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1. Introduction

Let Γ and Λ be two countable discrete groups with free probability measure-preserving

actions Γy (X,µ) and Λy (Y, ν) on standard probability measure spaces (X,µ)

and (Y, ν), respectively. An orbit equivalence (OE) for the actions is a measurable

isomorphism θ : X → Y such that θ(Γx) = Λθ(x) for almost every x ∈ X. In this

case, the two actions are called orbit equivalent. Two groups are said to be orbit

equivalent if they admit orbit equivalent actions. Singer [1] showed that for two

free probability measure preserving actions Γy (X,µ) and Λy (Y, ν), being orbit

equivalent is equivalent to the existence of an isomorphism L∞(X) o Γ ∼= L∞(Y ) o

Λ which preserves the Cartan subalgebras L∞(X) and L∞(Y ). Orbit equivalence

theory saw some development in the 1980s (see [2, 3, 4]), and has been an area of

active research over the last two decades (see [5, 6]). These advances in part have

been stimulated by the success of the deformation/rigidity theory approach to the

classification of II1 factors developed by Popa and others (see [7, 8, 9]).

The study of orbit equivalence can be motivated also from an entirely different point

of view, being a measurable counterpart to quasi-isometry of groups. Gromov [10]

introduced measure equivalence (ME) for countable discrete groups as a measurable

analogue of quasi-isometry and since then this notion has proven to be an impor-

tant tool in geometric group theory with connections to ergodic theory and operator

algebras. Two infinite countable discrete groups Γ and Λ are measure equivalent if

there is an infinite measure space (Ω,m) with commuting, measure-preserving actions

Γy (Ω,m) and Λy (Ω,m), so that both the actions admit finite-measure fundamen-

tal domains Y,X ∈ Ω, that is, m(Y ),m(X) <∞ and

Ω =
⊔
γ∈Γ

γY =
⊔
λ∈Λ

λX.
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The space (Ω,m) is called an ME-coupling between Γ and Λ, and the index of such a

coupling is

[Γ : Λ]Ω :=
m(X)

m(Y )
.

Notably, measure equivalence was used by Furman in [11, 12] to prove strong rigidity

results for lattices in higher rank simple Lie groups. ME relates back to OE because

of the following fact, observed by Zimmer and Furman: for two discrete groups Γ

and Λ, admitting free OE actions is equivalent to having an ME-coupling of index

1. Moreover, for OE groups, an ME-coupling can be chosen so that the fundamental

domains coincide [12, Theorem 3.3].

If X ⊂ Ω is a Borel fundamental domain for the action Γy (Ω,m), then on the

level of function spaces, the characteristic function 1X gives a projection in L∞(Ω,m)

such that the collection {1γX}γ∈Γ forms a partition of unity, i.e.,
∑

γ∈Γ 1γX = 1.

This notion generalizes quite nicely to the non-commutative setting, and using this,

Peterson, Ruth, and Ishan, in [13], defined a fundamental domain for an action on

a von Neumann algebra Γyσ M is a projection p ∈ M such that
∑

γ∈Γ σγ(p) = 1,

where the convergence is in the strong operator topology. Using this perspective

for a fundamental domain they generalized the notion of measure equivalence by

considering actions on non-commutative spaces.

Definition 1.1 ([13]). Two countable discrete groups Γ and Λ are von Neumann

equivalent (vNE), written Γ ∼vNE Λ, if there exists a von Neumann algebra M with a

faithful normal semi-finite trace Tr and commuting, trace-preserving actions of Γ and

Λ on M such that the Γ- and Λ-actions individually admit a finite-trace fundamental

domain. The semi-finite von Neumann algebra M is called a von Neumann coupling

between Γ and Λ.
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Like ME, vNE is stable under taking the direct product of groups. But neither ME nor

vNE is stable under taking free products. For instance, since any two finite groups are

ME (and hence vNE), and amenability is preserved under both ME and vNE, one gets

that Z/2Z∗Z/2Z (amenable) is neither ME nor vNE to Z/3Z∗Z/2Z (non-amenable).

However, as suggested in [14, Remark 2.28], and proved in [15, PME6], stability under

taking free products hold if one requires the additional assumption that groups are

ME with a common fundamental domain. In other words, OE is stable under taking

free products. This raises a natural question: Is vNE, with common fundamental

domain, stable under taking free products? We obtain an affirmative answer to this

question and introduce the following definition.

Definition 1.2. Two countable discrete groups Γ and Λ are said to be von Neumann

orbit equivalent (vNOE), denoted Γ ∼vNOE Λ, if there exists a von Neumann coupling

between Γ and Λ with a common fundamental domain.

The relationship between Orbit Equivalence, Measure equivalence, von Neumann

Orbit Equivalence and von Neumann Equivalence for groups are as follows:

Γ ∼OE Λ Γ ∼vNOE Λ

Γ ∼ME Λ Γ ∼vNE Λ

It has been shown that amenability and property (T) are preserved under all of the

four equivalence relations. The graph product and the free product of the groups are

preserved under orbit equivalence but not under measure equivalence. We will show

that the free product of the groups and the graph product of groups is also preserved

under von Neumann orbit equivalence.

Theorem 1.3. If Γi,Λi, i = 1, 2 are countable discrete groups such that Γi ∼vNOE

Λi, i = 1, 2, then Γ1 ∗ Γ2 ∼vNOE Λ1 ∗ Λ2.
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Remark 1.4. We suspect that the notion of vNE with coupling index 1 should be

equivalent to the notion of vNE with common fundamental domain. However, we are

unable to prove it at this point and leave it as an open problem.

Green [16], in her Ph.D. thesis, introduced graph products of groups, another impor-

tant group theoretical construction. If G = (V,E) is a simple, non-oriented graph

with vertex set V and edge set E, then the graph product of a family, {Γv}v∈V , of

groups indexed by V is obtained from the free product ∗v∈V Γv by adding commuta-

tor relations determined by the edge set E. Depending on the graph, free products

and direct products are special cases of the graph product construction. Adapting

the ideas of [15], Horbez and Huang [17, Proposition 4.2] proved the stability of OE

under taking graph products (see also [18]). To further explore the study of graph

products within the context of measured group theory, we would like to draw the

reader’s attention to the article [19]. In this thesis, we also prove the stability of

vNOE under taking graph products.

Theorem 1.5. Let G = (V,E) be a simple finite graph. Let Γ and Λ be two graph

products over G, with countable vertex groups {Γv}v∈V and {Λv}v∈V , respectively. If

Γv ∼vNOE Λv for every v ∈ V , then Γ ∼vNOE Λ.

In attempting to prove the above theorems, if one tries to adapt the techniques from

one of [15, 17, 18], an immediate problem is presented by the lack of “point perspec-

tive” in the theory of von Neumann (orbit) equivalence. The lack of any natural

non-commutative analogue of the notion of OE/ME cocycles, or that of measured

equivalence relation can be considered as a few problems presented by the lack of

point perspective. This often leads one to consider genuinely new techniques and

different alternatives (see e.g., [13, 20, 21, 22]). To overcome this obstruction, we
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introduce the notion of von Neumann orbit equivalence for tracial von Neumann al-

gebras that is “compatible” with vNOE of groups (see Theorem 3.9), and prove the

analogues of Theorems 1.3 and 1.5 at the level of tracial von Neumann algebras.

The notion of von Neumann equivalence admits a generalization in the setting of

finite von Neumann algebras [13, Section 8], and relates to vNE for groups as follows:

Γ ∼vNE Λ if and only if LΓ ∼vNE LΛ [13, Theorem 1.5]. In parallel to this, one

might attempt to define two tracial von Neumann algebras to be vNOE if they are

vNE and admit a “common” fundamental domain, and identify a correct meaning

of “common”. However, we take a slightly different approach, and motivated by the

recently defined notion of measure equivalence of finite von Neumann algebras by

Berendschot and Vaes in [23], we introduce the following definition.

Definition 1.6. Let (A, τA) and (B, τB) be tracial von Neumann algebras. We say

that A and B are von Neumann orbit equivalent, denoted A ∼vNOE B, if there exists a

tracial von Neumann algebra (Q, τQ), a Hilbert A⊗Q−B-bimodule H, and a vector

ξ ∈ H such that

1. 〈(a⊗x)ξ, ξ〉 = τA(a)τQ(x), and 〈yξb, ξ〉 = τQ(y)τB(b) for every a ∈ A, x, y ∈ Q,

and b ∈ B.

2. Span((A⊗Q)ξ) = H = Span(QξB).

We prove in Proposition 3.4 that vNOE is indeed an equivalence relation. We should

remark that, in the above definition, H can also be considered as an A − B⊗Qop-

bimodule satisfying conditions analogous to the two mentioned in the definition. This

essentially is the reason for the symmetry of vNOE, even though the definition seems

asymmetric at first. To prove transitivity, inspired by [23, Lemma 5.11], we establish
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an equivalent characterization of vNOE in Theorem 3.1, and show in Theorem 3.9

that Γ ∼vNOE Λ if and only if LΓ ∼vNOE LΛ. Since L(Γ ∗Λ) ∼= LΓ ∗LΛ, Theorem 1.3

follows from the following theorem, which we prove in Section 3.

Theorem 1.7. If Ai, Bi, i = 1, 2 are tracial von Neumann algebras such that

Ai ∼vNOE Bi, i = 1, 2, then, A1 ∗ A2 ∼vNOE B1 ∗B2.

Similar to free products, one also has that the group von Neumann algebra of a graph

product of groups is isomorphic to the (von Neumann algebra) graph product of the

group von Neumann algebras, and hence Theorem 1.5 follows from the following

theorem, proved in Section 4.

Theorem 1.8. Let G = (V,E) be a simple finite graph. Let A and B be two graph

products over G, with tracial vertex von Neumann algebras {Av}v∈V and {Bv}v∈V ,

respectively. If Av ∼vNOE Bv for every v ∈ V , then A ∼vNOE B.

Remark 1.9. Since graph product over a totally disconnected graph, i.e., a graph

with no edges, gives free product, Theorem 1.7 follows from Theorem 1.8. However,

we include a proof of Theorem 1.7 for two reasons. Firstly, the notation is less involved

compared to the proof of Theorem 1.8. Secondly, if a reader prefers the base case for

the induction (on number of vertices) in the proof of Theorem 1.8 to be a graph with

two vertices instead of one, then that base case is justified.

In Proposition 3.12, we show that vNOE tracial von Neumann algebras are vNE in

the sense of [13]. We should remark that vNE does not imply vNOE in general.

