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Abstract

The primary goal of a Phase I clinical trial is to estimate the maximum tolerated

dose (MTD), defined as the highest dose which can be administered with a “toler-

able” level of toxicity. The “tolerable” level of toxicity is based on the probability

that a patient in the trial experiences a dose-limiting toxicity (DLT). Once a dose

has been deemed safe in a Phase I trial, the next step is to conduct a Phase II trial

where the goal is to see if the drug is effective, yet with a close eye remaining on the

level of toxicity. Usually, Phase I and Phase II trials are performed independently,

without formally sharing information across the separate phases. There has been

a recent shift in the paradigm of drug development in oncology to integrate Phase

I and Phase II trials so that the drug development process may be accelerated. In

dose-finding trials of chemotherapeutic agents, the goal of identifying the MTD is

usually determined by considering information on toxicity only, with the assump-

tion that the highest safe dose also provides the most promising outlook for efficacy.

A growing interest in targeted therapies challenges accepted dose-finding methods

because minimal toxicity may arise over all doses under consideration and higher

doses may not result in greater response. This dissertation proposes a collection of

dose-finding methods for targeted agent trials involving bivariate outcomes. Various

simulation studies are presented to evaluate the operating characteristics and to ex-

amine the robustness of the proposed method against varying design specifications.

A discussion of the theoretical properties is presented. An extension of the proposed

method into situations where there is delayed response is also explored. We close

with some conclusions and some areas for future research.
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Chapter 1

Early-phase Clinical Trials

1.1 The Problem

This dissertation focuses on early-phase, dose-finding clinical trial designs for tar-

geted agents in oncology. Targeted therapies are challenging accepted methods in

this area, which were developed with cytotoxic agents in mind. For cytotoxic ther-

apies, dose-finding studies are initial safety trials that evaluate patients based on a

single toxicity endpoint, defined by the presence/absence of severe adverse events.

In contrast, many targeted agents are considered intrinsically safe, often with min-

imal toxicity observed throughout the trial duration. Therefore, patients must be

evaluated on more than one endpoint in order for the primary objective of the trial

to be achieved. In this work, new dose-finding methods are proposed that account

for the bivariate outcomes present in early-phase targeted therapy trials.

1.2 Background of Dose-finding

When a new drug is being investigated for use in humans, traditionally the first

step is to carry out a Phase I clinical trial. If the drug is for a rare disease, such
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as cancer, then the patients who are enrolled into the trial are ones in which other

therapies have failed and are sometimes participating in the trial as a last resort. As

a result, Phase I trials in oncology must take caution in order to not expose patients

to an overly toxic dose and to not expose patients to doses which do not have

enough therapeutic benefit. The trials must have a balance between maintaining an

acceptable toxicity level and keeping the effectiveness of the doses high (O’Quigley,

Pepe, and Fisher, 1990). Once a dose has been deemed safe in a Phase I trial, the

next step is to conduct a Phase II trial where the goal is to see if the drug is effective,

yet with a close eye remaining on the level of toxicity. Usually, Phase I and Phase II

trials are performed independently, without formally sharing information across the

separate phases. There has been a recent shift in the paradigm of drug development

in oncology to integrate Phase I and Phase II trials so that the drug development

process may be accelerated, while potentially reducing costs (Yin, 2012). To this

end, several published Phase I/II methods have extended dose-finding methodology

to allow for the modeling of both toxicity and efficacy (O’Quigley, Hughes, and

Fenton, 2001; Braun, 2002; Thall and Cook, 2004; Yin, Li, and Ji, 2006; among

others). Each of these designs, as well as the one we propose in this dissertation, is

referred to by Federov and Leonov (2013) as a “best intention” (BI) design, meaning

that it aims to allocate patients in the current trial to the “best” treatment based

on the current knowledge available. We distinguish these designs from “optimal”

designs in the area of dose-finding that seek to maximize global information about

dose-response curves in order optimize doses for future patients. In addition to the

detailed discussion provided by Federov and Leonov (2013), we refer any reader

interested in this type of design to Dragalin and Federov (2006) and Whitehead et

al. (2006), among many others.
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1.3 Phase I Trials

1.3.1 Trial Objective

The typical goal of a Phase I trial is to find a dose with an acceptable level of toxicity

while maximizing the benefit that the patient receives. This goal is attained simul-

taneously because a standard assumption for Phase I trials is that both toxicity and

efficacy increase with dose. Therefore, when we find the dose closest to some target

rate we also find the dose with the maximum benefit and acceptable toxicity rate.

The dose level with an estimable level of toxicity closest to the target is known as the

maximum tolerated dose (MTD). Historically, a phase I trial typically aims to find

the MTD from a discrete set of I doses, {d1, . . . , dI}, approved for experimentation.

Therefore, the methods developed for Phase I trials were originally designed for

cytotoxic agents. However with the transition to targeted agent therapies in recent

years, the National Cancer Institute formed the Clinical Trials Design Taskforce. In

summary of this taskforce, LoRusso, Boerner, and Seymour (2010) stated:

“Improperly or inefficiently designed early clinical trials results in the ex-
posure of patients to ineffective and sometimes toxic agents, delay in the
development times for potentially effective novel agents, and incur enormous
costs to society. An appropriately designed phase I study is critical to in-
form investigators whether the drug is of sufficient interest to pursue further,
and to determine the appropriate dose, schedule, and patient population for
further study.”

The taskforce highlighted two major areas of early-phase clinical trials, targeted

agents, which are agents that inhibits the growth and multiplication of cells by

targeting a specific tumor pathway for example, and combinations of agents, in

which there is a need to develop new designs for Phase I trials. Methods for early-

phase clinical trials can be grouped into two categories: (1) algorithm based designs

and (2) model-based designs.
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1.3.2 Algorithm-based Designs

Algorithm-based designs have the advantage of being simple to implement in prac-

tice. Storer (1989) gives an extensive review of algorithm-based designs including

the traditional “3 + 3” and other Up-and-Down designs. Another advantage of these

designs is the fact that they do not make large jumps within the discrete set of doses

since the dose given to the next patient is always equal to the current dose or an

adjacent (the next higher or next lower) dose. Most Up-and-Down designs can be

classified as random walk rules or, more formally, first-order Markov procedures. A

drawback of these designs is they determine the dose for the next patient based only

on the most recent dose and outcome. However, this simplicity allows for the direct

application of random walk theory in order to obtain the exact limiting stationary

distribution for the method. For example, the biased coin design (BCD) developed

by Durham and Flournoy (1994) determines the φthT quantile, 0 < φT ≤ 0.50, of

a dose-toxicity curve using possible doses, d1 < d2 < · · · < dI . The dose given to

the jth patient, xj ∈ {d1, . . . , dI}, is determined through the use of a biased coin

with the probability of heads of φT/(1−φT ), the dose given to the previous patient,

xj−1 = di, and the previous subject’s observed toxic response, yj−1, through the

following rule:

xj =


dmax{1,i−1} if yj−1 = 1,

dmin{i+1,I} if yj−1 = 0 and the coin lands heads,

di if yj−1 = 0 and the coin lands tails.

The authors showed that as long as F (d) = Pr(yj = 1|xj = d) is non-increasing the

limiting distribution of the dose allocation for the BCD is unimodal around the φthT

percentile of F (d) (Bartroff, Lai, and Shih, 2013).
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Another commonly used method for early-phase clinical trials is the “3 + 3”

design. This design involves the dose being administered group by group. The drug

is not escalated within each group but between groups. Three patients are seen at a

certain dose level and dose escalation for the next group occurs based on how many

toxicities were seen in the previous group. The first group of three patients is seen

on the lowest dose level and escalation occurs until there is an unacceptable rate

of toxicity in the three patients. Escalation to the next highest dose occurs if none

of the three patients experience a dose-limiting toxicity (DLT). However, if one of

the patients in the group experience a DLT and only three patients have been seen

at the current dose, then three more patients are enrolled at the current dose level.

If two or more patients experience a DLT, then the trial is stopped and the next

lower dose is determined to be the MTD. The algorithm also requires that at least

six patients are treated at the MTD (Chevret, 2006).

The advantages of the “3 + 3” design are that it is easy to conduct and it does not

need to assume a dose-response curve like model-based designs (described below).

One disadvantage is that the algorithm-based method bases the recommended dose

to the next group of patients using accumulated data only on the previous cohort(s)

of patients instead of all the previously enrolled patients, resulting in poor statistical

properties. The pitfalls of the “3 + 3” design are well-documented in the literature.

Storer (1989) demonstrated that the “3 + 3” design is conservative and therefore

treats too many patients at too low of a dose, which is not in accordance with the

goals of a Phase I trial. Iasonos et al. (2008) performed an extensive simulation

study which demonstrated the superiority of the Continual Reassessment Method

(CRM) over the “3 + 3”, especially when the true dose is amongst the higher dose

levels. Lastly, the method is not based on any underlying statistical properties and

therefore the distribution of the doses recommended to be the MTD depends on the

unknown dose-toxicity curve and the number of discrete dose levels (Cheung, 2011).
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1.3.3 Model-based Designs

Another class of designs used in Phase I trials for cytotoxic agents are designs which

assume some form of a dose-response curve. In these designs, a patient’s toxicity

response y to the drug at dose level d is commonly modeled by assuming y is a

Bernoulli random variable where y = 1 indicates that the patient experienced a

DLT. The distribution of the response depends on the dose level d and an unknown

parameter vector β through the function

F (d,β) = Pr(y = 1|dose = d).

In order to reflect the probability scale and the fact that the probability of toxicity

is monotonically increasing, we assume that F (d,β) increases with d, approaching

0 as d → −∞ and 1 as d → ∞. The toxicity responses y1, . . . , yn are assumed to

be independent in a sequential trial of n patients, except possibly through the dose

levels x1, . . . , xn since the dose given to the jth patient, xj, will be chosen based

on a function of the previous dose and response pairs (x1, y1), . . . , (xj−1, yj−1). The

MTD is then the φthT percentile of the function F (d,β). In particular, the MTD =

F−1(φT ,β) (Bartroff, Lai, and Shih, 2013).

Continual Reassessment Method:

The CRM is a model-based design that was first introduced by O’Quigley, Pepe,

and Fisher (1990) as an alternative for the standard “3 + 3” algorithm based design

which assumes a dose-toxicity curve in the form of F (d,β) where dim(β) = 1. The

basic idea of the CRM is that it uses information gathered from all previous patients

to recommend a dose to the new patients. The patients for the CRM are entered

sequentially and the dose-toxicity curve is refitted after the response of each patient

is observed.

The original CRM assumes a dose-toxicity curve, F (d, β), that is monotonic in
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Figure 1.1: Dose-toxicity curve
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the dose, d, and the parameter, β. The curve can be defined by any number of

functions in a “CRM class” such as an empiric model, logistic model, or hyperbolic

tangent model. Figure 1.1 illustrates an example of one such dose-toxicity curve.

The dose given to the jth patient is a random variable, Xj = xj, taking values

xj ∈ {d1, d2, . . . , dI}. The true probability of toxicity at xj, πT (xj), is modeled

through the equation:

πT (xj) = Pr(Yj = 1 | Xj = xj) = E(Yj | xj) ≈ F (xj, β) (1.1)

for some one parameter model F (d, β) and β defined on the set B, where Yj is

a Bernoulli random variable where 1 denotes a severe toxic response for the jth

patient and 0 otherwise. It is required that, for a fixed d, F (d, β) must be strictly

monotonic in β. Also, for a fixed β, it is required that, for a set of discrete dose levels

di, i = 1, . . . , I, F (di, β) > F (di′ , β) when i > i′. Lastly, it is assumed that there

exists some β0 from the parameter space for β such that we have F (d`, β0) = φT ,

that is β0 reflects the underlying truth and the dose level d` is the level required to

achieve the desired target level of toxicity, φT . Therefore, F (di, β0) ≤ φT ∀ i ≤ `
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when the monotonicity assumption holds. A common example of the model in the

literature is the empiric model F (di, β) ≈ p
exp(β)
i , where 0 < p1 < · · · < pI < 1

are the standardized units representing the discrete dose levels di. These values are

referred to as the skeleton. Other models include a one-parameter logistic function,

F (di, β) =
exp(α0 + β × di)

1 + exp(α0 + β × di)

where α0 is a fixed constant, a two-parameter logistic function,

F (di, α, β) =
exp(α + β × di)

1 + exp(α + β × di)
,

and a hyperbolic tangent model,

F (di, β) =

(
tanh di + 1

2

)exp(β)

.

The original CRM uses a Bayesian approach to model the probability of toxicity

where the model parameter β is assumed random. Therefore, a prior distribution,

g(β), must be specified. In this dissertation, we will focus on a normal prior distri-

bution

β ∼ N(β̂0, σ
2
β),

where β̂0 and σ2
β are the prior mean and variance and was introduced in the context

of the CRM by O’Quigley and Shen (1996).

Once we have chosen a model, the CRM begins a trial by allocating the first

patient to the prior MTD. Specifically, x1 = di such that arg min
i

∆(π̂Ti1 , φT ) where

π̂Ti1 = F (di, β̂0), and ∆(π̂Ti1 , φT ) is some loss function such as

∆(π̂Ti1 , φT ) = |π̂Ti1 − φT |.
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The remaining dose allocation decisions are determined based on data in the form of

the set Ωj = {(xl, yl) : l < j}, which reflects the previous patients’ doses and toxicity

outcomes. At the enrollment of each new patient, the dose given is determined based

on the current model-based MTD estimate, given Ωj. In particular, we determine

the dose given to the jth patient, xj, to be

xj = arg min
i

∆(π̂Tij , φT ) (1.2)

where π̂Tij = F (di, β̂j),

β̂j =

∫
B
βL(β|Ωj)g(β)dβ∫
B
L(β|Ωj)g(β)dβ

is the posterior mean of β given the set Ωj, and

L(β|Ωj) =

j−1∏
l=1

{F (xl, β)}yl{1− F (xl, β)}(1−yl)

is the binomial likelihood. The remaining dose decisions are determined sequentially

through Equation 1.2 until all patients have been treated at a dose and the response

for each patient has been recorded. Then the recommended MTD will be the dose

di such that ∆(π̂Ti,n+1
, φT ) is minimized, which means that it will be the dose given

to the hypothetical (n+ 1)th patient (Cheung, 2011).

In the years since the introduction of the CRM by O’Quigley, Pepe, and Fisher

(1990) for cytotoxic agents there have been many adaptations on the original method

to make the design more practical and extend the method into new areas. In contrast

to the original Bayesian framework, O’Quigley and Shen (1996) extended the design

to take into account a likelihood approach. Goodman, Zahurak, and Piantadosi

(1995) extended the CRM to handle group accrual while, along with Korn et al.

(1994) and Faries (1994), proposed a modification to the CRM to limit escalation to
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no more than one level at a time. Various stopping rules due to too much toxicity

for the CRM have been proposed but were first introduced by O’Quigley and Reiner

(1998) and Heyd and Carlin (1998). An important extension of the CRM for this

dissertation is that of Wages, Conaway, and O’Quigley (2011) who extended the

CRM to combinations of agents by introducing the partial order CRM (POCRM).

Yin and Yuan (2009) extended the CRM by combining it with Bayesian model

averaging to eliminate some of the uncertainty in the choice of the skeleton. Iasonos

et al. (2008) and Garrett-Mayer (2006) give recent overviews of the various other

extensions of the CRM to more complicated clinical trials.

1.4 New Paradigm of Dose-finding

There has been a recent shift to more novel therapies, which include targeted agents.

Significant discussion has taken place in the literature, Korn et al. (2001), Korn

(2004) and Parulekar and Eisenahuer (2002), emphasizing the need for trial designs

different from cytotoxic agents to be implemented for targeted agents. Targeted

agent therapies offer potentially low toxicity drug profiles with potentially more

efficacy. Since these agents are designed to target certain cells or pathways they

may not bring about clinically significant toxicity. Using this fact Jain et al. (2010)

demonstrated that in trials for targeted agents, patients who are treated at lower

dose levels do not necessarily fare worse like in the cytotoxic agent setting. Therefore,

more relevant endpoints need to be used in early-phase trials determining the dose

to carry forward into a Phase II clinical trial. In these agents, the assumption of

a higher dose leading to a higher efficacious response may not hold. Due to the

lack of significant toxicity, the goal in these trials is no longer one of identifying a

maximum tolerated dose but one of identifying some Optimal Biologic Dose (OBD),

which is defined as a dose with the highest level of efficacious benefit to a patient
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and a tolerable level of toxicity.

1.4.1 Locating the OBD

As noted in the previous section, the assumption of monotonicity with regards to

dose-toxicity relationships is usually appropriate for targeted agents, yet this as-

sumption for dose-efficacy curves may fail for targeted agents. For these types of

therapies, dose-efficacy curves could follow a non-monotone pattern, such as a uni-

modal or plateau relationship. Let πE(di) = Pr(Zj = 1|di) be the true probability of

efficacy at dose di where Zj equals 1 when the jth subject experiences an efficacious

response and is 0 if the jth subject does not experience an efficacious response. In

the presence of unimodal (including monotone increasing and monotone decreasing)

or plateau dose-efficacy relationships, the primary objective of the trial is to find

the OBD, dν , defined such that

πE(d1) ≤ · · · ≤ πE(dν) ≥ · · · ≥ πE(dI). (1.3)

In other words, πE(dν) corresponds to the dose dν where the peak of the unimodal

relationship occurs, or where the dose-efficacy curve begins to plateau. Using the

terminology of Hwang and Peddada (1994), πE(dν) is said to be a nodal parameter

(or a node) in that it is known that πE(dν) ≥ πE(di) for all i 6= ν. Order restriction

(1.3) is referred to as an umbrella ordering with the node of the umbrella occurring

at dν . For instance, if the node occurs at the highest dose, we have a monotone

increasing dose-efficacy relationship. In actuality, we do not know where in the dose

range this node occurs and we must account for this uncertainty. The node could

occur at any of the I available dose levels, with non-decreasing efficacy probabilities

for doses before the node and non-increasing efficacy probabilities for doses after

the node. The strategy we propose is to use this information to formulate a set
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Table 1.1: Possible dose-efficacy relationships for I = 4 dose levels
Shape of Location Possible

relationship of node Dose-efficacy relationship
Unimodal or plateau d1 πE(d4) ≤ πE(d3) ≤ πE(d2) ≤ πE(d1)
Unimodal or plateau d2 πE(d1) ≤ πE(d3) ≤ πE(d4) ≤ πE(d2)
Unimodal or plateau d3 πE(d1) ≤ πE(d2) ≤ πE(d4) ≤ πE(d3)

Unimodal d4 πE(d1) ≤ πE(d2) ≤ πE(d3) ≤ πE(d4)

of possible dose-efficacy relationships and make progress by appealing to Bayesian

model choice, in order to account for the uncertainty surrounding the shape of the

true dose-efficacy curve.

As an example, we describe the Phase I trial of Gerber et al. (2011) that assessed

the safety and pharmacokinetics of a vascular targeting agent, bavituximab, in pa-

tients with advanced solid tumors. The trial investigated four dose levels (0.1, 0.3, 1,

3 mg/kg) and the goal of the study was to dose escalate to the predicted biologically

effective dose, rather than the MTD, because for monoclonal antibodies, the MTD

may not correspond to optimal efficacy. Any of the four dose levels could be the node

of the unimodal or plateau dose-efficacy curve, corresponding to the optimal dose.

These four possible dose-efficacy relationships are provided in Table 1.1. There are

other possibilities, in addition to those in Table 1.1, that could be considered for in-

clusion into this subset of possible relationships. For example, for a unimodal curve

with node at d3, another possibility is given by πE(d1) ≤ πE(d4) ≤ πE(d2) ≤ πE(d3).

This notion of formulating a subset of possible curves has been undertaken by other

authors (Conaway, Dunbar, and Peddada, 2004; Wages, Conaway, and O’Quigley,

2011) within the context of dose-finding in drug combinations. These papers as-

sessed the possible loss of information in only using a subset of relationships and

they found that, in general, using a subset did not drastically reduce the perfor-

mance of their methods. An important idea to this approach is that we do not need

to identify the “correct” relationship at every dose level. We just need one which is
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“close” to correct, in that it is correct in specifying the node (optimal dose) of the

umbrella ordering.

1.4.2 Literature Review

There are two ways of thinking within targeted agents about how to define the

possible outcomes for bivariate methods. One camp is to consider all four possible

outcomes including (i) no toxicity and no efficacy, (ii) no toxicity and efficacy, (iii)

toxicity and efficacy, and (iv) toxicity and no efficacy. On the other hand, one can

think of a model which uses trinary outcomes: (1) no efficacy and no toxicity, (2)

efficacy and no toxicity, and (3) toxicity. The thinking behind the trinary outcomes

is that if a patient experiences a toxic response, then the patient will not experience

an efficacious response as well.

