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Abstract

In this research, we study the leader following consensus problem for discrete-

time multi-agent systems. The multi-agent systems we consider are composed of

informed follower agents, uninformed follower agents and the virtual leader agent.

A distributed consensus algorithm is proposed to realize our control objectives:

position and velocity tracking of the virtual leader moving at constant speed. A

comprehensive simulation study is presented to investigate system performance

and to illustrate that the control algorithm achieves the desired objectives. In

particular, under our proposed control algorithm, all informed follower agents will

track the virtual leader. And, if an uninformed follower agent is connected to

an informed follower agent from time to time, it will also be able to track the

virtual leader. Numerical simulations demonstrate that even a small percentage

of informed follower agents can drive a large portion of follower agents to track the

virtual leader. It is also shown that the consensus rate increases as the percentage

of informed follower agents increases, as the sensing radius increases, or as the

total number of the follower agents increases.
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Chapter 1

Introduction

Decision-making and group behavior in biological systems has long been of

interest to researchers in physics, biology and social sciences [1-10]. Most well-

known group behaviors in the nature appear in the form of flocking of birds,

herding of sheep and cattle, packs of wolves, schooling of fishes, and swarming of

bats, insects and bacteria. Humans also work in groups. Many different groups

form highly complex societies. Societies need group decisions and cannot function

properly without consensus. Collective behaviors have been of great interest to

computer scientists as well [10-13]. Helbing et al. [10] analyzes a specific case

of flocking in humans. By using a pedestrian behavior model they simulate life

threatening scenarios such as fire in a crowded building and propose optimal escape

strategies that integrate both individualistic inclinations and flocking instincts of

the man. In 1985, Amkraut et al. [11] created an animated video of a flock of

birds using computer graphics methods. In this work the trajectories of birds were

predetermined with each bird and each static object in the environment having

rejection forces around their boundaries. Clearly, it was not intended for flock

modeling. In [12] Reynolds proposed the first computer animation of flocking.

Basis of the animation depends on three flocking rules: 1) Separation: avoid

collision with neighboring agents; 2) Alignment: match velocities with neighboring

1
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agents; 3) Cohesion: stay within close proximity to neighboring agents. Reynolds’

flocking is considered to be groundbreaking work and has been used in Hollywood

movies and computer games. Vicsek et al. [13] have designed a discrete-time

model of a self-driven first order particle system. All autonomous agents move

in the Euclidean space at the same speed but with different heading angles. The

heading angle of each agent is individually updated by averaging its own angle

and neighboring agents’ angles.

Pioneering work of physicists and computer scientists have attracted the at-

tention of control theory researchers and engineers around the world. Engineering

implementations of multi-agent systems cover cooperative control of unmanned

aerial and underwater vehicles, robots and sensor networks [14-21]. Such applica-

tions could be used in robot-assisted search and rescue in hazardous environments;

exploration, surveillance and combat missions; swarm of medical microbots; and

traffic systems.

Over the past two decades, control scientists have provided many different

control algorithms, mathematical tools and theorems for flocking, consensus and

alignment problems for multi-agent systems [22-38]. The classical flocking model

of Reynolds has been a milestone for many flocking research papers. In 2006,

Olfati-Saber [22] proposed a theoretical framework based on the flocking rules

of Reynolds. He proposed three algorithms. The first algorithm embodies the

three rules of Reynolds but leads to fragmentation of agents and therefore does

not exhibit actual flocking behavior. The second algorithm combines the first

algorithm with a navigational feedback term. Each individual agent is able to

track the leader when provided its location and velocity information. As a result,

flocking is guaranteed and all agents remain cohesive and move with the same

velocity in free space following the leader. The third algorithm enables obstacle

avoidance while flocking. In Olfati-Saber’s algorithm it is assumed that all follower

agents can access the information of the leader but both in nature and practical
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examples this may not always be realistic. In 2009, Su et al. [23] provided a

modified version of Olfati-Saber’s second algorithm. With only a fraction of the

follower agents having information of the leader, the majority of the agents can

still track the virtual leader. Both the algorithms in [22] and the algorithms in [23]

contain an attractive/repulsive potential function to realize the rule of cohesion,

i.e., to keep the flock members at an ideal distance to each other. It is a non-

linear gradient term with symmetrical properties. Each agent has a sensing radius

and all the agents inside the radius are considered its neighbor agents. If two

agents within the same neighborhood get too close, the potential function applies

as a repelling force. If agents tend to move further away, attractive forces apply.