In the final section, we obtain a partial analogue of Singer’s theorem [1] for OE in the

setting of vNOE of groups. As noted in [13, Example 5.2], if Γ and Λ are countable

discrete groups with trace-preserving actions Γy (A, τA) and Λy (B, τB) on tracial
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von Neumann algebras (A, τA) and (B, τB), respectively, and if θ : B oΛ → Ao Γ is

a trace-preserving isomorphism such that θ(B) = A, then Γ ∼vNOE Λ. As a partial

converse to this, we prove the following theorem.

Theorem 1.10. If Γ and Λ are countable discrete groups such that Γ ∼vNOE Λ, then

there exist tracial von Neumann algebras (A, τA), (B, τB), trace-preserving actions

ΓyA, ΛyB, and a trace-preserving isomorphism θ : B o Λ → Ao Γ.

2. Preliminaries

2.1. Von Neumann algebras: Definition and Examples

Let H be a Hilbert space and B(H) be the algebra of all bounded linear operators

on H. The strong operator topology on B(H) is the topology generated by the basis

consisting of sets of the form

U(x; ξ1, ..., ξn; ε) := {y ∈ B(H) : ‖(x− y)ξj‖ < ε, j = 1, ..., n},

for x ∈ B(H)ξ1, ..., ξn ∈ H,and ε > 0. We can also define the weak operator topology

on B(H) as the topology generated by the basis consisting of sets of the form

U(x; ξ1, ..., ξn; η1, ..., ηn : ε) := {y ∈ B(H) : |〈(x− y)ξj, ηj〉| < ε, j = 1, ..., n},

for x ∈ B(H), ξ1, ..., ξn, η1, ..., ηn ∈ H, and ε > 0. From an analytic perspective, we

describe what it means for a net to converge in these topologies. Let (xi)i∈I be a net

in B(H), then (xi)i∈I converges to x ∈ B(H) in the strong operator topology if

lim
i→∞

‖(x− xi)ξ‖ = 0 ∀ξ ∈ H

, and xi∈I converges to x in the weak operator topology (WOT) if

lim
i→∞

〈(x− xi)ξ, η〉 = 0 ∀ξ, η ∈ H.
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Definition 2.1. A von Neumann algebra M on a Hilber space H is a ∗-subalgebra of

B(H) which contains the identity and is closed in the strong operator( or, equivalently

weak operator) topology.

Example 2.2. Let H = Cn, we get that the the n by n matrices Mn(C) is a von

Neumann algebra.

Example 2.3. Let (X,Ω, µ) be a measure space, it follows that L∞(X,µ) ⊆ B(L2(X,µ))

is a von Neumann algebra.

There is also a more algebraic way to define von Neumann algebra. Again we let M

to be a ∗-subalgebra of B(H), and we define the commutant of M , denoted M ′, is the

set

M ′ = {x ∈ B(H) : xy = yx ∀y ∈M}.

We say that M is a von Neumann algebra if M = M ′′ where M ′′ is the double

commutant of M . We show that the two definitions coincide.

Theorem 2.4. (Bicommutant theorem): Let M ∈ B(H) be a unital subalgebra, we

have that

M
SOT

=M
WOT

=M ′′.

Proof. The proof usually goes by showing M ′′ ⊂ M
SOT ⊂ M

WOT ⊂ M ′′. Here we

refer to Theorem 2.1.3 in [24].

We also would like to introduce Kaplansky density theorem as a usful tool. For the

proof of this Theorem please refer to Theorem 2.3.1 in [24].

Theorem 2.5. (Kaplansky density theorem): Let A be a ∗-subalgebra of B(H), then

(A)1
SOT

= (A
SOT

)1, where (A)1 is the operator norm unit ball of A.
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2.2. tracial von Neumann algebra

Definition 2.6. A von Neumann algebra M is tracial if it admits a linear functional

τ :M → C which is

1. positive: τ(x∗x) ≥ 0, for all x ∈M

2. faithful: τ(x∗x) = 0, for some x ∈M , implies that x = 0

3. tracial: τ(xy) = τ(yx) for all x, y ∈M .

4. normal: τ is weak operator topology continuous on the unit ball of M .

Example 2.7. Mn(C) is a tracial von Neumann algebra with the regular trace.

2.3. Standard form

Let (M, τ) be a tracial von Neumann algebra, then it admits a natural representation

on a Hilbert space. This representation is a special example of the Gelfand–Naimark–

Segal construction.

Given the trace τ , we can define a inner product on M :

〈x, y〉 = τ(y∗x).

We use L2(M) to denote the Hilbert space completion of M with respect to this

norm. For x ∈ M , we use the x̂ to denote x as an element in L2(M). The standard

representation of a tracial von Neumann algebra M is the representation πτ : M →

B(L2(M)) where

πτ (x)ŷ = x̂y

10



for x, y ∈ M. We identify x with πτx and we write xξ for πτx for simplicity. Addi-

tionally, we view M as a dense subspace of L2(M, τ) by identifying x with x1.

Consider the operator J : x̂→ x̂∗, it is an antilinear isometry from M̂ onto itself. We

notice that

‖Jx̂‖22 = ‖x̂∗‖22 = τ(xx∗) = tτ(x∗x) = ‖x̂‖22.

It then follows that J extends to an antilinear surjective isometry of L2(M). We call

J the canonical conjugation operator on L2(M). One of the main features of the

standard representation of M is that it makes M op isomorphic to its commutant.

We view πτ (x) as the operator of multiplication to the left by x and to denote it by

Lx. The range of L, denoted by L(M)(in B(L2(M)), is {Lx = πτ (x)|x ∈ M}, which

is M . Similarly, let Rx denote the extension of the operator which sends ŷ to ŷx. We

notice that x → Rx gives an embedding of M op into B(L2(M)). We use R(M) to

denote the range of R (also in B(L2(M)).

Theorem 2.8. Let (M, τ) be a tracial von Neumann algebra and J be the operator

described as above. We have JMJ =M ′ .

For the proof of this theorem we refer to Chapter 7 of [24].

Remark 2.9. Since JxJŷ = Jxŷ∗ = Jx̂y∗ = ŷx∗, we can identify JMJ with R(M).

So the theorem above can also be interpreted as L(M)′ = R(M).

Proposition 2.10. Let (M, τM) be a tracial von Neumann algebra and let A be a

∗−subalgebra s.o. dense in M . Let (N, τN) be an another tracial von Neumann

algebra and φ : A→ N be a trace preserving, that is, τN ◦ φ = τM ∗-homomorphism.

We can extend φ to a trace preserving ∗-homomorphism from M to N .
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Proof. Without loss of generality, we can just assume φ(M) is WOT dense in N . Since

if we can extend φ to a trace preserving ∗-homomorphism from M to φ(M)
WOT , then

we can just compose this extended map with the embedding and we get the desired

extended trace preserving ∗-homomorphism from M to N . Let us use B to denote

φ(M). Since φ is trace preserving, we have

〈a1, a2〉L2(A,τM ) = 〈φ(a1), φ(a2)〉L2(N,τN ).

Along with the completeness of L2(A, τM) and L2(N, τN), it follows that there exists

a unique unitary operator U : A
∥·∥2to B∥·∥2 such that U |A = φ. Since A,B are WOT

dense in M,N , it follows that A∥·∥2
= L2(M, τM), B∥·∥2

= L2(N, τN). Therefore, we

define the normal ∗-homomorphism φ̃ : M → B(L2(N, τN)) given by x 7→ UxU∗.

Since φ̃(x)ξ = UxU∗(ξ) = φ(x)(ξ) for all x ∈ A and ξ ∈ L2(N, τN), φ̃ agrees with φ

on A.

2.4. Group von Neumann algebra

Next, we introduce a type of very important von Neumann algebra called group von

Neumann algebra. Let Γ be a discrete group, and let `2(Γ) be the square summable

functions of Γ. Consider the left regular representation λ : Γ → B(`2(Γ)) :

[λ(g)ξ](h) = ξ(g−1h),

where ξ ∈ `2(Γ), h ∈ Γ. Similarly, we have the right regular representation ρ : Γ →

B(`2(Γ)) :

[ρ(g)ξ](h) = ξ(hg).
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The operators λ(g) are unitary operators with λ(g)∗ = λ(g−1). Let

C[λ(Γ)] := {
∑
g∈F

agλ(g)|ag ∈ C, and F ⊂ Γ is a finite subset.},

then C[λ(Γ)] is a ∗−subalgebra of B(L2Γ).

Definition 2.11. The group von Neumann algebra for Γ is defined as C[λ(Γ)]
SOT ,

denoted as L(Γ).

Similarly, we can define R(Γ) to be the SOT closure of linear span of ρ(Γ). We have

L(Γ)′ = R(Γ).

Remark 2.12. We use δγ to denote the vector λ(γ)δe ∈ `2(Γ) where e is the identity

element in Γ. For any x ∈ L(Γ), we write xδe =
∑

γ∈Γ xγδγ where xγ = 〈xδe, δγ〉

and is called the Fourier coefficients of x. By using uγ to denote λ(γ), we write

x =
∑

γ∈Γ xγuγ where where the convergence holds in the ‖ · ‖2.

Lemma 2.13. Let M be a von Neumann algebra and φ be a state on M . Suppose

A ⊆M is a unital, weak*-dense ∗-subalgebra. If φ(xy) = φ(yx) for all x, y ∈ A, then

φ is tracial on M .

Proof. Let x, y ∈ M , then, by Kaplansky density theorem, there exist nets (xi) ∈

A, (yj) ∈ A such that xi → x, yj → y in WOT and ‖xi‖ ≤ ‖x‖, ‖yi‖ ≤ ‖y‖. Since

multiplication is separately continuous in WOT, we have

φ(xy) = lim
i→∞

lim
j→∞

φ(xiyj) = lim
i→∞

lim
j→∞

φ(yjxi) = lim
i→∞

φ(yxi) = φ(yx).

Proposition 2.14. Consider the linear functional τ : L(Γ) → C defined by τ(x) =

〈xδe, δe〉. We find that this τ is a faithful normal trace on L(Γ).
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Proof. A state is normal if it is WOT-continuous on the unit ball. Given x in L(Γ) and

xi WOT converging to x, it follows that 〈(xi−x)δe, δe〉 converges to 0. Therefore, τ is

normal. By the previous lemma, it suffices to show that τ is tracial on a WOT dense

∗-subalgebra. Since τ(uguh) = τ(ugh) = 〈ughδe, δe〉 = 〈δgh, δe〉 = 〈δhg, δe〉 = τ(uhug),

τ is tracial. Now we assume τ(x∗x) = 0, then it follows that 〈xδe, xδe〉 = 0. Thus,

we get xδe = 0. For any g ∈ Γ, since xδg = xρ(g−1)(δe) = ρ(g−1)(xδe) = 0, it follows

that τ is faithful.