Hoering et al. (2011, 2013) proposed methods for assessing bivariate binary

endpoints for targeted agents that use a standard “3 + 3” method to identify the

MTD in a Phase I portion and then allocates patients in the Phase II portion to the

recommended Phase I MTD and dose level below (2011). Then the authors (2013)

used a three arm approach, consisting of the recommended dose (RD), the dose level

below the RD, denoted (RD−), and the dose level above the RD, denoted (RD+),

for the Phase II portion of the study and randomizes patients to the different arms

based upon the estimated toxicity and efficacy probabilities. Let φT represent the

toxicity upper bound and φE represent the efficacy lower bound. If π̂T (RD+) ≤

φT , π̂E(RD+) ≥ φE and has the highest estimated efficacy, then the patient is

assigned to the RD+ arm. However, if the patient is not assigned to the RD+ arm

and if π̂T (RD)≤ φT and π̂E(RD)≥ π̂E(RD−) ≥ φE, then the patient is assigned to

the RD arm. Otherwise, when π̂T (RD−) ≤ φT and π̂E(RD−) ≥ φE then the patient

is assigned RD− arm.
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Thall and Cook (2004) expanded the idea proposed by Thall and Russell (1998)

when they proposed a more general method which uses an efficacy-toxicity trade-

off contour to allocate patients to the best dose within a set of admissible doses.

Their design can accommodate cases in which there are trinary outcomes and cases

involving all four bivariate binary outcomes. In the bivariate binary case, Thall and

Cook (2004) assume that the marginal model for toxicity is

πT (di, β) = logit{ηT (di, β)}

where ηT (di, β) = µT + diβ. The marginal model for efficacy is assumed to be

πE(di, θ1, θ2) = logit{ηE(di, θ1, θ2)}

where ηE(di, θ1, θ2) = µE + diθ1 + d2
i θ2. Assuming this form of ηE allows for the

method to account for non-monotone dose-efficacy relationships as well as monotone

dose-efficacy curves.

Hunsberger et al. (2005) introduced a method for when no significant toxicity is

expected from the targeted agent. Their method provides a simple design to identify

the OBD using only the efficacy response. The design uses an idea similar to the

“3 + 3” method and enrolls patients in cohorts of three. The algorithm starts at

the lowest dose enrolling three patients and escalates when less than or equal to one

response is observed and expands the number of patients at the current dose level to

six patients when greater than one patient experiences a response. The escalation

continues if less than four patients experience a response and the dose recommended

for further testing is the lowest dose with greater than three out of six responses.

They also propose a design which will stop the dose escalation if the probability

of efficacy remains constant across dose levels. They deem that the efficacy rate is



15

Table 1.2: Hypothetical toxicity and Efficacy Scenario used to demonstrate a pitfall
of the methods developed by Hoering et al. (2011, 2013)

d1 d2 d3 d4 d5 d6

Toxicity 0.03 0.07 0.12 0.18 0.25 0.31
Efficacy 0.8 0.6 0.5 0.4 0.3 0.2

constant when the calculated slope of the dose-response curve at the highest dose

levels is less than or equal to zero.

Zang, Lee, and Yuan (2014) proposed three methods to identify the OBD for

targeted agents. The first proposed design assumes the dose-efficacy curve follows

a Bayesian logistic model with a quadratic term in order to properly account for

the unimodal or plateau relationship of targeted agents. The second design they

proposed is a nonparametric approach which uses double-sided isotonic regression.

Lastly, the third method proposed in the paper is in the spirit of a “semi-parametric”

approach since it assumes a logistic model for the dose-efficacy curve but only fits

the model at the current dose level and two adjacent doses.

1.4.3 Areas of Improvement in Targeted Agents

The Hoering et al. methods (2011, 2013) are problematic because they use the tradi-

tional “3 + 3” method as the Phase I component of the trial, but in targeted agents

there is low toxicity and therefore targeting a dose with a certain level of toxicity

does not match with the objective of the trial. This misalignment in objectives can

lead to the methods proposed by Hoering et al. (2011, 2013) to miss the true OBD.

For example, consider the hypothetical scenario presented in Table 1.2. The “3 +3”

will likely identify either dose d3 or dose d4 as the MTD since the toxicity target is

0.33, and then using the method proposed by Hoering et al. (2011, 2013) will take

that dose and the surrounding doses. However in this scenario dose d1 is the OBD,

which will most likely be disregarded after the Phase I portion of the trial and not
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carried forward into the Phase II portion of the trial.

Methods similar to that of Hunsberger et al. (2005) have the drawback that

they do not take toxicity into account. Even though targeted agents are assumed

to have no significant toxicity, safety of the patients participating in the trial is of

upmost importance ethically. Therefore, the design may accidentally expose patients

to doses that are too toxic. The methods presented in this dissertation will take

toxicity and efficacy data into account simultaneously in order to recommend a dose

to the next enrolled patient.

1.5 Outline of Dissertation

This dissertation will focus on the design of early-phase dose-finding studies that

involve agents in which the dose-efficacy curve plateaus or peaks in the dose range

and does not necessarily adhere to the monotonicity assumption. In this disserta-

tion, we address aspects of current designs for targeted agents that can be inefficient

and ineffective. The proposed methods will be developed within the original con-

tinual reassessment method framework as well as lean upon recent advances in its

methodology including the notion of partial ordering. It is believed that the methods

presented will provide accurate estimates of the OBD.

Chapter 2 presents the specifics of the proposed method. It details the mod-

els, inference, and algorithm, used to extend the continual reassessment method

to bivariate binary outcomes. Various simulation studies are presented in order to

demonstrate the operating characteristics of the method and compare it to existing

designs for targeted agents.

Chapter 3 provides reassurance in the use of the proposed method by proving

the theoretical properties of the proposed design. These properties will provide a

complement to the extensive simulations presented in Chapter 2. A discussion of
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properties important in the clinical setting concludes this chapter.

Chapter 4 extends the proposed methodology of Chapter 2 to a case in which the

outcomes are not observed in a reasonable time frame. The chapter discusses how the

proposed method can accommodate time-to-event outcomes for both toxicity and

efficacy. Lastly, some concluding remarks and areas of future research are presented

in Chapter 5.



Chapter 2

Models and Inference: Bivariate

Binary Outcomes

The method introduced is one which handles the case when there is monotonicity for

toxicity and non-monotonicity for efficacy. This non-monotonicity is due to the fact

that each dose can potentially be the most efficacious dose since efficacy may not

increase with increased dose in targeted agents. Therefore, we must incorporate this

uncertainty into our model. Another key difference between the proposed method

and existing CRM methodology is that a set of acceptable doses is used instead

of identifying a dose with a certain level of toxicity. We use the acceptable dose

approach because we want to control toxicity so as not to expose patients to too

toxic a dose while acknowledging the fact that the most efficacious dose can be any

of the identified doses in the acceptable set.

Consider a trial investigating I doses, d1, . . . , dI . Toxicity and efficacy are binary

random variables, where for each subject j, we observe:

Yj =


0 if no toxicity,

1 if toxicity

Zj =


0 if no response,

1 if response.
18
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The dose given to the jth entered patient, Xj, j = 1, . . . , n, can be thought of as a

random variable taking values xj ∈ {d1, . . . , dI}.

2.1 Modeling Toxicity

The method starts out by assuming some dose-toxicity curve, F (d, β), from a CRM

class. Toxicity estimates are obtained through the model presented in Section 1.3.3

as developed by O’Quigley, Pepe, and Fisher (1990).

2.2 Models and Inference for Efficacy

As noted above, we are uncertain where the node of the dose-efficacy curve is

amongst the discrete doses. For a given model, k, k = 1, . . . , 2I − 1 (I models

to represent the peak of the dose-response curve at each of the I dose levels and

I − 1 to account for the plateau occurring at dose levels 1, · · · , I − 1; there are only

I − 1 plateau orderings since a plateau at the highest dose level corresponds to the

peak being at the highest dose), we model πE(di), the true probability of efficacy at

dose di, by

πE(di) ≈ Gk(di, θ) = q
exp(θ)
ik (2.1)

for a class of working dose-efficacy models, Gk(di, θ) and θ ∈ Θ. Similar to that

of toxicity 0 < q1k < · · · < qIk < 1 and the qik’s are the skeleton values of

the kth model for efficacy. We can incorporate more uncertainty in the model by

taking into account any prior information available concerning the plausibility of

each model. This prior information is incorporated by introducing prior weights,

τ(k) = {τ(1), . . . , τ(2I − 1)}, where each τ(k) ≥ 0 and
∑
k

τ(k) = 1. If we had

no reason to believe that any one model was more plausible than another, then the

weights would be discrete uniform. At the enrollment of the jth patient into the
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trial, we have efficacy data in the form of the set Dj = {(xl, zl) : l < j}. Then for

each model we obtain an estimate of θ̂jk. Once the prior probability distribution,

g(θ), for the parameter θ of each model has been specified, we obtain the likelihood

for the parameter θ. At the enrollment of the jth patient, the likelihood for model

k is given by

Lk(θ|Dj) =

j−1∏
l=1

{Gk(xl, θ)}zl{1−Gk(xl, θ)}(1−zl)

which, for each model, can be used to obtain a summary value, θ̂jk, for θ. Then

the posterior density for θ given the set Dj and the likelihood is given through the

equation:

fk(θ|Dj) =
Lk(θ|Dj)g(θ)∫

Θ

Lk(θ|Dj)g(θ)dθ
.

Using this information, we can establish the posterior probabilities of the models

given the data as

Pr(Mk|Dj) =

τ(k)

∫
Θ

Lk(θ|Dj)g(θ)dθ

2I−1∑
k=1

τ(k)

∫
Θ

Lk(θ|Dj)g(θ)dθ

.

The prior model probabilities, τ(k), are updated by the efficacy response data Dj.

It is expected that the more the data support model k, the greater its posterior

probability will be. Thus, we appeal to sequential Bayesian model choice in order

to guide allocation decisions. Each time a new patient is enrolled, the single model,

k∗, with the largest posterior probability is chosen such that

k∗ = arg max
k

Pr(Mk|Dj), k = 1, . . . , 2I − 1.
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We then take the working model, Gk∗(di, θ) associated with the model and obtain

estimates of the efficacy probabilities at each dose through

π̂E(di) = Gk∗(di, θ̂jk∗)

where

θ̂jk∗ =

∫
Θ

fk∗(θ|Dj)θdθ.

Dose assignments can then be made according to these estimates and φT , which is

redefined in the targeted agent case as the toxicity tolerance instead of the target

toxicity rate defined in the original CRM.

An important feature of the design of the proposed method is its flexibility

to work under different assumptions for the dose-efficacy curve. It is possible to

incorporate various degrees of uncertainty about the shape of the dose-efficacy curve.

If there is strong reason to believe that the dose-efficacy curve will not plateau in

the dose range, then the method will only take I models into account, one for each

location of the peak of the curve. On the other hand, if there is strong knowledge

that the efficacy curve will plateau in the range of doses, then only the plateau

models can be considered as possible models by the method.

2.3 Algorithm

At each interim dose decision, the method proposed here will allocate the next

patient to the dose that is deemed the most efficacious from the doses that have

an acceptable level of toxicity. Once the estimates for probability of toxicity and

efficacy at each dose are obtained, an acceptable set is defined as those doses having

an estimated level of toxicity less than φT . At the enrollment of the jth patient, we
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define the acceptable dose set as

Aj = {di : π̂T (di) ≤ φT i = 1, . . . , I}

where π̂T (di) = π̂Tij . The next patient is then allocated to a dose based on estimated

efficacy probabilities, π̂E(di). Using the acceptable set notion allows us to exclude

any dose that the model deems too toxic based on the toxicity upper bound. Since

the acceptable set is redefined after the inclusion of each patient based upon the

current toxicity estimates it is possible, once more data has been observed, for Aj

to include a dose that was previously excluded when a limited amount of data

existed. This stage of the dose-finding algorithm depends on how much data has

been observed in the trial. Note that the proposed design is “greedy” in nature

since at each interim dose decision the dose given to the next patient is the current

estimated OBD. However, greedy designs have a practical problem that, in some

cases, little or no information is gained by choosing the current estimated OBD.

This occurs when only a few doses have been experimented with and the design

sticks on a suboptimal dose. Thall and Nguyen (2012) give merit to employing the

use of this randomization when they note,

“The general phenomenon of a greedy sequential decision procedure becoming
stuck at a suboptimal treatment is well-known. A common solution for this
problem is to randomly assign some patients to suboptimal treatments. This
distributes patients more evenly among treatments and consequently more
is learned about the design space, often with a resulting improvement in the
method’s reliability”

Therefore, the algorithm is broken up into an adaptive randomization (AR) phase

at the beginning and then a maximization phase for the remaining portion of the

trial.
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2.3.1 Adaptive Randomization Phase

As noted above, the AR phase is designed to prevent the algorithm from locking-in

on a dose early in a trial simply because the method doesn’t have enough information

about other doses. Therefore, we need experimentation at other levels in order to

gather information on the toxicity and efficacy profiles. Due to this fact, we do not

rely entirely on the maximization of the estimated efficacy probabilities to guide the

dose allocation decisions but implement a randomized allocation algorithm to obtain

information over many doses that are deemed acceptable. Based on the estimated

efficacy probabilities, π̂E(di), for doses in the acceptable set, Aj, we calculate a

randomization probability Ri,

Ri =
π̂E(di)∑

di∈Aj

π̂E(di)
,

and randomize the next patient to dose di with a probability of Ri. We only want to

randomize for a subset of patients, just enough to allow information to accumulate

on untried safe doses. In the simulations presented in this dissertation, the AR

phase is set to a third of the total maximum sample size. For example, if we are

running a trial with a sample size of 36 patients, then the AR phase will end after 12

patients. Other AR sample sizes will be explored. We denote the AR phase sample

size as nR.

2.3.2 Maximization Phase

The remaining patients’ dose allocation will be determined through a maximization

phase. After the adaptive randomization phase has ended after j patients then

we define the acceptable set Aj and allocate the next patient to the dose with the

highest estimated efficacy within this set. Formally, the dose given to the jth patient
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is xj = arg max
di∈Aj

π̂E(di). At the end of the maximization phase, the OBD is defined

as the dose that is given to the hypothetical (n+ 1)th patient as determined by the

model.

2.3.3 Starting the Trial

In order to get the trial underway, we will choose the efficacy skeleton with the

largest prior probability, τ(k), among the orders being considered. If several, or all,

of the models have the same maximum prior probability, then the algorithm will

choose at random from these models. Given the starting skeleton, k∗, for efficacy,

the starting dose x1 is then chosen. Specifically, based on the toxicity skeleton, pi,

we define the acceptable set, a priori, to be

A1 = {di : pi ≤ φT ; i = 1, . . . , I}.

Based on the efficacy skeleton qik∗ , for doses in Aj, the algorithm calculates the

randomization probability Ri,

Ri =
qik∗∑

di∈A1

qik∗

and randomizes the first patient to dose x1 = di with probability Ri.

2.4 Method Based Solely on Efficacy

Since there may not be clinically significant toxicity for targeted agents, it was

suggested by Hunsberger et al. (2005) to determine dose decisions based solely

on efficacy. Therefore, we present a method which only determines interim dose

decisions based on the efficacy model presented in Section 2.2. The algorithm for

this method will proceed in much the same way as presented in Section 2.3 with the
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exception that there will be no acceptable set since the dose-toxicity curve is not

taken into account. Specifically, we allocate the next patient to dose di

Ri =
π̂E(di)∑

di∈1,...,I

π̂E(di)

in the AR phase of the algorithm and allocate the jth patient to

xj = arg max
di∈1,...,I

π̂E(di)

in the maximization phase.

A simulation study comparing the slope-sign method of Hunsberger et al. (2005),

which stops the dose escalation when the probability of efficacy remains constant

across dose levels, and the local logistic (L-logistic) and Isotonic regression methods

of Zang, Lee, and Yuan (2014) to the proposed method, denoted WTE, is presented

in Table B.1 to demonstrate the ability of the proposed method to model efficacy on

its own. In all the scenarios except Scenario 6, the proposed method outperforms

the slope-sign method and even in this scenario the proposed method has a PCS of

29.4% as compared to the slope-sign PCS of 31.3%. However, the improvement of

identifying the true OBD for the proposed method over the slope-sign method can

be seen in Scenario 8 in particular where the PCS for each method is 74.6% and

45.7%, respectively. The proposed method is competitive with the L-logistic design

from Zang, Lee, and Yuan (2014) and outperforms the method in Scenarios 7 and

8. It is interesting to note that the proposed method significantly outperforms the

nonparametric isotonic regression method in most of the presented scenarios, partic-

ularly Scenario 3 where the OBD is at the highest dose level. This fact demonstrates

the improvement gained by assuming some parametric model for the dose-efficacy

curve. Even in Scenarios 6 and 8, where the isotonic regression slightly outperforms
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the proposed method, the difference is not very large, about 5% worse in the pro-

posed method, and the proposed method still identifies the OBD in a large portion

of the simulated trials. Scenario 6 is an interesting situation where the dose-efficacy

curve plateaus at dose level d2. Since we are assuming there is no clinically signif-

icant toxicity there is no way clinical way to break the tie between the last four

doses. However, d2 is considered the OBD due to economic reasons since increased

dosage means increased costs to the drug companies.

2.5 Simulation Studies of Proposed Method

2.5.1 Illustration

In this section, we present the results from a single trial. Consider a scenario

as presented in Thall and Cook (2004), where there are four possible dose lev-

els, {d1, d2, d3, d4}. The true toxicity probabilities are πT (d1) = 0.05, πT (d2) =

0.15, πT (d3) = 0.42, and πT (d4) = 0.65 and the true efficacy probabilities are

πE(d1) = 0.25, πE(d2) = 0.65, πE(d3) = 0.50, and πE(d4) = 0.05. The toxicity

tolerance is set to φT = 0.40 and therefore the underlying true OBD is d2 since

the true acceptable set is A = {di : πT (di) ≤ 0.40 i = 1, . . . , 4} = {d1, d2} and

πE(d2) > πE(d1). The trial will treat a total of n = 36 patients so the adaptive

randomization size, nR, is set to 12 patients. In order to get the trial underway,

skeletons need to be specified for both the toxicity probabilities and the efficacy

probabilities for each ordering. Let p1 = 0.05, p2 = 0.20, p3 = 0.35, and p4 = 0.45

and we consider 2× 4− 1 = 7 possible models for efficacy as presented in Table 2.1.

Since we believe each of the seven models is equally likely, we will assume that, a

priori, τ(1) = · · · = τ(7) =
1

7
. The results of the trial are presented in Table 2.2

along with an illustration in Figure 2.1, where an open circle represents subject j did
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Table 2.1: Models for efficacy with 4 dose levels
Dose Level

Model (k) Type 1 2 3 4
1 Peak 0.1 0.3 0.5 0.7
2 Peak 0.3 0.5 0.7 0.5
3 Peak 0.5 0.7 0.5 0.3
4 Peak 0.7 0.5 0.3 0.1
5 Plateau 0.3 0.5 0.7 0.7
6 Plateau 0.5 0.7 0.7 0.7
7 Plateau 0.7 0.7 0.7 0.7

Figure 2.1: Sequential trial of 36 patients

patient

dose

1

2

3

4

3 6 9 12 15 18 21 24 27 30 33 36

not experience a toxicity, a red-colored circle represents the subject experienced a

toxicity, a dot within the circle represents that the subject experienced an efficacious

response, and no dot within the circle represents no efficacious response.

When determining which dose to give to the first patient, we first determine

which doses are deemed safe through the definition of the acceptable set A1 =

{di : pi ≤ 0.40} = {d1, d2, d3}. Since we assumed all of the models are equally

likely, we randomly choose a single model, which in this trial is M6. Therefore,

π̂E(d1) = 0.5 and π̂E(d2) = π̂E(d3) = 0.7. Now that we have the estimated efficacy
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Table 2.2: Sequential trial of 36 patients

j xj yj β̂ zj θ̂k k j xj yj β̂ zj θ̂k k
1 3 1 0 1 0 6 20 3 1 -0.068 0 -0.128 1
2 1 0 -0.852 0 -0.465 2 21 2 0 -0.151 0 0.854 3
3 1 0 -0.553 0 -0.003 5 22 2 1 -0.113 0 0.907 3
4 1 0 -0.367 0 -0.14 1 23 2 0 -0.222 0 1.085 6
5 2 1 -0.239 1 -0.001 1 24 2 0 -0.186 1 0.054 1
6 1 0 -0.62 0 -0.384 1 25 2 0 -0.152 1 1.05 6
7 1 0 -0.51 0 -0.266 1 26 2 0 -0.121 1 0.87 3
8 2 0 -0.423 0 -0.175 1 27 2 1 -0.092 1 0.812 3
9 2 1 -0.308 1 -0.052 1 28 2 0 -0.181 1 0.759 3
10 2 0 -0.52 1 -0.265 1 29 2 0 -0.153 0 0.709 3
11 2 0 -0.421 0 -0.423 1 30 2 0 -0.126 1 0.752 3
12 1 0 -0.337 0 -0.318 1 31 2 0 -0.101 0 0.706 3
13 2 0 -0.295 1 -0.261 1 32 2 0 -0.077 1 0.747 3
14 2 0 -0.228 0 -0.384 1 33 2 0 -0.054 0 0.703 3
15 2 0 -0.169 1 -0.303 1 34 2 0 -0.033 1 0.742 3
16 3 0 -0.116 0 -0.407 1 35 2 0 -0.012 0 0.696 3
17 3 1 -0.052 0 -0.319 1 36 2 1 0.007 1 0.738 3
18 2 0 -0.152 0 0.811 6 37 2 0 -0.066 1 0.699 3
19 2 0 -0.108 0 0.877 6

probabilities at each of the three dose levels in the acceptable set, we determine the

randomization probabilities. Note that R1 =
0.5

0.5 + 0.7 + 0.7
≈ 0.26 and R2 = R3 =

0.7

0.5 + 0.7 + 0.7
≈ 0.37. Then, we randomly determine that the dose given to the

first patient is d3.