When at the ideal distance the potential function reaches the unique minimum.

In [22] and [23], the controllers and the dynamic multi-agent systems operate

in continuous-time. Both papers use the Lyapunov approach [36] to prove the

asymptotic behavior of the system. Attractive/repulsive potential function is a

quite commonly used tool in flocking problems in the literature and has also been

applied in [24-29]. In such systems [24-28], agents form distance based switching

networks. Other switching networks have also been pursued [31-34].

In some of the consensus problems in literature [30-34], graph theory and

stochastic matrix properties are provided as stability analysis tools. Jadbabaie

et al. [30] points out that, there does not exist a common quadratic Lyapunov

function to show that discrete-time Vicsek model is stable. Using dynamical sys-

tems and graph theory methods such as the Wolfowitz lemma [35], they provide

a mathematical explanation to emergence behavior in discrete-time Vicsek model

and prove that a consensus value in alignment can be reached. In [31,32], the

consensus problem under time-delay is studied. Qin et al. [33] investigate the con-

sensus of discrete-time second-order multi-agents under switching topologies and

consider the coordination of four mobile robots as an application. However, the

distance-based connectivity approach for discrete-time second-order multi-agent
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system consensus has been lacking in literature. The aim of this thesis is to fill

that gap. We design a consensus algorithm for position and velocity tracking of

the virtual leader moving at a constant speed. Then we carry out a comprehen-

sive simulation study to investigate system performance and to illustrate that the

control algorithm achieves the desired objectives. Under our proposed control al-

gorithm, the simulation results show that all informed follower agents will track

the virtual leader. And, if an uninformed follower agent is connected to an in-

formed follower agent from time to time, it will also be able to track the virtual

leader. Numerical simulations demonstrate that even a small percentage of in-

formed follower agents can drive a large portion of follower agents to track the

virtual leader. It is also shown that the consensus rate increases as the percentage

of informed follower agents increases, as the sensing radius increases, or as the

total number of the follower agents increases.

The remainder of this thesis is organized as follows. In Chapter II, we present

our dynamic system model, introduce the fundamental background in graph theory

and describe our algorithm. In Chapter III, we report on our simulation study and

make a detailed system performance analysis. Chapter IV concludes the thesis.



Chapter 2

Backgrounds and Algorithm

Description

Our multi-agent system is composed of informed agents and uninformed agents.

Informed agents have access to the virtual leader’s position and velocity infor-

mation whereas the uninformed hold no information regarding the leader. The

virtual leader agent is referred to as the gamma agent and determines the group

speed and direction. In this section, we present our agent model, provide theoret-

ical background for graph theory concepts we refer to, and describe our control

algorithm.

2.1 System Dynamics

Our multi-agent system consists of a group of N dynamic agents that are moving in

an n dimensional Euclidean space. The equations of motion have been discretized

using the forward Euler approximation method and the resulting system dynamics

is represented as,

xi(k + 1)− xi(k) = Tvi(k),

vi(k + 1)− vi(k) = Tui(k), i = 1, 2, ..., N, (2.1)

5
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where xi, vi ∈ Rn are respectively the position and velocity vectors of agent i,

ui ∈ Rn is the control input acting on agent i, and T is the sampling time. For

notational convenience, we define vectors xi, vi ∈ Rn as,

xi =



xi1

xi2

...

xin


, vi =



vi1

vi2

...

vin


.

Agents can only communicate with other agents that are within their neigh-

borhoods. Each agent has limited communication capability which is constrained

by the sensing radius R. We define the neighborhood of agent i at time instant k

as:

Ni(k) = {j : ‖xi − xj‖ < R, j = 1, 2, ..., N, j 6= i} , (2.2)

where ‖.‖ is the Euclidean norm. The communication is undirected, that is, if

agent i has access to the information of agent j, agent j would also have access to

the information of agent i. Relative distances between agents might vary during

their evolution, thus neighbors of agent i might change. Agents form switching

networks based on the distance information.