2.5. Crossed product

Let (A, τ) be a tracial von Neumann algebra and Aut(A) be the group of automor-

phisms. Consider the group homomorphism σ : G→ Aut(A) such that τ ◦σ = τ . Let

A[G] denote the algebra whose elements are finitely supported sums
∑

g agug with

ag ∈ A. We then define the product and involution to be

(a1ug)(a2uh) = a1σg(a2)ugh, (aug)
∗ = σg−1(a∗)ug−1 .

Consider the Hilbert space H = L2(A, τ) ⊗ l2(G). We have a map from A[G] to

B(H) defined by agug(ξ ⊗ δh) = (aσg(ξ)) ⊗ δgh. (Notice that if you have a G acting

on a tracial von Neumann algebra (A, τ) by σg, then you can extend this action to

an action αg of G on L2(A) by defining αg(x̂) = σ̂gx. This is called the Koopman

representation).

Definition 2.15. The SOT closure of A[G] in B(H) is called the crossed product of

the action of G on A, and it is denoted AoG.

Proposition 2.16. Given a tracial von Neumann algebra (A, τA) and a trace pre-

serving homomorphism σ : G → Aut(A). We can define a trace τ on A o G where

τ(x) = 〈x1̂⊗ δe, 1̂⊗ δe〉.
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Proposition 2.17. With the same setting above, we would like to introduce some

useful facts about AoG.

1. For any x ∈ A o G, there exits a unique sequence (xg) in `2(G,M) such that

x(1̂⊗ δe) =
∑

g(xg1̂)⊗ δg

2. For x ∈ AoG, we have x∗(1̂⊗ δe) =
∑

g σgx
∗
g−1(1̂⊗ δe).

3. 1̂⊗ δe is cyclic and separating for AoG

Proposition 2.18. Given a tracial von Neumann algebra (A, τA) and a trace pre-

serving homomorphism σ : G → Aut(A). We can define a trace τ on A o G where

τ(x) = 〈x1̂⊗ δe, 1̂⊗ δe〉.

Proof. We will focus on showing τ is tracial and faithful. From the previous facts, we

have

〈xy1̂⊗ δe, 1̂⊗ δe〉 = 〈y1̂⊗ δe, x
∗1̂⊗ δe〉

=
∑
g,h

〈yg1̂⊗ δe, σh(x
∗
h−1)1̂⊗ δe〉

=
∑
g

〈yg1̂, σg(x∗g−1)1̂〉L2(A)

=
∑
g

τA(σg(xg−1)yg)

=
∑
g

τA(ygσg(xg−1))

=
∑
g

τA(σ
−1
g (yg)xg−1)

= 〈yx1̂⊗ δe, 1̂⊗ δe〉.
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As for faithfulness, it follows from:

〈x∗x1̂⊗ δe, 1̂⊗ δe〉 = 〈x1̂⊗ δe, x1̂⊗ δe〉

=
∑
g,h

〈xg1̂⊗ δe, xh1̂⊗ δe〉

=
∑
g

〈xg, xh〉L2(A)

=
∑
g

τA(x
∗
gxg)

2.6. Conditional expectation

Definition 2.19. Let M ⊂ B(H) be a von Neumann algebra and 1M ∈ N ⊂ M a

von Neumann subalgebra. A conditional expectation from M to N is a linear map

E :M → N satisfying

1. E(a) = a for all a ∈ N ,

2. E(axb) = aE(x)b for all a, b ∈ N and x ∈M

3. E(x) ≥ 0 whenever x ≥ 0.

Theorem 2.20. Let (M, τ) ⊂ B(H) be a tracial von Neumann algebra and 1M ∈ N ⊂

M a von Neumann subalgebra. Then there exists a unique conditional expectation

EN :M → N satisfying τ ◦ EN = τ . Moreover, EN is faithful.

Proof. Let L2(N, τ |N) be the Hilbert subspace of L2(M, τ) and we denote them as

L2(N) and L2(M) respectively for simplicity. Let eN denote the orthogonal projection

from L2(M) to L2(N). We have that eN(M̂) ⊂ N̂(This is non trivial, for proof please
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refer to section 9 of [24]). Let EN be eN restricted to M by identifying M with M̂ .

For x ∈M, b ∈ N , we have that

τ(bEN(x)) = 〈b̂∗, ÊN(x)〉 (1)

= 〈b̂∗, eN(x̂)〉 (2)

= 〈b̂∗, eN(x̂) + eN⊥(x̂)〉 (3)

= 〈b̂∗, x̂〉 (4)

= τ(bx). (5)

Where eN⊥ is the projection to the subspace orthogonal to N and (4) follows because

b̂∗ is inside N . Thus, it follows τ ◦ EN = τ . The E is faithful because if E(x∗x) =

τ(E(x∗x)) = τ(x∗x) = 0, then x = 0. Normality follows from 2.5.11 of [24].

Now we want to show that such conditional expectation is unique. If E is another

conditional expectation such that τ ◦ E = τ , for x ∈M and b ∈ N we have

τ((x− E(x))b) = τ((E(x− E(x))b) = 0.

This shows that x̂ − Ê(x) is orthogonal to the subspace N̂ , Therefore, E is indeed

the orthogonal projection from M̂ to N̂ .

Example 2.21. Let G y M be a trace preserving group action of G on the tracial

von Neumann algebra M . We can view M as a subspace of M o G by identifying

x ∈M as xue. Then EM(
∑

g∈G xgug) = xe, where EM is the conditional expectation

from M oG to M .

Example 2.22. Let (M, τM), (N, τN) be two tracial von Neumann algebras. Let EM

be the conditional expectation from M⊗N to M . We have EM(x ⊗ y) = τ(y)x for

x ∈M and y ∈ N .
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2.7. Free product and amalgamated free product of von Neumann algebras

We would like to introduce the definition of free product of tracial von Neumann

algebra. We will start with the definition and then existence of such algebras.

Definition 2.23. Let M1,M2 be two von Neumann subalgebras of a tracial von Neu-

mann algebra (M, τ) . We say thatM1,M2 are free with respect to τ if τ(x1x2 . . . xn) =

0 whenever xi ∈ Mki with k1 6= k2 6= · · · 6= kn and τ(xi) = 0 for all i. We say that

two elements a1, a2 of M are free with respect to τ if the von Neumann algebras

they generate are free. We will say that an element x1x2 · · · xk of the algebraic free

product M1 ∗algM2 is an alternating centered word with respect to τ if xi ∈Mki with

k1 6= k2 6= · · · 6= kn, ki ∈ {1, 2}, and τki(xi) = 0 for all 1 ≤ i ≤ n.

Proposition 2.24. Let M1,M2 be two von Neumann subalgebras of the tracial von

Neumann algebra (M, τ) that are free with respect to τ . We have that τ is uniquely

determined by its’ restrictions to M1 and M2.

Proof. Since the linear span of x1x2 . . . xn where xi ∈ Mki and k1 6= k2 6= · · · 6= kn is

WOT dense ∗-subalgebra of M and τ is normal, it suffices to prove that τ(x1x2 . . . xn)

is uniquely determined for such element. We will prove by induction. It is clearly

true for n = 1. Now we assume that the statement is true for all 1, 2, ..., n − 1. For

xi ∈ Mki , we can write xi = τ(xi) + x̃i where x̃i = xi − τ(xi), and we observe that

x̃i ∈Mk1 and τ(x̃i) = 0. By plugging in we have that

τ(x1x2 . . . xn) = τ((τ(x1) + x̃1) . . . (τ(xn) + x̃n)) (1)

= τ(A+ (x̃1x̃2 . . . x̃n)) (2)

= τ(A) (3)
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where A is the summation of the terms that only involves at most n− 1 many xi and

equation (3) is true because each τ(x̃i) = 0. By the induction hypothesis we have

τ(A) is uniquely determined by its’ restriction to M2 and M2. Therefore, the desired

conclusion follows.

Proposition 2.25. Let (M1, τ1), (M2, τ2) be tracial von Neumann algebras. There is,

up to isomorphism, one triple ((M, τ), φ1, φ2) where τ is a normal faithful tracial state

and φi :Mi →M, i = 1, 2, are homomorphisms, satisfying the following properties:

1. τi = τ ◦ φi for i = 1, 2;

2. φ1(M1), φ2(M2) sit in M as free von Neumann subalgebras with respect to τ and

M is generated by φ1(M1) ∪ φ2(M2).

Proof. Let (M, τM), (N, τN) be two tracial von Neumann algebras that satisfies both

of the criteria. We would like to show that they are isomorphic. Let φi : Mi → M

and ϕi : Mi → N the trace preserving inclusions for i = 1, 2. Let M and N be the

∗-algebras generated by φ1(M1)∪φ2(M2) and ϕ1(M1)∪ϕ2(M2) respectively. Consider

the map f from M to N sending φi(x) = ϕi(x) for x ∈Mi. For y = φk1(x1) . . . φkn(xn)

for xi ∈ Mki , we have f(y) = ϕk1(x1) . . . ϕkn(xn). We can extend this to linear

combinations of such y and it follows that f is indeed a ∗-homomorphism from M

to N . We would like to show that this map is well defined. Let Y1 and Y2 be two

expressions for y. From previous proposation, we have

τM(φk1(x1) . . . φkn(xn)) = τN(ϕk1(x1) . . . ϕkn(xn)).

It follows that

0 = τM((Y1 − Y2)
∗(Y1 − Y2)) = τN((f(Y1)− f(Y2))

∗(f(Y1)− f(Y2))).
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Since τN is faithful, we get f(Y1) = f(Y2).

Lastly, since f is trace preserving, it follows that f extends to a trace preserving

isomorphism from M to N by Proposition 2.10.

Definition 2.26. Let (M1, τ1), (M2, τ2) be tracial von Neumann algebras that satisfies

and ((M, τ), φ1, φ2) be such that it satisfies the conditions (i) and (ii) of the previous

proposition. We define (M, τ) to be the free product of (M1, τ1) and (M2, τ2). We

denote M as M1 ∗M2.

Example 2.27. We consider the free product of (L(G1), τ1) and (L(G2), τ2). One can

check that L(G1 ∗G2) satisfies the condition 1 and 2 of Proposition 2.25. Therefore,

it follows that (L(G1 ∗G2), τ) is isomorphic to (L(G1), τ1) ∗ (L(G2), τ2).

Next we would like to introduce the amalgamated free product of two tracial von

Neumann algebras.

For i = 1, 2, let (Ai, τi) be finite von Neumann algebras, Q ⊂ Ai be a common von

Neumann subalgebra, and Ei : Ai → Q be faithful, normal conditional expectations.