Given that the first patient now has data for toxicity and efficacy, we can be-

gin modeling the dose-toxicity and dose-response curves. Following Section 1.3.3

to obtain an estimate of the parameter, β, we estimate the probabilities of tox-

icity through the equation π̂T (di) = p
exp(β̂)
i at each dose to be π̂T (d1) = 0.279,

π̂T (d2) = 0.503, π̂T (d3) = 0.639, and π̂T (d4) = 0.711. Therefore, the acceptable

set is estimated to be A2 = {d1} since d1 is the only dose that has an estimated

probability of toxicity to be less than 0.4. Note that at this juncture, we are able to

determine that the dose to be given to the third enrolled patient should be d1 and
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thus no efficacy modeling is required since there is only one dose in the acceptable

set.

At the enrollment of the third patient, the Bayesian posterior mean estimate for

the β parameter in the model for toxicity was calculated to be−0.553. Therefore, the

estimated probabilities of toxicity were π̂T (d1) = 0.178, π̂T (d2) = 0.396, π̂T (d3) =

0.547, and π̂T (d4) = 0.632, which leads to an acceptable set of A3 = {d1, d2}. The

posterior model probabilities for efficacy were estimated to be Pr(M1|D2) = 0.191,

Pr(M2|D2) = 0.210, Pr(M3|D2) = 0.100, Pr(M4|D2) = 0.035, Pr(M5|D2) = 0.210,

Pr(M6|D2) = 0.155, and Pr(M7|D2) = 0.098. Since M2 and M5 have the same

posterior model probability, we randomly select one model, which in this case is M5.

Therefore, we obtain θ̂k = −0.465 which leads to estimated probabilities of efficacy

of π̂E(d1) = 0.301, π̂E(d2) = 0.501, π̂E(d3) = 0.701, and π̂E(d4) = 0.701 through the

equation πE(di) = q
exp(θ̂k)
ik . Now, the dose administered to the fourth entered patient

was determined to be d1 based on randomization with the estimated probabilities

of R1 = 0.375 and R2 = 0.625.

The method continues in this manner through the end of the AR phase. Once the

AR phase comes to a conclusion after patient 12, we enter the maximization phase.

Toxicity and efficacy probabilities are modeled in the same way, except now we

simply choose the dose level with the highest estimated efficacy within the acceptable

set. At the enrollment of the 13th patient, the estimated toxicity probabilities were

π̂T (d1) = 0.100, π̂T (d2) = 0.289, π̂T (d3) = 0.445, and π̂T (d4) = 0.541, which leads

to an acceptable set of A13 = {d1, d2}. Note that M1 is chosen and the estimated

efficacy probabilities at doses 1 and 2 are π̂E(d1) = 0.396 and π̂E(d2) = 0.586.

Therefore, d2 is chosen as the dose administered to the 13th patient in the trial.

The proposed method continues in this way until all 36 patients have been entered

into the trial and the dose which would have been allocated to the hypothetical

37th patient is d2. Therefore, the estimated OBD from this trial is determined to
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be d2 with an estimated probability of toxicity of π̂T (d2) = 0.222 and an estimated

efficacy probability of π̂E(d2) = 0.488.

2.5.2 Results

A simulation study is shown below to demonstrate the performance of the proposed

method as compared to the method developed by Thall and Cook (2004). In each

set of 5000 simulations, in order to define the acceptable set A, the toxicity tolerance

was specified to be φT = 0.40. Only the peak models from Table 2.1 were taken into

consideration as possible candidate models by the method. The value of φT and

the set of candidate models were chosen in order to provide a justifiable comparison

to Thall and Cook (2004). We ran simulations using outcomes generated with

the five fixed values of ψ used in Thall and Cook (2004) where ψ represents the

association parameter and ψ = 0 corresponds with πT and πE being independent;

ψ = {−2.049;−0.814; 0; 0.814; 2.049}. This analysis was performed to assess the

sensitivity of the proposed method to differing values of the correlation between

toxicity and efficacy. The sample size for each simulated trial was set to n = 36.

The performance of the proposed method, which is denoted WT, and the design

of Thall and Cook (2004), denoted TC, is summarized in Table B.2. Table B.2

reports the percentage of trials in which each dose was selected as the OBD at

the end of each trial for each of the Scenarios 1-5. The true (toxicity, efficacy)

probabilities for each dose are given next to the number of the scenario. In Scenario

1, dose level 4 is the only overly toxic dose and dose 3 is defined as the OBD

having the largest efficacy among those with tolerable toxicity. The performance of

the proposed method and TC are comparable in this scenario, with the proposed

method recommending the OBD in a slightly higher percentage of trials than TC

(max 86.0 v. 80.3). However, TC does a better job of not recommending the
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overly toxic dose 4, doing so approximately 5% less than the proposed method. In

Scenarios 2 and 3, the performance of the two methods is nearly identical across the

dose range in terms of recommendation percentages. In Scenario 4, TC does a little

better in not recommending the dose level above the OBD (4.8) compared to the

proposed method (max 7.5). For this scenario, this is not a major concern for the

proposed method since it still recommends the OBD in a large majority of trials and

the second dose and none of the other doses have true toxicity probabilities larger

than φT . Therefore, the method proposed did not expose patients that were not

treated at the OBD to overly toxic levels.

Although across nearly all of the scenarios considered, the performance of WT

and TC (for ψ = 0) is quite similar, some differences need to be noted. In Scenario

5, the performance of TC is superior. The true optimal dose is at level 1 with true

(toxicity, efficacy) probabilities (0.05, 0.45). TC recommends this dose in 72.9% of

trials, while WT does so in a maximum of 46.5% of trials. WT selects dose level 2,

with true probabilities (0.45, 0.50) in 53.3% of trials. This dose has a true toxicity

probability just above the toxicity tolerance value φT = 0.40 used to define the

acceptable set, and it appears as though the toxicity probability estimates include

dose level 2 often enough to where it is recommended as the optimal dose in a

high percentage of trials. We reran Scenario 5 with φT = 1/3 and the previous

recommendation percentages (46.5, 53.3) for the first two dose levels became (64.2,

35.7), improving the performance in this particular scenario from when φT = 0.40.

Despite this improvement, it appears as though TC may have an advantage when a

dose has a true toxicity probability close to, but above, φT .

The simulation results indicate that an advantage of the proposed method lies

in its robustness to the specification of the association between toxicity and efficacy.

As is evident from Table B.2, the performance of the proposed method is practi-

cally unchanged for all values of ψ. In Thall and Cook (2004), the authors report
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recommendation percentages for the various values of ψ for Scenario 2 only. When

ψ = 0, the recommendation percentages for their method for doses 3 and 4 were

(13.6, 86.0). For ψ = -2.049, these two percentages become (64.0, 35.6); for ψ =

-0.814, (69.4, 30.4); for ψ = 0.814, (40.4, 41.1); and for ψ = 2.049, (82.0, 15.8). With

dose 4 being the OBD, it is desirable that it be recommended in a high percentage

of trials. The recommendation percentage for dose 4 drops from 86.0% when ψ =

0 to, at best, 41.1% for a non-zero value of ψ. Thall and Cook (2004) point out

that a strong positive or negative association between toxicity and efficacy will di-

minish the “likelihood of acceptability of all doses.” The dependence of Thall and

Cook (2004) on the association parameter can be contributed to the fact that they

consider ψ a parameter in their model and therefore assumed a prior of N(0, 1) on

ψ even when ψ = −2.049. However, the fact that the proposed method does not

depend so heavily on the association parameter makes it an attractive alternative

to the TC method. Overall, Table B.2 indicates that the proposed method is com-

petitive with that of Thall and Cook (2004). Another advantage of the proposed

method over that proposed by Thall and Cook (2004) is its relative simplicity com-

pared to the TC method. Thall and Cook (2004) noted their method “is somewhat

more structured than most dose-finding methods, and thus requires the statistician

to work harder.” The growing familiarity of the CRM in early-phase clinical trials

contributes to the fact that the proposed method is well understood by clinicians

and review boards.

Another important comparison that demonstrates further merit of the proposed

method is a comparison to the method proposed by Hoering et al. (2013) for iden-

tifying the OBD in a trial investigating I = 6 dose levels. The comparison assesses

the performance of each method over the twelve true toxicity/efficacy scenarios con-

tained in their paper, which are provided in Figure A.1. True toxicity probabilities

are denoted T1 through T4, while true efficacy probabilities are denoted R1 through
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Figure 2.2: Simulation results comparing the proposed method to the method in-
troduced by Hoering et al. (2013).
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R3. In each set of 1000 simulated trials, the maximum sample size was set to n = 64.

The Phase II portion of Hoering et al. (2013) randomized n2 = 48 patients to three

doses levels (arms); (1) the recommended dose (RD) from Phase I, (2) the dose level

immediately above the RD (RD+), and (3) the dose level immediately below the

RD (RD-). For response, the authors test competing hypotheses H0 : p = 0.05 vs.

H1 : p = 0 : 30. The Phase I sample sizes for the Hoering et al. (2013) method
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are reported in Table 1 of Hoering et al. (2011), with a minimum sample size of

n1 = 16. Therefore, we thought a justifiable total sample size for comparison was

n = 16 + 48 = 64. For the proposed method, the size of the AR phase was set

equal to one quarter the total sample size so that nR = 16. In a subsequent sec-

tion, we investigated the impact of various sizes, nR, of the AR phase on operating

characteristics.

The proposed design embodies characteristics of the CRM so we can utilize

these features in specifying design parameters. The toxicity probabilities were

modeled via the empiric model given in Section 1.3.3 with skeleton values pi =

{0.01, 0.08, 0.15, 0.22, 0.29, 0.36}. It has been shown (O’Quigley and Zohar, 2010)

that CRM designs are robust and efficient with the implementation of “reasonable”

skeletons. Simply defined, a reasonable skeleton is one in which there is adequate

spacing between adjacent values. This skeleton also reflects the idea that, for tar-

geted agents, it is often assumed that there is minimal toxicity over the dose range.

For efficacy, probabilities were modeled via the class of empiric models in Section

2.2, using 2I − 1 = 11 skeletons that correspond to the possible dose-efficacy rela-

tionships. The six sets of values used for the unimodal relationships were:

1. qi1 = {0.60, 0.50, 0.40, 0.30, 0.20, 0.10}

2. qi2 = {0.50,0.60, 0.50, 0.40, 0.30, 0.20}

3. qi3 = {0.40, 0.50,0.60, 0.50, 0.40, 0.30}

4. qi4 = {0.30, 0.40, 0.50,0.60, 0.50, 0.40}

5. qi5 = {0.20, 0.30, 0.40, 0.50,0.60, 0.50}

6. qi6 = {0.10, 0.20, 0.30, 0.40, 0.50,0.60}

The five sets of values for the plateau relationships were:
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7. qi7 = {0.20, 0.30, 0.40, 0.50,0.60,0.60}

8. qi8 = {0.30, 0.40, 0.50,0.60,0.60,0.60}

9. qi9 = {0.40, 0.50,0.60,0.60,0.60,0.60}

10. qi10 = {0.50,0.60,0.60,0.60,0.60,0.60}

11. qi11 = {0.60,0.60,0.60,0.60,0.60,0.60}

We assumed, a priori, that each of these eleven models was equally likely and set

τ(k) = 1/11.

The results of the comparison are summarized in Table B.3 and Figure 2.2,

with each bar in the figure representing the proportion of simulated trials that each

method selected a good dose [Figure 2.2(a)] and the best dose [Figure 2.2(b)]. For

each scenario, using the definitions of Hoering et al. (2013), the best dose is defined

as the dose level(s) that maximizes efficacy while assuring safety, and a good dose

as a level where efficacy is above some pre-specified efficacy threshold while also not

being too toxic. In Figure A.1, a blue circle represents a good dose, while an orange

circle denotes a best dose. When there is only an orange circle, then the good and

best doses coincide with each other. The proposed method is in green while the

method developed by Hoering et al. (2013) is in black. Overall, the results indicate

a superior performance for the proposed method over that of Hoering et al. (2013).

The left column of Figure A.1 and the first four rows of Table B.3 represent cases

in which the dose-efficacy curves have monotone increasing probabilities. In the

first three of these scenarios (R1T1, R1T2, and R1T3), d4 is the only good and

best dose. WT outperforms Hoering et al. (2013) in these scenarios by selection

percentages of 39%, 32% and 9%, respectively. In R1T4, the toxicity probabilities

plateau at a value of 0.05 across the dose range, so the highest dose, d6, is considered

the best dose. The Hoering et al. (2013) method selects the best dose as the OBD
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in 63% of simulated trials, compared to 54% by the proposed method. The next

four rows of Table B.3 and the middle column of Figure A.1 illustrate situations

in which the dose-efficacy curves increase until dose d4 and remain constant after

d4 (plateau). Again, in terms of selecting both good and best doses, the proposed

method improves upon the selection percentages of Hoering et al. (2013) in most

cases (R2T1, R2T2, R2T4), by as much as 36% in R2T1. Hoering et al. (2013)

performs better in selecting a good dose in R2T3, doing so in 71% of trials compared

to 59% by the proposed method. Finally, in the last four rows of Table B.3 and the

right column of Figure A.1, most of the doses are considered to be best/good doses,

so, as expected, both methods produce high selection percentages in these cases. The

proposed method does perform slightly better in these last four scenarios, yielding

selection percentages that range from 3% to 13% higher than those produced by

Hoering et al. (2013). We feel that this improved performance by the proposed

method across the twelve scenarios considered here can mostly be attributed to

Hoering et al. (2013)’s use of a Phase I portion to identify an MTD. This may not

be appropriate for targeted agents due to the uncertainty surrounding the shape of

the dose-efficacy curve, especially in scenarios similar to that presented in Table 1.2.

If the MTD-based Phase I portion does not identify doses around the OBD, then

the Phase II portion could possibly be randomizing to incorrect doses. In contrast,

throughout the duration of the trial, our method continuously monitors toxicity and

efficacy data to identify a set of safe doses, within which we allocate to a dose with

high efficacy. This allows for the adaptive updating of the doses being considered

after each patient inclusion, rather than restricting attention to two or three doses

after a Phase I component designed to find the MTD.

The proposed method is superior in almost all cases when compared to Hoering

et al. (2013). It is also competitive with Thall and Cook (2004) except in cases

where a dose lies close to, but above, the toxicity tolerance φT . However, the use of



37

the two-parameter logistic model will be explored in order to handle such scenarios.

Overall, the strong showing of our method against published work in the area in

extensive simulation studies makes us feel confident in recommending it.

2.6 Design Specifications

There are aspects of the design which require further exploration in order to provide

merit to the way the algorithm is currently performed. Additionally, this section

will demonstrate the robustness of the method in certain cases. Studies will include:

1. Adaptive Randomization Sample Size

2. Skeleton Choice

3. Working Model Choice

4. Utility Functions

5. Model Selection Criteria.

2.6.1 Adaptive Randomization Sample Size

It was stated above that nR will be set to one-third of the total sample size but nR

could be set to any number between 0 and n. The simulation study below demon-

strates that as long as some mixture of adaptive randomization and maximization

phases are utilized, then one can contract or expand the amount of patients in the

adaptive randomization phase and the operating characteristics of the method will

be relatively unaffected. In the study presented, nR takes values in {0, 12, 18, 24, 36}.

Four scenarios are presented in Table B.4. All design specifications, other than

nR are held constant throughout the study in order to allow for a direct comparison of

the results. The results show the percentage of simulated trials which identify each of



38

the doses out of 1000 simulations. The adaptive randomization sample size is varied

from all maximization (nR = 0) to all randomization (nR = 36). In the first scenario,

the percentage correct selection (PCS), which measures how often the true OBD

(indicated in bold) is chosen, ranges from 48.1% to 52.9% which demonstrates the

robustness of the choice of nR. As expected, the results demonstrate that using all

randomization hinders the method’s ability to correctly identify the OBD, especially

in the third scenario where the PCS is only 25.7% when nR = 36 which is about

9% less than the worst mixture of randomization and maximization. Based on

simulation studies it is recommended to use a randomization sample size between

one-fourth and one-half of the total sample size. However, the size of the AR phase

can be expanded or contracted according to the desire of the clinician / statistician

team and operating characteristics will be relatively unaffected.

2.6.2 Skeleton Choice

An important question to study is how robust the proposed method is to the choice of

the skeleton, both for toxicity and efficacy. This topic has been vigorously studied in

the context of the CRM by O’Quigley and Zohar (2010), Lee and Cheung (2009), and

Daimon, Zohar, and O’Quigley (2011). They found that as long as a “reasonable”

skeleton is used, then the CRM is robust and efficient. A “reasonable” skeleton is

one in which there is adequate spacing between adjacent dose levels. The point of

the spacing between adjacent dose levels is to allow the CRM to be able to identify

each dose level as the correct dose dependent on the underlying truth.

Four skeleton choices for toxicity are presented in the simulation study presented

in Table B.5. Additionally, two different efficacy skeleton choices for the models are

studied. The toxicity skeletons explored were:

1. α1 = {0.05, 0.20, 0.35, 0.45}
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2. α2 = {0.20, 0.30, 0.45, 0.60}

3. α3 = {0.10, 0.25, 0.40, 0.55}

4. α4 = {0.01, 0.08, 0.15, 0.22}.

The first toxicity skeleton reflects the notion that, a priori, we believe that three

out of the four doses have an acceptable level of toxicity. Skeletons 2, 3, 4 reflect

the notion that we believe that two, three, and four doses, respectively, have an

acceptable level of toxicity, a priori. One of the efficacy skeletons chosen for the

models are the skeletons presented in Table 2.1, denoted Q1 in Table B.5. The

other is a variation, denoted Q2, with the following models:

1. qi1 = {0.10, 0.20, 0.30, 0.50}

2. qi2 = {0.20, 0.30, 0.50, 0.30}

3. qi3 = {0.30, 0.50, 0.30, 0.20}

4. qi4 = {0.50, 0.30, 0.20, 0.10}

5. qi5 = {0.10, 0.20, 0.50, 0.50}

6. qi6 = {0.30, 0.50, 0.50, 0.50}

7. qi7 = {0.50, 0.50, 0.50, 0.50}

The toxicity skeletons all perform fairly similarly across the four scenarios. In

Scenario 4, the four toxicity skeletons perform almost identically with the maximum

PCS of 92.1% occurring for α2 and the minimum PCS of 90.7% occurring for α1

and α3. The biggest discrepancy in the performance occurs in Scenario 2 when the

OBD is at the highest dose d4. In this situation, skeleton α2 has the hardest time

of identifying the true OBD since p4 = 0.60. This large value is harder to overcome
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than in α1 and α4 where p4 takes the value of 0.45 and 0.22, respectively. Therefore,

the method tends to treat patients at less toxic doses for this skeleton specification.

It is not that surprising that α4 outperforms the other toxicity skeletons since it

assumes, a priori, that all doses have an acceptable level of toxicity. Even when

there is a discrepancy, the proposed method still recommends the OBD in a large

percentage of the trials so there is robustness to the choice of the toxicity skeleton,

as long as reasonable skeletons are selected.

From the results in Table B.5, we see that the method is robust against the choice

of the efficacy skeleton values as well. The method performs almost identically under

efficacy skeletons Q1 and Q2 in Scenarios 1 and 2. There is a minor difference in

Scenarios 3 and 4 where Q2 does a better job of not treating patients at doses

higher than the OBD. In particular, Q2 only recommends dose d3 5.5% of the time

as compared to Q1 recommending the dose 10.6% of the time. Overall, the method

is fairly robust against the choice of the efficacy skeleton used to obtain the model-

based OBD.

2.6.3 Working Model Choice

As mentioned in Section 1.3.3, there exists a variety of choices for the working model

in order to model toxicity and efficacy. Therefore, a simulation study analyzing

the operating characteristics of the proposed method under different choices of the

working model from within the CRM class including

1. Empiric Model

2. One-parameter Logistic

3. Two-Parameter Logistic
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is performed. We again used the scenarios from Thall and Cook (2004) to evaluate

the operating characteristics of the proposed method under these different working

models. The toxicity tolerance rate is set to φT = 0.40 and the PCS of correctly

identifying the OBD is presented on the basis of 1000 simulated trials.

The skeleton values were held consistent to previous simulations and were set to

p1 = 0.05, p2 = 0.20, p3 = 0.35, and p4 = 0.45 for the empiric model. In the two

logistic models, the dose scale is different from the empiric model so the skeleton

values were rescaled by computing

di = log
pi

1− pi
− α0

where α0 is a fixed constant for the one-parameter model and

di = log
pi

1− pi
− ᾱ

where ᾱ is the posterior mean for the intercept parameter α for the two-parameter

model. Similar rescaling was also performed on the efficacy skeletons qik in order

to model the probability of efficacy. We obtained the parameter estimates in the

two-parameter setting using the function bayesglm in the R package arm (R Core

Team). In order to account for the different degrees of the monotonicity assumptions

for toxicity and efficacy, a different prior is used on the intercept parameter in both

logistic models. We need to specify a vague normal prior with a mean of 0 and a

variance of 1.34 for efficacy in order for the model to be flexible enough to account

for the uncertainty in the shape of the dose-efficacy curve. However, when we

model toxicity, we want to exclude models where the dose-toxicity curve is not

monotonically increasing. Therefore, we need to specify the prior on β as normal
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with a mean of 1 and set the variance parameter, σ2, such that

0.975 =

∫ 0

−∞

1√
2πσ2

e

−(x− 1)2

2σ2 .