It is assumed that the virtual leader, referred to as the γ-agent, moves along

the free space with a constant velocity vd. There is no control input applied on

the γ-agent and its dynamics is described by,

xγ(k + 1)− xγ(k) = Tvd(k),

vγ(k + 1)− vγ(k) = 0, (2.3)

with initial conditions (xγ(0), vγ(0)) = (xd, vd). We will construct a control algo-

rithm that enables both the position and velocity of the follower agents to converge
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to those of the γ-agent and achieve consensus.

2.2 Graph Theory

Before proceeding to the description of our control algorithm, we introduce some

basic concepts of graph theory. Graphs are mathematical objects consisting of

a set of nodes and edges. In this thesis, we denote a neighboring graph at time

instant k by G(k) = {V , E(k)}, where the set of nodes (vertices) V = {ν1, ν2, ..., νN}

represents the agents in the group, and E(k) = {(i, j) ∈ V × V : i ∼ j} represents

the set of edges containing unordered pairs of vertices. Here, i and j indicates

that agent i and j are neighbors. In our multi-agent network, the edges do not

have an orientation, and thus the graphs are undirected. Because of the fact that

neighbors of each agent can change during the course of evolution, the network

may switch until consensus is reached. This means that the neighboring graphs

may vary in time. Let us illustrate the concept of undirected graphs with an

example.

Figure 2.1: Neighboring graphs at given time instants ki, i = 1, 2, 3, 4.

In Figure 2.1, we present a series of neighboring graphs at given time instants
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ki, i = 1, 2, 3, 4, from a) through d). In this example, the size of the whole agent

groupN = 8. Thus the set of nodes in all graphs is V = {ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8}.

Uninformed agents are denoted by circles and the informed agents are denoted

by dots. In our example, neighbors of agents change in time. The neighboring

relations for each graph is represented by their edges:

E(k1) = {(1, 2), (1, 5), (2, 3)} ,

E(k2) = {(3, 8)} ,

E(k3) = {(2, 3), (5, 6)} ,

E(k4) = {(1, 2), (1, 5), (2, 3), (3, 8), (5, 6)} .

Another important concept in graph theory is adjacency. Nodes i and j are

said to be adjacent at time k if the pair (i, j) is an element of the edge set E(k).

A(k) = (aij(k)) is called the adjacency matrix and can be used to represent the

graph G(k). That is aij(k) = 1 if agents i and j are adjacent, aij(k) = 0 otherwise.

For instance, the adjacency matrix of the graph at time instant k4 is given as

A(k4) =



0 1 0 0 1 0 0 0

1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0


If a pair of agents (i, j) are adjacent, then there exists a link (path) between the

two. A path is defined as a sequence of distinct vertices such that consecutive
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vertices are adjacent. There can be multiple paths between two nodes i and j.

To see this, we can look at graph G(k4) once again. It is clear that there exists

a path between ν1 and ν8: P (ν1, ν8) = ν1ν2ν3ν8. An uninformed agent can be

directly or indirectly connected to an informed agent through such a path. Here

ν1 is indirectly connected to ν8 through ν2 and ν3, where ν3 is directly linked to

the informed node ν8.

2.3 The Control Algorithm

As stated earlier, the main goal of this thesis is to achieve virtual-leader tracking of

multi-agents in discrete-time. Both [22] and [23] provide continuous-time virtual

leader tracking algorithms. The control input in [23] is given by,

ui = −
∑

j∈Ni(t)

∇xiψα(||xi − xj||σ) +
∑

j∈Ni(t)

aij(k)(vj − vi)

−hi [c1(xi − xγ) + c2(vi − vγ)] . (2.4)

The algorithm consists of three main components. First component is the non-

linear gradient term which contains ψα(||xi−xj||σ), the attractive/repulsive func-

tion that acts as the cohesive force to keep agents at ideal distance dα. Function

ψα reaches its maximum as ||xi−xj||σ goes to 0, is at its unique minimum if i and

j are at the ideal distance dα, and is constant for ||xi − xj||σ ≥ Rσ. The σ-norm

||σ|| of a vector is a map Rn → R+ defined as,

||z||σ =
1

ε

[√
1 + ε||z||2 − 1

]

with a parameter ε > 0. Unlike the norm ||z||, which may not be differentiable

at z = 0, the map ||z||σ is differentiable everywhere. This property of σ-norm

enables the construction of attractive/repulsive function ψα. The function ψα (see

Figure 2.2) is a nonnegative smooth pairwise potential function of the distance
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z = (||xi − xj||σ) that regulates the position between agent i and its flockmates.

