⁄ are the step-size (learning rate) parameter, the discount rate, and

the eligibility trace-decay parameter, respectively.

Algorithm 4 Adaptive Sensing Using Q-learning with Linear Approximation and De-
caying Exploration.
Input: S, A, “, ⁄, –, ‘0, d.
Output: wa, a œ A.
1: Initialize wa and ea for each a œ A.
2: for all t = 1, 2, . . . , T do
3: Observe current state st

4: Take action at based on ‘t≠1-greedy policy with regards to arg max
aœA

�(st, a)T wa.
5: Observe reward rt

6: Transition to a new state st+1.
7: Take action at+1 based on ‘t≠1-greedy policy with regards to arg max

aœA
�(st+1, a)T wa.

8: eat = eat + �(st, at)
9: ”t = rt + “�(st+1, at+1)T wat+1 ≠ �(st, at)T wat

10: for all a œ A do
11: wa Ω≠ wa + –”tea

12: ea Ω≠ “⁄ea

13: end for
14: if d‘t≠1 < 0.1 then
15: ‘t Ω≠ 0.1 {Maintain the exploration rate at 0.1 at minimum.}
16: else
17: ‘t Ω≠ d‘t≠1 {Decay the exploration rate.}
18: end if
19: end for
20: return wa, for each a œ A
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4.4.3 Adaptive Sensing for Accelerometer and GPS

Most existing sensors can be categorized into two groups based on their operation styles:

1) sensors that operate continuously for an optimal minimum sampling period to capture

su�cient data for context recognition (e.g., accelerometer and microphone); 2) sensors

that automatically switch to an idle state after the required sensing operation is com-

pleted (e.g., GPS, WiFi, and Bluetooth) [242]. Frequent activation and deactivation of

sensors in the first group will generate overhead in energy consumption. In addition, both

activation and deactivation take certain amount of time, creating limits in switching be-

tween ’On’ and ’O�’ states. Sensors in the second group are typically guided by dedicated

communication protocols, which also create limits in their sensing rate. Accelerometer

and GPS are two representative sensors from each of these two groups, and are chosen in

this work to evaluate our proposed adaptive sensing strategies. We first design the state

space St, the action space At, and the reward signal Rt in QLADE for both sensors, and

then define the performance metrics for evaluations in our simulation experiments.

Table 4.1 shows the state features and their definitions. We divide the time throughout

a day into 9 buckets based on intuition about people’s daily routines. These include early

morning, morning, noon, early afternoon, late afternoon, early evening, late evening,

early night, and late night. This featurization of time maintains a reasonable amount

of levels that is consistent with people’s daily activities, while avoids creating too many

levels for learning, which require many more learning samples. The accelerometer features

characterize the potential motions (e.g., usage of the phone, movement within a confined

space) within the sensing window at both time t≠1 and t, while the GPS features represent

the potential movements from one location to another during the sensing window at time

t. In the single modality adaptive sensing scheme, we use the temporal and accelerometer

features as the state features for accelerometer, and the temporal and GPS features as the

state features for GPS; in the multiple modality adaptive sensing scheme, we combine all

features as the state feature vector across di�erent sensors. However, each type of agent

will maintain their own policy, and use di�erent reward signals defined below to update
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Table 4.1: State features St for accelerometer and GPS.

group feature description

Time early morning binary, below the same. Between 6 and 8 am.
morning Between 8 and 11 am.
noon between 11am and 1 pm.
early afternoon between 1 and 4 pm.
late afternoon between 4 and 6 pm.
early evening between 6 and 8 pm.
late evening between 8 and 11 pm.
early night between 11 pm and 1 am on the next day.
late night between 1 and 6 am on the next day.

Accelerometer current_avg_acc the average acceleration from raw accelerometer data collected
within the sensing window at time t.

current_sd_acc the standard deviation from raw accelerometer data collected
within the sensing window at time t.

prev_avg_acc the average acceleration from raw accelerometer data collected
within the sensing window at time t ≠ 1.

prev_sd_acc the standard deviation from raw accelerometer data collected
within the sensing window at time t ≠ 1.

GPS avg_distance the average distance between all pairs of temporally consecutive
GPS points collected within the sensing window at time t.

std_distance the standard deviation of distance between all pairs of temporally
consecutive GPS points collected within the sensing window at
time t.

total_distance the total distance traveled during the sensing window at time t.
displacement the distance that the participant moves from the starting location

to the ending location during the sensing window at time t

the policies.

The action space includes two sensing actions: At = {on,o�}. The reward signal is

computed based on average acceleration and displacement within the adaptive sensing

window at time step t and the sensing window at time step t + 1 for accelerometer and

GPS, respectively. Specifically, R
acc
t is given by:

r
acc
t =

Y
___________]

___________[

1 at = on & avg_acct Ø thacc

1 at = o� & avg_acct < thacc

≠1 at = on & avg_acct < thacc

≠1 at = o� & avg_acct Ø thacc

,
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where thacc is a chosen acceleration threshold; and R
GP S
t is given by:

r
GP S
t =

Y
___________]

___________[

1 at = on & displacementt Ø thGP S

1 at = o� & displacementt < thGP S

≠1 at = on & displacementt < thGP S

≠1 at = o� & displacementt Ø thGP S

,

where thGP S is a chosen displacement threshold. We choose the acceleration and dis-

placement thresholds to construct the reward signal because they indicate the magnitude

of movements these sensors measure about their user. When the user is moving more

actively, we want the sensors to be turned on and capture those activities. Thus un-

der those conditions, we set the reward signal to be positive to reinforce the ’on’ action.

On the opposite, we set a negative reward to penalize the ’on’ action when no or little

movements are detected. Likewise, we will reinforce the ’o�’ action when the detected

movement is below the chosen movement threshold, while penalize the ’o�’ action if the

estimated movement is above the threshold.

Our performance metrics are defined based on four basic definitions: true positive

(tpt), true negative (tnt), false positive (fpt), and false negative (fnt) at each time step

t. They are defined in Table 4.2.

Table 4.2: Defintions for true positive, true negative, false positive and
false negative.

true positive (tpt) at = on & (avg_acct Ø thacc or displacementt Ø thGP S)
true negative (tnt) at = o� & (avg_acct < thacc or displacementt < thGP S)
false positive (fpt) at = on & (avg_acct < thacc or displacementt < thGP S)
false negative (fnt) at = o� & (avg_acct Ø thacc or displacementt Ø thGP S)

The performance metrics given T time steps in the learning data are defined below:

• Accuracy is defined by #tp+#tn
T . Accuracy is intended to capture the percentage of

time steps in which the action is correctly taken. A higher accuracy represents a

better policy that the RL algorithm is able to generate.
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• F-score is defined by 2 precisionúrecall
precision+recall , where precision = #tp

#tp+#fp and recall =
#tp

#tp+#fn . Precision reflects the percentage of steps in which the ’on’ action is cor-

rectly taken (i.e., the actual movement level is beyond the chosen threshold) among

all steps that ’on’ action is taken, while recall reflects the percentage of steps in

which the ’on’ action is correctly taken among all steps that the ’on’ action should

be taken. The F-score reflects the balance between precision and recall.

• Percentage of battery saved is defined by #tn
T . This metric refers to the percentage

of time steps the ’o�’ action is taken when the actual movement level is below the

chosen threshold. In continuous sensing, the energy consumed during these time

steps would have been wasted, but instead would be saved by using our adaptive

sensing policy. It also closely approximates the percentage of battery that can be

saved when we assume the sensor will consume the same amount of power in each

time step regardless of all other conditions in the device.

• Percentage of activity coverage is the same as recall. It measures the percentage of

time steps, in which our proposed approach is able to capture the movements by

turning on the sensor.

Existing works have leveraged mobile devices’ own battery sensor to record energy con-

sumption by specific apps and di�erent types of phone activities; or when this is not

possible, they resorted to benchmark the battery drainage in control experiments, and

use the measured numbers to estimate battery consumption statistics. These methods

highly depend on the similarity between the test scenarios and the phone usage conditions

in the real world. Instead of adopting the same methods, we simply measure battery con-

sumption based on sensors’ operation time as a surrogate for performance metrics related

to battery saving. Among these four metrics, we want to particularly focus on percentage

of battery saved and percentage of activity coverage. When compared to duty cycle, the

percentage of activity covered is our gain, while 1 minus the percentage of battery saved is

our trade-o�. Our goal is to find a strategy that gives us the maximum activity coverage

and battery saved.
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4.5 Experiments

4.5.1 Data

We conduct simulation experiments using continuous sensing data from a previous mobile

sensing study that aimed to understand students’ emotions and social anxiety over a two-

week window [28]. In this study, we collected accelerometer, GPS, communication (e.g.,

text messages and phone calls), and Ecological Momentary Assessment (EMA) data of 220

students via the Sensus mobile application [236]. In particular, Sensus was configured to

passively and continuously collect accelerometer data at 1 Hz and GPS coordinates every

two and a half minutes for up to two weeks. We also collected daily a�ect scores via

EMAs delivered at 10pm everyday, and social anxiety score using the SIAS scale at the

start of the study. Part of our data has been made publicly available on the web [26].

4.5.2 Baseline Approaches

We implemented two baseline approaches: 1) a context-agnostic random strategy, which

at each time step randomly decides whether to turn on the sensors or not; and 2) a

learning automata strategy [179], which makes sensing decision based on probability pt≠1

and adaptively increase or decrease the sensing probability at each time step based on

the reward signal using the following formula:

pt =

Y
_______]

_______[

pt≠1 at = o�

pt≠1 ≠ –pt≠1 at = on & (avg_acct < thacc or displacementt < thGP S)

pt≠1 + –(1 ≠ pt≠1) at = on & (avg_acct Ø thacc or displacementt Ø thGP S)

,

where – œ (0, 1). In [179], – is chosen to be 0.5.

4.5.3 Experimental Settings and Research Questions

For accelerometer, We set the time window at each time step to be 300 seconds with the

sensing and adaptive sensing window being 20 seconds and 280 seconds. Checking user’s
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movement every five minutes seems reasonable for most mobile sensing applications, while

a 20 second sensing window provides su�cient accelerometer data for constructing the

state features to predict user’s movement. For GPS, we choose an hourly time window

with the sensing and adaptive sensing window being 20 minutes and 40 minutes, respec-

tively. This decision is based on the sensing rate we used to collect the GPS data, which

is one GPS point every two and a half minutes, and daily human routine mobility mo-

tifs [193], which discover that people visit only a few places on most days. The acceleration

and displacement thresholds are chosen to be 0.2(g) and 0.1(km), respectively. In practice,

these thresholds should be chosen based on the application requirement. For example,

in fall detection, the acceleration threshold should be much higher than 0.2. In order to

understand how the choices of these thresholds impact the simulation performance, we

conduct sensitivity analyses by varying their values in Section 4.5.3.

Comparisons of Performance in Adaptive Sensing Strategies

There are four parameters in the RL algorithm that requires tuning. These include the

initial exploration rate ‘0, the step-size parameter (or learning rate) –, the discount rate “,

and the eligibility trace-decay parameter ⁄. All four parameters take values between 0 and

1. We conduct various simulations using grid search with the multiple modality adaptive

sensing scheme. The parameter grid is constructed using the following values in each

parameter: 1) – = {0.01, 0.05, 0.1}; 2) “ = {0.05, 0.1, 0.2}; 3) ⁄ = {0.05, 0.1, 0.2, 0.5, 0.8};

and 4) ‘0 = {0.1, 0.2, 0.5}. The exploration decaying rate is fixed to be d = 0.999. The

optimal parameter setting from the grid search based on saved energy will be selected

for the RL strategies. Two research questions we want to answer are: 1) what is the

performance of the proposed adaptive sensing approach compared against the two baseline

strategies? 2) which adaptive sensing scheme is better, the single modality or the multi-

modality methods?
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Data Utility Using Various Sensing Strategies

We investigate the impacts of using these adaptive sensing strategies on the utility of the

collected data with respect to their applications. Specifically, how does the RL adaptive

sensing strategies impact the data utility for predicting negative a�ect and social anxi-

ety? We implement both regression and classificaiton tasks using data collected in three

sensing scenarios: 1) using multi-modality RL strategy; 2) using duty cycle; and 3) using

continuous sensing. In classification, we convert continuous scaled negative a�ect and

social anxiety into binary values using cuto�s 50 and 34, respectively. Performances are

evaluated using accuracy for classification, and mean square error (MSE) for regression.

The GPS features are extracted based on the algorithm in [39], and the accelerome-

ter features include average, median, variance, standard deviation, minimum, maximum,

range, first quartile, third quartile, inter-quartile, inter-quartile range, RMSE, MAD,

skewness, kurtosis, mean jerkiness, and lag one auto-correlation of accelerations, correla-

tions between pairs of axes, zero crossing rate on each axis. For daily negative a�ect, the

features are extracted using the last 24 hours of data from the response timestamp; for

social anxiety, we calculate only the proportion of time the users are being active (i.e.,

mean acceleration above 0.2 using 5 minute windows). We build generalized models with

all participants’ data using random forest and logistic regression for classification, and

using random forest and LASSO linear regression for regression.

Sensitivity Analysis on Thresholds and Sensing Windows

The acceleration and displacement thresholds are application dependent, and related to

the computation of reward signal in the adaptive sensing strategies. The state feature

window size a�ect both the energy e�ciency and our performance metrics. We conduct

sensitivity analyses to understand these impacts using the following values for accelerome-

ter and GPS: 1) the acceleration thresholds thacc = {0.05, 0.1, 0.2, 0.5, 1}(g) and the state

window sizes accsw = {20, 30, 60, 120} (seconds); 2) the GPS displacement thresholds
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thGP S = {0.05, 0.1, 0.2, 0.5, 1} (km) and the state window sizes gpssw = {600, 1200, 1800}

(seconds).

The accelerometer sensitivity analyses are conducted by fixing the GPS displacement

threshold and state window size at 0.1 (km) and 1200 (seconds); while the GPS sensitivity

analyses are conducted by fixing the acceleration threshold and state window size at 0.2

(g) and 20 (seconds).

Personalization of the Learning Policies

Every RL adaptive sensing strategy is encoded by the learned policy, which is represented

as a weight vector corresponding to the state features. We analyze and visualize these

policies collectively and individually, to understand how the action decisions are made

under di�erent state values.

4.6 Results

4.6.1 Comparisons of Performance in Adaptive Sensing Strate-

gies

Figure 4.4 shows the performance metrics on the various values each RL parameter uses

in the simulations. For accelerometer, the learning rate – at 0.01 consistently provides

the best results on all four metrics; the discount rate “ is less sensitive to all four metrics,

and is chosen at 0.05 based on energy saving; the eligibility trace-decay parameter ⁄ is

also quite insensitive to all four metrics, and is chosen at 0.1 based on energy saving;

the initial exploration rate ‘0 is chosen at 0.1. We choose the same set of values from

accelerometer for all four RL parameters in GPS.

Figure 4.5 shows the performance of the four sensing strategies on the four performance

metrics defined in Section 4.4.3 using all available accelerometer and GPS data from each

study participant in the simulations. Thus the performance metrics from each participant

are computed based on di�erent T values.
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Figure 4.4: Parameter Tuning

Single vs. Multiple Modality. For accelerometer, single modality method out-

performs the multiple modality method on all four metrics. For example, the accu-

racy, activity coverage, F-score, and battery saved of the single modality method are

0.904, 0.826, 0.841, 0.262, respectively, as compared to 0.826, 0.762, 0.841, 0.242 for the

multiple modality method. For GPS, the single modality method attains better per-

formance in accuracy and battery saved at 0.687 and 0.308, as compared to 0.683 and

0.277 in the multiple modality method; and worse performance in activity coverage and

F-score at 0.66 and 0.612, as compared to 0.727 and 0.624 in the multiple modality

method. Overall, multiple modality method seems to perform worse than single modal-

ity, even though it leverages more data to construct the state features and guide action

decision. With more information from all available sensors, the potential benefits of the

multiple modality method is obvious. However, if the state features are not properly

chosen, more information may not necessarily be translated into better performance. One

possible explanation could be that state features generated from di�erent sensor data

provides conflicting information and therefore lower the accuracy of sensing decisions.

More specifically, movements detected by accelerometer (e.g., high value in average accel-

eration) could either represent movements within a confined space, or between di�erent

locations. Similarly, displacements detected by GPS (e.g., high value in displacement)
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Figure 4.5: Performance on Sensing Strategies.

could either represent displacements occur in a vehicle, or while running.