Specifically, we set σ2 = 1.3237754 and there will be a small, a priori, probability

that the slope parameter is negative.

Table B.6 presents a simulation study of these three working models. The em-

piric model and one-parameter logistic functions behave similarly for Scenarios 1-4

which demonstrates some robustness against the choice of the working model in the

proposed method. However, the main difference occurs in Scenario 5 where the true

optimal dose is at level 1 with true (toxicity, efficacy) probabilities (0.05, 0.45) and

dose level 2 has true probabilities (0.45, 0.50). In this scenario, the one-parameter

logistic function, recommending the true OBD in 66.5% of the trials, significantly

outperforms the empiric model which only recommended dose 1 as the OBD in only

46.5% of the trials. Therefore, if there is a strong prior belief that the dose above

the OBD is just above the toxicity tolerance, then we recommend using the logistic

working model in order to capture this effect. The two-parameter logistic function is

of particular interest because its use may be suited for scenarios where the toxicity

of a dose lies close to, but just above, the toxicity tolerance. This is due to the

fact that a two-parameter logistic function is more capable of capturing the entire

shape of the curve, whereas the one-parameter function is best suited for identifying

a target dose. However, the results in Table B.6 provide caution from using the

two-parameter logistic function in practice and reinforce the notion that the under-

parameterized working models outperform the multiple parameter working models

in the CRM context in most situations. The performance in Scenario 1 is partic-

ularly discouraging since it only recommends level 3 as the OBD in 39.0% of the

trials as compared with a minimum of 71.1% of the trials for the two one-parameter
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working models. On the other hand, the use of the two-parameter logistic function

is particularly encouraging in Scenario 5 where it recommends level 1 as the OBD

in 92.9% of the trials.

Due to the different natures of the toxicity and efficacy responses, the possi-

bility of using different working model choices for each response was explored. In

particular, the combined use of the two-parameter logistic function to model one

response and the one-parameter logistic function to model the other response was

explored using three cases: (1) model toxicity and efficacy using the two-parameter

and one-parameter working models, respectively, (2) model toxicity and efficacy

using the one-parameter and two-parameter working models, respectively, and (3)

model toxicity and efficacy both using the two-parameter logistic working model.

The motivation for this simulation is the goal for modeling toxicity is to identify a

set of doses that satisfy a toxicity tolerance can be thought of as targeting a certain

threshold and then uses all doses below the identified dose since it is assumed that

the toxicity probabilities are monotonically increasing or can be framed as wishing

to model the entire curve. Also, the goal when modeling efficacy can be framed as

choosing the dose with the highest efficacy from within the tolerable doses (mod-

eling the entire curve) or viewed as the targeting the efficacy rate of 1. Table B.7

presents the results analyzing the effect of the use of the two-parameter logistic func-

tion for cases (1), (2), and (3). In general, case (1) is the most viable alternative

across all scenarios to the use of the one-parameter logistic working model for both

toxicity and efficacy. Case (1) outperforms cases (2) and (3) in Scenarios 2 and 4

and is competitive in scenarios 3 and 5. However, caution must still be exercised

as demonstrated by the performance of all three cases which recommends the true

OBD in only a maximum of 59.0% of trials in Scenario 1 where the OBD is level 3

and the one-parameter logistic correctly identifies level 3 as the OBD in 71.1% of

the trials. Therefore, it is recommended that any use of the two-parameter logistic
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working model in the proposed method is met with strong prior belief that there

exists a dose with a probability of toxicity close to, but above, the toxicity tolerance.

2.6.4 Utility Functions

The utility based approach is one which chooses the dose level with the maximum

utility value as the dose to be given to the next patient. Let G(di, θ) = πE(di, θ) be

the model for efficacy and F (di, β) = πT (di, β) be the model for toxicity. In Section

2.4, the dose decisions were determined according the following utility function:

UA = πE(di∗, θ) for i∗ ∈ A.

However, alternative utility functions could have been implemented to guide the

interim dose decisions. Other utility functions explored include the ones mentioned

in Cheung (2011) including the probability ratio, denoted

U =
πE(di, θ)

πT (di, β)
;

odds ratio, denoted

U =
πE(di, θ){1− πT (di, β)}
πT (di, β){1− πE(di, θ)}

;

a success probability which assumes independence between toxicity and efficacy,

denoted

U = πE(di, θ){1− πT (di, β)};

and an acceptable set success probability, denoted

UA = πE(di∗, θ){1− πT (di∗, β)} for i∗ ∈ A.
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A practical issue that arises when using the utility-based approach is which

utility function to use because different utilities can lead to different dose decisions.

This discrepancy is due to the fact that low doses are preferred based on the ratio

utilities since a low estimated toxicity probability inflates the ratio but higher doses

are preferred in the success probability approach. This favorability of high doses

by the success probability is the reason for introducing the acceptable set success

probability utility. Therefore, much care must be taken to choose an appropriate

utility function for a given trial (Cheung, 2011).

In order to explore the feasibility of the utility function, a simulation study is

presented for a design which uses the success probability to allocate patients to doses

as compared to the proposed method in Section 2.3 for various true toxicity and

efficacy scenarios and design specifications. Using success probabilities to guide the

interim dose decisions is done the same way as the proposed method but replacing

π̂E with the estimated success probability throughout the design. Therefore, the

randomization probability for dose i in the adaptive randomization phase becomes

Ri =
π̂E(di)× (1− π̂T (di))∑
di

π̂E(di × (1− π̂T (di))
.

The study was also carried out for the probability ratio and odds ratio but the

results are excluded from the table because they perform poorly overall. The ratios

perform poorly because the methods lock-in on a dose early-on in the trial and

become “stuck” at the dose no matter how much of the sample size is used as

the exploration sample size. This drawback is due to the fact that the ratios do

not have the restriction of being between zero and one that is apparent in the

success probability and the proposed approach. In the ratio setting, a dose level

could have a ratio estimate of around ten and the rest be below one because a
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drastically low estimated toxicity causes inflation of the ratio estimate which makes

the randomization probability for that dose to be close to one, which in turn, causes

the procedure to lock-in on a single dose that may be the incorrect dose.

A subset of the results are shown in Table B.8. Results are presented for both

the success probability and the acceptable set success probability utilities. When no

acceptable set is used in the success probability utility function to control toxicity,

the method often recommends a too toxic dose as the OBD. This notion is especially

apparent in Scenario 1 where the method recommends d4 as the OBD in 50.6%

of the simulated trials which is particularly troubling since πT (d4) = 0.80. This

aggressiveness of the success probability utility function is noted by Cheung (2011).

Therefore, it is our recommendation that if the success probability function is applied

to determine interim dose decisions, then the acceptable set success probability

utility is used to control toxicity and prevent treating patients at potentially harmful

doses. Notice that using the acceptable set success probability utility function is

a much better option than when no acceptable set is exploited. When using the

acceptable set success probability utility to guide interim dose decisions, the results

are almost identical to the proposed method across the scenarios presented in Table

B.8.

2.6.5 Model Selection Criteria

Instead of taking into account all the 2I − 1 models into consideration and possibly

including a model which is far worse than all the other models, a form of Occam’s

window criterion can be applied to cause the method to potentially converge to

the correct model quicker. In a crude approximation, simulations were performed

where the lowest half of the models in terms of the posterior model probability were

adaptively eliminated at two different stages: at nR and after three-fourths of the
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total patients have been enrolled into the trial. Another crude approximation which

was studied was to adaptively eliminate a quarter of the models at nR and another

quarter of the models from consideration at three-fourths of the way through the

trial. The simulation results are presented in Table B.9. Notice that the results

diminish quite substantially from considering all the models throughout the entire

duration of the trial. Out of the three crude adaptive elimination methods, elim-

inating half of the models at three-fourths of the way through the trial seems to

work best. However, based on the simulation results, eliminating the orders in this

way does not seem to be a suitable way of conducting a trial.

In order to take into account more uncertainty into the model, the idea of using

Bayesian Model Averaging (BMA) was introduced in the context of the CRM by Yin

and Yuan (2009). The main purpose of using BMA is to incorporate the uncertainty

surrounding dose-finding by taking multiple skeletons into account at the same time.

The estimate for the efficacy probability at each dose level using BMA is given by

π̄E(di) =
2I−1∑
k=1

π̂E(dik) Pr(Mk|Dj)

where π̂E(dik) is the estimate of the efficacy probability at dose di under model Mk.

The notion of adaptively eliminating models from consideration fits in well when

using BMA in order to estimate the efficacy probability at each dose. Therefore,

using Occam’s window criterion, we will include model Mk for consideration at the

enrollment of the jth patient only if

Pr(Mk|Dj)
max

i∈1,...,2I−1
Pr(Mk|Dj)

> δ.

Since we make use of this criteria at the enrollment of each patient it is possible that

a model that was previously excluded could be included. In the simulation study
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presented in Table B.10, BMA using Occam’s window, denoted BMAO, used δ equal

to 0.6, as suggested in Yuan and Yin (2009) or 0.7 to exclude models deemed far

worse than the best fitting model. The BMAO as a model selection criteria fared

better than using simple BMA since it is excluding models far from the best model.

This notion is due to the nature of the possible efficacy models. Since the models

take into account where the peak or plateau occurs, including a model where the

peak is at dose level 4 is detrimental to the BMA average when the true peak of

the dose-efficacy curve occurs at dose level 1. Therefore, when BMAO excludes this

model from consideration, the estimates of the probability of efficacy at each dose

are improved. The downside of BMA in this context is seen in the simulation results

in Table B.10 where in Scenarios 2 and 4, when the OBD is on the boundary of the

dose levels, the PCS is only 73.6% and 76.5%, respectively, as compared to the PCS

of 74.2% for Scenario 2 and 90.7% for Scenario 4 for the proposed method. On

the other hand, BMAO performs much closer to the proposed method, especially in

Scenario 4 with a PCS of 90.2% for δ = 0.6 and 89.7 % for δ = 0.7. A key feature of

the BMAO method is that the simulation results show it to be fairly robust against

the choice of δ, which makes sense given δ being either 0.6 or 0.7. However, note

that the closer δ is set to 0, the closer the results for BMAO would be to the results

of BMA. If δ is set to 1, then the method will only utilize the model with the highest

posterior model probability to obtain the estimates for the efficacy probabilities and

will therefore be the same as the proposed method.

2.7 Terminating the Trial

In practice, investigators will want some measure by which to stop the trial in the

presence of undesirable toxicity in order to protect the patients safety. The notion of

terminating the trial early is especially important in oncology trials where a lengthy
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Table 2.3: An example of the proposed method using the Bayesian stopping rule
as presented in Yuan and Yin (2011) for a scenario presented in Thall and Cook
(2004).

True (toxicity, efficacy) probability

(0.50, 0.05) (0.75, 0.25) (0.85, 0.50) (0.87, 0.70) None n̄

φT = 0.40 38.8 0.0 0.0 0.0 62.2 25.37
φT = 0.30 8.8 0.0 0.0 0.0 91.2 17.11

Phase II study of the response may be required to determine any potential efficacy of

the experimental treatment and the concern is to quickly move to the Phase II trial

(O’Quigley 2002). Even though we do not expect undesirable toxicity in targeted

agents, it is still of upmost importance ethically to protect the patients enrolled in

the trial. Therefore, we still must ensure patients are not treated with potentially

harmful doses.

Yuan and Yin (2011) proposed a Bayesian stopping rule that terminates the trial

when

Pr(πT (d1) > φT |Ωj) > 0.9.

In other words, the trial is halted if the posterior probability that the lowest dose’s

probability of toxicity is greater than φT is larger than 0.9. The stopping rule

proposed for this design will only be assessed in the maximization phase, not in

the exploration phase. This allows the trial to gain enough information to more

accurately determine that the trial should be stopped, preventing it from stopping

too early. Consider the scenario from Thall and Cook (2004) presented in Table 2.3

where the lowest dose has a probability of toxicity of 0.50 which is larger than the

toxicity tolerance φT = 0.40. Similarly to Section 2.5.1, let p1 = 0.05, p2 = 0.20,

p3 = 0.35, and p4 = 0.45 as well as consider the 2 × 4 − 1 = 7 possible models for

efficacy as presented in Table 2.1. In Thall and Cook (2004), φT = 0.40 therefore

we expect that the trial would terminate fairly often before reaching the exhaustive
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sample size. Table 2.3 demonstrates that the proposed method with the stopping

rule stops 62.2% of the time with an average sample size of 25.37 as compared to the

total sample size of n = 36. Therefore, an average of roughly 11 fewer patients were

exposed to the toxic treatment by imploring the use of the stopping rule proposed

by Yuan and Yin (2009). Note that if the value that the posterior probability has

to be larger than decreases say to 0.8 from 0.9, then the method would stop more

often. Given how close φT is to πT (d1), the method performs well at stopping the

trial early. However, if the toxicity tolerance is decreased to φT = 0.30, then the

proposed method stops 91.2% of the time with an average sample size of 17.11.

Therefore, the stopping rule proposed by Yuan and Yin (2011) has good operating

characteristics when paired with the method proposed in this dissertation.



Chapter 3

Theoretical Properties

In the previous chapter, a large simulation study was presented to demonstrate the

behavior of the CRM for bivariate binary endpoints in identifying the OBD. The

method is recommending the true OBD or a treatment close to the true OBD in a

large number of simulated trials. Here, we provide a theoretical argument to prove

the large sample properties of the proposed method.

3.1 Convergence

3.1.1 Model Assumptions in CRM

The theoretical properties of the CRM are well documented in the literature. Shen

and O’Quigley (1996) showed that under certain conditions detailed below the orig-

inal CRM is consistent under model misspecification.

Condition 1. The parameter β belongs to a finite interval [A, B].

This condition eliminates degenerate cases (when the probability of toxicity is

equal to zero or one) when the value of the toxicity parameter, β, lies on the bound-

ary of the parameter space.
51
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The following are restrictions on the working model F (d, β) as defined in Section

1.3.3 and thus are verifiable.

Condition 2. F (d, β) is strictly increasing in d for all β.

Condition 3. F (d, β) is continuous and is strictly monotone in β in the same

direction for all d.

Let gij(β) = {1− F (di, β)}/{1− F (dj, β)}.

Condition 4. The following inequality holds |F ′(di, β)| ≥ |F ′(dj, β)|gij(β) for all

i > j.

This last condition puts a lower bound on |F ′(di, β)| in terms of |F ′(dj, β)|. The

next two conditions ensure that the model is flexible enough to approximate various

dose-toxicity scenarios with all possible locations of the maximum of the acceptable

set ` and any given toxicity tolerance φT .

Condition 5. For any given φT ∈ (0, 1) and a given `, there exists β in the param-

eter space such that F (d`, β) = φT .

Condition 6. Suppose F (di, β) is decreasing in β. There exist constants b and b̄

such that F (d1, b) > φT and F (dI , b̄) < φT and [b, b̄] is a compact subset of the

parameter space of β.

Condition 7. F (di, β) is bounded away from 0 and 1 on [b, b̄] for all i; and F ′(di, β)

is uniformly bounded in β.

Condition 8. For any given 0 < p < 1 and each i, the function

p
F ′(di, β)

F (di, β)
+ (1− p) −F

′(di, β)

1− F (di, β)

is continuous and strictly monotone in β.
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The following restriction:

Condition 9. For β ∈ [b, b̄],

F (di, β)F ′′(di, β)− {F ′(di, β)}2 ≤ 0

and

−F ′′(di, β) + [F (di, β)F ′′(di, β)− {F ′(di, β)}2] ≤ 0

with at least one inequality being strict for all i.

is required since we employ the use of the Bayesian posterior mean as the estimator

over the maximum likelihood estimator. This is a reasonable assumption as illus-

trated by the following example. Assume that the dose-toxicity function has the

following form

F (di, β) = d
exp(β)
i .

Note that

F (di, β)F ′′(di, β)− {F ′(di, β)}2 = expβ d
exp(2β)
i log di < 0 (3.1)

where

F ′(di, β) = expβ d
exp(β)
i log di

and

F ′′(di, β) = expβ d
exp(β)
i log di

[
expβ log di + 1

]
.

Furthermore, note that

−F ′′(di, β) + [F (di, β)F ′′(di, β)− {F ′(di, β)}2] =

expβ d
exp(β)
i log di

[
d

exp(β)
i − expβ log di − 1

]
< 0

(3.2)
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The inequalities in Equations 3.1 and 3.2 are strict due to Condition 7.

Cheung and Chappell (2002) introduced a simple way to evaluate the sensitivity

of the model in CRM. The authors introduced the notion of the home set at each

dose level defined as

Hi = {β ∈ B : |πT (di)− φT | < |πT (dk)− φT | for k 6= i}.

Then, they defined the least false parameter, µi, at each dose level to be µi =

F−1(πT (di)). Then, the CRM is consistent if the following condition holds:

Condition 10.

µ` ∈ H`

µi ∈ ∪Ij=i+1 Hj for i = 1, . . . , `− 1

µi ∈ ∪i−1
j=1 Hj for i = `+ 1, . . . , I

where ` is the location of the true maximum of the acceptable set.

Note that the above condition is a less-restrictive condition required for consis-

tency than the original condition proposed by Shen and O’Quigley (1996) which

required

µi ∈ H`.

3.1.2 Bivariate Extension of Model Assumptions

An extension to Condition 5 can be derived in the bivariate case to include both

toxicity and efficacy into the following flexibility condition:

Condition 11. For any given φT , φE ∈ (0, 1) and a given x, there exists a β and θ

in the parameter space such that πE(x, θ) = φE and πT (x, β) = φT .
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Given the standard conditions of the CRM on the dose-toxicity function dis-

cussed in the previous section and an extension of the richness condition to the one

from Cheung (2011) (Condition 5), then Theorem 1 will hold. The conditions on

Gk(x, θk) which are required in order to extend the theory developed in O’Quigley

(2006) and outlined in Wages, Conaway, and O’Quigley (2011) are as follows.

Condition 12. The parameter θk belongs to a finite interval [A, B].

This condition protects against degenerate cases when the probability of efficacy

equals 0 or 1 when θk lies on the boundary of the parameter space.

Condition 13. For a fixed θk, Gk(x, θk) is continuous and strictly increasing in x.

Condition 14. For a fixed x, Gk(x, θk) is continuous and strictly decreasing in θk.

Condition 15. There exist constants θk1, . . . , θkI ∈ [A, B] such that for 1 ≤ i ≤ I

(i) Gk(di, θki) = πE(di)

(ii) Gk(di, B) < θ < Gk(di, A)

(iii) For a unique θk0 ∈ (θk1, . . . , θkI), Gk(d0, θk0) = πE(d0) = θ0.

These conditions restrict our choices of the working model Gk(x, θk). It will also

be required that

Condition 16. For each 0 < t < 1 and each x the function

s(t, x, q) := t
G′k
Gk

(x, θk) + (1− t) −G
′
k

1−Gk

(x, θk)

is continuous and is strictly monotone in θk.

This is a standard requirement in order for the estimating equations to have

unique solutions.

Since we are using the Bayesian posterior mean as the estimate of θ, we require

the additional condition that
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Condition 17. For θk ∈ [b, b̄],

Gk(di, θ)G
′′
k(di, θ)− {G′k(di, θ)}2 ≤ 0

and

−G′′k(di, θ) + [Gk(di, θ)G
′′
k(di, θ)− {G′k(di, θ)}2] ≤ 0

with at least one inequality being strict for all i.

The proofs presented in this dissertation rely at first on maximum likelihood

theory. Therefore, heterogeneity must exist in the toxic responses. Heterogeneity

is defined as having at least one toxic and at least one non-toxic response. Once

the maximum likelihood results are shown, the results are extended to the model’s

Bayesian framework. Since maximum likelihood theory is utilized, we must first

prove that the maximum likelihood estimate exists after a certain point.

Lemma 1. If the true probabilities of toxicity are monotone increasing, 0 < πT (d1) <

· · · < πT (dI) < 1, then the Pr(n0 < ∞) = 1, where n0 = inf{k : 0 <
∑k

j=1 yj < k}

and is the point at which heterogeneity exists.

Proof: Let Tk =
∑k

j=1 [yj − πT (xj)]. The continual reassessment method’s defi-

nition implies that Tk is a martingale since each term in the summation is bounded,

−1 ≤ yj − πT (xj) ≤ 1. Therefore, we can apply the limit theorem for martin-

gales presented in Shiryaev (1984) §7.3, Corollary 2 to show that k−1Tk
a.s.→ 0. The

monotonicity assumption leads to

0 < πT (d1) ≤ 1

k

k∑
j=1

πT (xj) ≤ πT (dI) < 1

which demonstrates that 1 ≤
∑k

j=1 yj ≤ k − 1 as k tends to infinity. Therefore,

Pr(n0 <∞) = 1. �
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We require a slight tweak on the definition of the home set to take into account

the different goal of the trial we are performing. Therefore, the home set becomes

Hi = {β ∈ B : ∆(F (di, β), φT ) < ∆(F (dk, β), φT ) for k 6= i}

where

∆(F (di, β), φT ) =


δ [φT − F (di, β)] if F (di, β) ≤ φT

(1− δ) [F (di, β)− φT ] if F (di, β) > φT .

Lemma 2. If Conditions 2, 3, 8, the monotonicity assumption from Lemma 1, and

the target dose level is x`, meaning that πT (x`) ≤ φT and πT (x`+1) > φT , then H`

is an open and convex set.