Figure 2.2: An attractive-repulsive function

Second component of the algorithm provides the velocity alignment between

neighboring agents, where A(t) = (aij(t)) is the adjacent matrix which is defined

as,

aij(t) =


0, if i = j,

ρh(||xj − xi||σ/||r||σ), if i 6= j,

with the bump function ρh(z), h ∈ (0, 1), being

ρh(z) =



1, if z ∈ [0, h),

1
2
[1 + cos(π( z−h

1−h)], if z ∈ [h, 1],

0 otherwise.

The third component of the algorithm is called the navigational feedback term
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where hi = 1 if agent i is informed and hi = 0 otherwise. Both analytical and

numerical results of [23] show that not only all the informed agents but also some

uninformed agents track the virtual leader. Indeed, the simulation results show

that with a very small group of informed agents, the algorithm can cause most of

the agents to move with the desired velocity, i.e., reach velocity consensus with

the virtual leader. Motivated by these results, we discretized the algorithm for

leader following consensus of discrete-time multi-agent systems. However, in our

simulations with the discretized algorithm we have observed that the consensus is

achieved only with a very small sampling time and with a very restrictive set of

control algorithm parameters. Here, we take a simpler connectivity approach and

design our discrete-time consensus algorithm,

ui = p1
∑

Sj∈Ni(k)

aij(k) (xj(k)− xi(k)) + p2
∑

Sj∈Ni(k)

aij(k) (vj(k)− vi(k))

−hi [c1 (xi(k)− xγ(k)) + c2 (vi(k)− vγ(k))] , (2.5)

where p1, p2 > 0 and A(k) = (aij(k)) is the adjacency matrix which is defined by,

aij(k) =


1, if ‖xi − xj‖ < R,

0, if ‖xi − xj‖ ≥ R.

Agents i and j will be considered connected if their distance is less than R, and

aij(k) will be set to 1. Otherwise aij(k) will be set to 0. We assume that first M

agents are informed agents (1 ≤ M ≤ N). That is hi = 1 for i = 1, 2, 3, ...,M ,

and hi = 0 for i = M + 1,M + 2,M + 3, ..., N .

There are two different types of uninformed agents: Type I and Type II. De-

note the union of all neighboring graphs across a nonempty finite time interval

[ki, ki+1), ki+1 > ki as Ĝ(ki, ki+1), whose edges are the union of the edges of those

neighboring graphs. For an uninformed agent, if there is a path between itself
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and one informed agent in the union Ĝ(ki, ki+1), then we say that there exists

a joint path between the uninformed agent and the informed agent during the

finite time interval [ki, ki+1). An uninformed agent is called a Type I uninformed

agent if there exists an infinite sequence of contiguous, nonempty and uniformly

bounded time-intervals [ki, ki+1), i = 1, 2, · · · , such that across each time interval

there exists a joint path between this agent and one informed agent. Otherwise,

it is called a Type II uninformed agent. It is important to note that a Type I

uninformed agent is not required to stay in touch with an informed agent all the

time. It only requires to be linked with an informed agent through a joint path

during each time interval [ki, ki+1). Such a joint link is established as long as

this Type I uninformed agent is connected with an informed agent at any given

time instant during the time interval [ki, ki+1), or it is connected at a time instant

during [ki, ki+1) with another Type I uninformed agent which is connected with

an informed agent at a different time instant during [ki, ki+1). In other words, a

Type I uninformed agent is only required to get in touch, directly or indirectly,

with an informed agent from time to time.