The amalgamated free product (A,E) = (A1, E1)∗Q(A2, E2) is a pair of a von Neumann

algebra A generated by A1 and A2 and a faithful normal conditional expectation E :

A→ Q such that A1 and A2 are freely independent with respect to E: E(a1a2 · · · ak) =

0 whenever ani
∈ Ani

with ni ∈ {1, 2, }, Eni
(ai) = 0 and n1 6= n2 6= · · · 6= nk. An

element a1a2 · · · ak ∈ A will be called an alternating centered word with respect to E

if ani
∈ Ani

with ni ∈ {1, 2}, Eni
(ai) = 0 and n1 6= n2 6= · · · 6= nk.

For the construction and further details on (amalgamated) free products, we refer the

reader to [25, 26, 27, 28].

20



2.8. Graph product

Let G = (V,E) be a simple graph with the vertex set V and the edge set E ⊆

V ×V \{(v, v) : v ∈ V }. We assume that the graph G is non-oriented, i.e., (v, w) ∈ E

if and only if (w, v) ∈ E. For a vertex v ∈ V , we let lk(v) denote the set of all vertices

that are connected to v by an edge, i.e., lk(v) = {w ∈ V : (v, w) ∈ E}; and we let

st(v) = lk(v)∪{v}. If U ⊆ V , then the full subgraph of G with the vertex set U is the

graph with U as the vertex set and v, w ∈ U are connected by an edge if and only if

(v, w) ∈ E. Abusing the notation slightly, we will use lk(v) and st(v) to denote the

full subgraph of G with vertex sets lk(v) and st(v), respectively.

A word v1v2 · · · vn of vertices in V is called reduced if it satisfies the following property:

if there exist k < l such that vk = vl, then there is some k < j < l such that (vk, vj) /∈

E. Let G = (V,E) be a simple graph, (A, τ) be a tracial von Neumann algebra, and

{(Av, τv) : v ∈ V } be a family of tracial von Neumann subalgebras of (A, τ) such that

τ |Av = τv for all v ∈ V . We say that the family {(Av, τv) : v ∈ V } is G-independent if

the following property holds: if v1 · · · vn is a reduced word and a1, . . . , an ∈ A are such

that ai ∈ Avi and τ(ai) = 0, then τ(a1 · · · an) = 0. On the other hand, given a simple

graph G = (V,E) and a family of tracial von Neumann algebras {(Av, τv) : v ∈ V },

there is a unique, up to isomorphism, tracial von Neumann algebra (A, τ), called the

graph product over G of the family {(Av, τv) : v ∈ V }, and trace-preserving inclusions

ϕv : Av ↪→ A such that the family {ϕv(Av) : v ∈ V } is G-independent and generates

A as a von Neumann algebra (see [29, 30]). We denote the graph product (A, τ) of

the family {(Av, τv) : v ∈ V } by

(A, τ) = ⋆v∈V (Av, τv).

Given a simple graph G = (V,E), a family of tracial von Neumann algebras {(Av, τv) :
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v ∈ V }, and a vertex v ∈ V , we let

Ast(v) = ⋆w∈st(v)Aw, AV ′ = ⋆w∈V \{v}Aw, and Alk(v) = ⋆w∈lk(v)Aw.

Then, by the unscrewing technique of Caspers and Fima ([30, Theorem 3.26]), there

exists a unique trace-preserving ∗-isomorphism Φ : Ast(v) ∗Alk(v)
AV ′ → ⋆v∈VAv such

that Φ|st(v) and Φ|AV ′ are the canonical inclusions Ast(v) ⊂ A and AV ′ ⊂ A, respec-

tively. We remark that one can also view A as (Av ⊗Alk(v)) ∗Alk(v)
AV ′ , a viewpoint

that will be useful in proving Theorem 4.1.

Remark 2.28. If G = (V,E) is a simple graph, and {Γv : v ∈ V } is a family of

countable discrete groups, then L(⋆v∈V Γv) = ⋆v∈VLΓv (see [30, Remark 3.23]).

2.9. Modules over tracial von Neumann algebras

For details on the proofs of the facts collected in this subsection, we refer the reader

to [24, Chapter 8].

Definition 2.29. Given von Neumann algebras A and B,

1. a left A-module is a pair (H, πA), where H is a Hilbert space and πA : A→ B(H)

is a normal unital ∗-homomorphism.

2. a right B-module is a pair (H, πB), where H is a Hilbert space and πB : B →

B(H) is a normal unital ∗-anti-homomorphism, i.e., πB(xy) = πB(y)πB(x) for

all x, y ∈ B. In other words, H is a left Bop-module, where Bop is the opposite

algebra.

3. an A−B-bimodule is a triple (H, πA, πB) such that (H, πA) is a left A-module,

(H, πB) is a right B-module, and the representations πA and πB commute.
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For ξ ∈ H, x ∈ A, and y ∈ B, we will write xξy instead of πA(x)πB(y)ξ (=

πB(y)πA(x)ξ).

Definition 2.30. Let (A, τA), (B, τB) be tracial von Neumann algebras and let H be

an A− B-bimodule. A vector ξ ∈ H is called

1. tracial if 〈xξ, ξ〉 = τA(x) for every x ∈ A, and 〈ξy, ξ〉 = τB(y) for every y ∈ B.

2. bi-tracial if 〈xξy, ξ〉 = τA(x)τB(y) for all x ∈ A, y ∈ B.

3. cyclic Span{xξy : x ∈ A, y ∈ B} = H.

Example 2.31. The Hilber tspace L2(M, τ)is an example of a M-M bimodule. Its

structure as an M-M bimodule is given by

xξy = LxRyξ = xJy∗Jξ,

for all x, y ∈M, ξ ∈ L2(M). Notice that 1 ∈ L2(M) is tracial and cyclic.

Let (Q, τQ) be a tracial von Neumann algebra. Given two left Q-modules H and K,

we denote by QB(H,K) the space of left Q-linear bounded maps from H into K, that

is

QB(H,K) = {T ∈ B(H,K) : T (xξ) = x(Tξ) for all x ∈ Q, ξ ∈ H}.

We set QB(H) = QB(H,H). It is straightforward to check that QB(H) = Q′ ∩ B(H).

Moreover, QB(H) is a semi-finite von Neumann algebra equipped with a specific

semi-finite trace Tr, depending on τQ. Before stating the result that characterizes Tr,

observe that, given S, T ∈ QB(L2Q,H), we have TS∗ ∈ QB(H), and S∗T ∈ JQJ ,

where J : L2Q → L2Q is the canonical conjugation operator. The following is a

translation of [24, Proposition 8.4.2] for left Q-modules.
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Proposition 2.32. If H is a left Q-module over a tracial von Neumann algebra

(Q, τQ), then the commutant QB(H) = Q′ ∩ B(H) is a semi-finite von Neumann

algebra equipped with a canonical faithful normal semi-finite trace Tr characterized by

the equation

Tr(TT ∗) = τQ(JT
∗TJ)

for every left Q-linear bounded operator T : L2Q→ H.

Remark 2.33. Suppose (Q, τQ) is a tracial von Neumann algebra and H is a left

Q-module. If ξ ∈ H is a tracial vector, then the orthogonal projection P : H →

Span(Qξ) lies in QB(H). Moreover, since ξ is tracial, the operator U : L2Q →

Span(Qξ) given by Ux̂ = xξ, x ∈ Q is a unitary. Extending U to an isometry from

L2Q into H in an obvious way and applying Proposition 2.32 to T = PU : L2Q→ H

yields that Tr(P ) = τ(1) = 1.

2.10. Actions on semi-finite von Neumann algebras

For a semi-finite von Neumann algebra M with a faithful normal semi-finite trace Tr,

the set nTr = {x ∈ M | Tr(x∗x) < ∞} is an ideal. Left multiplication of M on nTr

induces a normal faithful representation of M in B(L2(M,Tr)), called the standard

representation, where L2(M,Tr) is the Hilbert space completion of nTr under the

inner product 〈a, b〉2 = Tr(b∗a).

If Γyσ M is a trace-preserving action of a countable discrete group Γ on M, then Γ

preserves the ‖ · ‖2-norm on nTr. Therefore, restricted to nTr, the action is isometric

with respect to the ‖ · ‖2-norm and hence gives a unitary representation σ0 : Γ →

U(L2(M,Tr)), called the Koopman representation. Considering M ⊂ B(L2(M,Tr))

via the standard representation, we have that the action σ : Γ → Aut(M,Tr) is
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unitarily implemented via the Koopman representation, i.e., for x ∈ M and γ ∈ Γ

we have σγ(x) = σ0
γxσ

0
γ−1 (see [31, Theorem 3.2]).

3. Von Neumann Orbit Equivalence

In this section, we define von Neumann orbit equivalence for tracial von Neumann

algebras and for countable discrete groups. We shall see that groups are von Neumann

orbit equivalent if and only if the corresponding group von Neumann algebras are,

and we conclude this section with the proof that von Neumann orbit equivalent tracial

von Neumann algebras are von Neumann equivalent in the sense of [13].

3.1. Von Neumann orbit equivalence for tracial von Neumann algebras

Theorem 3.1. Let (A, τA), and (B, τB) be tracial von Neumann algebras. Then the

following are equivalent.

1. There exists a finite von Neumann algebra (Q, τQ) and a pointed A⊗Q − B-

bimodule (H, ξ) such that ξ ∈ H is a cyclic and (bi-)tracial vector for both A⊗Q-

module structure, and Q−B-bimodule structure. That is, for all a ∈ A, b ∈ B,

and x ∈ Q,

(a) 〈(a⊗ x)ξ, ξ〉 = τA(a)τQ(x), and 〈xξb, ξ〉 = τQ(x)τB(b); and

(b) Span((A⊗Q)ξ) = H = Span(QξB).

2. There exists a tracial von Neumann algebra (Q, τQ), and a normal ∗-homomorphism

φ : B → A⊗Q such that

(a) EQ ◦φ = τB, where EQ : A⊗Q→ Q is the normal conditional expectation;

and
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(b) Span{xφ(b) : b ∈ B, x ∈ Q}
∥·∥2

= L2(A⊗Q).

Proof. Let (H, Q, ξ) be a triple as in (1). We thus obtain a canonical unitary U : H →

L2(A⊗Q) such that U(yξ) = ŷ for all y ∈ A⊗Q. Hence we can define a right action

of B on L2(A⊗Q) by

η · b = U(U∗(η)b), for all η ∈ L2(A⊗Q), b ∈ B.