Proof: The continuity of F (d, β) guarantees the openness of the set Hi. In

order to establish convexity, let β′, β′′ ∈ Hi such that β′ < β0 < β′′. Without loss

of generality, we can focus on a particular dose level xi < x`, Then by the definition

of Hi:

∆(F (d`, β
′), φT ) < ∆(F (di, β

′), φT ) (3.3)

∆(F (d`, β
′′), φT ) < ∆(F (di, β

′′), φT ) (3.4)

It follows that δ[φT − F (d`, β
′)] < δ[φT − F (di, β

′)] since F (d, β′) is increasing due

to Condition 2. Note that (3.3) implies that δ[φT − F (di, β
′)] > 0. Then we have

−δ[φT − F (di, β
′)] < |δ[φT − F (d`, β

′)]| < δ[φT − F (di, β
′)].

Likewise, (3.4) leads to

−δ[φT − F (di, β
′′)] < |δ[φT − F (d`, β

′′)]| < δ[φT − F (di, β
′′)]. (3.5)
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Now suppose that β ∈ (β0, β
′′), then Condition 3 implies that δ[φT − F (di, β)] > 0

because

δ[φT − F (di, β0)] > δ[φT − F (d`, β0)] = 0, δ[φT − F (di, β
′′)] > 0.

Note that F (d`, β)−φT < 0, then F (d`, β) must be decreasing in β because we know

that F (d`, β0)−φT = 0. Likewise, F (di, β) is decreasing by Condition 3. Therefore,

0 < δ[φT − F (d`, β)] < δ[φT − F (d`, β
′′)] < δ[φT − F (di, β

′′)] < δ[φT − F (di, β)]

Therefore,

∆(F (d`, β), φT ) < ∆(F (di, β), φT ) (3.6)

and thus convexity is established. The argument for β ∈ (β′, β0) is similar. �

Theorem 1. If Conditions 1, 2, 3, 5, 8, 9, 10, and the monotonicity assumption,

hold, then as n tends to infinity Pr(dn+1 = d`) → 1 and almost surely β̂Bayesn → β,

where ` = arg min
i

∆(πT (di), φT ) and

∆(π̂(di), φT ) =


δ [φT − π̂(di)] if π̂(di) ≤ φT

(1− δ) [π̂(di)− φT ] if π̂(di) > φT

with δ → 0.

Before the theorem for consistency is proven, we first note that the loss func-

tion in Theorem 1 is continuous since each part of the piecewise function is itself

continuous on its given domain and ∆(φT , φT ) = δ[φT − φT ] = 0, so ∆(φT , φT )

exists, lim
π̂(di)→φ+T

∆(φT , φT ) = lim
π̂(di)→φ+T

(1− δ)[π̂(di)−φT ] = 0, and lim
π̂(di)→φ−T

∆(φT , φT ) =

lim
π̂(di)→φ−T

δ[φT − π̂(di)] = 0. Therefore, ∆(π̂(di), φT ) = ∆(π̂(di), φT ) is continuous at
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φT and thus continuous on [0, 1] since δ[φT − π̂(di)] is continuous on [0, φT ) and

(1− δ)[π̂(di)− φT ] is continuous on (φT , 1].

Proof: The proof follows a similar idea as presented by Shen and O’Quigley

(1996). Suppose the first n patients were treated at x1, x2, . . . , xn with responses

y1, y2, . . . , yn. Define

In(β) =
1

n

n∑
j=1

[
yj
F ′(xj, β)

F (xj, β)
+ (1− yj)

−F ′(xj, β)

1− F (xj, β)

]

and

Ĩn(β) =
1

n

n∑
j=1

[
πT (xj)

F ′(xj, β)

F (xj, β)
+ (1− πT (xj))

−F ′(xj, β)

1− F (xj, β)

]
.

Note that for each dose level di,
F ′(xj, β)

F (xj, β)
and

F ′(xj, β)

1− F (xj, β)
are uniformly continuous

in β over the finite interval [A,B]. Then for any ε > 0 and each di, there must exist

a partition A = t0 < t1 < · · · < tk = B such that ∀ β ∈ [A,B], there exists a tk0

such that ∣∣∣∣F ′(xj, β)

F (xj, β)
− F ′(xj, tk0)

F ′(xj, tk0)

∣∣∣∣ < ε (∗)

∣∣∣∣ F ′(xj, β)

1− F (xj, β)
− F ′(xj, tk0)

1− F (xj, tk0)

∣∣∣∣ < ε (∗∗)

Since there are only I possible dose levels, the partition may be chosen so that (*)

and (**) are valid for all di.

Let In(β)− Ĩn(β) = In1(β) + In2(β) + In3(β) where

In1(β) = In(β)− 1

n

n∑
j=1

[
yj
F ′(xj, tk0)

F (xj, tk0)
+ (1− yj)

−F ′(xj, tk0)
1− F ′(xj, tk0)

]

In2(β) =
1

n

n∑
j=1

[
(yj − πT (xj))

F ′(xj, tk0)

F (xj, tk0)
+

F ′(xj, tk0)

1− F (xj, tk0)

]
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and

In3(β) =
1

n

n∑
j=1

(
πT (xj)

[
F ′(xj, tk0)

F (xj, tk0)
− F ′(xj, β)

F (xj, β)

]
+

(1− πT (xj))

[
−F ′(xj, tk0)

1− F (xj, tk0)
− −F

′(xj, β)

1− F (xj, β)

])
.

It follows from (*) and (**) that

sup
β∈[A,B]

|In1(β)| ≤ 1

n

n∑
j=1

[
yj

(
F ′(xj, β)

F (xj, β)
− F ′(xj, tk0)

F (xj, tk0)

)
+(1− yj)

(
F ′(xj, β)

F (xj, β)
− F ′(xj, tk0)

F (xj, tk0)

)]
=

1

n

n∑
j=1

[yjε+ (1− yj)ε] = ε

Similarly,

sup
β∈[A,B]

|In3(β)| ≤ 1

n

n∑
j=1

[πT (xj)ε+ (1− πT (xj))ε] = ε

Now, it just remains to establish In2
a.s.→ 0 for each tk0 .

For a fixed tk0 , {nIn2 : n ≥ 1} forms a martingale and each term in the summa-

tion in In2 is bounded. Therefore, In2
a.s.→ 0 by the Martingale Limit Theorem. Since

there is a finite number of points in the partition

sup
β∈[A,B]

|In(β)− Ĩn(β)| → 0.

Let S denote the set [µ(1), µ(I)] where µ(1) = min{µ1, . . . , µI} and

µ(I) = max{µ1, . . . , µI}, where µi is the least false parameter defined in Condition

10. The monotonicity assumption and Lemma 2 imply that S ⊂ H`. Then we

rewrite

Ĩn(β) =
I∑
i=1

p̂i

[
πT (di)

F ′(di, β)

F (di, β)
+ (1− πT (di))

−F (di, β)

1− F (di, β)

]
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where p̂i is the frequency that level di has been administered to a patient. Suppose

β̃n is the solution to the equation

I∑
i=1

p̂i

[
πT (di)

F ′(di, β)

F (di, β)
+ (1− πT (di))

−F (di, β)

1− F (di, β)

]
= 0.

For each 1 ≤ i ≤ I, the definition of µi and Condition 8 imply µi is the unique

solution of

[
πT (di)

F ′(di, β)

F (di, β)
+ (1− πT (di))

−F (di, β)

1− F (di, β)

]
= 0. Condition 3 implies

that β̃ must fall into the interval S. Since β̂MLE solves In(β) = 0,

sup
β∈[A,B]

|In(β)− Ĩn(β)| → 0

ensures that β̂MLE ∈ H` a.s. eventually. Therefore, β̂MLE
n satisfies

∆(π̂T (d`, β̂
MLE
n ), φT ) < ∆(π̂T (di, β̂

MLE
n ), φT )

Thus, as n tends to infinity dn+1 = d`.

In order to obtain the consistency of β̂MLE
n , we observe that as n tends to infinity

all the p̂i’s in Ĩn(β) become negligible, except the one corresponding to the level x`,

which tends to 1. Therefore, β̃n is close to the solution of

πT (d`)
F ′(d`, β)

F (d`, β)
+ (1− πT (d`))

−F ′(d`, β)

1− F (d`, β)
= 0.

The solution to the above equation is inherently β. Applying the fact that

sup
β∈[A,B]

|In(β)− Ĩn(β)| → 0,

shows that β̂MLE
n

a.s.→ β.

Now that we have proven the MLE, β̂MLE
n , is consistent, we now need to show
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it holds for the posterior mean, β̂Bayesn . Let the ln(β) = logLn(β) with first and

second derivatives:

l′n(β) =
I∑
i=1

ci
F ′(di, β)

F (di, β)
+ (ni − ci)

−F ′(di, β)

1− F (di, β)

and

l′′n(β) =
I∑
i=1

[
ci
F (di, β)F ′′(di, β)− [F ′(di, β)]2

[F (di, β)]2

]
+

(ni − ci)
[
−F ′′(di, β) + F (di, β)F ′′(di, β)− [F ′(di, β)]2

[1− F (di, β)]2

]
where ni and ci are the number of patients treated and the number of toxic responses

at level i. Taking a Taylor’s series expansion, leads to

ln(β) = ln(β̂MLE
n ) +

1

2
(β − β̂MLE

n )2l′′n(β̃∗n)

for some β̃∗n between β and β̂MLE
n because l′n(β̂MLE

n ) = 0.

Applying Condition 9, we have l̄′′n ≡ sup
β∈[b,b̄]

l′′n(β)→ −∞ as n→∞ almost surely.

Note, the posterior mean can be expressed as a function of the MLE through

β̂Bayesn =

∫ ∞
−∞

βLn(β)g(β)dβ∫ ∞
−∞

Ln(β)g(β)dβ

= β̂MLE
n +

∫ ∞
−∞

(β − β̂MLE
n )Ln(β)g(β)dβ∫ ∞

−∞
Ln(β)g(β)dβ

.

Notice, ∣∣∣∣∫ ∞
−∞

(β − β̂MLE
n )Ln(β)g(β)dβ

∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

(β − β̂MLE
n ) exp

[
ln(β̂MLE

n ) +
1

2
(β − β̂MLE

n )2l′′n(β̃∗n)

]
g(β)dβ

∣∣∣∣
≤ Ln(β̂MLE

n )

∫ ∞
−∞

∣∣∣β − β̂MLE
n

∣∣∣ exp

[
1

2
(β − β̂MLE

n )2l̄′′n

]
g(β)dβ
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We can break the integral into two pieces:

∫ β̂MLE
n +ε

β̂MLE
n −ε

∣∣∣β − β̂MLE
n

∣∣∣ exp

[
1

2
(β − β̂MLE

n )2l̄′′n

]
g(β)dβ ≤ ε

and

(∫ β̂MLE
n −ε

−∞
+

∫ ∞
β̂MLE
n +ε

)∣∣∣β − β̂MLE
n

∣∣∣ exp

[
1

2
(β − β̂MLE

n )2l̄′′n

]
g(β)dβ → 0

as n→∞. Since ε can be chosen to be arbitrarily small, we have shown that

∣∣∣β̂Bayesn − β̂MLE
n

∣∣∣ a.s.→ 0.

We now know that β̂MLE
n ∈ H` eventually with probability one and since H` is an

open set we can make the same conclusion about β̂Bayesn . We have thus demonstrated

that β̂Bayesn
a.s.→ β0. �

As discussed in Bickel and Yahav (1966) and Doob (1949), the asymptotic dis-

tribution of β̂Bayesn is equivalent to the asymptotic distribution of β̂MLE
n since the

prior is diminished as n approaches infinity. Since the likelihood for the proposed

method is identical to the likelihood in the original CRM, Theorem 2 from Shen

and O’Quigley (1996) directly applies as long as the same conditions of Theorem 1

presented in this dissertation are satisfied. Therefore, the asymptotic distribution

of
√
n(β̂Bayesn − β0) is N (0, {F ′(d`, β0)}−2φT (1− φT )).

Remark 1. The proof of Theorem 1 does not depend on the assumption that πT (d`) =

φT but the method converges to d` as long as πT (d`) is the closest to φT out of all

the possible dose levels according to the function ∆(πT (di), φT ).

Remark 2. The previous theorem provides reassurance in the use of the proposed

method in scenarios such as Scenario 5 in Table B.6 where the proposed method does
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not recommend the true OBD in a large percentage of the trials in the short run.

Therefore, it suggests that if n is increased from the small sample size of just 36

patients, then we would expect the proposed method to converge to the correct OBD,

d1. This fact is apparent when we increase the sample size to 150 patients and the

PCS for d1 increases to from 46.5% to 70.5% of trials.

For the following theorem, we restrict the possible models to be unimodal or

plateau. Note that with a single targeted agent multiple modal dose-response curves

such as d1 ≤ d2 ≥ d3 ≤ d4 are not considered possible. Therefore, this assumption

does not hinder the proposed method in any way.

Theorem 2. If the prior is proper and not degenerate, the prior model probabilities

are all equal, and Condition 17 holds, then as n→∞,

lim
n→∞

Pr(BFmk∗ ≤ BFmk) = 1 ∀ k 6= k∗

where

BFmk∗ =

∫
θ

Lm(θ|Dn)g(θ)dθ∫
θ

Lk∗(θ|Dn)g(θ)dθ

and k∗ is the model which minimizes the Kullback-Leibler distance.

Proof: Note Dn = {(x1, z1), . . . , (xn−1, zn−1)} and the prior g(θ) ∼ N(0,1.34)

is proper and non-degenerate. Model selection is carried out using the notion of

maximum posterior model probability, i.e. the method chooses the model, k∗, with

the largest

Pr(Mk∗ |Dn) =

τ(k∗)

∫
θ

Lk∗(θ|Dn)g(θ)dθ

2I−1∑
k=1

τ(k)

∫
θ

Lk(θ|Dn)g(θ)dθ
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Guo and Speckman (2009) noted that

Pr(Mk∗ |Dn)
p→ 1 ⇐⇒ BFmk∗

p→ 0

since in order for the posterior model probability to converge to 1 in probability,

the likelihood for model k∗ must dominate the likelihoods of all other models being

considered. This fact means that the denominator in BFmk∗ will diverge to infinity

causing the Bayes Factor to converge in probability to 0.

Wasserman (2000) noted that two practical problems exist when using the Bayes

Factor for model selection: the integration and the choice of the prior. However,

Kass and Wasserman (1995) demonstrated that the issues diminish asymptotically,

since through the Laplace transformation

log

(∫
θ

Lk(θ|Dn)g(θ)dθ

)
≈ log(Lk(θ̂|Dn))− K × log n

2
(3.7)

where θ̂ is the maximum likelihood estimate and K is the number of parameters in

θ, either 1 or 2. This is attained through defining

h(θ) = log(Lk(θ|Dn)g(θ))

so that ∫
θ

Lk(θ|Dn)g(θ)dθ =

∫
eh(θ)dθ.

Then we apply a Taylor series expansion of h(θ) around the posterior mode, θ̃

h(θ) ≈ h(θ̃) +
1

2
(θ − θ̃)′H(θ̃)(θ − θ̃) ≈ h(θ̃)− 1

2
(θ − θ̃)′ (Iθ)−1 (θ − θ̃)

where H =
∂2H

∂θi∂θj
and Iθ is Fisher’s Information matrix. When we combine the
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Taylor series expansion and the Laplace approximation we obtain:

∫
θ

Lk(θ|Dn)g(θ)dθ ≈ exp(h(θ̃))

∫
θ

exp

[
−1

2
(θ − θ̃)′ (Iθ)−1 (θ − θ̃)dθ

]

= exp(h(θ̃))(2π)K/2|Iθ|1/2

Therefore,

log

(∫
θ

Lk(θ|Dn)g(θ)dθ

)
= log(Lk(θ̃|Dn)) + log(g(θ̃)) +

1

2
log |Iθ|+O(1)

= log(Lk(θ̂|Dn)) + log(g(θ̂))− K

2
log n+O(1)

Pr(BFmk∗ − BFmk ≤ 0) = Pr


∫
θ

Lm(θ|Dn)g(θ)dθ∫
θ

Lk∗(θ|Dn)g(θ)dθ
−

∫
θ

Lm(θ|Dn)g(θ)dθ∫
θ

Lk(θ|Dn)g(θ)dθ
≤ 0



= Pr


∫
θ

Lm(θ|Dn)g(θ)dθ

[∫
θ

Lk(θ|Dn)g(θ)dθ −
∫
θ

Lk∗(θ|Dn)g(θ)dθ

]
∫
θ

Lk(θ|Dn)g(θ)dθ

∫
θ

Lk∗(θ|Dn)g(θ)dθ
≤ 0


Now, we note that by definition of k∗:

∫
θ

Lk∗(θ|Dn)g(θ)dθ >

∫
θ

Lk(θ|Dn)g(θ)dθ ∀ k 6= k∗

is always true. Therefore,

Pr(BFmk∗ − BFmk ≤ 0)
p→ 1

It now just remains to prove that k∗ is the model that is closest to the underlying

truth. Mathematically, this means that the model which is closest to the true
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underlying model is model k∗ which has the smallest Kullback-Leibler (KL) distance,

defined as

I(T, k) = ET

[
log

(∫
LT (θ|Dn)g(θ)dθ

)]
− ET

[
log

(∫
Lk(θ|Dn)g(θ)dθ

)]
.

Since the term ET

[
log

(∫
LT (θ|Dn)g(θ)dθ

)]
only depends on the truth it can

be thought as some arbitrary constant C. Therefore, we cannot estimate how close

model k is to the truth, T , based on I(T, k). However, more importantly, we can

identify which model out of the 2I − 1 candidate models is closest to the true

underlying model by choosing the model such that

arg max
k

ET

[
log

(∫
Lk(θ|Dn)g(θ)dθ

)]
.

Note, that this is the relative KL distance as described by Bozdogan (1987), Kapur

and Kesavan (1992), and Burnham and Anderson (2002) in relation to the absolute

KL distance defined as

Î(T, k)− C = −ÊT

[
log

(∫
Lk(θ|Dn)g(θ)dθ

)]
.

Since we have shown in Equation 3.7 that the individual components of the Bayes

Factor do not depend on the integration or the choice of the prior, we can proceed

with using Akaike’s (1973) result where he demonstrated that

− log
(
Lk(θ̂|Dn)

)
+K = Êθ̂[Î(T, k)]− C

which demonstrates that the expected KL distance is approximately equal to the

negative log likelihood plus the number of parameters in the model, where K =

1 or 2.
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It has already been noted that

∫
θ

Lk∗(θ|Dn)g(θ)dθ >

∫
θ

Lk(θ|Dn)g(θ)dθ ∀ k 6= k∗

Therefore, model k∗ minimizes the expected KL distance. �

Corollary 1. The method consistently identifies the OBD.

Remark 3. Since Theorem 2 proves that the method consistently chooses the model

which is closest to the truth in terms of the KL distance, the proposed method chooses

the dose with the highest estimated efficacy within the acceptable set, and the dose-

response curve is assumed to be unimodal or plateau, we know that the proposed

method will correctly identify the OBD as n→∞.

Corollary 2. The consistency for the parameter θ is directly tied in with consis-

tently choosing the correct model. The consistency of Bayesian estimates is well

documented in the literature going back to Doob (1949).

3.2 Coherence of CRM

Coherence is defined as the important ethical principle where dose escalation only

occurs when there is no toxicity in the previous patient. This limits exposing patients

to overly toxic doses unnecessarily. Similarly, de-escalating in the face of a nontoxic

outcome for the previous patient is counterintuitive and is also an incoherent move.

Therefore, a dose-finding design D is coherent if with probability one

Pr
D

(xj − xj−1 > 0|Yj−1 = 1) = 0 for all i
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Table 3.1: Incoherent moves for Cytotoxic Agents with Bivariate Binary Outcomes

Toxic Outcome Nontoxic Outcome
Response Incoherent escalation: Incoherent de-escalation:

toxicity toxicity
Nonresponse Incoherent escalation: Incoherent de-escalation:

toxicity toxicity, efficacy
Incoherent de-escalation:

efficacy

and if with probability one

Pr
D

(xj − xj−1 < 0|Yj−1 = 0) = 0 for all i.

Therefore, a dose-finding design is one which does not involve any incoherent moves

(Cheung, 2011).

3.2.1 Coherence of Bivariate Endpoints

The notion of extending the idea of coherence to the bivariate binary case is an

important one. As noted in the previous section, de-escalating in the face of a

nontoxic response is an incoherent move; as is escalating when faced with toxicity in

the previous patient. Table 3.1 shows the possible incoherent moves for a bivariate

binary design for drugs where monotonicity is assumed for both toxicity and efficacy.

A design would also be incoherent if it de-escalates when the previous patient does

not experience an efficacious response. An interesting situation from the table is

that if the previous patient experiences no efficacious benefit and a toxic outcome

then the design should stay at the current level (Cheung, 2011).

Mathematically, design D which incorporates bivariate binary outcomes is said

to be coherent if it satisfies conditions (a)-(e) with probably one.
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(a) PrD(xj − xj−1 > 0|Yj−1 = 1 & Zj−1 = 1) = 0 for all j

(b) PrD(xj − xj−1 < 0|Yj−1 = 0 & Zj−1 = 1) = 0 for all j

(c) PrD(xj − xj−1 > 0|Yj−1 = 1 & Zj−1 = 0) = 0 for all j

(d) PrD(xj − xj−1 < 0|Yj−1 = 1 & Zj−1 = 0) = 0 for all j

(e) PrD(xj − xj−1 < 0|Yj−1 = 0 & Zj−1 = 0) = 0 for all j

If design D satisfies conditions (a)-(d) but does not satisfy condition (e), then D

is not a coherent design because the design must satisfy all five conditions in order

to be coherent.