As the intervals [ki, ki+1), i = 1, 2, · · · , are uniformly bounded, a Type I unin-

formed agent will not stay out of touch with an informed agent for a period longer

than the bound on these intervals. Thus, there exists a sufficiently large K > 0

such that, for all k ≥ K, there does not exist any joint path between any Type

II uninformed agent and any informed agent. This assumption implies that an

uninformed agent that is disconnected from all informed agents for a long enough

period of time will stay disconnected from them forever. Under this assumption,

all the informed agents and Type I uninformed agents cannot be influenced by

Type II uninformed agents directly or indirectly for all k ≥ K. Once the consen-

sus is reached the interaction network will not switch and all Type I uninformed

agents will have a path to an informed agent in the fixed interaction network.

Our extensive simulation study indicates that not only all the informed agents
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but also some uninformed agents will track the virtual leader. Indeed, the simu-

lation results show that even a small percentage of informed follower agents can

drive a large portion of follower agents to track the virtual leader. It is also shown

that the consensus rate increases as the percentage of informed follower agents

increases, as the sensing radius increases, or as the total number of the follower

agents increases.



Chapter 3

Simulation Study

The demonstration of simulation results in this thesis is organized as follows.

First we investigate the consensus performance of follower agents. We observe the

trends in consensus rate and understand the factors effecting it. Second, we make

a statistical analysis by further investigating the consensus rate for different sizes

of agent groups with varying values of sensing radius and varying percentage of

informed agents.

3.1 Consensus Performance

In this section, we investigate the consensus performance for N = 20 agents

moving in the n = 2 dimensional Euclidean plane. The initial positions and

velocities of each agent is generated randomly from boxes [0, 10] × [−10, 0] and

[0, 4]× [−4, 0], respectively. The velocity of the virtual leader is set to vγ = [1, 1]T .

The controller parameters are set to be c1 = c2 = 2 and p1 = p2 = 0.02.

Using these parameters, we simulate four different scenarios. In the first case,

we choose the percentage of informed agents to be 10% and the sensing radius

to be R = 5. We plot both the tracking errors and the trajectories of all agents

to observe the convergence behavior. Then we proceed to the second scenario.

This time we change the percentage of informed agents from 10% to 30% and

14
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compare the results with the previous scenario. In the third scenario, we change

the percentage of informed agents from 30% to 50% and again compare the results.

For the last case, keeping the percentage of informed agents at 50%, we increase

the sensing radius from R = 5 to R = 7.

In all our scenarios, we also measure the consensus rate for a more accurate

comparison. Our aim is to understand the effects of the percentage of informed

agents and the sensing radius on the rate of consensus.

3.1.1 N = 20, M = 2, R = 5

The simulation results shown in Figures 3.1-3.4, indicate that the position and

velocity tracking errors in all dimensions go to zero for informed agents only. The

uninformed agents do not track the virtual leader.
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Figure 3.1: N = 20, M = 2, R = 5, T = 0.1s, t = 100s
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Figure 3.2: N = 20, M = 2, R = 5, T = 0.1s, t = 100s
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Figure 3.3: N = 20, M = 2, R = 5, T = 0.1s, t = 100s
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Figure 3.4: N = 20, M = 2, R = 5, T = 0.1s, t = 100s

The simulation results shown in Figures 3.5-3.8 indicate that the informed

agents reach position and velocity consensus with the virtual leader while unin-

formed agents lose track of it. Velocities of all informed agents converge to the

vγ = [1, 1]T . The rate of consensus for our first scenario is only 10% since we have

only M = 2 informed agents which are the only agents that reach consensus with

the virtual leader.
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Figure 3.5: N = 20, M = 2, R = 5, T = 0.1s, t = 100s
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Figure 3.6: N = 20, M = 2, R = 5, T = 0.1s, t = 100s
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Figure 3.7: N = 20, M = 2, R = 5, T = 0.1s, t = 100s
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Figure 3.8: N = 20, M = 2, R = 5, T = 0.1s, t = 100s
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3.1.2 N = 20, M = 6, R = 5