RL Strategies vs. Baseline Methods. The accelerometer single modality QLADE

consistently outperform the learning automata method, while multiple modality QLADE

is slightly worse than but fairly closed to it. The GPS learning automata baseline is

able to save more energy, but has lower activity coverage rate when compared to the

QLADE algorithms. Currently the changing rate – in the learning automata method is

set to 0.5. Higher – value results in faster changes in the sensing probability pt. When a

user frequently changes his/her state, the learning automata method is expected to have

worse performance due to the swinging of the sensing probability. Overall, the QLADE

algorithm has better performance than the baseline methods. And since it leverages

contexts extracted from the sensor data to inform sensing decision, we believe that with

properly designed state features, it can achieve significantly better results.

Figure 4.6 and 4.7 show the average performance over time for all four sensing strate-

gies in accelerometer and GPS. The horizontal axis represent the time steps (5 minutes for

accelerometer and 1 hour for GPS), and the dashed vertical lines mark the first quartile

in number of learning samples or time steps in all participants. In Figure 4.6, the sin-

gle modality QLADE method consistently outperforms the other methods over time for

accelerometer. We also observe that the multiple modality QLADE method has similar
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Figure 4.6: Average performance over time across all participants on
accelerometer sensor.

Figure 4.7: Average performance over time across all participants on GPS
sensor.

initial performance to the single modality QLADE method. However, its performance

drops around time step 250, and gradually goes below the learning automata method. In

Figure 4.7, we observe less consistent average performance over time between the QLADE

methods and the learning automata baseline. Specifically, there is no convergence in per-

formance over time, and the random baseline method performs better than the other

methods up to certain time points in activity coverage and battery saved. These inconsis-

tencies reveal that it is much more challenging to balance coverage of place movements and

energy saving. One possible explanation could be that the GPS data has lower data den-

sity due to the sensing rate and higher missingness when compared to the accelerometer

data.
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Table 4.3: Comparison of data utility among three di�erent sensing
strategies. The social anxiety score has a range of 0-80, and the daily

negative a�ect has a range of 0-100.

Classification (accuracy) Regression (mse)

sensing
strategy

Random For-
est

Logistic Re-
gression

Random Forest
Regression

LASSO Linear
Regression

adaptive 0.611 0.637 138.1 148.6
SIAS duty cycle 0.556 0.582 140.8 134.3

continuous 0.600 0.630 134.0 145.8

Daily adaptive 0.774 0.774 543.4 534.8
Negative duty cycle 0.779 0.778 525.5 533.1
A�ect continuous 0.780 0.778 528.0 529.4

4.6.2 Data Utility Using Various Sensing Strategies

Table 5.1 shows the performances on both the classification and regression tasks using

random forest, logistic regression, and linear regression on social anxiety and daily neg-

ative a�ect. The adaptive sensing strategy provides better performance than the duty

cycle and continuous strategies in the classification task, while slightly worse results in the

regression task for social anxiety. The di�erences among the three sensing scenarios are

even smaller for daily negative a�ect, regardless of the type of tasks or algorithms. Over-

all, using adaptive sensing does not compromise data utility in predicting social anxiety,

and daily negative a�ect.

4.6.3 Sensitivity Analysis on Thresholds and State Windows

Figure 4.8 shows the sensitivity analyses on accelerometer. All four performance metrics

in accelerometer are not sensitive over di�erent state windows. In contrast, di�erent

acceleration thresholds greatly influence battery saved, activity coverage, and F-score,

and to a lesser extent accuracy in accelerometer. Meanwhile, all four performance metrics

in GPS are not sensitive over di�erent accelerometer state windows and acceleration

thresholds. The impacts from the changes of the acceleration threshold is expected as

higher acceleration threshold corresponds to less activation of accelerometer, leading to
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Figure 4.8: Sensitivity analysis on accelerometer state Window and ac-
celeration threshold when GPS state window and displacement threshold

are fixed at 20 minutes and 0.1 kilometers.

reduced energy consumption. However, higher energy saved will trade-o� lower activity

coverage.

Figure 4.9 shows the sensitivity analyses on GPS. Varying the GPS state window and

displacement threshold does lead to significant variance in all four performance metrics in

accelerometer. For GPS, the same conclusion from accelerometer sensitivity analyses can

be made, that is varying the GPS displacement threshold leads to increasing battery saved

and decreasing activity coverage, while all four performance metrics are not sensitive to

changes in the state window.

4.6.4 Personalization of the Learned Policies

Figure 4.10 visualizes the distribution of counts of favored actions by each state feature

as the values of the state features increase. Specifically, the red bar in each state feature

corresponds to the ’On’ action, while the green bar corresponds to the ’O�’ action. The

counts are the number of study participants that have the state feature favoring the

corresponding action when its value increase. For example, 86 accelerometer agents favor

the ’On’ action when the time is in early morning, and 130 accelerometer agents favor the

’On’ action when average acceleration increases. Likewise, 137 accelerometr agents favor
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Figure 4.9: Sensitivity analysis on GPS state window and displacement
threshold When accelerometer state window and acceleration threshold are

fixed at 20 seconds and 0.2 gravity unit.

the ’On’ action when total distance increases. Average acceleration and total distance are

the two most dominant positive features that favor the ’On’ action, followed by average

acceleration in t≠1, and displacement. For GPS, early night time and standard deviation

of acceleration in t favor the ’O�’ action, while all four GPS state features favor the ’On’

action, as their values increase.

Figure 4.11 visualizes the individual policies for participants with the number of learn-

ing samples in the top three quartiles for both accelerometer and GPS. Red cells in these

two heatmaps represent favoring the ’On’ action as the corresponding state feature value

increases, while dark blue cells represent favoring the ’O�’ action as the corresponding

state feature value increases. Sensing agents located at the bottom of the heatmaps tend

to be less active for most of the time throughout the day. This can be seen from the

blue cells corresponding to the temporal state features in both heatmaps. In some GPS

policies, high values in average acceleration in t favor the ’O�’ action, which is possible

only when the corresponding participants move sporadically within short time window

(e.g., checking phones frequently). We also find that higher standard deviations of accel-

eration for a significant portion of accelerometer and GPS policies favor the ’o�’ action.

One possible explanation is that when average acceleration in t favors the ’O�’ action,
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Figure 4.10: Number of participants favoring each of the two actions
with respect to each state features using the multiple modality Q-learning
strategy. Only data from participants that have learning samples in the

top three quartiles are counted.

the participants may be moving sporadically within short time window; when it favors

the ’On’ action, the participants may be engaging in activities with consistently high

acceleration.

From the collective and individual views of sensing policies in both accelerometer

and GPS, we show the individual di�erences among participants’ behavior patterns, and

therefore the need for adaptive sensing strategies. The RL framework is an ideal solution

to personalize adaptive sensing.

4.7 Discussion

Energy e�ciency is an important topic in mobile sensing applications, which create sig-

nificant energy demands while compete with other services personal smartphones provide

for limited battery. In this work, we systematically identify opportunities in di�erent

stages within the mobile sensing application pipeline to address the energy challenge, and
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Figure 4.11: Individual state feature profiles on the two actions using the
multiple modality QLADE strategy in accelerometer and GPS. Red color

represents the ’On’ action, and blue color represents the ’O�’ action.

propose a reinforcement learning framework for sensing management that can lead to

higher energy e�ciency in mobile sensing.

Our proposed adaptive sensing strategy is based on a basic principal, that is sensors

should be deployed only when it matters. User contexts can be leveraged to help sensing

decision to reduce sensor deployment and thereby enhance energy e�ciency. The RL

framework enables contextual understanding using carefully designed state features, and

optimizes sensing by learning and maintaining a sensing policy. Using a model-free ap-

proach, our adaptive sensing strategy requires no prior training, environment modeling,
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or building context recognition models. In addition, the learned policies are personalized

and adaptive, which are very important features for energy e�cient mobile sensing.

The per timestep computation complexity for updating an existing policy is linear with

|A|◊|�|, hence the energy overhead is quite trivial when compared to energy consumed by

hardware sensing [144]. Energy overhead also comes from extracting state features using

computationally intensive methods. However, this is not a concern in this work. We are

currently working on deploying our proposed strategy in a human study to evaluate its

e�ectiveness. We discuss several limitations in our proposed methods and some ideas for

future works below.

4.7.1 Limitations

First, the current formulation posits our adaptive sensing strategy as the middle ground

between continuous sensing and duty cycling. This formulation limits energy e�ciency to

exceed duty cycle method, while trade-o� some energy for activity coverage. However, it

is possible to reformulate the adaptive sensing problem, and redefine the sensing actions

to achieve better energy e�ciency than the duty cycle method.

Second, more sophisticated state features can be designed to better characterize the

contexts that are relevant for sensor deployment. The performance of the multi-modality

QLADE strategy is not improved by adding additional state features from other sensors.

Thus, a better understanding of the correlations among data from di�erent sensors is

needed to aid the design of state features. One approach is to design a unique set of state

features for each sensor in the multi-modality scheme, rather than having a common set

of state features for all sensors.

Third, under the current formulation, the reward signal relies on thresholds that re-

quire manual specification. In this work, we choose 0.2g in acceleration for accelerometer,

and 0.1km in displacement for GPS. However, it is not always straightforward for other

sensors such as light sensor and microphone to set these thresholds. To mitigate this

challenge, we could redesign the reward signal to get rid of its reliance on the threshold
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parameter, as long as it can provide desired feedback to the sensing agent in updating

the policy. Removal of the threshold parameter can also increase the robustness of the

reward signal. For example, activities that last in short time span may be treated as no

movement due to taking the average value.

Last and most importantly, we did not evaluate our proposed adaptive sensing strategy

in a real study using randomized controlled experiment, and thus the current evaluation

in energy e�ciency is only exploratory. Although, we argue that the comparison among

the several strategies using the current performance metrics is fair and valid, and the

current work paves ways for our future human study.

4.7.2 Future Work

To amend the above limitations and extend our current work, we propose the following

future directions. First, we want to reformulate the adaptive sensing problem to allow

more sensing actions, which can further improve energy e�ciency. Unlike the action space

in this work, a new action space can include control options that determine the duration

of sensor deactivation. This new design in action space also requires adjustments in the

reward signal to properly estimate the reward values in time steps that the sensors are

deactivated. One approach is to discount the reward proportionally to the length of the

deactivation window.

Second, in this work, we apply universal state features for all sensors in the multi-

modality scheme, which fails to deliver better performance. More sophisticated and unique

state features need to be considered for each sensor. For example, instead of using mean

and standard deviation of acceleration as the accelerometer state features, we can apply

distribution based features that can better characterize the underlying activities. For

GPS, many existing works leverage accelerometer signal to activate GPS. However, move-

ment within a confined space (e.g., being indoors) will lead to unnecessary triggers of

GPS. We need to consider this issue when design state features using accelerometer data

for GPS.
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Third, we will redefine the reward signal to remove the threshold parameter. In

this work, the reward signal takes binary values. We will experiment with a continuous

reward that is proportional to discounted cumulative ’inertia’ level (e.g., movement for

accelerometer, and displacement for GPS). Lastly, We will explore other reinforcement

learning algorithms for further improvements in energy saving and activity coverage.

4.8 Conclusion

This work proposes an adaptive passive sensing framework using reinforcement learning

to control low-level sensor sensing cycles. Our proposed approach can be combined with

other methods targeting energy challenges arising from di�erent sources in the mobile

sensing application pipeline (Figure 4.1).

From our experiments, we find that the single modality QLADE algorithm attains

better performance than the learning automata baseline approach. Specifically, it out-

performs the learning automata method in all four metrics in accelerometer. In GPS,

both single and multi-modality QLADE methods are better than the learning automata

baseline approach in accuracy, activity coverage, and F-score, but worse in battery saved.

When compared to typical duty cycle strategy, we trade-o� around 75% of energy for

around 70% of activity coverage, using the current selected acceleration and displacement

thresholds. When including only data from study participants ranked in the top three

quartiles in the amount of available learning samples, we see consistently better average

performances in all four metrics over time in accelerometer. Our proposed method does

not compromise data utility in three sensing scenarios including adaptive sensing, duty

cycle, and continuous sensing. Specifically, we are able to obtain similar prediction per-

formances in both classification and regression tasks in social anxiety and daily negative

a�ect. We show that our proposed method is robust in the state feature window but

sensitive to the movement threshold.
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Chapter 5

Adaptive Passive Sensing Using

Action-augmented QLADE with

Various State Designs and a

Continuous Reward Signal

In this chapter, we extend the proposed work in Chapter 4 by reformulating adaptive

passive sensing with an expanded action space, new sets of state features, and a more

generalizable reward signal. Our proposed RL strategies consistently outperform the

baseline methods including the dynamic function method, the learning automata method,

the duty cycling method, and a random strategy in energy saving. To verify the impacts

of these di�erent strategies on data utility, we predict social anxiety and daily negative

a�ect using real data collected in a mobile sensing study on mental health. Using our

proposed RL strategy does not result in lower prediction performance when compared to

the baseline strategies.

5.1 Introduction

Embedded motion sensors, including acceleromter, gyroscope, compass, and altitude sen-

sors etc., are deployed in many mobile sensing applications [180, 67] to continuously collect
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users’ motion data, which leads to significant energy challenge on the smartphone. In ad-

dition to hardware sensing, processing and transmitting large amount of motion data will

also consume substantial energy. [144] Applying adaptive passive sensing strategy can

greatly mitigate these energy challenges by only collecting motion data when significant

state changes are detected. In Chapter 4, we propose a general design framework for

adaptive passive sensing using reinforcement learning. There remains several limitations

in the problem formulation and design in the RL components.

Primarily, when we formulate adaptive passive sensing as a middle ground between

continuous sensing and duty cycling, the energy e�ciency we obtain using adaptive sensing

is upper-bounded by that of duty cycling. The sensing window within every time step

guarantees regular assessments of user’s contexts. However, making each time step equal

length limits energy saving in moments when no signal changes for longer period of time

happen. One easy extension to address this issue is to augment our previous formulation

with actions that can control the length of time when sensors are kept from deployment.

Specifically, we choose a basic time unit (step) and define the action to be the number

of time units the RL agents can skip through the next sensing cycle. Each sensing cycle

consists of sensing for one time unit and skipping for At number of time units. We aim to

improve energy e�ciency by allowing the sensors to be turned o� in longer time periods

that have no state changes detected in the sensing time unit.

State representation is another limitation in our proposed method. Many non-adaptive

methods directly apply thresholds to define controlling conditions for sensor deployment.

In the previous chapter, we apply state features that characterize ’movements’ in ac-

celerometer and GPS, considering the goal of capturing varying acceleration and dis-

placement signal in these sensors. However, there is a lack of works on applying RL in

adaptive sensing, and thus a lack of guidance in state representation learning for adaptive

sensing. To fill in this gap, we propose three state design methods and evaluate their

e�ectiveness in this chapter.

Lastly, in our proposed method, the reward signal depends on a manually specified

threshold value in ’movements’, which may not generalize across di�erent sensors, and
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can fail to correctly guide the policy updating. The role of reward signal is to reinforce or

weaken the bonds between actions and their associated states. This mapping is eventually

translated into a policy that is leveraged to control sensor deployments. Given the goal

is to capture signal changes in the sensor data, designing the reward signal should follow

this basic principle: if the action is desired with respect to the goal, the reward signal

should be reinforcing selection of the action in the given state; on the contrary, the reward

signal should be penalizing selection of the action in the given state. We follow this design

principle in our previous method and define a binary reward signal that takes value ≠1

and 1 based on the chosen action and a threshold value. In order to set free from this

dependency, we design the reward using a continuous scale that estimate signal changes

proportional to the time length in this chapter.

In this work, we propose to control the deployment of a set of motion sensors by adap-

tive sensing using accelerometer. For example, if the accelerometer detects state changes

in a sensing time unit, the chosen set of motion sensors, including the accelerometer, will

be deployed to collect data. Hence, we explore adaptive sensing using accelerometer with

an action-augmented formulation that enable more energy saving, while address challenges

in state and reward design. In the remainder of this chapter, we summarize related works

in Section 5.2, explain the new problem formulation in Section 5.3, propose di�erent RL

methods in Section 5.4, lay out our experiment plan in Section 5.5, and present their

simulation results in Section 5.6. We provide a brief discussion on limitations and future

works in Section 5.7 and make our conclusion marks in Section 5.8.