3.2.2 Coherence for Bivariate Binary Targeted Agents

Table 3.2: Incoherent moves for Targeted Agents with Bivariate Binary Outcomes

Toxic Outcome Nontoxic Outcome
Response Incoherent escalation: No incoherent

toxicity moves
Nonresponse Incoherent escalation: No incoherent

toxicity moves

The idea of coherence needs to be refined for the type of agent being explored

in a clinical trial. The previous section holds only for cytotoxic agents and not for

targeted agents. When targeted agents are being analyzed, the assumption of mono-

tonicity on the efficacy response may not hold. Therefore, it can be justified that a

de-escalation may be appropriate when the previous patient does not experience an

efficacious response since the peak of the dose-response curve may occur at any of the

possible I dose levels. As a result of the lack of monotonicity in efficacious response

there is no incoherent escalation or de-escalation due to the response outcome of

the previous patient. Possible incoherent moves are summarized in Table 3.2 and

only depend on the toxic outcome of the previous patient. Therefore, a design D is
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coherent for targeted agents only if with probability one Conditions (a) and (c) hold

from Section 3.2.1. Thus, D is coherent if PrD(xj − xj−1 > 0|Yj−1 = 1) = 0 for all j

and only depends on the toxicity outcomes. Cheung (2011) proved that the Bayesian

CRM is coherent based only on Conditions 2 and 3 of Section 1.3.3. Therefore, the

same proof can be applied to the method presented here and the design presented

here is a coherent design.



Chapter 4

Application to Delayed Response

The proposed design in Chapter 2 is most appropriate when both binary toxicity

and binary efficacy endpoints can be observed in a reasonably similar time frame.

Therefore, a drawback of the method proposed in Chapter 2 is that it requires an

efficacy response that occurs in a time frame similar to that of toxicity. Yin, Zheng,

and Xu (2011) and Yuan and Yin (2009) note that in some practical situations,

this may not be possible due to the fact that efficacy may occur much later than

toxicity. For example, in a targeted agent oncology trial, toxicity outcomes can

often be observed in a relatively timely manner after treatment administration but

efficacy is observed in a relatively longer time frame. If this delay is the case, then

the proposed method will fail in its existing form because the trial would have to

pause before each patient is enrolled in order to fully observe the efficacy response

for the previous patient. If the delay is particularly long, then it will cause the

duration of the trial to be much too long and wastes resources (Yuan and Yin

2009). However, a modified approach can be applied to account for the delayed

efficacy response. This would create a situation where we would be estimating

toxicity probabilities based on more patient observations than efficacy probabilities.

Since we have demonstrated that the association between toxicity and efficacy can

72
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be excluded when modeling the responses and we are therefore modeling toxicity and

efficacy independently, we can fit the likelihood for each response based on different

amounts of data, and simply utilize the efficacy data we have available, even though

it may be less than that of the toxicity data. This idea is explored with the use of

modifications to the proposed methodology to handle such practical issues. Along

these same lines, we incorporated time-to-event outcomes (TITE) for an effective

extension of the method as a means of handling delayed response.

4.1 Lagged Response

One way of accounting for a delayed efficacy response is to assume that the efficacy

response simply lags behind the toxicity outcome by a certain amount of time. For

example, if it is assumed that the efficacy response takes five times as long to be

observed over the toxicity outcome, then for the first five patients we allocate the

next patient to a dose based solely on the toxicity model and the prior assumptions

on efficacy. Therefore, the trial will be enrolling patients before the efficacy data

has been fully observed on enrolled patients. Once an efficacious response has been

observed, the method will switch to modeling both toxicity and efficacy with a

slight tweak to the modeling approach. In Chapter 2, we assumed that the toxicity

data was in the form of Ωj = {(xl, yl) : l < j} and the efficacy data in form of

Dj = {(xl, zl) : l < j}. But in the delayed response setting, we have toxicity data

of the same form but the efficacy data now is Dj = {(xl, zl) : l < j − 5} for j > 6.

Therefore, we are modeling toxicity using data from all the previous j − 1 patients

but only modeling efficacy on the first j− 5 patients. We let the number of patients

that the efficacy response is delayed behind the toxicity response be denoted as nlag.

Thus, at the enrollment of the jth patient, we have toxicity data in the form of

Ωj = {(xl, yl) : l < j} and efficacy data in the form of Dj = {(xl, zl) : l < j − nlag}
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for j > nlag + 1.

In Table C.1, a simulation study is presented where the parameter nlag is varied

from where there is no delay between the toxicity and efficacy outcomes to where

there is a 15 patient lag between the follow-up for the efficacy and toxicity outcomes.

The total sample size is set to n = 36 with and an AR sample size of nR = 12. The

simulation results align with our expectations that the longer efficacy lags behind

that of efficacy, generally, the worse the method does at identifying the true OBD.

In particular, the modified method performs poorly when nlag = 15 with a 48.6%

PCS compared to a PCS of 87.2% for no lag and 60.4% for a 10 patient lag. The

cause of this significant difference in performance can be attributed to the fact that

the OBD is at the fourth dose level for this scenario and the efficacy model only has

21 patients to take into account in the modeling. Therefore, when the difference

between the follow-up times for the toxicity and efficacy outcomes grows, the larger

the sample size required to obtain similar operating characteristics to the method

proposed in Chapter 2.

4.2 Review of TITE CRM

It was noted at the beginning of Chapter 4 that if a trial has a long duration of

follow-up for each patient, then the trial duration using the original CRM may be

impractical because the CRM requires the use of complete follow-up information.

Therefore, a modification to the CRM incorporating the use of partial follow-up

information was proposed by Cheung and Chappell (2000). The general idea is to

incorporate all available information including the length of time a patient is on

study but does not experience a toxicity into the model. Recall from Section 1.3.3

that Ωj = {(xl, yl) : l < j}. Let wl,j denote the weight given to the lth patient’s

observation prior to the entry of patient j which represents the proportion of follow-
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up time completed and let Yl,j be the toxicity indicator for patient l at the time of

the enrollment of the jth patient. Then the weighted likelihood of the model can be

expressed through the equation

L(β;w|Ωj) =

j−1∏
l=1

{wl,jF (xl, β)}Yl,j{1− wl,jF (xl, β)}1−Yl,j .

Then, as the jth patient enters the trial, the parameter is estimated by

β̂wj =

∫
B
βL(β;w|Ωj)g(β)dβ∫
B
L(β;w|Ωj)g(β)dβ

and then allocating the next patient to the dose such that

xj = arg min
di
|F (di, β̂

w
j )− φT |.

Various weight functions can be used in order to account for the times-to-event

of the patients in the weighted likelihood. The weight wl,j has the restriction of

being in the interval [0, 1] and indicates the amount of information contributed to

the the likelihood by patient l. When patient l has completed the follow-up pe-

riod, the weight wl,j equals 1. Therefore, if a new patient is only enrolled when

all of the current patients have been completely followed, then the weighted likeli-

hood simplifies to the regular binomial likelihood and as a result the TITE-CRM to

the original CRM. Two weight functions were considered by Cheung and Chappell

(2000) including a simple linear weight function defined as

wl,j = w(t;T, xl) = min

(
t

T
, 1

)

where t is the enrollment time of the lth patient at the entry of the jth patient and
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T is the maximum follow-up time for each patient. However, this weight function

at first glance seems overly simplistic since it assumes an identical shape for all dose

levels. An alternative then is to use an adaptive weighting scheme that updates the

shape of the weight function based on the accrued observations. At the enrollment

of the jth patient, we define

wl,j(t;T, xl) =
κ(t)

c+ 1
+

1

c+ 1

{
t− t(κ(t))

t(κ(t)+1) − t(κ(t))

}
for t ≤ T

where c is the total number of toxic outcomes regardless of dose level, the times-

to-toxicity are ordered such that 0 = t(0) < t(1) ≤ · · · ≤ t(c) < t(c+1) = T , and

κ(t) = max{a ∈ [0, c] : t ≥ t(a)}. When there are no toxic outcomes, the adaptive

weight function simplifies to the linear weight function. Cheung and Chappell’s

(2000) study of the weight functions determined that the linear weight was sufficient

in most situations and the use of the adaptive weight function does not improve the

accuracy of the TITE-CRM. They noted that the use of the adaptive weighting

scheme only effected the in-trial allocation of patients to doses in some situations

where the delay of the toxicity is especially prominent. The adaptive weights can

help reduce the amount of exposure to patients to overly toxic doses. However, in

the targeted agents case this will not be an issue since there does not tend to be

significant toxicity in these agents.

4.3 Extension of TITE to Bivariate Outcomes

4.3.1 TITE Model on Efficacy

In this section, a method is proposed in which the efficacy response has a much

longer observation window than that of toxicity. Therefore, the toxicity response

is still a bivariate outcome and the probability of toxicity is modeled through the
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original CRM as detailed in Section 1.3.3 and the efficacy probability is modeled

through the methods of Section 4.2 using the linear weight function. However, we

still must incorporate the uncertainty of where the peak of the dose-efficacy curve

is located through the introduction of the 2I − 1 models as discussed in Section 2.2.

Therefore, the likelihood for model k at the enrollment of the jth patient is given

through the equation

Lk(θ;w|Dj) =

j−1∏
l=1

{wl,jGk(xl, θ)}zl,j{1− wl,jGk(xl, θ)}1−zl,j

where Dj = {(xl, zl) : l < j} as defined in Section 2.2. Then, we proceed in a similar

manner by choosing the model with the highest posterior model probability model

given by:

Pr(Mk|Dj) =

τ(k)

∫
Θ

Lk(θ;w|Dj)g(θ)dθ

2I−1∑
k=1

τ(k)

∫
Θ

Lk(θ;w|Dj)g(θ)dθ

.

Each time a new patient enters the trial, the single model, k∗, with the largest

posterior probability is chosen such that

k∗ = arg max
k

Pr(Mk|Dj), k = 1, . . . , 2I − 1.

We then take the working model, Gk∗(di, θ) associated with the model and obtain

estimates of the efficacy probabilities at each dose through

π̂E(di) = Gk∗(di, θ̂jk∗)
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Table 4.1: Example from the bortezomib trial as presented in Cheung (2011) to
demonstrate the linear weight function used in the TITE CRM approach when the
5th patient enters the trial on April 16, 2004.

Patient xl Entry Date Yl,5 tj wl,5
1 3 2/3/04 0 73 73/126 = 0.58
2 3 2/10/04 0 66 66/126 = 0.52
3 3 3/12/04 0 35 35/126 = 0.28
4 3 3/19/04 0 28 28/126 = 0.22

where

θ̂wjk∗ =

∫
Θ

θLk∗(θ;w|Dj)g(θ)dθ∫
Θ

Lk∗(θ;w|Dj)g(θ)dθ
.

Then, the algorithm proceeds in the same manner that is presented in Section 2.3 to

determine dose allocation based on the estimated toxicity probabilities, estimated

efficacy probabilities, and the toxicity tolerance, φT .

As an example of the calculations of the linear weights, consider the example

presented in Table 4.1. At the enrollment of the fifth patient, we have observed no

toxicities out of the four already enrolled patients. The first patient was enrolled into

the trial 73 days before the arrival of the current patient. Since the follow-up time

for patients is pre-specified prior to the trial as 126 days, w1,5 =
tj
T

=
73

126
= 0.58.

Note that the units of the follow-up do not matter as long as both the follow-up time

and the enrollment time are in the same units. Since a clinical trial is sequential

in nature, we note here that the weights for a given patient will not decrease. For

example, when the sixth patient enrolls, the first patient will have been followed for

a longer period of time than when the fifth patient enrolls, so we know that for a

given patient, l, wl,j+1 > wl,j.

A couple of different assumptions can be made on the arrival times of the pa-

tients in a clinical trial. First, we can assume that the patients will enter the trial
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in a fixed manner. For example, we can assume that we have an eligible patient to

enter the study every month. Another example of the distribution of arrival times

is that we can consider them random events following a Poisson process with a rate

parameter of (rate of patient accrual)/(length of patient follow-up). Since we do

not know the underlying distribution of the TITE variable, we can simulate vari-

ous underlying truths for the time-to-efficacy distribution. Two distributions were

explored: a conditionally uniform model where the time of the efficacy event for a

particular patient is generated only if the patient in question experienced an effica-

cious response. Specifically, the TITE would be randomly chosen from the interval

(0, T ) when a patient experiences an efficacious event. A different assumption of

the underlying TITE distribution is that it follows a Weibull distribution with a

fixed shape parameter of 4 as in Cheung and Chappell (2000). We take the same

approach with the scale parameter, γ, as Cheung and Chappell (2000) and Braun

(2006) took and set it to make the cumulative distribution function at T , the length

of patient follow-up, equal to the probability of efficacy of the current dose level.

Mathematically, we set γ equal to the value such that:

F (x; γ) =

∫ T

0

4

γ
x3exp−(x/γ)4dx = πE(xj).

Therefore, the failure time of the time-to-efficacy for the jth patient will be a Weibull

distribution with a shape parameter of

γ =

[
−(T 4)

ln[1− πE(xj)]

]1/4

.

Notice that the times-to-efficacy are set up in a way which naturally censors the

observations. For example, the efficacy variable in the TITE setting is redefined to
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be

Zj =


0 censored without efficacy at tl,j

1 observed with efficacy at tl,j

where tl,j is the follow-up time for the lth patient at the enrollment of the jth patient.

The weight function automatically handles this notion of censoring. Specifically,

when an enrolled patient, patient l, has not experienced an efficacious response and

has not completed the entire follow-up period when a new patient arrives, then the

patient’s response is censored at tl,j. If the patient experiences an efficacious event

before the next patient is enrolled, then the patient’s response will no longer be

censored.

In order to examine the operating characteristics the performance of the proposed

method using TITE outcomes for efficacy and the original CRM to model the toxicity

probabilities, we conducted an extensive simulation study. The scenarios presented

in Table C.2 compare the efficacious TITE outcome method, denoted TITEE, under

various model assumptions to the approach with bivariate binary outcomes proposed

in Section 2.3, denoted WT, and are presented in Yin, Zheng, and Xu (2013). Similar

to their specifications, we set fixed the sample size at n = 60 and a toxicity tolerance

of φT = 1/3. Since in Section 2.6.1 it was recommended to set the AR phase sample

to a third of the total patients, we chose an AR sample size of nR = 20. We

performed 1,000 simulated trials for each scenario and the results are presented in

Table C.2. Let p1 = 0.10, p2 = 0.20, p3 = 0.30, p4 = 0.40, p5 = 0.50, and p6 = 0.60

and we consider 2× 6− 1 = 11 possible models for efficacy:

1. qi1 = {0.10, 0.20, 0.30, 0.40, 0.50,0.60}

2. qi2 = {0.10, 0.20, 0.30, 0.45,0.60, 0.45}

3. qi3 = {0.20, 0.30, 0.45,0.60, 0.45, 0.30}
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4. qi4 = {0.30, 0.45,0.60, 0.45, 0.30, 0.20}

5. qi5 = {0.45,0.60, 0.45, 0.30, 0.20, 0.10}

6. qi6 = {0.60, 0.50, 0.40, 0.30, 0.20, 0.10}

7. qi7 = {0.60,0.60,0.60,0.60,0.60,0.60}

8. qi8 = {0.30,0.60,0.60,0.60,0.60,0.60}

9. qi9 = {0.20, 0.30,0.60,0.60,0.60,0.60}

10. qi10 = {0.20, 0.30, 0.40,0.60,0.60,0.60}

11. qi11 = {0.20, 0.30, 0.40, 0.50,0.60,0.60}.

Since we have no reason to that believe that one model is more likely than another

we will assume that, a priori, τ(1) = · · · = τ(11) =
1

11
. In each of the seven

scenarios, we vary the method at which patients arrive to participate in the trial

(fixed accrual rate vs. arrival as a Poisson Process) and the underlying distribution

of the TITE efficacy outcome (Conditionally uniform vs. Weibull).

In each of the scenarios presented in Table C.2, the approach modeling efficacy

as a TITE outcome performs similarly to the method proposed in Chapter 2. This

fact is quite encouraging since we would expect the results of the TITEE method

to diminish slightly compared to those of the proposed method as is seen in the

second scenario where the proposed method has a PCS of 69.1% as compared with

the TITEE method having PCS’s varying from 62.5% to 68.3%. The last column

of the table demonstrates the clear advantage of using the TITEE method over the

proposed method: the trial duration is substantially shorter for the TITEE method.

Since the proposed method requires the complete follow-up of each patient before

the next patient can be enrolled into the trial, the duration of the trial is significantly

long, 180 months (15 years), since the observation window is 3 months long for each



82

patient. The ability of the TITEE method to make use of partial information and in

turn enroll patients in a staggered fashion allows for the significant reduction of trial

length to about 62 months (or roughly 5 years). Another advantage of the method

proposed in this section is the robustness against the underlying TITE distribution

and the arrival times. Whether the efficacy variable followed a conditionally Uniform

or Weibull distribution with the parameters outlined in the previous section did not

effect the operating characteristics of the method. Similarly, the fact that the true

arrival times followed a uniform or a Poisson process did not diminish the ability of

the TITEE method to identify the OBD. This robustness is demonstrated by the

fact that the largest difference between the two distributions is only a difference of

about 6% in PCS for all of the scenarios.

4.3.2 TITE Model on Toxicity and Efficacy

A limitation of the method proposed in Section 4.3.1 is the different way toxicity and

efficacy are modeled. However, we wished to assess the possible loss of information

when modeling the toxicity response using TITE methods. Since the toxicity follow-

up for a majority of early-phase clinical trials is only 28 days, which is a manageable

time to assess follow-up, this was a reasonable approach. Note that the TITE

CRM developed by Cheung and Chappell (2000) was proposed for trials in radiation

oncology where the follow-up time for each patient was 90 days. A decrease in the

duration of the trial was still able to be achieved by only modeling the efficacy

response through TITE methods. However, in some cases the trial duration is still

too long to be practical for an early-phase trial. One way to decrease the trial

duration is to incorporate both toxicity and efficacy endpoints as TITE outcomes.

Similar to using TITE to model the efficacy response, modeling the toxic response

as a TITE outcome would allow the use of partial toxicity information and would
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therefore allow for more than one patient to be monitored for a toxic response at a

time. For example, if the length of follow-up for toxicity is 1 month, as was the case in

the previous section, then a method requiring complete toxicity information would

only enroll a single patient each month. On the other hand, a method modeling

toxicity and efficacy as TITE outcomes can enroll multiple patients per month in

order to significantly decrease trial duration.

Specifically, at the enrollment of the jth patient, toxicity is modeled in the same

manner as Section 4.2 to obtain the parameter estimate

β̂wj =

∫
B
βL(β;w|Ωj)g(β)dβ∫
B
L(β;w|Ωj)g(β)

dβ.

Then, we obtain the toxicity probability estimates

π̂Ti = F (di, β̂
w
j )

and define the acceptable set as

Aj = {di : π̂Ti ≤ φT}.

Efficacy is modeled through the methods proposed in Section 4.3.1 and then the

proposed method uses the algorithm presented in Section 2.3 to determine the dose

given to the jth patient.

Table C.3 presents a simulation study examining the ability of the proposed

method using TITE outcomes for both toxicity and efficacy, denoted TITETE, to

identify the OBD under various assumptions. As in Table C.2, two ways of deter-

mining how patients arrive to participate in trial are examined: fixed accrual and

Poisson arrival times. The survival distribution was varied between a condition-
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ally Uniform and a Weibull distribution. Since we are now modeling toxicity and

efficacy in the TITE setting, cases are presented where the survival distributions

for toxicity and efficacy are the same and cases where they are different from one

another. The similarities with regards to PCS in the results in Tables C.3 and C.2

are also quite encouraging. There is no substantial diminishment of the results in

the TITETE method when compared to the TITEE method. For example, in Sce-

nario 6, where the OBD is located at d6, the TITEE method recommended it in

31.0% of trials while the TITETE method recommended it in 32.1% of trials when

efficacy followed a conditionally Uniform survival distribution and the enrollment

of patients was at fixed intervals. The last column of the table demonstrates the

clear advantage of using the TITETE approach over the TITEE approach: the trial

duration is substantially shorter for the TITETE method. Since the TITEE method

requires complete follow-up for toxicity, the duration of the trial is significantly long,

about 62 months, since the observation window is 1 month long for toxicity for each

patient. The ability of the TITETE method to make use of partial information for

both toxicity and efficacy and in turn enroll patients in a staggered fashion allows

for the significant reduction of trial length to about 22 months (or roughly 2 years),

which is a much more reasonable trial duration for an early-phase clinical trial than

the 62 months duration for the TITEE method.

Another advantage of the proposed TITETE method is the robustness against

the underlying TITE distribution and the arrival times. Whether the efficacy and

toxicity variables followed a conditionally Uniform or Weibull distribution with the

parameters outlined in Section 4.3.1 did not effect the operating characteristics of

the method. Similarly, the fact that the true arrival times followed a uniform or

a Poisson process did not diminish the ability of the TITETE method to identify

the OBD. This robustness is demonstrated by the fact that the largest difference

between the two distributions is only a difference of about 7% in PCS for all of
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the scenarios. Even in the cases where the survival distributions for toxicity and

efficacy are different, the TITETE method performs similarly to when the survival

distributions are the same.