For b ∈ B, we let ρ(b) ∈ B(L2(A⊗Q)) be the operator corresponding to right mul-

tiplication by b. Since H is an A⊗Q − B bimodule, and U is A⊗Q-linear, so, the

right action of B commutes with the left action of A⊗Q on L2(A⊗Q), and hence

ρ(b) ∈ (A⊗Q)′∩B(L2(A⊗Q)) for every b ∈ B. Since the commutant of A⊗Q acting

on L2(A⊗Q) is R(A⊗Q) we define φ : B → A⊗Q as follows: for b ∈ B, φ(b) is the

unique element in A⊗Q such that Rϕ(b) = ρ(b). This is directly checked to be a

∗-homomorphism. Moreover, by definition of φ, we have that η · b = ηφ(b), for every

η ∈ L2(A⊗Q), b ∈ B. Since ξ is Q-B bi-tracial, we have for all b ∈ B, x ∈ Q that

τQ(x)τB(b) = 〈xξb, ξ〉

= 〈U∗(x)b, U ∗(1̂)〉

= 〈U(U∗(x)b), 1̂〉

= 〈x · b, 1̂〉

= 〈xφ(b), 1̂〉

= τ(xφ(b))

where τ denotes the trace on A⊗Q. Furthermore, since τQ ◦ EQ = τ , we have

τQ(τB(b)x) = τ(xφ(b)) = τQ(EQ(xφ(b))) = τQ(xEQ(φ(b))),
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for all x ∈ Q, b ∈ B, whence it follows that EQ ◦ φ = τB. Finally,

Span{xφ(b) : x ∈ Q, b ∈ B}
∥·∥2

= U(Span{xξb : x ∈ Q, b ∈ B}) = U(H) = L2(A⊗Q).

Conversely, suppose condition (2) holds, and let H = L2(A⊗Q), and ξ = 1̂. Define a

right action of B on H by η · b = ηφ(b). Then for x ∈ Q,b ∈ B we have

Span{xξ · b : x ∈ Q, b ∈ B}
∥·∥2

= Span{xφ(b) : x ∈ Q, b ∈ B}
∥·∥2

= L2(A⊗Q),

and for x ∈ Q, b ∈ B we have

〈xξ · b, ξ〉 = 〈xφ(b), 1̂〉 = τ(xφ(b)) = τQ(xEQ(φ(b))) = τQ(x)τB(b).

Remark 3.2. Since the operation of taking adjoints is isometric on L2(A⊗Q), in

condition (2) of Theorem 3.1, one might equivalently require that

Span{φ(b)x : b ∈ B, x ∈ Q}
∥·∥2

= L2(A⊗Q).

Definition 3.3. Let (A, τA), and (B, τB) be tracial von Neumann algebras. We say

that A is von Neumann orbit equivalent to B, denoted A ∼vNOE B, if either of the

two equivalent conditions in Theorem 3.1 is satisfied. If A is von Neumann orbit

equivalent to B, then the triple (H, Q, ξ) or the pair (Q, φ) of Theorem 3.1 will be

called a vNOE-coupling between A and B.

Proposition 3.4. Von Neumann orbit equivalence is an equivalence relation.

Proof. If (A, τA) is a tracial von Neumann algebra, then taking Q = C,H = L2(A),

and ξ = 1̂ ∈ L2(A) in condition (1) of Theorem 3.1 shows that A ∼vNOE A. To

see symmetry, let (A, τA) and (B, τB) be tracial von Neumann algebras satisfying
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condition (1) of Theorem 3.1, and let H, (Q, τQ), and ξ ∈ H be as in the condition.

Note that we can view H as an A − B⊗Qop-bimodule. Consider the conjugate

Hilbert space H, and the corresponding canonical B⊗Qop − A bimodule structure

on H. Then, it is straightforward to check that the triple (H, Qop, ξ̄) satisfies (1) of

Theorem 3.1 and thus, B ∼vNOE A. To show transitivity, we will use condition (2) of

Theorem 3.1. To this end, let (A, τA), (B, τB), and (C, τC) be tracial von Neumann

algebras. Let Q1, Q2, and φ1 : B → A⊗Q1, φ2 : C → B⊗Q2 be as in (2) of Theorem

3.1. Let Q = Q1 ⊗Q2 and let φ : C → A⊗Q be given by

φ(c) = (φ1 ⊗ idQ2)(φ2(c)), c ∈ C,

where φ1⊗ idQ1 : B⊗Q2 → A⊗Q1 ⊗Q2 is the natural extension of φ1 : B → A⊗Q1.

Let EQ1 : A⊗Q1 → Q1,EQ2 : B⊗Q2 → Q2, and EQ : A⊗Q1 ⊗Q2 → Q1 ⊗Q2 be

normal conditional expectations. Consider the map EQ1 ⊗ idQ2 : A⊗Q1 ⊗Q2 →

Q1 ⊗Q2. Note that EQ = EQ1 ⊗ idQ2 . Therefore,

EQ ◦ φ = (EQ1 ⊗ idQ2) ◦ ((φ1 ⊗ idQ2) ◦ φ2) = EQ2 ◦ φ2 = τC ,

where the second to last equality follows from the fact that the following diagram,

since EQ1 ◦ φ1 = τB, is commutative:

B⊗Q2 A⊗Q1 ⊗Q2

Q2 Q1 ⊗Q2

EQ2

ϕ1⊗idQ2

EQ1
⊗idQ2

1⊗idQ2

Now, consider V = Span{φ(c)x : x ∈ Q, c ∈ C}
∥·∥2

, and note that V is invariant under

multiplication on the right by elements of Q = Q1 ⊗Q2. In the light of Remark 3.2,

it suffices to show that V = L2(A⊗Q), and for this, since V is invariant under right
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multiplication by Q, it suffices to show that A⊗ 1⊗ 1 ⊆ V . Recall that

Span{φ2(c)x2 : c ∈ C, x2 ∈ Q2}
∥·∥2

= L2(B⊗Q2) ⊇ B⊗Q2.

Hence, we have

Span{(φ1 ⊗ idQ2)(φ2(c)(1⊗ x2)) : c ∈ C, x2 ∈ Q2}
∥·∥2 ⊇ (φ1 ⊗ idQ2)(B⊗Q2).

Since Span{φ1(b)x1 : b ∈ B, x1 ∈ Q1}
∥·∥2

= L2(A⊗Q1) ⊇ A⊗Q1, the following com-

putation completes the proof.

V ⊇ Span{(φ1 ⊗ idQ2)(φ2(c))(x1 ⊗ x2) : c ∈ C, x1 ∈ Q1, x2 ∈ Q2}
∥·∥2

⊇ Span{(φ1 ⊗ idQ2)((1⊗ x2)(φ2(c))(x1 ⊗ 1) : c ∈ C, x1 ∈ Q1, x2 ∈ Q2}
∥·∥2

⊇ Span{(φ1 ⊗ idQ2)(b⊗ 1)(x1 ⊗ 1) : b ∈ B, x1 ∈ Q1}
∥·∥2

⊇ A⊗ 1⊗ 1.

Checking Span{φ(b)x : b ∈ B, x ∈ Q} = L2(A⊗Q) might not be easy in general. How-

ever, the following lemma simplifies verifying it in certain examples.

Lemma 3.5. Let (A, τA), (B, τB), and (Q, τQ) be tracial von Neumman algebras. Let

φ : B → A⊗Q be a ∗-homomorphism satisfying EQ ◦ φ = τB, where EQ : A⊗Q → Q

is the normal conditional expectation. Let V = Span{φ(b)x : b ∈ B, x ∈ Q}
∥·∥2 ⊂

L2(A⊗Q). Then N = {a ∈ A : a⊗ 1 ∈ V } is an SOT-closed subalgebra of A.

Proof. The fact that N is SOT-closed follows from the fact that SOT-convergence in

A implies ‖·‖2-convergence. First note that V is invariant under left multiplication by

elements of φ(B) and right multiplication by elements of Q. We prove the following

claim, whence the lemma follows immediately.
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Claim: For η ∈ V , and a ∈ N we have that η(a⊗ 1) ∈ V .

Proof of Claim. Given η ∈ V , and a ∈ N , let {xn}n∈N ⊂ Span{φ(b)x : b ∈ B, x ∈ Q}

be such that ‖xn − η‖2 → 0. Since a⊗ 1 is bounded, it follows that

‖xn(a⊗ 1)− η(a⊗ 1)‖2 ≤ ‖xn − η‖2‖a‖ → 0,

as n → ∞. Since V is ‖ · ‖2-closed, it suffices to show that xn(a ⊗ 1) ∈ V for all

n ∈ N. To this end, fix n ∈ N, and write xn =
∑k

j=1 φ(bj)yj with bj ∈ B, yj ∈ Q.

Then,

xn(a⊗ 1) =
k∑

j=1

φ(bj)yj(a⊗ 1) =
k∑

j=1

φ(bj)(a⊗ 1)yj,

where, in the last equality, we use that A and Q commute in A⊗Q. Since we already

noted that V is invariant under left multiplication by φ(B) and right multiplication

by Q, and a⊗ 1 ∈ V , it follows that xn(a⊗ 1) ∈ V .

Remark 3.6. We do not know if N is a ∗-subalgebra.

Theorem 3.7. Let Ai, Bi, i = 1, 2 be tracial von Neumann algebras such that Ai ∼vNOE

Bi, i = 1, 2. Then, A1 ∗ A2 ∼vNOE B1 ∗B2.

Proof. Since vNOE is an equivalence relation, it suffices to show that if A ∼vNOE B

and if (C, τC) is another tracial von Neumann algebra, then A ∗C ∼vNOE B ∗C. Let

(Q, τQ) be a tracial von Neumann algebra and φ : B → A⊗Q be a ∗-homomorphism

as in condition (2) of Theorem 3.1. For tracial von Neumann algebra (C, τC), we view

(A∗C)⊗Q as (A⊗Q)∗Q (C⊗Q). Define φ̃0 : B∗algC → (A⊗Q)∗Q (C⊗Q) by declaring

that φ̃0(b) = φ(b)∗Q1 for b ∈ B and φ̃0(c) = 1∗Qc for c ∈ C. Let EQ : (A∗C)⊗Q→ Q

be the normal conditional expectation. Note that EQ◦φ = τB and EQ|C ⊗Q = τC⊗idQ.

Therefore, if x ∈ B ∗alg C is an alternating centered word with respect to τB∗C ,
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then φ̃0(x) is an alternating centered word with respect to EQ. Hence EQ ◦ φ̃0 =

τB∗C . Since EQ is trace preserving, it follows that φ̃0 is trace-preserving, and thus

extends to a unique trace-preserving ∗-homomorphism φ̃ : B ∗C → (A⊗Q)∗Q (C⊗Q).