5.2 Related Works

State representation design is an important topic in RL across various application do-

mains such as resource management [139], tra�c control [8], robotics [107], and more

recently, chemistry [248], news recommendation [245], real-time bidding [96], and adver-

sarial games [199]. Although its importance has been noted, it has not been systematically

covered in Sutton and Barto’s classic introductory work in RL [203]. State design plays



82

an important role in most of these applications but often requires domain knowledge to

manually extract features from data generated in the di�erent environments.

In [139], the state is designed as color coded images to represent jobs being processed in

clusters and jobs waiting in job slots in the resource management environment. In [8], the

state is represented by an eight-dimensional feature vector with each element representing

the relative tra�c flow at one of the lanes. The relative tra�c flow is defined as the total

delay of vehicles in a lane divided by the average delay at all lanes in the intersection. In

[248], the state is represented by a combination of di�erent aspects in an experimental

condition in chemical reactions. In [245], four sets of state features are extracted from

user logs in online news services such as Google News. These features include 417 news

features that describe properties appear in the piece of news, 2065 features regarding

user clicks in di�erent time windows, 25 user and news features regarding interactions

between user and certain piece of news, and 32 context features describing the contexts

when news requests are made (e.g., time and age of the news). In [96], the cumulative

cost and revenue between merchants and consumers in each merchant cluster, and a set of

slowly-changing consumer features (e.g., total cost and revenue) in each learning episode

(e.g., a period of time) are applied to characterize the state in advertisement bidding.

The advances in deep learning research have led to e�orts in autonomous state repre-

sentation learning, in which real-world sensor data are applied to automatically develop

a state representation for RL agents in an end-to-end approach [23]. However, this may

not always be feasible in practical problems that are expensive to acquire large amount of

learning data, especially those in mobile health and smartphone sensing. In our current

work, we focus on manually extracting state features that can characterize the underpin-

ning human activities in accelerometer data.

Many di�erent accelerometer features have been applied in human activity recogni-

tion (HAR), and these include discrete Wavelet Transform (DWT) features, fast Fourier

Transform (FFT) features, and di�erent time-domain features [172]. Some recent work

applied end-to-end method using deep learning approach for feature extraction in HAR.
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Specifically, the authors in [45] constructed CNN models using tri-axial acceleration sig-

nals to predict eight typical daily activities. Among the above methods, time-domain

features are most popular as they require no computational intensive process like DWT

and FFT for data transform, and are less demanding on data quality caused by missing

data and sampling rate. [172] This is very important in the context of adaptive sensing

using RL, because applying computationally intensive process to construct the various

RL components can create significant energy overhead, compromising energy e�ciency in

our proposed RL approach. Among the time-domain features, entropy features extracted

from accelerometer trajectories can measure uncertainties in the data. Plotz et al. propose

distribution-based features from accelerometer data for activity recognition tasks [171].

They found that distribution-based features can greatly improve HAR performance by

accurately represent the acceleration signal’s underlying activity. We apply both entropy

and distribution-based state features in our current work.

Several existing works proposed RL-based adaptive sensing methods towards improv-

ing energy e�ciency in mobile sensing. The Jigsaw engine proposed by Lu et al. [134]

adjusts the sensing rate by formulating adaptive sensing in GPS as a Markov Decision

Process (MDP) with sensing duration, hardware status (e.g., remaining battery budget),

and mobility as state features. Krause et al. created a MDP for activity transition using

real accelerometer data, and translated the adaptive sensing problem into an optimiza-

tion problem that chooses the best sensing timings with respect to the activity recognition

accuracy based on the activity MDP subject to certain energy constraints. Wang et al.

proposed to use hidden Markov model (HMM) to adapt duty cycles in di�erent user states

given by pre-trained HAR models [228]. The action in each time step consists of an sensor

activation decision, and a decision on deactivation duration when sensor is deactivated.

The user state is estimated with uncertainty levels when no sensor data is available. Two

obvious limitations with the above methods are as following: 1) model-based approach

requires building environment model using real data, and can only be applied in discrete

state spaces. 2) these approaches rely on HAR models to understand the environment

state. These issues limit their generalizability across di�erent sensors to enable adaptive
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Figure 5.1: New problem formulation in adaptive passive sensing.

sensing.

Rachuri et al. proposed two di�erent adaptive sensing approaches, one using a set of

advance and back-o� functions to control the sensing rate [178], while the other applying

learning automata to adapt a sensing probability that controls sensing cycles [179]. We

keep the learning automata method as our baseline comparison as we do in the previous

chapter, and add the dynamic function approach to our baseline methods by generalizing

it from controlling sensing rate to adapting sensing cycles for accelerometer. More details

about them will be provided in Section 5.5.

5.3 Problem Formulation

Adaptive passive sensing could be formulated as a discrete time sequential controlling

problem for sensor deployments. Time is divided up into steps with chosen step sizes for

di�erent sensors. At the first time step, the targeted sensor will be deployed, and the

collected sensing data will be processed to inform sensor deployment decision in the next

few time steps. If the sensor is turned on, it will sense in the next time step; otherwise, it

will be turned o� for a certain amount of time steps. The number of time steps to sleep

the sensors is a decision by the controlling algorithm. A sensing cycle is therefore consists

of a sensing window for one time step, and an adaptive sensing window with variable time

steps. Figure 5.1 shows a few examples of the sensing cycles. Sensing cycle 1 consists of

3 time steps with the sensor being turned o� for two time steps; while sensing cycle 2

consists of only 1 time step, and the sensor is not turned o�.
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This problem formulation is di�erent from our general formulation in Chapter 4, in

which adaptive sensing is posited as a middle ground between continuous sensing and

duty cycling. In that case, each sensing cycle has the same length, and can be broken

down into a sensing window and an adaptive sensing window. In contrast, our current

formulation enables us to emulate energy e�ciency performance in duty cycling, while

potentially maintain superior activity coverage in our proposed reinforcement learning

methods. It is achieved through generalizing from a fixed adaptive sensing window to a

flexible adaptive sensing window (i.e., the sensor can be turned o� for a longer period of

time in certain contexts) using a more sophisticated action space design. More details

will be provided on this in Section 5.4.

5.4 Methods

5.4.1 Reinforcement Learning Methods

Each reinforcement learning method requires specification of the three essential compo-

nents: State Space S, Action Space A, and Reward R. We propose four di�erent RL

methods for adaptive passive sensing in this chapter based on their state feature design.

All methods will include temporal features based on the sensing time. We apply the same

algorithm proposed in the previous chapter, namely Q-learning with linear approxima-

tion and decaying exploration (QLADE). Below we describe the details on each of the

proposed methods.

State Space Design

RL method 1: Entropy-based Adaptation (EA). Let X denote the sensing stream

generated by the target sensor from the sensing window in a sensing cycle. A histogram is

fitted based on X, resulting in N bins, which contains ni number of data points in the ith

bin with i = 1, 2, . . . , N . We define Pi to be ni
N and calculate the entropy of the sensing
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stream X using the following formula:

H(X) = E[≠logP (Xi)] = ≠
Nÿ

i=1
PilogPi.

Once we obtain H(X), it is fitted into the predefined M buckets, which is dependent on

N . In doing so, we discretize H(X) into one of the M levels as a discrete state feature.

These features combined with the temporal features will serve as the state features for

the entropy-based adaptation algorithm.

RL method 2: Distribution-based Adaptation (DistA). Similarly, for sensing

stream X, we first derive the empirical cumulative distribution function (ECDF) F using

the standard Kaplan-Meier estimation [74]. Specifically, the probability of getting a data

point smaller or equal to x is:

‚P (x) = 1 ≠
Ÿ

i:xiÆx

(1 ≠ di

ni
),

where di is the number of values in sensing stream X that is equal to x, and ni is the

number of values in sensing stream X that is greater than or equal to x. ‚P (x) takes

monotonically increasing values from [0, 1]. We then choose a fixed set of N points p =

{p1, p2, . . . , pN} in [0, 1], and estimate the inverse values of ‚P (x) using cubic interpolation

C
p. We use a family of cubic interpolating splines called Catmull-Rom splines [213].

Specifically, we have

x(p) = c3p
3 + c2p

2 + c1p + c0. (5.1)

Assuming p falls between ‚P (xi) and ‚P (xi+1). For simplicity, let us denote ‚P (xi) and
‚P (xi+1) as pi and pi+1, respectively. Without loss of generality, let us assume all xi are

sorted within X, and the nearest points smaller than pi and greater than pi+1 are pi≠1

and pi+2, respectively. We have

x(pi) = c3p
3
i + c2p

2
i + c1pi + c0 = xi, (5.2)
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x(pi+1) = c3p
3
i+1 + c2p

2
i+1 + c1pi+1 + c0 = xi+1, (5.3)

x
Õ(pi) = 3c3p

2
i + 2c2pi + c1 = 1

2(xi+1 ≠ xi≠1), (5.4)

x
Õ(pi+1) = 3c3p

2
i+1 + 2c2pi+1 + c1 = 1

2(xi+2 ≠ xi). (5.5)

Solve the above four equations for the four parameters c3, c2, c1, c0, we have

c3 = 4c
2

12p
2
i c

2 + 12pibkc ≠ 4ac + 6b2 (xi+1 ≠ xi≠1
2 ≠ 4c(xi+1 ≠ xi) ≠ bk

4c2 ),

c2 = k ≠ 6bc3
4c

,

c1 = (xi+1 ≠ xi) ≠ ac3 ≠ bc2
c

,

c0 = xi ≠ c3p
3
i ≠ c2p

2
i ≠ c1pi,

where a = p
3
i+1 ≠p

3
i , b = p

2
i+1 ≠p

2
i , c = pi+1 ≠pi, and k = xi+2 ≠xi+1 ≠xi +xi≠1. In the case

of endpoints, the right hand side of equation 5.4 or 5.5 will become 1
2(xi+1≠xi), depending

on which end we are at. The resulted inversed values using p in equation 5.1 will be used

as the state features. The idea is to derive a representation of the input sensing stream

that can preserve the structural information, thus capture the underpinning activities the

user is performing [171].

RL method 3: Location Augmented Distribution-based Adaptation (LocDistA).

In LocDistA, we add location state features on top of method 2. To extract the location

state, we implement an online place learning algorithm on the incoming GPS stream given

in Section 3.4. Each adaptive sensing agent will maintain a place database for the user.

At each sensing cycle, the most recent GPS coordinate will be compared with all the

places in the place database. If it is falling within a radius of 30 meters in one of the

learned places, then the corresponding place will be treated as the current location. If

none of the places satisfy this condition, the location state will be set as ’unknown’. The

place database will be updated on an hourly basis using GPS data collected within the

past hour. Each newly formed cluster will be checked against existing ones for potential
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combinations. If a newly learned place’s center is within 30 meter of an existing place’s

center, they will be combined using the weighted geometry center as the new place center.

Using linear approximation enables us to flexibly add new place label as state features.

It is also possible to drop places that have not been visited for a long time to make the

size of the state space stable. This strategy will account for the dynamic human activity

environment that is changing over time.

RL method 4: Combining all state features from the above methods with

linear approximation (ComA). Lastly, we combine all state features from the previous

three proposed methods and called this approach ComA.

Action Space Design

We generalize the action space from 2 actions (e.g., ’On’ and ’O�’) in Chapter 4 to K

actions. We can encode the K actions to represent the number of time steps to skip in

each sensing cycle. Take an action space of {0, 1, 2, 3, 4, 5} as example, when the action

is 0, sensors are deployed for one time step and no time step will be skipped. Similarly,

when the action is 3, sensors are deployed for one time step, followed by skipping sensing

for three time steps. By designing the action space this way, we can reduce the amount of

sensor operation time to achieve higher energy e�ciency, when compared to traditional

duty cycling strategy, in which sensors are always turned on and o� for chosen fixed times.

Within each sensing cycle, the collected sensor data will be leveraged to decide the length

of time steps for sensor deactivation.

Reward Signal Design

In Chapter 4, the reward signal is designed using a threshold-based approach. Specifically,

we used acceleration threshold for accelerometer, and displacement threshold for GPS, and

the reward took either a value of 0 or 1 based on the collected sensing data. There are

two challenges with this threshold-based approach. First, it requires specification of a

reasonable threshold level, which may not always be well-defined for a particular sensor;

second, taking only 0 or 1 as the reward signal may fail to di�erentiate the magnitude of
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the ’inertia’ levels for those that are above or below the chosen threshold, leading to less

e�cient learning. In this work, we amend these deficits by proposing a continuous reward

signal that can proportionally reflect the changes in the sensing data.

The reward signal is computed by leveraging the sensing data collected in the sensing

window of the next sensing cycle. In general, the definition of the reward signal is sensor

dependent. Because we want the sensor to be turned o� when no changes or lack of

’activity’ is detected in the user’s context, or to be deployed when otherwise, it needs to

consistently reflect this motivation. Let us use R
Õ
t to denote the metric that measures the

magnitude of ’inertia’ level for any sensor using the sensing data collected at the sensing

window of the next sensing cycle. The larger R
Õ
t is, the more intensive the activity is.

Thus the reward signal Rt at sensing cycle t is given by the following:

Rt =

Y
___]

___[

R
Õ
t ≠ R

r
, when at = 0

≠
atÿ

k=0
—

k
R

Õ
t + R

r
, when at = 1,. . . ,K-1

(5.6)

Here — is a discounting factor between 0 and 1 that backward estimates the activity level

in the time step(s) that the sensor is turned o� using the most recent available activity

level. When — is small, we have lower confidence in the estimations. When at = 0, we

keep the sensor on in the next time step. If the activity level is high, that reinforces

the action, and vice versa. When at ”= 0, the sensor is left o� for a chosen number of

time steps. qat
k=0 —

k
R

Õ
t is proportionate to the activity level during this period, and if it

is large, we penalize the action by adding a negative sign to it, and vice versa. In both

cases, we add a reference level R
r to prevent a constantly positive or negative reward

signal, which can lead to explosion of the linear coe�cients in the learned policy. R
r can

be any arbitrary value within the range of R
Õ
t.

5.4.2 Performance Evaluation

The lack of activity ground truth makes it extremely challenging to evaluate the perfor-

mance of our proposed adaptive sensing algorithms against the continuous sensing data.
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In Chapter 4, we defined accuracy, F-score, percentage of battery saved, and percentage

of activity coverage using a threshold-based approach. In order to remove the need of

threshold specification, we apply a continuous reward signal, which can not be used to

define accuracy and F-score. Thus, we focus only on energy saving and activity coverage

based on the following definitions:

• Percentage of energy saving (PES) is defined as the number of time steps that

the sensors are not turned on when compared to the continuous data stream. Let

us denote the total number of time steps in the continuous data stream as I, and

the sensor being turned o� at time step i as ai ”= 0, we have

PES =
q

iœ{1,...,I} 1(ai ”= 0)
I

,

where 1(ai ”= 0) is an indicator function that takes 1 when ai ”= 0.

• Percentage of activity coverage (PAC) is defined as the proportion of sensed

activity level over total activity level in the continuous data stream. We have

PAC =
q

iœ{i:ai=0} R
Õ
iq

i R
Õ
i

,

where ai = 0 indicates the sensor being turned on at time step i.

5.4.3 Adaptive Sensing in Motion Sensors

In Section 5.4.1 and 5.4.2, we propose our RL adaptive sensing methods, the baseline

methods, and performance evaluation metrics in general terms that are applicable to any

sensor. However, in this work, we want to narrow our focus down on motion sensors (e.g.,

accelerometer, gyroscope). In particular, our experiments will be conducted using data

from accelerometer in a continuous mobile sensing study [28]. In this section, we will

describe all the necessary configurations in various components according to the proposed

methods above for accelerometer.
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Smartphone embedded accelerometer typically generate sensing stream in the X,Y,Z

axes, each referenced to the center of the gravity field on earth, and are perpendicular

to each other. Due to the uncontrolled orientation of personal smartphones, we combine

the sensing stream from all three axes into the acceleration stream using
Ô

X2 + Y 2 + Z2.

All subsequent acceleration stream at sensing cycle t will be denoted as Xt.

To design adaptive sensing for accelerometer, we choose 1 minute as the length of one

time step, the actions to be {0, 1, 2, 3, 4, 5}, and the activity level R
Õ
t to be qn≠1

j=0 (Xj+1 ≠

Xj), where n is the number of data points within Xt.
qn≠1

i=0 (Xj+1 ≠ Xj) reflects the cu-

mulative changes within Xt. When point to point di�erences are substantial, the sum of

these di�erences will be large; otherwise, it can take zero if all points are identical, which is

highly unlikely even if the user is making repetitive motions. For method 1, we choose N to

be 10 in buckets with the following break points: {0.01, 0.2, 0.5, 1, 2, 3, 5, 8, 10}; M to be 5

with break points:{0.1, 0.2, 0.5, 0.9}. For method 2, we choose p = {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}.