Chapter 5

Conclusions and Future Research

5.1 Introduction

In this dissertation, we proposed a collection of new designs for effectively estimat-

ing the optimal biological dose in early phase trials that consider bivariate binary

data in targeted agents. LoRusso, Boerner, and Seymour (2010), among others,

have emphasized the need for new clinical trial designs for targeted agents different

from those designed for cytotoxic agents. The proposed methods were developed

within the framework of the CRM and partial order CRM by enumerating all the

possible models for the probability of efficacy as dictated by the lack of monotonicity

assumption on the dose-efficacy curve in targeted agents. The overall strategy of

the methods is to lean upon Bayesian inference, prior clinical knowledge about the

dose-toxicity and dose-efficacy curves, and allow the accumulating data to provide

an estimate of the correct model from within a reasonable set of models. Then

the methods lean upon the considerable work performed on the CRM to provide

an efficient estimate of the OBD. Though generally not recommended, the method

can handle cases where toxicity is not considered to be clinically significant as well

as cases where a close eye must be simultaneously kept on toxicity when estimat-

86
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ing the probability of efficacy. Simulation studies demonstrated this approach to

perform competitively against existing methods and shows the ability of the design

to correctly identify the OBD in a large portion of trials involving bivariate binary

endpoints.

An extensive simulation study was performed over a wide choice of possible true

unknown dose-toxicity and dose-efficacy relationships to demonstrate the behavior

of the methodology presented in Chapter 2. Various design specifications were also

varied to demonstrate the design’s robustness. In particular, a simulation study

was presented to demonstrate the design’s robustness against different underlying

correlation coefficients between toxicity and efficacy. After the broad simulation

study, the theoretical properties were derived to provide confidence in using the

proposed method. Furthermore, the design was extended to situations where the

follow-up times of the toxicity and efficacy events can be different from each other.

Therefore, the design is able to incorporate the use of partial follow-up information

to make interim dose decisions.

5.2 Future Research

The methods presented in this dissertation were developed in the bivariate binary

case where there are four possible outcomes. However, as discussed in Section 1.4.2,

we can think of the possible outcomes in the bivariate outcomes case to be (1) no

efficacy and no toxicity, (2) efficacy and no toxicity, and (3) toxicity. O’Quigley,

Hughes, and Fenton (2001) proposed a method to extend the CRM to handle tri-

nary outcomes in the case of an HIV trial. Their design was motivated by an HIV

trial where a subject could experience a either a toxicity, or a viral failure, or a

success of reducing the viral load. The method proposes to use the CRM to model

the probability of toxicity and the conditional probability of acceptable viral reduc-
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tion given no toxicity and then using an independence assumption estimates the

probability of success at each dose level to allocate the next patient to the dose with

the highest estimated probability of success. However, in their paper they assume

that the probability of an efficacious response given no toxicity is monotonic. This

monotonicity assumption may not hold for targeted agents because of the reasons

discussed in Section 1.4.1.

It is important to note that in the trinary outcome case, the goal of a trial is no

longer one of finding the OBD, but of finding the Most Successful Dose (MSD). The

MSD is defined as the dose with the highest overall success rate as estimated by the

utility function, U = πE(di, θ){1−πT (di, β)}. In this case, we model the probability

of toxicity as F (di, β), the Pr(Efficacy|No Toxicity) = Gk(di, θ), the probability of an

efficacy response with no toxicity asGk(di, θ)×(1−F (di, β)) where k = 1, . . . , 2×I−1

represent the working models for the different possible orderings for the probabilities

of Pr(Efficacy|No toxicity). The outcome for the jth patient, denoted Yj, follows a

multinomial distribution where Yj = 0 if the jth patient experiences no efficacy and

no toxicity, Yj = 1 if the patient experiences an efficacious response but no toxicity,

and Yj = 2 if the patient experiences a toxicity. Then, after the inclusion of j

patients, the likelihood function of β and θ is given by

Lj(β, θ) =

j∏
l=1

pYl00 pYl11 (1− p0 − p1)1−Yl0−Yl1

where Yl0 is an indicator function taking the value of 1 if patient l experiences no

toxicity and no efficacy and 0 otherwise. The variable Yl1 is an indicator function

taking the value of 1 if patient l experiences an efficacious response but no toxicity.

Therefore, we can express p0 and p1 through the working models described above
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and represented below.


p0 = Pr(Y = 0) = (1− F (di, β))(1−Gk(di, θ))

p1 = Pr(Y = 1) = (1− F (di, β))Gk(di, θ)

p2 = Pr(Y = 2) = F (di, β) and Pr(Y = 1|Y 6= 2) = Gk(di, θ)

The main advantage of using this parameterization is that the likelihood can be

factored into two distinct parts: one that depends only on toxicities

ϕj(β) =

j∏
l=1

(1− F (xl, β))Yl0+Yl1F (xl, β)1−Yl0−Yl1

and one that depends on efficacy given no toxicity

ϕjk(θ) =

j∏
l=1

(1−Gk(xl, θ))
Yl0Gk(xl, θ)

Yl1 .

so that Lj(β, θ) = ϕj(β)ϕjk(θ). This factorization allows for quicker evaluation

of the posterior densities for θ and β because only one-dimensional integrals are

needed. Applying the same general idea used in the method proposed in Chapter 2

we place priors g(β) and g(θ) on β and θ, respectively. Then we obtain the posterior

probability through the evaluation of

f(β|Dj) =
ϕj(β)g(β)∫
B
ϕj(β)g(β)dβ

Then, the estimates of the toxicity probabilities are obtained through π̂T (di) =∫
B
f(β)βdβ. Similarly, the estimate of the posterior probabilities are obtained for
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each of the 2I − 1 working models through the evaluation of

fk(θ|Dj) =
ϕjk(θ)g(θ)∫

Θ

ϕjk(θ)g(θ)dθ
.

Then, we can choose the working model corresponding to the highest posterior

probability given in the equation

Pr(Mk|Dj) =

τ(k)

∫
Θ

ϕjk(θ)g(θ)dθ

2I−1∑
k=1

τ(k)

∫
Θ

ϕjk(θ)g(θ)dθ

and obtain the estimates of the probabilities of the probability of efficacy given no

toxicity through π̂E|TC (di) = Gk∗(di, θ̂jk∗) where

θ̂jk∗ =

∫
Θ

fk∗(θ)θdθ

and

k∗ = arg max
k

Pr(Mk|Dj), k = 1, . . . , 2I − 1.

Once the probabilities of efficacy given no toxicities have been estimated, the method

will then choose the dose given to the jth patient, xj, with the highest estimated

probability of success through the equation

Pr(Success) = π̂E|TC (di)× (1− π̂T (di).

Since the method uses features of the CRM, we would expect that the method

would be competitive with existing methods in the trinary case. However, a rigorous

exploration of the properties of the trinary outcomes method needs to be performed

to provide justification for the use of such a design in practice. Various design
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specifications would need to explored as well including the use of an acceptable set

similar to what is proposed in this dissertation, various skeleton specifications, and

the choice of the working model.

5.3 Concluding Remarks

Another important extension of the methodology presented in this dissertation oc-

curs when a combination of two targeted agents is used as a single treatment in a

clinical trial. In these combination cases, the monotonicity assumption may or may

not hold for toxicity. Therefore, we must take this uncertainty into account in the

model through the use of the partial order CRM to model the probability of toxicity

at each dose level.



Appendix A

Toxicity and Efficacy Scenarios

Figure A.1: Twelve scenarios used by Hoering et al. (2013). The Best doses are
ones circled in orange and the good doses are circled in blue. If there is only orange,
that indicates that the Best and Good doses are the same.
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Appendix B

Simulation Results: Proposed

Method

This section contains the simulation study results described in Chapter 2. In all

tables, the OBD in each table is indicated by bold type. Table B.1 compares an

existing method to a variant proposed method which only efficacy is modeled. Tables

B.2 (comparison to Thall and Cook (2004), denoted by TC) and B.3 compare the

operating characteristics of the proposed method (denoted WT) against existing

methods in the literature. The second set of simulations, Tables B.4-B.10, explore

the robustness of the proposed method under various design specifications including

the AR sample size (Table B.4), skeleton choice (B.5), working model choice (B.6),

two-parameter logistic (Table B.7), utility function (Table B.8), adaptive elimination

of models (Table B.9), and model selection techniques (Table B.10).
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Table B.1: Selection Percentages for scenarios presented in Zang, Lee, and
Yuan (2014) at each dose comparing the proposed method using only the
efficacy response, denoted ‘WTE’, and the various methods in a previous
version of the authors’ paper after 1000 simulation runs with a sample size
of n = 30 and nR = 10. Peak and plateau curves were considered as possible
models in this simulation.

True efficacy probability

Scenario 1 0.20 0.40 0.60 0.80 0.55
Slope-sign 3.9 11.6 12.4 48.0 24.2
L-Logistic 2.4 6.5 16.0 64.8 10.4
Isotonic 12.7 13.0 12.8 55.9 5.6
WTE 1.4 6.4 21.3 64.0 6.9

Scenario 2 0.60 0.80 0.65 0.40 0.20
Slope-sign 9.5 42.7 37.8 9.0 0.8
L-Logistic 11.1 59.5 26.8 2.5 0.1
Isotonic 13.0 65.8 19.8 1.3 0.1
WTE 17.3 63.7 16.2 2.3 0.5

Scenario 3 0.05 0.25 0.45 0.65 0.80
Slope-sign 1.3 12.4 6.6 17.7 62.0
L-Logistic 0.6 3.8 8.3 23.0 64.3
Isotonic 6.1 12.2 13.6 20.6 47.5
WTE 0.2 2.0 7.7 25.4 64.8

Scenario 4 0.10 0.30 0.50 0.50 0.50
Slope-sign 2.5 14.3 23.8 27.3 32.2
L-Logistic 1.8 9.8 33.8 30.8 23.8
Isotonic 9.9 14.2 35.5 25.1 15.2
WTE 1.6 9.4 35.9 31.3 21.9
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Table B.1 – continued from previous page

True efficacy probability

Scenario 5 0.10 0.30 0.45 0.60 0.60
Slope-sign 2.6 16.7 12.9 27.3 40.5
L-Logistic 1.8 8.7 17.1 37.5 35.0
Isotonic 10.1 16.1 18.8 33.3 21.7
WTE 1.3 6.9 19.1 41.8 31.0

Scenario 6 0.20 0.40 0.40 0.40 0.40
Slope-sign 6.6 31.3 22.2 19.0 20.9
L-Logistic 5.5 29.9 27.1 22.0 15.5
Isotonic 14.0 34.1 26.4 16.6 9.0
WTE 7.4 29.4 27.1 21.0 15.2

Scenario 7 0.40 0.60 0.80 0.70 0.55
Slope-sign 3.4 11.6 35.5 32.5 17.0
L-Logistic 4.6 11.7 51.1 26.8 5.9
Isotonic 12.0 14.0 48.9 22.1 2.9
WTE 4.2 15.4 56.0 21.3 3.1

Scenario 8 0.8 0.6 0.4 0.3 0.2
Slope-sign 45.7 34.7 15.8 3.0 0.9
L-Logistic 69.5 24.3 4.7 1.2 0.2
Isotonic 77.2 19.9 2.3 0.6 0.1
WTE 74.6 16.1 4.6 3.2 1.6



96

Table B.2: Selection Percentages for each dose of Thall and Cook (2004), denoted
TC, and the proposed method, denoted ‘WT’, after 1000 simulation runs with a
sample size of n = 36, nR = 12, and φT = 0.40. The true value of the association
parameter used to simulate observations is given by ψ. Only Peak models were
considered as candidate models in this simulation.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.02) (0.12, 0.30) (0.30, 0.55) (0.80, 0.65)
TC (ψ = 0) 0 17.3 80.3 2.4
WT (ψ = 0) 0.6 6.5 85.4 7.5

WT (ψ = −2.049) 1.3 6.2 86.0 6.5
WT (ψ = −0.814) 0.8 6.2 85.6 7.4
WT (ψ = 0.814) 0.6 6.3 85.7 7.4
WT (ψ = 2.0486) 0.3 7.5 84.8 7.4

Scenario 2 (0.05, 0.02) (0.10, 0.28) (0.16, 0.50) (0.22, 0.80)
TC (ψ = 0) 0 0.5 13.6 86
WT (ψ = 0) 0.1 0.9 11.8 87.2

WT (ψ = −2.049) 0.2 0.8 11.6 87.3
WT (ψ = −0.814) 0.0 0.9 11.8 87.2
WT (ψ = 0.814) 0.0 0.6 11.4 87.9
WT (ψ = 2.0486) 0.0 0.8 11.2 88.0

Scenario 3 (0.05, 0.25) (0.15, 0.65) (0.42, 0.50) (0.65, 0.05)
TC (ψ = 0) 5.2 81.3 13.1 0.2
WT (ψ = 0) 1.5 81.8 16.4 0.2

WT (ψ = −2.049) 1.5 81.6 16.4 0.1
WT (ψ = −0.814) 1.5 82.0 16.8 0.1
WT (ψ = 0.814) 1.9 82.1 16.4 0.1
WT (ψ = 2.0486) 1.3 82.1 16.5 0.2

Scenario 4 (0.05, 0.80) (0.10, 0.50) (0.16, 0.28) (0.22, 0.02)
TC (ψ = 0) 92.5 4.8 2.1 0.4
WT (ψ = 0) 91.9 7.5 0.6 0.0

WT (ψ = −2.049) 92.1 7.5 0.4 0.0
WT (ψ = −0.814) 92.6 6.7 0.6 0.0
WT (ψ = 0.814) 92.2 7.0 0.7 0.1
WT (ψ = 2.0486) 91.8 7.4 0.8 0.0

Scenario 5 (0.05, 0.45) (0.45, 0.50) (0.70, 0.55) (0.85, 0.60)
TC (ψ = 0) 72.9 26.9 0.1 0.0
WT (ψ = 0) 46.5 53.3 0.2 0.0

WT (ψ = −2.049) 44.4 55.4 0.2 0.0
WT (ψ = −0.814) 44.1 55.9 0.2 0.0
WT (ψ = 0.814) 41.2 58.6 0.2 0.0
WT (ψ = 2.0486) 42.3 57.5 0.1 0.0
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Table B.3: Operating characteristics of the proposed design and Hoering et al.
(2013). Overall probability of selecting a best or good dose level as the OBD af-
ter 1000 simulation runs with a maximum sample size of n = 64 patients, nR = 16,
and φT = 1/3. Peak and plateau models were considered as candidate models in this
simulation.

Probability Probability Probability Probability
of Picking of Picking of Picking of Picking
Best Dose Good Dose Best Dose Good Dose

Best Good with Our with Our with with
Efficacy Toxicity Dose Dose Proposed Proposed Hoering et al. Hoering et al.
Scenario Scenario Level Level Design Design Design Design

R1 T1 4 4 0.60 0.60 0.21 0.21
R1 T2 4 4 0.52 0.52 0.20 0.20
R1 T3 4 4 0.40 0.40 0.31 0.31
R1 T4 6 4-6 0.54 0.93 0.63 0.89
R2 T1 4 3, 4 0.66 0.90 0.30 0.68
R2 T2 4 3, 4 0.58 0.82 0.30 0.65
R2 T3 4 3, 4 0.49 0.59 0.42 0.71
R2 T4 4-6 3-6 0.94 1.00 0.91 0.94
R3 T1 1-4 1-4 0.99 0.99 0.93 0.93
R3 T2 1-4 1-4 0.99 0.99 0.90 0.90
R3 T3 1-4 1-4 0.97 0.97 0.84 0.85
R3 T4 1-6 1-6 1.00 1.00 0.97 0.97
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Table B.4: Recommendation Percentages for the Proposed Method under various
Adaptive Randomization sample sizes after 1000 simulation runs with a sample size
of n = 36 and φT = 0.40. Peak and plateau models were considered as candidate
models in this simulation.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.05) (0.10, 0.13) (0.20, 0.25) (0.28, 0.38) (0.50, 0.50) (0.50, 0.63)

nR = 0 1.3 6.1 34.6 52.9 5.1 0.0
nR = 12 0.5 6.6 34.3 51.1 7.3 0.2
nR = 18 0.9 6.8 31.9 51.4 8.8 0.2
nR = 24 1.2 5.3 36.2 48.1 8.9 0.3

Scenario 2 (0.05, 0.05) (0.10, 0.23) (0.20, 0.47) (0.28, 0.70) (0.50, 0.70) (0.50, 0.70)

nR = 0 0.2 6.1 45.5 46.1 1.9 0.2
nR = 12 0.1 6.4 43.2 48.8 1.4 0.1
nR = 18 0.0 5.9 43.7 47.2 3.0 0.2
nR = 24 0.0 4.2 45.3 47.6 2.9 0.0
nR = 36 0.0 5.9 49.3 41.9 2.9 0.0

Scenario 3 (0.05, 0.05) (0.05, 0.13) (0.05, 0.25) (0.05, 0.38) (0.05, 0.50) (0.05, 0.63)

nR = 0 0.8 2.9 8.0 20.2 34.1 34.0
nR = 12 0.4 2.4 9.9 19.7 32.6 35.0
nR = 18 0.3 1.1 7.5 19.6 31.2 40.3
nR = 24 0.1 1.5 7.2 20.6 32.2 38.4
nR = 36 0.1 2.1 10.0 27.4 34.7 25.7

Scenario 4 (0.05, 0.05) (0.10, 0.23) (0.20, 0.47) (0.28, 0.70) (0.40, 0.70) (0.55, 0.70)

nR = 0 0.0 6.7 44.4 45.4 3.4 0.1
nR = 12 0.2 5.2 41.6 48.3 4.7 0.0
nR = 18 0.0 3.3 46.2 46.7 3.5 0.3
nR = 24 0.0 3.7 44.6 46.1 5.4 0.2
nR = 36 0.1 4.8 49.6 41.8 3.6 0.1
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Table B.5: Selection Percentages for each dose for the proposed method under various
skeleton specifications after 1000 simulation runs with a sample size of n = 36,
nR = 12, and φT = 0.40. Peak and plateau models were considered as candidate
models in this simulation.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.02) (0.12, 0.30) (0.30, 0.55) (0.80, 0.65)

α1, Q1 0.1 21.4 74.9 3.6
α2, Q1 0.0 17.7 80.5 1.8
α3, Q1 0.2 18.3 80.5 1.0
α4, Q1 0.2 15.3 78.8 5.7
α1, Q2 0.6 22.4 73.4 3.6

Scenario 2 (0.05, 0.02) (0.10, 0.28) (0.16, 0.50) (0.22, 0.80)

α1, Q1 0.1 6.2 19.5 74.2
α2, Q1 0.0 8.5 24.0 67.5
α3, Q1 0.2 6.4 22.7 70.7
α4, Q1 0.2 5.4 15.6 78.8
α1, Q2 0.1 7.6 18.3 74.0

Scenario 3 (0.05, 0.25) (0.15, 0.65) (0.42, 0.50) (0.65, 0.05)

α1, Q1 4.4 85.0 10.6 0.0
α2, Q1 2.7 86.5 10.8 0.0
α3, Q1 4.3 85.0 10.7 0.0
α4, Q1 5.9 84.3 9.8 0.0
α1, Q2 3.9 90.6 5.5 0.0

Scenario 4 (0.05, 0.80) (0.10, 0.50) (0.16, 0.28) (0.22, 0.02)

α1, Q1 90.7 7.8 1.5 0.0
α2, Q1 92.1 6.1 1.8 0.0
α3, Q1 90.7 7.3 2.0 0.0
α4, Q1 90.8 7.0 2.1 0.1
α1, Q2 94.4 4.9 0.7 0.0
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Table B.6: Selection Percentages for each dose of the proposed method under various
working model selections after 1000 simulation runs with a sample size of n = 36,
nR = 12, and φT = 0.40. Peak and plateau models were considered as candidate
models in this simulation.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.02) (0.12, 0.30) (0.30, 0.55) (0.80, 0.65)

p
exp(β)
i 0.1 21.4 74.9 3.6

Logistic (α0 = 3) 0.8 25.3 71.1 2.8
2-parameter Logistic 24.8 34.5 39.0 1.7

Scenario 2 (0.05, 0.02) (0.10, 0.28) (0.16, 0.50) (0.22, 0.80)

p
exp(β)
i 0.1 6.2 19.5 74.2

Logistic (α0 = 3) 1.0 10.6 19.0 69.4
2-parameter Logistic 12.8 7.0 22.0 58.2

Scenario 3 (0.05, 0.25) (0.15, 0.65) (0.42, 0.50) (0.65, 0.05)

p
exp(β)
i 4.4 85.0 10.6 0.0

Logistic (α0 = 3) 8.5 84.3 7.2 0.0
2-parameter Logistic 27.3 65.0 7.7 0.0

Scenario 4 (0.05, 0.80) (0.10, 0.50) (0.16, 0.28) (0.22, 0.02)

p
exp(β)
i 90.7 7.8 1.5 0.0

Logistic (α0 = 3) 90.3 8.0 1.7 0.0
2-parameter Logistic 92.9 6.8 0.3 0.0

Scenario 5 (0.05, 0.45) (0.45, 0.50) (0.70, 0.55) (0.85, 0.60)

p
exp(β)
i 46.5 53.3 0.2 0.0

Logistic (α0 = 3) 66.5 33.0 0.5 0.0
2-parameter Logistic 92.9 6.8 0.3 0.0
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Table B.7: Selection Percentages for each dose of the proposed method under var-
ious degrees of the use of the 2-parameter logistic function after 1000 simulation
runs with a sample size of n = 36, nR = 12, and φT = 0.40. Peak and plateau mod-
els were considered as candidate models in this simulation. The Logistic (α0 = 3)
row corresponds to the same row in Table B.6. ‘Only Tox’ represents a method in
which toxicity is modeled through the 2-parameter logistic working model but effi-
cacy is modeled through the 1-parameter logistic working model, vice versa for ‘Only
Eff’, and ‘Both’ represents a method in which both toxicity and efficacy are modeled
through the 2-parameter logistic working model.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.02) (0.12, 0.30) (0.30, 0.55) (0.80, 0.65)
Logistic (α0 = 3) 0.8 25.3 71.1 2.8