Moreover, by continuity we still have EQ ◦ φ̃ = τB∗C . In light of Remark 3.2, it thus

remains to check that Span{φ̃(x)y : x ∈ B ∗ C, y ∈ Q}
∥·∥2

= L2((A ∗C)⊗Q). To this

end, set V = Span{φ̃(x)y : x ∈ B ∗ C, y ∈ Q}
∥·∥2

. Since V is invariant under right

multiplciation by Q, to show that V = L2((A ∗ C)⊗Q), it suffices to show that

(A ∗ C)⊗ 1 ⊆ V . For this, by Lemma 3.5, it suffices to show that V contains A⊗ 1

and C⊗1. That C⊗1 ⊆ V , follows from the fact that φ̃ takes the copy of C in B ∗C

to the copy of C in (A∗C)⊗Q, and since Span{φ(b)y : b ∈ B, y ∈ Q}
∥·∥2

= L2(A⊗Q),

we also have that A⊗ 1 ⊆ V .

3.2. Von Neumann orbit equivalence for groups

Let Γy σM be an action of a countable discrete group Γ on a von Neumann algebra

M. A fundamental domain for the action is a projection p ∈ M such that the

projections are {σγ(p)}γ∈Γ are pairwise orthogonal and
∑

γ∈Γ σγ(p) = 1, where the

sum converges in the strong operator topology. Two countable discrete groups Γ

and Λ are said to be von Neumann equivalent, denoted Γ ∼vNE Λ, if there exists a

semi-finite von Neumann algebra (M,Tr) with a faithful normal semi-finite trace Tr,

and commuting trace-preserving actions Γy σM and Λy αM such that each action

admits a finite-trace fundamental domain. Such an M is called a von Neumann

coupling between Γ and Λ.

Definition 3.8. Two countable groups Γ and Λ are said to be von Neumann orbit

equivalent, denoted Γ ∼vNOE Λ if there exits a von Neumann coupling between Γ and

Λ with a common fundamental domain.
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Theorem 3.9. For countable discrete groups Γ and Λ, Γ ∼vNOE Λ if and only if

LΓ ∼vNOE LΛ.

Proof. First suppose that LΓ ∼vNOE LΛ, and let (H, Q, ξ) be a triple as in condition

(1) of Theorem 3.1. Set A = LΓ and B = LΛ, and consider M = Q′∩B(H) = QB(H).

For γ ∈ Γ, let uγ ∈ LΓ be the corresponding unitary and for T ∈ B(H), define

σγ(T ) = uγTu
∗
γ. Since LΓ- and Q-actions on H commute, it follows that M is

invariant under σγ for each γ ∈ Γ, and thus we have an action Γy σM. Similarly,

since H is a Q−B-bimodule, we have an action Λy αM given by αs(T ) = v∗sTvs, s ∈

Λ, T ∈ M, where vs ∈ LΛ is the unitary corresponding to s ∈ Λ. It is clear that the

actions Γy σM and Λy αM commute. Let Tr be the canonical trace on M given

by Proposition 2.32. It follows from the tracial property that both Γy σM and

Λy αM are trace-preserving actions. Let P ∈ B(H) be the orthogonal projection

from H onto Span(Qξ). It is straightforward to see that P is Q-linear and thus,

P ∈ M. Moreover, it follows from Remark 2.33 that Tr(P ) = 1. Therefore, it only

remains to show that P is a fundamental domain for both Γ- and Λ-actions. To see

that P is a Γ-fundamental domain, we first note that, since H = Span(A⊗Q)ξ and

ξ is tracial for the A⊗Q-module structure, we have, for a ∈ A, x ∈ Q, that

P ((a⊗ x)ξ) = τA(a)xξ.

Furthermore, if a =
∑

γ∈Γ aγuγ is the Fourier series expansion of a ∈ A, then we recall
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that τA(a) = ae, and thus P ((a⊗ x)ξ) = aexξ. Therefore,

σγ(P )((a⊗ x)ξ) = uγPu
∗
γ((a⊗ x)ξ)

= uγP

((∑
g∈Γ

aguγ−1g ⊗ x

)
ξ

)

= aγ(uγ ⊗ x)ξ.

If we let Pγ be the orthogonal projection from H onto uγ(Span(Qξ), then it follows

from the above calculation that σγ(P ) = Pγ, and it is straightforward to check that the

projections {Pγ}γ∈Γ are pairwise orthogonal. Moreover, since H = Span(A⊗Q)ξ),

we also get that
∑

γ∈Γ σγ(P ) = 1 and hence P is a Γ-fundamental domain. Since we

also have H = Span(QξB) and ξ is bi-tracial for the Q − B-bimodule structure, we

observe that, for b ∈ B, x ∈ Q,

P (xξb) = τB(b)xξ.

If b =
∑

t∈Λ btvt is the Fourier series expansion of b ∈ B, then τB(b) = be, and

hence P (xξb) = bexξ. For s ∈ Λ, let Ps be the orthogonal projection from H onto

(Span(Qξ))vs, then the following calculation show that αs(P ) = Ps, {αs(p)}s∈Λ are

pairwise orthogonal, and hence P is a Λ-fundamental domain.

αs(P )(xξb) = v∗sPvs

(
xξ
∑
t∈λ

btvt

)
= v∗s(bs−1xξ)

= bs−1xξvs−1 .

Conversely, suppose Γ ∼vNOE Λ, and let (M,Tr) be a von Neumann coupling between

Γ and Λ with common fundamental domain p ∈ M for both Γy σM and Λy αM.
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Let A = LΓ, B = LΛ,H = L2(M,Tr)⊗ `2(Λ), Q = MΓ o Λ, and ξ = p ⊗ δe. Let τ

be the trace on MΓ, which we recall is given by τ(x) = Tr(pxp) (see [13, Proposition

4.2]). Consider the action of LΓ on H given by

uγη = (σ0
γ ⊗ id)η, γ ∈ Γ, η ∈ H,

where σ0
γ is the Koopman representation of Γ into U(L2(M,Tr)). The action of MΓ

on H is given by

xη = (x⊗ id)η, x ∈ MΓ, η ∈ H,

and Λ acts on H on the left by

vsη = (α0
s ⊗ λΛ(s))η, s ∈ Λ, η ∈ H,

where λΛ : Λ → U(`2Λ) is the left regular representation, and α0
s : Λ → U(L2(M,Tr))

is the Koopman representation implementing the Λ-action. Since the Γ- and Λ-actions

on M commute, the actions defined above make H into a left LΓ⊗ (MΓoΛ)-module.

Furthermore, for g ∈ Γ, s ∈ Λ, and x ∈ MΓ, we have

〈(ug ⊗ xvs)ξ, ξ〉 = 〈(ug ⊗ xvs)(p⊗ δe), p⊗ δe〉

= 〈σg(xαs(p))⊗ δs, p⊗ δe〉

= δs,eTr(xσg(p)p)

= δs,eδg,eTr(pxp)

= δs,eδg,eτ(x)

= τA(ug)τQ(xvs).

Thus, it follows that ξ is tracial for the left LΓ⊗ (MΓ o Λ)-module structure. For a
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fixed s ∈ Λ, we have

Span{(ug ⊗ xvs)ξ : g ∈ Γ, x ∈ MΓ} = Span{σg(xαs(p))⊗ δs : g ∈ Γ, x ∈ MΓ}

= Span{xαs(σg(p))⊗ δs : g ∈ Γ, x ∈ MΓ}

= Span{αs(αs−1(x)σg(p))⊗ δs : g ∈ Γ, x ∈ MΓ}

= Span{αs(yσg(p))⊗ δs : g ∈ Γ, y ∈ MΓ}

= (α0
s ⊗ λΛ(s))(Span{yσγ(p)⊗ δe : g ∈ Γ, y ∈ MΓ})

= L2(M,Tr)⊗Cδs,

where the last equality follows from the fact that Span{xσg(p) : g ∈ Γ, x ∈ MΓ} =

L2(M,Tr) [13, Proposition 4.2]. Therefore, we have

Span((A⊗Q)ξ) = Span{(ug ⊗ xvs)ξ : g ∈ Γ, x ∈ MΓ, s ∈ Λ}

= Span(L2(M,Tr)⊗Cδs : s ∈ Λ) = H

Finally, the right action of LΛ on H given by

ηvs = (id⊗ρΛ(s−1))η, s ∈ Λ, η ∈ H,

where ρΛ : Λ → U(`2Λ) is the right regular representation, makes H into a Q− LΛ-

bimoudle. For x ∈ MΓ, and s, t ∈ Λ, we have

〈xvs(p⊗ δe)vt, p⊗ δe〉 = 〈xαs(p)⊗ δst, p⊗ δe〉 = δs,eδt,eTr(pxp) = τQ(xvs)τB(vt),

and hence, ξ is a tracial vector for the Q − B-bimodule structure. We recall from

the proof of [13, Proposition 4.2], that, since p is Λ-fundamental domain, we have a

direct sum decomposition L2(M,Tr) =
∑

s∈Λ L
2(M,Tr)αs(p). Thus, to show that

Span(QξB) = H, it suffices to show that, for s ∈ Λ, Span{xvsξvt : x ∈ MΓ, t ∈ Λ} =
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L2(M,Tr)αs(p)⊗ `2Λ. To this end, fix s ∈ Λ and note that

Span{xvs(p⊗ δe)vt : x ∈ MΓ, t ∈ Λ} = Span{αs(αs−1(x)p)⊗ δst : x ∈ MΓ, t ∈ Λ}

= (α0
s ⊗ λΛ(s))(Span{yp⊗ δt : y ∈ MΓ, t ∈ Λ})

= (α0
s ⊗ λΛ(s))(L

2(M,Tr)p⊗ `2Λ)

= L2(M,Tr)αs(p)⊗ `2Λ

3.3. Relationship to von Neumann equivalence

Definition 3.10 ([13]). Let A and B be tracial von Neumann algebras and let M

be a semi-finite von Neumann algebra such that A ⊂ M and Bop ⊂ M.

1. A fundamental domain for A inside of M consists of a realization of the stan-

dard representation A ⊂ B(L2(A)) as an intermediate von Neumann subalgebra

A ⊂ B(L2(A)) ⊂ M. The fundamental domain is finite if finite-rank projections

in B(L2(A)) are mapped to finite projections in M.

2. M is a von Neumann coupling between A and B if Bop ⊂ A′ ∩ M and each

inclusion A ⊂ M and Bop ⊂ M has a finite fundamental domain.

Definition 3.11 ([13]). Two tracial von Neumann algebras A and B are von Neu-

mann equivalent, denoted A ∼vNE B, if there exists a von Neumann coupling between

them.