For the reward signal reference R
r, we set it to be the first quartile of qn≠1

i=0 (Xi+1 ≠ Xi)

from a randomly drawn small sample of participants.

5.5 Experiments

In this section, we describe our baseline approaches and experiments to address several

research questions. We adopt the same dataset as described in Section 4.5.1 for simula-

tions.

5.5.1 Baseline Methods

We use the following baseline methods as comparisons to measure the performances of

our proposed RL adaptive sensing methods.

Baseline 1: Random Strategy (RS). The random strategy does not leverage any context

information extracted from the collected sensor data to make sensor deployment decision.

At each time step, the sensor will be deployed based on a coin flip. Half the times the

sensor will be deployed, and the other half the sensor will be turned o�.
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Baseline 2: Duty Cycling (DC). In the duty cycling strategy, the sensor will be turned

on and o� alternatively, with our chosen sensing and sleeping windows. In our experi-

ments, these windows are chosen to be both 1 minute for accelerometer.

Baseline 3: Learning Automata (LA). The learning automata strategy makes sensing

decision based on a sensing probability, which is continuously being updated based on

feedbacks from sensor data collected during the deployed time steps. When the sensor is

turned o�, no updates to the sensing probability will be made. More details about LA

can be found in Section 4.5.2 or [179].

Baseline 4: Adaptive Sampling Using Dynamic Functions (DF). In DF, the authors

proposed to apply a set of functions for controlling sensor deployments based on two

detected contexts – ’missable’ and ’unmissable’ events. [178] The idea is that when a

’missable’ event is detected, the sleeping interval is increased using a back-o� function;

when an ’unmissable’ event is detected, the sleeping interval is shrunk using an advance

function. The back-o� functions include linear (k ◊ x), quadratic (x2), and exponen-

tial (ex); and the advance functions include linear (x
k ), quadratic (

Ô
x), and exponential

(logex). We use the dynamic adaptation algorithm from this work as our fourth baseline

method. In both baseline method 3 and 4, we use the following simple rule to define ’miss-

able’ and ’unmissable’ events: if R
Õ
t Ø R

r, then we have an unmissable event; otherwise,

we have a missable event.

5.5.2 Experimental Settings and Research Questions

There are four parameters in the QLADE algorithm including the initial exploration

rate ‘0, the step-size (or learning rate) –, the discount rate “, and the eligibility trace-

decay parameter ⁄. All four parameters fall within a range of 0 and 1. In addition,

the defined accelerometer reward signal has a discounting parameter —. Instead of tun-

ing these parameters, for every participant in each method, we randomly choose values

for them from the following values: 1) – = {0.01, 0.05, 0.1}; 2) “ = {0.05, 0.1, 0.2}; 3)

⁄ = {0.05, 0.1, 0.2, 0.5, 0.8}; 4) ‘0 = {0.1, 0.2, 0.5}; and 5) — = {0.3, 0.5, 0.7, 0.9}. The
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exploration decaying rate is fixed to be d = 0.999.

With the above settings, we want to find answers to the following research questions:

1) How does the design of the state features impact the performance on PES and PAC?

2) How is the performance of the proposed RL methods compared to the baseline meth-

ods? 3) How do the various sensing strategies impact the utility of the collected data on

predicting social anxiety and daily a�ect scores? We follow the same prediction features,

outcomes, and algorithms in Section 4.5.3 but comparing the prediction performance

across five di�erent settings including the ComA, learning automata, dynamic function,

duty cycle, and continuous sensing strategies.

In addition, we will vary the action space and compare the impact of di�erent action

spaces on the performance of the proposed RL methods on PES and PAC. Specifically,

we will investigate di�erent values of K using K = {4, 6, 8, 10} in the ComA method to

understand how we should design the action space. And lastly, we will also analyze how

the di�erent state features impact the action decision in both individual and collective

views using visualizations.

5.6 Results

Parameter Tuning. Figure 6.4 shows the average PES and PAC aggregated across

di�erent parameter values in the four RL strategies. Since no consistent best parameter

values across the four strategies and two metrics, we will choose the set of parameter

value based on the results from ComA and PES, and the corresponding best combination

of parameter values are: ⁄ = 0.2, – = 0.1, — = 0.5, “ = 0.1, and ‘0 = 0.5.

5.6.1 Performance Comparisons in Di�erent Strategies

Comparisons within RL Strategies. Figure 5.3 shows the average PES and PAC

across the four RL strategies with di�erent state features. All RL strategies obtain sim-

ilar performance in PES with the entropy-based adaptation method trading-o� 0.05 in

PES for 0.1 in PAC. Because ComA also contains all the entropy features, and has similar
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Figure 5.2: Parameter Tuning. (a) PES; (b) PAC.

performance to the two distribution-based methods, the entropy features may be dom-

inated by the other features. Augmenting the distribution-based features with location

feature that is extracted from GPS data do not lead to performance increase either.

Comparisons between RL strategies and Baseline Methods. From Figure 5.3,

we can see that all RL strategies outperform the the baseline methods in PES, but trade-

o� activity coverage for energy saving. Specifically, the best RL strategy achieves a PES

of 0.68, compared to 0.6 from the dynamic function method. The entropy-based strategy

is more similar to the dynamic method, with a PES of 0.63 vs. 0.60, and a PAC of

0.42 vs. 0.46, respectively. When compared to the duty cycling method, with the new

formulation, the RL strategies significantly save more energy than the duty cycle method.

We conclude that no one single strategy attains best performances in both metrics. Thus

choosing which strategy becomes consideration in trading o� between energy saving and

activity coverage. Although the final decision can be dependent on the prediction analysis

in Section 5.6.2.

Performance Comparisons across Time. Figure 5.4 shows the average PES and
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Figure 5.3: Performance by strategies. (a) PES; (b) PAC.

Figure 5.4: Strategy Performance over time.

PAC across time in all strategies. All RL strategies maintain a PES level around 0.7

and a PAC level around 0.4. The dynamic function method stabilizes at a PES level

around 0.55 and a PAC level around 0.5, while the learning automata method is at a PES

level around 0.35 and a PAC level around 0.8. We observe that the average performance

stabilizes pretty quickly, which implies that the policies overall converge pretty quickly.

Although each policy may be converging at a di�erent speed, or even not converging at

all. When we zoom out to a larger time scale, we confirm that the average performance

time series are pretty stable. In particular, the learning automata strategy time series

fluctuate most over time. This is because when user’s activity changes frequently, the

sensing probability is also updated frequently, leading to unstable performance.
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Table 5.1: Comparison of data utility among five di�erent sensing strate-
gies. The social anxiety score has a range of 0-80, and the daily negative

a�ect has a range of 0-100.

Classification (accuracy) Regression (mse)

sensing strategy Random Forest Logistic Regres-
sion

Random Forest
Regression

LASSO Linear
Regression

ComA 0.635 0.650 135.5 139.8
Learning automata 0.627 0.651 136.1 139.8

SIAS Dynamic function 0.583 0.648 138.0 141.1
Duty cycle 0.625 0.650 136.0 139.8
continuous 0.601 0.610 135.4 137.4

ComA 0.786 0.783 516.1 526.3
Daily Learning automata 0.786 0.782 537.3 525.9
Negative Dynamic function 0.785 0.783 516.8 529.5
A�ect Duty cycle 0.786 0.786 512.6 524.6

continuous 0.786 0.783 517.3 526.5

5.6.2 Data Utility Using Various Sensing Strategies

Table 5.1 shows the performance of the various prediction tasks using five di�erent sensing

strategies we investigated in this chapter. We can see that all sensing strategies have

achieved comparable performance in both classification and regression tasks on predicting

both social anxiety and daily negative a�ect. Specifically, in predicting social anxiety, the

ComA RL strategy achieves the second best accuracy at 65%, when compared to the

learning automata strategy at 65.1% using logistic regression in classification tasks. In

regression tasks, the ComA RL strategy achieves the second best MSE at 135.5, when

compared to continuous sensing method at 135.4 using random forest regression. In

predicting daily negative a�ect, the ComA RL strategy has the highest accuracy at 78.6%

using random forest in classification tasks; and the second best MSE at 516.1, when

compared to the duty cycle strategy at 512.6 using random forest regression.
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5.6.3 Personalized Passive Policies

Figure 5.5: Distribution of Action Selection by Strategies.

Distribution of Actions by Strategies. Figure 5.5 shows the distribution of actions

being made in each sensing cycle aggregated across all participants’ data. All strategies

except learning automata favor turning o� the sensor for 1 time step in the majority

of sensing cycles. The distribution among the RL strategies are similar, with Entropy

adaptation method more heavily favoring at = 1. This explains why Entropy adapta-

tion method trades o� most energy for activity coverage among the RL strategies. The

dynamic function strategy is more divergent in action decision due to the properties of

the selected functions, thus we do not see many middle value actions being taken. In the

learning automata method, at = 0 is chosen more of the time, resulting in much higher

PAC and lower PES.
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Figure 5.6: Overall Policy Profiles.

Distribution of Actions by State Feature Values in ComA. Figure 5.6(a) shows

the distribution of actions by time feature values. When time is early morning, noon, early

afternoon, early evening, late evening, and early night, the distribution of policies favoring

each action is fairly even; when time is morning, 51 policies favor at = 0; when time is late

afternoon, 61 policies favor at = 1; and when time is late night, 54 policies favor at = 5.

One explanation for morning and late afternoon could be that during these period of

time, participants may be most active due to commuting to school and going home. It
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is self-explanatory that late night favors at = 5 as during this period of time, people are

usually less active, although some people could be heavily using their phones for social

network and gaming before going to bed.

Figure 5.6(b) shows the distribution of actions by entropy features. The entropy

features represent the information contained in the sequence of accelerometer data being

captured in the sensing time window. The higher level the entropy bucket is, the more

changes the data contain. In general, if these features are e�ective, we will expect to see

more policies in the higher level buckets favoring lower value actions, and vice versa. In

H5, 74 policies favor at = 0, and only 19 of them favor at = 5. This result meets our

expectation. In H1, H2, and H3, relatively few policies favor at = 0, although most

policies in H2 favor at = 1. In H4, the most favored action is at = 1 and at = 2. Overall,

we think these features work as we expect them to contribute to the sensing decision.

Figure 5.6(c) shows the distribution of actions by the distribution features. We observe

that in D1, D2, D3, and D4, the actions have similar distributions, with the majority of

policies favoring at = 1, while in D5, D6, and D7, more policies leaning towards at = 5. It

is more involved to interpret the underpinning of these features in sensing action decision

as this set of features are designed to be a structure representation on the underlying

activity. And since these features simultaneously present in each state with di�erent set

of values, the frequency of them in these figures represents the number of policies has

the biggest values in the coe�cients across di�erent actions. Thus larger values in the

features favor the higher value actions in D5, D6, and D7, while favor the lower value

actions in D1, D2, D3, and D4.



100

Individual Policy Profiles. Figure 5.7 shows the propensity of each state feature

value towards the six actions from 0 to 5 as they increase. Each row in the heatmap

is a participant’s learned adaptive passive sensing policy, while each column is a value

in a state feature. For example, for the first participant from the top row, if it is in

the morning, then it is more likely the sensing agent will choose at = 2, if the entropy

feature takes a value H1, the sensing agent will choose at = 2 as well. This visualization

informs us that each participant’s di�erent behavior patterns can lead to di�erent sensing

policies being generated by the RL passive sensing agent. It emphasizes the importance

of developing personalized passive sensing policies for di�erent users.

5.6.4 Sensitivity Analysis on Action Space

Figure 5.8: Sensitivity Analysis in Action Space Designs. (a) PES; (b)
PAC.

The above analyses and visualizations adopt an action space At = {0, 1, 2, 3, 4, 5} with six

di�erent actions. However, we do not yet know whether this design is appropriate, and

how to choose the optimal action space. Figure 5.8 shows us the performance comparisons

in four di�erent action spaces using the ComA algorithm. The observation is quite clear:

as the action space is being expanded, it trade o�s activity coverage with energy saving.

When we increase the action space from At = {0, 1, 2, 3} with four actions (denoted by

ComA_a4), to At = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} with ten actions (denoted by ComA_a10),

the PES gradually increases, while the PAC gradually decreases.
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5.7 Discussion and Limitations

This chapter is an extension to Chapter 4 to address several limitations. First, we refor-

mulate the adaptive passive sensing problem to enable a larger action space that include

actions for choosing the length of sensor deactivation window. This design improves en-

ergy e�ciency that is previously impossible when we formulate the problem as a middle

ground between continuous sensing and duty cycling. Second, we propose three di�erent

sets of state features that may be predictive of signal changes in the accelerometer data,

while taking into consideration the potential energy overhead posed by extracting them.

Lastly, we design a more generalizable reward signal that is free from specification of a

’movement’ threshold parameter. With the expansion in the action space, the reward sig-

nal also needs to accommodate the ’not trigger’ actions (e.g., when at ”= 0) by estimating

the ’movement’ change level that is proportional to the length of the ’not trigger’ window.

Our newly proposed RL strategies consistently outperform the baseline methods in

energy saving, however, by trading o� some activity coverage. This prompts us to rethink

how to define ’activity’ in the ’activity coverage’ concept. Currently, we define it as the

sum of consecutive acceleration changes for accelerometer data. At this point, we could not

come up with an alternative definition. So we have to rely on examining the performance

in data utility. With the current lack of global best strategies in both metrics, nonetheless,

we can still choose one of these di�erent strategies based on our energy requirement, as

retention of participants is always the top priority in any mobile sensing applications, and

battery drainage has been shown to be the most serious challenge in past studies that

involved over 3000 study participants.

Our current work only addresses the most important limitations from Chapter 4.

However, there are more we can do in the future. First, state representation learning

is a very important topic in RL with domain areas such as robotics that involve sensory

data. [23] In particular, end-to-end deep learning approaches as function approximator can

avoid state feature design and potentially achieve higher performance in energy saving,

while balance activity coverage and maintain data utility. Though there are downsides to
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this more complicated approach: 1) it generates more energy overhead during learning;

2) it demands more learning data, and potentially a longer o�ine training period of

time. Overall, it worth exploring this option in further simulations. Second, the proposed

methods are examined in isolation to a real mobile sensing system, in which the collected

sensing data may be processed or modeled simultaneously. Thus when implementing

them, more thoughts are required to design the data pipeline, especially how we coordinate

the sensing state (i.e., missing data due to deactivation of sensors or other problems)

with the data consumption in preprocessing, feature extraction, and modeling. Most

importantly, the proposed strategies need to be evaluated in future deployments in real

mobile sensing studies.

5.8 Conclusion

In this chapter, we extend the proposed work in Chapter 4, improving the problem formu-

lation with an expanded action space, proposing new sets of state features, and general-

izing the reward signal. Our proposed RL strategies consistently outperform the baseline

methods including the dynamic function method, the learning automata method, the duty

cycling method, and a random strategy in energy saving. To verify the impacts of these

di�erent strategies on data utility, we predict social anxiety and daily negative a�ect using

data collected by the ComA strategy and all baseline strategies except the random strat-

egy, plus the continuous sensing strategy (i.e., using the actual data). The results show

no significant di�erences in the prediction performances among these di�erent strategies.
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Figure 5.7: Individual Policy Profiles.
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Chapter 6

Adaptive Active Mobile Sensing In

Mobile Ecological Momentary

Assessment

Passive data collected by smartphone embedded sensors may not provide critical and

accurate state determinants to mobile sensing applications. To amend this limit, active

sensing prompts users to directly self-report these metrics. However, active sensing tasks

such as mobile Ecological Momentary Assessments (EMAs) require substantial user e�orts

to complete, leading to low compliance. One major source of low compliance is triggering

active sensing tasks at inopportune moments. In this chapter, we propose adaptive active

sensing strategies using the reinforcement learning (RL) framework to address the timing

and context challenge, aiming to improve long term cumulative compliance. We show

that our proposed RL strategies consistently outperform the baseline methods including

a random strategy and a supervised strategy in mobile EMA compliance. We also in-

vestigate several di�erent techniques including applying a more compact representation

in routine state, incorporating motivation as a state feature, and adopting the Dyna-Q

framework for better sample e�ciency. Although the results are not encouraging, they

provide ideas to explore new strategies for further compliance improvement using adaptive

active sensing.
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6.1 Introduction

In mobile sensing, active sensing refers to the sensing mechanism that requires active

involvement in completing sensing tasks. In contrast to passive sensing, users expend

time and e�orts to provide measurements of key variables that cannot be directly col-

lected or easily derived from passive sensing modalities (e.g., emotion and perceptions).