In our second scenario, we have increased the number of informed agents in the

group. From Figures 3.9-3.12, we see that position and velocity tracking errors go

to zero not only for all informed agents but also for some uninformed agents this

time.
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Figure 3.9: N = 20, M = 6, R = 5, T = 0.1s, t = 100s
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Figure 3.10: N = 20, M = 6, R = 5, T = 0.1s, t = 100s
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Figure 3.11: N = 20, M = 6, R = 5, T = 0.1s, t = 100s
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Figure 3.12: N = 20, M = 6, R = 5, T = 0.1s, t = 100s

All informed agents and some uninformed agents reach position and velocity

consensus with the virtual leader (see Figures 3.13-3.16). The rate of consensus

for our second example is 55%.
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Figure 3.13: N = 20, M = 6, R = 5, T = 0.1s, t = 100s
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Figure 3.14: N = 20, M = 6, R = 5, T = 0.1s, t = 100s
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Figure 3.15: N = 20, M = 6, R = 5, T = 0.1s, t = 100s
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Figure 3.16: N = 20, M = 6, R = 5, T = 0.1s, t = 100s
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3.1.3 N = 20, M = 10, R = 5

In our third scenario, we have 50% of all agents informed (M = 10). From Figures

3.17-3.20, we see that position and velocity tracking errors for all informed agents

and a large number of uninformed agents go to zero.
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Figure 3.17: N = 20, M = 10, R = 5, T = 0.1s, t = 100s
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Figure 3.18: N = 20, M = 10, R = 5, T = 0.1s, t = 100s
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Figure 3.19: N = 20, M = 10, R = 5, T = 0.1s, t = 100s
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Figure 3.20: N = 20, M = 10, R = 5, T = 0.1s, t = 100s

Simulation results shown in Figures 3.21-3.24 indicate that all informed agents

and a large number of uninformed agents reach position and velocity consensus

with the virtual leader. The rate of consensus is measured as 95%.
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Figure 3.21: N = 20, M = 10, R = 5, T = 0.1s, t = 100s
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Figure 3.22: N = 20, M = 10, R = 5, T = 0.1s, t = 100s
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Figure 3.23: N = 20, M = 10, R = 5, T = 0.1s, t = 100s

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

time

v i2

Velocity trajectories: 2nd dimension

 

 
virtual leader
informed agents
uninformed agents

Figure 3.24: N = 20, M = 10, R = 5, T = 0.1s, t = 100s
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3.1.4 N = 20, M = 10, R = 7

In our final scenario, we increase the sensing radius to R = 7. We see from Figures

3.25-3.28 that the position and velocity tracking errors of all agents both informed

and uninformed, go to zero.
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Figure 3.25: N = 20, M = 10, R = 7, T = 0.1s, t = 100s
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Figure 3.26: N = 20, M = 10, R = 7, T = 0.1s, t = 100s
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Figure 3.27: N = 20, M = 10, R = 7, T = 0.1s, t = 100s
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Figure 3.28: N = 20, M = 10, R = 7, T = 0.1s, t = 100s

As demonstrated in Figures 3.29-3.32, all agents reach position and velocity

consensus with the virtual leader. The consensus rate is 100%.
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Figure 3.29: N = 20, M = 10, R = 7, T = 0.1s, t = 100s
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Figure 3.30: N = 20, M = 10, R = 7, T = 0.1s, t = 100s
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Figure 3.31: N = 20, M = 10, R = 7, T = 0.1s, t = 100s
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Figure 3.32: N = 20, M = 10, R = 7, T = 0.1s, t = 100s
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The consensus performance simulation results show that the rate of informed

agents and sensing radius R affects the consensus rate dramatically. The trend we

observe is that the rate of consensus will increase as the percentage of informed

agents and sensing radius increase but we need a comprehensive simulation study

that covers a larger scale of scenarios for further investigation. Therefore, we make

our statistical analysis in the next section.

3.2 Statistical Analysis

In our statistical analysis, we measure the rate of consensus with respect to

varying sensing radius values that are R = 5, 7, 10 and 20 for agent groups with

sizes N = 20, 50, 100, 300, 500 and 1000. In these measurements first we consider

only 10% of whole agent groups are informed agents. Then we consider 30%, 50%

and 100% are informed agents and repeat our measurements with all N and R

that are given.