Proposition 3.12. Let (A, τA) and (B, τB) be tracial von Neumann algebras. If

A ∼vNOE B, then A ∼vNE B.
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Proof. Suppose (H, Q, ξ) is a triple as in condition (1) of Theorem 3.1. As in the

proof of (1) implies (2) in Theorem 3.1, let U : H → L2(A⊗Q) be the unitary such

that U(xξ) = x̂ for all x ∈ A⊗Q, and let φ : B → A⊗Q be the ∗-homomorphism

obtained therein. Let M = Q′ ∩ B(H) = B(L2(A))⊗Qop. We will show that M is

a von Neumann coupling between A and B. It is clear that the inclusion A ⊂ M

has a finite fundamental domain. We recall that the argument used in defining φ,

shows that we have an inclusion Bop ⊂ M and moreover, since the left A- and right

B-actions on H commute, we have that Bop ⊂ A′∩M. Thus, it only remains to show

that the inclusion Bop ⊂ M has a finite fundamental domain. To this end, note that,

we can also view H as an A − B⊗Qop-bimoudle, and ξ is tracial and cyclic for the

right B⊗Qop-module structure. Thus, by the same construction as above, we get an

inclusion Bop ⊂ Qop′ ∩ B(H) = B(L2(B))⊗Q. Since M = Q ∩ B(H) = Qop′ ∩ B(H),

we get that the inclusion Bop ⊂ M admits a finite fundamental domain and hence

A ∼vNE B.

4. Graph product and von Neumann orbit equivalence

We now turn to prove Theorem 1.8, and prove the following stronger Theorem.

Theorem 4.1. Let G = (V,E) be a simple finite graph. Let A and B be the graph

products over G of tracial vertex von Neumann algebras {(Av, τAv) : v ∈ V } and

{(Bv, τBv) : v ∈ V }, respectively. For a subset U ⊆ V , we set AU = ⋆v∈UAv, and

similarly, BU = ⋆v∈UBv. There exist a tracial von Neumann algebra (Q, τQ) and a

∗-homomorphism φ : A→ B ⊗Q such that the following hold:

1. φ satisfies condition (2) of Theorem 3.1;
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2. φ(AU) ⊆ BU ⊗Q for any subset U ⊆ V ; and

3. Span{φ(y)x : y ∈ AU , x ∈ Q}
∥·∥2

= L2(BU ⊗Q) for any subset U ⊆ V .

In particular, A is von Neumann orbit equivalent to B.

Remark 4.2. Note that condition (2) of the theorem automatically implies that

EQ,U ◦ φ = τAU
, where EQ,U is the conditional expectation from BU ⊗Q onto Q. In-

deed, if EQ is the conditional expectation from B⊗Q onto Q, then EQ,U = EQ|BU ⊗Q,

τAU
= τA|AU

, and EQ ◦φ = τA. In particular, (2) and (3) together imply that the pair

(Q, φ) is a vNOE coupling between AU and BU for any subset U ⊆ V .

Proof of Theorem 4.1. We proceed by induction on the number of vertices in the

graph. The statement is true for a graph with only one vertex. Suppose the theorem

is true for graphs with |V | − 1 vertices. Fix a vertex v ∈ V and set V ′ = V \ {v}.

Since Av ∼vNOE Bv, there exist a tracial von Neumann algebra (Q1, τQ1) and a ∗-

homomorphism φ1 : Av → Bv ⊗Q1 satisfying condition (2) in Theorem 3.1. More-

over, by the induction hypothesis, we also have a tracial von Neumann algebra

(Q2, τQ2) and a ∗-homomorphism φ2 : AV ′ → BV ′ ⊗Q2 satisfying (1)-(3) in the state-

ment of the theorem. In particular, we have that φ2(Alk(v)) ⊆ Blk(v) ⊗Q2 and that

Span{φ2(y)x : y ∈ Alk(v), x ∈ Q2}
∥·∥2

= L2(Blk(v) ⊗Q2).

Recall that we have the following decompositions of A and B as amalgamated free

products:

A = (Av ⊗Alk(v)) ∗Alk(v)
AV ′ , B = (Bv ⊗Blk(v)) ∗Blk(v)

BV ′ ,

Set Q = Q1 ⊗Q2 and let τQ be the trace on Q. We now construct a ∗-homomorphism

φ : (Av ⊗Alk(v)) ∗Alk(v)
AV ′ → (Bv ⊗Blk(v) ⊗Q) ∗Blk(v) ⊗Q (BV ′ ⊗Q).
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For x ∈ Av, y ∈ Alk(v), and z ∈ AV ′ , we define

φ(x⊗ y) = (φ1(x)⊗ φ2(y)) ∗ 1,

φ(z) = 1 ∗ φ̃2(z),

where φ̃2 : AV ′ → BV ′ ⊗Q2 ⊗Q1 is given by φ̃2(z) = φ2(z)⊗ 1Q1 , z ∈ AV ′ . Note that

φ is well-defined since φ2(AU ′) ⊆ BU ′ ⊗Q2, and hence φ̃2(AU ′) ⊆ BU ′ ⊗Q for any

subset U ′ ⊆ V ′.

Let EBlk(v) ⊗Q : B⊗Q→ Blk(v) ⊗Q and EAlk(v)
: A→ Alk(v) be the normal conditional

expectations. We show that EBlk(v) ⊗Q ◦φ = φ ◦EAlk(v)
by showing that an alternating

centered word with respect to EAlk(v)
gets mapped to an alternating centered word

with respect to EBlk(v) ⊗Q under φ. Let x ⊗ y ∈ Av ⊗Alk(v) be a simple tensor such

that EAlk(v)
(x ⊗ y) = 0. Since EAlk(v)

|Av ⊗Alk(v)
= τAv ⊗ idAlk(v)

, it follows that either

τAv(x) = 0 or y = 0. If EQ1 : Bv ⊗Q1 → Q1 is the normal conditional expectation,

then we note that EBlk(v) ⊗Q|Bv ⊗Blk(v) ⊗Q = EQ1 ⊗ idBlk(v) ⊗Q2
. Since EQ1 ◦φ1 = τAv , we

have that

(EBlk(v) ⊗Q ◦ φ)(x⊗ y) = EBlk(v) ⊗Q(φ1(x)⊗ φ2(y))

= (EQ1 ⊗ idBlk(v) ⊗Q2
)(φ1(x)⊗ φ2(y))

= EQ1(φ1(x))⊗ φ2(y)

= τAv(x)⊗ φ2(y) = 0.

Next, suppose we have z ∈ AV ′ such that EAlk(v)
(z) = 0. Since EBlk(v) ⊗Q is trace-

preserving and Blk(v) ⊗Q-bimodular, so, to show that EBlk(v) ⊗Q(φ(z)) = 0, it suffices

to show that τBV ′ ⊗Q(wφ̃2(z)) = 0 for all w ∈ Blk(v) ⊗Q. Furthermore, by induction

hypothesis, we have that L2(Blk(v) ⊗Q2) = Span{φ2(x)y : x ∈ Alk(v), y ∈ Q2}. There-
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fore, we get that

L2(Blk(v) ⊗Q) = Span{φ̃2(x)(y1 ⊗ y2) : x ∈ Alk(v), y1 ∈ Q1, y2 ∈ Q2}.

Thus, it suffices to show that τBV ′ ⊗Q(φ̃2(x)φ̃2(z)(y1⊗y2)) = 0 for every y1 ∈ Q1, y2 ∈

Q2, x ∈ Alk(v). If EQ2 : BV ′ ⊗Q2 → Q2 and EQ : BV ′ ⊗Q→ Q are normal conditional

expectations, then we have that EQ = idQ1 ⊗EQ2 , and moreover, since τQ ◦ EQ =

τBV ′ ⊗Q, and τQ2 ◦ EQ2 = τAV ′ (by induction hypothesis), we get that

τBV ′ ⊗Q(φ̃2(xz)(y1 ⊗ y2)) = τQ((idQ1 ⊗EQ2)(1Q1 ⊗ φ2(xz))(y1 ⊗ y2))

= τQ1(y1)τQ2(y2EQ2(φ2(xz))

= τQ1(y1)τQ2(τAV ′ (xz)y2)

= τQ(y1 ⊗ y2)τAlk(v)
(EAlk(v)

|AV ′ (xz))

= τQ(y1 ⊗ y2)τAlk(v)
(xEAlk(v)

(z)) = 0.

Therefore, φ maps an alternating centered word with respect to EAlk(v) to an alter-

nating centered word with respect to EBlk(v) ⊗Q, and thus we have that EBlk(v) ⊗Q ◦φ =

φ ◦ EAlk(v)
. Therefore, if ẼQ is the normal conditional expectation from B⊗Q → Q,

then we have

ẼQ ◦ φ = EQ|Blk(v) ⊗Q ◦ EBlk(v) ⊗Q ◦ φ

= EQ|Blk(v) ⊗Q ◦ φ ◦ EAlk(v)

= τAlk(v)
◦ EAlk(v)

= τA.

Next, we show that

Span{φ(x)y : x ∈ (Av ⊗Alk(v)) ∗Alk(v)
AV ′ , y ∈ Q}

∥·∥2
= L2(((Bv ⊗Blk(v)) ∗Blk(v)

BV ′)⊗Q).
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To this end, set W = Span{φ(x)y : x ∈ (Av ⊗Alk(v)) ∗Alk(v)
AV ′ , y ∈ Q}

∥·∥2 . Since W

is invariant under right multiplication by elements in Q, it suffices to show that

((Bv ⊗Blk(v)) ∗Blk(v)
BV ′)⊗ 1Q1 ⊆ W . Furthermore, by Lemma 3.5, it suffices to show

that W contains Bv ⊗ 1, 1 ⊗ Blk(v), and BV ′ ⊗ 1. Since φ|Av = φ1, φ|Alk(v)
= φ2, and

φ|AV ′ = φ̃2, we have the following:

W ⊇ Span{φ1(x)y : x ∈ Av, y ∈ Q1}
∥·∥2

= L2(Bv ⊗Q1)

W ⊇ Span{φ2(x)y : x ∈ Alk(v), y ∈ Q2}
∥·∥2

= L2(Blk(v) ⊗Q2)

W ⊇ Span{φ̃2(x)y : x ∈ AV ′ , y ∈ Q2}
∥·∥2

= L2(BV ′ ⊗Q2).

Thus, condition (1) in the statement of the theorem holds. Finally, we show that

conditions (2) and (3) hold. For this, let U ⊆ V be a subset of vertices and first

suppose that v /∈ U . Then, U ⊆ V ′ and AU ⊆ AV ′ , whence it follows that φ|AU
=

φ̃2|AU
. Thus, (2) and (3) hold for U . Now suppose v ∈ U ⊆ V . Then, set U ′ =

U \ {v} ⊆ V ′, and we have that

AU = (Av ⊗Alk(v)∩U) ∗Alk(v)∩U
AU ′

and

BU ⊗Q = (Bv ⊗Blk(v)∩U ⊗Q) ∗Blk(v)∩U ⊗Q (BU ′ ⊗Q).