Active sensing modalities include text and voice messages, phone calls, notifications via

mobile apps, digital surveys, and dialogue systems etc. Amid these di�erent modalities,

mobile Ecological Momentary Assessment (EMA) is a digital surveying method imple-

mented using smartphone. Unlike traditional retrospective survey methods (e.g., tele-

phone/paper/web surveys), EMA frequently collects self-reports to capture the dynamics

of human behaviors, while reduce recall bias and enhance ecological validity [211, 99,

232, 210, 78, 183, 17, 16, 215, 186]. It has been dubbed Experience Sampling Methods

(ESM), real-time data capture, diary methods (paper diary or semi-paper diary), ambu-

latory assessment, continuous psycho-physiological, biological, and behavior monitoring,

and everyday experience methods. [210, 184]

In the early days when mobile phones were neither "smart" nor pervasive, EMA sur-

veys were carried out in the format of paper diary [160], self-recording using pagers [16],

telephone [64], and personal digital assistant [210]. Web-based EMAs were also used [140],

but surveys were usually delivered through non-portable terminals such as desktops. Mo-

bile EMA has become the typical choice owing to the increasing ownership of smartphones

and accessibility of wireless network in the past decade. [33] Many EMA studies also cap-

tured passive sensing data while collecting EMAs, thereby enabling context-aware mobile

EMA. [93, 129, 43, 25] Although becoming more convenient, active participation in mo-

bile EMAs still demands substantial e�orts from users, and poses significant compliance

challenge over time.

Low response compliance in active sensing can be attributed to declining user moti-

vation over time. Existing research has applied human behavior theories to engage and

motivate users in active sensing applications (e.g., substance use logging [177] and weight
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management [218]). While motivation has been an important challenge to address in

active sensing, low compliance can result from another significant challenge, inopportune

timings and contexts, which could be caused by 1) unavailability at the moment of sensing

requests, and 2) interruptions that distract user’s attention from his/her current more pri-

oritized task(s). Underlying these causes are the di�erent contextual and cognitive states

(e.g., activity, location, time, and stress level) the user is situated. At each active sensing

prompting decision point, a user could be at certain location and engaging in certain

activities. Given these di�erent contexts, the user may not be available and interruptible,

failing to attend and respond to the sensing request. Our goal is to identify opportune

moments to trigger active sensing to the users, while not interrupt them in unsuitable

moments, thereby achieving higher compliance in the long term.

Adaptive active sensing leverages passive sensing to understand user’s context, and

based on this understanding, adapts the trigger timings to those moments that are more

likely free of interruption and convenient for the user to respond. In addition to being

context-aware, adaptive active sensing also need to avoid bias in the collected data that

is coming from being selective in trigger timings. [114] In this chapter, we design adaptive

active sensing strategies using the reinforcement learning framework under a formulation

that reduces bias in data. We propose to model the state of the user using a combina-

tion of low-level features including the trigger time, user’s location, transportation mode,

momentary and hourly activeness, and a high-level routine feature called k-routine that

places the user within the context of their frequent daily living patterns. When an active

sensing task is not triggered, we design a reward signal that works with our proposed

QLADE algorithm to overcome the delayed reward challenge. To understand the impact

of motivation, we approximate a user’s temporal motivation using a moving fixed window

compliance rate as a state feature. A bootstrapping method called Dyna-Q is incorporated

into the QLADE algorithm to mitigate the challenge from limited learning samples. All

these RL strategies are then compared with a supervised and random baseline strategy.

We evaluate the above proposed methods in simulations using real mobile EMA dataset
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from 220 college students over two weeks in a mental health study. Reis has catego-

rized mobile EMAs based on the types of triggers, including interval-contingent, signal-

contingent, and event-contingent EMAs. [184] Other researchers simply group them as

event-based and time-based, while within time-based EMAs, the triggers can be either

fixed-time or random-time. [211, 105] We focus only on adaptive active sensing using

random-time mobile EMAs. However, our proposed RL strategies can be generalized

towards other active sensing modalities.

The structure of the remaining chapter is as following: Section 6.2 reviews related

works on active sensing, Section 6.3 provides the problem formulation of active sensing,

Section 6.4 describes the user model with all specific state features and the proposed k-

routine mining algorithm, Section 6.5 designs the RL active sensing strategies, Section 6.6

and 6.7 present the experiments and their results. Lastly, the chapter is closed with

discussions in Section 6.8 and some conclusion marks in Section 6.9.

6.2 Related Works

6.2.1 Mobile Ecological Momentary Assessment

Ecological Momentary Assessment (EMA) is an intensive data collection approach that

allows subjects to repeatedly report their experiences in real-time and in situ. EMAs

have been preferred over one-o� retrospective self-reports to collect longitudinal data in

a wide range of research areas such as clinical assessment [78, 16], psychology/cognitive

process and their mechanisms [229, 208, 13], and mobile health [99, 116]. It provides

a better understanding of dynamics in human behavior/experience over time and across

situations [196]. Mobile EMA leverages smartphone’s portability and closed proximity

with their users to e�ectively collect active data, which are usually augmented by passive

data to provide more contextual understandings about the user. [25]
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Response compliance problem in mobile EMA has been noticed and explored by vari-

ous researchers in recent years [145, 166]. Most of the existing works focus on understand-

ing di�erent sets of factors that may influence mobile EMA response compliance. Serre et

al. [194], Sokolovsky et al. [201], and Broda et al. [34] studied impacts of demographic and

self-reported contextual factors on EMA response compliance. Vhaduri et al. systemati-

cally investigated the impacts of various design factors on response compliance and quality

of the collected data in a mobile EMA setting. [217] Comparing to our proposed work,

these studies did not leverage passive sensing capabilities to understand contextual states

of users but relied on self-reports and pre-specified triggering schedules from EMAs. In

addition, they also did not intervene with any strategies to improve user response compli-

ance. A third group of researches by Vhaduri [216], Markopoulos [141], and Hofmann [87]

investigated the impacts of delivery timing and reminders on EMA response compliance.

Their strategies using user chosen delivery times and regularly dispersed reminders are

not adaptive to users’ changing contexts. None of the above works proposed adaptive

systems that can enable continuous learning and intervention to improve active sensing

(e.g., mobile EMAs) response compliance and user experience.

6.2.2 Interruption Management

The ubiquitous computing community has conducted numerous research on how to deliver

emails [88], text messages [168], phone calls [22]. The goal of these works is to identify

opportune moments of users’ routine lives to avoid interruptions that may disrupt their

ongoing tasks. Another thread of research in mobile notification interruption management

focuses on application of context-awareness to identify opportune moments for notifica-

tion delivery [164, 146, 158, 142]. They found that contents, social relationship, and

physical activity level [146], location and time [164], current task [165],current activity

[86, 157, 68], psychological traits [147] obtained from both passive and active sensing can

be leveraged to predict opportune moments for interruptions.

Similar to our proposed work, this research leveraged both passive (e.g., smartphone
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embedded sensors) and active sensing (e.g., mobile EMAs) to learn the users’ contextual

states and predict whether a moment is interruptible. However, their approach using

activity recognition and rule-based reasoning did not take into account the dynamical

interactions between the users and their environment. Most significantly, the response of

notifications is unreliable due to the fact that most notifications may not require active

user response. Further, using removal of notifications from the notification center as an

indicator of a response could bias the prediction outcome. Even when a user response is

desired (e.g., answering phone calls), active sensing response may be more burdensome

and less motivating (i.e., picking up a phone call from family member is more motivating

than taking a mobile survey).

6.2.3 Just-in-time Adaptive Intervention

Our proposed work is closely related to behavior intervention because by adapting timings

and contexts in active sensing, we aim to modulate participants’ active sensing response

behaviors. From this perspective, a special type of behavior interventions, namely Just-

in-time Adpative Intervention (JITAI), is of interest to us. JITAI provides supports

when the users are most in need through adaptation in the delivery timing and interven-

tion contents. Frameworks guiding the Design of JITAIs with mobile technologies have

been proposed by Nahum et al. [154]. However, implementation of adaptive and interac-

tive systems that deliver JITAI is still very challenging, and most existing works either

involved only conceptual developments and/or proof-of-concept, or were not truly adap-

tive (e.g., recipient chosen timings, or after help/support is requested through responded

EMAs [84]).

Timms et al. proposed to use control engineering framework to model mobile in-

terventions [111, 207], while Kelly et al. proposed to use RL to facilitate the delivery

of intelligent real time treatment (iRTT) with continuous self-reports through mobile

EMAs [100]. Both of these proposed methods are dynamic and leveraging active sensing
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to obtain real-time understandings about the users, which will serve as controlled vari-

able(s) in the control engineering framework or reward signal in the RL framework to

determine intervention decision and timing of delivery. We propose to use RL framework

in adaptive active sensing to address the same delivery timing challenge in JITAI. After

all, if users are not responding to mobile EMAs in a timely fashion, decisions of inter-

vention contents that are relying on self-reports will not be possible. However, we will

leverage passive sensing capabilities in smartphones to obtain contextual states from the

participants instead of using self-reports.

6.3 Adaptive Active Sensing

Adaptive active sensing leverages passive sensing data streams to understand the users’

context, and interacts with the users for subjective data collection. The main goal of adap-

tive active sensing is to improve user’s active sensing compliance while reduce unnecessary

interruptions to the users in data collection. To achieve this goal, the adaptive active sens-

ing problem can be formulated as selection of timings for active data collection within

given interruption budget to obtain maximum user compliance. The interruption budget

refers to the allowable active sensing tasks that we can trigger on a given time frame. For

example, in a study that mobile EMAs are collected three times daily, the interruption

budget is three.

Imposing interruption budget is important to avoid over burdening users and maintain

user compliance. [122, 120] We will also need to spread the active sensing tasks as evenly

as possible across a given time window to avoid ‘contextual dissonance’, which biases

the collected data due to context selection. [114] We follow a classical approach to split

each day into some number of blocks, and within each block randomly select a time for

active sensing decision. [122] For example, in our social anxiety study [28], a day was split

into 6 2-hour windows from 9am - 9pm, and within each window, a time was randomly

drawn to trigger a momentary state a�ect survey. As a result, this design achieved a



111

budget constraint of 6 evenly distributed active sensing tasks daily. If we have a lower

active sensing budget, we can keep the same 6 2-hour windows, and choose 3 from them

to trigger active sensing tasks. Our adaptive strategies will then determine 3 out of

the 6 randomly selected times from those 2-hour windows for active sensing tasks. This

design meets the daily active sensing constraint while minimizes the bias in the collected

active data. In order to guarantee triggering exactly 3 active sensing tasks daily, we take

into consideration the opportunity costs and let the RL agent incorporate this knowledge

through learning from each episode. For example, if the RL agent decides not to trigger

active sensing tasks in the first three opportunities, it has no choice but to trigger them

in the remaining three opportunities in order to meet the budget. When the RL agent

triggers three tasks before the end of the daily cycle, later assessment moments will not

be considered any more.

Adaptive active sensing can be formulated as a discrete time episodic sequential con-

trolling problem. An episode is often chosen to be a targeted time frame (e.g., from 9am

to 9pm ) within a day. Within each episode, we follow the above design, and apply the

RL framework to develop sensing policies that assess value of each assessment moment

for active sensing trigger decision. The user contexts will be extracted using passive data

stream, and trigger decision will be made based on the learned contexts. We repeat this

process until the interruption budget runs out, at which point no more active sensing will

be triggered and the episode ends.

The main challenge of adaptive active sensing lies in context recognition for the assess-

ment of user’s state. There are two aspects to this challenge. On one hand, determining

what contextual factors are important to users’ response compliance and interruptibility

is not trivial. Fortunately, many existing works in notification and interruption manage-

ments can provide us insights on state feature design. On the other hand, the modeling

process is online and interactive between the application and the users. This implies that

data accumulate over time, and users’ behaviors and environments constantly change,

making it very challenging to model the user environments. In this chapter, we pro-

pose and test new adaptive active sensing algorithms under the reinforcement learning
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Table 6.1: Momentary state features on the selected active sensing times.

Features Description

Time early morning (8-10am), morning (10am-12pm), noon (12pm-2pm), early
afternoon (2-4pm), late afternoon (4-6pm), early evening (6-8pm).

Location unique place labels that are learnt by a tempo-spatial clustering algo-
rithm [97].

Speed being still, walking, running, being in vehicle using average speed cuto�s
(0.1, 1, 5)m/s. Speed is calculated based on average distance between
consecutive GPS coordinates within the 10 minutes time window divided
by their corresponding time spans.

Hourly Active-
ness

proportion of time average acceleration in 5 minute windows within the
past hour is beyond 0.2.

Momentary Ac-
tiveness

proportion of time average acceleration in 1 minute windows within the
past 10 minutes is beyond 0.2.

framework. The details of our proposed methods are provided in the next two sections.

6.4 Modeling User Contexts

A high level knowledge about users’ routine contexts (e.g., resting at home after playing

basketball for 2 hours with friends in the gym) can be very useful in understanding their

behaviors (e.g., active sensing compliance). Given that momentary contexts are also

critical in the active sensing response decision process, combining both the high level

routine knowledge with the low level momentary context may lead to better prediction

of users’ active sensing compliance. To achieve this goal, we propose a two-level context

model with the low-level being the momentary state, and the high-level being the routine

state.

In the momentary state, we capture the time, location, speed, hourly activeness level,

and momentary activeness level. Table 6.1 defines these momentary state features. They

will also be applied to map the momentary state with the current routine state.

In the routine state, we learn the high-level routines of the users on a daily scale

using our proposed multi-level frequent life-block generation algorithm. The concept of

routine is similar to itemset, a concept used in classic association rule mining algorithm [4].

We first define a basic information unit that describes the whereabouts and activities of
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Figure 6.1: Illustration of an example 3-routine.

a user at a given time, and we call such an information unit ’life-block’. A life-block

generally consists of time, location, physical activity based on speed, duration, and any

other available contexts that can be extracted through passive sensing data and other

mobile phone usage logs. We call a routine consists of k life-blocks k-routine in analogy

to k-itemset in association rule mining. Without loss of generality, we denote a life-block

as (t, loc, act, d) using time (t), location (loc), physical activity based on speed (act), and

duration (d) in our examples below. An example of a 1-routine could be: (9 : 30am,

o�ce, walking, 4hours), and a 2-routine could be: (9am, gym,still, 30 mins),

(9 : 30am, o�ce, walking, 4hours). Life-blocks within k-routines do not have to be

consecutive in time, but have to be sorted by time. For example, Figure 6.1 shows a 3-

routine with a significant gap between life-block 2 and 3. Note that higher order k-routines

are formed by combinations of lower order k-routines. For each learned unique routine,

we assign it a unique code for reference. After being mapped with the momentary state,

the routine state will be represented using this assigned code, making this routine state

feature categorical. In the next few sections, we provide the details on how we generate

these daily k-routines, and map them to the momentary state.

6.4.1 Mining K-routines

The process of constructing life-blocks is similar to that of extracting the momentary

state. In order to capture more fine-grained temporal patterns, we divide all input data

into ten minute segments, and extract the location, speed from each segments. In cases

where the user has been in more than one location or one speed category within one

segment, we adopt the place or speed category with most data points. If the user is in
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transition from one place to another, the place label would be denoted as ‘in-transition’.

For consecutive segments that the users have same place and speed value combinations,

they will be concatenated into a life-block with the time being the arrival time at the

place, and duration being the number of segments multiply by 10 minutes. From this

procedure, an entire day of mobile sensing data will be converted into a trajectory of

life-blocks.

Focusing on daily level, we treat each life-block as an item, and all life-blocks within

a day as an ordered transaction, in analogy to the concepts in classic association rule

mining algorithm. However, we can not directly apply frequent itemset generation al-

gorithm in existing association rule mining methods to mine k-routines due to two key

di�erences. The first issue relates to the time order of life-blocks within a day. Life-

blocks are sorted by time to form a k-routine. The second issue relates to the availability

of data being an incremental online process. Data are made available throughout each

day, and the algorithm will process the data at 10-minutes increments to generate daily

life-block sequences. At the same time, whenever a new life-block is constructed, the k-

routine database will be updated to reflect the changes. We propose the k-routine mining

algorithm in Algorithm 5.