Let us recall that all simulation results depend on the randomly generated ini-

tial conditions of positions and velocities of the agents. The consensus rate might

vary each time the same case is simulated thus for each consensus measurement

in this section, the consensus rate is the averaging of 50 realizations.

First, we present the tabular demonstration of our statistical analysis results.

The rate of informed agents is fixed to 10% in Table 3.1. It is fixed to 30% and 50%

in Tables 3.2 and 3.3, respectively. We present the consensus rate measurements

with respect to varying sensing radius values for agent groups with different sizes.

Second, we present the graphical illustration of our results and the impact of

variables on rate of consensus is discussed. In Figure 3.33, we illustrate the effect

of increasing the percentage of informed agents from 10% to 100%. For instance,

with R = 5 and 10% of N = 100 agents are informed agents, only about 38% of

all follower agents reach consensus with the leader. If the percentage of informed
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10% Informed
N R = 5 R = 7 R = 10 R = 20
20 18.00% 26.90% 28.50% 30.70%
50 30.48% 65.72% 67.48% 69.40%
100 38.56% 67.58% 99.74% 100.00%
300 38.57% 76.90% 99.79% 100.00%
500 38.81% 80.16% 99.81% 100.00%
1000 37.38% 86.02% 99.85% 100.00%

Table 3.1: Rate of Consensus With 10% Informed Agents

30% Informed
N R = 5 R = 7 R = 10 R = 20
20 53.80% 82.20% 98.80% 100.00%
50 55.84% 85.52% 99.44% 100.00%
100 58.62% 88.06% 99.50% 100.00%
300 58.27% 88.36% 99.73% 100.00%
500 58.58% 89.96% 99.78% 100.00%
1000 58.06% 89.98% 99.75% 100.00%

Table 3.2: Rate of Consensus With 30% Informed Agents

50% Informed
N R = 5 R = 7 R = 10 R = 20
20 71.30% 86.80% 99.20% 100.00%
50 71.84% 89.56% 99.56% 100.00%
100 73.00% 91.22% 99.68% 100.00%
300 73.25% 91.09% 99.70% 100.00%
500 73.04% 91.80% 99.72% 100.00%
1000 73.25% 90.67% 99.67% 100.00%

Table 3.3: Rate of Consensus With 50% Informed Agents

agents is increased to 50%, this time 73% of the group reach consensus with the

virtual leader. Thus, we see that the rate of consensus increases as the percentage

of informed agents increase. Furthermore, the larger the group, the smaller the

percentage of informed agents is needed to guide the majority of the group. For

example, for R = 7, in order for 80% of the agents to reach consensus with the

leader, approximately 30% of agents should be informed follower agents when the

group size is N = 100 but only about 10% of the agents need to be the informed

agents when the group size is N = 1000. Thus, for sufficiently large groups only

a small fraction of informed agents will guide the majority of agents.
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Figure 3.33: Effect of the Percentage of Informed Agents on the Consensus Rate

The communication capability is also an important factor affecting the con-

sensus rate (see Figure 3.34). If the percentage of informed agents is 30%, for

N = 50 agents the consensus rate is about 55% when R = 5. If the sensing radius

R = 7 then the consensus rate becomes 85.52%. For R = 10, 99.44% consensus is

achieved.
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Figure 3.34: Effect of the Sensing Radius on the Consensus Rate



Chapter 4

Conclusion

In this work we have designed a control algorithm for leader following con-

sensus of discrete-time second-order multi-agent systems. A comprehensive simu-

lation study is presented to investigate system performance and to illustrate that

the control algorithm achieves the consensus. The simulation results show that

all informed follower agents will track the virtual leader. And, if an uninformed

follower agent is connected to an informed follower agent from time to time, it will

also be able to track the virtual leader. Numerical simulations demonstrate that

even a small percentage of informed follower agents can drive a large portion of

follower agents to track the virtual leader. The larger the size of the multi-agent

system the bigger majority of the follower agents will track the virtual leader.

Simulation results also show that when only a fraction of the follower agents are

informed follower agents, both sensing radius of the follower agents and percentage

of informed follower agents affects the consensus rate significantly. That is, the

consensus rate increases as the percentage of informed follower agents increases or

as the sensing radius increases.
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