Now, since U ′ ⊂ V ′, so, by the induction hypothesis, the pair (Q2, φ2) satisfies condi-

tions (2) and (3) for any subset U ′′ ⊆ U ′. Using the vNOE coupling (Q1, φ1) between

Av and Bv and the pair (φ2, Q2), if we repeat the same construction as above to

construct a ∗-homomorphism ψ : AU → BU ⊗ Q, we obtain that ψ = φ|AU
and that

the pair (Q,ψ) is a vNOE coupling between AU and BU . Thus, conditions (2) and

(3) hold for U and this finishes the proof.
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5. Towards an analogue of Singer’s Theorem

Let Γ be a countable discrete group and (M, τ) be a finite von Neumann algebra.

A 1-cocycle for a trace-preserving action Γy α(M, τ) is a map w : Γ → U(M) that

satisfies the following cocycle identity:

wsαs(wt) = wst, s, t ∈ Γ.

If Γy β(M, τ) is another trace-preserving action, then we say that α and β are

cocycle conjugate if there exists an automorphism θ ∈ Aut(M, τ) and a 1-cocycle

w : Γ → U(M) for α such that

θ ◦ βs ◦ θ−1 = Ad(ws) ◦ αs, s ∈ Γ. (4)

We recall that if Γy α(M, τ) and Γy β(M, τ) are cocycle conjugate, then M oα Γ ∼=

M oβ Γ. Indeed, let θ ∈ Aut(M, τ) and w : Γ → U(M) be as in (4), and consider the

map Θ :M oα Γ →M oβ Γ given by

Θ(xus) = Ad(ws)(θ(x))vs, x ∈M, s ∈ Γ,

where, for s ∈ Γ, us, vs represent the canonical group unitaries in M oα Γ,M oβ Γ,

respectively. It is then straightforward to verify that Θ is an isomorphism.

Let Γy σM and Λy αM be commuting, trace-preserving actions of countable dis-

crete groups Γ and Λ on a semi-finite von Neumann algebra M with a faithful nor-

mal semi-finite trace Tr. Let p ∈ M be a finite-trace projection which is a common

fundamental domain for both Γ- and Λ-actions, that is, {σγ(p)}γ∈Γ are mutually

orthogonal and
∑

γ∈Γ σγ(p) = 1 (SOT), and similarly, {αλ(p)}λ∈Λ are mutually or-

thogonal and
∑

λ∈Λ αλ(p) = 1 (SOT). From [13, Propostion 4.2], there exists a uni-

tary Fp : `2Γ⊗L2(MΓ,Tr) → L2(M,Tr) such that Fp(δγ ⊗ x) = σγ−1(p)x for all
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γ ∈ Γ, x ∈ MΓ. Furthermore, from [13, Proposition 4.3], there is a trace-preserving

isomorphism ∆Γ
p : Mo Γ → B(`2Γ)⊗MΓ such that for γ ∈ Γ and x ∈ M,

∆Γ
p (uγ) = ργ ⊗ 1, ∆Γ

p (x) = F∗
pxFp.

If we view B(`2Γ)⊗MΓ as MΓ-valued Γ × Γ matrices, then we have that for all

x ∈ M, ∆Γ
p (x) = [xs,t]s,t, where

xs,t =
∑
γ∈Γ

σγ(σt−1(p)xσs−1(p)) ∈ MΓ.

Since the actions of Γ and Λ on M commute, we get a well-defined action of Λ on

Mo Γ, which we denote by αo idΓ, and it is given by

(αλ o idΓ)(xuγ) = αλ(x)uγ, λ ∈ Λ, γ ∈ Γ, x ∈ M.

Further, let id⊗α be the action of Λ on B(`2Γ)⊗MΓ given by

(id⊗αλ)(T ⊗ x) = T ⊗ αλ(x), λ ∈ Λ, T ∈ B(`2Γ), x ∈ MΓ.

Define an action α̃ of Λ on B(`2Γ)⊗MΓ by

α̃λ = ∆Γ
p ◦ (αλ o idΓ) ◦ (∆Γ

p )
−1, λ ∈ Λ.

By definition, α̃ is conjugate to α o idΓ, and hence we get an isomorphism of the

crossed products

(Mo Γ)oαoidΓ Λ
∼= (B(`2Γ)⊗MΓ)oα̃ Λ.
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Now, for any x ∈ M, γ ∈ Γ, and λ ∈ Λ, we have

∆Γ
p ◦ (αλ o idΓ)(xuγ) = ∆Γ

p (αλ(x))(ργ ⊗ 1)

= (id⊗αλ)(∆
Γ
αλ−1 (p)

(x))(ργ ⊗ 1)

= (id⊗αλ)(F∗
αλ−1 (p)

FpF∗
pxFpF∗

pFαλ−1 (p))(ργ ⊗ 1)

= (id⊗αλ)(vλ∆
Γ
p (x)v

∗
λ)(ργ ⊗ 1)

= (id⊗αλ)(vλ∆
Γ
p (xug)v

∗
λ),

where vλ = F∗
αλ−1 (p)

Fp. The last equality follows from the fact that vλ ∈ U(LΓ⊗MΓ)

(see [13, Proposition, 4.4]), and hence commutes with ργ ⊗ 1. Therefore, if we let

wλ = (id⊗αλ)(vλ) ∈ U(LΓ⊗MΓ), then we have that

α̃λ = ∆Γ
p ◦ (αλ o idΓ) ◦ (∆Γ

p )
−1 = Ad(wλ) ◦ (id⊗αλ).

Claim. The map w : Λ → U(LΓ⊗MΓ) defined by wλ = (id⊗αλ)(vλ) is a 1-cocycle

for Λy id⊗αB(`2Γ)⊗MΓ.

Proof. First note that, for any x ∈ nTr, it is straightforward to verify that

F∗
p (x) =

∑
γ∈γ

δγ ⊗ xγ,

where

xγ =
∑
b∈Γ

σbγ−1(p)σb(x).
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Therefore, for any a ∈ Γ and x ∈ MΓ, we have

F∗
αλ−1 (p)

Fp(δa ⊗ x) = F∗
αλ−1 (p)

(σa−1(p)x)

=
∑
γ∈Γ

δγ ⊗

(∑
b∈Γ

σbγ−1(αλ−1(p))σb(σa−1(p)x

)

=
∑
γ∈Γ

δγ ⊗

(∑
b∈Γ

σbγ−1(αλ−1(p))σba−1(p)x

)

Thus, as an MΓ-valued Γ× Γ matrix, we can write vλ = [[vλ]s,t]s,t, where

[vλ]s,t =
∑
γ∈Γ

σγs−1(αλ−1(p))σγt−1(p),

and therefore, wλ can be written as an MΓ-valued Γ × Γ matrix wλ = [[wλ]s,t]s,t,

where

[wλ]s,t = αλ([vλ]s,t) =
∑
γ∈Γ

σγs−1(p)σγt−1(αλ(p)).

Finally, the following calculation verifies the cocycle identity for w. For λ1, λ2 ∈ Λ,
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and s, t ∈ Γ, we have

[wλ1(id⊗αλ1)(wλ2)]s,t

=
∑
a∈Γ

[wλ1 ]s,a[(id⊗αλ1)(wλ2)]a,t

=
∑
a∈Γ

[(∑
γ∈Γ

σγs−1(p)σγa−1(αλ1(p))

)(∑
γ′∈Γ

σγ′a−1(αλ1(p))σγ′t−1(αλ1λ2(p))

)]

=
∑
a∈Γ

∑
γ∈Γ

σγs−1(p)σγa−1(αλ1(p))σγt−1(αλ1λ2(p))

=
∑
γ∈Γ

∑
a∈Γ

σγs−1(p)σγa−1(αλ1(p))σγt−1(αλ1λ2(p))

=
∑
γ∈Γ

σγs−1(p)σγt−1(αλ1λ2(p))

= [wλ1λ2 ]s,t

It now follows from the above claim that the actions α̃ and id⊗α of Λ on B(`2Γ)⊗MΓ

are cocycle conjugate, and hence we get an isomorphism of the crossed products

(B(`2Γ)⊗MΓ)oα̃ Λ
ΨΓ

−→∼= (B(`2Γ)⊗MΓ)oid⊗α Λ ∼= B(`2Γ)⊗ (MΓ oα Λ).

Similarly, starting with the isomorphism ∆Λ
p : MoΛ → B(`2Λ)⊗MΛ, and perform-

ing the above analysis yields the following isomorphism of the crossed products

(B(`2Λ)⊗MΛ)oσ̃ Γ
ΨΛ

−→∼= (B(`2Λ)⊗MΛ)oid⊗σ Γ ∼= B(`2Λ)⊗ (MΛ oσ Γ).

Thus, there exists an isomorphism Φ : B(`2Γ)⊗ (MΓ oα Λ) → B(`2Λ)⊗ (MΛ oσ Γ)

making the following diagram commutative.
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Moσ Γ B(`2Γ)⊗MΓ (B(`2Γ)⊗MΓ)oid⊗α Λ

(B(`2Γ)⊗MΓ)oα̃ Λ B(`2Γ)⊗ (MΓ oα Λ)

Mo (Γ× Λ)

(B(`2Λ)⊗MΛ)oσ̃ Γ B(`2Λ)⊗ (MΛ oσ Γ)

Moα Λ B(`2Λ)⊗MΛ (B(`2Λ)⊗MΛ)oid⊗σ Γ

∆Γ
p

∼=

θ∼=

ΨΓ

∼=

Φ∼=

∆Γ
poidΓ

∼=

∆Λ
poidΛ

∼=

ΨΛ

∼=

∆Λ
p

∼=

If we let ωeΓ,eΓ ∈ B(`2Γ) (resp. ωeΛ,eΛ ∈ B(`2Λ)) denote the orthogonal projection

onto CδeΓ (resp. CδeΛ), then we note that

Φ(ωeΓ,eΓ ⊗ 1) = ΨΛ(θ(4Γ
p (p))) = ωeΛ,eΛ ⊗ 1,

and therefore, we have

Φ(MΓ oα Λ) = Φ((ωeΓ,eΓ ⊗ 1)(B(`2Γ)⊗ (MΓ oα Λ))(ωeΓ,eΓ ⊗ 1)

= (ωeΛ,eΛ ⊗ 1)(B(`2Λ)⊗ (MΛ oσ Γ))(ωeΛ,eΛ ⊗ 1)

= MΛ oσ Γ

Thus, we have the following theorem.

Theorem 5.1. If Γ and Λ are countable discrete groups such that Γ ∼vNOE Λ, then

there exist tracial von Neumann algebras (A, τA), (B, τB), trace-preserving actions

ΓyA,ΛyB, and a trace-preserving isomorphism θ : B o Λ → Ao Γ.
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