In Algorithm 5, K-routines and P laces are the accumulated learned k-routines

and visited unique places up to time t. LBs are the life-blocks of the same day up to

time t, and plb is the pending life-block that is being generated and maintained at time

t. GP Ss are newly available GPS points in a ten minute segment starting at time t.

Algorithm 5 is an online algorithm that will be repeatedly called every 10 minutes.

The number of life-blocks on each day is dependent upon the number of context

features that are used to define them, and the number of unique values in each context

feature. However, due to the variation in arrival times, uncertainty in visited places (i.e.,

new places being visited over time), and duration staying at each place, we cannot reliably

estimate its per day computation complexity. Assuming a day has K life-blocks, without

limiting the order of k-routines, this will result in 2K
k-routines with k = 1, 2, . . . , K. If

we limit k to be k̂, then the total unique k-routines on the day will be qk̂
i=1 C

i
K , where
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Algorithm 5 K-routine Mining Algorithm.
Input: K-routines, P laces, LBs, plb, GP Ss, t.
Output: K-routines, P laces, LBs, plb, t.

1: act = extractAct(GP Ss)
2: P laces.update(GP Ss)
3: loc = extractLoc(GP Ss)
4: if plb.loc == loc and plb.act == act then
5: plb.update()
6: else
7: LBs.append(plb)
8: K-routines.update(LBs)
9: Clear plb.

10: plb = (t, loc, act, 10mins)
11: end if
12: if t + 10mins remains in the same day then
13: t = t + 10mins
14: else
15: t = t + 10mins
16: Clear LBs and plb.
17: end if
18: return K-routines, P laces, LBs, plb, t.

C
i
K is the combination of choosing i life-blocks from K life-blocks. For example, if we

limit k to be 3, then we will have C
1
K + C

2
K + C

3
K unique k-routines.

6.4.2 Merging K-routines

After obtaining these unique k-routines on a new day, we need to merge them with those

learned in the past days if they are similar to each other. We define similarity using the

following rules:

1. k1-routine and k2-routine are similar only if k1 = k2.

2. If condition 1) is met, k1-routine and k2-routine are similar only if each pair of

life-blocks with the same order is similar.

3. Two life-blocks are similar if their place and speed (or activity) are the same, and

their arrival time and visiting duration are similar.

4. Let (t, d) denotes the values of arrival time and visiting duration. (t1, d1) and (t2, d2)

are similar if the Euclidean distance between them is smaller than a chosen threshold.
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6.4.3 Mapping K-routines

The k-routines we learn will be applied to augment our state representation in adaptive

active sensing strategies. To achieve this goal, we need to map them to the momentary

states. Below we describe how to map the learned k-routines to the momentary state.

Consider at moment t, we want to assess whether it is an opportunistic time to collect

active data from the user. We take the following steps to map moment t to the learned

k-routines up to time t:

1. Let t.arrival and d denote the arrival time and duration of a life-block. Existing

k-routines will be filtered out if t does not fall in [t.arrival, t.arrival + d] with

t.arrival and d referrng to the arrival time and stay duration in the last life-block

in a k-routine.

2. The remaining k-routines satisfying the above condition will be filtered out if the

momentary location and activity are not the same with those associated with the

last life-block in each of them.

3. For k-routines with k > 1, we apply the same procedure as in merging newly mined

k-routines with existing ones, on all life-blocks other than the last life-block against

the life-blocks on the day prior to t. We choose the longest k-routine that survives

the above filtering conditions as the routine state associated with moment t.

4. When no k-routines survive the above tests, we assign ’new routine’ as the routine

state.

6.4.4 Visualizations of K-routines Learned from Real Data

Figure 6.2 shows two di�erent views of a selected participant’s 1-routines. Note that higher

order k-routines are formed by all unique 1-routines. The top view shows the location,

the duration, and time of day of each 1-routine for this selected participant. Each bar

represents a 1-routine, and they are ordered by frequency. The right hand side barplot

shows the frequency of them. The bottom view shows the 1-routines by locations. Each
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Figure 6.2: 1-routines of a selected study participant. The number in
bracket is the frequency of the 1-routines.

location can form di�erent 1-routines based on time of day and duration. For example,

location 1 contains several di�erent 1-routines with di�erent frequencies, some of which

are overlapping. We can see that this participant spent most of his time between mid-

night to 10am at location 1. We can infer that this location is his/her apartment or

dorm.

In the next section, we incorporate momentary state and routine state in our adaptive

active sensing methods using the reinforcement learning framework.

6.5 Adaptive Active Sensing Methods

In order to implement adaptive active sensing, we apply the RL framework, which specifies

the user state, action that will be taken at a given state, and a reward signal that shapes

the policy that selects optimal action at a given state. We propose several strategies
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with di�erent state designs, while keeping the same actions and reward signal. Below we

provide the details about these proposed methods, performance evaluation, and adaptive

active sensing using mobile EMA.

6.5.1 Reinforcement Learning Methods

We apply a modified version of QLADE, which is developed in previous chapters on

adaptive passive sensing (Chapter 4 and 5). It is shown in Algorithm 6. Compared to

passive sensing, active sensing requires active involvements to complete the sensing tasks,

and thus has to consider interruption budget on each sensing episode. Also, We have no

immediate reward signal when the action is ‘not trigger’ the active sensing task, because

no response information will be available. Below we provide the design details in the RL

components to address these challenges.

State Design

We propose several di�erent state feature sets including momentary state features as

described in Table 6.1, first order routine feature, second order routine feature in two dif-

ferent encoding schemes, a motivation feature using the fixed-size moving window com-

pliance. To compare the marginal e�ectiveness of each feature set, we combine them

incrementally to create five di�erent RL strategies including: 1) RL with momentary

state features; 2) RL with momentary and first order routine state features; 3) RL with

momentary and second order routine state features; 4) RL with momentary and a more

compactly encoded second order routine state features; 5) RL with momentary, motiva-

tion, and a more compactly encoded second order routine state features. The di�erence

between the compact and non-compact second order routine representation lies in how

k-routines are encoded. In the non-compact encoding, a k-routine is represented by its

routine ID; while in the compact representation, a k-routine is represented by all the

routine IDs of the first order routines that form the k-routine. In the situation when two

di�erent k-routines are applied as the routine state feature, some same-order life-blocks

within them could be the same, and will become the same routine state feature. Thus the
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corresponding coe�cient can be updated more often. This is the reason why the compact

encoding is more e�cient in learning the impact of the proposed k-routine state features.

Action Design

The action space in adaptive active sensing can include only two actions, ‘trigger’ and

‘not trigger’ the active sensing task; or more than two actions that expand the ‘trigger’

action into ‘trigger’ with di�erent modalities using sound, vibration, flash lights etc. In

this study, we consider only two actions – ‘trigger’ and ‘not trigger’.

Reward Design

We design the reward signal in the following way: it takes a binary value when we trigger

an active sensing task with the following conditions: 1) if the task is completed, it receives

a positive value 1; if the task is not completed, it receives a negative value ≠1. When we

do not trigger an active sensing task, the reward signal is more involved because we will

not directly receive any feedback as if we would have triggered active sensing task. To

address this challenge, we need to estimate whether the ‘not trigger’ decision is beneficial

at the end of each day based on how many completed active sensing tasks we have received

for the day. If all triggered active sensing tasks are completed, we want to reinforce these

decisions in their associated states. In contrary, if we end up having fewer completed

active sensing tasks than the number of triggered ones, we want to weaken these decisions

in their associated states. Let s
nt
i , i = 1, . . . , m denote the states associated with the ’not

trigger’ actions on a given day, and wnt
i , i = 1, . . . , m denote the associated coe�cients.

We simply reinforce or weaken the coe�cients associated with each state feature in s
nt
i by

—|wt
i |, a proportion of the weight coe�cients corresponding to the ‘trigger’ action. The

overall reward function is given below:
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rt =

Y
___________]

___________[

1 at = trigger & task = completed

≠1 at = trigger & task = not completed

—|wt
i | at = not trigger & all tasks are completed

≠—|wt
i | at = not trigger & not all tasks are completed

In Algorithm 6, Line 15 to 20 keep track of all required components for updating the

‘not trigger’ action value function at the end of the episode, and Line 32 to 36 update the

‘not trigger’ action value function after the episode ends.

Experience Replay Using Dyna-Q

Due to the limited study time in our current dataset, we may not have su�cient data

to train RL policies that can e�ectively guide active sensing deployment. To address

this challenge, we apply a RL framework called Dyna-Q, which integrates planning with

learning. Section 2.4 provides some brief information about the concept of planning and

learning, and the Dyna-Q framework. We simply adopt a bootstrapping sampler, in which

all past episodes including the current one are randomly drawn and replayed to update

the policy. In our implementation, we replay ten times at the end of each day to boost the

sample size for policy updates. And we combine all available state features with Dyna-Q

to be a sixth RL strategy in our simulation evaluations.

6.5.2 Performance Evaluation

An e�cient adaptive active sensing strategy will improve the compliance in active sensing

tasks. We will measure the active sensing compliance using the following compliance

metrics:

• Daily compliance (DC). DC is calculated based on number of all the responded

triggered active sensing tasks (e.g., mobile EMAs) divided by number of all triggered

tasks on each day.
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Algorithm 6 Adaptive Active Sensing Using Q-learning with Linear Approximation and
Decaying Exploration.
Input: S, A, “, ⁄, –, ‘0, d.
Output: wa, a œ A.

1: Initialize wa and ea for each a œ A
2: Set Snt, Ent, W nt, W i+1, Si+1, Ai+1 to be �.
3: for all t = 1, 2, . . . until termination within an episode do
4: Observe st.
5: if st is not terminal state then
6: Take at ≥ ‘-greedy with arg max

aœA
�(st, a)T wa.

7: Transition to st+1, and take at+1 ≥ ‘-greedy with arg max
aœA

�(st+1, a)T wa.
8: eat = eat + �(st, at)
9: if at ”= Not Trigger then

10: ”t = rt + “�(st+1, at+1)T wat+1 ≠ �(st, at)T wat

11: for all a œ A do
12: wa Ω≠ wa + –”tea

13: ea Ω≠ “⁄ea

14: end for
15: else
16: Append st to Si, ent to Ei, wnt to W i, wat+1 to W i+1, st+1 to Si+1, and at+1

to Ai+1.
17: for all a œ A do
18: ea Ω≠ “⁄ea

19: end for
20: end if
21: else
22: Take at ≥ ‘-greedy with arg max

aœA\nt
�(st, a)T wa.

23: Observe rt, transition to st+1.
24: Take at+1 ≥ ‘-greedy with arg max

aœA
�(st+1, a)T wa.

25: eat = eat + �(st, at)
26: ”t = rt + “�(st+1, at+1)T wat+1 ≠ �(st, at)T wat

27: for all a œ A do
28: wa Ω≠ wa + –”tea

29: ea Ω≠ “⁄ea

30: end for
31: end if
32: for i œ range(|Si|) do
33: Set si = Si[i], ai = nt, si+1 = Si+1[i], ai+1 = Ai+1[i], wai = Wi[i], wai+1 =

Wi+1[i], eai = Ei[i].
34: ”i = ri + “�(si+1, ai+1)T wai+1 ≠ �(si, ai)T wai

35: wai Ω≠ wai + –”ieai

36: end for
37: if d‘ < 0.1 then
38: ‘ Ω≠ 0.1
39: else
40: ‘ Ω≠ d‘

41: end if
42: end for
43: return wa, for each a œ A
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• Time constrained daily compliance (TCDC). TCDC is calculated based on number

of all the active sensing tasks that are responded within a 10 minute window divided

by number of all triggered tasks on each day.

• Cumulative compliance (CC). CC is calculated based on the number of cumula-

tive responded triggered active sensing tasks divided by the number of cumulative

triggered tasks up to the current day.

• Overall compliance (OC). OC is the final compliance calculated based on number

of all responded triggered active sensing tasks divided by number of all triggered

tasks during the simulation.

These metrics are not mutually exclusive with each other. Specifically, the overall compli-

ance reflects the ultimate compliance rate, while ignoring the daily di�erences. However,

it is also important to maintain acceptable daily compliance level as the data can be more

representative across time during the data collection. In some application scenarios, when

the active sensing tasks are time sensitive, the time-constrained daily compliance is also

critical. The cumulative compliance reflects the overall compliance over time.

6.5.3 Adaptive Mobile EMA

We implement our proposed adaptive active sensing strategies in the context of mobile

EMAs. A typical mobile EMA scenario aims to collect momentary data throughout each

day. Without any constraints or concerns, we can schedule and trigger many more mobile

EMAs, and hope that the users will respond to a su�cient number of them. However, this

is not realistic, and we want to limit the number of triggers to m on a given day. One way

to reduce sampling bias due to contexts related to compliance is to break down a day into

windows, and we randomly select a time for EMA delivery within each window. With

this setting, assume we break down the day into M windows with M > m, our goal is to

choose m out of M windows based on the assessments on compliance propensity at the

randomly chosen times within each window, and maximize the compliance performance

in the long term. Once we trigger m EMAs before the day ends, no more EMAs will
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be triggered. When we choose not to trigger EMAs in the first M ≠ m windows, we are

forced to trigger EMAs in the remaining m windows on the day, regardless of what the

compliance propensity is at these randomly chosen moments in each remaining window.

In both cases, we will trigger exactly m EMAs on each day. In our current study, we set

M = 6 and m = 3.

Our proposed RL strategies will be fit into this scenario in attempt to improve response

compliance. Algorithm 6 reflects this design in our implementation. Specifically, when

we are in a terminal state, which includes being in the last time window of the day or

when m EMAs are triggered, all the coe�cients associated with ‘not trigger’ actions will

be updated using our designed reward signal for it.

6.6 Experiments

6.6.1 Data

To evaluate our proposed RL adaptive active sensing strategies, we conduct simulation

experiments using mobile EMA data as described in Section 4.5.1. We focus on the

random time EMAs that were delivered 6 times a day in randomly selected moments

within each two hour window from 9 am to 9 pm everyday for momentary a�ect scores.

6.6.2 Baseline Methods

We use two baseline methods as comparisons to measure the performances of our proposed

RL adaptive active sensing methods. The first baseline method is employing a random

strategy that randomly selects 3 out of 6 2-hour windows each day. The second baseline

method creates a supervised model with all cumulative data available up to the prior day,

and apply this model for action decision at each active sensing decision point. At the end

of each day, this model will be retrained with all available data, and deployed for the next

day. We will apply XGBoost, which is a boosting algorithm that can gracefully handle

missing data. The setting for the second baseline method will be the same as to the
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proposed RL methods. We will use the same context features learned from our context

modeling methods, including both the momentary and routine features.

6.6.3 Experimental Settings and Research Questions

There are four parameters in the QLADE algorithm including the initial exploration rate

‘0, the step-size (or learning rate) –, the discount rate “, and the eligibility trace-decay

parameter ⁄. All four parameters fall within a range of 0 and 1. In addition, the reward

signal has a discounting parameter — associated with the ‘not trigger’ action. Instead of

tuning these parameters, for every participant in each method, we randomly choose values

for them from the following values: 1) – = {0.01, 0.05, 0.1}; 2) “ = {0.05, 0.1, 0.2}; 3)

⁄ = {0.05, 0.1, 0.2, 0.5, 0.8}; 4) ‘0 = {0.1, 0.2, 0.5}; and 5) — = {0.05, 0.1, 0.15, 0.2}. The

exploration decaying rate is fixed to be d = 0.8.

With the above settings, we want to find answers to the following research questions:

1) How does the design of the state features impact the performance on various compliance

metrics? 2) How is the performance of the proposed RL methods compared to the baseline

methods? We will also analyze how the di�erent state features impact the action decision

in both individual and collective views using visualizations.

6.7 Results

Figure 6.3 shows the distributions of number of days in study, number of triggered EMAs,

and the actual overall compliance rate for the data we use in our simulations. Note that

almost half of the participants have received less than 30 EMAs in total, leading to

an average of daily EMAs that is under 3. This low value will potentially limit the

e�ectiveness of the proposed RL strategies. Thus we will analyze the performance of the

strategies including the baseline methods by segmentation of the above three statistics.

Parameter Tuning. Figure 6.4 shows the average overall compliance aggregated

across di�erent parameter values in the six RL strategies. Consistently, we find the best

combination of parameter values to be: ⁄ = 0.05, – = 0.1, — = 0.2, “ = 0.1, and ‘0 = 0.1.
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Figure 6.3: Study data and EMA statistics: (a) Distribution of number
of days in the study for each participant. (b) Distribution of number of
EMAs being delivered to each participant. (c) Distribution of actual overall

compliance in the triggered EMAs of each participant.