Only Tox 8.3 40.6 49.4 1.7
Only Eff 14.1 24.5 59.0 2.4

Both 24.8 34.5 39.0 1.7

Scenario 2 (0.05, 0.02) (0.10, 0.28) (0.16, 0.50) (0.22, 0.80)

Logistic (α0 = 3) 1.0 10.6 19.0 69.4
Only Tox 4.4 7.8 14.8 73.0
Only Eff 7.7 10.6 24.1 57.6

Both 12.8 7.0 22.0 58.2

Scenario 3 (0.05, 0.25) (0.15, 0.65) (0.42, 0.50) (0.65, 0.05)

Logistic (α0 = 3) 8.5 84.3 7.2 0.0
Only Tox 18.3 77.2 4.5 0.0
Only Eff 12.3 77.6 9.4 0.4

Both 27.3 65.0 7.7 0.0

Scenario 4 (0.05, 0.80) (0.10, 0.50) (0.16, 0.28) (0.22, 0.02)

Logistic (α0 = 3) 90.3 8.0 1.7 0.0
Only Tox 90.3 7.1 2.5 0.1
Only Eff 89.6 8.9 1.3 0.2

Both 85.2 11.3 3.3 0.2

Scenario 5 (0.05, 0.45) (0.45, 0.50) (0.70, 0.55) (0.85, 0.60)

Logistic (α0 = 3) 66.5 53.3 0.2 0.0
Only Tox 89.6 10.2 0.2 0.0
Only Eff 64.9 34.9 0.2 0.3

Both 92.9 6.8 0.3 0.0
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Table B.8: Recommendation Percentages for the Proposed Method and the Success
Probability Utility Function after 1000 simulation runs with a sample size of n = 36,
nR = 12, and φT = 0.40. Peak and plateau models were considered as candidate mod-
els in this simulation. ‘WT’ represents the method proposed in Chapter 2, ‘Success
Probability’ represents a method method which uses the success probability utility
function, and ‘Success Probability (A)’ represents a method which uses the success
probability utility function coupled with an acceptable set.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.02) (0.12, 0.30) (0.30, 0.55) (0.80, 0.65)

WT 0.1 21.4 74.9 3.6
Success Probability 0.1 7.5 41.8 50.6

Success Probability (A) 0.5 20.9 75.1 3.5

Scenario 2 (0.05, 0.02) (0.10, 0.28) (0.16, 0.50) (0.22, 0.80)

WT 0.1 6.2 19.5 74.2
Success Probability 0.2 4.3 12.6 82.9

Success Probability (A) 0.1 9.2 16.9 73.8

Scenario 3 (0.05, 0.25) (0.15, 0.65) (0.42, 0.50) (0.65, 0.05)

WT 4.4 85.0 10.6 0.0
Success Probability 4.4 76.4 19.1 0.1

Success Probability (A) 4.2 87.1 8.6 0.1

Scenario 4 (0.05, 0.80) (0.10, 0.50) (0.16, 0.28) (0.22, 0.02)

WT 90.7 7.8 1.5 0.0
Success Probability 90.7 7/9 1.3 0.1

Success Probability (A) 92.0 6.6 1.4 0.0
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Table B.9: Selection Percentages for each dose of the proposed method under various
adaptive elimination of orders after 1000 simulation runs with a sample size of n =
36, nR = 12, and φT = 0.40. Peak and plateau models were considered as candidate
models in this simulation. ‘WT’ represents the method proposed in Chapter 2, ‘E
0.5 at nR represents a method which eliminates half of the candidate models at nR,
‘E twice’ represents a method which eliminates one-fourth of the candidate models at
nR and then eliminates another one-fourth at 3/4 of the way through the trial, and
‘E at 3/4 way’ represents a method which eliminates half of the candidate models at
3/4 of the way through the trial.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.02) (0.12, 0.30) (0.30, 0.55) (0.80, 0.65)
WT 0.1 21.4 74.9 3.6

E 0.5 at nR 5.0 34.3 43.7 17.0
E twice 4.9 34.2 44.6 16.3

E at 3/4 way 0.7 26.3 67.7 5.3

Scenario 2 (0.05, 0.02) (0.10, 0.28) (0.16, 0.50) (0.22, 0.80)

WT 0.1 6.2 19.5 74.2
E 0.5 at nR 3.5 14.7 24.4 57.4

E twice 1.9 15.7 24.8 57.6
E at 3/4 way 0.2 8.5 21.4 69.9

Scenario 3 (0.05, 0.25) (0.15, 0.65) (0.42, 0.50) (0.65, 0.05)

WT 4.4 85.0 10.6 0.0
E 0.5 at nR 14.5 66.3 18.2 1.0

E twice 14.0 69.1 16.4 0.5
E at 3/4 way 5.0 84.8 10.1 0.1

Scenario 4 (0.05, 0.80) (0.10, 0.50) (0.16, 0.28) (0.22, 0.02)

WT 90.7 7.8 1.5 0.0
E 0.5 at nR 87.3 9.1 3.5 0.1

E twice 84.9 11.4 3.5 0.2
E at 3/4 way 91.6 6.8 1.5 0.1
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Table B.10: Selection Percentages for each dose of the proposed method under var-
ious model selection procedures after 1000 simulation runs with a sample size of
n = 36, nR = 12, and φT = 0.40. Peak and plateau models were considered as
candidate models in this simulation. ‘WT’ represents the proposed method in Chap-
ter 2, ‘BMA’ represents a method which uses Bayesian Model Averaging to obtain
the probability estimates for efficacy, and ‘BMAO’ represents a method which uses
Bayesian Model Averaging but excludes models that are deemed to be far worse than
the best model in terms of δ.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.02) (0.12, 0.30) (0.30, 0.55) (0.80, 0.65)
WT 0.1 21.4 74.9 3.6

BMA 0.2 13.2 82.1 4.5
BMAO, δ = 0.6 0.2 16.0 79.9 3.9
BMAO, δ = 0.7 0.1 18.4 77.9 3.6

Scenario 2 (0.05, 0.02) (0.10, 0.28) (0.16, 0.50) (0.22, 0.80)

WT 0.1 6.2 19.5 74.2
BMA 0.0 2.7 23.7 73.6

BMAO, δ = 0.6 0.2 3.8 17.0 79.0
BMAO, δ = 0.7 0.0 5.5 17.3 77.2

Scenario 3 (0.05, 0.25) (0.15, 0.65) (0.42, 0.50) (0.65, 0.05)

WT 4.4 85.0 10.6 0.0
BMA 1.0 81.1 17.9 0.0

BMAO, δ = 0.6 2.4 86.4 11.0 0.2
BMAO, δ = 0.7 2.6 87.8 9.6 0.0

Scenario 4 (0.05, 0.80) (0.10, 0.50) (0.16, 0.28) (0.22, 0.02)

WT 90.7 7.8 1.5 0.0
BMA 76.5 21.9 1.6 0.0

BMAO, δ = 0.6 90.2 7.8 2.0 0.0
BMAO, δ = 0.7 89.7 8.7 1.6 0.0



Appendix C

Simulation Results: Delayed

Response

This section contains the simulation study results described in Chapter 4. Table C.1

shows the results of the proposed method under varying degrees of lag between the

efficacy and toxicity responses. Table C.2 examines a method in which efficacy is

modeled using TITE methods and Table C.3 examines a method where both toxicity

and efficacy are modeled using TITE methods. As before, the OBD in each table is

indicated by bold type. Each of the three simulations presented in this Appendix

consider peak and plateau models as candidate models. In the tables that follows,

‘TITEE’ denotes a method which models toxicity as a binary outcome and efficacy

as a TITE outcome, ‘TITETE’ denotes a method which models toxicity and efficacy

as TITE outcomes, ‘U’ represents that the TITE outcome follows a conditionally

Uniform distribution, ‘W’ represents that the TITE outcomes follows a Weibull

distribution, ‘f’ represents that the arrival of patients occurs at fixed intervals, and

‘P’ represents that the arrival of patients is a random event which follows a Poisson

process.
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Table C.1: Selection Percentages for each dose the proposed method under different
amounts of delay after 1000 simulation runs with a sample size of n = 36, nR = 12,
and φT = 0.40. When nlag = 0, the method is the same as proposed in Chapter 2
and corresponds to α1, Q1 in Table B.5.

True (toxicity, efficacy) probability

Scenario 1 (0.05, 0.02) (0.12, 0.30) (0.30, 0.55) (0.80, 0.65)
nlag = 0 0.1 21.4 74.9 3.6
nlag = 3 1.5 7.5 88.0 4.5
nlag = 5 0.1 8.1 85.3 6.6
nlag = 8 0.3 9.2 83.6 7.0
nlag = 10 0.2 8.8 84.5 6.6
nlag = 15 0.1 15.1 78.6 6.3

Scenario 2 (0.05, 0.02) (0.10, 0.28) (0.16, 0.50) (0.22, 0.80)

nlag = 0 0.1 6.2 19.5 74.2
nlag = 3 0.0 1.5 23.5 75.1
nlag = 5 0.1 1.5 28.5 70.0
nlag = 8 0.0 1.6 32.5 65.9
nlag = 10 0.1 2.7 36.9 60.4
nlag = 15 0.0 7.8 44.2 48.6

Scenario 3 (0.05, 0.25) (0.15, 0.65) (0.42, 0.50) (0.65, 0.05)

nlag = 0 4.4 85.0 10.6 0.0
nlag = 3 1.9 82.3 15.8 0.1
nlag = 5 2.4 81.1 16.1 0.5
nlag = 8 2.8 79.5 17.0 0.8
nlag = 10 2.8 77.7 18.7 0.9
nlag = 15 4.3 74.3 20.4 1.1

Scenario 4 (0.05, 0.80) (0.10, 0.50) (0.16, 0.28) (0.22, 0.02)

nlag = 0 90.7 7.8 1.5 0.0
nlag = 3 93.4 6.3 0.3 0.1
nlag = 5 92.4 7.0 0.6 0.0
nlag = 8 92.7 6.7 0.5 0.1
nlag = 10 92.1 7.3 0.5 0.2
nlag = 15 93.6 5.8 0.5 0.2
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Table C.2: Recommendation Percentages for the Proposed Method using TITE Ef-
ficacy Outcomes and Bivariate Toxicity Outcomes after 1000 simulation runs with
a sample size of n = 60, nR = 20, and φT = 1/3.

Method, True (toxicity, efficacy) probability Trial
TITE - Arrival Duration

Scenario 1 (0.02, 0.40) (0.03, 0.25) (0.05, 0.20) (0.06, 0.15) (0.07, 0.10) (0.07, 0.05)

WT 58.5 17.4 11.2 7.4 4.6 0.0 180
TITEE , U-f 58.8 16.7 12.2 6.6 4.5 1.2 61.52
TITEE , U-P 60.3 14.3 12.1 8.0 4.3 1.0 61.95
TITEE , W-f 60.0 17.6 10.5 7.6 3.7 0.6 62.13
TITEE , W-P 62.4 14.3 12.0 6.4 3.4 1.5 62.32

Scenario 2 (0.02, 0.15) (0.04, 0.45) (0.07, 0.30) (0.09, 0.25) (0.10, 0.16) (0.15, 0.10)

WT 1.6 69.1 17.3 9.8 1.9 0.3 180
TITEE , U-f 5.7 62.5 18.8 9.9 2.3 0.8 61.46
TITEE , U-P 4.2 65.3 17.7 9.6 2.5 0.7 60.99
TITEE , W-f 4.2 68.3 15.8 7.9 3.3 0.5 62.09
TITEE , W-P 5.2 65.8 17.8 8.0 2.5 0.7 62.32

Scenario 3 (0.01, 0.10) (0.02, 0.15) (0.03, 0.35) (0.04, 0.18) (0.05, 0.12) (0.06, 0.07)

WT 5.2 12.0 63.7 11.5 6.1 1.5 180
TITEE , U-f 6.0 14.2 60.2 10.8 6.5 2.3 61.61
TITEE , U-P 6.4 9.9 66.8 10.9 4.5 1.5 61.70
TITEE , W-f 7.4 11.3 63.3 10.4 5.4 2.2 62.18
TITEE , W-P 6.6 12.4 60.8 10.6 7.1 2.5 62.05

Scenario 4 (0.01, 0.05) (0.02, 0.15) (0.04, 0.30) (0.06, 0.45) (0.08, 0.35) (0.10, 0.30)

WT 0.4 5.6 24.8 52.6 13.4 3.2 180
TITEE , U-f 0.1 5.1 22.1 53.4 13.8 5.5 61.44
TITEE , U-P 0.7 6.3 20.7 52.5 13.5 6.3 61.65
TITEE , W-f 1.2 6.1 23.2 49.6 15.2 4.7 62.06
TITEE , W-P 1.1 5.7 22.8 49.1 16.0 5.3 61.99

Scenario 5 (0.01, 0.15) (0.02, 0.25) (0.03, 0.33) (0.05, 0.47) (0.06, 0.60) (0.07, 0.40)

WT 0.9 7.5 11.4 25.4 51.4 3.4 180
TITEE , U-f 2.4 7.3 10.2 24.4 51.9 3.8 61.21
TITEE , U-P 2.4 6.8 11.7 23.6 50.5 5.0 61.46
TITEE , W-f 1.9 6.8 12.5 24.4 50.7 3.7 61.98
TITEE , W-P 2.9 7.5 10.4 26.3 49.2 3.7 62.42

Scenario 6 (0.01, 0.05) (0.02, 0.15) (0.03, 0.30) (0.04, 0.35) (0.05, 0.40) (0.06, 0.50)

WT 0.6 6.7 21.6 21.3 21.4 28.4 180
TITEE , U-f 0.6 6.3 22.4 18.3 22.6 29.8 61.44
TITEE , U-P 0.6 4.3 22.0 16.7 23.1 33.3 61.37
TITEE , W-f 0.7 4.3 19.5 20.7 23.4 31.4 62.09
TITEE , W-P 1.2 3.8 20.2 21.6 21.6 31.6 61.99

Scenario 7 (0.05, 0.01) (0.10, 0.02) (0.16, 0.03) (0.35, 0.05) (0.40, 0.07) (0.50, 0.09)

WT 2.9 7.0 31.7 52.8 5.6 0.0 180
TITEE , U-f 3.0 6.1 36.7 47.4 6.7 0.1 61.94
TITEE , U-P 2.4 7.6 33.2 51.0 5.8 0.0 62.11
TITEE , W-f 3.3 6.2 36.7 48.6 5.2 0.0 62.15
TITEE , W-P 3.3 8.8 36.1 46.4 5.3 0.1 62.36
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Table C.3: Recommendation Percentages for the Proposed Method using TITE Toxi-
city and Efficacy Outcomes after 1000 simulation runs with a sample size of n = 60,
nR = 20, and φT = 1/3.

Method, True (toxicity, efficacy) probability Trial
TITE - Arrival Duration

Scenario 1 (0.02, 0.40) (0.03, 0.25) (0.05, 0.20) (0.06, 0.15) (0.07, 0.10) (0.07, 0.05)

WT 58.5 17.4 11.2 7.4 4.6 0.0 180
TITETE ,U-f 61.4 15.9 11.7 6.4 4.0 0.6 22.26

TITETE , U-P 60.7 16.3 11.9 6.2 4.4 0.5 22.25
TITETE , W-f 63.6 16.7 11.6 4.8 2.8 0.5 21.47
TITETE , W-P 57.9 19.7 13.0 5.6 3.4 0.4 21.53

TITETE , Tox-U/Eff-W,f 65.0 17.0 9.6 5.0 2.4 1.0 21.43
TITETE , Tox-W/Eff-U,f 61.4 16.1 11.5 6.9 3.0 1.1 22.23

Scenario 2 (0.02, 0.15) (0.04, 0.45) (0.07, 0.30) (0.09, 0.25) (0.10, 0.16) (0.15, 0.10)

WT 1.6 69.1 17.3 9.8 1.9 0.3 180
TITETE , U-f 5.7 65.6 18.1 8.3 1.8 0.5 22.11
TITETE , U-P 7.2 62.9 19.1 8.3 2.3 0.2 22.31
TITETE , W-f 6.3 60.6 22.6 7.6 2.4 0.5 21.60
TITETE , W-P 6.1 60.9 21.9 8.8 1.9 0.4 21.29

TITE, Tox-U/Eff-W,f 6.1 64.7 18.7 7.9 1.9 0.7 21.50
TITETE , Tox-W/Eff-U,f 5.5 61.8 18.9 9.5 2.9 1.4 22.18

Scenario 3 (0.01, 0.10) (0.02, 0.15) (0.03, 0.35) (0.04, 0.18) (0.05, 0.12) (0.06, 0.07)

WT 5.2 12.0 63.7 11.5 6.1 1.5 180
TITETE , U-f 7.6 10.2 64.1 11.3 5.2 1.6 22.30
TITETE , U-P 5.5 10.1 67.3 11.8 3.7 1.6 22.38
TITETE , W-f 7.4 14.1 63.2 9.5 4.2 1.6 21.40
TITETE , W-P 7.2 14.1 61.0 9.6 6.5 1.6 21.52

TITETE , Tox-U/Eff-W,f 8.2 12.6 60.8 10.7 6.0 1.7 21.37
TITETE , Tox-W/Eff-U,f 6.3 10.7 63.8 12.5 5.2 1.5 22.33

Scenario 4 (0.01, 0.05) (0.02, 0.15) (0.04, 0.30) (0.06, 0.45) (0.08, 0.35) (0.10, 0.30)

WT 0.4 5.6 24.8 52.6 13.4 3.2 180
TITETE , U-f 0.6 5.1 26.1 48.4 15.2 4.6 22.18
TITETE , U-P 1.0 4.7 25.1 48.8 15.7 4.7 22.06
TITETE , W-f 0.3 5.6 19.6 50.5 17.6 6.4 21.55
TITETE , W-P 0.8 5.0 21.8 49.7 18.2 4.5 21.59

TITE, Tox-U/Eff-W,f 0.8 5.7 20.4 52.7 14.9 5.5 21.55
TITETE , Tox-W/Eff-U,f 0.8 5.8 24.0 49.6 14.8 5.0 22.19

Scenario 5 (0.01, 0.15) (0.02, 0.25) (0.03, 0.33) (0.05, 0.47) (0.06, 0.60) (0.07, 0.40)

WT 0.9 7.5 11.4 25.4 51.4 3.4 180
TITETE , U-f 2.6 9.1 12.0 24.0 47.3 5.0 22.02
TITETE , U-P 2.4 7.5 11.9 24.5 49.6 4.1 21.96
TITETE , W-f 1.5 5.7 10.4 27.1 50.0 5.3 21.60
TITETE , W-P 2.8 7.4 9.6 29.0 46.5 4.7 21.74

TITETE , Tox-U/Eff-W,f 2.8 6.6 11.8 26.5 46.8 5.5 21.65
TITETE , Tox-W/Eff-U,f 3.1 7.3 10.7 24.8 48.7 5.4 22.00

Scenario 6 (0.01, 0.05) (0.02, 0.15) (0.03, 0.30) (0.04, 0.35) (0.05, 0.40) (0.06, 0.50)

WT 0.6 6.7 21.6 21.3 21.4 28.4 180
TITETE , U-f 0.4 5.4 21.1 20.4 19.4 33.3 22.14
TITETE , U-P 1.2 6.1 21.7 21.3 19.3 30.4 22.29
TITETE , W-f 0.9 5.1 19.2 17.7 21.9 35.2 21.62
TITETE , W-P 0.5 4.4 19.8 20.5 20.8 34.0 21.48

TITETE , Tox-U/Eff-W,f 0.7 4.7 21.0 21.6 19.5 32.5 21.52
TITETE , Tox-W/Eff-U,f 0.5 4.4 21.9 18.7 19.6 34.9 22.16

Scenario 7 (0.05, 0.01) (0.10, 0.02) (0.16, 0.03) (0.35, 0.05) (0.40, 0.07) (0.50, 0.09)

WT 2.9 7.0 31.7 52.8 5.6 0.0 180
TITETE , U-f 2.8 7.3 34.1 50.8 4.9 0.1 22.61
TITETE , U-P 4.5 8.3 39.3 42.9 5.0 0.0 22.69
TITETE , W-f 1.6 6.6 35.1 51.9 4.7 0.1 20.91
TITETE , W-P 3.6 7.0 37.7 46.6 5.0 0.1 20.95

TITETE , Tox-U/Eff-W,f 4.3 6.2 36.7 46.6 6.2 0.0 20.87
TITE, Tox-W/Eff-U,f 2.3 6.5 37.8 47.3 5.8 0.3 22.60
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