Figure 6.4: Parameter Tuning. Average overall compliance aggregated
across di�erent values in each RL parameter on the six RL strategies.

6.7.1 Performance Comparisons in Di�erent Strategies

Comparisons within RL Strategies. Figure 6.5 shows the average overall compliance,

daily compliance, and time-constraint daily compliance across the six RL strategies with

di�erent state features and the Dyna-Q method. Since all RL strategies use momentary

state features, we will not mention it unless necessary. The RL strategy without any

k-routine state feature has the same performance as the one with 1-routine state feature.

But the strategy with 2-routines outperforms both of them. When using the compact

representation, the performance has no improvements. Adding the motivation feature

also does not lead to performance enhancements. Lastly, the Dyna-Q framework does

not improve the overall performance either. Note that the order of performances among
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Figure 6.5: Performance by strategies. (a) Average overall compliance;
(b) average daily compliance; (c) average time-constraint daily compliance

across 6 RL strategies and 2 baseline strategies.

the di�erent RL strategies in all three metrics are almost the same. The RL strategy

with momentary and 2-routines state features slightly outperform all other strategies by

a small margin.

Comparisons between RL strategies and Baseline Methods. From Figure 6.5,

we can see that all RL strategies outperform the two baseline methods, including a random

strategy, and a supervised strategy. In particular, the best RL strategy attains an average

overall compliance 0.80, an average daily compliance 0.80, and an average time-constraint

daily compliance 0.70, compared to 0.77, 0.77, and 0.69 in the corresponding metrics in

the supervised method.

Comparisons by Segmentation in Number of Days in Study. Di�erent par-

ticipants remained in the study for di�erent durations. We want to see whether these

di�erent lengths of time have impacts on the performance of the di�erent strategies. Fig-

ure 6.6 shows the average performance segmented into three groups using the number of

days in study. The cuto�s for the low, median, and high levels are 7 and 14 days. In the

low level, the RL strategy with 2-routine state feature has the best performance in all

three metrics. All RL strategies outperform the baseline methods. In the median level,

the supervised strategy and the RL strategy with 2-routine state feature have comparable

performance. The same conclusion is reached in the high level group.

Comparisons by Segmentation in number of Triggered EMAs in Study.

Although the original schedule on EMAs are six per day in the study, most participants
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Figure 6.6: Performance by Strategies – segmented by number of days in
study – low. The number of days in the study is (a) lower than 7 days; (b)

between 7 and 14 days; (c) above 14 days.

did not receive six EMAs daily. This could be caused by app malfunction, drained battery,

or switching o� the Sensus app etc. For participants who had few data for learning, the

performance in the various RL strategies may be compromised. Figure 6.7 shows the

average performance segmented into three groups using the number of triggered EMAs

during the study. The cuto�s for the low, median, and high levels are 30 and 60. In the

low level, the RL strategies outperform the two baseline methods in all three metrics.

In both the median and high level, comparable performances are observed between the

RL strategies and the supervised baseline method. One possible explanation could be

when the supervised method accumulated more training samples, its performance becomes

better, leading to improvements and comparable results to the RL strategies.
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Figure 6.7: Performance by Strategies – segmented by number of EMAs
in study – low. The number of triggered EMAs during the study is (a)

lower than 30; (b) between 30 and 60; (c) above 60.

Comparisons by Segmentation in average number of daily EMAs in Study.

Di�erent from the total number of triggered EMAs during the study, the average number

of daily EMAs takes into consideration the temporal impact, as our daily interruption

budget is set to 3 in the simulations. When less than three EMAs were triggered in

the actual data, the adaptive strategies may have no choice but to trigger all of them

regardless of the value of the triggering moments measured by the action value function.

Figure 6.8 shows the average performance segmented into three groups using the average

number of daily triggered EMAs during the study. The cuto�s for the low, median,

and high levels are 2 and 3. In the low level, we obtain similar conclusion, that is all

RL strategies outperform the two baseline methods in all three performance metrics. One
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Figure 6.8: Performance by Strategies – segmented by average number of
daily EMAs in study – low. The average number of daily triggered EMAs

during the study is (a) lower than 2; (b) between 2 and 3; (c) above 3.

possible explanation could be that this group of participants is more sensitive to moments

for active sensing given the fact that they receive less EMAs daily. In the median and high

level, performances across di�erent strategies, except the random method, are comparable.
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Figure 6.9: Performance of di�erent adaptive active sensing strategies
over time. (a) Average Daily Compliance; (b) average time-constraint daily

compliance; (c) average cumulative compliance.

Performance Comparisons across Time. Figure 6.9 shows the average compliance

over time across di�erent strategies in the three metrics. The random strategy has the

worst performance in all three metrics over time. We observe that the supervised method

performs poorly at the first few days. This may be due to the cold start problem, in

which the supervised agent does not have any data to train a classifier for action decision.

Overtime, regardless of what strategies are being applied, the compliance in all three

metrics is dropping. This attrition over time has been a significant challenge in almost all

mobile sensing studies and applications. Overall, di�erent strategies except the random
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strategy perform visually closed, as can be seen from the figures.

6.7.2 Personalized Active Sensing Policies

Figure 6.10: Counts of individual policies favoring either the ’trigger’ or
’not trigger’ action in each state feature value.

Figure 6.10 shows the counts of individual policies that favor either the ‘trigger’ or ‘not

trigger’ actions in each state feature. The total number of policies learned with those

that have any EMA data are 174. However, due to the scarcity of learning samples for

each individual policy, some policies do not have the corresponding state values leading

to much lower counts in some state feature values.

Figure 6.11 visualizes the propensity of each state feature value towards the two active

sensing actions. Each row of the heatmap represents a participant’s policy, and each

column represents a state feature value. Steel blue represents favoring the ‘trigger’ action

while dark red represents favoring the ‘not trigger’ action. White cells are caused by lack

of learning samples containing the corresponding state feature value in the simulations.
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Figure 6.11: Individual Policy Profiles.
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6.8 Discussion

The goal of adaptive active sensing is to improve users’ active sensing compliance by

leveraging their contextual states to better manage task deployments. RL is a natural

fit to formulate active sensing as a personalized and adaptive sequential control problem.

Designing a RL strategy requires e�ectively identifying critical state features that are

relevant to compliance, and designing a reward signal that can shape the policy towards

higher cumulative long term compliance. More research needs to be conducted in these

topics in order to obtain more e�ective adaptive active sensing strategies under the RL

framework.

In addition to employing adaptive active sensing, other solutions are desired to address

the compliance challenge due to its complexity. For example, lower compliance over time

is inevitable due to the law of attrition [174]. To maintain users’ motivation, gamification

strategies can help engage users to complete active sensing tasks by embedding them into

games that are intrinsically more interesting and enjoyable to them. Works such as [177]

and [218] design games using various psychological and behavioral theories to achieve

this goal.

It is equally important to adopt good design practice in creating active sensing tasks.

For example, the quantity, order, format, scale, clarity of survey items, study window, trig-

ger mechanism and frequency, incentive, robustness of hardware and software platforms

are all important considerations that may impact mobile EMA compliance. Minimal de-

sign in app interface and navigation can reduce the users’ e�orts and time. Reminders

can also help mitigate forgetfulness in completing active sensing tasks.

In this work, we only focus on using adaptive active sensing to improve users’ task

compliance. However, there is another equally important aspect in active sensing, that

is data quality. Adaptive active sensing algorithm should also consider data quality as a

goal and factor it into the design of the RL strategies. Although this problem is out of

the scope in this dissertation.
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6.8.1 Limitations and Future Work

The data used for our simulations are relatively short in duration for modeling user

behaviors. This may also compromise the performance of our RL strategies due to the

limited learning samples. For example, some study participants were only active for less

than a week, and within such short time frame, uncertainties in user states associated

with the chosen actions are high, leading to suboptimal performance. To overcome this

problem, we have conducted segmentation analysis based on total number of EMAs and

number of days in study to compare the performance of the proposed strategies. We also

apply the Dyna-Q framework to enhance sample e�ciency by integrating planning with

learning. However, we are not certain why this approach does not lead to improvement.

In our future work, we will conduct more thorough investigations in di�erent strategies

that can enhance sample e�ciency to improve compliance performance.

Another limitation in our current work lies in the technologies we used to collect the

data. The Sensus mobile app we applied to collect the study data was not as mature and

robust as it has become. Back then, it was less energy e�cient and more buggy, which

resulted in lower retention rate and average number of EMAs being collected daily. When

less EMAs are available daily, our proposed RL strategies may be handicapped due to the

way we formulate active sensing to be minimally biased and context selective. In future

works, we will investigate these proposed RL strategies with higher quality data.

We have proposed a user model that combines both momentary and routine state

features to represent the user environment. However, this is the first work that proposes

to design adaptive active sensing using the RL framework. We still have no prior knowl-

edge about what state features are more e�ective. Existing works in interruption and

notification management have studied a rich set of human contexts that can predict in-

terruptibility and receptivity in notifications. Our current passive data do not allow us to

extract most of those features, especially those that require self-reporting. In our future

work, we will include and test those state features in a real world implementation.
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Lastly, the high-level routine feature we propose in this work has a significant compu-

tation challenge in higher orders and over longer period of time. Higher order k-routines

are more expressive in people’s life, especially those that occur frequently. When k is

large, all possible combinations of life-blocks within and across days can blow up expo-

nentially. In order to address this challenge, we need to maintain only the most frequent

set of them after learning in a certain initial period of time, allowing new routines to enter

the elite set, and outdated ones to be removed from it.

6.9 Conclusion

In this chapter, we propose several strategies for adaptive active sensing using the RL

framework. We show that the RL strategy with momentary and 2-routine state features

consistently outperform all other RL strategies and two baseline methods including a ran-

dom strategy and a supervised strategy. We apply the Dyna-Q framework in attempt to

enhance sample e�ciency given limited learning samples in active sensing, when compared

to most other RL applications. However, using a simple bootstrapping sample model, the

Dyna-Q framework does not lead to improvement in performance. We overcome the de-

layed reward challenge by designing a reward signal that backward estimate the direction

of updates in the policy. This is achieved by storing all necessary parts for updating the

‘not trigger’ action value function temporally for each episode. We estimate motivation

using moving window cumulative compliance and incorporate it as a state feature to in-

vestigate possible influence of motivation level on the performance of the active sensing

strategies. This intuition originates from the observation of individual compliance that is

closed to perfect or near zero, meaning that no matter what contexts a person situates,

their compliance may not be a�ected at all. However, the addition of the motivation fea-

ture does not lead to performance improvement. We will evaluate our proposed method

using newer and better quality data while we work towards its real world implementation,

which will be further explained in chapter 7.
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Chapter 7

Sensus: Implementing an Adaptive

Sensing Platform

Sensus is a multi-OS mobile sensing platform that provides supports for general purpose

mobile sensing applications and data collection. [236] It has been continuously developed

and maintained by our own developers at University of Virginia. We provide an intro-

duction to the sensing capabilities in Sensus, and our plans to integrate adaptive sensing.

7.1 Supported Sensors

Sensing is the foundation of mobile sensing platforms. Sensus provides supports to collect

data in a wide variety of smartphone embedded sensors. Table 7.1 shows a list of these

sensors supported by Sensus. They are grouped based on the type of information they

provide in motion, position, ambience, physiology, and phone usage. In addition, Sen-

sus also supports integration of wearable devices such as Fitbit, Empatica, and Huawei

Table 7.1: Sensing probes available in Sensus.
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Figure 7.1: Interfaces for sensing within Sensus. (a) Protocol Menu, (b)
Probe Menu, (c) Linear Acceleartion Listening Probe, (d) Battery Level

Polling Probe.

smartwatch through Bluetooth technologies. In the living link lab project, Sensus is cou-

pled with Estimote beacon to collect indoors position information, which can be used to

understand student and faculty’s daily activities within the lab. All the above sensing

capabilities are passive, while Sensus also supports collection of active data such as mobile

surveys. Both mobile EMAs and passive sensing data have been collected using Sensus

in multiple studies within our group [32, 6, 37, 36, 48, 28].

There are two sensing modes for di�erent sensors, listening and polling. In listen-

ing mode, a sensor monitors any changes in signals periodically, and upon detection of

changes, activates itself to collect data. In contrast, a sensor in polling mode senses

at designated rates and rests at chosen intervals between successive polling operations.

Figure 7.1 shows a few interfaces within Sensus for the supported sensors and their con-

figurations.
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7.2 Energy Management and Adaptive Passive Sens-

ing

Sensus has several di�erent ways to manage energy consumption when it is being deployed.

First, sensing rate and interval can be configured within each sensor to save energy.

Second, it can be configured to allow data transmission only when the phone is charged,

WiFi is connected, and/or battery level is beyond a certain level. Third, a few simple

sensing strategies are available. For example, accelerometer can be configured to collect

data only when acceleration level is above certain designated threshold. Likewise, GPS

will be activated only when speed is beyond a chosen threshold. However, there is no

sophisticated sensing policies like the ones we developed in this dissertation.

To integrate adaptive passive sensing using RL, Sensus has implemented an architec-

ture that allows adaptive sensing agents to be plugged into the mobile app. There are two

types of adaptive sensing agents: 1) externally designed software sensing agent; 2) adap-

tive sensing policy language (ASPL) defined sensing agent. RL adaptive sensing agent

can be created through the first approach. For Android, the RL agent is created as a class

library and built into a dynamic link library (DLL), which can then be plugged into the

Sensus mobile app through scanning a QR code. For iOS, since it does not allow loading

codes at run time, RL adaptive sensing agent has to be hard coded into the Sensus mobile

app, and the app has to be redeployed through the Apple app store before the sensing

agent becomes available. For more details about these topics on adaptive passive sensing,

please visit the Sensus development documentation. With this architecture design, it is

convenient to create external adaptive sensing plug-in, or write codes directly inside the

Sensus code base, and integrate them into the Sensus mobile app.

7.3 Adaptive Mobile EMA

Mobile EMA in Sensus is called ’scripted interaction’. Users can create as many surveys

as they want in each sensing protocol by adding di�erent scripts. Each script refers to one

https://predictive-technology-laboratory.github.io/sensus/articles/adaptive-sensing.html
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survey, and can be scheduled to trigger at a fixed time (e.g., fixed time mobile EMA) or a

random time within a chosen time window (e.g., random time mobile EMA). Within each

survey, di�erent input elements are available to construct input groups, each of which

corresponds to di�erent survey questions.

To enable adaptive mobile EMA, Sensus is designed with a similar architecture to that

of adaptive passive sensing through external software plug-in for Android or hard coding

into the Sensus mobile app for iOS. More information on these developments are available

on the development documentation as well.

7.4 Conclusion

Adaptive sensing, including both adaptive passive and active sensing, has important impli-

cations in real mobile sensing applications. It leverages contextual understanding feeding

o� by passive sensing probes to guide sensing deployments, both hardware sensors and

surveys. The above architecture lay down the foundation for carrying out implementa-

tions on our proposed RL sensing strategies to evaluate their e�cacy. Our future plan is to

translate the proposed sensing strategies in this dissertation into both passive and active

sensing agents that aim to improve long term sensing e�ciency and user compliance.

https://predictive-technology-laboratory.github.io/sensus/articles/adaptive-surveys.html
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Chapter 8

Plans and Future Challenges in

Implementations

In this chapter, we discuss plans and various challenges in the design and implementation

of mobile sensing and intervention system using Sensus as the foundation.

8.1 Plans: Integrating Monitoring, Modeling, and

Intervening

Monitoring. The purpose of monitoring is twofold. First, data quality and compliance

is of upmost importance to guarantee the utility of the collected data in most mobile

sensing studies. Second, monitoring users in real time is important in some applications

in order to assess users without substantial delay, and follow up with prompt actions and

interventions. Sensus is coupled with an external web dashboard that enables monitoring

of data collection in di�erent studies and applications. This dashboard provides supports

for study management and data monitoring. Figure 8.1 shows a few screenshots of its

current design for the DAPAR WASH project.

Currently, Sensus lacks the capability to preprocess data, and use them to model users

as they are being collected. This also prevents us from monitoring study participants more

closely in future studies such as those concern participants’ mental health. Being able

to monitor user state closely will also empower researchers to better design behavior
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Figure 8.1: Sensus Web Dashboard.

models and interventions, leading to more e�cient study design and deployment, as well

as potentially improved study outcomes. In the foreseeable future, we plan to add these

capabilities to Sensus.

Modeling. Data collected by Sensus in various studies have been applied to study

various human outcomes such as social anxiety [32], state and daily a�ect [6, 37], mental

health in cancer patients [36], and compliances in mobile EMAs [25] using predictive

models. However, These models are built o�ine and in retrospect. Currently, Sensus does

not have any built-in modeling functionality to create model on the fly by incrementally

consuming newly available data. As Sensus is being enhanced, these new capabilities will

also be incorporated into it in the future.

Intervening. Transforming Sensus into an intervention platform is our ultimate goal.

Mobile intervention is a study area that encompasses sensing, monitoring, and modeling,
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Figure 8.2: Sensus Design Architecture.

while based on analytical insights, proactively interact with users to deliver e�ective inter-

ventions. Specifically, there is a common foundation between adaptive intervention and

adaptive sensing as both are built upon context-awareness using passive sensing data.

Indeed, the RL framework has been proposed for implementing a type of mobile inter-

vention called Just-in-time Adaptive Intervention (JITAI) [154]. After implementations

of RL agents for adaptive sensing becomes mature, it is natural for us to transition from

these foundations to design and enable mobile interventions within Sensus.

Figure 8.2 visualizes the di�erent, both existing and future, capabilities within Senus.

According to this architecture design, Sensus will provide options for on-device and cloud

monitoring and modeling capabilities. Raw sensing data can be preprocessed locally, or

uploaded to and preprocessed in the cloud, depending on the application configurations.

Modeling pipelines can be embedded into the app or setup on the cloud to enable on-

the-fly modeling with small latency. User states learned from context models will be

visualized timely in dashboards. In addition, adaptive interventions will be implemented

using RL framework, while the context models built from the modeling component will

provide state information to the intervention agent. In the next few sections, we discuss
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some of the design and implementation challenges.

8.2 Designing Real Time Mobile Sensing System

Real time Mobile Sensing system empowers real time understanding and monitoring,

opening up the possibility of real time intervention and decision making in many real

world applications such as patient monitoring and service recommendation. [202] The

vast majority of existing studies collected mobile sensing data with ground truth labels

to build models for context recognition and behavior inference o�ine and in retrospect.

However, building models in real time will require several substantial adjustments when

compared to these o�ine models. Below we discuss several of these potential adjustments,

namely extracting features in real time, multi-modal feature fusion, knowledge sharing

among di�erent users.

8.2.1 Extracting Features in Real Time

Extracting features for real time behavior inference has the following di�erences when

compared to o�ine behavior inference. First, real time feature extraction encounters

the ‘cold start’ problem, meaning that no data are available as the system starts up

the behavior modeling process. As more and more data become available, many of the

feature extraction algorithms (e.g., clustering algorithms that learns semantic place labels)

needs to be adapted into their online learning version. In the case of obtaining semantic

labels, it is no longer feasible to look at data from the entire study, and determine what

semantic labels to use. Instead, because new and unexpected types of places can be visited

over time, dynamically adjusting the semantic labels (i.e., adding new label classes and

removing old label classes that are no longer visited) is preferred. Such dynamic process

will also help maintain the system to be up to date and scalable in size.

Secondly, depending on outcome metrics, in order to enable real time inference, the

algorithms also need to be designed to process the data incrementally so that the latency

is minimized. For example, if we store the entire day of accelerometer data to compute
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the proportion of time a smartphone user is being active (i.e., moving around with his/her

phone to approximate activeness), it will take up a large amount of storage space and

much longer time to extract this feature. Instead, the proportion of time will be updated

as batches of accelerometer data are received and processed, enabling the users to access

and use it at a faster pace.

Third, continuous monitoring requires the same feature values being updated in a

rolling window fashion. To achieve this and reduce resource consumption (e.g., memory

and energy), the feature extraction algorithm also needs to be designed in a rolling fashion,

reducing duplicated computations by reusing the parts of the results that remain the

same at each time step. Last but not least, all the data preprocessing steps need to

be performed on the fly as new data come in and missing data are detected. All these

adjustments require careful engineering to enable an e�cient real time behavior inference

system.

8.2.2 Fusing Multimodal Features

Having access to data from multiple sensing modalities has several benefits, including

more robust predictions (e.g., when models from individual modality all infer the same

behavior), higher predictive power (e.g., di�erent sensing modalities capture complemen-

tary information), and better resilience in prediction (e.g., data in one modality are miss-

ing). [12] However, existing mobile sensing works did not explicitly consider how to fuse

data from multiple sensing modalities. Usually, features are extracted from each sen-

sor and combined into a feature vector for context recognition and behavior inference.

In multi-modal machine learning, this approach is called early fusion, in which all the

features are applied in any uni-modal classifiers and regressors.

In [12], many other multi-modal fusion methods were reviewed based on their depen-

dencies on the learning algorithms (e.g., model-agnostic vs. model-based methods). In

model agnostic methods, in addition to early fusion method, we have late fusion method

(i.e., performs integration after each of the modalities has made a decision) and hybrid
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methods that combine both early and late fusion methods. In model-based methods,

many learning algorithms are designed for representing and inferring the target outcome

through multi-modal sensing data. A few examples include kernel-based methods, graph-

ical models, and neural networks. [12]

In [180], the authors designed a multi-modal deep learning model that independently

learn hidden layers for each sensing modality before fusing those hidden layers as the

input layer to the final neural network for activity recognition. When designing real time

system, engineers need to consider how to most e�ectively represent and fuse data from

heterogeneous sensing modalities, while address challenges arising from alignment and

noise in them.

8.2.3 Sharing Knowledge Among Users

Sharing data across all users or within groups of similar users may lead to improvement in

inference accuracy and learning rate. Up to this point, we assume adopting only individual

data to create personal models for context recognition and behavior inference. However,

it is also possible to speed up and improve learning by leveraging collective data from all

users or similar users.

There are several advantages of sharing data across all users or within groups of similar

users. First, it can mitigate the ‘cold start’ problem when no data from a new user is

available for modeling; secondly, it can facilitate learning by sharing available models or

parameter configurations as a new starting point for new users; lastly, it has the potential

to greatly enhance inference performance by sharing global knowledge through various

model designs (e.g., fusing personal features extracted through individual data and global

features obtained from collective data).

In o�ine context recognition and behavior inference, it is much easier to take advan-

tage of all existing data to achieve this knowledge sharing goal. For example, we can

define certain similarity measures to group similar users together, and build group models

instead of individual models. [6] This approach is especially useful for individuals with
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very limited data to create their own personal models. Unfortunately, when implement-

ing real time systems, each individual does not have direct access to others’ data, which

requires careful system design to e�ciently share the data without expending significant

resources (e.g., costs incurred by data transmission). Another challenge lies in being real

time. Transmitting and processing large amount of data for feature extraction and mod-

eling can lead to significant latency. One solution is to update global components of the

inference model daily and o�ine, and keep the same values for a day.

How to design mobile sensing systems that enable e�cient data and knowledge sharing

is still a new topic. Jiang et al. proposed the PLOS framework, a distributed mobile

sensing learning algorithm that jointly model the commonness as well as the di�erences

shared among the users. [95] In this work, the raw data of the users are processed locally,

and only model parameters are sent to server for sharing among di�erent users.

8.3 Personalized Feature Learning

The idea of Personalized Feature Learning (PFL) is in analogy to that of precision

medicine. Its goal is to design individualized predictive features to achieve better in-

ference performance. Precision medicine recommends unique treatment regime for each

patient or group of similar patients. Likewise, PFL proposes to learn individualized fea-

tures due to individual di�erences in behaviors, habits, personalities, cultures, and values.

Universal features may not present the same predictive power in modeling di�erent in-

dividuals, and could lead to suboptimal inference performance. One solution is to adopt

personalized models (e.g., individual neural network models) that could uncover unique

sets of features for each user. However, this requires su�cient data for each user. An-

other solution is to apply unsupervised techniques such as association rule mining to learn

patterns or rules that are unique to each individual for predictive modeling. [190, 72, 191]

To date, most existing works apply supervised learning techniques for context recog-

nition and behavior inference. This approach requires a universally defined feature set as

input. PFL remains a future research topic in mobile sensing inferences.
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8.4 Measuring Changes

In many applications, we need to detect changes instead of purely monitoring a given state

over time. One such example is supporting smoking cessation [156], in which the authors

define ’geofence’ as a circular area surrounding self-reported vulnerable relapse locations,

and use them to trigger support messages to the smokers when they enter the ’geofence’.

In this example, the change of location is being continuously monitored and compared

to the ’geofences’. Another example is detection of behavior changes for psychotic re-

lapse [18], in which the authors highlighted the temporal changes of certain behaviors in

five patients before hospitalization. In particular, they identified changes of di�erent be-

havior markers (e.g., self-reported symptom changes, shifts in location patterns, increase

in device use between 12pm and 6am, increase in speech frequency and duration, and

declines in physical activity) before hospitalization using the same markers in other time

windows as baseline. If these early warning signs can be captured, and interventions can

be provided timely based on this information, then hospitalization may be prevented.

Unfortunately, formal methodologies are lacking in measuring changes. There are a few

works attempting to measure or visualize changes. Tseng et al. applied a technique called

Robust PCA on an hourly by days encoding matrix, and decomposed it into a routine

pattern matrix for visualization of sutdy participants’ behavior changes overtime. [212]

Doryab et al. extracted features from noise level, movement (acceleration), light inten-

sity, phone usage (e.g., Number of tasks and processes, frequency of change in tasks and

processes, time between changes, and frequency and duration of screen on and o�), loca-

tion (e.g., time at/away from home, number of places visited, travel distance), and social

communications (e.g., number of incoming and outgoing calls and text messages, number

of contacts, duration of incoming and outgoing calls); calculated average values in these

features for each participant as baselines; subtracted the baseline values from each feature

and treated them as change measurements to study their correlations with depression. [55]

In [223], the authors extracted low-level features (e.g., physical activity, sleep duration,

sociability based on face-to-face conversational data) and high-level features (e.g., class
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attendance, studying, study duration, study focus, and social behaviors, such as, partying

and partying duration), and combine them as predictors to build regression models using

di�erent time as breakpoints on various behaviors over the course of a semester. They

considered the di�erences in slopes of the fitted linear models as measurement of behavior

change to understand how they di�er throughout the course of a semester. Harari et al.

applied a piecewise linear regression model and a structural equation model (SEM) called

Latent Growth Curve Model (LGC) on time series of weekly mean activity and sociability

durations to measure the changes over time. [80]

Measuring changes in critical determinants over time and using them as trigger points

for intervention is intuitive in mobile intervention. However, in context recognition and

behavior inference, we usually extract features from segments of sensing stream, but

ignore change-based features, which may be critical in inference performance. Thus, it

is important to formalize change metrics in mobile sensing. We propose a three-step

framework in measuring changes: 1) determine the reference point of changes; 2) define

the metric(s) of changes; and 3) design the algorithm(s) to obtain the metric(s). In [55],

Doryah et al. used the mean feature values as the reference for changes, and the di�erence

between the mean and each sample feature value as the metric of change, subtraction

between the two as the algorithm. In [223], mid-term and individualized breakpoints,

slopes, and linear regression are the chosen reference point, metric, and algorithm for

measuring changes, respectively.

8.5 Conclusion

Inducing positive change or supporting better decision making is the ultimate goal of

mobile sensing inference. Inference serves as a step stone to understand users’ contexts,

monitor changes over time, and detect timely needs for triggering intervention. It is a

critical component in the Just-in-time adaptive intervention framework, which aims to

provide timely, personalized, localized, and on-demand interventions to users. [155] There
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remains many challenges between inference and intervention. These include e�ciently col-

lecting sensing data, accurately modeling behaviors, timely identifying the right moment

for intervention, and correctly choosing the right intervention regime for delivery. The

works in this dissertation position and prepare us to develop a mobile sensing platform

that can bridge the gap between sensing and intervening, by incorporating the various

components delineated in this dissertation using RL, which is considered a promising

framework for realizing general purpose artificial intelligence.
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Chapter 9

Conclusion

In this chapter, we conclude this dissertation with a summary of our work in the previous

chapters, as well as ideas for future research.

9.1 Our Contributions

In this dissertation, we propose to unify both passive and active mobile sensing under the

reinforcement learning framework for adaptive sensing. We summarize our contributions

as below:

1. In Chapter 3, we propose a feature extraction framework to guide feature extraction

in mobile sensing data. This FE framework is based on substantial reviews of

existing works in mobile sensing applications. It helps mobile sensing researchers

better understand what steps to take to preprocess raw mobile sensing data and

extract features for modeling user contexts and behaviors.

2. In Chapter 4, we systematically categorize energy saving strategies in existing mobile

sensing applications according to the proposed mobile sensing application pipeline

(see Figure 4.1), which provides a clear view on the sources of energy challenge in

continuous mobile sensing. To address this challenge, we formulate adaptive pas-

sive sensing as a sequential control problem, and propose a reinforcement learning

algorithm called QLADE to optimally control low-level sensing in smartphone em-

bedded sensors. Our simulations using real continuous mobile sensing data from
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220 participants for more than 2 weeks show consistently better performances for

the proposed QLADE algorithm when compared to the random and learning au-

tomata baselines for both accelerometer and GPS. We also show that our proposed

adaptive sensing strategy does not compromise predictive performance in various

machine learning models on social anxiety and daily negative a�ect when compared

to continuous sensing and duty cycle methods.

3. In Chapter 5, we extend the proposed method in Chapter 4 by reformulating adap-

tive passive sensing with an expanded action space, new sets of state features, and

a more generalizable reward signal. These new RL strategies are shown to consis-

tently and significantly outperform four baseline methods on energy e�ciency in

simulations using the same dataset, while achieve similar predictive performance in

modeling social anxiety and daily negative a�ect.

4. In Chapter 6, we switch focus to active sensing and propose adaptive active sensing

strategies that aim to achieve higher long term cumulative user compliance. To

e�ectively model user state, we combine low-level momentary context with high-

level routine context using a proposed concept called k-routines. Using real random

time Mobile EMA data in simulations, we show that our proposed RL strategies

consistently outperform the baseline methods including a random strategy and a

supervised strategy in mobile EMA compliance. We also investigate several di�erent

techniques including a more compact representation in routine state, incorporation

of motivation as a state feature, and the Dyna-Q framework for better sample

e�ciency, to improve the compliance performance in mobile EMAs. Although the

results are not encouraging, they provide ideas to explore new strategies for further

compliance improvement using adaptive active sensing.
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9.2 Future Directions

Many interesting topics in adaptive mobile sensing remain to be pursued post-graduation.

We list them below:

1. In adaptive passive sensing, state representation learning using end-to-end deep

learning approaches as function approximator in our proposed RL strategies has the

potential to more e�ectively represent user’s underlying activities, and achieve better

energy e�ciency. In addition, these end-to-end approaches can avoid manually

extracting state features. We plan to investigate these deep learning approaches

and their trade-o� in energy overheads. Equally important is reward design. We

plan to evaluate di�erent options of R
Õ
t in Equation 5.6, and compare their learning

e�ciency and performances in di�erent adaptive sensing strategies.

2. In adaptive active sensing, successfully identifying critical state features that are

key determinants of response compliance requires better user behavior models. In

this work, we apply personalized features such as users’ current location and high

level routine context as state features, and show improvements in compliance perfor-

mance. We plan to further explore other options on user modeling. Data quality in

active responses is another important aspect of active sensing. We plan to develop

adaptive strategies to achieve better data quality (e.g., response accuracy) in active

sensing. We can design RL strategies that are multiple objective to simultaneously

achieve these di�erent goals. We also want to evaluate other avenues that can main-

tain users’ motivation and thereby active sensing compliance. These include using

gamifications and various incentive strategies. Lastly, due to limited learning sam-

ples, more sample e�cient algorithms need to be investigated with data that are

collected over longer period of time.

3. In this dissertation, our proposed methods are examined in isolation to a real mobile

sensing system, in which the collected sensing data may be processed and modeled

as they are made available. We need to carefully design a data pipeline that can
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reduce redundant operations on processing the collected raw sensor data while in-

tegrate our proposed adaptive sensing methods seamlessly. This needs to take into

consideration what state features are being extracted in our adaptive sensing strate-

gies and whether they can be reused for other modeling purposes. We also plan to

add all the desired capabilities according to Chapter 7 and 8 to further enhance the

Sensus mobile sensing platform towards its ultimate goal of becoming an intelligent

intervention system.
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